ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk7/java/util/concurrent/ConcurrentLinkedQueue.java
Revision: 1.4
Committed: Wed Oct 29 20:23:14 2014 UTC (9 years, 6 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.3: +3 -3 lines
Log Message:
use new URL for the Micheal/Scott paper

File Contents

# Content
1 /*
2 * Written by Doug Lea and Martin Buchholz with assistance from members of
3 * JCP JSR-166 Expert Group and released to the public domain, as explained
4 * at http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractQueue;
10 import java.util.ArrayList;
11 import java.util.Collection;
12 import java.util.Iterator;
13 import java.util.NoSuchElementException;
14 import java.util.Queue;
15
16 /**
17 * An unbounded thread-safe {@linkplain Queue queue} based on linked nodes.
18 * This queue orders elements FIFO (first-in-first-out).
19 * The <em>head</em> of the queue is that element that has been on the
20 * queue the longest time.
21 * The <em>tail</em> of the queue is that element that has been on the
22 * queue the shortest time. New elements
23 * are inserted at the tail of the queue, and the queue retrieval
24 * operations obtain elements at the head of the queue.
25 * A {@code ConcurrentLinkedQueue} is an appropriate choice when
26 * many threads will share access to a common collection.
27 * Like most other concurrent collection implementations, this class
28 * does not permit the use of {@code null} elements.
29 *
30 * <p>This implementation employs an efficient <em>non-blocking</em>
31 * algorithm based on one described in
32 * <a href="http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf">
33 * Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue
34 * Algorithms</a> by Maged M. Michael and Michael L. Scott.
35 *
36 * <p>Iterators are <i>weakly consistent</i>, returning elements
37 * reflecting the state of the queue at some point at or since the
38 * creation of the iterator. They do <em>not</em> throw {@link
39 * java.util.ConcurrentModificationException}, and may proceed concurrently
40 * with other operations. Elements contained in the queue since the creation
41 * of the iterator will be returned exactly once.
42 *
43 * <p>Beware that, unlike in most collections, the {@code size} method
44 * is <em>NOT</em> a constant-time operation. Because of the
45 * asynchronous nature of these queues, determining the current number
46 * of elements requires a traversal of the elements, and so may report
47 * inaccurate results if this collection is modified during traversal.
48 * Additionally, the bulk operations {@code addAll},
49 * {@code removeAll}, {@code retainAll}, {@code containsAll},
50 * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
51 * to be performed atomically. For example, an iterator operating
52 * concurrently with an {@code addAll} operation might view only some
53 * of the added elements.
54 *
55 * <p>This class and its iterator implement all of the <em>optional</em>
56 * methods of the {@link Queue} and {@link Iterator} interfaces.
57 *
58 * <p>Memory consistency effects: As with other concurrent
59 * collections, actions in a thread prior to placing an object into a
60 * {@code ConcurrentLinkedQueue}
61 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
62 * actions subsequent to the access or removal of that element from
63 * the {@code ConcurrentLinkedQueue} in another thread.
64 *
65 * <p>This class is a member of the
66 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
67 * Java Collections Framework</a>.
68 *
69 * @since 1.5
70 * @author Doug Lea
71 * @param <E> the type of elements held in this collection
72 */
73 public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
74 implements Queue<E>, java.io.Serializable {
75 private static final long serialVersionUID = 196745693267521676L;
76
77 /*
78 * This is a modification of the Michael & Scott algorithm,
79 * adapted for a garbage-collected environment, with support for
80 * interior node deletion (to support remove(Object)). For
81 * explanation, read the paper.
82 *
83 * Note that like most non-blocking algorithms in this package,
84 * this implementation relies on the fact that in garbage
85 * collected systems, there is no possibility of ABA problems due
86 * to recycled nodes, so there is no need to use "counted
87 * pointers" or related techniques seen in versions used in
88 * non-GC'ed settings.
89 *
90 * The fundamental invariants are:
91 * - There is exactly one (last) Node with a null next reference,
92 * which is CASed when enqueueing. This last Node can be
93 * reached in O(1) time from tail, but tail is merely an
94 * optimization - it can always be reached in O(N) time from
95 * head as well.
96 * - The elements contained in the queue are the non-null items in
97 * Nodes that are reachable from head. CASing the item
98 * reference of a Node to null atomically removes it from the
99 * queue. Reachability of all elements from head must remain
100 * true even in the case of concurrent modifications that cause
101 * head to advance. A dequeued Node may remain in use
102 * indefinitely due to creation of an Iterator or simply a
103 * poll() that has lost its time slice.
104 *
105 * The above might appear to imply that all Nodes are GC-reachable
106 * from a predecessor dequeued Node. That would cause two problems:
107 * - allow a rogue Iterator to cause unbounded memory retention
108 * - cause cross-generational linking of old Nodes to new Nodes if
109 * a Node was tenured while live, which generational GCs have a
110 * hard time dealing with, causing repeated major collections.
111 * However, only non-deleted Nodes need to be reachable from
112 * dequeued Nodes, and reachability does not necessarily have to
113 * be of the kind understood by the GC. We use the trick of
114 * linking a Node that has just been dequeued to itself. Such a
115 * self-link implicitly means to advance to head.
116 *
117 * Both head and tail are permitted to lag. In fact, failing to
118 * update them every time one could is a significant optimization
119 * (fewer CASes). As with LinkedTransferQueue (see the internal
120 * documentation for that class), we use a slack threshold of two;
121 * that is, we update head/tail when the current pointer appears
122 * to be two or more steps away from the first/last node.
123 *
124 * Since head and tail are updated concurrently and independently,
125 * it is possible for tail to lag behind head (why not)?
126 *
127 * CASing a Node's item reference to null atomically removes the
128 * element from the queue. Iterators skip over Nodes with null
129 * items. Prior implementations of this class had a race between
130 * poll() and remove(Object) where the same element would appear
131 * to be successfully removed by two concurrent operations. The
132 * method remove(Object) also lazily unlinks deleted Nodes, but
133 * this is merely an optimization.
134 *
135 * When constructing a Node (before enqueuing it) we avoid paying
136 * for a volatile write to item by using Unsafe.putObject instead
137 * of a normal write. This allows the cost of enqueue to be
138 * "one-and-a-half" CASes.
139 *
140 * Both head and tail may or may not point to a Node with a
141 * non-null item. If the queue is empty, all items must of course
142 * be null. Upon creation, both head and tail refer to a dummy
143 * Node with null item. Both head and tail are only updated using
144 * CAS, so they never regress, although again this is merely an
145 * optimization.
146 */
147
148 private static class Node<E> {
149 volatile E item;
150 volatile Node<E> next;
151
152 /**
153 * Constructs a new node. Uses relaxed write because item can
154 * only be seen after publication via casNext.
155 */
156 Node(E item) {
157 UNSAFE.putObject(this, itemOffset, item);
158 }
159
160 boolean casItem(E cmp, E val) {
161 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
162 }
163
164 void lazySetNext(Node<E> val) {
165 UNSAFE.putOrderedObject(this, nextOffset, val);
166 }
167
168 boolean casNext(Node<E> cmp, Node<E> val) {
169 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
170 }
171
172 // Unsafe mechanics
173
174 private static final sun.misc.Unsafe UNSAFE;
175 private static final long itemOffset;
176 private static final long nextOffset;
177
178 static {
179 try {
180 UNSAFE = sun.misc.Unsafe.getUnsafe();
181 Class<?> k = Node.class;
182 itemOffset = UNSAFE.objectFieldOffset
183 (k.getDeclaredField("item"));
184 nextOffset = UNSAFE.objectFieldOffset
185 (k.getDeclaredField("next"));
186 } catch (Exception e) {
187 throw new Error(e);
188 }
189 }
190 }
191
192 /**
193 * A node from which the first live (non-deleted) node (if any)
194 * can be reached in O(1) time.
195 * Invariants:
196 * - all live nodes are reachable from head via succ()
197 * - head != null
198 * - (tmp = head).next != tmp || tmp != head
199 * Non-invariants:
200 * - head.item may or may not be null.
201 * - it is permitted for tail to lag behind head, that is, for tail
202 * to not be reachable from head!
203 */
204 private transient volatile Node<E> head;
205
206 /**
207 * A node from which the last node on list (that is, the unique
208 * node with node.next == null) can be reached in O(1) time.
209 * Invariants:
210 * - the last node is always reachable from tail via succ()
211 * - tail != null
212 * Non-invariants:
213 * - tail.item may or may not be null.
214 * - it is permitted for tail to lag behind head, that is, for tail
215 * to not be reachable from head!
216 * - tail.next may or may not be self-pointing to tail.
217 */
218 private transient volatile Node<E> tail;
219
220 /**
221 * Creates a {@code ConcurrentLinkedQueue} that is initially empty.
222 */
223 public ConcurrentLinkedQueue() {
224 head = tail = new Node<E>(null);
225 }
226
227 /**
228 * Creates a {@code ConcurrentLinkedQueue}
229 * initially containing the elements of the given collection,
230 * added in traversal order of the collection's iterator.
231 *
232 * @param c the collection of elements to initially contain
233 * @throws NullPointerException if the specified collection or any
234 * of its elements are null
235 */
236 public ConcurrentLinkedQueue(Collection<? extends E> c) {
237 Node<E> h = null, t = null;
238 for (E e : c) {
239 checkNotNull(e);
240 Node<E> newNode = new Node<E>(e);
241 if (h == null)
242 h = t = newNode;
243 else {
244 t.lazySetNext(newNode);
245 t = newNode;
246 }
247 }
248 if (h == null)
249 h = t = new Node<E>(null);
250 head = h;
251 tail = t;
252 }
253
254 // Have to override just to update the javadoc
255
256 /**
257 * Inserts the specified element at the tail of this queue.
258 * As the queue is unbounded, this method will never throw
259 * {@link IllegalStateException} or return {@code false}.
260 *
261 * @return {@code true} (as specified by {@link Collection#add})
262 * @throws NullPointerException if the specified element is null
263 */
264 public boolean add(E e) {
265 return offer(e);
266 }
267
268 /**
269 * Tries to CAS head to p. If successful, repoint old head to itself
270 * as sentinel for succ(), below.
271 */
272 final void updateHead(Node<E> h, Node<E> p) {
273 if (h != p && casHead(h, p))
274 h.lazySetNext(h);
275 }
276
277 /**
278 * Returns the successor of p, or the head node if p.next has been
279 * linked to self, which will only be true if traversing with a
280 * stale pointer that is now off the list.
281 */
282 final Node<E> succ(Node<E> p) {
283 Node<E> next = p.next;
284 return (p == next) ? head : next;
285 }
286
287 /**
288 * Inserts the specified element at the tail of this queue.
289 * As the queue is unbounded, this method will never return {@code false}.
290 *
291 * @return {@code true} (as specified by {@link Queue#offer})
292 * @throws NullPointerException if the specified element is null
293 */
294 public boolean offer(E e) {
295 checkNotNull(e);
296 final Node<E> newNode = new Node<E>(e);
297
298 for (Node<E> t = tail, p = t;;) {
299 Node<E> q = p.next;
300 if (q == null) {
301 // p is last node
302 if (p.casNext(null, newNode)) {
303 // Successful CAS is the linearization point
304 // for e to become an element of this queue,
305 // and for newNode to become "live".
306 if (p != t) // hop two nodes at a time
307 casTail(t, newNode); // Failure is OK.
308 return true;
309 }
310 // Lost CAS race to another thread; re-read next
311 }
312 else if (p == q)
313 // We have fallen off list. If tail is unchanged, it
314 // will also be off-list, in which case we need to
315 // jump to head, from which all live nodes are always
316 // reachable. Else the new tail is a better bet.
317 p = (t != (t = tail)) ? t : head;
318 else
319 // Check for tail updates after two hops.
320 p = (p != t && t != (t = tail)) ? t : q;
321 }
322 }
323
324 public E poll() {
325 restartFromHead:
326 for (;;) {
327 for (Node<E> h = head, p = h, q;;) {
328 E item = p.item;
329
330 if (item != null && p.casItem(item, null)) {
331 // Successful CAS is the linearization point
332 // for item to be removed from this queue.
333 if (p != h) // hop two nodes at a time
334 updateHead(h, ((q = p.next) != null) ? q : p);
335 return item;
336 }
337 else if ((q = p.next) == null) {
338 updateHead(h, p);
339 return null;
340 }
341 else if (p == q)
342 continue restartFromHead;
343 else
344 p = q;
345 }
346 }
347 }
348
349 public E peek() {
350 restartFromHead:
351 for (;;) {
352 for (Node<E> h = head, p = h, q;;) {
353 E item = p.item;
354 if (item != null || (q = p.next) == null) {
355 updateHead(h, p);
356 return item;
357 }
358 else if (p == q)
359 continue restartFromHead;
360 else
361 p = q;
362 }
363 }
364 }
365
366 /**
367 * Returns the first live (non-deleted) node on list, or null if none.
368 * This is yet another variant of poll/peek; here returning the
369 * first node, not element. We could make peek() a wrapper around
370 * first(), but that would cost an extra volatile read of item,
371 * and the need to add a retry loop to deal with the possibility
372 * of losing a race to a concurrent poll().
373 */
374 Node<E> first() {
375 restartFromHead:
376 for (;;) {
377 for (Node<E> h = head, p = h, q;;) {
378 boolean hasItem = (p.item != null);
379 if (hasItem || (q = p.next) == null) {
380 updateHead(h, p);
381 return hasItem ? p : null;
382 }
383 else if (p == q)
384 continue restartFromHead;
385 else
386 p = q;
387 }
388 }
389 }
390
391 /**
392 * Returns {@code true} if this queue contains no elements.
393 *
394 * @return {@code true} if this queue contains no elements
395 */
396 public boolean isEmpty() {
397 return first() == null;
398 }
399
400 /**
401 * Returns the number of elements in this queue. If this queue
402 * contains more than {@code Integer.MAX_VALUE} elements, returns
403 * {@code Integer.MAX_VALUE}.
404 *
405 * <p>Beware that, unlike in most collections, this method is
406 * <em>NOT</em> a constant-time operation. Because of the
407 * asynchronous nature of these queues, determining the current
408 * number of elements requires an O(n) traversal.
409 * Additionally, if elements are added or removed during execution
410 * of this method, the returned result may be inaccurate. Thus,
411 * this method is typically not very useful in concurrent
412 * applications.
413 *
414 * @return the number of elements in this queue
415 */
416 public int size() {
417 int count = 0;
418 for (Node<E> p = first(); p != null; p = succ(p))
419 if (p.item != null)
420 // Collection.size() spec says to max out
421 if (++count == Integer.MAX_VALUE)
422 break;
423 return count;
424 }
425
426 /**
427 * Returns {@code true} if this queue contains the specified element.
428 * More formally, returns {@code true} if and only if this queue contains
429 * at least one element {@code e} such that {@code o.equals(e)}.
430 *
431 * @param o object to be checked for containment in this queue
432 * @return {@code true} if this queue contains the specified element
433 */
434 public boolean contains(Object o) {
435 if (o == null) return false;
436 for (Node<E> p = first(); p != null; p = succ(p)) {
437 E item = p.item;
438 if (item != null && o.equals(item))
439 return true;
440 }
441 return false;
442 }
443
444 /**
445 * Removes a single instance of the specified element from this queue,
446 * if it is present. More formally, removes an element {@code e} such
447 * that {@code o.equals(e)}, if this queue contains one or more such
448 * elements.
449 * Returns {@code true} if this queue contained the specified element
450 * (or equivalently, if this queue changed as a result of the call).
451 *
452 * @param o element to be removed from this queue, if present
453 * @return {@code true} if this queue changed as a result of the call
454 */
455 public boolean remove(Object o) {
456 if (o == null) return false;
457 Node<E> pred = null;
458 for (Node<E> p = first(); p != null; p = succ(p)) {
459 E item = p.item;
460 if (item != null &&
461 o.equals(item) &&
462 p.casItem(item, null)) {
463 Node<E> next = succ(p);
464 if (pred != null && next != null)
465 pred.casNext(p, next);
466 return true;
467 }
468 pred = p;
469 }
470 return false;
471 }
472
473 /**
474 * Appends all of the elements in the specified collection to the end of
475 * this queue, in the order that they are returned by the specified
476 * collection's iterator. Attempts to {@code addAll} of a queue to
477 * itself result in {@code IllegalArgumentException}.
478 *
479 * @param c the elements to be inserted into this queue
480 * @return {@code true} if this queue changed as a result of the call
481 * @throws NullPointerException if the specified collection or any
482 * of its elements are null
483 * @throws IllegalArgumentException if the collection is this queue
484 */
485 public boolean addAll(Collection<? extends E> c) {
486 if (c == this)
487 // As historically specified in AbstractQueue#addAll
488 throw new IllegalArgumentException();
489
490 // Copy c into a private chain of Nodes
491 Node<E> beginningOfTheEnd = null, last = null;
492 for (E e : c) {
493 checkNotNull(e);
494 Node<E> newNode = new Node<E>(e);
495 if (beginningOfTheEnd == null)
496 beginningOfTheEnd = last = newNode;
497 else {
498 last.lazySetNext(newNode);
499 last = newNode;
500 }
501 }
502 if (beginningOfTheEnd == null)
503 return false;
504
505 // Atomically append the chain at the tail of this collection
506 for (Node<E> t = tail, p = t;;) {
507 Node<E> q = p.next;
508 if (q == null) {
509 // p is last node
510 if (p.casNext(null, beginningOfTheEnd)) {
511 // Successful CAS is the linearization point
512 // for all elements to be added to this queue.
513 if (!casTail(t, last)) {
514 // Try a little harder to update tail,
515 // since we may be adding many elements.
516 t = tail;
517 if (last.next == null)
518 casTail(t, last);
519 }
520 return true;
521 }
522 // Lost CAS race to another thread; re-read next
523 }
524 else if (p == q)
525 // We have fallen off list. If tail is unchanged, it
526 // will also be off-list, in which case we need to
527 // jump to head, from which all live nodes are always
528 // reachable. Else the new tail is a better bet.
529 p = (t != (t = tail)) ? t : head;
530 else
531 // Check for tail updates after two hops.
532 p = (p != t && t != (t = tail)) ? t : q;
533 }
534 }
535
536 /**
537 * Returns an array containing all of the elements in this queue, in
538 * proper sequence.
539 *
540 * <p>The returned array will be "safe" in that no references to it are
541 * maintained by this queue. (In other words, this method must allocate
542 * a new array). The caller is thus free to modify the returned array.
543 *
544 * <p>This method acts as bridge between array-based and collection-based
545 * APIs.
546 *
547 * @return an array containing all of the elements in this queue
548 */
549 public Object[] toArray() {
550 // Use ArrayList to deal with resizing.
551 ArrayList<E> al = new ArrayList<E>();
552 for (Node<E> p = first(); p != null; p = succ(p)) {
553 E item = p.item;
554 if (item != null)
555 al.add(item);
556 }
557 return al.toArray();
558 }
559
560 /**
561 * Returns an array containing all of the elements in this queue, in
562 * proper sequence; the runtime type of the returned array is that of
563 * the specified array. If the queue fits in the specified array, it
564 * is returned therein. Otherwise, a new array is allocated with the
565 * runtime type of the specified array and the size of this queue.
566 *
567 * <p>If this queue fits in the specified array with room to spare
568 * (i.e., the array has more elements than this queue), the element in
569 * the array immediately following the end of the queue is set to
570 * {@code null}.
571 *
572 * <p>Like the {@link #toArray()} method, this method acts as bridge between
573 * array-based and collection-based APIs. Further, this method allows
574 * precise control over the runtime type of the output array, and may,
575 * under certain circumstances, be used to save allocation costs.
576 *
577 * <p>Suppose {@code x} is a queue known to contain only strings.
578 * The following code can be used to dump the queue into a newly
579 * allocated array of {@code String}:
580 *
581 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
582 *
583 * Note that {@code toArray(new Object[0])} is identical in function to
584 * {@code toArray()}.
585 *
586 * @param a the array into which the elements of the queue are to
587 * be stored, if it is big enough; otherwise, a new array of the
588 * same runtime type is allocated for this purpose
589 * @return an array containing all of the elements in this queue
590 * @throws ArrayStoreException if the runtime type of the specified array
591 * is not a supertype of the runtime type of every element in
592 * this queue
593 * @throws NullPointerException if the specified array is null
594 */
595 @SuppressWarnings("unchecked")
596 public <T> T[] toArray(T[] a) {
597 // try to use sent-in array
598 int k = 0;
599 Node<E> p;
600 for (p = first(); p != null && k < a.length; p = succ(p)) {
601 E item = p.item;
602 if (item != null)
603 a[k++] = (T)item;
604 }
605 if (p == null) {
606 if (k < a.length)
607 a[k] = null;
608 return a;
609 }
610
611 // If won't fit, use ArrayList version
612 ArrayList<E> al = new ArrayList<E>();
613 for (Node<E> q = first(); q != null; q = succ(q)) {
614 E item = q.item;
615 if (item != null)
616 al.add(item);
617 }
618 return al.toArray(a);
619 }
620
621 /**
622 * Returns an iterator over the elements in this queue in proper sequence.
623 * The elements will be returned in order from first (head) to last (tail).
624 *
625 * <p>The returned iterator is a "weakly consistent" iterator that
626 * will never throw {@link java.util.ConcurrentModificationException
627 * ConcurrentModificationException}, and guarantees to traverse
628 * elements as they existed upon construction of the iterator, and
629 * may (but is not guaranteed to) reflect any modifications
630 * subsequent to construction.
631 *
632 * @return an iterator over the elements in this queue in proper sequence
633 */
634 public Iterator<E> iterator() {
635 return new Itr();
636 }
637
638 private class Itr implements Iterator<E> {
639 /**
640 * Next node to return item for.
641 */
642 private Node<E> nextNode;
643
644 /**
645 * nextItem holds on to item fields because once we claim
646 * that an element exists in hasNext(), we must return it in
647 * the following next() call even if it was in the process of
648 * being removed when hasNext() was called.
649 */
650 private E nextItem;
651
652 /**
653 * Node of the last returned item, to support remove.
654 */
655 private Node<E> lastRet;
656
657 Itr() {
658 advance();
659 }
660
661 /**
662 * Moves to next valid node and returns item to return for
663 * next(), or null if no such.
664 */
665 private E advance() {
666 lastRet = nextNode;
667 E x = nextItem;
668
669 Node<E> pred, p;
670 if (nextNode == null) {
671 p = first();
672 pred = null;
673 } else {
674 pred = nextNode;
675 p = succ(nextNode);
676 }
677
678 for (;;) {
679 if (p == null) {
680 nextNode = null;
681 nextItem = null;
682 return x;
683 }
684 E item = p.item;
685 if (item != null) {
686 nextNode = p;
687 nextItem = item;
688 return x;
689 } else {
690 // skip over nulls
691 Node<E> next = succ(p);
692 if (pred != null && next != null)
693 pred.casNext(p, next);
694 p = next;
695 }
696 }
697 }
698
699 public boolean hasNext() {
700 return nextNode != null;
701 }
702
703 public E next() {
704 if (nextNode == null) throw new NoSuchElementException();
705 return advance();
706 }
707
708 public void remove() {
709 Node<E> l = lastRet;
710 if (l == null) throw new IllegalStateException();
711 // rely on a future traversal to relink.
712 l.item = null;
713 lastRet = null;
714 }
715 }
716
717 /**
718 * Saves this queue to a stream (that is, serializes it).
719 *
720 * @serialData All of the elements (each an {@code E}) in
721 * the proper order, followed by a null
722 */
723 private void writeObject(java.io.ObjectOutputStream s)
724 throws java.io.IOException {
725
726 // Write out any hidden stuff
727 s.defaultWriteObject();
728
729 // Write out all elements in the proper order.
730 for (Node<E> p = first(); p != null; p = succ(p)) {
731 Object item = p.item;
732 if (item != null)
733 s.writeObject(item);
734 }
735
736 // Use trailing null as sentinel
737 s.writeObject(null);
738 }
739
740 /**
741 * Reconstitutes this queue from a stream (that is, deserializes it).
742 */
743 private void readObject(java.io.ObjectInputStream s)
744 throws java.io.IOException, ClassNotFoundException {
745 s.defaultReadObject();
746
747 // Read in elements until trailing null sentinel found
748 Node<E> h = null, t = null;
749 Object item;
750 while ((item = s.readObject()) != null) {
751 @SuppressWarnings("unchecked")
752 Node<E> newNode = new Node<E>((E) item);
753 if (h == null)
754 h = t = newNode;
755 else {
756 t.lazySetNext(newNode);
757 t = newNode;
758 }
759 }
760 if (h == null)
761 h = t = new Node<E>(null);
762 head = h;
763 tail = t;
764 }
765
766 /**
767 * Throws NullPointerException if argument is null.
768 *
769 * @param v the element
770 */
771 private static void checkNotNull(Object v) {
772 if (v == null)
773 throw new NullPointerException();
774 }
775
776 private boolean casTail(Node<E> cmp, Node<E> val) {
777 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
778 }
779
780 private boolean casHead(Node<E> cmp, Node<E> val) {
781 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
782 }
783
784 // Unsafe mechanics
785
786 private static final sun.misc.Unsafe UNSAFE;
787 private static final long headOffset;
788 private static final long tailOffset;
789 static {
790 try {
791 UNSAFE = sun.misc.Unsafe.getUnsafe();
792 Class<?> k = ConcurrentLinkedQueue.class;
793 headOffset = UNSAFE.objectFieldOffset
794 (k.getDeclaredField("head"));
795 tailOffset = UNSAFE.objectFieldOffset
796 (k.getDeclaredField("tail"));
797 } catch (Exception e) {
798 throw new Error(e);
799 }
800 }
801 }