ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk8/java/util/Vector.java
Revision: 1.1
Committed: Mon May 7 23:38:48 2018 UTC (5 years, 11 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Log Message:
minimal backport to fix testReplaceAllIsNotStructuralModification failure

File Contents

# Content
1 /*
2 * Copyright (c) 1994, 2018, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.io.IOException;
29 import java.io.ObjectInputStream;
30 import java.io.StreamCorruptedException;
31 import java.util.function.Consumer;
32 import java.util.function.Predicate;
33 import java.util.function.UnaryOperator;
34
35 /**
36 * The {@code Vector} class implements a growable array of
37 * objects. Like an array, it contains components that can be
38 * accessed using an integer index. However, the size of a
39 * {@code Vector} can grow or shrink as needed to accommodate
40 * adding and removing items after the {@code Vector} has been created.
41 *
42 * <p>Each vector tries to optimize storage management by maintaining a
43 * {@code capacity} and a {@code capacityIncrement}. The
44 * {@code capacity} is always at least as large as the vector
45 * size; it is usually larger because as components are added to the
46 * vector, the vector's storage increases in chunks the size of
47 * {@code capacityIncrement}. An application can increase the
48 * capacity of a vector before inserting a large number of
49 * components; this reduces the amount of incremental reallocation.
50 *
51 * <p id="fail-fast">
52 * The iterators returned by this class's {@link #iterator() iterator} and
53 * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
54 * if the vector is structurally modified at any time after the iterator is
55 * created, in any way except through the iterator's own
56 * {@link ListIterator#remove() remove} or
57 * {@link ListIterator#add(Object) add} methods, the iterator will throw a
58 * {@link ConcurrentModificationException}. Thus, in the face of
59 * concurrent modification, the iterator fails quickly and cleanly, rather
60 * than risking arbitrary, non-deterministic behavior at an undetermined
61 * time in the future. The {@link Enumeration Enumerations} returned by
62 * the {@link #elements() elements} method are <em>not</em> fail-fast; if the
63 * Vector is structurally modified at any time after the enumeration is
64 * created then the results of enumerating are undefined.
65 *
66 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
67 * as it is, generally speaking, impossible to make any hard guarantees in the
68 * presence of unsynchronized concurrent modification. Fail-fast iterators
69 * throw {@code ConcurrentModificationException} on a best-effort basis.
70 * Therefore, it would be wrong to write a program that depended on this
71 * exception for its correctness: <i>the fail-fast behavior of iterators
72 * should be used only to detect bugs.</i>
73 *
74 * <p>As of the Java 2 platform v1.2, this class was retrofitted to
75 * implement the {@link List} interface, making it a member of the
76 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
77 * Java Collections Framework</a>. Unlike the new collection
78 * implementations, {@code Vector} is synchronized. If a thread-safe
79 * implementation is not needed, it is recommended to use {@link
80 * ArrayList} in place of {@code Vector}.
81 *
82 * @param <E> Type of component elements
83 *
84 * @author Lee Boynton
85 * @author Jonathan Payne
86 * @see Collection
87 * @see LinkedList
88 * @since 1.0
89 */
90 public class Vector<E>
91 extends AbstractList<E>
92 implements List<E>, RandomAccess, Cloneable, java.io.Serializable
93 {
94 /**
95 * The array buffer into which the components of the vector are
96 * stored. The capacity of the vector is the length of this array buffer,
97 * and is at least large enough to contain all the vector's elements.
98 *
99 * <p>Any array elements following the last element in the Vector are null.
100 *
101 * @serial
102 */
103 protected Object[] elementData;
104
105 /**
106 * The number of valid components in this {@code Vector} object.
107 * Components {@code elementData[0]} through
108 * {@code elementData[elementCount-1]} are the actual items.
109 *
110 * @serial
111 */
112 protected int elementCount;
113
114 /**
115 * The amount by which the capacity of the vector is automatically
116 * incremented when its size becomes greater than its capacity. If
117 * the capacity increment is less than or equal to zero, the capacity
118 * of the vector is doubled each time it needs to grow.
119 *
120 * @serial
121 */
122 protected int capacityIncrement;
123
124 /** use serialVersionUID from JDK 1.0.2 for interoperability */
125 private static final long serialVersionUID = -2767605614048989439L;
126
127 /**
128 * Constructs an empty vector with the specified initial capacity and
129 * capacity increment.
130 *
131 * @param initialCapacity the initial capacity of the vector
132 * @param capacityIncrement the amount by which the capacity is
133 * increased when the vector overflows
134 * @throws IllegalArgumentException if the specified initial capacity
135 * is negative
136 */
137 public Vector(int initialCapacity, int capacityIncrement) {
138 super();
139 if (initialCapacity < 0)
140 throw new IllegalArgumentException("Illegal Capacity: "+
141 initialCapacity);
142 this.elementData = new Object[initialCapacity];
143 this.capacityIncrement = capacityIncrement;
144 }
145
146 /**
147 * Constructs an empty vector with the specified initial capacity and
148 * with its capacity increment equal to zero.
149 *
150 * @param initialCapacity the initial capacity of the vector
151 * @throws IllegalArgumentException if the specified initial capacity
152 * is negative
153 */
154 public Vector(int initialCapacity) {
155 this(initialCapacity, 0);
156 }
157
158 /**
159 * Constructs an empty vector so that its internal data array
160 * has size {@code 10} and its standard capacity increment is
161 * zero.
162 */
163 public Vector() {
164 this(10);
165 }
166
167 /**
168 * Constructs a vector containing the elements of the specified
169 * collection, in the order they are returned by the collection's
170 * iterator.
171 *
172 * @param c the collection whose elements are to be placed into this
173 * vector
174 * @throws NullPointerException if the specified collection is null
175 * @since 1.2
176 */
177 public Vector(Collection<? extends E> c) {
178 elementData = c.toArray();
179 elementCount = elementData.length;
180 // defend against c.toArray (incorrectly) not returning Object[]
181 // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
182 if (elementData.getClass() != Object[].class)
183 elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
184 }
185
186 /**
187 * Copies the components of this vector into the specified array.
188 * The item at index {@code k} in this vector is copied into
189 * component {@code k} of {@code anArray}.
190 *
191 * @param anArray the array into which the components get copied
192 * @throws NullPointerException if the given array is null
193 * @throws IndexOutOfBoundsException if the specified array is not
194 * large enough to hold all the components of this vector
195 * @throws ArrayStoreException if a component of this vector is not of
196 * a runtime type that can be stored in the specified array
197 * @see #toArray(Object[])
198 */
199 public synchronized void copyInto(Object[] anArray) {
200 System.arraycopy(elementData, 0, anArray, 0, elementCount);
201 }
202
203 /**
204 * Trims the capacity of this vector to be the vector's current
205 * size. If the capacity of this vector is larger than its current
206 * size, then the capacity is changed to equal the size by replacing
207 * its internal data array, kept in the field {@code elementData},
208 * with a smaller one. An application can use this operation to
209 * minimize the storage of a vector.
210 */
211 public synchronized void trimToSize() {
212 modCount++;
213 int oldCapacity = elementData.length;
214 if (elementCount < oldCapacity) {
215 elementData = Arrays.copyOf(elementData, elementCount);
216 }
217 }
218
219 /**
220 * Increases the capacity of this vector, if necessary, to ensure
221 * that it can hold at least the number of components specified by
222 * the minimum capacity argument.
223 *
224 * <p>If the current capacity of this vector is less than
225 * {@code minCapacity}, then its capacity is increased by replacing its
226 * internal data array, kept in the field {@code elementData}, with a
227 * larger one. The size of the new data array will be the old size plus
228 * {@code capacityIncrement}, unless the value of
229 * {@code capacityIncrement} is less than or equal to zero, in which case
230 * the new capacity will be twice the old capacity; but if this new size
231 * is still smaller than {@code minCapacity}, then the new capacity will
232 * be {@code minCapacity}.
233 *
234 * @param minCapacity the desired minimum capacity
235 */
236 public synchronized void ensureCapacity(int minCapacity) {
237 if (minCapacity > 0) {
238 modCount++;
239 if (minCapacity > elementData.length)
240 grow(minCapacity);
241 }
242 }
243
244 /**
245 * The maximum size of array to allocate (unless necessary).
246 * Some VMs reserve some header words in an array.
247 * Attempts to allocate larger arrays may result in
248 * OutOfMemoryError: Requested array size exceeds VM limit
249 */
250 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
251
252 /**
253 * Increases the capacity to ensure that it can hold at least the
254 * number of elements specified by the minimum capacity argument.
255 *
256 * @param minCapacity the desired minimum capacity
257 * @throws OutOfMemoryError if minCapacity is less than zero
258 */
259 private Object[] grow(int minCapacity) {
260 return elementData = Arrays.copyOf(elementData,
261 newCapacity(minCapacity));
262 }
263
264 private Object[] grow() {
265 return grow(elementCount + 1);
266 }
267
268 /**
269 * Returns a capacity at least as large as the given minimum capacity.
270 * Will not return a capacity greater than MAX_ARRAY_SIZE unless
271 * the given minimum capacity is greater than MAX_ARRAY_SIZE.
272 *
273 * @param minCapacity the desired minimum capacity
274 * @throws OutOfMemoryError if minCapacity is less than zero
275 */
276 private int newCapacity(int minCapacity) {
277 // overflow-conscious code
278 int oldCapacity = elementData.length;
279 int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
280 capacityIncrement : oldCapacity);
281 if (newCapacity - minCapacity <= 0) {
282 if (minCapacity < 0) // overflow
283 throw new OutOfMemoryError();
284 return minCapacity;
285 }
286 return (newCapacity - MAX_ARRAY_SIZE <= 0)
287 ? newCapacity
288 : hugeCapacity(minCapacity);
289 }
290
291 private static int hugeCapacity(int minCapacity) {
292 if (minCapacity < 0) // overflow
293 throw new OutOfMemoryError();
294 return (minCapacity > MAX_ARRAY_SIZE) ?
295 Integer.MAX_VALUE :
296 MAX_ARRAY_SIZE;
297 }
298
299 /**
300 * Sets the size of this vector. If the new size is greater than the
301 * current size, new {@code null} items are added to the end of
302 * the vector. If the new size is less than the current size, all
303 * components at index {@code newSize} and greater are discarded.
304 *
305 * @param newSize the new size of this vector
306 * @throws ArrayIndexOutOfBoundsException if the new size is negative
307 */
308 public synchronized void setSize(int newSize) {
309 modCount++;
310 if (newSize > elementData.length)
311 grow(newSize);
312 final Object[] es = elementData;
313 for (int to = elementCount, i = newSize; i < to; i++)
314 es[i] = null;
315 elementCount = newSize;
316 }
317
318 /**
319 * Returns the current capacity of this vector.
320 *
321 * @return the current capacity (the length of its internal
322 * data array, kept in the field {@code elementData}
323 * of this vector)
324 */
325 public synchronized int capacity() {
326 return elementData.length;
327 }
328
329 /**
330 * Returns the number of components in this vector.
331 *
332 * @return the number of components in this vector
333 */
334 public synchronized int size() {
335 return elementCount;
336 }
337
338 /**
339 * Tests if this vector has no components.
340 *
341 * @return {@code true} if and only if this vector has
342 * no components, that is, its size is zero;
343 * {@code false} otherwise.
344 */
345 public synchronized boolean isEmpty() {
346 return elementCount == 0;
347 }
348
349 /**
350 * Returns an enumeration of the components of this vector. The
351 * returned {@code Enumeration} object will generate all items in
352 * this vector. The first item generated is the item at index {@code 0},
353 * then the item at index {@code 1}, and so on. If the vector is
354 * structurally modified while enumerating over the elements then the
355 * results of enumerating are undefined.
356 *
357 * @return an enumeration of the components of this vector
358 * @see Iterator
359 */
360 public Enumeration<E> elements() {
361 return new Enumeration<E>() {
362 int count = 0;
363
364 public boolean hasMoreElements() {
365 return count < elementCount;
366 }
367
368 public E nextElement() {
369 synchronized (Vector.this) {
370 if (count < elementCount) {
371 return elementData(count++);
372 }
373 }
374 throw new NoSuchElementException("Vector Enumeration");
375 }
376 };
377 }
378
379 /**
380 * Returns {@code true} if this vector contains the specified element.
381 * More formally, returns {@code true} if and only if this vector
382 * contains at least one element {@code e} such that
383 * {@code Objects.equals(o, e)}.
384 *
385 * @param o element whose presence in this vector is to be tested
386 * @return {@code true} if this vector contains the specified element
387 */
388 public boolean contains(Object o) {
389 return indexOf(o, 0) >= 0;
390 }
391
392 /**
393 * Returns the index of the first occurrence of the specified element
394 * in this vector, or -1 if this vector does not contain the element.
395 * More formally, returns the lowest index {@code i} such that
396 * {@code Objects.equals(o, get(i))},
397 * or -1 if there is no such index.
398 *
399 * @param o element to search for
400 * @return the index of the first occurrence of the specified element in
401 * this vector, or -1 if this vector does not contain the element
402 */
403 public int indexOf(Object o) {
404 return indexOf(o, 0);
405 }
406
407 /**
408 * Returns the index of the first occurrence of the specified element in
409 * this vector, searching forwards from {@code index}, or returns -1 if
410 * the element is not found.
411 * More formally, returns the lowest index {@code i} such that
412 * {@code (i >= index && Objects.equals(o, get(i)))},
413 * or -1 if there is no such index.
414 *
415 * @param o element to search for
416 * @param index index to start searching from
417 * @return the index of the first occurrence of the element in
418 * this vector at position {@code index} or later in the vector;
419 * {@code -1} if the element is not found.
420 * @throws IndexOutOfBoundsException if the specified index is negative
421 * @see Object#equals(Object)
422 */
423 public synchronized int indexOf(Object o, int index) {
424 if (o == null) {
425 for (int i = index ; i < elementCount ; i++)
426 if (elementData[i]==null)
427 return i;
428 } else {
429 for (int i = index ; i < elementCount ; i++)
430 if (o.equals(elementData[i]))
431 return i;
432 }
433 return -1;
434 }
435
436 /**
437 * Returns the index of the last occurrence of the specified element
438 * in this vector, or -1 if this vector does not contain the element.
439 * More formally, returns the highest index {@code i} such that
440 * {@code Objects.equals(o, get(i))},
441 * or -1 if there is no such index.
442 *
443 * @param o element to search for
444 * @return the index of the last occurrence of the specified element in
445 * this vector, or -1 if this vector does not contain the element
446 */
447 public synchronized int lastIndexOf(Object o) {
448 return lastIndexOf(o, elementCount-1);
449 }
450
451 /**
452 * Returns the index of the last occurrence of the specified element in
453 * this vector, searching backwards from {@code index}, or returns -1 if
454 * the element is not found.
455 * More formally, returns the highest index {@code i} such that
456 * {@code (i <= index && Objects.equals(o, get(i)))},
457 * or -1 if there is no such index.
458 *
459 * @param o element to search for
460 * @param index index to start searching backwards from
461 * @return the index of the last occurrence of the element at position
462 * less than or equal to {@code index} in this vector;
463 * -1 if the element is not found.
464 * @throws IndexOutOfBoundsException if the specified index is greater
465 * than or equal to the current size of this vector
466 */
467 public synchronized int lastIndexOf(Object o, int index) {
468 if (index >= elementCount)
469 throw new IndexOutOfBoundsException(index + " >= "+ elementCount);
470
471 if (o == null) {
472 for (int i = index; i >= 0; i--)
473 if (elementData[i]==null)
474 return i;
475 } else {
476 for (int i = index; i >= 0; i--)
477 if (o.equals(elementData[i]))
478 return i;
479 }
480 return -1;
481 }
482
483 /**
484 * Returns the component at the specified index.
485 *
486 * <p>This method is identical in functionality to the {@link #get(int)}
487 * method (which is part of the {@link List} interface).
488 *
489 * @param index an index into this vector
490 * @return the component at the specified index
491 * @throws ArrayIndexOutOfBoundsException if the index is out of range
492 * ({@code index < 0 || index >= size()})
493 */
494 public synchronized E elementAt(int index) {
495 if (index >= elementCount) {
496 throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
497 }
498
499 return elementData(index);
500 }
501
502 /**
503 * Returns the first component (the item at index {@code 0}) of
504 * this vector.
505 *
506 * @return the first component of this vector
507 * @throws NoSuchElementException if this vector has no components
508 */
509 public synchronized E firstElement() {
510 if (elementCount == 0) {
511 throw new NoSuchElementException();
512 }
513 return elementData(0);
514 }
515
516 /**
517 * Returns the last component of the vector.
518 *
519 * @return the last component of the vector, i.e., the component at index
520 * {@code size() - 1}
521 * @throws NoSuchElementException if this vector is empty
522 */
523 public synchronized E lastElement() {
524 if (elementCount == 0) {
525 throw new NoSuchElementException();
526 }
527 return elementData(elementCount - 1);
528 }
529
530 /**
531 * Sets the component at the specified {@code index} of this
532 * vector to be the specified object. The previous component at that
533 * position is discarded.
534 *
535 * <p>The index must be a value greater than or equal to {@code 0}
536 * and less than the current size of the vector.
537 *
538 * <p>This method is identical in functionality to the
539 * {@link #set(int, Object) set(int, E)}
540 * method (which is part of the {@link List} interface). Note that the
541 * {@code set} method reverses the order of the parameters, to more closely
542 * match array usage. Note also that the {@code set} method returns the
543 * old value that was stored at the specified position.
544 *
545 * @param obj what the component is to be set to
546 * @param index the specified index
547 * @throws ArrayIndexOutOfBoundsException if the index is out of range
548 * ({@code index < 0 || index >= size()})
549 */
550 public synchronized void setElementAt(E obj, int index) {
551 if (index >= elementCount) {
552 throw new ArrayIndexOutOfBoundsException(index + " >= " +
553 elementCount);
554 }
555 elementData[index] = obj;
556 }
557
558 /**
559 * Deletes the component at the specified index. Each component in
560 * this vector with an index greater or equal to the specified
561 * {@code index} is shifted downward to have an index one
562 * smaller than the value it had previously. The size of this vector
563 * is decreased by {@code 1}.
564 *
565 * <p>The index must be a value greater than or equal to {@code 0}
566 * and less than the current size of the vector.
567 *
568 * <p>This method is identical in functionality to the {@link #remove(int)}
569 * method (which is part of the {@link List} interface). Note that the
570 * {@code remove} method returns the old value that was stored at the
571 * specified position.
572 *
573 * @param index the index of the object to remove
574 * @throws ArrayIndexOutOfBoundsException if the index is out of range
575 * ({@code index < 0 || index >= size()})
576 */
577 public synchronized void removeElementAt(int index) {
578 if (index >= elementCount) {
579 throw new ArrayIndexOutOfBoundsException(index + " >= " +
580 elementCount);
581 }
582 else if (index < 0) {
583 throw new ArrayIndexOutOfBoundsException(index);
584 }
585 int j = elementCount - index - 1;
586 if (j > 0) {
587 System.arraycopy(elementData, index + 1, elementData, index, j);
588 }
589 modCount++;
590 elementCount--;
591 elementData[elementCount] = null; /* to let gc do its work */
592 // checkInvariants();
593 }
594
595 /**
596 * Inserts the specified object as a component in this vector at the
597 * specified {@code index}. Each component in this vector with
598 * an index greater or equal to the specified {@code index} is
599 * shifted upward to have an index one greater than the value it had
600 * previously.
601 *
602 * <p>The index must be a value greater than or equal to {@code 0}
603 * and less than or equal to the current size of the vector. (If the
604 * index is equal to the current size of the vector, the new element
605 * is appended to the Vector.)
606 *
607 * <p>This method is identical in functionality to the
608 * {@link #add(int, Object) add(int, E)}
609 * method (which is part of the {@link List} interface). Note that the
610 * {@code add} method reverses the order of the parameters, to more closely
611 * match array usage.
612 *
613 * @param obj the component to insert
614 * @param index where to insert the new component
615 * @throws ArrayIndexOutOfBoundsException if the index is out of range
616 * ({@code index < 0 || index > size()})
617 */
618 public synchronized void insertElementAt(E obj, int index) {
619 if (index > elementCount) {
620 throw new ArrayIndexOutOfBoundsException(index
621 + " > " + elementCount);
622 }
623 modCount++;
624 final int s = elementCount;
625 Object[] elementData = this.elementData;
626 if (s == elementData.length)
627 elementData = grow();
628 System.arraycopy(elementData, index,
629 elementData, index + 1,
630 s - index);
631 elementData[index] = obj;
632 elementCount = s + 1;
633 }
634
635 /**
636 * Adds the specified component to the end of this vector,
637 * increasing its size by one. The capacity of this vector is
638 * increased if its size becomes greater than its capacity.
639 *
640 * <p>This method is identical in functionality to the
641 * {@link #add(Object) add(E)}
642 * method (which is part of the {@link List} interface).
643 *
644 * @param obj the component to be added
645 */
646 public synchronized void addElement(E obj) {
647 modCount++;
648 add(obj, elementData, elementCount);
649 }
650
651 /**
652 * Removes the first (lowest-indexed) occurrence of the argument
653 * from this vector. If the object is found in this vector, each
654 * component in the vector with an index greater or equal to the
655 * object's index is shifted downward to have an index one smaller
656 * than the value it had previously.
657 *
658 * <p>This method is identical in functionality to the
659 * {@link #remove(Object)} method (which is part of the
660 * {@link List} interface).
661 *
662 * @param obj the component to be removed
663 * @return {@code true} if the argument was a component of this
664 * vector; {@code false} otherwise.
665 */
666 public synchronized boolean removeElement(Object obj) {
667 modCount++;
668 int i = indexOf(obj);
669 if (i >= 0) {
670 removeElementAt(i);
671 return true;
672 }
673 return false;
674 }
675
676 /**
677 * Removes all components from this vector and sets its size to zero.
678 *
679 * <p>This method is identical in functionality to the {@link #clear}
680 * method (which is part of the {@link List} interface).
681 */
682 public synchronized void removeAllElements() {
683 final Object[] es = elementData;
684 for (int to = elementCount, i = elementCount = 0; i < to; i++)
685 es[i] = null;
686 modCount++;
687 }
688
689 /**
690 * Returns a clone of this vector. The copy will contain a
691 * reference to a clone of the internal data array, not a reference
692 * to the original internal data array of this {@code Vector} object.
693 *
694 * @return a clone of this vector
695 */
696 public synchronized Object clone() {
697 try {
698 @SuppressWarnings("unchecked")
699 Vector<E> v = (Vector<E>) super.clone();
700 v.elementData = Arrays.copyOf(elementData, elementCount);
701 v.modCount = 0;
702 return v;
703 } catch (CloneNotSupportedException e) {
704 // this shouldn't happen, since we are Cloneable
705 throw new InternalError(e);
706 }
707 }
708
709 /**
710 * Returns an array containing all of the elements in this Vector
711 * in the correct order.
712 *
713 * @since 1.2
714 */
715 public synchronized Object[] toArray() {
716 return Arrays.copyOf(elementData, elementCount);
717 }
718
719 /**
720 * Returns an array containing all of the elements in this Vector in the
721 * correct order; the runtime type of the returned array is that of the
722 * specified array. If the Vector fits in the specified array, it is
723 * returned therein. Otherwise, a new array is allocated with the runtime
724 * type of the specified array and the size of this Vector.
725 *
726 * <p>If the Vector fits in the specified array with room to spare
727 * (i.e., the array has more elements than the Vector),
728 * the element in the array immediately following the end of the
729 * Vector is set to null. (This is useful in determining the length
730 * of the Vector <em>only</em> if the caller knows that the Vector
731 * does not contain any null elements.)
732 *
733 * @param <T> type of array elements. The same type as {@code <E>} or a
734 * supertype of {@code <E>}.
735 * @param a the array into which the elements of the Vector are to
736 * be stored, if it is big enough; otherwise, a new array of the
737 * same runtime type is allocated for this purpose.
738 * @return an array containing the elements of the Vector
739 * @throws ArrayStoreException if the runtime type of a, {@code <T>}, is not
740 * a supertype of the runtime type, {@code <E>}, of every element in this
741 * Vector
742 * @throws NullPointerException if the given array is null
743 * @since 1.2
744 */
745 @SuppressWarnings("unchecked")
746 public synchronized <T> T[] toArray(T[] a) {
747 if (a.length < elementCount)
748 return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());
749
750 System.arraycopy(elementData, 0, a, 0, elementCount);
751
752 if (a.length > elementCount)
753 a[elementCount] = null;
754
755 return a;
756 }
757
758 // Positional Access Operations
759
760 @SuppressWarnings("unchecked")
761 E elementData(int index) {
762 return (E) elementData[index];
763 }
764
765 @SuppressWarnings("unchecked")
766 static <E> E elementAt(Object[] es, int index) {
767 return (E) es[index];
768 }
769
770 /**
771 * Returns the element at the specified position in this Vector.
772 *
773 * @param index index of the element to return
774 * @return object at the specified index
775 * @throws ArrayIndexOutOfBoundsException if the index is out of range
776 * ({@code index < 0 || index >= size()})
777 * @since 1.2
778 */
779 public synchronized E get(int index) {
780 if (index >= elementCount)
781 throw new ArrayIndexOutOfBoundsException(index);
782
783 return elementData(index);
784 }
785
786 /**
787 * Replaces the element at the specified position in this Vector with the
788 * specified element.
789 *
790 * @param index index of the element to replace
791 * @param element element to be stored at the specified position
792 * @return the element previously at the specified position
793 * @throws ArrayIndexOutOfBoundsException if the index is out of range
794 * ({@code index < 0 || index >= size()})
795 * @since 1.2
796 */
797 public synchronized E set(int index, E element) {
798 if (index >= elementCount)
799 throw new ArrayIndexOutOfBoundsException(index);
800
801 E oldValue = elementData(index);
802 elementData[index] = element;
803 return oldValue;
804 }
805
806 /**
807 * This helper method split out from add(E) to keep method
808 * bytecode size under 35 (the -XX:MaxInlineSize default value),
809 * which helps when add(E) is called in a C1-compiled loop.
810 */
811 private void add(E e, Object[] elementData, int s) {
812 if (s == elementData.length)
813 elementData = grow();
814 elementData[s] = e;
815 elementCount = s + 1;
816 // checkInvariants();
817 }
818
819 /**
820 * Appends the specified element to the end of this Vector.
821 *
822 * @param e element to be appended to this Vector
823 * @return {@code true} (as specified by {@link Collection#add})
824 * @since 1.2
825 */
826 public synchronized boolean add(E e) {
827 modCount++;
828 add(e, elementData, elementCount);
829 return true;
830 }
831
832 /**
833 * Removes the first occurrence of the specified element in this Vector
834 * If the Vector does not contain the element, it is unchanged. More
835 * formally, removes the element with the lowest index i such that
836 * {@code Objects.equals(o, get(i))} (if such
837 * an element exists).
838 *
839 * @param o element to be removed from this Vector, if present
840 * @return true if the Vector contained the specified element
841 * @since 1.2
842 */
843 public boolean remove(Object o) {
844 return removeElement(o);
845 }
846
847 /**
848 * Inserts the specified element at the specified position in this Vector.
849 * Shifts the element currently at that position (if any) and any
850 * subsequent elements to the right (adds one to their indices).
851 *
852 * @param index index at which the specified element is to be inserted
853 * @param element element to be inserted
854 * @throws ArrayIndexOutOfBoundsException if the index is out of range
855 * ({@code index < 0 || index > size()})
856 * @since 1.2
857 */
858 public void add(int index, E element) {
859 insertElementAt(element, index);
860 }
861
862 /**
863 * Removes the element at the specified position in this Vector.
864 * Shifts any subsequent elements to the left (subtracts one from their
865 * indices). Returns the element that was removed from the Vector.
866 *
867 * @param index the index of the element to be removed
868 * @return element that was removed
869 * @throws ArrayIndexOutOfBoundsException if the index is out of range
870 * ({@code index < 0 || index >= size()})
871 * @since 1.2
872 */
873 public synchronized E remove(int index) {
874 modCount++;
875 if (index >= elementCount)
876 throw new ArrayIndexOutOfBoundsException(index);
877 E oldValue = elementData(index);
878
879 int numMoved = elementCount - index - 1;
880 if (numMoved > 0)
881 System.arraycopy(elementData, index+1, elementData, index,
882 numMoved);
883 elementData[--elementCount] = null; // Let gc do its work
884
885 // checkInvariants();
886 return oldValue;
887 }
888
889 /**
890 * Removes all of the elements from this Vector. The Vector will
891 * be empty after this call returns (unless it throws an exception).
892 *
893 * @since 1.2
894 */
895 public void clear() {
896 removeAllElements();
897 }
898
899 // Bulk Operations
900
901 /**
902 * Returns true if this Vector contains all of the elements in the
903 * specified Collection.
904 *
905 * @param c a collection whose elements will be tested for containment
906 * in this Vector
907 * @return true if this Vector contains all of the elements in the
908 * specified collection
909 * @throws NullPointerException if the specified collection is null
910 */
911 public synchronized boolean containsAll(Collection<?> c) {
912 return super.containsAll(c);
913 }
914
915 /**
916 * Appends all of the elements in the specified Collection to the end of
917 * this Vector, in the order that they are returned by the specified
918 * Collection's Iterator. The behavior of this operation is undefined if
919 * the specified Collection is modified while the operation is in progress.
920 * (This implies that the behavior of this call is undefined if the
921 * specified Collection is this Vector, and this Vector is nonempty.)
922 *
923 * @param c elements to be inserted into this Vector
924 * @return {@code true} if this Vector changed as a result of the call
925 * @throws NullPointerException if the specified collection is null
926 * @since 1.2
927 */
928 public boolean addAll(Collection<? extends E> c) {
929 Object[] a = c.toArray();
930 modCount++;
931 int numNew = a.length;
932 if (numNew == 0)
933 return false;
934 synchronized (this) {
935 Object[] elementData = this.elementData;
936 final int s = elementCount;
937 if (numNew > elementData.length - s)
938 elementData = grow(s + numNew);
939 System.arraycopy(a, 0, elementData, s, numNew);
940 elementCount = s + numNew;
941 // checkInvariants();
942 return true;
943 }
944 }
945
946 /**
947 * Removes from this Vector all of its elements that are contained in the
948 * specified Collection.
949 *
950 * @param c a collection of elements to be removed from the Vector
951 * @return true if this Vector changed as a result of the call
952 * @throws ClassCastException if the types of one or more elements
953 * in this vector are incompatible with the specified
954 * collection
955 * (<a href="Collection.html#optional-restrictions">optional</a>)
956 * @throws NullPointerException if this vector contains one or more null
957 * elements and the specified collection does not support null
958 * elements
959 * (<a href="Collection.html#optional-restrictions">optional</a>),
960 * or if the specified collection is null
961 * @since 1.2
962 */
963 public boolean removeAll(Collection<?> c) {
964 Objects.requireNonNull(c);
965 return bulkRemove(e -> c.contains(e));
966 }
967
968 /**
969 * Retains only the elements in this Vector that are contained in the
970 * specified Collection. In other words, removes from this Vector all
971 * of its elements that are not contained in the specified Collection.
972 *
973 * @param c a collection of elements to be retained in this Vector
974 * (all other elements are removed)
975 * @return true if this Vector changed as a result of the call
976 * @throws ClassCastException if the types of one or more elements
977 * in this vector are incompatible with the specified
978 * collection
979 * (<a href="Collection.html#optional-restrictions">optional</a>)
980 * @throws NullPointerException if this vector contains one or more null
981 * elements and the specified collection does not support null
982 * elements
983 * (<a href="Collection.html#optional-restrictions">optional</a>),
984 * or if the specified collection is null
985 * @since 1.2
986 */
987 public boolean retainAll(Collection<?> c) {
988 Objects.requireNonNull(c);
989 return bulkRemove(e -> !c.contains(e));
990 }
991
992 /**
993 * @throws NullPointerException {@inheritDoc}
994 */
995 @Override
996 public boolean removeIf(Predicate<? super E> filter) {
997 Objects.requireNonNull(filter);
998 return bulkRemove(filter);
999 }
1000
1001 // A tiny bit set implementation
1002
1003 private static long[] nBits(int n) {
1004 return new long[((n - 1) >> 6) + 1];
1005 }
1006 private static void setBit(long[] bits, int i) {
1007 bits[i >> 6] |= 1L << i;
1008 }
1009 private static boolean isClear(long[] bits, int i) {
1010 return (bits[i >> 6] & (1L << i)) == 0;
1011 }
1012
1013 private synchronized boolean bulkRemove(Predicate<? super E> filter) {
1014 int expectedModCount = modCount;
1015 final Object[] es = elementData;
1016 final int end = elementCount;
1017 int i;
1018 // Optimize for initial run of survivors
1019 for (i = 0; i < end && !filter.test(elementAt(es, i)); i++)
1020 ;
1021 // Tolerate predicates that reentrantly access the collection for
1022 // read (but writers still get CME), so traverse once to find
1023 // elements to delete, a second pass to physically expunge.
1024 if (i < end) {
1025 final int beg = i;
1026 final long[] deathRow = nBits(end - beg);
1027 deathRow[0] = 1L; // set bit 0
1028 for (i = beg + 1; i < end; i++)
1029 if (filter.test(elementAt(es, i)))
1030 setBit(deathRow, i - beg);
1031 if (modCount != expectedModCount)
1032 throw new ConcurrentModificationException();
1033 modCount++;
1034 int w = beg;
1035 for (i = beg; i < end; i++)
1036 if (isClear(deathRow, i - beg))
1037 es[w++] = es[i];
1038 for (i = elementCount = w; i < end; i++)
1039 es[i] = null;
1040 // checkInvariants();
1041 return true;
1042 } else {
1043 if (modCount != expectedModCount)
1044 throw new ConcurrentModificationException();
1045 // checkInvariants();
1046 return false;
1047 }
1048 }
1049
1050 /**
1051 * Inserts all of the elements in the specified Collection into this
1052 * Vector at the specified position. Shifts the element currently at
1053 * that position (if any) and any subsequent elements to the right
1054 * (increases their indices). The new elements will appear in the Vector
1055 * in the order that they are returned by the specified Collection's
1056 * iterator.
1057 *
1058 * @param index index at which to insert the first element from the
1059 * specified collection
1060 * @param c elements to be inserted into this Vector
1061 * @return {@code true} if this Vector changed as a result of the call
1062 * @throws ArrayIndexOutOfBoundsException if the index is out of range
1063 * ({@code index < 0 || index > size()})
1064 * @throws NullPointerException if the specified collection is null
1065 * @since 1.2
1066 */
1067 public synchronized boolean addAll(int index, Collection<? extends E> c) {
1068 if (index < 0 || index > elementCount)
1069 throw new ArrayIndexOutOfBoundsException(index);
1070
1071 Object[] a = c.toArray();
1072 modCount++;
1073 int numNew = a.length;
1074 if (numNew == 0)
1075 return false;
1076 Object[] elementData = this.elementData;
1077 final int s = elementCount;
1078 if (numNew > elementData.length - s)
1079 elementData = grow(s + numNew);
1080
1081 int numMoved = s - index;
1082 if (numMoved > 0)
1083 System.arraycopy(elementData, index,
1084 elementData, index + numNew,
1085 numMoved);
1086 System.arraycopy(a, 0, elementData, index, numNew);
1087 elementCount = s + numNew;
1088 // checkInvariants();
1089 return true;
1090 }
1091
1092 /**
1093 * Compares the specified Object with this Vector for equality. Returns
1094 * true if and only if the specified Object is also a List, both Lists
1095 * have the same size, and all corresponding pairs of elements in the two
1096 * Lists are <em>equal</em>. (Two elements {@code e1} and
1097 * {@code e2} are <em>equal</em> if {@code Objects.equals(e1, e2)}.)
1098 * In other words, two Lists are defined to be
1099 * equal if they contain the same elements in the same order.
1100 *
1101 * @param o the Object to be compared for equality with this Vector
1102 * @return true if the specified Object is equal to this Vector
1103 */
1104 public synchronized boolean equals(Object o) {
1105 return super.equals(o);
1106 }
1107
1108 /**
1109 * Returns the hash code value for this Vector.
1110 */
1111 public synchronized int hashCode() {
1112 return super.hashCode();
1113 }
1114
1115 /**
1116 * Returns a string representation of this Vector, containing
1117 * the String representation of each element.
1118 */
1119 public synchronized String toString() {
1120 return super.toString();
1121 }
1122
1123 /**
1124 * Returns a view of the portion of this List between fromIndex,
1125 * inclusive, and toIndex, exclusive. (If fromIndex and toIndex are
1126 * equal, the returned List is empty.) The returned List is backed by this
1127 * List, so changes in the returned List are reflected in this List, and
1128 * vice-versa. The returned List supports all of the optional List
1129 * operations supported by this List.
1130 *
1131 * <p>This method eliminates the need for explicit range operations (of
1132 * the sort that commonly exist for arrays). Any operation that expects
1133 * a List can be used as a range operation by operating on a subList view
1134 * instead of a whole List. For example, the following idiom
1135 * removes a range of elements from a List:
1136 * <pre>
1137 * list.subList(from, to).clear();
1138 * </pre>
1139 * Similar idioms may be constructed for indexOf and lastIndexOf,
1140 * and all of the algorithms in the Collections class can be applied to
1141 * a subList.
1142 *
1143 * <p>The semantics of the List returned by this method become undefined if
1144 * the backing list (i.e., this List) is <i>structurally modified</i> in
1145 * any way other than via the returned List. (Structural modifications are
1146 * those that change the size of the List, or otherwise perturb it in such
1147 * a fashion that iterations in progress may yield incorrect results.)
1148 *
1149 * @param fromIndex low endpoint (inclusive) of the subList
1150 * @param toIndex high endpoint (exclusive) of the subList
1151 * @return a view of the specified range within this List
1152 * @throws IndexOutOfBoundsException if an endpoint index value is out of range
1153 * {@code (fromIndex < 0 || toIndex > size)}
1154 * @throws IllegalArgumentException if the endpoint indices are out of order
1155 * {@code (fromIndex > toIndex)}
1156 */
1157 public synchronized List<E> subList(int fromIndex, int toIndex) {
1158 return Collections.synchronizedList(super.subList(fromIndex, toIndex),
1159 this);
1160 }
1161
1162 /**
1163 * Removes from this list all of the elements whose index is between
1164 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
1165 * Shifts any succeeding elements to the left (reduces their index).
1166 * This call shortens the list by {@code (toIndex - fromIndex)} elements.
1167 * (If {@code toIndex==fromIndex}, this operation has no effect.)
1168 */
1169 protected synchronized void removeRange(int fromIndex, int toIndex) {
1170 modCount++;
1171 shiftTailOverGap(elementData, fromIndex, toIndex);
1172 // checkInvariants();
1173 }
1174
1175 /** Erases the gap from lo to hi, by sliding down following elements. */
1176 private void shiftTailOverGap(Object[] es, int lo, int hi) {
1177 System.arraycopy(es, hi, es, lo, elementCount - hi);
1178 for (int to = elementCount, i = (elementCount -= hi - lo); i < to; i++)
1179 es[i] = null;
1180 }
1181
1182 /**
1183 * Loads a {@code Vector} instance from a stream
1184 * (that is, deserializes it).
1185 * This method performs checks to ensure the consistency
1186 * of the fields.
1187 *
1188 * @param in the stream
1189 * @throws java.io.IOException if an I/O error occurs
1190 * @throws ClassNotFoundException if the stream contains data
1191 * of a non-existing class
1192 */
1193 private void readObject(ObjectInputStream in)
1194 throws IOException, ClassNotFoundException {
1195 ObjectInputStream.GetField gfields = in.readFields();
1196 int count = gfields.get("elementCount", 0);
1197 Object[] data = (Object[])gfields.get("elementData", null);
1198 if (count < 0 || data == null || count > data.length) {
1199 throw new StreamCorruptedException("Inconsistent vector internals");
1200 }
1201 elementCount = count;
1202 elementData = data.clone();
1203 }
1204
1205 /**
1206 * Saves the state of the {@code Vector} instance to a stream
1207 * (that is, serializes it).
1208 * This method performs synchronization to ensure the consistency
1209 * of the serialized data.
1210 *
1211 * @param s the stream
1212 * @throws java.io.IOException if an I/O error occurs
1213 */
1214 private void writeObject(java.io.ObjectOutputStream s)
1215 throws java.io.IOException {
1216 final java.io.ObjectOutputStream.PutField fields = s.putFields();
1217 final Object[] data;
1218 synchronized (this) {
1219 fields.put("capacityIncrement", capacityIncrement);
1220 fields.put("elementCount", elementCount);
1221 data = elementData.clone();
1222 }
1223 fields.put("elementData", data);
1224 s.writeFields();
1225 }
1226
1227 /**
1228 * Returns a list iterator over the elements in this list (in proper
1229 * sequence), starting at the specified position in the list.
1230 * The specified index indicates the first element that would be
1231 * returned by an initial call to {@link ListIterator#next next}.
1232 * An initial call to {@link ListIterator#previous previous} would
1233 * return the element with the specified index minus one.
1234 *
1235 * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1236 *
1237 * @throws IndexOutOfBoundsException {@inheritDoc}
1238 */
1239 public synchronized ListIterator<E> listIterator(int index) {
1240 if (index < 0 || index > elementCount)
1241 throw new IndexOutOfBoundsException("Index: "+index);
1242 return new ListItr(index);
1243 }
1244
1245 /**
1246 * Returns a list iterator over the elements in this list (in proper
1247 * sequence).
1248 *
1249 * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1250 *
1251 * @see #listIterator(int)
1252 */
1253 public synchronized ListIterator<E> listIterator() {
1254 return new ListItr(0);
1255 }
1256
1257 /**
1258 * Returns an iterator over the elements in this list in proper sequence.
1259 *
1260 * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1261 *
1262 * @return an iterator over the elements in this list in proper sequence
1263 */
1264 public synchronized Iterator<E> iterator() {
1265 return new Itr();
1266 }
1267
1268 /**
1269 * An optimized version of AbstractList.Itr
1270 */
1271 private class Itr implements Iterator<E> {
1272 int cursor; // index of next element to return
1273 int lastRet = -1; // index of last element returned; -1 if no such
1274 int expectedModCount = modCount;
1275
1276 public boolean hasNext() {
1277 // Racy but within spec, since modifications are checked
1278 // within or after synchronization in next/previous
1279 return cursor != elementCount;
1280 }
1281
1282 public E next() {
1283 synchronized (Vector.this) {
1284 checkForComodification();
1285 int i = cursor;
1286 if (i >= elementCount)
1287 throw new NoSuchElementException();
1288 cursor = i + 1;
1289 return elementData(lastRet = i);
1290 }
1291 }
1292
1293 public void remove() {
1294 if (lastRet == -1)
1295 throw new IllegalStateException();
1296 synchronized (Vector.this) {
1297 checkForComodification();
1298 Vector.this.remove(lastRet);
1299 expectedModCount = modCount;
1300 }
1301 cursor = lastRet;
1302 lastRet = -1;
1303 }
1304
1305 @Override
1306 public void forEachRemaining(Consumer<? super E> action) {
1307 Objects.requireNonNull(action);
1308 synchronized (Vector.this) {
1309 final int size = elementCount;
1310 int i = cursor;
1311 if (i >= size) {
1312 return;
1313 }
1314 final Object[] es = elementData;
1315 if (i >= es.length)
1316 throw new ConcurrentModificationException();
1317 while (i < size && modCount == expectedModCount)
1318 action.accept(elementAt(es, i++));
1319 // update once at end of iteration to reduce heap write traffic
1320 cursor = i;
1321 lastRet = i - 1;
1322 checkForComodification();
1323 }
1324 }
1325
1326 final void checkForComodification() {
1327 if (modCount != expectedModCount)
1328 throw new ConcurrentModificationException();
1329 }
1330 }
1331
1332 /**
1333 * An optimized version of AbstractList.ListItr
1334 */
1335 final class ListItr extends Itr implements ListIterator<E> {
1336 ListItr(int index) {
1337 super();
1338 cursor = index;
1339 }
1340
1341 public boolean hasPrevious() {
1342 return cursor != 0;
1343 }
1344
1345 public int nextIndex() {
1346 return cursor;
1347 }
1348
1349 public int previousIndex() {
1350 return cursor - 1;
1351 }
1352
1353 public E previous() {
1354 synchronized (Vector.this) {
1355 checkForComodification();
1356 int i = cursor - 1;
1357 if (i < 0)
1358 throw new NoSuchElementException();
1359 cursor = i;
1360 return elementData(lastRet = i);
1361 }
1362 }
1363
1364 public void set(E e) {
1365 if (lastRet == -1)
1366 throw new IllegalStateException();
1367 synchronized (Vector.this) {
1368 checkForComodification();
1369 Vector.this.set(lastRet, e);
1370 }
1371 }
1372
1373 public void add(E e) {
1374 int i = cursor;
1375 synchronized (Vector.this) {
1376 checkForComodification();
1377 Vector.this.add(i, e);
1378 expectedModCount = modCount;
1379 }
1380 cursor = i + 1;
1381 lastRet = -1;
1382 }
1383 }
1384
1385 /**
1386 * @throws NullPointerException {@inheritDoc}
1387 */
1388 @Override
1389 public synchronized void forEach(Consumer<? super E> action) {
1390 Objects.requireNonNull(action);
1391 final int expectedModCount = modCount;
1392 final Object[] es = elementData;
1393 final int size = elementCount;
1394 for (int i = 0; modCount == expectedModCount && i < size; i++)
1395 action.accept(elementAt(es, i));
1396 if (modCount != expectedModCount)
1397 throw new ConcurrentModificationException();
1398 // checkInvariants();
1399 }
1400
1401 /**
1402 * @throws NullPointerException {@inheritDoc}
1403 */
1404 @Override
1405 public synchronized void replaceAll(UnaryOperator<E> operator) {
1406 Objects.requireNonNull(operator);
1407 final int expectedModCount = modCount;
1408 final Object[] es = elementData;
1409 final int size = elementCount;
1410 for (int i = 0; modCount == expectedModCount && i < size; i++)
1411 es[i] = operator.apply(elementAt(es, i));
1412 if (modCount != expectedModCount)
1413 throw new ConcurrentModificationException();
1414 // checkInvariants();
1415 }
1416
1417 @SuppressWarnings("unchecked")
1418 @Override
1419 public synchronized void sort(Comparator<? super E> c) {
1420 final int expectedModCount = modCount;
1421 Arrays.sort((E[]) elementData, 0, elementCount, c);
1422 if (modCount != expectedModCount)
1423 throw new ConcurrentModificationException();
1424 modCount++;
1425 // checkInvariants();
1426 }
1427
1428 /**
1429 * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1430 * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1431 * list.
1432 *
1433 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1434 * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1435 * Overriding implementations should document the reporting of additional
1436 * characteristic values.
1437 *
1438 * @return a {@code Spliterator} over the elements in this list
1439 * @since 1.8
1440 */
1441 @Override
1442 public Spliterator<E> spliterator() {
1443 return new VectorSpliterator(null, 0, -1, 0);
1444 }
1445
1446 /** Similar to ArrayList Spliterator */
1447 final class VectorSpliterator implements Spliterator<E> {
1448 private Object[] array;
1449 private int index; // current index, modified on advance/split
1450 private int fence; // -1 until used; then one past last index
1451 private int expectedModCount; // initialized when fence set
1452
1453 /** Creates new spliterator covering the given range. */
1454 VectorSpliterator(Object[] array, int origin, int fence,
1455 int expectedModCount) {
1456 this.array = array;
1457 this.index = origin;
1458 this.fence = fence;
1459 this.expectedModCount = expectedModCount;
1460 }
1461
1462 private int getFence() { // initialize on first use
1463 int hi;
1464 if ((hi = fence) < 0) {
1465 synchronized (Vector.this) {
1466 array = elementData;
1467 expectedModCount = modCount;
1468 hi = fence = elementCount;
1469 }
1470 }
1471 return hi;
1472 }
1473
1474 public Spliterator<E> trySplit() {
1475 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1476 return (lo >= mid) ? null :
1477 new VectorSpliterator(array, lo, index = mid, expectedModCount);
1478 }
1479
1480 @SuppressWarnings("unchecked")
1481 public boolean tryAdvance(Consumer<? super E> action) {
1482 Objects.requireNonNull(action);
1483 int i;
1484 if (getFence() > (i = index)) {
1485 index = i + 1;
1486 action.accept((E)array[i]);
1487 if (modCount != expectedModCount)
1488 throw new ConcurrentModificationException();
1489 return true;
1490 }
1491 return false;
1492 }
1493
1494 @SuppressWarnings("unchecked")
1495 public void forEachRemaining(Consumer<? super E> action) {
1496 Objects.requireNonNull(action);
1497 final int hi = getFence();
1498 final Object[] a = array;
1499 int i;
1500 for (i = index, index = hi; i < hi; i++)
1501 action.accept((E) a[i]);
1502 if (modCount != expectedModCount)
1503 throw new ConcurrentModificationException();
1504 }
1505
1506 public long estimateSize() {
1507 return getFence() - index;
1508 }
1509
1510 public int characteristics() {
1511 return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1512 }
1513 }
1514
1515 void checkInvariants() {
1516 // assert elementCount >= 0;
1517 // assert elementCount == elementData.length || elementData[elementCount] == null;
1518 }
1519 }