ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk7/java/util/concurrent/ConcurrentSkipListMap.java
Revision: 1.13
Committed: Thu Sep 3 22:54:46 2015 UTC (8 years, 9 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.12: +1 -1 lines
Log Message:
s/adaptor/adapter/g

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package java.util.concurrent;
8 jsr166 1.12
9 dl 1.1 import java.util.*;
10    
11     /**
12     * A scalable concurrent {@link ConcurrentNavigableMap} implementation.
13     * The map is sorted according to the {@linkplain Comparable natural
14     * ordering} of its keys, or by a {@link Comparator} provided at map
15     * creation time, depending on which constructor is used.
16     *
17     * <p>This class implements a concurrent variant of <a
18     * href="http://en.wikipedia.org/wiki/Skip_list" target="_top">SkipLists</a>
19     * providing expected average <i>log(n)</i> time cost for the
20 jsr166 1.2 * {@code containsKey}, {@code get}, {@code put} and
21     * {@code remove} operations and their variants. Insertion, removal,
22 dl 1.1 * update, and access operations safely execute concurrently by
23     * multiple threads. Iterators are <i>weakly consistent</i>, returning
24     * elements reflecting the state of the map at some point at or since
25     * the creation of the iterator. They do <em>not</em> throw {@link
26     * ConcurrentModificationException}, and may proceed concurrently with
27     * other operations. Ascending key ordered views and their iterators
28     * are faster than descending ones.
29     *
30 jsr166 1.2 * <p>All {@code Map.Entry} pairs returned by methods in this class
31 dl 1.1 * and its views represent snapshots of mappings at the time they were
32 jsr166 1.2 * produced. They do <em>not</em> support the {@code Entry.setValue}
33 dl 1.1 * method. (Note however that it is possible to change mappings in the
34 jsr166 1.2 * associated map using {@code put}, {@code putIfAbsent}, or
35     * {@code replace}, depending on exactly which effect you need.)
36 dl 1.1 *
37 jsr166 1.2 * <p>Beware that, unlike in most collections, the {@code size}
38 dl 1.1 * method is <em>not</em> a constant-time operation. Because of the
39     * asynchronous nature of these maps, determining the current number
40     * of elements requires a traversal of the elements, and so may report
41     * inaccurate results if this collection is modified during traversal.
42 jsr166 1.2 * Additionally, the bulk operations {@code putAll}, {@code equals},
43     * {@code toArray}, {@code containsValue}, and {@code clear} are
44 dl 1.1 * <em>not</em> guaranteed to be performed atomically. For example, an
45 jsr166 1.2 * iterator operating concurrently with a {@code putAll} operation
46 dl 1.1 * might view only some of the added elements.
47     *
48     * <p>This class and its views and iterators implement all of the
49     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
50     * interfaces. Like most other concurrent collections, this class does
51 jsr166 1.2 * <em>not</em> permit the use of {@code null} keys or values because some
52 dl 1.1 * null return values cannot be reliably distinguished from the absence of
53     * elements.
54     *
55     * <p>This class is a member of the
56     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
57     * Java Collections Framework</a>.
58     *
59     * @author Doug Lea
60     * @param <K> the type of keys maintained by this map
61     * @param <V> the type of mapped values
62     * @since 1.6
63     */
64     @SuppressWarnings("unchecked")
65     public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
66     implements ConcurrentNavigableMap<K,V>,
67     Cloneable,
68     java.io.Serializable {
69     /*
70     * This class implements a tree-like two-dimensionally linked skip
71     * list in which the index levels are represented in separate
72     * nodes from the base nodes holding data. There are two reasons
73     * for taking this approach instead of the usual array-based
74     * structure: 1) Array based implementations seem to encounter
75     * more complexity and overhead 2) We can use cheaper algorithms
76     * for the heavily-traversed index lists than can be used for the
77     * base lists. Here's a picture of some of the basics for a
78     * possible list with 2 levels of index:
79     *
80     * Head nodes Index nodes
81     * +-+ right +-+ +-+
82     * |2|---------------->| |--------------------->| |->null
83     * +-+ +-+ +-+
84     * | down | |
85     * v v v
86     * +-+ +-+ +-+ +-+ +-+ +-+
87     * |1|----------->| |->| |------>| |----------->| |------>| |->null
88     * +-+ +-+ +-+ +-+ +-+ +-+
89     * v | | | | |
90     * Nodes next v v v v v
91     * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
92     * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
93     * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
94     *
95     * The base lists use a variant of the HM linked ordered set
96     * algorithm. See Tim Harris, "A pragmatic implementation of
97     * non-blocking linked lists"
98     * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
99     * Michael "High Performance Dynamic Lock-Free Hash Tables and
100     * List-Based Sets"
101     * http://www.research.ibm.com/people/m/michael/pubs.htm. The
102     * basic idea in these lists is to mark the "next" pointers of
103     * deleted nodes when deleting to avoid conflicts with concurrent
104     * insertions, and when traversing to keep track of triples
105     * (predecessor, node, successor) in order to detect when and how
106     * to unlink these deleted nodes.
107     *
108     * Rather than using mark-bits to mark list deletions (which can
109     * be slow and space-intensive using AtomicMarkedReference), nodes
110     * use direct CAS'able next pointers. On deletion, instead of
111     * marking a pointer, they splice in another node that can be
112     * thought of as standing for a marked pointer (indicating this by
113     * using otherwise impossible field values). Using plain nodes
114     * acts roughly like "boxed" implementations of marked pointers,
115     * but uses new nodes only when nodes are deleted, not for every
116     * link. This requires less space and supports faster
117     * traversal. Even if marked references were better supported by
118     * JVMs, traversal using this technique might still be faster
119     * because any search need only read ahead one more node than
120     * otherwise required (to check for trailing marker) rather than
121     * unmasking mark bits or whatever on each read.
122     *
123     * This approach maintains the essential property needed in the HM
124     * algorithm of changing the next-pointer of a deleted node so
125     * that any other CAS of it will fail, but implements the idea by
126     * changing the pointer to point to a different node, not by
127     * marking it. While it would be possible to further squeeze
128     * space by defining marker nodes not to have key/value fields, it
129     * isn't worth the extra type-testing overhead. The deletion
130     * markers are rarely encountered during traversal and are
131     * normally quickly garbage collected. (Note that this technique
132     * would not work well in systems without garbage collection.)
133     *
134     * In addition to using deletion markers, the lists also use
135     * nullness of value fields to indicate deletion, in a style
136     * similar to typical lazy-deletion schemes. If a node's value is
137     * null, then it is considered logically deleted and ignored even
138     * though it is still reachable. This maintains proper control of
139     * concurrent replace vs delete operations -- an attempted replace
140     * must fail if a delete beat it by nulling field, and a delete
141     * must return the last non-null value held in the field. (Note:
142     * Null, rather than some special marker, is used for value fields
143     * here because it just so happens to mesh with the Map API
144     * requirement that method get returns null if there is no
145     * mapping, which allows nodes to remain concurrently readable
146     * even when deleted. Using any other marker value here would be
147     * messy at best.)
148     *
149     * Here's the sequence of events for a deletion of node n with
150     * predecessor b and successor f, initially:
151     *
152     * +------+ +------+ +------+
153     * ... | b |------>| n |----->| f | ...
154     * +------+ +------+ +------+
155     *
156     * 1. CAS n's value field from non-null to null.
157     * From this point on, no public operations encountering
158     * the node consider this mapping to exist. However, other
159     * ongoing insertions and deletions might still modify
160     * n's next pointer.
161     *
162     * 2. CAS n's next pointer to point to a new marker node.
163     * From this point on, no other nodes can be appended to n.
164     * which avoids deletion errors in CAS-based linked lists.
165     *
166     * +------+ +------+ +------+ +------+
167     * ... | b |------>| n |----->|marker|------>| f | ...
168     * +------+ +------+ +------+ +------+
169     *
170     * 3. CAS b's next pointer over both n and its marker.
171     * From this point on, no new traversals will encounter n,
172     * and it can eventually be GCed.
173     * +------+ +------+
174     * ... | b |----------------------------------->| f | ...
175     * +------+ +------+
176     *
177     * A failure at step 1 leads to simple retry due to a lost race
178     * with another operation. Steps 2-3 can fail because some other
179     * thread noticed during a traversal a node with null value and
180     * helped out by marking and/or unlinking. This helping-out
181     * ensures that no thread can become stuck waiting for progress of
182     * the deleting thread. The use of marker nodes slightly
183     * complicates helping-out code because traversals must track
184     * consistent reads of up to four nodes (b, n, marker, f), not
185     * just (b, n, f), although the next field of a marker is
186     * immutable, and once a next field is CAS'ed to point to a
187     * marker, it never again changes, so this requires less care.
188     *
189     * Skip lists add indexing to this scheme, so that the base-level
190     * traversals start close to the locations being found, inserted
191     * or deleted -- usually base level traversals only traverse a few
192     * nodes. This doesn't change the basic algorithm except for the
193     * need to make sure base traversals start at predecessors (here,
194     * b) that are not (structurally) deleted, otherwise retrying
195     * after processing the deletion.
196     *
197     * Index levels are maintained as lists with volatile next fields,
198     * using CAS to link and unlink. Races are allowed in index-list
199     * operations that can (rarely) fail to link in a new index node
200     * or delete one. (We can't do this of course for data nodes.)
201     * However, even when this happens, the index lists remain sorted,
202     * so correctly serve as indices. This can impact performance,
203     * but since skip lists are probabilistic anyway, the net result
204     * is that under contention, the effective "p" value may be lower
205     * than its nominal value. And race windows are kept small enough
206     * that in practice these failures are rare, even under a lot of
207     * contention.
208     *
209     * The fact that retries (for both base and index lists) are
210     * relatively cheap due to indexing allows some minor
211     * simplifications of retry logic. Traversal restarts are
212     * performed after most "helping-out" CASes. This isn't always
213     * strictly necessary, but the implicit backoffs tend to help
214     * reduce other downstream failed CAS's enough to outweigh restart
215     * cost. This worsens the worst case, but seems to improve even
216     * highly contended cases.
217     *
218     * Unlike most skip-list implementations, index insertion and
219 jsr166 1.10 * deletion here require a separate traversal pass occurring after
220 dl 1.1 * the base-level action, to add or remove index nodes. This adds
221     * to single-threaded overhead, but improves contended
222     * multithreaded performance by narrowing interference windows,
223     * and allows deletion to ensure that all index nodes will be made
224     * unreachable upon return from a public remove operation, thus
225     * avoiding unwanted garbage retention. This is more important
226     * here than in some other data structures because we cannot null
227     * out node fields referencing user keys since they might still be
228     * read by other ongoing traversals.
229     *
230     * Indexing uses skip list parameters that maintain good search
231     * performance while using sparser-than-usual indices: The
232     * hardwired parameters k=1, p=0.5 (see method randomLevel) mean
233     * that about one-quarter of the nodes have indices. Of those that
234     * do, half have one level, a quarter have two, and so on (see
235     * Pugh's Skip List Cookbook, sec 3.4). The expected total space
236     * requirement for a map is slightly less than for the current
237     * implementation of java.util.TreeMap.
238     *
239     * Changing the level of the index (i.e, the height of the
240     * tree-like structure) also uses CAS. The head index has initial
241     * level/height of one. Creation of an index with height greater
242     * than the current level adds a level to the head index by
243     * CAS'ing on a new top-most head. To maintain good performance
244     * after a lot of removals, deletion methods heuristically try to
245     * reduce the height if the topmost levels appear to be empty.
246     * This may encounter races in which it possible (but rare) to
247     * reduce and "lose" a level just as it is about to contain an
248     * index (that will then never be encountered). This does no
249     * structural harm, and in practice appears to be a better option
250     * than allowing unrestrained growth of levels.
251     *
252     * The code for all this is more verbose than you'd like. Most
253     * operations entail locating an element (or position to insert an
254     * element). The code to do this can't be nicely factored out
255     * because subsequent uses require a snapshot of predecessor
256     * and/or successor and/or value fields which can't be returned
257     * all at once, at least not without creating yet another object
258     * to hold them -- creating such little objects is an especially
259     * bad idea for basic internal search operations because it adds
260     * to GC overhead. (This is one of the few times I've wished Java
261     * had macros.) Instead, some traversal code is interleaved within
262     * insertion and removal operations. The control logic to handle
263     * all the retry conditions is sometimes twisty. Most search is
264     * broken into 2 parts. findPredecessor() searches index nodes
265     * only, returning a base-level predecessor of the key. findNode()
266     * finishes out the base-level search. Even with this factoring,
267     * there is a fair amount of near-duplication of code to handle
268     * variants.
269     *
270     * For explanation of algorithms sharing at least a couple of
271     * features with this one, see Mikhail Fomitchev's thesis
272     * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
273     * (http://www.cl.cam.ac.uk/users/kaf24/), and Hakan Sundell's
274     * thesis (http://www.cs.chalmers.se/~phs/).
275     *
276     * Given the use of tree-like index nodes, you might wonder why
277     * this doesn't use some kind of search tree instead, which would
278     * support somewhat faster search operations. The reason is that
279     * there are no known efficient lock-free insertion and deletion
280     * algorithms for search trees. The immutability of the "down"
281     * links of index nodes (as opposed to mutable "left" fields in
282     * true trees) makes this tractable using only CAS operations.
283     *
284     * Notation guide for local variables
285     * Node: b, n, f for predecessor, node, successor
286     * Index: q, r, d for index node, right, down.
287     * t for another index node
288     * Head: h
289     * Levels: j
290     * Keys: k, key
291     * Values: v, value
292     * Comparisons: c
293     */
294    
295     private static final long serialVersionUID = -8627078645895051609L;
296    
297     /**
298     * Generates the initial random seed for the cheaper per-instance
299     * random number generators used in randomLevel.
300     */
301     private static final Random seedGenerator = new Random();
302    
303     /**
304     * Special value used to identify base-level header
305     */
306     private static final Object BASE_HEADER = new Object();
307    
308     /**
309     * The topmost head index of the skiplist.
310     */
311     private transient volatile HeadIndex<K,V> head;
312    
313     /**
314     * The comparator used to maintain order in this map, or null
315     * if using natural ordering.
316     * @serial
317     */
318     private final Comparator<? super K> comparator;
319    
320     /**
321     * Seed for simple random number generator. Not volatile since it
322     * doesn't matter too much if different threads don't see updates.
323     */
324     private transient int randomSeed;
325    
326     /** Lazily initialized key set */
327     private transient KeySet<K> keySet;
328     /** Lazily initialized entry set */
329     private transient EntrySet<K,V> entrySet;
330     /** Lazily initialized values collection */
331     private transient Values<V> values;
332     /** Lazily initialized descending key set */
333     private transient ConcurrentNavigableMap<K,V> descendingMap;
334    
335     /**
336     * Initializes or resets state. Needed by constructors, clone,
337     * clear, readObject. and ConcurrentSkipListSet.clone.
338     * (Note that comparator must be separately initialized.)
339     */
340     final void initialize() {
341     keySet = null;
342     entrySet = null;
343     values = null;
344     descendingMap = null;
345     randomSeed = seedGenerator.nextInt() | 0x0100; // ensure nonzero
346     head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
347     null, null, 1);
348     }
349    
350     /**
351     * compareAndSet head node
352     */
353     private boolean casHead(HeadIndex<K,V> cmp, HeadIndex<K,V> val) {
354     return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
355     }
356    
357     /* ---------------- Nodes -------------- */
358    
359     /**
360     * Nodes hold keys and values, and are singly linked in sorted
361     * order, possibly with some intervening marker nodes. The list is
362     * headed by a dummy node accessible as head.node. The value field
363     * is declared only as Object because it takes special non-V
364     * values for marker and header nodes.
365     */
366     static final class Node<K,V> {
367     final K key;
368     volatile Object value;
369     volatile Node<K,V> next;
370    
371     /**
372     * Creates a new regular node.
373     */
374     Node(K key, Object value, Node<K,V> next) {
375     this.key = key;
376     this.value = value;
377     this.next = next;
378     }
379    
380     /**
381     * Creates a new marker node. A marker is distinguished by
382     * having its value field point to itself. Marker nodes also
383     * have null keys, a fact that is exploited in a few places,
384     * but this doesn't distinguish markers from the base-level
385     * header node (head.node), which also has a null key.
386     */
387     Node(Node<K,V> next) {
388     this.key = null;
389     this.value = this;
390     this.next = next;
391     }
392    
393     /**
394     * compareAndSet value field
395     */
396     boolean casValue(Object cmp, Object val) {
397     return UNSAFE.compareAndSwapObject(this, valueOffset, cmp, val);
398     }
399    
400     /**
401     * compareAndSet next field
402     */
403     boolean casNext(Node<K,V> cmp, Node<K,V> val) {
404     return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
405     }
406    
407     /**
408     * Returns true if this node is a marker. This method isn't
409     * actually called in any current code checking for markers
410     * because callers will have already read value field and need
411     * to use that read (not another done here) and so directly
412     * test if value points to node.
413 jsr166 1.6 *
414 dl 1.1 * @return true if this node is a marker node
415     */
416     boolean isMarker() {
417     return value == this;
418     }
419    
420     /**
421     * Returns true if this node is the header of base-level list.
422     * @return true if this node is header node
423     */
424     boolean isBaseHeader() {
425     return value == BASE_HEADER;
426     }
427    
428     /**
429     * Tries to append a deletion marker to this node.
430     * @param f the assumed current successor of this node
431     * @return true if successful
432     */
433     boolean appendMarker(Node<K,V> f) {
434     return casNext(f, new Node<K,V>(f));
435     }
436    
437     /**
438     * Helps out a deletion by appending marker or unlinking from
439     * predecessor. This is called during traversals when value
440     * field seen to be null.
441     * @param b predecessor
442     * @param f successor
443     */
444     void helpDelete(Node<K,V> b, Node<K,V> f) {
445     /*
446     * Rechecking links and then doing only one of the
447     * help-out stages per call tends to minimize CAS
448     * interference among helping threads.
449     */
450     if (f == next && this == b.next) {
451     if (f == null || f.value != f) // not already marked
452     appendMarker(f);
453     else
454     b.casNext(this, f.next);
455     }
456     }
457    
458     /**
459     * Returns value if this node contains a valid key-value pair,
460     * else null.
461     * @return this node's value if it isn't a marker or header or
462 jsr166 1.7 * is deleted, else null
463 dl 1.1 */
464     V getValidValue() {
465     Object v = value;
466     if (v == this || v == BASE_HEADER)
467     return null;
468     return (V)v;
469     }
470    
471     /**
472     * Creates and returns a new SimpleImmutableEntry holding current
473     * mapping if this node holds a valid value, else null.
474     * @return new entry or null
475     */
476     AbstractMap.SimpleImmutableEntry<K,V> createSnapshot() {
477     V v = getValidValue();
478     if (v == null)
479     return null;
480     return new AbstractMap.SimpleImmutableEntry<K,V>(key, v);
481     }
482    
483     // UNSAFE mechanics
484    
485     private static final sun.misc.Unsafe UNSAFE;
486     private static final long valueOffset;
487     private static final long nextOffset;
488    
489     static {
490     try {
491     UNSAFE = sun.misc.Unsafe.getUnsafe();
492     Class<?> k = Node.class;
493     valueOffset = UNSAFE.objectFieldOffset
494     (k.getDeclaredField("value"));
495     nextOffset = UNSAFE.objectFieldOffset
496     (k.getDeclaredField("next"));
497     } catch (Exception e) {
498     throw new Error(e);
499     }
500     }
501     }
502    
503     /* ---------------- Indexing -------------- */
504    
505     /**
506     * Index nodes represent the levels of the skip list. Note that
507     * even though both Nodes and Indexes have forward-pointing
508     * fields, they have different types and are handled in different
509     * ways, that can't nicely be captured by placing field in a
510     * shared abstract class.
511     */
512     static class Index<K,V> {
513     final Node<K,V> node;
514     final Index<K,V> down;
515     volatile Index<K,V> right;
516    
517     /**
518     * Creates index node with given values.
519     */
520     Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
521     this.node = node;
522     this.down = down;
523     this.right = right;
524     }
525    
526     /**
527     * compareAndSet right field
528     */
529     final boolean casRight(Index<K,V> cmp, Index<K,V> val) {
530     return UNSAFE.compareAndSwapObject(this, rightOffset, cmp, val);
531     }
532    
533     /**
534     * Returns true if the node this indexes has been deleted.
535     * @return true if indexed node is known to be deleted
536     */
537     final boolean indexesDeletedNode() {
538     return node.value == null;
539     }
540    
541     /**
542     * Tries to CAS newSucc as successor. To minimize races with
543     * unlink that may lose this index node, if the node being
544     * indexed is known to be deleted, it doesn't try to link in.
545     * @param succ the expected current successor
546     * @param newSucc the new successor
547     * @return true if successful
548     */
549     final boolean link(Index<K,V> succ, Index<K,V> newSucc) {
550     Node<K,V> n = node;
551     newSucc.right = succ;
552     return n.value != null && casRight(succ, newSucc);
553     }
554    
555     /**
556     * Tries to CAS right field to skip over apparent successor
557     * succ. Fails (forcing a retraversal by caller) if this node
558     * is known to be deleted.
559     * @param succ the expected current successor
560     * @return true if successful
561     */
562     final boolean unlink(Index<K,V> succ) {
563     return !indexesDeletedNode() && casRight(succ, succ.right);
564     }
565    
566     // Unsafe mechanics
567     private static final sun.misc.Unsafe UNSAFE;
568     private static final long rightOffset;
569     static {
570     try {
571     UNSAFE = sun.misc.Unsafe.getUnsafe();
572     Class<?> k = Index.class;
573     rightOffset = UNSAFE.objectFieldOffset
574     (k.getDeclaredField("right"));
575     } catch (Exception e) {
576     throw new Error(e);
577     }
578     }
579     }
580    
581     /* ---------------- Head nodes -------------- */
582    
583     /**
584     * Nodes heading each level keep track of their level.
585     */
586     static final class HeadIndex<K,V> extends Index<K,V> {
587     final int level;
588     HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
589     super(node, down, right);
590     this.level = level;
591     }
592     }
593    
594     /* ---------------- Comparison utilities -------------- */
595    
596     /**
597     * Represents a key with a comparator as a Comparable.
598     *
599     * Because most sorted collections seem to use natural ordering on
600     * Comparables (Strings, Integers, etc), most internal methods are
601     * geared to use them. This is generally faster than checking
602     * per-comparison whether to use comparator or comparable because
603     * it doesn't require a (Comparable) cast for each comparison.
604     * (Optimizers can only sometimes remove such redundant checks
605     * themselves.) When Comparators are used,
606     * ComparableUsingComparators are created so that they act in the
607     * same way as natural orderings. This penalizes use of
608     * Comparators vs Comparables, which seems like the right
609     * tradeoff.
610     */
611     static final class ComparableUsingComparator<K> implements Comparable<K> {
612     final K actualKey;
613     final Comparator<? super K> cmp;
614     ComparableUsingComparator(K key, Comparator<? super K> cmp) {
615     this.actualKey = key;
616     this.cmp = cmp;
617     }
618     public int compareTo(K k2) {
619     return cmp.compare(actualKey, k2);
620     }
621     }
622    
623     /**
624     * If using comparator, return a ComparableUsingComparator, else
625     * cast key as Comparable, which may cause ClassCastException,
626     * which is propagated back to caller.
627     */
628     private Comparable<? super K> comparable(Object key)
629     throws ClassCastException {
630     if (key == null)
631     throw new NullPointerException();
632     if (comparator != null)
633     return new ComparableUsingComparator<K>((K)key, comparator);
634     else
635     return (Comparable<? super K>)key;
636     }
637    
638     /**
639     * Compares using comparator or natural ordering. Used when the
640     * ComparableUsingComparator approach doesn't apply.
641     */
642     int compare(K k1, K k2) throws ClassCastException {
643     Comparator<? super K> cmp = comparator;
644     if (cmp != null)
645     return cmp.compare(k1, k2);
646     else
647     return ((Comparable<? super K>)k1).compareTo(k2);
648     }
649    
650     /**
651     * Returns true if given key greater than or equal to least and
652     * strictly less than fence, bypassing either test if least or
653     * fence are null. Needed mainly in submap operations.
654     */
655     boolean inHalfOpenRange(K key, K least, K fence) {
656     if (key == null)
657     throw new NullPointerException();
658     return ((least == null || compare(key, least) >= 0) &&
659     (fence == null || compare(key, fence) < 0));
660     }
661    
662     /**
663     * Returns true if given key greater than or equal to least and less
664     * or equal to fence. Needed mainly in submap operations.
665     */
666     boolean inOpenRange(K key, K least, K fence) {
667     if (key == null)
668     throw new NullPointerException();
669     return ((least == null || compare(key, least) >= 0) &&
670     (fence == null || compare(key, fence) <= 0));
671     }
672    
673     /* ---------------- Traversal -------------- */
674    
675     /**
676     * Returns a base-level node with key strictly less than given key,
677     * or the base-level header if there is no such node. Also
678     * unlinks indexes to deleted nodes found along the way. Callers
679     * rely on this side-effect of clearing indices to deleted nodes.
680     * @param key the key
681     * @return a predecessor of key
682     */
683     private Node<K,V> findPredecessor(Comparable<? super K> key) {
684     if (key == null)
685     throw new NullPointerException(); // don't postpone errors
686     for (;;) {
687     Index<K,V> q = head;
688     Index<K,V> r = q.right;
689     for (;;) {
690     if (r != null) {
691     Node<K,V> n = r.node;
692     K k = n.key;
693     if (n.value == null) {
694     if (!q.unlink(r))
695     break; // restart
696     r = q.right; // reread r
697     continue;
698     }
699     if (key.compareTo(k) > 0) {
700     q = r;
701     r = r.right;
702     continue;
703     }
704     }
705     Index<K,V> d = q.down;
706     if (d != null) {
707     q = d;
708     r = d.right;
709     } else
710     return q.node;
711     }
712     }
713     }
714    
715     /**
716     * Returns node holding key or null if no such, clearing out any
717     * deleted nodes seen along the way. Repeatedly traverses at
718     * base-level looking for key starting at predecessor returned
719     * from findPredecessor, processing base-level deletions as
720     * encountered. Some callers rely on this side-effect of clearing
721     * deleted nodes.
722     *
723     * Restarts occur, at traversal step centered on node n, if:
724     *
725     * (1) After reading n's next field, n is no longer assumed
726     * predecessor b's current successor, which means that
727     * we don't have a consistent 3-node snapshot and so cannot
728     * unlink any subsequent deleted nodes encountered.
729     *
730     * (2) n's value field is null, indicating n is deleted, in
731     * which case we help out an ongoing structural deletion
732     * before retrying. Even though there are cases where such
733     * unlinking doesn't require restart, they aren't sorted out
734     * here because doing so would not usually outweigh cost of
735     * restarting.
736     *
737     * (3) n is a marker or n's predecessor's value field is null,
738     * indicating (among other possibilities) that
739     * findPredecessor returned a deleted node. We can't unlink
740     * the node because we don't know its predecessor, so rely
741     * on another call to findPredecessor to notice and return
742     * some earlier predecessor, which it will do. This check is
743     * only strictly needed at beginning of loop, (and the
744     * b.value check isn't strictly needed at all) but is done
745     * each iteration to help avoid contention with other
746     * threads by callers that will fail to be able to change
747     * links, and so will retry anyway.
748     *
749     * The traversal loops in doPut, doRemove, and findNear all
750     * include the same three kinds of checks. And specialized
751     * versions appear in findFirst, and findLast and their
752     * variants. They can't easily share code because each uses the
753     * reads of fields held in locals occurring in the orders they
754     * were performed.
755     *
756     * @param key the key
757     * @return node holding key, or null if no such
758     */
759     private Node<K,V> findNode(Comparable<? super K> key) {
760     for (;;) {
761     Node<K,V> b = findPredecessor(key);
762     Node<K,V> n = b.next;
763     for (;;) {
764     if (n == null)
765     return null;
766     Node<K,V> f = n.next;
767     if (n != b.next) // inconsistent read
768     break;
769     Object v = n.value;
770     if (v == null) { // n is deleted
771     n.helpDelete(b, f);
772     break;
773     }
774     if (v == n || b.value == null) // b is deleted
775     break;
776     int c = key.compareTo(n.key);
777     if (c == 0)
778     return n;
779     if (c < 0)
780     return null;
781     b = n;
782     n = f;
783     }
784     }
785     }
786    
787     /**
788     * Gets value for key using findNode.
789     * @param okey the key
790     * @return the value, or null if absent
791     */
792     private V doGet(Object okey) {
793     Comparable<? super K> key = comparable(okey);
794     /*
795     * Loop needed here and elsewhere in case value field goes
796     * null just as it is about to be returned, in which case we
797     * lost a race with a deletion, so must retry.
798     */
799     for (;;) {
800     Node<K,V> n = findNode(key);
801     if (n == null)
802     return null;
803     Object v = n.value;
804     if (v != null)
805     return (V)v;
806     }
807     }
808    
809     /* ---------------- Insertion -------------- */
810    
811     /**
812     * Main insertion method. Adds element if not present, or
813     * replaces value if present and onlyIfAbsent is false.
814     * @param kkey the key
815 jsr166 1.8 * @param value the value that must be associated with key
816 dl 1.1 * @param onlyIfAbsent if should not insert if already present
817     * @return the old value, or null if newly inserted
818     */
819     private V doPut(K kkey, V value, boolean onlyIfAbsent) {
820     Comparable<? super K> key = comparable(kkey);
821     for (;;) {
822     Node<K,V> b = findPredecessor(key);
823     Node<K,V> n = b.next;
824     for (;;) {
825     if (n != null) {
826     Node<K,V> f = n.next;
827     if (n != b.next) // inconsistent read
828     break;
829     Object v = n.value;
830     if (v == null) { // n is deleted
831     n.helpDelete(b, f);
832     break;
833     }
834     if (v == n || b.value == null) // b is deleted
835     break;
836     int c = key.compareTo(n.key);
837     if (c > 0) {
838     b = n;
839     n = f;
840     continue;
841     }
842     if (c == 0) {
843     if (onlyIfAbsent || n.casValue(v, value))
844     return (V)v;
845     else
846     break; // restart if lost race to replace value
847     }
848     // else c < 0; fall through
849     }
850    
851     Node<K,V> z = new Node<K,V>(kkey, value, n);
852     if (!b.casNext(n, z))
853     break; // restart if lost race to append to b
854     int level = randomLevel();
855     if (level > 0)
856     insertIndex(z, level);
857     return null;
858     }
859     }
860     }
861    
862     /**
863     * Returns a random level for inserting a new node.
864     * Hardwired to k=1, p=0.5, max 31 (see above and
865     * Pugh's "Skip List Cookbook", sec 3.4).
866     *
867     * This uses the simplest of the generators described in George
868     * Marsaglia's "Xorshift RNGs" paper. This is not a high-quality
869     * generator but is acceptable here.
870     */
871     private int randomLevel() {
872     int x = randomSeed;
873     x ^= x << 13;
874     x ^= x >>> 17;
875     randomSeed = x ^= x << 5;
876     if ((x & 0x80000001) != 0) // test highest and lowest bits
877     return 0;
878     int level = 1;
879     while (((x >>>= 1) & 1) != 0) ++level;
880     return level;
881     }
882    
883     /**
884     * Creates and adds index nodes for the given node.
885     * @param z the node
886     * @param level the level of the index
887     */
888     private void insertIndex(Node<K,V> z, int level) {
889     HeadIndex<K,V> h = head;
890     int max = h.level;
891    
892     if (level <= max) {
893     Index<K,V> idx = null;
894     for (int i = 1; i <= level; ++i)
895     idx = new Index<K,V>(z, idx, null);
896     addIndex(idx, h, level);
897    
898     } else { // Add a new level
899     /*
900     * To reduce interference by other threads checking for
901     * empty levels in tryReduceLevel, new levels are added
902     * with initialized right pointers. Which in turn requires
903     * keeping levels in an array to access them while
904     * creating new head index nodes from the opposite
905     * direction.
906     */
907     level = max + 1;
908     Index<K,V>[] idxs = (Index<K,V>[])new Index<?,?>[level+1];
909     Index<K,V> idx = null;
910     for (int i = 1; i <= level; ++i)
911     idxs[i] = idx = new Index<K,V>(z, idx, null);
912    
913     HeadIndex<K,V> oldh;
914     int k;
915     for (;;) {
916     oldh = head;
917     int oldLevel = oldh.level;
918     if (level <= oldLevel) { // lost race to add level
919     k = level;
920     break;
921     }
922     HeadIndex<K,V> newh = oldh;
923     Node<K,V> oldbase = oldh.node;
924     for (int j = oldLevel+1; j <= level; ++j)
925     newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
926     if (casHead(oldh, newh)) {
927     k = oldLevel;
928     break;
929     }
930     }
931     addIndex(idxs[k], oldh, k);
932     }
933     }
934    
935     /**
936     * Adds given index nodes from given level down to 1.
937     * @param idx the topmost index node being inserted
938     * @param h the value of head to use to insert. This must be
939 jsr166 1.4 * snapshotted by callers to provide correct insertion level.
940 dl 1.1 * @param indexLevel the level of the index
941     */
942     private void addIndex(Index<K,V> idx, HeadIndex<K,V> h, int indexLevel) {
943     // Track next level to insert in case of retries
944     int insertionLevel = indexLevel;
945     Comparable<? super K> key = comparable(idx.node.key);
946     if (key == null) throw new NullPointerException();
947    
948     // Similar to findPredecessor, but adding index nodes along
949     // path to key.
950     for (;;) {
951     int j = h.level;
952     Index<K,V> q = h;
953     Index<K,V> r = q.right;
954     Index<K,V> t = idx;
955     for (;;) {
956     if (r != null) {
957     Node<K,V> n = r.node;
958     // compare before deletion check avoids needing recheck
959     int c = key.compareTo(n.key);
960     if (n.value == null) {
961     if (!q.unlink(r))
962     break;
963     r = q.right;
964     continue;
965     }
966     if (c > 0) {
967     q = r;
968     r = r.right;
969     continue;
970     }
971     }
972    
973     if (j == insertionLevel) {
974     // Don't insert index if node already deleted
975     if (t.indexesDeletedNode()) {
976     findNode(key); // cleans up
977     return;
978     }
979     if (!q.link(r, t))
980     break; // restart
981     if (--insertionLevel == 0) {
982     // need final deletion check before return
983     if (t.indexesDeletedNode())
984     findNode(key);
985     return;
986     }
987     }
988    
989     if (--j >= insertionLevel && j < indexLevel)
990     t = t.down;
991     q = q.down;
992     r = q.right;
993     }
994     }
995     }
996    
997     /* ---------------- Deletion -------------- */
998    
999     /**
1000     * Main deletion method. Locates node, nulls value, appends a
1001     * deletion marker, unlinks predecessor, removes associated index
1002     * nodes, and possibly reduces head index level.
1003     *
1004     * Index nodes are cleared out simply by calling findPredecessor.
1005     * which unlinks indexes to deleted nodes found along path to key,
1006     * which will include the indexes to this node. This is done
1007     * unconditionally. We can't check beforehand whether there are
1008     * index nodes because it might be the case that some or all
1009     * indexes hadn't been inserted yet for this node during initial
1010     * search for it, and we'd like to ensure lack of garbage
1011     * retention, so must call to be sure.
1012     *
1013     * @param okey the key
1014     * @param value if non-null, the value that must be
1015     * associated with key
1016     * @return the node, or null if not found
1017     */
1018     final V doRemove(Object okey, Object value) {
1019     Comparable<? super K> key = comparable(okey);
1020     for (;;) {
1021     Node<K,V> b = findPredecessor(key);
1022     Node<K,V> n = b.next;
1023     for (;;) {
1024     if (n == null)
1025     return null;
1026     Node<K,V> f = n.next;
1027     if (n != b.next) // inconsistent read
1028     break;
1029     Object v = n.value;
1030     if (v == null) { // n is deleted
1031     n.helpDelete(b, f);
1032     break;
1033     }
1034     if (v == n || b.value == null) // b is deleted
1035     break;
1036     int c = key.compareTo(n.key);
1037     if (c < 0)
1038     return null;
1039     if (c > 0) {
1040     b = n;
1041     n = f;
1042     continue;
1043     }
1044     if (value != null && !value.equals(v))
1045     return null;
1046     if (!n.casValue(v, null))
1047     break;
1048     if (!n.appendMarker(f) || !b.casNext(n, f))
1049     findNode(key); // Retry via findNode
1050     else {
1051     findPredecessor(key); // Clean index
1052     if (head.right == null)
1053     tryReduceLevel();
1054     }
1055     return (V)v;
1056     }
1057     }
1058     }
1059    
1060     /**
1061     * Possibly reduce head level if it has no nodes. This method can
1062     * (rarely) make mistakes, in which case levels can disappear even
1063     * though they are about to contain index nodes. This impacts
1064     * performance, not correctness. To minimize mistakes as well as
1065     * to reduce hysteresis, the level is reduced by one only if the
1066     * topmost three levels look empty. Also, if the removed level
1067     * looks non-empty after CAS, we try to change it back quick
1068     * before anyone notices our mistake! (This trick works pretty
1069     * well because this method will practically never make mistakes
1070     * unless current thread stalls immediately before first CAS, in
1071     * which case it is very unlikely to stall again immediately
1072     * afterwards, so will recover.)
1073     *
1074     * We put up with all this rather than just let levels grow
1075     * because otherwise, even a small map that has undergone a large
1076     * number of insertions and removals will have a lot of levels,
1077     * slowing down access more than would an occasional unwanted
1078     * reduction.
1079     */
1080     private void tryReduceLevel() {
1081     HeadIndex<K,V> h = head;
1082     HeadIndex<K,V> d;
1083     HeadIndex<K,V> e;
1084     if (h.level > 3 &&
1085     (d = (HeadIndex<K,V>)h.down) != null &&
1086     (e = (HeadIndex<K,V>)d.down) != null &&
1087     e.right == null &&
1088     d.right == null &&
1089     h.right == null &&
1090     casHead(h, d) && // try to set
1091     h.right != null) // recheck
1092     casHead(d, h); // try to backout
1093     }
1094    
1095     /* ---------------- Finding and removing first element -------------- */
1096    
1097     /**
1098     * Specialized variant of findNode to get first valid node.
1099     * @return first node or null if empty
1100     */
1101     Node<K,V> findFirst() {
1102     for (;;) {
1103     Node<K,V> b = head.node;
1104     Node<K,V> n = b.next;
1105     if (n == null)
1106     return null;
1107     if (n.value != null)
1108     return n;
1109     n.helpDelete(b, n.next);
1110     }
1111     }
1112    
1113     /**
1114     * Removes first entry; returns its snapshot.
1115     * @return null if empty, else snapshot of first entry
1116     */
1117     Map.Entry<K,V> doRemoveFirstEntry() {
1118     for (;;) {
1119     Node<K,V> b = head.node;
1120     Node<K,V> n = b.next;
1121     if (n == null)
1122     return null;
1123     Node<K,V> f = n.next;
1124     if (n != b.next)
1125     continue;
1126     Object v = n.value;
1127     if (v == null) {
1128     n.helpDelete(b, f);
1129     continue;
1130     }
1131     if (!n.casValue(v, null))
1132     continue;
1133     if (!n.appendMarker(f) || !b.casNext(n, f))
1134     findFirst(); // retry
1135     clearIndexToFirst();
1136     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, (V)v);
1137     }
1138     }
1139    
1140     /**
1141     * Clears out index nodes associated with deleted first entry.
1142     */
1143     private void clearIndexToFirst() {
1144     for (;;) {
1145     Index<K,V> q = head;
1146     for (;;) {
1147     Index<K,V> r = q.right;
1148     if (r != null && r.indexesDeletedNode() && !q.unlink(r))
1149     break;
1150     if ((q = q.down) == null) {
1151     if (head.right == null)
1152     tryReduceLevel();
1153     return;
1154     }
1155     }
1156     }
1157     }
1158    
1159    
1160     /* ---------------- Finding and removing last element -------------- */
1161    
1162     /**
1163     * Specialized version of find to get last valid node.
1164     * @return last node or null if empty
1165     */
1166     Node<K,V> findLast() {
1167     /*
1168     * findPredecessor can't be used to traverse index level
1169     * because this doesn't use comparisons. So traversals of
1170     * both levels are folded together.
1171     */
1172     Index<K,V> q = head;
1173     for (;;) {
1174     Index<K,V> d, r;
1175     if ((r = q.right) != null) {
1176     if (r.indexesDeletedNode()) {
1177     q.unlink(r);
1178     q = head; // restart
1179     }
1180     else
1181     q = r;
1182     } else if ((d = q.down) != null) {
1183     q = d;
1184     } else {
1185     Node<K,V> b = q.node;
1186     Node<K,V> n = b.next;
1187     for (;;) {
1188     if (n == null)
1189     return b.isBaseHeader() ? null : b;
1190     Node<K,V> f = n.next; // inconsistent read
1191     if (n != b.next)
1192     break;
1193     Object v = n.value;
1194     if (v == null) { // n is deleted
1195     n.helpDelete(b, f);
1196     break;
1197     }
1198     if (v == n || b.value == null) // b is deleted
1199     break;
1200     b = n;
1201     n = f;
1202     }
1203     q = head; // restart
1204     }
1205     }
1206     }
1207    
1208     /**
1209     * Specialized variant of findPredecessor to get predecessor of last
1210     * valid node. Needed when removing the last entry. It is possible
1211     * that all successors of returned node will have been deleted upon
1212     * return, in which case this method can be retried.
1213     * @return likely predecessor of last node
1214     */
1215     private Node<K,V> findPredecessorOfLast() {
1216     for (;;) {
1217     Index<K,V> q = head;
1218     for (;;) {
1219     Index<K,V> d, r;
1220     if ((r = q.right) != null) {
1221     if (r.indexesDeletedNode()) {
1222     q.unlink(r);
1223     break; // must restart
1224     }
1225     // proceed as far across as possible without overshooting
1226     if (r.node.next != null) {
1227     q = r;
1228     continue;
1229     }
1230     }
1231     if ((d = q.down) != null)
1232     q = d;
1233     else
1234     return q.node;
1235     }
1236     }
1237     }
1238    
1239     /**
1240     * Removes last entry; returns its snapshot.
1241     * Specialized variant of doRemove.
1242     * @return null if empty, else snapshot of last entry
1243     */
1244     Map.Entry<K,V> doRemoveLastEntry() {
1245     for (;;) {
1246     Node<K,V> b = findPredecessorOfLast();
1247     Node<K,V> n = b.next;
1248     if (n == null) {
1249     if (b.isBaseHeader()) // empty
1250     return null;
1251     else
1252     continue; // all b's successors are deleted; retry
1253     }
1254     for (;;) {
1255     Node<K,V> f = n.next;
1256     if (n != b.next) // inconsistent read
1257     break;
1258     Object v = n.value;
1259     if (v == null) { // n is deleted
1260     n.helpDelete(b, f);
1261     break;
1262     }
1263     if (v == n || b.value == null) // b is deleted
1264     break;
1265     if (f != null) {
1266     b = n;
1267     n = f;
1268     continue;
1269     }
1270     if (!n.casValue(v, null))
1271     break;
1272     K key = n.key;
1273     Comparable<? super K> ck = comparable(key);
1274     if (!n.appendMarker(f) || !b.casNext(n, f))
1275     findNode(ck); // Retry via findNode
1276     else {
1277     findPredecessor(ck); // Clean index
1278     if (head.right == null)
1279     tryReduceLevel();
1280     }
1281     return new AbstractMap.SimpleImmutableEntry<K,V>(key, (V)v);
1282     }
1283     }
1284     }
1285    
1286     /* ---------------- Relational operations -------------- */
1287    
1288     // Control values OR'ed as arguments to findNear
1289    
1290     private static final int EQ = 1;
1291     private static final int LT = 2;
1292     private static final int GT = 0; // Actually checked as !LT
1293    
1294     /**
1295     * Utility for ceiling, floor, lower, higher methods.
1296     * @param kkey the key
1297     * @param rel the relation -- OR'ed combination of EQ, LT, GT
1298     * @return nearest node fitting relation, or null if no such
1299     */
1300     Node<K,V> findNear(K kkey, int rel) {
1301     Comparable<? super K> key = comparable(kkey);
1302     for (;;) {
1303     Node<K,V> b = findPredecessor(key);
1304     Node<K,V> n = b.next;
1305     for (;;) {
1306     if (n == null)
1307     return ((rel & LT) == 0 || b.isBaseHeader()) ? null : b;
1308     Node<K,V> f = n.next;
1309     if (n != b.next) // inconsistent read
1310     break;
1311     Object v = n.value;
1312     if (v == null) { // n is deleted
1313     n.helpDelete(b, f);
1314     break;
1315     }
1316     if (v == n || b.value == null) // b is deleted
1317     break;
1318     int c = key.compareTo(n.key);
1319     if ((c == 0 && (rel & EQ) != 0) ||
1320     (c < 0 && (rel & LT) == 0))
1321     return n;
1322     if ( c <= 0 && (rel & LT) != 0)
1323     return b.isBaseHeader() ? null : b;
1324     b = n;
1325     n = f;
1326     }
1327     }
1328     }
1329    
1330     /**
1331     * Returns SimpleImmutableEntry for results of findNear.
1332     * @param key the key
1333     * @param rel the relation -- OR'ed combination of EQ, LT, GT
1334     * @return Entry fitting relation, or null if no such
1335     */
1336     AbstractMap.SimpleImmutableEntry<K,V> getNear(K key, int rel) {
1337     for (;;) {
1338     Node<K,V> n = findNear(key, rel);
1339     if (n == null)
1340     return null;
1341     AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
1342     if (e != null)
1343     return e;
1344     }
1345     }
1346    
1347    
1348     /* ---------------- Constructors -------------- */
1349    
1350     /**
1351     * Constructs a new, empty map, sorted according to the
1352     * {@linkplain Comparable natural ordering} of the keys.
1353     */
1354     public ConcurrentSkipListMap() {
1355     this.comparator = null;
1356     initialize();
1357     }
1358    
1359     /**
1360     * Constructs a new, empty map, sorted according to the specified
1361     * comparator.
1362     *
1363     * @param comparator the comparator that will be used to order this map.
1364 jsr166 1.2 * If {@code null}, the {@linkplain Comparable natural
1365 dl 1.1 * ordering} of the keys will be used.
1366     */
1367     public ConcurrentSkipListMap(Comparator<? super K> comparator) {
1368     this.comparator = comparator;
1369     initialize();
1370     }
1371    
1372     /**
1373     * Constructs a new map containing the same mappings as the given map,
1374     * sorted according to the {@linkplain Comparable natural ordering} of
1375     * the keys.
1376     *
1377     * @param m the map whose mappings are to be placed in this map
1378 jsr166 1.2 * @throws ClassCastException if the keys in {@code m} are not
1379 dl 1.1 * {@link Comparable}, or are not mutually comparable
1380     * @throws NullPointerException if the specified map or any of its keys
1381     * or values are null
1382     */
1383     public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1384     this.comparator = null;
1385     initialize();
1386     putAll(m);
1387     }
1388    
1389     /**
1390     * Constructs a new map containing the same mappings and using the
1391     * same ordering as the specified sorted map.
1392     *
1393     * @param m the sorted map whose mappings are to be placed in this
1394     * map, and whose comparator is to be used to sort this map
1395     * @throws NullPointerException if the specified sorted map or any of
1396     * its keys or values are null
1397     */
1398     public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1399     this.comparator = m.comparator();
1400     initialize();
1401     buildFromSorted(m);
1402     }
1403    
1404     /**
1405 jsr166 1.2 * Returns a shallow copy of this {@code ConcurrentSkipListMap}
1406 dl 1.1 * instance. (The keys and values themselves are not cloned.)
1407     *
1408     * @return a shallow copy of this map
1409     */
1410     public ConcurrentSkipListMap<K,V> clone() {
1411     try {
1412     @SuppressWarnings("unchecked")
1413     ConcurrentSkipListMap<K,V> clone =
1414     (ConcurrentSkipListMap<K,V>) super.clone();
1415     clone.initialize();
1416     clone.buildFromSorted(this);
1417     return clone;
1418     } catch (CloneNotSupportedException e) {
1419     throw new InternalError();
1420     }
1421     }
1422    
1423     /**
1424     * Streamlined bulk insertion to initialize from elements of
1425     * given sorted map. Call only from constructor or clone
1426     * method.
1427     */
1428     private void buildFromSorted(SortedMap<K, ? extends V> map) {
1429     if (map == null)
1430     throw new NullPointerException();
1431    
1432     HeadIndex<K,V> h = head;
1433     Node<K,V> basepred = h.node;
1434    
1435     // Track the current rightmost node at each level. Uses an
1436     // ArrayList to avoid committing to initial or maximum level.
1437     ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1438    
1439     // initialize
1440     for (int i = 0; i <= h.level; ++i)
1441     preds.add(null);
1442     Index<K,V> q = h;
1443     for (int i = h.level; i > 0; --i) {
1444     preds.set(i, q);
1445     q = q.down;
1446     }
1447    
1448     Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1449     map.entrySet().iterator();
1450     while (it.hasNext()) {
1451     Map.Entry<? extends K, ? extends V> e = it.next();
1452     int j = randomLevel();
1453     if (j > h.level) j = h.level + 1;
1454     K k = e.getKey();
1455     V v = e.getValue();
1456     if (k == null || v == null)
1457     throw new NullPointerException();
1458     Node<K,V> z = new Node<K,V>(k, v, null);
1459     basepred.next = z;
1460     basepred = z;
1461     if (j > 0) {
1462     Index<K,V> idx = null;
1463     for (int i = 1; i <= j; ++i) {
1464     idx = new Index<K,V>(z, idx, null);
1465     if (i > h.level)
1466     h = new HeadIndex<K,V>(h.node, h, idx, i);
1467    
1468     if (i < preds.size()) {
1469     preds.get(i).right = idx;
1470     preds.set(i, idx);
1471     } else
1472     preds.add(idx);
1473     }
1474     }
1475     }
1476     head = h;
1477     }
1478    
1479     /* ---------------- Serialization -------------- */
1480    
1481     /**
1482     * Saves this map to a stream (that is, serializes it).
1483     *
1484     * @serialData The key (Object) and value (Object) for each
1485     * key-value mapping represented by the map, followed by
1486 jsr166 1.2 * {@code null}. The key-value mappings are emitted in key-order
1487 dl 1.1 * (as determined by the Comparator, or by the keys' natural
1488     * ordering if no Comparator).
1489     */
1490     private void writeObject(java.io.ObjectOutputStream s)
1491     throws java.io.IOException {
1492     // Write out the Comparator and any hidden stuff
1493     s.defaultWriteObject();
1494    
1495     // Write out keys and values (alternating)
1496     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1497     V v = n.getValidValue();
1498     if (v != null) {
1499     s.writeObject(n.key);
1500     s.writeObject(v);
1501     }
1502     }
1503     s.writeObject(null);
1504     }
1505    
1506     /**
1507     * Reconstitutes this map from a stream (that is, deserializes it).
1508     */
1509     private void readObject(final java.io.ObjectInputStream s)
1510     throws java.io.IOException, ClassNotFoundException {
1511     // Read in the Comparator and any hidden stuff
1512     s.defaultReadObject();
1513     // Reset transients
1514     initialize();
1515    
1516     /*
1517     * This is nearly identical to buildFromSorted, but is
1518     * distinct because readObject calls can't be nicely adapted
1519     * as the kind of iterator needed by buildFromSorted. (They
1520     * can be, but doing so requires type cheats and/or creation
1521 jsr166 1.13 * of adapter classes.) It is simpler to just adapt the code.
1522 dl 1.1 */
1523    
1524     HeadIndex<K,V> h = head;
1525     Node<K,V> basepred = h.node;
1526     ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1527     for (int i = 0; i <= h.level; ++i)
1528     preds.add(null);
1529     Index<K,V> q = h;
1530     for (int i = h.level; i > 0; --i) {
1531     preds.set(i, q);
1532     q = q.down;
1533     }
1534    
1535     for (;;) {
1536     Object k = s.readObject();
1537     if (k == null)
1538     break;
1539     Object v = s.readObject();
1540     if (v == null)
1541     throw new NullPointerException();
1542     K key = (K) k;
1543     V val = (V) v;
1544     int j = randomLevel();
1545     if (j > h.level) j = h.level + 1;
1546     Node<K,V> z = new Node<K,V>(key, val, null);
1547     basepred.next = z;
1548     basepred = z;
1549     if (j > 0) {
1550     Index<K,V> idx = null;
1551     for (int i = 1; i <= j; ++i) {
1552     idx = new Index<K,V>(z, idx, null);
1553     if (i > h.level)
1554     h = new HeadIndex<K,V>(h.node, h, idx, i);
1555    
1556     if (i < preds.size()) {
1557     preds.get(i).right = idx;
1558     preds.set(i, idx);
1559     } else
1560     preds.add(idx);
1561     }
1562     }
1563     }
1564     head = h;
1565     }
1566    
1567     /* ------ Map API methods ------ */
1568    
1569     /**
1570 jsr166 1.2 * Returns {@code true} if this map contains a mapping for the specified
1571 dl 1.1 * key.
1572     *
1573     * @param key key whose presence in this map is to be tested
1574 jsr166 1.2 * @return {@code true} if this map contains a mapping for the specified key
1575 dl 1.1 * @throws ClassCastException if the specified key cannot be compared
1576     * with the keys currently in the map
1577     * @throws NullPointerException if the specified key is null
1578     */
1579     public boolean containsKey(Object key) {
1580     return doGet(key) != null;
1581     }
1582    
1583     /**
1584     * Returns the value to which the specified key is mapped,
1585     * or {@code null} if this map contains no mapping for the key.
1586     *
1587     * <p>More formally, if this map contains a mapping from a key
1588     * {@code k} to a value {@code v} such that {@code key} compares
1589     * equal to {@code k} according to the map's ordering, then this
1590     * method returns {@code v}; otherwise it returns {@code null}.
1591     * (There can be at most one such mapping.)
1592     *
1593     * @throws ClassCastException if the specified key cannot be compared
1594     * with the keys currently in the map
1595     * @throws NullPointerException if the specified key is null
1596     */
1597     public V get(Object key) {
1598     return doGet(key);
1599     }
1600    
1601     /**
1602     * Associates the specified value with the specified key in this map.
1603     * If the map previously contained a mapping for the key, the old
1604     * value is replaced.
1605     *
1606     * @param key key with which the specified value is to be associated
1607     * @param value value to be associated with the specified key
1608     * @return the previous value associated with the specified key, or
1609 jsr166 1.2 * {@code null} if there was no mapping for the key
1610 dl 1.1 * @throws ClassCastException if the specified key cannot be compared
1611     * with the keys currently in the map
1612     * @throws NullPointerException if the specified key or value is null
1613     */
1614     public V put(K key, V value) {
1615     if (value == null)
1616     throw new NullPointerException();
1617     return doPut(key, value, false);
1618     }
1619    
1620     /**
1621     * Removes the mapping for the specified key from this map if present.
1622     *
1623     * @param key key for which mapping should be removed
1624     * @return the previous value associated with the specified key, or
1625 jsr166 1.2 * {@code null} if there was no mapping for the key
1626 dl 1.1 * @throws ClassCastException if the specified key cannot be compared
1627     * with the keys currently in the map
1628     * @throws NullPointerException if the specified key is null
1629     */
1630     public V remove(Object key) {
1631     return doRemove(key, null);
1632     }
1633    
1634     /**
1635 jsr166 1.2 * Returns {@code true} if this map maps one or more keys to the
1636 dl 1.1 * specified value. This operation requires time linear in the
1637     * map size. Additionally, it is possible for the map to change
1638     * during execution of this method, in which case the returned
1639     * result may be inaccurate.
1640     *
1641     * @param value value whose presence in this map is to be tested
1642 jsr166 1.2 * @return {@code true} if a mapping to {@code value} exists;
1643     * {@code false} otherwise
1644 dl 1.1 * @throws NullPointerException if the specified value is null
1645     */
1646     public boolean containsValue(Object value) {
1647     if (value == null)
1648     throw new NullPointerException();
1649     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1650     V v = n.getValidValue();
1651     if (v != null && value.equals(v))
1652     return true;
1653     }
1654     return false;
1655     }
1656    
1657     /**
1658     * Returns the number of key-value mappings in this map. If this map
1659 jsr166 1.2 * contains more than {@code Integer.MAX_VALUE} elements, it
1660     * returns {@code Integer.MAX_VALUE}.
1661 dl 1.1 *
1662     * <p>Beware that, unlike in most collections, this method is
1663     * <em>NOT</em> a constant-time operation. Because of the
1664     * asynchronous nature of these maps, determining the current
1665     * number of elements requires traversing them all to count them.
1666     * Additionally, it is possible for the size to change during
1667     * execution of this method, in which case the returned result
1668     * will be inaccurate. Thus, this method is typically not very
1669     * useful in concurrent applications.
1670     *
1671     * @return the number of elements in this map
1672     */
1673     public int size() {
1674     long count = 0;
1675     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1676     if (n.getValidValue() != null)
1677     ++count;
1678     }
1679     return (count >= Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int) count;
1680     }
1681    
1682     /**
1683 jsr166 1.2 * Returns {@code true} if this map contains no key-value mappings.
1684     * @return {@code true} if this map contains no key-value mappings
1685 dl 1.1 */
1686     public boolean isEmpty() {
1687     return findFirst() == null;
1688     }
1689    
1690     /**
1691     * Removes all of the mappings from this map.
1692     */
1693     public void clear() {
1694     initialize();
1695     }
1696    
1697     /* ---------------- View methods -------------- */
1698    
1699     /*
1700     * Note: Lazy initialization works for views because view classes
1701     * are stateless/immutable so it doesn't matter wrt correctness if
1702     * more than one is created (which will only rarely happen). Even
1703     * so, the following idiom conservatively ensures that the method
1704     * returns the one it created if it does so, not one created by
1705     * another racing thread.
1706     */
1707    
1708     /**
1709     * Returns a {@link NavigableSet} view of the keys contained in this map.
1710     * The set's iterator returns the keys in ascending order.
1711     * The set is backed by the map, so changes to the map are
1712     * reflected in the set, and vice-versa. The set supports element
1713     * removal, which removes the corresponding mapping from the map,
1714     * via the {@code Iterator.remove}, {@code Set.remove},
1715     * {@code removeAll}, {@code retainAll}, and {@code clear}
1716     * operations. It does not support the {@code add} or {@code addAll}
1717     * operations.
1718     *
1719     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1720     * that will never throw {@link ConcurrentModificationException},
1721     * and guarantees to traverse elements as they existed upon
1722     * construction of the iterator, and may (but is not guaranteed to)
1723     * reflect any modifications subsequent to construction.
1724     *
1725     * <p>This method is equivalent to method {@code navigableKeySet}.
1726     *
1727     * @return a navigable set view of the keys in this map
1728     */
1729     public NavigableSet<K> keySet() {
1730     KeySet<K> ks = keySet;
1731     return (ks != null) ? ks : (keySet = new KeySet<K>(this));
1732     }
1733    
1734     public NavigableSet<K> navigableKeySet() {
1735     KeySet<K> ks = keySet;
1736     return (ks != null) ? ks : (keySet = new KeySet<K>(this));
1737     }
1738    
1739     /**
1740     * Returns a {@link Collection} view of the values contained in this map.
1741     * The collection's iterator returns the values in ascending order
1742     * of the corresponding keys.
1743     * The collection is backed by the map, so changes to the map are
1744     * reflected in the collection, and vice-versa. The collection
1745     * supports element removal, which removes the corresponding
1746 jsr166 1.2 * mapping from the map, via the {@code Iterator.remove},
1747     * {@code Collection.remove}, {@code removeAll},
1748     * {@code retainAll} and {@code clear} operations. It does not
1749     * support the {@code add} or {@code addAll} operations.
1750 dl 1.1 *
1751 jsr166 1.2 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1752 dl 1.1 * that will never throw {@link ConcurrentModificationException},
1753     * and guarantees to traverse elements as they existed upon
1754     * construction of the iterator, and may (but is not guaranteed to)
1755     * reflect any modifications subsequent to construction.
1756     */
1757     public Collection<V> values() {
1758     Values<V> vs = values;
1759     return (vs != null) ? vs : (values = new Values<V>(this));
1760     }
1761    
1762     /**
1763     * Returns a {@link Set} view of the mappings contained in this map.
1764     * The set's iterator returns the entries in ascending key order.
1765     * The set is backed by the map, so changes to the map are
1766     * reflected in the set, and vice-versa. The set supports element
1767     * removal, which removes the corresponding mapping from the map,
1768 jsr166 1.2 * via the {@code Iterator.remove}, {@code Set.remove},
1769     * {@code removeAll}, {@code retainAll} and {@code clear}
1770     * operations. It does not support the {@code add} or
1771     * {@code addAll} operations.
1772 dl 1.1 *
1773 jsr166 1.2 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1774 dl 1.1 * that will never throw {@link ConcurrentModificationException},
1775     * and guarantees to traverse elements as they existed upon
1776     * construction of the iterator, and may (but is not guaranteed to)
1777     * reflect any modifications subsequent to construction.
1778     *
1779 jsr166 1.2 * <p>The {@code Map.Entry} elements returned by
1780     * {@code iterator.next()} do <em>not</em> support the
1781     * {@code setValue} operation.
1782 dl 1.1 *
1783     * @return a set view of the mappings contained in this map,
1784     * sorted in ascending key order
1785     */
1786     public Set<Map.Entry<K,V>> entrySet() {
1787     EntrySet<K,V> es = entrySet;
1788     return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
1789     }
1790    
1791     public ConcurrentNavigableMap<K,V> descendingMap() {
1792     ConcurrentNavigableMap<K,V> dm = descendingMap;
1793     return (dm != null) ? dm : (descendingMap = new SubMap<K,V>
1794     (this, null, false, null, false, true));
1795     }
1796    
1797     public NavigableSet<K> descendingKeySet() {
1798     return descendingMap().navigableKeySet();
1799     }
1800    
1801     /* ---------------- AbstractMap Overrides -------------- */
1802    
1803     /**
1804     * Compares the specified object with this map for equality.
1805 jsr166 1.2 * Returns {@code true} if the given object is also a map and the
1806 dl 1.1 * two maps represent the same mappings. More formally, two maps
1807 jsr166 1.2 * {@code m1} and {@code m2} represent the same mappings if
1808     * {@code m1.entrySet().equals(m2.entrySet())}. This
1809 dl 1.1 * operation may return misleading results if either map is
1810     * concurrently modified during execution of this method.
1811     *
1812     * @param o object to be compared for equality with this map
1813 jsr166 1.2 * @return {@code true} if the specified object is equal to this map
1814 dl 1.1 */
1815     public boolean equals(Object o) {
1816     if (o == this)
1817     return true;
1818     if (!(o instanceof Map))
1819     return false;
1820     Map<?,?> m = (Map<?,?>) o;
1821     try {
1822     for (Map.Entry<K,V> e : this.entrySet())
1823     if (! e.getValue().equals(m.get(e.getKey())))
1824     return false;
1825     for (Map.Entry<?,?> e : m.entrySet()) {
1826     Object k = e.getKey();
1827     Object v = e.getValue();
1828     if (k == null || v == null || !v.equals(get(k)))
1829     return false;
1830     }
1831     return true;
1832     } catch (ClassCastException unused) {
1833     return false;
1834     } catch (NullPointerException unused) {
1835     return false;
1836     }
1837     }
1838    
1839     /* ------ ConcurrentMap API methods ------ */
1840    
1841     /**
1842     * {@inheritDoc}
1843     *
1844     * @return the previous value associated with the specified key,
1845 jsr166 1.2 * or {@code null} if there was no mapping for the key
1846 dl 1.1 * @throws ClassCastException if the specified key cannot be compared
1847     * with the keys currently in the map
1848     * @throws NullPointerException if the specified key or value is null
1849     */
1850     public V putIfAbsent(K key, V value) {
1851     if (value == null)
1852     throw new NullPointerException();
1853     return doPut(key, value, true);
1854     }
1855    
1856     /**
1857     * {@inheritDoc}
1858     *
1859     * @throws ClassCastException if the specified key cannot be compared
1860     * with the keys currently in the map
1861     * @throws NullPointerException if the specified key is null
1862     */
1863     public boolean remove(Object key, Object value) {
1864     if (key == null)
1865     throw new NullPointerException();
1866     if (value == null)
1867     return false;
1868     return doRemove(key, value) != null;
1869     }
1870    
1871     /**
1872     * {@inheritDoc}
1873     *
1874     * @throws ClassCastException if the specified key cannot be compared
1875     * with the keys currently in the map
1876     * @throws NullPointerException if any of the arguments are null
1877     */
1878     public boolean replace(K key, V oldValue, V newValue) {
1879     if (oldValue == null || newValue == null)
1880     throw new NullPointerException();
1881     Comparable<? super K> k = comparable(key);
1882     for (;;) {
1883     Node<K,V> n = findNode(k);
1884     if (n == null)
1885     return false;
1886     Object v = n.value;
1887     if (v != null) {
1888     if (!oldValue.equals(v))
1889     return false;
1890     if (n.casValue(v, newValue))
1891     return true;
1892     }
1893     }
1894     }
1895    
1896     /**
1897     * {@inheritDoc}
1898     *
1899     * @return the previous value associated with the specified key,
1900 jsr166 1.2 * or {@code null} if there was no mapping for the key
1901 dl 1.1 * @throws ClassCastException if the specified key cannot be compared
1902     * with the keys currently in the map
1903     * @throws NullPointerException if the specified key or value is null
1904     */
1905     public V replace(K key, V value) {
1906     if (value == null)
1907     throw new NullPointerException();
1908     Comparable<? super K> k = comparable(key);
1909     for (;;) {
1910     Node<K,V> n = findNode(k);
1911     if (n == null)
1912     return null;
1913     Object v = n.value;
1914     if (v != null && n.casValue(v, value))
1915     return (V)v;
1916     }
1917     }
1918    
1919     /* ------ SortedMap API methods ------ */
1920    
1921     public Comparator<? super K> comparator() {
1922     return comparator;
1923     }
1924    
1925     /**
1926     * @throws NoSuchElementException {@inheritDoc}
1927     */
1928     public K firstKey() {
1929     Node<K,V> n = findFirst();
1930     if (n == null)
1931     throw new NoSuchElementException();
1932     return n.key;
1933     }
1934    
1935     /**
1936     * @throws NoSuchElementException {@inheritDoc}
1937     */
1938     public K lastKey() {
1939     Node<K,V> n = findLast();
1940     if (n == null)
1941     throw new NoSuchElementException();
1942     return n.key;
1943     }
1944    
1945     /**
1946     * @throws ClassCastException {@inheritDoc}
1947     * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
1948     * @throws IllegalArgumentException {@inheritDoc}
1949     */
1950     public ConcurrentNavigableMap<K,V> subMap(K fromKey,
1951     boolean fromInclusive,
1952     K toKey,
1953     boolean toInclusive) {
1954     if (fromKey == null || toKey == null)
1955     throw new NullPointerException();
1956     return new SubMap<K,V>
1957     (this, fromKey, fromInclusive, toKey, toInclusive, false);
1958     }
1959    
1960     /**
1961     * @throws ClassCastException {@inheritDoc}
1962     * @throws NullPointerException if {@code toKey} is null
1963     * @throws IllegalArgumentException {@inheritDoc}
1964     */
1965     public ConcurrentNavigableMap<K,V> headMap(K toKey,
1966     boolean inclusive) {
1967     if (toKey == null)
1968     throw new NullPointerException();
1969     return new SubMap<K,V>
1970     (this, null, false, toKey, inclusive, false);
1971     }
1972    
1973     /**
1974     * @throws ClassCastException {@inheritDoc}
1975     * @throws NullPointerException if {@code fromKey} is null
1976     * @throws IllegalArgumentException {@inheritDoc}
1977     */
1978     public ConcurrentNavigableMap<K,V> tailMap(K fromKey,
1979     boolean inclusive) {
1980     if (fromKey == null)
1981     throw new NullPointerException();
1982     return new SubMap<K,V>
1983     (this, fromKey, inclusive, null, false, false);
1984     }
1985    
1986     /**
1987     * @throws ClassCastException {@inheritDoc}
1988     * @throws NullPointerException if {@code fromKey} or {@code toKey} is null
1989     * @throws IllegalArgumentException {@inheritDoc}
1990     */
1991     public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
1992     return subMap(fromKey, true, toKey, false);
1993     }
1994    
1995     /**
1996     * @throws ClassCastException {@inheritDoc}
1997     * @throws NullPointerException if {@code toKey} is null
1998     * @throws IllegalArgumentException {@inheritDoc}
1999     */
2000     public ConcurrentNavigableMap<K,V> headMap(K toKey) {
2001     return headMap(toKey, false);
2002     }
2003    
2004     /**
2005     * @throws ClassCastException {@inheritDoc}
2006     * @throws NullPointerException if {@code fromKey} is null
2007     * @throws IllegalArgumentException {@inheritDoc}
2008     */
2009     public ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
2010     return tailMap(fromKey, true);
2011     }
2012    
2013     /* ---------------- Relational operations -------------- */
2014    
2015     /**
2016     * Returns a key-value mapping associated with the greatest key
2017 jsr166 1.2 * strictly less than the given key, or {@code null} if there is
2018 dl 1.1 * no such key. The returned entry does <em>not</em> support the
2019 jsr166 1.2 * {@code Entry.setValue} method.
2020 dl 1.1 *
2021     * @throws ClassCastException {@inheritDoc}
2022     * @throws NullPointerException if the specified key is null
2023     */
2024     public Map.Entry<K,V> lowerEntry(K key) {
2025     return getNear(key, LT);
2026     }
2027    
2028     /**
2029     * @throws ClassCastException {@inheritDoc}
2030     * @throws NullPointerException if the specified key is null
2031     */
2032     public K lowerKey(K key) {
2033     Node<K,V> n = findNear(key, LT);
2034     return (n == null) ? null : n.key;
2035     }
2036    
2037     /**
2038     * Returns a key-value mapping associated with the greatest key
2039 jsr166 1.2 * less than or equal to the given key, or {@code null} if there
2040 dl 1.1 * is no such key. The returned entry does <em>not</em> support
2041 jsr166 1.2 * the {@code Entry.setValue} method.
2042 dl 1.1 *
2043     * @param key the key
2044     * @throws ClassCastException {@inheritDoc}
2045     * @throws NullPointerException if the specified key is null
2046     */
2047     public Map.Entry<K,V> floorEntry(K key) {
2048     return getNear(key, LT|EQ);
2049     }
2050    
2051     /**
2052     * @param key the key
2053     * @throws ClassCastException {@inheritDoc}
2054     * @throws NullPointerException if the specified key is null
2055     */
2056     public K floorKey(K key) {
2057     Node<K,V> n = findNear(key, LT|EQ);
2058     return (n == null) ? null : n.key;
2059     }
2060    
2061     /**
2062     * Returns a key-value mapping associated with the least key
2063 jsr166 1.2 * greater than or equal to the given key, or {@code null} if
2064 dl 1.1 * there is no such entry. The returned entry does <em>not</em>
2065 jsr166 1.2 * support the {@code Entry.setValue} method.
2066 dl 1.1 *
2067     * @throws ClassCastException {@inheritDoc}
2068     * @throws NullPointerException if the specified key is null
2069     */
2070     public Map.Entry<K,V> ceilingEntry(K key) {
2071     return getNear(key, GT|EQ);
2072     }
2073    
2074     /**
2075     * @throws ClassCastException {@inheritDoc}
2076     * @throws NullPointerException if the specified key is null
2077     */
2078     public K ceilingKey(K key) {
2079     Node<K,V> n = findNear(key, GT|EQ);
2080     return (n == null) ? null : n.key;
2081     }
2082    
2083     /**
2084     * Returns a key-value mapping associated with the least key
2085 jsr166 1.2 * strictly greater than the given key, or {@code null} if there
2086 dl 1.1 * is no such key. The returned entry does <em>not</em> support
2087 jsr166 1.2 * the {@code Entry.setValue} method.
2088 dl 1.1 *
2089     * @param key the key
2090     * @throws ClassCastException {@inheritDoc}
2091     * @throws NullPointerException if the specified key is null
2092     */
2093     public Map.Entry<K,V> higherEntry(K key) {
2094     return getNear(key, GT);
2095     }
2096    
2097     /**
2098     * @param key the key
2099     * @throws ClassCastException {@inheritDoc}
2100     * @throws NullPointerException if the specified key is null
2101     */
2102     public K higherKey(K key) {
2103     Node<K,V> n = findNear(key, GT);
2104     return (n == null) ? null : n.key;
2105     }
2106    
2107     /**
2108     * Returns a key-value mapping associated with the least
2109 jsr166 1.2 * key in this map, or {@code null} if the map is empty.
2110 dl 1.1 * The returned entry does <em>not</em> support
2111 jsr166 1.2 * the {@code Entry.setValue} method.
2112 dl 1.1 */
2113     public Map.Entry<K,V> firstEntry() {
2114     for (;;) {
2115     Node<K,V> n = findFirst();
2116     if (n == null)
2117     return null;
2118     AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2119     if (e != null)
2120     return e;
2121     }
2122     }
2123    
2124     /**
2125     * Returns a key-value mapping associated with the greatest
2126 jsr166 1.2 * key in this map, or {@code null} if the map is empty.
2127 dl 1.1 * The returned entry does <em>not</em> support
2128 jsr166 1.2 * the {@code Entry.setValue} method.
2129 dl 1.1 */
2130     public Map.Entry<K,V> lastEntry() {
2131     for (;;) {
2132     Node<K,V> n = findLast();
2133     if (n == null)
2134     return null;
2135     AbstractMap.SimpleImmutableEntry<K,V> e = n.createSnapshot();
2136     if (e != null)
2137     return e;
2138     }
2139     }
2140    
2141     /**
2142     * Removes and returns a key-value mapping associated with
2143 jsr166 1.2 * the least key in this map, or {@code null} if the map is empty.
2144 dl 1.1 * The returned entry does <em>not</em> support
2145 jsr166 1.2 * the {@code Entry.setValue} method.
2146 dl 1.1 */
2147     public Map.Entry<K,V> pollFirstEntry() {
2148     return doRemoveFirstEntry();
2149     }
2150    
2151     /**
2152     * Removes and returns a key-value mapping associated with
2153 jsr166 1.2 * the greatest key in this map, or {@code null} if the map is empty.
2154 dl 1.1 * The returned entry does <em>not</em> support
2155 jsr166 1.2 * the {@code Entry.setValue} method.
2156 dl 1.1 */
2157     public Map.Entry<K,V> pollLastEntry() {
2158     return doRemoveLastEntry();
2159     }
2160    
2161    
2162     /* ---------------- Iterators -------------- */
2163    
2164     /**
2165     * Base of iterator classes:
2166     */
2167     abstract class Iter<T> implements Iterator<T> {
2168     /** the last node returned by next() */
2169     Node<K,V> lastReturned;
2170     /** the next node to return from next(); */
2171     Node<K,V> next;
2172     /** Cache of next value field to maintain weak consistency */
2173     V nextValue;
2174    
2175     /** Initializes ascending iterator for entire range. */
2176     Iter() {
2177     for (;;) {
2178     next = findFirst();
2179     if (next == null)
2180     break;
2181     Object x = next.value;
2182     if (x != null && x != next) {
2183     nextValue = (V) x;
2184     break;
2185     }
2186     }
2187     }
2188    
2189     public final boolean hasNext() {
2190     return next != null;
2191     }
2192    
2193     /** Advances next to higher entry. */
2194     final void advance() {
2195     if (next == null)
2196     throw new NoSuchElementException();
2197     lastReturned = next;
2198     for (;;) {
2199     next = next.next;
2200     if (next == null)
2201     break;
2202     Object x = next.value;
2203     if (x != null && x != next) {
2204     nextValue = (V) x;
2205     break;
2206     }
2207     }
2208     }
2209    
2210     public void remove() {
2211     Node<K,V> l = lastReturned;
2212     if (l == null)
2213     throw new IllegalStateException();
2214     // It would not be worth all of the overhead to directly
2215     // unlink from here. Using remove is fast enough.
2216     ConcurrentSkipListMap.this.remove(l.key);
2217     lastReturned = null;
2218     }
2219    
2220     }
2221    
2222     final class ValueIterator extends Iter<V> {
2223     public V next() {
2224     V v = nextValue;
2225     advance();
2226     return v;
2227     }
2228     }
2229    
2230     final class KeyIterator extends Iter<K> {
2231     public K next() {
2232     Node<K,V> n = next;
2233     advance();
2234     return n.key;
2235     }
2236     }
2237    
2238     final class EntryIterator extends Iter<Map.Entry<K,V>> {
2239     public Map.Entry<K,V> next() {
2240     Node<K,V> n = next;
2241     V v = nextValue;
2242     advance();
2243     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
2244     }
2245     }
2246    
2247     // Factory methods for iterators needed by ConcurrentSkipListSet etc
2248    
2249     Iterator<K> keyIterator() {
2250     return new KeyIterator();
2251     }
2252    
2253     Iterator<V> valueIterator() {
2254     return new ValueIterator();
2255     }
2256    
2257     Iterator<Map.Entry<K,V>> entryIterator() {
2258     return new EntryIterator();
2259     }
2260    
2261     /* ---------------- View Classes -------------- */
2262    
2263     /*
2264     * View classes are static, delegating to a ConcurrentNavigableMap
2265     * to allow use by SubMaps, which outweighs the ugliness of
2266     * needing type-tests for Iterator methods.
2267     */
2268    
2269     static final <E> List<E> toList(Collection<E> c) {
2270     // Using size() here would be a pessimization.
2271 jsr166 1.5 ArrayList<E> list = new ArrayList<E>();
2272 dl 1.1 for (E e : c)
2273     list.add(e);
2274     return list;
2275     }
2276    
2277     static final class KeySet<E>
2278     extends AbstractSet<E> implements NavigableSet<E> {
2279     private final ConcurrentNavigableMap<E,?> m;
2280     KeySet(ConcurrentNavigableMap<E,?> map) { m = map; }
2281     public int size() { return m.size(); }
2282     public boolean isEmpty() { return m.isEmpty(); }
2283     public boolean contains(Object o) { return m.containsKey(o); }
2284     public boolean remove(Object o) { return m.remove(o) != null; }
2285     public void clear() { m.clear(); }
2286     public E lower(E e) { return m.lowerKey(e); }
2287     public E floor(E e) { return m.floorKey(e); }
2288     public E ceiling(E e) { return m.ceilingKey(e); }
2289     public E higher(E e) { return m.higherKey(e); }
2290     public Comparator<? super E> comparator() { return m.comparator(); }
2291     public E first() { return m.firstKey(); }
2292     public E last() { return m.lastKey(); }
2293     public E pollFirst() {
2294     Map.Entry<E,?> e = m.pollFirstEntry();
2295     return (e == null) ? null : e.getKey();
2296     }
2297     public E pollLast() {
2298     Map.Entry<E,?> e = m.pollLastEntry();
2299     return (e == null) ? null : e.getKey();
2300     }
2301     public Iterator<E> iterator() {
2302     if (m instanceof ConcurrentSkipListMap)
2303     return ((ConcurrentSkipListMap<E,Object>)m).keyIterator();
2304     else
2305     return ((ConcurrentSkipListMap.SubMap<E,Object>)m).keyIterator();
2306     }
2307     public boolean equals(Object o) {
2308     if (o == this)
2309     return true;
2310     if (!(o instanceof Set))
2311     return false;
2312     Collection<?> c = (Collection<?>) o;
2313     try {
2314     return containsAll(c) && c.containsAll(this);
2315     } catch (ClassCastException unused) {
2316     return false;
2317     } catch (NullPointerException unused) {
2318     return false;
2319     }
2320     }
2321     public Object[] toArray() { return toList(this).toArray(); }
2322     public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2323     public Iterator<E> descendingIterator() {
2324     return descendingSet().iterator();
2325     }
2326     public NavigableSet<E> subSet(E fromElement,
2327     boolean fromInclusive,
2328     E toElement,
2329     boolean toInclusive) {
2330     return new KeySet<E>(m.subMap(fromElement, fromInclusive,
2331     toElement, toInclusive));
2332     }
2333     public NavigableSet<E> headSet(E toElement, boolean inclusive) {
2334     return new KeySet<E>(m.headMap(toElement, inclusive));
2335     }
2336     public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
2337     return new KeySet<E>(m.tailMap(fromElement, inclusive));
2338     }
2339     public NavigableSet<E> subSet(E fromElement, E toElement) {
2340     return subSet(fromElement, true, toElement, false);
2341     }
2342     public NavigableSet<E> headSet(E toElement) {
2343     return headSet(toElement, false);
2344     }
2345     public NavigableSet<E> tailSet(E fromElement) {
2346     return tailSet(fromElement, true);
2347     }
2348     public NavigableSet<E> descendingSet() {
2349     return new KeySet<E>(m.descendingMap());
2350     }
2351     }
2352    
2353     static final class Values<E> extends AbstractCollection<E> {
2354 jsr166 1.9 private final ConcurrentNavigableMap<?,E> m;
2355     Values(ConcurrentNavigableMap<?,E> map) {
2356 dl 1.1 m = map;
2357     }
2358     public Iterator<E> iterator() {
2359     if (m instanceof ConcurrentSkipListMap)
2360     return ((ConcurrentSkipListMap<?,E>)m).valueIterator();
2361     else
2362     return ((SubMap<?,E>)m).valueIterator();
2363     }
2364     public boolean isEmpty() {
2365     return m.isEmpty();
2366     }
2367     public int size() {
2368     return m.size();
2369     }
2370     public boolean contains(Object o) {
2371     return m.containsValue(o);
2372     }
2373     public void clear() {
2374     m.clear();
2375     }
2376     public Object[] toArray() { return toList(this).toArray(); }
2377     public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2378     }
2379    
2380     static final class EntrySet<K1,V1> extends AbstractSet<Map.Entry<K1,V1>> {
2381     private final ConcurrentNavigableMap<K1, V1> m;
2382     EntrySet(ConcurrentNavigableMap<K1, V1> map) {
2383     m = map;
2384     }
2385    
2386     public Iterator<Map.Entry<K1,V1>> iterator() {
2387     if (m instanceof ConcurrentSkipListMap)
2388     return ((ConcurrentSkipListMap<K1,V1>)m).entryIterator();
2389     else
2390     return ((SubMap<K1,V1>)m).entryIterator();
2391     }
2392    
2393     public boolean contains(Object o) {
2394     if (!(o instanceof Map.Entry))
2395     return false;
2396     Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2397     V1 v = m.get(e.getKey());
2398     return v != null && v.equals(e.getValue());
2399     }
2400     public boolean remove(Object o) {
2401     if (!(o instanceof Map.Entry))
2402     return false;
2403     Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2404     return m.remove(e.getKey(),
2405     e.getValue());
2406     }
2407     public boolean isEmpty() {
2408     return m.isEmpty();
2409     }
2410     public int size() {
2411     return m.size();
2412     }
2413     public void clear() {
2414     m.clear();
2415     }
2416     public boolean equals(Object o) {
2417     if (o == this)
2418     return true;
2419     if (!(o instanceof Set))
2420     return false;
2421     Collection<?> c = (Collection<?>) o;
2422     try {
2423     return containsAll(c) && c.containsAll(this);
2424     } catch (ClassCastException unused) {
2425     return false;
2426     } catch (NullPointerException unused) {
2427     return false;
2428     }
2429     }
2430     public Object[] toArray() { return toList(this).toArray(); }
2431     public <T> T[] toArray(T[] a) { return toList(this).toArray(a); }
2432     }
2433    
2434     /**
2435     * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2436     * represent a subrange of mappings of their underlying
2437     * maps. Instances of this class support all methods of their
2438     * underlying maps, differing in that mappings outside their range are
2439     * ignored, and attempts to add mappings outside their ranges result
2440     * in {@link IllegalArgumentException}. Instances of this class are
2441 jsr166 1.2 * constructed only using the {@code subMap}, {@code headMap}, and
2442     * {@code tailMap} methods of their underlying maps.
2443 dl 1.1 *
2444     * @serial include
2445     */
2446     static final class SubMap<K,V> extends AbstractMap<K,V>
2447     implements ConcurrentNavigableMap<K,V>, Cloneable,
2448     java.io.Serializable {
2449     private static final long serialVersionUID = -7647078645895051609L;
2450    
2451     /** Underlying map */
2452     private final ConcurrentSkipListMap<K,V> m;
2453     /** lower bound key, or null if from start */
2454     private final K lo;
2455     /** upper bound key, or null if to end */
2456     private final K hi;
2457     /** inclusion flag for lo */
2458     private final boolean loInclusive;
2459     /** inclusion flag for hi */
2460     private final boolean hiInclusive;
2461     /** direction */
2462     private final boolean isDescending;
2463    
2464     // Lazily initialized view holders
2465     private transient KeySet<K> keySetView;
2466     private transient Set<Map.Entry<K,V>> entrySetView;
2467     private transient Collection<V> valuesView;
2468    
2469     /**
2470 jsr166 1.3 * Creates a new submap, initializing all fields.
2471 dl 1.1 */
2472     SubMap(ConcurrentSkipListMap<K,V> map,
2473     K fromKey, boolean fromInclusive,
2474     K toKey, boolean toInclusive,
2475     boolean isDescending) {
2476     if (fromKey != null && toKey != null &&
2477     map.compare(fromKey, toKey) > 0)
2478     throw new IllegalArgumentException("inconsistent range");
2479     this.m = map;
2480     this.lo = fromKey;
2481     this.hi = toKey;
2482     this.loInclusive = fromInclusive;
2483     this.hiInclusive = toInclusive;
2484     this.isDescending = isDescending;
2485     }
2486    
2487     /* ---------------- Utilities -------------- */
2488    
2489     private boolean tooLow(K key) {
2490     if (lo != null) {
2491     int c = m.compare(key, lo);
2492     if (c < 0 || (c == 0 && !loInclusive))
2493     return true;
2494     }
2495     return false;
2496     }
2497    
2498     private boolean tooHigh(K key) {
2499     if (hi != null) {
2500     int c = m.compare(key, hi);
2501     if (c > 0 || (c == 0 && !hiInclusive))
2502     return true;
2503     }
2504     return false;
2505     }
2506    
2507     private boolean inBounds(K key) {
2508     return !tooLow(key) && !tooHigh(key);
2509     }
2510    
2511     private void checkKeyBounds(K key) throws IllegalArgumentException {
2512     if (key == null)
2513     throw new NullPointerException();
2514     if (!inBounds(key))
2515     throw new IllegalArgumentException("key out of range");
2516     }
2517    
2518     /**
2519 jsr166 1.3 * Returns true if node key is less than upper bound of range.
2520 dl 1.1 */
2521     private boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n) {
2522     if (n == null)
2523     return false;
2524     if (hi == null)
2525     return true;
2526     K k = n.key;
2527     if (k == null) // pass by markers and headers
2528     return true;
2529     int c = m.compare(k, hi);
2530     if (c > 0 || (c == 0 && !hiInclusive))
2531     return false;
2532     return true;
2533     }
2534    
2535     /**
2536     * Returns lowest node. This node might not be in range, so
2537 jsr166 1.3 * most usages need to check bounds.
2538 dl 1.1 */
2539     private ConcurrentSkipListMap.Node<K,V> loNode() {
2540     if (lo == null)
2541     return m.findFirst();
2542     else if (loInclusive)
2543     return m.findNear(lo, GT|EQ);
2544     else
2545     return m.findNear(lo, GT);
2546     }
2547    
2548     /**
2549     * Returns highest node. This node might not be in range, so
2550 jsr166 1.3 * most usages need to check bounds.
2551 dl 1.1 */
2552     private ConcurrentSkipListMap.Node<K,V> hiNode() {
2553     if (hi == null)
2554     return m.findLast();
2555     else if (hiInclusive)
2556     return m.findNear(hi, LT|EQ);
2557     else
2558     return m.findNear(hi, LT);
2559     }
2560    
2561     /**
2562 jsr166 1.11 * Returns lowest absolute key (ignoring directionality).
2563 dl 1.1 */
2564     private K lowestKey() {
2565     ConcurrentSkipListMap.Node<K,V> n = loNode();
2566     if (isBeforeEnd(n))
2567     return n.key;
2568     else
2569     throw new NoSuchElementException();
2570     }
2571    
2572     /**
2573 jsr166 1.11 * Returns highest absolute key (ignoring directionality).
2574 dl 1.1 */
2575     private K highestKey() {
2576     ConcurrentSkipListMap.Node<K,V> n = hiNode();
2577     if (n != null) {
2578     K last = n.key;
2579     if (inBounds(last))
2580     return last;
2581     }
2582     throw new NoSuchElementException();
2583     }
2584    
2585     private Map.Entry<K,V> lowestEntry() {
2586     for (;;) {
2587     ConcurrentSkipListMap.Node<K,V> n = loNode();
2588     if (!isBeforeEnd(n))
2589     return null;
2590     Map.Entry<K,V> e = n.createSnapshot();
2591     if (e != null)
2592     return e;
2593     }
2594     }
2595    
2596     private Map.Entry<K,V> highestEntry() {
2597     for (;;) {
2598     ConcurrentSkipListMap.Node<K,V> n = hiNode();
2599     if (n == null || !inBounds(n.key))
2600     return null;
2601     Map.Entry<K,V> e = n.createSnapshot();
2602     if (e != null)
2603     return e;
2604     }
2605     }
2606    
2607     private Map.Entry<K,V> removeLowest() {
2608     for (;;) {
2609     Node<K,V> n = loNode();
2610     if (n == null)
2611     return null;
2612     K k = n.key;
2613     if (!inBounds(k))
2614     return null;
2615     V v = m.doRemove(k, null);
2616     if (v != null)
2617     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2618     }
2619     }
2620    
2621     private Map.Entry<K,V> removeHighest() {
2622     for (;;) {
2623     Node<K,V> n = hiNode();
2624     if (n == null)
2625     return null;
2626     K k = n.key;
2627     if (!inBounds(k))
2628     return null;
2629     V v = m.doRemove(k, null);
2630     if (v != null)
2631     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2632     }
2633     }
2634    
2635     /**
2636     * Submap version of ConcurrentSkipListMap.getNearEntry
2637     */
2638     private Map.Entry<K,V> getNearEntry(K key, int rel) {
2639     if (isDescending) { // adjust relation for direction
2640     if ((rel & LT) == 0)
2641     rel |= LT;
2642     else
2643     rel &= ~LT;
2644     }
2645     if (tooLow(key))
2646     return ((rel & LT) != 0) ? null : lowestEntry();
2647     if (tooHigh(key))
2648     return ((rel & LT) != 0) ? highestEntry() : null;
2649     for (;;) {
2650     Node<K,V> n = m.findNear(key, rel);
2651     if (n == null || !inBounds(n.key))
2652     return null;
2653     K k = n.key;
2654     V v = n.getValidValue();
2655     if (v != null)
2656     return new AbstractMap.SimpleImmutableEntry<K,V>(k, v);
2657     }
2658     }
2659    
2660     // Almost the same as getNearEntry, except for keys
2661     private K getNearKey(K key, int rel) {
2662     if (isDescending) { // adjust relation for direction
2663     if ((rel & LT) == 0)
2664     rel |= LT;
2665     else
2666     rel &= ~LT;
2667     }
2668     if (tooLow(key)) {
2669     if ((rel & LT) == 0) {
2670     ConcurrentSkipListMap.Node<K,V> n = loNode();
2671     if (isBeforeEnd(n))
2672     return n.key;
2673     }
2674     return null;
2675     }
2676     if (tooHigh(key)) {
2677     if ((rel & LT) != 0) {
2678     ConcurrentSkipListMap.Node<K,V> n = hiNode();
2679     if (n != null) {
2680     K last = n.key;
2681     if (inBounds(last))
2682     return last;
2683     }
2684     }
2685     return null;
2686     }
2687     for (;;) {
2688     Node<K,V> n = m.findNear(key, rel);
2689     if (n == null || !inBounds(n.key))
2690     return null;
2691     K k = n.key;
2692     V v = n.getValidValue();
2693     if (v != null)
2694     return k;
2695     }
2696     }
2697    
2698     /* ---------------- Map API methods -------------- */
2699    
2700     public boolean containsKey(Object key) {
2701     if (key == null) throw new NullPointerException();
2702     K k = (K)key;
2703     return inBounds(k) && m.containsKey(k);
2704     }
2705    
2706     public V get(Object key) {
2707     if (key == null) throw new NullPointerException();
2708     K k = (K)key;
2709     return (!inBounds(k)) ? null : m.get(k);
2710     }
2711    
2712     public V put(K key, V value) {
2713     checkKeyBounds(key);
2714     return m.put(key, value);
2715     }
2716    
2717     public V remove(Object key) {
2718     K k = (K)key;
2719     return (!inBounds(k)) ? null : m.remove(k);
2720     }
2721    
2722     public int size() {
2723     long count = 0;
2724     for (ConcurrentSkipListMap.Node<K,V> n = loNode();
2725     isBeforeEnd(n);
2726     n = n.next) {
2727     if (n.getValidValue() != null)
2728     ++count;
2729     }
2730     return count >= Integer.MAX_VALUE ? Integer.MAX_VALUE : (int)count;
2731     }
2732    
2733     public boolean isEmpty() {
2734     return !isBeforeEnd(loNode());
2735     }
2736    
2737     public boolean containsValue(Object value) {
2738     if (value == null)
2739     throw new NullPointerException();
2740     for (ConcurrentSkipListMap.Node<K,V> n = loNode();
2741     isBeforeEnd(n);
2742     n = n.next) {
2743     V v = n.getValidValue();
2744     if (v != null && value.equals(v))
2745     return true;
2746     }
2747     return false;
2748     }
2749    
2750     public void clear() {
2751     for (ConcurrentSkipListMap.Node<K,V> n = loNode();
2752     isBeforeEnd(n);
2753     n = n.next) {
2754     if (n.getValidValue() != null)
2755     m.remove(n.key);
2756     }
2757     }
2758    
2759     /* ---------------- ConcurrentMap API methods -------------- */
2760    
2761     public V putIfAbsent(K key, V value) {
2762     checkKeyBounds(key);
2763     return m.putIfAbsent(key, value);
2764     }
2765    
2766     public boolean remove(Object key, Object value) {
2767     K k = (K)key;
2768     return inBounds(k) && m.remove(k, value);
2769     }
2770    
2771     public boolean replace(K key, V oldValue, V newValue) {
2772     checkKeyBounds(key);
2773     return m.replace(key, oldValue, newValue);
2774     }
2775    
2776     public V replace(K key, V value) {
2777     checkKeyBounds(key);
2778     return m.replace(key, value);
2779     }
2780    
2781     /* ---------------- SortedMap API methods -------------- */
2782    
2783     public Comparator<? super K> comparator() {
2784     Comparator<? super K> cmp = m.comparator();
2785     if (isDescending)
2786     return Collections.reverseOrder(cmp);
2787     else
2788     return cmp;
2789     }
2790    
2791     /**
2792     * Utility to create submaps, where given bounds override
2793     * unbounded(null) ones and/or are checked against bounded ones.
2794     */
2795     private SubMap<K,V> newSubMap(K fromKey,
2796     boolean fromInclusive,
2797     K toKey,
2798     boolean toInclusive) {
2799     if (isDescending) { // flip senses
2800     K tk = fromKey;
2801     fromKey = toKey;
2802     toKey = tk;
2803     boolean ti = fromInclusive;
2804     fromInclusive = toInclusive;
2805     toInclusive = ti;
2806     }
2807     if (lo != null) {
2808     if (fromKey == null) {
2809     fromKey = lo;
2810     fromInclusive = loInclusive;
2811     }
2812     else {
2813     int c = m.compare(fromKey, lo);
2814     if (c < 0 || (c == 0 && !loInclusive && fromInclusive))
2815     throw new IllegalArgumentException("key out of range");
2816     }
2817     }
2818     if (hi != null) {
2819     if (toKey == null) {
2820     toKey = hi;
2821     toInclusive = hiInclusive;
2822     }
2823     else {
2824     int c = m.compare(toKey, hi);
2825     if (c > 0 || (c == 0 && !hiInclusive && toInclusive))
2826     throw new IllegalArgumentException("key out of range");
2827     }
2828     }
2829     return new SubMap<K,V>(m, fromKey, fromInclusive,
2830     toKey, toInclusive, isDescending);
2831     }
2832    
2833     public SubMap<K,V> subMap(K fromKey,
2834     boolean fromInclusive,
2835     K toKey,
2836     boolean toInclusive) {
2837     if (fromKey == null || toKey == null)
2838     throw new NullPointerException();
2839     return newSubMap(fromKey, fromInclusive, toKey, toInclusive);
2840     }
2841    
2842     public SubMap<K,V> headMap(K toKey,
2843     boolean inclusive) {
2844     if (toKey == null)
2845     throw new NullPointerException();
2846     return newSubMap(null, false, toKey, inclusive);
2847     }
2848    
2849     public SubMap<K,V> tailMap(K fromKey,
2850     boolean inclusive) {
2851     if (fromKey == null)
2852     throw new NullPointerException();
2853     return newSubMap(fromKey, inclusive, null, false);
2854     }
2855    
2856     public SubMap<K,V> subMap(K fromKey, K toKey) {
2857     return subMap(fromKey, true, toKey, false);
2858     }
2859    
2860     public SubMap<K,V> headMap(K toKey) {
2861     return headMap(toKey, false);
2862     }
2863    
2864     public SubMap<K,V> tailMap(K fromKey) {
2865     return tailMap(fromKey, true);
2866     }
2867    
2868     public SubMap<K,V> descendingMap() {
2869     return new SubMap<K,V>(m, lo, loInclusive,
2870     hi, hiInclusive, !isDescending);
2871     }
2872    
2873     /* ---------------- Relational methods -------------- */
2874    
2875     public Map.Entry<K,V> ceilingEntry(K key) {
2876     return getNearEntry(key, GT|EQ);
2877     }
2878    
2879     public K ceilingKey(K key) {
2880     return getNearKey(key, GT|EQ);
2881     }
2882    
2883     public Map.Entry<K,V> lowerEntry(K key) {
2884     return getNearEntry(key, LT);
2885     }
2886    
2887     public K lowerKey(K key) {
2888     return getNearKey(key, LT);
2889     }
2890    
2891     public Map.Entry<K,V> floorEntry(K key) {
2892     return getNearEntry(key, LT|EQ);
2893     }
2894    
2895     public K floorKey(K key) {
2896     return getNearKey(key, LT|EQ);
2897     }
2898    
2899     public Map.Entry<K,V> higherEntry(K key) {
2900     return getNearEntry(key, GT);
2901     }
2902    
2903     public K higherKey(K key) {
2904     return getNearKey(key, GT);
2905     }
2906    
2907     public K firstKey() {
2908     return isDescending ? highestKey() : lowestKey();
2909     }
2910    
2911     public K lastKey() {
2912     return isDescending ? lowestKey() : highestKey();
2913     }
2914    
2915     public Map.Entry<K,V> firstEntry() {
2916     return isDescending ? highestEntry() : lowestEntry();
2917     }
2918    
2919     public Map.Entry<K,V> lastEntry() {
2920     return isDescending ? lowestEntry() : highestEntry();
2921     }
2922    
2923     public Map.Entry<K,V> pollFirstEntry() {
2924     return isDescending ? removeHighest() : removeLowest();
2925     }
2926    
2927     public Map.Entry<K,V> pollLastEntry() {
2928     return isDescending ? removeLowest() : removeHighest();
2929     }
2930    
2931     /* ---------------- Submap Views -------------- */
2932    
2933     public NavigableSet<K> keySet() {
2934     KeySet<K> ks = keySetView;
2935     return (ks != null) ? ks : (keySetView = new KeySet<K>(this));
2936     }
2937    
2938     public NavigableSet<K> navigableKeySet() {
2939     KeySet<K> ks = keySetView;
2940     return (ks != null) ? ks : (keySetView = new KeySet<K>(this));
2941     }
2942    
2943     public Collection<V> values() {
2944     Collection<V> vs = valuesView;
2945     return (vs != null) ? vs : (valuesView = new Values<V>(this));
2946     }
2947    
2948     public Set<Map.Entry<K,V>> entrySet() {
2949     Set<Map.Entry<K,V>> es = entrySetView;
2950     return (es != null) ? es : (entrySetView = new EntrySet<K,V>(this));
2951     }
2952    
2953     public NavigableSet<K> descendingKeySet() {
2954     return descendingMap().navigableKeySet();
2955     }
2956    
2957     Iterator<K> keyIterator() {
2958     return new SubMapKeyIterator();
2959     }
2960    
2961     Iterator<V> valueIterator() {
2962     return new SubMapValueIterator();
2963     }
2964    
2965     Iterator<Map.Entry<K,V>> entryIterator() {
2966     return new SubMapEntryIterator();
2967     }
2968    
2969     /**
2970     * Variant of main Iter class to traverse through submaps.
2971     */
2972     abstract class SubMapIter<T> implements Iterator<T> {
2973     /** the last node returned by next() */
2974     Node<K,V> lastReturned;
2975     /** the next node to return from next(); */
2976     Node<K,V> next;
2977     /** Cache of next value field to maintain weak consistency */
2978     V nextValue;
2979    
2980     SubMapIter() {
2981     for (;;) {
2982     next = isDescending ? hiNode() : loNode();
2983     if (next == null)
2984     break;
2985     Object x = next.value;
2986     if (x != null && x != next) {
2987     if (! inBounds(next.key))
2988     next = null;
2989     else
2990     nextValue = (V) x;
2991     break;
2992     }
2993     }
2994     }
2995    
2996     public final boolean hasNext() {
2997     return next != null;
2998     }
2999    
3000     final void advance() {
3001     if (next == null)
3002     throw new NoSuchElementException();
3003     lastReturned = next;
3004     if (isDescending)
3005     descend();
3006     else
3007     ascend();
3008     }
3009    
3010     private void ascend() {
3011     for (;;) {
3012     next = next.next;
3013     if (next == null)
3014     break;
3015     Object x = next.value;
3016     if (x != null && x != next) {
3017     if (tooHigh(next.key))
3018     next = null;
3019     else
3020     nextValue = (V) x;
3021     break;
3022     }
3023     }
3024     }
3025    
3026     private void descend() {
3027     for (;;) {
3028     next = m.findNear(lastReturned.key, LT);
3029     if (next == null)
3030     break;
3031     Object x = next.value;
3032     if (x != null && x != next) {
3033     if (tooLow(next.key))
3034     next = null;
3035     else
3036     nextValue = (V) x;
3037     break;
3038     }
3039     }
3040     }
3041    
3042     public void remove() {
3043     Node<K,V> l = lastReturned;
3044     if (l == null)
3045     throw new IllegalStateException();
3046     m.remove(l.key);
3047     lastReturned = null;
3048     }
3049    
3050     }
3051    
3052     final class SubMapValueIterator extends SubMapIter<V> {
3053     public V next() {
3054     V v = nextValue;
3055     advance();
3056     return v;
3057     }
3058     }
3059    
3060     final class SubMapKeyIterator extends SubMapIter<K> {
3061     public K next() {
3062     Node<K,V> n = next;
3063     advance();
3064     return n.key;
3065     }
3066     }
3067    
3068     final class SubMapEntryIterator extends SubMapIter<Map.Entry<K,V>> {
3069     public Map.Entry<K,V> next() {
3070     Node<K,V> n = next;
3071     V v = nextValue;
3072     advance();
3073     return new AbstractMap.SimpleImmutableEntry<K,V>(n.key, v);
3074     }
3075     }
3076     }
3077    
3078     // Unsafe mechanics
3079     private static final sun.misc.Unsafe UNSAFE;
3080     private static final long headOffset;
3081     static {
3082     try {
3083     UNSAFE = sun.misc.Unsafe.getUnsafe();
3084     Class<?> k = ConcurrentSkipListMap.class;
3085     headOffset = UNSAFE.objectFieldOffset
3086     (k.getDeclaredField("head"));
3087     } catch (Exception e) {
3088     throw new Error(e);
3089     }
3090     }
3091     }