/* * Written by Josh Bloch of Google Inc. and released to the public domain, * as explained at http://creativecommons.org/publicdomain/zero/1.0/. */ package java.util; import java.io.Serializable; import java.util.function.Consumer; import java.util.function.Predicate; import java.util.function.UnaryOperator; /** * Resizable-array implementation of the {@link Deque} interface. Array * deques have no capacity restrictions; they grow as necessary to support * usage. They are not thread-safe; in the absence of external * synchronization, they do not support concurrent access by multiple threads. * Null elements are prohibited. This class is likely to be faster than * {@link Stack} when used as a stack, and faster than {@link LinkedList} * when used as a queue. * *

Most {@code ArrayDeque} operations run in amortized constant time. * Exceptions include * {@link #remove(Object) remove}, * {@link #removeFirstOccurrence removeFirstOccurrence}, * {@link #removeLastOccurrence removeLastOccurrence}, * {@link #contains contains}, * {@link #iterator iterator.remove()}, * and the bulk operations, all of which run in linear time. * *

The iterators returned by this class's {@link #iterator() iterator} * method are fail-fast: If the deque is modified at any time after * the iterator is created, in any way except through the iterator's own * {@code remove} method, the iterator will generally throw a {@link * ConcurrentModificationException}. Thus, in the face of concurrent * modification, the iterator fails quickly and cleanly, rather than risking * arbitrary, non-deterministic behavior at an undetermined time in the * future. * *

Note that the fail-fast behavior of an iterator cannot be guaranteed * as it is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification. Fail-fast iterators * throw {@code ConcurrentModificationException} on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: the fail-fast behavior of iterators * should be used only to detect bugs. * *

This class and its iterator implement all of the * optional methods of the {@link Collection} and {@link * Iterator} interfaces. * *

This class is a member of the * * Java Collections Framework. * * @author Josh Bloch and Doug Lea * @param the type of elements held in this deque * @since 1.6 */ public class ArrayDeque extends AbstractCollection implements Deque, Cloneable, Serializable { /** * The array in which the elements of the deque are stored. * We guarantee that all array cells not holding deque elements * are always null. */ transient Object[] elements; /** * The index of the element at the head of the deque (which is the * element that would be removed by remove() or pop()); or an * arbitrary number 0 <= head < elements.length if the deque is empty. */ transient int head; /** Number of elements in this collection. */ transient int size; /** * The maximum size of array to allocate. * Some VMs reserve some header words in an array. * Attempts to allocate larger arrays may result in * OutOfMemoryError: Requested array size exceeds VM limit */ private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; /** * Increases the capacity of this deque by at least the given amount. * * @param needed the required minimum extra capacity; must be positive */ private void grow(int needed) { // overflow-conscious code // checkInvariants(); int oldCapacity = elements.length; int newCapacity; // Double size if small; else grow by 50% int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1); if (jump < needed || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0) newCapacity = newCapacity(needed, jump); elements = Arrays.copyOf(elements, newCapacity); if (oldCapacity - head < size) { // wrap around; slide first leg forward to end of array int newSpace = newCapacity - oldCapacity; System.arraycopy(elements, head, elements, head + newSpace, oldCapacity - head); Arrays.fill(elements, head, head + newSpace, null); head += newSpace; } // checkInvariants(); } /** Capacity calculation for edge conditions, especially overflow. */ private int newCapacity(int needed, int jump) { int oldCapacity = elements.length; int minCapacity; if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) { if (minCapacity < 0) throw new IllegalStateException("Sorry, deque too big"); return Integer.MAX_VALUE; } if (needed > jump) return minCapacity; return (oldCapacity + jump - MAX_ARRAY_SIZE < 0) ? oldCapacity + jump : MAX_ARRAY_SIZE; } /** * Increases the internal storage of this collection, if necessary, * to ensure that it can hold at least the given number of elements. * * @param minCapacity the desired minimum capacity * @since TBD */ /* public */ void ensureCapacity(int minCapacity) { if (minCapacity > elements.length) grow(minCapacity - elements.length); // checkInvariants(); } /** * Minimizes the internal storage of this collection. * * @since TBD */ /* public */ void trimToSize() { if (size < elements.length) { elements = toArray(); head = 0; } // checkInvariants(); } /** * Constructs an empty array deque with an initial capacity * sufficient to hold 16 elements. */ public ArrayDeque() { elements = new Object[16]; } /** * Constructs an empty array deque with an initial capacity * sufficient to hold the specified number of elements. * * @param numElements lower bound on initial capacity of the deque */ public ArrayDeque(int numElements) { elements = new Object[numElements]; } /** * Constructs a deque containing the elements of the specified * collection, in the order they are returned by the collection's * iterator. (The first element returned by the collection's * iterator becomes the first element, or front of the * deque.) * * @param c the collection whose elements are to be placed into the deque * @throws NullPointerException if the specified collection is null */ public ArrayDeque(Collection c) { Object[] elements = c.toArray(); // defend against c.toArray (incorrectly) not returning Object[] // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652) size = elements.length; if (elements.getClass() != Object[].class) elements = Arrays.copyOf(elements, size, Object[].class); for (Object obj : elements) Objects.requireNonNull(obj); this.elements = elements; } /** * Increments i, mod modulus. * Precondition and postcondition: 0 <= i < modulus. */ static final int inc(int i, int modulus) { if (++i >= modulus) i = 0; return i; } /** * Decrements i, mod modulus. * Precondition and postcondition: 0 <= i < modulus. */ static final int dec(int i, int modulus) { if (--i < 0) i = modulus - 1; return i; } /** * Adds i and j, mod modulus. * Precondition and postcondition: 0 <= i < modulus, 0 <= j <= modulus. */ static final int add(int i, int j, int modulus) { if ((i += j) - modulus >= 0) i -= modulus; return i; } /** * Returns the array index of the last element. * May return invalid index -1 if there are no elements. */ final int tail() { return add(head, size - 1, elements.length); } /** * Returns element at array index i. */ @SuppressWarnings("unchecked") private E elementAt(int i) { return (E) elements[i]; } /** * A version of elementAt that checks for null elements. * This check doesn't catch all possible comodifications, * but does catch ones that corrupt traversal. */ E checkedElementAt(Object[] elements, int i) { @SuppressWarnings("unchecked") E e = (E) elements[i]; if (e == null) throw new ConcurrentModificationException(); return e; } // The main insertion and extraction methods are addFirst, // addLast, pollFirst, pollLast. The other methods are defined in // terms of these. /** * Inserts the specified element at the front of this deque. * * @param e the element to add * @throws NullPointerException if the specified element is null */ public void addFirst(E e) { // checkInvariants(); Objects.requireNonNull(e); Object[] elements; int capacity, h; final int s; if ((s = size) == (capacity = (elements = this.elements).length)) { grow(1); capacity = (elements = this.elements).length; } if ((h = head - 1) < 0) h = capacity - 1; elements[head = h] = e; size = s + 1; // checkInvariants(); } /** * Inserts the specified element at the end of this deque. * *

This method is equivalent to {@link #add}. * * @param e the element to add * @throws NullPointerException if the specified element is null */ public void addLast(E e) { // checkInvariants(); Objects.requireNonNull(e); Object[] elements; int capacity; final int s; if ((s = size) == (capacity = (elements = this.elements).length)) { grow(1); capacity = (elements = this.elements).length; } elements[add(head, s, capacity)] = e; size = s + 1; // checkInvariants(); } /** * Adds all of the elements in the specified collection at the end * of this deque, as if by calling {@link #addLast} on each one, * in the order that they are returned by the collection's * iterator. * * @param c the elements to be inserted into this deque * @return {@code true} if this deque changed as a result of the call * @throws NullPointerException if the specified collection or any * of its elements are null */ public boolean addAll(Collection c) { final int s = size, needed = c.size() - (elements.length - s); if (needed > 0) grow(needed); c.forEach((e) -> addLast(e)); // checkInvariants(); return size > s; } /** * Inserts the specified element at the front of this deque. * * @param e the element to add * @return {@code true} (as specified by {@link Deque#offerFirst}) * @throws NullPointerException if the specified element is null */ public boolean offerFirst(E e) { addFirst(e); return true; } /** * Inserts the specified element at the end of this deque. * * @param e the element to add * @return {@code true} (as specified by {@link Deque#offerLast}) * @throws NullPointerException if the specified element is null */ public boolean offerLast(E e) { addLast(e); return true; } /** * @throws NoSuchElementException {@inheritDoc} */ public E removeFirst() { // checkInvariants(); E e = pollFirst(); if (e == null) throw new NoSuchElementException(); return e; } /** * @throws NoSuchElementException {@inheritDoc} */ public E removeLast() { // checkInvariants(); E e = pollLast(); if (e == null) throw new NoSuchElementException(); return e; } public E pollFirst() { // checkInvariants(); int s, h; if ((s = size) == 0) return null; final Object[] elements = this.elements; @SuppressWarnings("unchecked") E e = (E) elements[h = head]; elements[h] = null; if (++h >= elements.length) h = 0; head = h; size = s - 1; return e; } public E pollLast() { // checkInvariants(); final int s, tail; if ((s = size) == 0) return null; final Object[] elements = this.elements; @SuppressWarnings("unchecked") E e = (E) elements[tail = add(head, s - 1, elements.length)]; elements[tail] = null; size = s - 1; return e; } /** * @throws NoSuchElementException {@inheritDoc} */ public E getFirst() { // checkInvariants(); if (size == 0) throw new NoSuchElementException(); return elementAt(head); } /** * @throws NoSuchElementException {@inheritDoc} */ public E getLast() { // checkInvariants(); if (size == 0) throw new NoSuchElementException(); return elementAt(tail()); } public E peekFirst() { // checkInvariants(); return (size == 0) ? null : elementAt(head); } public E peekLast() { // checkInvariants(); return (size == 0) ? null : elementAt(tail()); } /** * Removes the first occurrence of the specified element in this * deque (when traversing the deque from head to tail). * If the deque does not contain the element, it is unchanged. * More formally, removes the first element {@code e} such that * {@code o.equals(e)} (if such an element exists). * Returns {@code true} if this deque contained the specified element * (or equivalently, if this deque changed as a result of the call). * * @param o element to be removed from this deque, if present * @return {@code true} if the deque contained the specified element */ public boolean removeFirstOccurrence(Object o) { if (o != null) { final Object[] elements = this.elements; final int capacity = elements.length; int from, end, to, leftover; leftover = (end = (from = head) + size) - (to = (capacity - end >= 0) ? end : capacity); for (;; from = 0, to = leftover, leftover = 0) { for (int i = from; i < to; i++) if (o.equals(elements[i])) { delete(i); return true; } if (leftover == 0) break; } } return false; } /** * Removes the last occurrence of the specified element in this * deque (when traversing the deque from head to tail). * If the deque does not contain the element, it is unchanged. * More formally, removes the last element {@code e} such that * {@code o.equals(e)} (if such an element exists). * Returns {@code true} if this deque contained the specified element * (or equivalently, if this deque changed as a result of the call). * * @param o element to be removed from this deque, if present * @return {@code true} if the deque contained the specified element */ public boolean removeLastOccurrence(Object o) { if (o != null) { final Object[] elements = this.elements; final int capacity = elements.length; int from, to, end, leftover; leftover = (to = ((end = (from = tail()) - size) >= -1) ? end : -1) - end; for (;; from = capacity - 1, to = capacity - 1 - leftover, leftover = 0) { for (int i = from; i > to; i--) if (o.equals(elements[i])) { delete(i); return true; } if (leftover == 0) break; } } return false; } // *** Queue methods *** /** * Inserts the specified element at the end of this deque. * *

This method is equivalent to {@link #addLast}. * * @param e the element to add * @return {@code true} (as specified by {@link Collection#add}) * @throws NullPointerException if the specified element is null */ public boolean add(E e) { addLast(e); return true; } /** * Inserts the specified element at the end of this deque. * *

This method is equivalent to {@link #offerLast}. * * @param e the element to add * @return {@code true} (as specified by {@link Queue#offer}) * @throws NullPointerException if the specified element is null */ public boolean offer(E e) { return offerLast(e); } /** * Retrieves and removes the head of the queue represented by this deque. * * This method differs from {@link #poll poll} only in that it throws an * exception if this deque is empty. * *

This method is equivalent to {@link #removeFirst}. * * @return the head of the queue represented by this deque * @throws NoSuchElementException {@inheritDoc} */ public E remove() { return removeFirst(); } /** * Retrieves and removes the head of the queue represented by this deque * (in other words, the first element of this deque), or returns * {@code null} if this deque is empty. * *

This method is equivalent to {@link #pollFirst}. * * @return the head of the queue represented by this deque, or * {@code null} if this deque is empty */ public E poll() { return pollFirst(); } /** * Retrieves, but does not remove, the head of the queue represented by * this deque. This method differs from {@link #peek peek} only in * that it throws an exception if this deque is empty. * *

This method is equivalent to {@link #getFirst}. * * @return the head of the queue represented by this deque * @throws NoSuchElementException {@inheritDoc} */ public E element() { return getFirst(); } /** * Retrieves, but does not remove, the head of the queue represented by * this deque, or returns {@code null} if this deque is empty. * *

This method is equivalent to {@link #peekFirst}. * * @return the head of the queue represented by this deque, or * {@code null} if this deque is empty */ public E peek() { return peekFirst(); } // *** Stack methods *** /** * Pushes an element onto the stack represented by this deque. In other * words, inserts the element at the front of this deque. * *

This method is equivalent to {@link #addFirst}. * * @param e the element to push * @throws NullPointerException if the specified element is null */ public void push(E e) { addFirst(e); } /** * Pops an element from the stack represented by this deque. In other * words, removes and returns the first element of this deque. * *

This method is equivalent to {@link #removeFirst()}. * * @return the element at the front of this deque (which is the top * of the stack represented by this deque) * @throws NoSuchElementException {@inheritDoc} */ public E pop() { return removeFirst(); } /** * Removes the element at the specified position in the elements array. * This can result in forward or backwards motion of array elements. * We optimize for least element motion. * *

This method is called delete rather than remove to emphasize * that its semantics differ from those of {@link List#remove(int)}. * * @return true if elements moved backwards */ boolean delete(int i) { // checkInvariants(); final Object[] elements = this.elements; final int capacity = elements.length; final int h = head; int front; // number of elements before to-be-deleted elt if ((front = i - h) < 0) front += capacity; final int back = size - front - 1; // number of elements after if (front < back) { // move front elements forwards if (h <= i) { System.arraycopy(elements, h, elements, h + 1, front); } else { // Wrap around System.arraycopy(elements, 0, elements, 1, i); elements[0] = elements[capacity - 1]; System.arraycopy(elements, h, elements, h + 1, front - (i + 1)); } elements[h] = null; if ((head = (h + 1)) >= capacity) head = 0; size--; // checkInvariants(); return false; } else { // move back elements backwards int tail = tail(); if (i <= tail) { System.arraycopy(elements, i + 1, elements, i, back); } else { // Wrap around int firstLeg = capacity - (i + 1); System.arraycopy(elements, i + 1, elements, i, firstLeg); elements[capacity - 1] = elements[0]; System.arraycopy(elements, 1, elements, 0, back - firstLeg - 1); } elements[tail] = null; size--; // checkInvariants(); return true; } } // *** Collection Methods *** /** * Returns the number of elements in this deque. * * @return the number of elements in this deque */ public int size() { return size; } /** * Returns {@code true} if this deque contains no elements. * * @return {@code true} if this deque contains no elements */ public boolean isEmpty() { return size == 0; } /** * Returns an iterator over the elements in this deque. The elements * will be ordered from first (head) to last (tail). This is the same * order that elements would be dequeued (via successive calls to * {@link #remove} or popped (via successive calls to {@link #pop}). * * @return an iterator over the elements in this deque */ public Iterator iterator() { return new DeqIterator(); } public Iterator descendingIterator() { return new DescendingIterator(); } private class DeqIterator implements Iterator { /** Index of element to be returned by subsequent call to next. */ int cursor; /** Number of elements yet to be returned. */ int remaining = size; /** * Index of element returned by most recent call to next. * Reset to -1 if element is deleted by a call to remove. */ int lastRet = -1; DeqIterator() { cursor = head; } public final boolean hasNext() { return remaining > 0; } public E next() { if (remaining == 0) throw new NoSuchElementException(); final Object[] elements = ArrayDeque.this.elements; E e = checkedElementAt(elements, cursor); lastRet = cursor; if (++cursor >= elements.length) cursor = 0; remaining--; return e; } void postDelete(boolean leftShifted) { if (leftShifted) if (--cursor < 0) cursor = elements.length - 1; } public final void remove() { if (lastRet < 0) throw new IllegalStateException(); postDelete(delete(lastRet)); lastRet = -1; } public void forEachRemaining(Consumer action) { int k; if ((k = remaining) > 0) { remaining = 0; ArrayDeque.forEachRemaining(action, elements, cursor, k); if ((lastRet = cursor + k - 1) >= elements.length) lastRet -= elements.length; } } } private class DescendingIterator extends DeqIterator { DescendingIterator() { cursor = tail(); } public final E next() { if (remaining == 0) throw new NoSuchElementException(); final Object[] elements = ArrayDeque.this.elements; E e = checkedElementAt(elements, cursor); lastRet = cursor; if (--cursor < 0) cursor = elements.length - 1; remaining--; return e; } void postDelete(boolean leftShifted) { if (!leftShifted) if (++cursor >= elements.length) cursor = 0; } public final void forEachRemaining(Consumer action) { int k; if ((k = remaining) > 0) { remaining = 0; forEachRemainingDescending(action, elements, cursor, k); if ((lastRet = cursor - (k - 1)) < 0) lastRet += elements.length; } } } /** * Creates a late-binding * and fail-fast {@link Spliterator} over the elements in this * deque. * *

The {@code Spliterator} reports {@link Spliterator#SIZED}, * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and * {@link Spliterator#NONNULL}. Overriding implementations should document * the reporting of additional characteristic values. * * @return a {@code Spliterator} over the elements in this deque * @since 1.8 */ public Spliterator spliterator() { return new ArrayDequeSpliterator(); } final class ArrayDequeSpliterator implements Spliterator { private int cursor; private int remaining; // -1 until late-binding first use /** Constructs late-binding spliterator over all elements. */ ArrayDequeSpliterator() { this.remaining = -1; } /** Constructs spliterator over the given slice. */ ArrayDequeSpliterator(int cursor, int count) { this.cursor = cursor; this.remaining = count; } /** Ensures late-binding initialization; then returns remaining. */ private int remaining() { if (remaining < 0) { cursor = head; remaining = size; } return remaining; } public ArrayDequeSpliterator trySplit() { final int mid; if ((mid = remaining() >> 1) > 0) { int oldCursor = cursor; cursor = add(cursor, mid, elements.length); remaining -= mid; return new ArrayDequeSpliterator(oldCursor, mid); } return null; } public void forEachRemaining(Consumer action) { int k = remaining(); // side effect! remaining = 0; ArrayDeque.forEachRemaining(action, elements, cursor, k); } public boolean tryAdvance(Consumer action) { Objects.requireNonNull(action); if (remaining() == 0) return false; action.accept(checkedElementAt(elements, cursor)); if (++cursor >= elements.length) cursor = 0; remaining--; return true; } public long estimateSize() { return remaining(); } public int characteristics() { return Spliterator.NONNULL | Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; } } @SuppressWarnings("unchecked") public void forEach(Consumer action) { Objects.requireNonNull(action); final Object[] elements = this.elements; final int capacity = elements.length; int from, end, to, leftover; leftover = (end = (from = head) + size) - (to = (capacity - end >= 0) ? end : capacity); for (;; from = 0, to = leftover, leftover = 0) { for (int i = from; i < to; i++) action.accept((E) elements[i]); if (leftover == 0) break; } // checkInvariants(); } /** * A variant of forEach that also checks for concurrent * modification, for use in iterators. */ static void forEachRemaining( Consumer action, Object[] elements, int from, int size) { Objects.requireNonNull(action); final int capacity = elements.length; int end, to, leftover; leftover = (end = from + size) - (to = (capacity - end >= 0) ? end : capacity); for (;; from = 0, to = leftover, leftover = 0) { for (int i = from; i < to; i++) { @SuppressWarnings("unchecked") E e = (E) elements[i]; if (e == null) throw new ConcurrentModificationException(); action.accept(e); } if (leftover == 0) break; } } static void forEachRemainingDescending( Consumer action, Object[] elements, int from, int size) { Objects.requireNonNull(action); final int capacity = elements.length; int end, to, leftover; leftover = (to = ((end = from - size) >= -1) ? end : -1) - end; for (;; from = capacity - 1, to = capacity - 1 - leftover, leftover = 0) { for (int i = from; i > to; i--) { @SuppressWarnings("unchecked") E e = (E) elements[i]; if (e == null) throw new ConcurrentModificationException(); action.accept(e); } if (leftover == 0) break; } } /** * Replaces each element of this deque with the result of applying the * operator to that element, as specified by {@link List#replaceAll}. * * @param operator the operator to apply to each element * @since TBD */ /* public */ void replaceAll(UnaryOperator operator) { Objects.requireNonNull(operator); final Object[] elements = this.elements; final int capacity = elements.length; int from, end, to, leftover; leftover = (end = (from = head) + size) - (to = (capacity - end >= 0) ? end : capacity); for (;; from = 0, to = leftover, leftover = 0) { for (int i = from; i < to; i++) elements[i] = operator.apply(elementAt(i)); if (leftover == 0) break; } // checkInvariants(); } /** * @throws NullPointerException {@inheritDoc} */ public boolean removeIf(Predicate filter) { Objects.requireNonNull(filter); return bulkRemove(filter); } /** * @throws NullPointerException {@inheritDoc} */ public boolean removeAll(Collection c) { Objects.requireNonNull(c); return bulkRemove(e -> c.contains(e)); } /** * @throws NullPointerException {@inheritDoc} */ public boolean retainAll(Collection c) { Objects.requireNonNull(c); return bulkRemove(e -> !c.contains(e)); } /** Implementation of bulk remove methods. */ private boolean bulkRemove(Predicate filter) { // checkInvariants(); final Object[] elements = this.elements; final int capacity = elements.length; int i = head, j = i, remaining = size, deleted = 0; try { for (; remaining > 0; remaining--) { @SuppressWarnings("unchecked") E e = (E) elements[i]; if (filter.test(e)) deleted++; else { if (j != i) elements[j] = e; if (++j >= capacity) j = 0; } if (++i >= capacity) i = 0; } return deleted > 0; } catch (Throwable ex) { if (deleted > 0) for (; remaining > 0; remaining--) { elements[j] = elements[i]; if (++i >= capacity) i = 0; if (++j >= capacity) j = 0; } throw ex; } finally { size -= deleted; clearSlice(elements, j, deleted); // checkInvariants(); } } /** * Returns {@code true} if this deque contains the specified element. * More formally, returns {@code true} if and only if this deque contains * at least one element {@code e} such that {@code o.equals(e)}. * * @param o object to be checked for containment in this deque * @return {@code true} if this deque contains the specified element */ public boolean contains(Object o) { if (o != null) { final Object[] elements = this.elements; final int capacity = elements.length; int from, end, to, leftover; leftover = (end = (from = head) + size) - (to = (capacity - end >= 0) ? end : capacity); for (;; from = 0, to = leftover, leftover = 0) { for (int i = from; i < to; i++) if (o.equals(elements[i])) return true; if (leftover == 0) break; } } return false; } /** * Removes a single instance of the specified element from this deque. * If the deque does not contain the element, it is unchanged. * More formally, removes the first element {@code e} such that * {@code o.equals(e)} (if such an element exists). * Returns {@code true} if this deque contained the specified element * (or equivalently, if this deque changed as a result of the call). * *

This method is equivalent to {@link #removeFirstOccurrence(Object)}. * * @param o element to be removed from this deque, if present * @return {@code true} if this deque contained the specified element */ public boolean remove(Object o) { return removeFirstOccurrence(o); } /** * Removes all of the elements from this deque. * The deque will be empty after this call returns. */ public void clear() { clearSlice(elements, head, size); size = head = 0; // checkInvariants(); } /** * Nulls out size elements, starting at head. */ private static void clearSlice(Object[] elements, int head, int size) { final int capacity = elements.length, end = head + size; final int leg = (capacity - end >= 0) ? end : capacity; Arrays.fill(elements, head, leg, null); if (leg != end) Arrays.fill(elements, 0, end - capacity, null); } /** * Returns an array containing all of the elements in this deque * in proper sequence (from first to last element). * *

The returned array will be "safe" in that no references to it are * maintained by this deque. (In other words, this method must allocate * a new array). The caller is thus free to modify the returned array. * *

This method acts as bridge between array-based and collection-based * APIs. * * @return an array containing all of the elements in this deque */ public Object[] toArray() { return toArray(Object[].class); } private T[] toArray(Class klazz) { final Object[] elements = this.elements; final int capacity = elements.length; final int head = this.head, end = head + size; final T[] a; if (end >= 0) { a = Arrays.copyOfRange(elements, head, end, klazz); } else { // integer overflow! a = Arrays.copyOfRange(elements, 0, size, klazz); System.arraycopy(elements, head, a, 0, capacity - head); } if (end - capacity > 0) System.arraycopy(elements, 0, a, capacity - head, end - capacity); return a; } /** * Returns an array containing all of the elements in this deque in * proper sequence (from first to last element); the runtime type of the * returned array is that of the specified array. If the deque fits in * the specified array, it is returned therein. Otherwise, a new array * is allocated with the runtime type of the specified array and the * size of this deque. * *

If this deque fits in the specified array with room to spare * (i.e., the array has more elements than this deque), the element in * the array immediately following the end of the deque is set to * {@code null}. * *

Like the {@link #toArray()} method, this method acts as bridge between * array-based and collection-based APIs. Further, this method allows * precise control over the runtime type of the output array, and may, * under certain circumstances, be used to save allocation costs. * *

Suppose {@code x} is a deque known to contain only strings. * The following code can be used to dump the deque into a newly * allocated array of {@code String}: * *

 {@code String[] y = x.toArray(new String[0]);}
* * Note that {@code toArray(new Object[0])} is identical in function to * {@code toArray()}. * * @param a the array into which the elements of the deque are to * be stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose * @return an array containing all of the elements in this deque * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in * this deque * @throws NullPointerException if the specified array is null */ @SuppressWarnings("unchecked") public T[] toArray(T[] a) { final int size = this.size; if (size > a.length) return toArray((Class) a.getClass()); final Object[] elements = this.elements; final int capacity = elements.length; final int head = this.head, end = head + size; final int front = (capacity - end >= 0) ? size : capacity - head; System.arraycopy(elements, head, a, 0, front); if (front != size) System.arraycopy(elements, 0, a, capacity - head, end - capacity); if (size < a.length) a[size] = null; return a; } // *** Object methods *** /** * Returns a copy of this deque. * * @return a copy of this deque */ public ArrayDeque clone() { try { @SuppressWarnings("unchecked") ArrayDeque result = (ArrayDeque) super.clone(); result.elements = Arrays.copyOf(elements, elements.length); return result; } catch (CloneNotSupportedException e) { throw new AssertionError(); } } private static final long serialVersionUID = 2340985798034038923L; /** * Saves this deque to a stream (that is, serializes it). * * @param s the stream * @throws java.io.IOException if an I/O error occurs * @serialData The current size ({@code int}) of the deque, * followed by all of its elements (each an object reference) in * first-to-last order. */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { s.defaultWriteObject(); // Write out size s.writeInt(size); // Write out elements in order. final Object[] elements = this.elements; final int capacity = elements.length; int from, end, to, leftover; leftover = (end = (from = head) + size) - (to = (capacity - end >= 0) ? end : capacity); for (;; from = 0, to = leftover, leftover = 0) { for (int i = from; i < to; i++) s.writeObject(elements[i]); if (leftover == 0) break; } } /** * Reconstitutes this deque from a stream (that is, deserializes it). * @param s the stream * @throws ClassNotFoundException if the class of a serialized object * could not be found * @throws java.io.IOException if an I/O error occurs */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); // Read in size and allocate array elements = new Object[size = s.readInt()]; // Read in all elements in the proper order. for (int i = 0; i < size; i++) elements[i] = s.readObject(); } /** debugging */ void checkInvariants() { try { int capacity = elements.length; // assert size >= 0 && size <= capacity; // assert head >= 0; // assert capacity == 0 || head < capacity; // assert size == 0 || elements[head] != null; // assert size == 0 || elements[tail()] != null; // assert size == capacity || elements[dec(head, capacity)] == null; // assert size == capacity || elements[inc(tail(), capacity)] == null; } catch (Throwable t) { System.err.printf("head=%d size=%d capacity=%d%n", head, size, elements.length); System.err.printf("elements=%s%n", Arrays.toString(elements)); throw t; } } }