ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk8/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.1
Committed: Sat Mar 26 06:22:49 2016 UTC (8 years, 1 month ago) by jsr166
Branch: MAIN
Log Message:
fork jdk8 maintenance branch for source and jtreg tests

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.io.Serializable;
11 import java.lang.reflect.ParameterizedType;
12 import java.lang.reflect.Type;
13 import java.util.AbstractMap;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Enumeration;
17 import java.util.HashMap;
18 import java.util.Hashtable;
19 import java.util.Iterator;
20 import java.util.Map;
21 import java.util.NoSuchElementException;
22 import java.util.Set;
23 import java.util.Spliterator;
24 import java.util.concurrent.atomic.AtomicReference;
25 import java.util.concurrent.locks.LockSupport;
26 import java.util.concurrent.locks.ReentrantLock;
27 import java.util.function.BiConsumer;
28 import java.util.function.BiFunction;
29 import java.util.function.Consumer;
30 import java.util.function.DoubleBinaryOperator;
31 import java.util.function.Function;
32 import java.util.function.IntBinaryOperator;
33 import java.util.function.LongBinaryOperator;
34 import java.util.function.Predicate;
35 import java.util.function.ToDoubleBiFunction;
36 import java.util.function.ToDoubleFunction;
37 import java.util.function.ToIntBiFunction;
38 import java.util.function.ToIntFunction;
39 import java.util.function.ToLongBiFunction;
40 import java.util.function.ToLongFunction;
41 import java.util.stream.Stream;
42
43 /**
44 * A hash table supporting full concurrency of retrievals and
45 * high expected concurrency for updates. This class obeys the
46 * same functional specification as {@link java.util.Hashtable}, and
47 * includes versions of methods corresponding to each method of
48 * {@code Hashtable}. However, even though all operations are
49 * thread-safe, retrieval operations do <em>not</em> entail locking,
50 * and there is <em>not</em> any support for locking the entire table
51 * in a way that prevents all access. This class is fully
52 * interoperable with {@code Hashtable} in programs that rely on its
53 * thread safety but not on its synchronization details.
54 *
55 * <p>Retrieval operations (including {@code get}) generally do not
56 * block, so may overlap with update operations (including {@code put}
57 * and {@code remove}). Retrievals reflect the results of the most
58 * recently <em>completed</em> update operations holding upon their
59 * onset. (More formally, an update operation for a given key bears a
60 * <em>happens-before</em> relation with any (non-null) retrieval for
61 * that key reporting the updated value.) For aggregate operations
62 * such as {@code putAll} and {@code clear}, concurrent retrievals may
63 * reflect insertion or removal of only some entries. Similarly,
64 * Iterators, Spliterators and Enumerations return elements reflecting the
65 * state of the hash table at some point at or since the creation of the
66 * iterator/enumeration. They do <em>not</em> throw {@link
67 * java.util.ConcurrentModificationException ConcurrentModificationException}.
68 * However, iterators are designed to be used by only one thread at a time.
69 * Bear in mind that the results of aggregate status methods including
70 * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
71 * useful only when a map is not undergoing concurrent updates in other threads.
72 * Otherwise the results of these methods reflect transient states
73 * that may be adequate for monitoring or estimation purposes, but not
74 * for program control.
75 *
76 * <p>The table is dynamically expanded when there are too many
77 * collisions (i.e., keys that have distinct hash codes but fall into
78 * the same slot modulo the table size), with the expected average
79 * effect of maintaining roughly two bins per mapping (corresponding
80 * to a 0.75 load factor threshold for resizing). There may be much
81 * variance around this average as mappings are added and removed, but
82 * overall, this maintains a commonly accepted time/space tradeoff for
83 * hash tables. However, resizing this or any other kind of hash
84 * table may be a relatively slow operation. When possible, it is a
85 * good idea to provide a size estimate as an optional {@code
86 * initialCapacity} constructor argument. An additional optional
87 * {@code loadFactor} constructor argument provides a further means of
88 * customizing initial table capacity by specifying the table density
89 * to be used in calculating the amount of space to allocate for the
90 * given number of elements. Also, for compatibility with previous
91 * versions of this class, constructors may optionally specify an
92 * expected {@code concurrencyLevel} as an additional hint for
93 * internal sizing. Note that using many keys with exactly the same
94 * {@code hashCode()} is a sure way to slow down performance of any
95 * hash table. To ameliorate impact, when keys are {@link Comparable},
96 * this class may use comparison order among keys to help break ties.
97 *
98 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
99 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
100 * (using {@link #keySet(Object)} when only keys are of interest, and the
101 * mapped values are (perhaps transiently) not used or all take the
102 * same mapping value.
103 *
104 * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
105 * form of histogram or multiset) by using {@link
106 * java.util.concurrent.atomic.LongAdder} values and initializing via
107 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
108 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
109 * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
110 *
111 * <p>This class and its views and iterators implement all of the
112 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
113 * interfaces.
114 *
115 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
116 * does <em>not</em> allow {@code null} to be used as a key or value.
117 *
118 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
119 * operations that, unlike most {@link Stream} methods, are designed
120 * to be safely, and often sensibly, applied even with maps that are
121 * being concurrently updated by other threads; for example, when
122 * computing a snapshot summary of the values in a shared registry.
123 * There are three kinds of operation, each with four forms, accepting
124 * functions with keys, values, entries, and (key, value) pairs as
125 * arguments and/or return values. Because the elements of a
126 * ConcurrentHashMap are not ordered in any particular way, and may be
127 * processed in different orders in different parallel executions, the
128 * correctness of supplied functions should not depend on any
129 * ordering, or on any other objects or values that may transiently
130 * change while computation is in progress; and except for forEach
131 * actions, should ideally be side-effect-free. Bulk operations on
132 * {@link java.util.Map.Entry} objects do not support method {@code
133 * setValue}.
134 *
135 * <ul>
136 * <li>forEach: Performs a given action on each element.
137 * A variant form applies a given transformation on each element
138 * before performing the action.
139 *
140 * <li>search: Returns the first available non-null result of
141 * applying a given function on each element; skipping further
142 * search when a result is found.
143 *
144 * <li>reduce: Accumulates each element. The supplied reduction
145 * function cannot rely on ordering (more formally, it should be
146 * both associative and commutative). There are five variants:
147 *
148 * <ul>
149 *
150 * <li>Plain reductions. (There is not a form of this method for
151 * (key, value) function arguments since there is no corresponding
152 * return type.)
153 *
154 * <li>Mapped reductions that accumulate the results of a given
155 * function applied to each element.
156 *
157 * <li>Reductions to scalar doubles, longs, and ints, using a
158 * given basis value.
159 *
160 * </ul>
161 * </ul>
162 *
163 * <p>These bulk operations accept a {@code parallelismThreshold}
164 * argument. Methods proceed sequentially if the current map size is
165 * estimated to be less than the given threshold. Using a value of
166 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
167 * of {@code 1} results in maximal parallelism by partitioning into
168 * enough subtasks to fully utilize the {@link
169 * ForkJoinPool#commonPool()} that is used for all parallel
170 * computations. Normally, you would initially choose one of these
171 * extreme values, and then measure performance of using in-between
172 * values that trade off overhead versus throughput.
173 *
174 * <p>The concurrency properties of bulk operations follow
175 * from those of ConcurrentHashMap: Any non-null result returned
176 * from {@code get(key)} and related access methods bears a
177 * happens-before relation with the associated insertion or
178 * update. The result of any bulk operation reflects the
179 * composition of these per-element relations (but is not
180 * necessarily atomic with respect to the map as a whole unless it
181 * is somehow known to be quiescent). Conversely, because keys
182 * and values in the map are never null, null serves as a reliable
183 * atomic indicator of the current lack of any result. To
184 * maintain this property, null serves as an implicit basis for
185 * all non-scalar reduction operations. For the double, long, and
186 * int versions, the basis should be one that, when combined with
187 * any other value, returns that other value (more formally, it
188 * should be the identity element for the reduction). Most common
189 * reductions have these properties; for example, computing a sum
190 * with basis 0 or a minimum with basis MAX_VALUE.
191 *
192 * <p>Search and transformation functions provided as arguments
193 * should similarly return null to indicate the lack of any result
194 * (in which case it is not used). In the case of mapped
195 * reductions, this also enables transformations to serve as
196 * filters, returning null (or, in the case of primitive
197 * specializations, the identity basis) if the element should not
198 * be combined. You can create compound transformations and
199 * filterings by composing them yourself under this "null means
200 * there is nothing there now" rule before using them in search or
201 * reduce operations.
202 *
203 * <p>Methods accepting and/or returning Entry arguments maintain
204 * key-value associations. They may be useful for example when
205 * finding the key for the greatest value. Note that "plain" Entry
206 * arguments can be supplied using {@code new
207 * AbstractMap.SimpleEntry(k,v)}.
208 *
209 * <p>Bulk operations may complete abruptly, throwing an
210 * exception encountered in the application of a supplied
211 * function. Bear in mind when handling such exceptions that other
212 * concurrently executing functions could also have thrown
213 * exceptions, or would have done so if the first exception had
214 * not occurred.
215 *
216 * <p>Speedups for parallel compared to sequential forms are common
217 * but not guaranteed. Parallel operations involving brief functions
218 * on small maps may execute more slowly than sequential forms if the
219 * underlying work to parallelize the computation is more expensive
220 * than the computation itself. Similarly, parallelization may not
221 * lead to much actual parallelism if all processors are busy
222 * performing unrelated tasks.
223 *
224 * <p>All arguments to all task methods must be non-null.
225 *
226 * <p>This class is a member of the
227 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
228 * Java Collections Framework</a>.
229 *
230 * @since 1.5
231 * @author Doug Lea
232 * @param <K> the type of keys maintained by this map
233 * @param <V> the type of mapped values
234 */
235 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
236 implements ConcurrentMap<K,V>, Serializable {
237 private static final long serialVersionUID = 7249069246763182397L;
238
239 /*
240 * Overview:
241 *
242 * The primary design goal of this hash table is to maintain
243 * concurrent readability (typically method get(), but also
244 * iterators and related methods) while minimizing update
245 * contention. Secondary goals are to keep space consumption about
246 * the same or better than java.util.HashMap, and to support high
247 * initial insertion rates on an empty table by many threads.
248 *
249 * This map usually acts as a binned (bucketed) hash table. Each
250 * key-value mapping is held in a Node. Most nodes are instances
251 * of the basic Node class with hash, key, value, and next
252 * fields. However, various subclasses exist: TreeNodes are
253 * arranged in balanced trees, not lists. TreeBins hold the roots
254 * of sets of TreeNodes. ForwardingNodes are placed at the heads
255 * of bins during resizing. ReservationNodes are used as
256 * placeholders while establishing values in computeIfAbsent and
257 * related methods. The types TreeBin, ForwardingNode, and
258 * ReservationNode do not hold normal user keys, values, or
259 * hashes, and are readily distinguishable during search etc
260 * because they have negative hash fields and null key and value
261 * fields. (These special nodes are either uncommon or transient,
262 * so the impact of carrying around some unused fields is
263 * insignificant.)
264 *
265 * The table is lazily initialized to a power-of-two size upon the
266 * first insertion. Each bin in the table normally contains a
267 * list of Nodes (most often, the list has only zero or one Node).
268 * Table accesses require volatile/atomic reads, writes, and
269 * CASes. Because there is no other way to arrange this without
270 * adding further indirections, we use intrinsics
271 * (sun.misc.Unsafe) operations.
272 *
273 * We use the top (sign) bit of Node hash fields for control
274 * purposes -- it is available anyway because of addressing
275 * constraints. Nodes with negative hash fields are specially
276 * handled or ignored in map methods.
277 *
278 * Insertion (via put or its variants) of the first node in an
279 * empty bin is performed by just CASing it to the bin. This is
280 * by far the most common case for put operations under most
281 * key/hash distributions. Other update operations (insert,
282 * delete, and replace) require locks. We do not want to waste
283 * the space required to associate a distinct lock object with
284 * each bin, so instead use the first node of a bin list itself as
285 * a lock. Locking support for these locks relies on builtin
286 * "synchronized" monitors.
287 *
288 * Using the first node of a list as a lock does not by itself
289 * suffice though: When a node is locked, any update must first
290 * validate that it is still the first node after locking it, and
291 * retry if not. Because new nodes are always appended to lists,
292 * once a node is first in a bin, it remains first until deleted
293 * or the bin becomes invalidated (upon resizing).
294 *
295 * The main disadvantage of per-bin locks is that other update
296 * operations on other nodes in a bin list protected by the same
297 * lock can stall, for example when user equals() or mapping
298 * functions take a long time. However, statistically, under
299 * random hash codes, this is not a common problem. Ideally, the
300 * frequency of nodes in bins follows a Poisson distribution
301 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
302 * parameter of about 0.5 on average, given the resizing threshold
303 * of 0.75, although with a large variance because of resizing
304 * granularity. Ignoring variance, the expected occurrences of
305 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
306 * first values are:
307 *
308 * 0: 0.60653066
309 * 1: 0.30326533
310 * 2: 0.07581633
311 * 3: 0.01263606
312 * 4: 0.00157952
313 * 5: 0.00015795
314 * 6: 0.00001316
315 * 7: 0.00000094
316 * 8: 0.00000006
317 * more: less than 1 in ten million
318 *
319 * Lock contention probability for two threads accessing distinct
320 * elements is roughly 1 / (8 * #elements) under random hashes.
321 *
322 * Actual hash code distributions encountered in practice
323 * sometimes deviate significantly from uniform randomness. This
324 * includes the case when N > (1<<30), so some keys MUST collide.
325 * Similarly for dumb or hostile usages in which multiple keys are
326 * designed to have identical hash codes or ones that differs only
327 * in masked-out high bits. So we use a secondary strategy that
328 * applies when the number of nodes in a bin exceeds a
329 * threshold. These TreeBins use a balanced tree to hold nodes (a
330 * specialized form of red-black trees), bounding search time to
331 * O(log N). Each search step in a TreeBin is at least twice as
332 * slow as in a regular list, but given that N cannot exceed
333 * (1<<64) (before running out of addresses) this bounds search
334 * steps, lock hold times, etc, to reasonable constants (roughly
335 * 100 nodes inspected per operation worst case) so long as keys
336 * are Comparable (which is very common -- String, Long, etc).
337 * TreeBin nodes (TreeNodes) also maintain the same "next"
338 * traversal pointers as regular nodes, so can be traversed in
339 * iterators in the same way.
340 *
341 * The table is resized when occupancy exceeds a percentage
342 * threshold (nominally, 0.75, but see below). Any thread
343 * noticing an overfull bin may assist in resizing after the
344 * initiating thread allocates and sets up the replacement array.
345 * However, rather than stalling, these other threads may proceed
346 * with insertions etc. The use of TreeBins shields us from the
347 * worst case effects of overfilling while resizes are in
348 * progress. Resizing proceeds by transferring bins, one by one,
349 * from the table to the next table. However, threads claim small
350 * blocks of indices to transfer (via field transferIndex) before
351 * doing so, reducing contention. A generation stamp in field
352 * sizeCtl ensures that resizings do not overlap. Because we are
353 * using power-of-two expansion, the elements from each bin must
354 * either stay at same index, or move with a power of two
355 * offset. We eliminate unnecessary node creation by catching
356 * cases where old nodes can be reused because their next fields
357 * won't change. On average, only about one-sixth of them need
358 * cloning when a table doubles. The nodes they replace will be
359 * garbage collectable as soon as they are no longer referenced by
360 * any reader thread that may be in the midst of concurrently
361 * traversing table. Upon transfer, the old table bin contains
362 * only a special forwarding node (with hash field "MOVED") that
363 * contains the next table as its key. On encountering a
364 * forwarding node, access and update operations restart, using
365 * the new table.
366 *
367 * Each bin transfer requires its bin lock, which can stall
368 * waiting for locks while resizing. However, because other
369 * threads can join in and help resize rather than contend for
370 * locks, average aggregate waits become shorter as resizing
371 * progresses. The transfer operation must also ensure that all
372 * accessible bins in both the old and new table are usable by any
373 * traversal. This is arranged in part by proceeding from the
374 * last bin (table.length - 1) up towards the first. Upon seeing
375 * a forwarding node, traversals (see class Traverser) arrange to
376 * move to the new table without revisiting nodes. To ensure that
377 * no intervening nodes are skipped even when moved out of order,
378 * a stack (see class TableStack) is created on first encounter of
379 * a forwarding node during a traversal, to maintain its place if
380 * later processing the current table. The need for these
381 * save/restore mechanics is relatively rare, but when one
382 * forwarding node is encountered, typically many more will be.
383 * So Traversers use a simple caching scheme to avoid creating so
384 * many new TableStack nodes. (Thanks to Peter Levart for
385 * suggesting use of a stack here.)
386 *
387 * The traversal scheme also applies to partial traversals of
388 * ranges of bins (via an alternate Traverser constructor)
389 * to support partitioned aggregate operations. Also, read-only
390 * operations give up if ever forwarded to a null table, which
391 * provides support for shutdown-style clearing, which is also not
392 * currently implemented.
393 *
394 * Lazy table initialization minimizes footprint until first use,
395 * and also avoids resizings when the first operation is from a
396 * putAll, constructor with map argument, or deserialization.
397 * These cases attempt to override the initial capacity settings,
398 * but harmlessly fail to take effect in cases of races.
399 *
400 * The element count is maintained using a specialization of
401 * LongAdder. We need to incorporate a specialization rather than
402 * just use a LongAdder in order to access implicit
403 * contention-sensing that leads to creation of multiple
404 * CounterCells. The counter mechanics avoid contention on
405 * updates but can encounter cache thrashing if read too
406 * frequently during concurrent access. To avoid reading so often,
407 * resizing under contention is attempted only upon adding to a
408 * bin already holding two or more nodes. Under uniform hash
409 * distributions, the probability of this occurring at threshold
410 * is around 13%, meaning that only about 1 in 8 puts check
411 * threshold (and after resizing, many fewer do so).
412 *
413 * TreeBins use a special form of comparison for search and
414 * related operations (which is the main reason we cannot use
415 * existing collections such as TreeMaps). TreeBins contain
416 * Comparable elements, but may contain others, as well as
417 * elements that are Comparable but not necessarily Comparable for
418 * the same T, so we cannot invoke compareTo among them. To handle
419 * this, the tree is ordered primarily by hash value, then by
420 * Comparable.compareTo order if applicable. On lookup at a node,
421 * if elements are not comparable or compare as 0 then both left
422 * and right children may need to be searched in the case of tied
423 * hash values. (This corresponds to the full list search that
424 * would be necessary if all elements were non-Comparable and had
425 * tied hashes.) On insertion, to keep a total ordering (or as
426 * close as is required here) across rebalancings, we compare
427 * classes and identityHashCodes as tie-breakers. The red-black
428 * balancing code is updated from pre-jdk-collections
429 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
430 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
431 * Algorithms" (CLR).
432 *
433 * TreeBins also require an additional locking mechanism. While
434 * list traversal is always possible by readers even during
435 * updates, tree traversal is not, mainly because of tree-rotations
436 * that may change the root node and/or its linkages. TreeBins
437 * include a simple read-write lock mechanism parasitic on the
438 * main bin-synchronization strategy: Structural adjustments
439 * associated with an insertion or removal are already bin-locked
440 * (and so cannot conflict with other writers) but must wait for
441 * ongoing readers to finish. Since there can be only one such
442 * waiter, we use a simple scheme using a single "waiter" field to
443 * block writers. However, readers need never block. If the root
444 * lock is held, they proceed along the slow traversal path (via
445 * next-pointers) until the lock becomes available or the list is
446 * exhausted, whichever comes first. These cases are not fast, but
447 * maximize aggregate expected throughput.
448 *
449 * Maintaining API and serialization compatibility with previous
450 * versions of this class introduces several oddities. Mainly: We
451 * leave untouched but unused constructor arguments referring to
452 * concurrencyLevel. We accept a loadFactor constructor argument,
453 * but apply it only to initial table capacity (which is the only
454 * time that we can guarantee to honor it.) We also declare an
455 * unused "Segment" class that is instantiated in minimal form
456 * only when serializing.
457 *
458 * Also, solely for compatibility with previous versions of this
459 * class, it extends AbstractMap, even though all of its methods
460 * are overridden, so it is just useless baggage.
461 *
462 * This file is organized to make things a little easier to follow
463 * while reading than they might otherwise: First the main static
464 * declarations and utilities, then fields, then main public
465 * methods (with a few factorings of multiple public methods into
466 * internal ones), then sizing methods, trees, traversers, and
467 * bulk operations.
468 */
469
470 /* ---------------- Constants -------------- */
471
472 /**
473 * The largest possible table capacity. This value must be
474 * exactly 1<<30 to stay within Java array allocation and indexing
475 * bounds for power of two table sizes, and is further required
476 * because the top two bits of 32bit hash fields are used for
477 * control purposes.
478 */
479 private static final int MAXIMUM_CAPACITY = 1 << 30;
480
481 /**
482 * The default initial table capacity. Must be a power of 2
483 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
484 */
485 private static final int DEFAULT_CAPACITY = 16;
486
487 /**
488 * The largest possible (non-power of two) array size.
489 * Needed by toArray and related methods.
490 */
491 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
492
493 /**
494 * The default concurrency level for this table. Unused but
495 * defined for compatibility with previous versions of this class.
496 */
497 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
498
499 /**
500 * The load factor for this table. Overrides of this value in
501 * constructors affect only the initial table capacity. The
502 * actual floating point value isn't normally used -- it is
503 * simpler to use expressions such as {@code n - (n >>> 2)} for
504 * the associated resizing threshold.
505 */
506 private static final float LOAD_FACTOR = 0.75f;
507
508 /**
509 * The bin count threshold for using a tree rather than list for a
510 * bin. Bins are converted to trees when adding an element to a
511 * bin with at least this many nodes. The value must be greater
512 * than 2, and should be at least 8 to mesh with assumptions in
513 * tree removal about conversion back to plain bins upon
514 * shrinkage.
515 */
516 static final int TREEIFY_THRESHOLD = 8;
517
518 /**
519 * The bin count threshold for untreeifying a (split) bin during a
520 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
521 * most 6 to mesh with shrinkage detection under removal.
522 */
523 static final int UNTREEIFY_THRESHOLD = 6;
524
525 /**
526 * The smallest table capacity for which bins may be treeified.
527 * (Otherwise the table is resized if too many nodes in a bin.)
528 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
529 * conflicts between resizing and treeification thresholds.
530 */
531 static final int MIN_TREEIFY_CAPACITY = 64;
532
533 /**
534 * Minimum number of rebinnings per transfer step. Ranges are
535 * subdivided to allow multiple resizer threads. This value
536 * serves as a lower bound to avoid resizers encountering
537 * excessive memory contention. The value should be at least
538 * DEFAULT_CAPACITY.
539 */
540 private static final int MIN_TRANSFER_STRIDE = 16;
541
542 /**
543 * The number of bits used for generation stamp in sizeCtl.
544 * Must be at least 6 for 32bit arrays.
545 */
546 private static final int RESIZE_STAMP_BITS = 16;
547
548 /**
549 * The maximum number of threads that can help resize.
550 * Must fit in 32 - RESIZE_STAMP_BITS bits.
551 */
552 private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
553
554 /**
555 * The bit shift for recording size stamp in sizeCtl.
556 */
557 private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
558
559 /*
560 * Encodings for Node hash fields. See above for explanation.
561 */
562 static final int MOVED = -1; // hash for forwarding nodes
563 static final int TREEBIN = -2; // hash for roots of trees
564 static final int RESERVED = -3; // hash for transient reservations
565 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
566
567 /** Number of CPUS, to place bounds on some sizings */
568 static final int NCPU = Runtime.getRuntime().availableProcessors();
569
570 /**
571 * Serialized pseudo-fields, provided only for jdk7 compatibility.
572 * @serialField segments Segment[]
573 * The segments, each of which is a specialized hash table.
574 * @serialField segmentMask int
575 * Mask value for indexing into segments. The upper bits of a
576 * key's hash code are used to choose the segment.
577 * @serialField segmentShift int
578 * Shift value for indexing within segments.
579 */
580 private static final ObjectStreamField[] serialPersistentFields = {
581 new ObjectStreamField("segments", Segment[].class),
582 new ObjectStreamField("segmentMask", Integer.TYPE),
583 new ObjectStreamField("segmentShift", Integer.TYPE),
584 };
585
586 /* ---------------- Nodes -------------- */
587
588 /**
589 * Key-value entry. This class is never exported out as a
590 * user-mutable Map.Entry (i.e., one supporting setValue; see
591 * MapEntry below), but can be used for read-only traversals used
592 * in bulk tasks. Subclasses of Node with a negative hash field
593 * are special, and contain null keys and values (but are never
594 * exported). Otherwise, keys and vals are never null.
595 */
596 static class Node<K,V> implements Map.Entry<K,V> {
597 final int hash;
598 final K key;
599 volatile V val;
600 volatile Node<K,V> next;
601
602 Node(int hash, K key, V val) {
603 this.hash = hash;
604 this.key = key;
605 this.val = val;
606 }
607
608 Node(int hash, K key, V val, Node<K,V> next) {
609 this(hash, key, val);
610 this.next = next;
611 }
612
613 public final K getKey() { return key; }
614 public final V getValue() { return val; }
615 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
616 public final String toString() {
617 return Helpers.mapEntryToString(key, val);
618 }
619 public final V setValue(V value) {
620 throw new UnsupportedOperationException();
621 }
622
623 public final boolean equals(Object o) {
624 Object k, v, u; Map.Entry<?,?> e;
625 return ((o instanceof Map.Entry) &&
626 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
627 (v = e.getValue()) != null &&
628 (k == key || k.equals(key)) &&
629 (v == (u = val) || v.equals(u)));
630 }
631
632 /**
633 * Virtualized support for map.get(); overridden in subclasses.
634 */
635 Node<K,V> find(int h, Object k) {
636 Node<K,V> e = this;
637 if (k != null) {
638 do {
639 K ek;
640 if (e.hash == h &&
641 ((ek = e.key) == k || (ek != null && k.equals(ek))))
642 return e;
643 } while ((e = e.next) != null);
644 }
645 return null;
646 }
647 }
648
649 /* ---------------- Static utilities -------------- */
650
651 /**
652 * Spreads (XORs) higher bits of hash to lower and also forces top
653 * bit to 0. Because the table uses power-of-two masking, sets of
654 * hashes that vary only in bits above the current mask will
655 * always collide. (Among known examples are sets of Float keys
656 * holding consecutive whole numbers in small tables.) So we
657 * apply a transform that spreads the impact of higher bits
658 * downward. There is a tradeoff between speed, utility, and
659 * quality of bit-spreading. Because many common sets of hashes
660 * are already reasonably distributed (so don't benefit from
661 * spreading), and because we use trees to handle large sets of
662 * collisions in bins, we just XOR some shifted bits in the
663 * cheapest possible way to reduce systematic lossage, as well as
664 * to incorporate impact of the highest bits that would otherwise
665 * never be used in index calculations because of table bounds.
666 */
667 static final int spread(int h) {
668 return (h ^ (h >>> 16)) & HASH_BITS;
669 }
670
671 /**
672 * Returns a power of two table size for the given desired capacity.
673 * See Hackers Delight, sec 3.2
674 */
675 private static final int tableSizeFor(int c) {
676 int n = c - 1;
677 n |= n >>> 1;
678 n |= n >>> 2;
679 n |= n >>> 4;
680 n |= n >>> 8;
681 n |= n >>> 16;
682 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
683 }
684
685 /**
686 * Returns x's Class if it is of the form "class C implements
687 * Comparable<C>", else null.
688 */
689 static Class<?> comparableClassFor(Object x) {
690 if (x instanceof Comparable) {
691 Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
692 if ((c = x.getClass()) == String.class) // bypass checks
693 return c;
694 if ((ts = c.getGenericInterfaces()) != null) {
695 for (int i = 0; i < ts.length; ++i) {
696 if (((t = ts[i]) instanceof ParameterizedType) &&
697 ((p = (ParameterizedType)t).getRawType() ==
698 Comparable.class) &&
699 (as = p.getActualTypeArguments()) != null &&
700 as.length == 1 && as[0] == c) // type arg is c
701 return c;
702 }
703 }
704 }
705 return null;
706 }
707
708 /**
709 * Returns k.compareTo(x) if x matches kc (k's screened comparable
710 * class), else 0.
711 */
712 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
713 static int compareComparables(Class<?> kc, Object k, Object x) {
714 return (x == null || x.getClass() != kc ? 0 :
715 ((Comparable)k).compareTo(x));
716 }
717
718 /* ---------------- Table element access -------------- */
719
720 /*
721 * Volatile access methods are used for table elements as well as
722 * elements of in-progress next table while resizing. All uses of
723 * the tab arguments must be null checked by callers. All callers
724 * also paranoically precheck that tab's length is not zero (or an
725 * equivalent check), thus ensuring that any index argument taking
726 * the form of a hash value anded with (length - 1) is a valid
727 * index. Note that, to be correct wrt arbitrary concurrency
728 * errors by users, these checks must operate on local variables,
729 * which accounts for some odd-looking inline assignments below.
730 * Note that calls to setTabAt always occur within locked regions,
731 * and so in principle require only release ordering, not
732 * full volatile semantics, but are currently coded as volatile
733 * writes to be conservative.
734 */
735
736 @SuppressWarnings("unchecked")
737 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
738 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
739 }
740
741 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
742 Node<K,V> c, Node<K,V> v) {
743 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
744 }
745
746 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
747 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
748 }
749
750 /* ---------------- Fields -------------- */
751
752 /**
753 * The array of bins. Lazily initialized upon first insertion.
754 * Size is always a power of two. Accessed directly by iterators.
755 */
756 transient volatile Node<K,V>[] table;
757
758 /**
759 * The next table to use; non-null only while resizing.
760 */
761 private transient volatile Node<K,V>[] nextTable;
762
763 /**
764 * Base counter value, used mainly when there is no contention,
765 * but also as a fallback during table initialization
766 * races. Updated via CAS.
767 */
768 private transient volatile long baseCount;
769
770 /**
771 * Table initialization and resizing control. When negative, the
772 * table is being initialized or resized: -1 for initialization,
773 * else -(1 + the number of active resizing threads). Otherwise,
774 * when table is null, holds the initial table size to use upon
775 * creation, or 0 for default. After initialization, holds the
776 * next element count value upon which to resize the table.
777 */
778 private transient volatile int sizeCtl;
779
780 /**
781 * The next table index (plus one) to split while resizing.
782 */
783 private transient volatile int transferIndex;
784
785 /**
786 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
787 */
788 private transient volatile int cellsBusy;
789
790 /**
791 * Table of counter cells. When non-null, size is a power of 2.
792 */
793 private transient volatile CounterCell[] counterCells;
794
795 // views
796 private transient KeySetView<K,V> keySet;
797 private transient ValuesView<K,V> values;
798 private transient EntrySetView<K,V> entrySet;
799
800
801 /* ---------------- Public operations -------------- */
802
803 /**
804 * Creates a new, empty map with the default initial table size (16).
805 */
806 public ConcurrentHashMap() {
807 }
808
809 /**
810 * Creates a new, empty map with an initial table size
811 * accommodating the specified number of elements without the need
812 * to dynamically resize.
813 *
814 * @param initialCapacity The implementation performs internal
815 * sizing to accommodate this many elements.
816 * @throws IllegalArgumentException if the initial capacity of
817 * elements is negative
818 */
819 public ConcurrentHashMap(int initialCapacity) {
820 if (initialCapacity < 0)
821 throw new IllegalArgumentException();
822 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
823 MAXIMUM_CAPACITY :
824 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
825 this.sizeCtl = cap;
826 }
827
828 /**
829 * Creates a new map with the same mappings as the given map.
830 *
831 * @param m the map
832 */
833 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
834 this.sizeCtl = DEFAULT_CAPACITY;
835 putAll(m);
836 }
837
838 /**
839 * Creates a new, empty map with an initial table size based on
840 * the given number of elements ({@code initialCapacity}) and
841 * initial table density ({@code loadFactor}).
842 *
843 * @param initialCapacity the initial capacity. The implementation
844 * performs internal sizing to accommodate this many elements,
845 * given the specified load factor.
846 * @param loadFactor the load factor (table density) for
847 * establishing the initial table size
848 * @throws IllegalArgumentException if the initial capacity of
849 * elements is negative or the load factor is nonpositive
850 *
851 * @since 1.6
852 */
853 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
854 this(initialCapacity, loadFactor, 1);
855 }
856
857 /**
858 * Creates a new, empty map with an initial table size based on
859 * the given number of elements ({@code initialCapacity}), table
860 * density ({@code loadFactor}), and number of concurrently
861 * updating threads ({@code concurrencyLevel}).
862 *
863 * @param initialCapacity the initial capacity. The implementation
864 * performs internal sizing to accommodate this many elements,
865 * given the specified load factor.
866 * @param loadFactor the load factor (table density) for
867 * establishing the initial table size
868 * @param concurrencyLevel the estimated number of concurrently
869 * updating threads. The implementation may use this value as
870 * a sizing hint.
871 * @throws IllegalArgumentException if the initial capacity is
872 * negative or the load factor or concurrencyLevel are
873 * nonpositive
874 */
875 public ConcurrentHashMap(int initialCapacity,
876 float loadFactor, int concurrencyLevel) {
877 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
878 throw new IllegalArgumentException();
879 if (initialCapacity < concurrencyLevel) // Use at least as many bins
880 initialCapacity = concurrencyLevel; // as estimated threads
881 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
882 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
883 MAXIMUM_CAPACITY : tableSizeFor((int)size);
884 this.sizeCtl = cap;
885 }
886
887 // Original (since JDK1.2) Map methods
888
889 /**
890 * {@inheritDoc}
891 */
892 public int size() {
893 long n = sumCount();
894 return ((n < 0L) ? 0 :
895 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
896 (int)n);
897 }
898
899 /**
900 * {@inheritDoc}
901 */
902 public boolean isEmpty() {
903 return sumCount() <= 0L; // ignore transient negative values
904 }
905
906 /**
907 * Returns the value to which the specified key is mapped,
908 * or {@code null} if this map contains no mapping for the key.
909 *
910 * <p>More formally, if this map contains a mapping from a key
911 * {@code k} to a value {@code v} such that {@code key.equals(k)},
912 * then this method returns {@code v}; otherwise it returns
913 * {@code null}. (There can be at most one such mapping.)
914 *
915 * @throws NullPointerException if the specified key is null
916 */
917 public V get(Object key) {
918 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
919 int h = spread(key.hashCode());
920 if ((tab = table) != null && (n = tab.length) > 0 &&
921 (e = tabAt(tab, (n - 1) & h)) != null) {
922 if ((eh = e.hash) == h) {
923 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
924 return e.val;
925 }
926 else if (eh < 0)
927 return (p = e.find(h, key)) != null ? p.val : null;
928 while ((e = e.next) != null) {
929 if (e.hash == h &&
930 ((ek = e.key) == key || (ek != null && key.equals(ek))))
931 return e.val;
932 }
933 }
934 return null;
935 }
936
937 /**
938 * Tests if the specified object is a key in this table.
939 *
940 * @param key possible key
941 * @return {@code true} if and only if the specified object
942 * is a key in this table, as determined by the
943 * {@code equals} method; {@code false} otherwise
944 * @throws NullPointerException if the specified key is null
945 */
946 public boolean containsKey(Object key) {
947 return get(key) != null;
948 }
949
950 /**
951 * Returns {@code true} if this map maps one or more keys to the
952 * specified value. Note: This method may require a full traversal
953 * of the map, and is much slower than method {@code containsKey}.
954 *
955 * @param value value whose presence in this map is to be tested
956 * @return {@code true} if this map maps one or more keys to the
957 * specified value
958 * @throws NullPointerException if the specified value is null
959 */
960 public boolean containsValue(Object value) {
961 if (value == null)
962 throw new NullPointerException();
963 Node<K,V>[] t;
964 if ((t = table) != null) {
965 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
966 for (Node<K,V> p; (p = it.advance()) != null; ) {
967 V v;
968 if ((v = p.val) == value || (v != null && value.equals(v)))
969 return true;
970 }
971 }
972 return false;
973 }
974
975 /**
976 * Maps the specified key to the specified value in this table.
977 * Neither the key nor the value can be null.
978 *
979 * <p>The value can be retrieved by calling the {@code get} method
980 * with a key that is equal to the original key.
981 *
982 * @param key key with which the specified value is to be associated
983 * @param value value to be associated with the specified key
984 * @return the previous value associated with {@code key}, or
985 * {@code null} if there was no mapping for {@code key}
986 * @throws NullPointerException if the specified key or value is null
987 */
988 public V put(K key, V value) {
989 return putVal(key, value, false);
990 }
991
992 /** Implementation for put and putIfAbsent */
993 final V putVal(K key, V value, boolean onlyIfAbsent) {
994 if (key == null || value == null) throw new NullPointerException();
995 int hash = spread(key.hashCode());
996 int binCount = 0;
997 for (Node<K,V>[] tab = table;;) {
998 Node<K,V> f; int n, i, fh;
999 if (tab == null || (n = tab.length) == 0)
1000 tab = initTable();
1001 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1002 if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))
1003 break; // no lock when adding to empty bin
1004 }
1005 else if ((fh = f.hash) == MOVED)
1006 tab = helpTransfer(tab, f);
1007 else {
1008 V oldVal = null;
1009 synchronized (f) {
1010 if (tabAt(tab, i) == f) {
1011 if (fh >= 0) {
1012 binCount = 1;
1013 for (Node<K,V> e = f;; ++binCount) {
1014 K ek;
1015 if (e.hash == hash &&
1016 ((ek = e.key) == key ||
1017 (ek != null && key.equals(ek)))) {
1018 oldVal = e.val;
1019 if (!onlyIfAbsent)
1020 e.val = value;
1021 break;
1022 }
1023 Node<K,V> pred = e;
1024 if ((e = e.next) == null) {
1025 pred.next = new Node<K,V>(hash, key, value);
1026 break;
1027 }
1028 }
1029 }
1030 else if (f instanceof TreeBin) {
1031 Node<K,V> p;
1032 binCount = 2;
1033 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1034 value)) != null) {
1035 oldVal = p.val;
1036 if (!onlyIfAbsent)
1037 p.val = value;
1038 }
1039 }
1040 else if (f instanceof ReservationNode)
1041 throw new IllegalStateException("Recursive update");
1042 }
1043 }
1044 if (binCount != 0) {
1045 if (binCount >= TREEIFY_THRESHOLD)
1046 treeifyBin(tab, i);
1047 if (oldVal != null)
1048 return oldVal;
1049 break;
1050 }
1051 }
1052 }
1053 addCount(1L, binCount);
1054 return null;
1055 }
1056
1057 /**
1058 * Copies all of the mappings from the specified map to this one.
1059 * These mappings replace any mappings that this map had for any of the
1060 * keys currently in the specified map.
1061 *
1062 * @param m mappings to be stored in this map
1063 */
1064 public void putAll(Map<? extends K, ? extends V> m) {
1065 tryPresize(m.size());
1066 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1067 putVal(e.getKey(), e.getValue(), false);
1068 }
1069
1070 /**
1071 * Removes the key (and its corresponding value) from this map.
1072 * This method does nothing if the key is not in the map.
1073 *
1074 * @param key the key that needs to be removed
1075 * @return the previous value associated with {@code key}, or
1076 * {@code null} if there was no mapping for {@code key}
1077 * @throws NullPointerException if the specified key is null
1078 */
1079 public V remove(Object key) {
1080 return replaceNode(key, null, null);
1081 }
1082
1083 /**
1084 * Implementation for the four public remove/replace methods:
1085 * Replaces node value with v, conditional upon match of cv if
1086 * non-null. If resulting value is null, delete.
1087 */
1088 final V replaceNode(Object key, V value, Object cv) {
1089 int hash = spread(key.hashCode());
1090 for (Node<K,V>[] tab = table;;) {
1091 Node<K,V> f; int n, i, fh;
1092 if (tab == null || (n = tab.length) == 0 ||
1093 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1094 break;
1095 else if ((fh = f.hash) == MOVED)
1096 tab = helpTransfer(tab, f);
1097 else {
1098 V oldVal = null;
1099 boolean validated = false;
1100 synchronized (f) {
1101 if (tabAt(tab, i) == f) {
1102 if (fh >= 0) {
1103 validated = true;
1104 for (Node<K,V> e = f, pred = null;;) {
1105 K ek;
1106 if (e.hash == hash &&
1107 ((ek = e.key) == key ||
1108 (ek != null && key.equals(ek)))) {
1109 V ev = e.val;
1110 if (cv == null || cv == ev ||
1111 (ev != null && cv.equals(ev))) {
1112 oldVal = ev;
1113 if (value != null)
1114 e.val = value;
1115 else if (pred != null)
1116 pred.next = e.next;
1117 else
1118 setTabAt(tab, i, e.next);
1119 }
1120 break;
1121 }
1122 pred = e;
1123 if ((e = e.next) == null)
1124 break;
1125 }
1126 }
1127 else if (f instanceof TreeBin) {
1128 validated = true;
1129 TreeBin<K,V> t = (TreeBin<K,V>)f;
1130 TreeNode<K,V> r, p;
1131 if ((r = t.root) != null &&
1132 (p = r.findTreeNode(hash, key, null)) != null) {
1133 V pv = p.val;
1134 if (cv == null || cv == pv ||
1135 (pv != null && cv.equals(pv))) {
1136 oldVal = pv;
1137 if (value != null)
1138 p.val = value;
1139 else if (t.removeTreeNode(p))
1140 setTabAt(tab, i, untreeify(t.first));
1141 }
1142 }
1143 }
1144 else if (f instanceof ReservationNode)
1145 throw new IllegalStateException("Recursive update");
1146 }
1147 }
1148 if (validated) {
1149 if (oldVal != null) {
1150 if (value == null)
1151 addCount(-1L, -1);
1152 return oldVal;
1153 }
1154 break;
1155 }
1156 }
1157 }
1158 return null;
1159 }
1160
1161 /**
1162 * Removes all of the mappings from this map.
1163 */
1164 public void clear() {
1165 long delta = 0L; // negative number of deletions
1166 int i = 0;
1167 Node<K,V>[] tab = table;
1168 while (tab != null && i < tab.length) {
1169 int fh;
1170 Node<K,V> f = tabAt(tab, i);
1171 if (f == null)
1172 ++i;
1173 else if ((fh = f.hash) == MOVED) {
1174 tab = helpTransfer(tab, f);
1175 i = 0; // restart
1176 }
1177 else {
1178 synchronized (f) {
1179 if (tabAt(tab, i) == f) {
1180 Node<K,V> p = (fh >= 0 ? f :
1181 (f instanceof TreeBin) ?
1182 ((TreeBin<K,V>)f).first : null);
1183 while (p != null) {
1184 --delta;
1185 p = p.next;
1186 }
1187 setTabAt(tab, i++, null);
1188 }
1189 }
1190 }
1191 }
1192 if (delta != 0L)
1193 addCount(delta, -1);
1194 }
1195
1196 /**
1197 * Returns a {@link Set} view of the keys contained in this map.
1198 * The set is backed by the map, so changes to the map are
1199 * reflected in the set, and vice-versa. The set supports element
1200 * removal, which removes the corresponding mapping from this map,
1201 * via the {@code Iterator.remove}, {@code Set.remove},
1202 * {@code removeAll}, {@code retainAll}, and {@code clear}
1203 * operations. It does not support the {@code add} or
1204 * {@code addAll} operations.
1205 *
1206 * <p>The view's iterators and spliterators are
1207 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1208 *
1209 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1210 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1211 *
1212 * @return the set view
1213 */
1214 public KeySetView<K,V> keySet() {
1215 KeySetView<K,V> ks;
1216 return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1217 }
1218
1219 /**
1220 * Returns a {@link Collection} view of the values contained in this map.
1221 * The collection is backed by the map, so changes to the map are
1222 * reflected in the collection, and vice-versa. The collection
1223 * supports element removal, which removes the corresponding
1224 * mapping from this map, via the {@code Iterator.remove},
1225 * {@code Collection.remove}, {@code removeAll},
1226 * {@code retainAll}, and {@code clear} operations. It does not
1227 * support the {@code add} or {@code addAll} operations.
1228 *
1229 * <p>The view's iterators and spliterators are
1230 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1231 *
1232 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1233 * and {@link Spliterator#NONNULL}.
1234 *
1235 * @return the collection view
1236 */
1237 public Collection<V> values() {
1238 ValuesView<K,V> vs;
1239 return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1240 }
1241
1242 /**
1243 * Returns a {@link Set} view of the mappings contained in this map.
1244 * The set is backed by the map, so changes to the map are
1245 * reflected in the set, and vice-versa. The set supports element
1246 * removal, which removes the corresponding mapping from the map,
1247 * via the {@code Iterator.remove}, {@code Set.remove},
1248 * {@code removeAll}, {@code retainAll}, and {@code clear}
1249 * operations.
1250 *
1251 * <p>The view's iterators and spliterators are
1252 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1253 *
1254 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1255 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1256 *
1257 * @return the set view
1258 */
1259 public Set<Map.Entry<K,V>> entrySet() {
1260 EntrySetView<K,V> es;
1261 return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1262 }
1263
1264 /**
1265 * Returns the hash code value for this {@link Map}, i.e.,
1266 * the sum of, for each key-value pair in the map,
1267 * {@code key.hashCode() ^ value.hashCode()}.
1268 *
1269 * @return the hash code value for this map
1270 */
1271 public int hashCode() {
1272 int h = 0;
1273 Node<K,V>[] t;
1274 if ((t = table) != null) {
1275 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1276 for (Node<K,V> p; (p = it.advance()) != null; )
1277 h += p.key.hashCode() ^ p.val.hashCode();
1278 }
1279 return h;
1280 }
1281
1282 /**
1283 * Returns a string representation of this map. The string
1284 * representation consists of a list of key-value mappings (in no
1285 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1286 * mappings are separated by the characters {@code ", "} (comma
1287 * and space). Each key-value mapping is rendered as the key
1288 * followed by an equals sign ("{@code =}") followed by the
1289 * associated value.
1290 *
1291 * @return a string representation of this map
1292 */
1293 public String toString() {
1294 Node<K,V>[] t;
1295 int f = (t = table) == null ? 0 : t.length;
1296 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1297 StringBuilder sb = new StringBuilder();
1298 sb.append('{');
1299 Node<K,V> p;
1300 if ((p = it.advance()) != null) {
1301 for (;;) {
1302 K k = p.key;
1303 V v = p.val;
1304 sb.append(k == this ? "(this Map)" : k);
1305 sb.append('=');
1306 sb.append(v == this ? "(this Map)" : v);
1307 if ((p = it.advance()) == null)
1308 break;
1309 sb.append(',').append(' ');
1310 }
1311 }
1312 return sb.append('}').toString();
1313 }
1314
1315 /**
1316 * Compares the specified object with this map for equality.
1317 * Returns {@code true} if the given object is a map with the same
1318 * mappings as this map. This operation may return misleading
1319 * results if either map is concurrently modified during execution
1320 * of this method.
1321 *
1322 * @param o object to be compared for equality with this map
1323 * @return {@code true} if the specified object is equal to this map
1324 */
1325 public boolean equals(Object o) {
1326 if (o != this) {
1327 if (!(o instanceof Map))
1328 return false;
1329 Map<?,?> m = (Map<?,?>) o;
1330 Node<K,V>[] t;
1331 int f = (t = table) == null ? 0 : t.length;
1332 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1333 for (Node<K,V> p; (p = it.advance()) != null; ) {
1334 V val = p.val;
1335 Object v = m.get(p.key);
1336 if (v == null || (v != val && !v.equals(val)))
1337 return false;
1338 }
1339 for (Map.Entry<?,?> e : m.entrySet()) {
1340 Object mk, mv, v;
1341 if ((mk = e.getKey()) == null ||
1342 (mv = e.getValue()) == null ||
1343 (v = get(mk)) == null ||
1344 (mv != v && !mv.equals(v)))
1345 return false;
1346 }
1347 }
1348 return true;
1349 }
1350
1351 /**
1352 * Stripped-down version of helper class used in previous version,
1353 * declared for the sake of serialization compatibility.
1354 */
1355 static class Segment<K,V> extends ReentrantLock implements Serializable {
1356 private static final long serialVersionUID = 2249069246763182397L;
1357 final float loadFactor;
1358 Segment(float lf) { this.loadFactor = lf; }
1359 }
1360
1361 /**
1362 * Saves the state of the {@code ConcurrentHashMap} instance to a
1363 * stream (i.e., serializes it).
1364 * @param s the stream
1365 * @throws java.io.IOException if an I/O error occurs
1366 * @serialData
1367 * the serialized fields, followed by the key (Object) and value
1368 * (Object) for each key-value mapping, followed by a null pair.
1369 * The key-value mappings are emitted in no particular order.
1370 */
1371 private void writeObject(java.io.ObjectOutputStream s)
1372 throws java.io.IOException {
1373 // For serialization compatibility
1374 // Emulate segment calculation from previous version of this class
1375 int sshift = 0;
1376 int ssize = 1;
1377 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1378 ++sshift;
1379 ssize <<= 1;
1380 }
1381 int segmentShift = 32 - sshift;
1382 int segmentMask = ssize - 1;
1383 @SuppressWarnings("unchecked")
1384 Segment<K,V>[] segments = (Segment<K,V>[])
1385 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1386 for (int i = 0; i < segments.length; ++i)
1387 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1388 java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1389 streamFields.put("segments", segments);
1390 streamFields.put("segmentShift", segmentShift);
1391 streamFields.put("segmentMask", segmentMask);
1392 s.writeFields();
1393
1394 Node<K,V>[] t;
1395 if ((t = table) != null) {
1396 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1397 for (Node<K,V> p; (p = it.advance()) != null; ) {
1398 s.writeObject(p.key);
1399 s.writeObject(p.val);
1400 }
1401 }
1402 s.writeObject(null);
1403 s.writeObject(null);
1404 }
1405
1406 /**
1407 * Reconstitutes the instance from a stream (that is, deserializes it).
1408 * @param s the stream
1409 * @throws ClassNotFoundException if the class of a serialized object
1410 * could not be found
1411 * @throws java.io.IOException if an I/O error occurs
1412 */
1413 private void readObject(java.io.ObjectInputStream s)
1414 throws java.io.IOException, ClassNotFoundException {
1415 /*
1416 * To improve performance in typical cases, we create nodes
1417 * while reading, then place in table once size is known.
1418 * However, we must also validate uniqueness and deal with
1419 * overpopulated bins while doing so, which requires
1420 * specialized versions of putVal mechanics.
1421 */
1422 sizeCtl = -1; // force exclusion for table construction
1423 s.defaultReadObject();
1424 long size = 0L;
1425 Node<K,V> p = null;
1426 for (;;) {
1427 @SuppressWarnings("unchecked")
1428 K k = (K) s.readObject();
1429 @SuppressWarnings("unchecked")
1430 V v = (V) s.readObject();
1431 if (k != null && v != null) {
1432 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1433 ++size;
1434 }
1435 else
1436 break;
1437 }
1438 if (size == 0L)
1439 sizeCtl = 0;
1440 else {
1441 int n;
1442 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1443 n = MAXIMUM_CAPACITY;
1444 else {
1445 int sz = (int)size;
1446 n = tableSizeFor(sz + (sz >>> 1) + 1);
1447 }
1448 @SuppressWarnings("unchecked")
1449 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1450 int mask = n - 1;
1451 long added = 0L;
1452 while (p != null) {
1453 boolean insertAtFront;
1454 Node<K,V> next = p.next, first;
1455 int h = p.hash, j = h & mask;
1456 if ((first = tabAt(tab, j)) == null)
1457 insertAtFront = true;
1458 else {
1459 K k = p.key;
1460 if (first.hash < 0) {
1461 TreeBin<K,V> t = (TreeBin<K,V>)first;
1462 if (t.putTreeVal(h, k, p.val) == null)
1463 ++added;
1464 insertAtFront = false;
1465 }
1466 else {
1467 int binCount = 0;
1468 insertAtFront = true;
1469 Node<K,V> q; K qk;
1470 for (q = first; q != null; q = q.next) {
1471 if (q.hash == h &&
1472 ((qk = q.key) == k ||
1473 (qk != null && k.equals(qk)))) {
1474 insertAtFront = false;
1475 break;
1476 }
1477 ++binCount;
1478 }
1479 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1480 insertAtFront = false;
1481 ++added;
1482 p.next = first;
1483 TreeNode<K,V> hd = null, tl = null;
1484 for (q = p; q != null; q = q.next) {
1485 TreeNode<K,V> t = new TreeNode<K,V>
1486 (q.hash, q.key, q.val, null, null);
1487 if ((t.prev = tl) == null)
1488 hd = t;
1489 else
1490 tl.next = t;
1491 tl = t;
1492 }
1493 setTabAt(tab, j, new TreeBin<K,V>(hd));
1494 }
1495 }
1496 }
1497 if (insertAtFront) {
1498 ++added;
1499 p.next = first;
1500 setTabAt(tab, j, p);
1501 }
1502 p = next;
1503 }
1504 table = tab;
1505 sizeCtl = n - (n >>> 2);
1506 baseCount = added;
1507 }
1508 }
1509
1510 // ConcurrentMap methods
1511
1512 /**
1513 * {@inheritDoc}
1514 *
1515 * @return the previous value associated with the specified key,
1516 * or {@code null} if there was no mapping for the key
1517 * @throws NullPointerException if the specified key or value is null
1518 */
1519 public V putIfAbsent(K key, V value) {
1520 return putVal(key, value, true);
1521 }
1522
1523 /**
1524 * {@inheritDoc}
1525 *
1526 * @throws NullPointerException if the specified key is null
1527 */
1528 public boolean remove(Object key, Object value) {
1529 if (key == null)
1530 throw new NullPointerException();
1531 return value != null && replaceNode(key, null, value) != null;
1532 }
1533
1534 /**
1535 * {@inheritDoc}
1536 *
1537 * @throws NullPointerException if any of the arguments are null
1538 */
1539 public boolean replace(K key, V oldValue, V newValue) {
1540 if (key == null || oldValue == null || newValue == null)
1541 throw new NullPointerException();
1542 return replaceNode(key, newValue, oldValue) != null;
1543 }
1544
1545 /**
1546 * {@inheritDoc}
1547 *
1548 * @return the previous value associated with the specified key,
1549 * or {@code null} if there was no mapping for the key
1550 * @throws NullPointerException if the specified key or value is null
1551 */
1552 public V replace(K key, V value) {
1553 if (key == null || value == null)
1554 throw new NullPointerException();
1555 return replaceNode(key, value, null);
1556 }
1557
1558 // Overrides of JDK8+ Map extension method defaults
1559
1560 /**
1561 * Returns the value to which the specified key is mapped, or the
1562 * given default value if this map contains no mapping for the
1563 * key.
1564 *
1565 * @param key the key whose associated value is to be returned
1566 * @param defaultValue the value to return if this map contains
1567 * no mapping for the given key
1568 * @return the mapping for the key, if present; else the default value
1569 * @throws NullPointerException if the specified key is null
1570 */
1571 public V getOrDefault(Object key, V defaultValue) {
1572 V v;
1573 return (v = get(key)) == null ? defaultValue : v;
1574 }
1575
1576 public void forEach(BiConsumer<? super K, ? super V> action) {
1577 if (action == null) throw new NullPointerException();
1578 Node<K,V>[] t;
1579 if ((t = table) != null) {
1580 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1581 for (Node<K,V> p; (p = it.advance()) != null; ) {
1582 action.accept(p.key, p.val);
1583 }
1584 }
1585 }
1586
1587 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1588 if (function == null) throw new NullPointerException();
1589 Node<K,V>[] t;
1590 if ((t = table) != null) {
1591 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1592 for (Node<K,V> p; (p = it.advance()) != null; ) {
1593 V oldValue = p.val;
1594 for (K key = p.key;;) {
1595 V newValue = function.apply(key, oldValue);
1596 if (newValue == null)
1597 throw new NullPointerException();
1598 if (replaceNode(key, newValue, oldValue) != null ||
1599 (oldValue = get(key)) == null)
1600 break;
1601 }
1602 }
1603 }
1604 }
1605
1606 /**
1607 * Helper method for EntrySetView.removeIf.
1608 */
1609 boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1610 if (function == null) throw new NullPointerException();
1611 Node<K,V>[] t;
1612 boolean removed = false;
1613 if ((t = table) != null) {
1614 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1615 for (Node<K,V> p; (p = it.advance()) != null; ) {
1616 K k = p.key;
1617 V v = p.val;
1618 Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1619 if (function.test(e) && replaceNode(k, null, v) != null)
1620 removed = true;
1621 }
1622 }
1623 return removed;
1624 }
1625
1626 /**
1627 * Helper method for ValuesView.removeIf.
1628 */
1629 boolean removeValueIf(Predicate<? super V> function) {
1630 if (function == null) throw new NullPointerException();
1631 Node<K,V>[] t;
1632 boolean removed = false;
1633 if ((t = table) != null) {
1634 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1635 for (Node<K,V> p; (p = it.advance()) != null; ) {
1636 K k = p.key;
1637 V v = p.val;
1638 if (function.test(v) && replaceNode(k, null, v) != null)
1639 removed = true;
1640 }
1641 }
1642 return removed;
1643 }
1644
1645 /**
1646 * If the specified key is not already associated with a value,
1647 * attempts to compute its value using the given mapping function
1648 * and enters it into this map unless {@code null}. The entire
1649 * method invocation is performed atomically, so the function is
1650 * applied at most once per key. Some attempted update operations
1651 * on this map by other threads may be blocked while computation
1652 * is in progress, so the computation should be short and simple,
1653 * and must not attempt to update any other mappings of this map.
1654 *
1655 * @param key key with which the specified value is to be associated
1656 * @param mappingFunction the function to compute a value
1657 * @return the current (existing or computed) value associated with
1658 * the specified key, or null if the computed value is null
1659 * @throws NullPointerException if the specified key or mappingFunction
1660 * is null
1661 * @throws IllegalStateException if the computation detectably
1662 * attempts a recursive update to this map that would
1663 * otherwise never complete
1664 * @throws RuntimeException or Error if the mappingFunction does so,
1665 * in which case the mapping is left unestablished
1666 */
1667 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1668 if (key == null || mappingFunction == null)
1669 throw new NullPointerException();
1670 int h = spread(key.hashCode());
1671 V val = null;
1672 int binCount = 0;
1673 for (Node<K,V>[] tab = table;;) {
1674 Node<K,V> f; int n, i, fh;
1675 if (tab == null || (n = tab.length) == 0)
1676 tab = initTable();
1677 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1678 Node<K,V> r = new ReservationNode<K,V>();
1679 synchronized (r) {
1680 if (casTabAt(tab, i, null, r)) {
1681 binCount = 1;
1682 Node<K,V> node = null;
1683 try {
1684 if ((val = mappingFunction.apply(key)) != null)
1685 node = new Node<K,V>(h, key, val);
1686 } finally {
1687 setTabAt(tab, i, node);
1688 }
1689 }
1690 }
1691 if (binCount != 0)
1692 break;
1693 }
1694 else if ((fh = f.hash) == MOVED)
1695 tab = helpTransfer(tab, f);
1696 else {
1697 boolean added = false;
1698 synchronized (f) {
1699 if (tabAt(tab, i) == f) {
1700 if (fh >= 0) {
1701 binCount = 1;
1702 for (Node<K,V> e = f;; ++binCount) {
1703 K ek;
1704 if (e.hash == h &&
1705 ((ek = e.key) == key ||
1706 (ek != null && key.equals(ek)))) {
1707 val = e.val;
1708 break;
1709 }
1710 Node<K,V> pred = e;
1711 if ((e = e.next) == null) {
1712 if ((val = mappingFunction.apply(key)) != null) {
1713 if (pred.next != null)
1714 throw new IllegalStateException("Recursive update");
1715 added = true;
1716 pred.next = new Node<K,V>(h, key, val);
1717 }
1718 break;
1719 }
1720 }
1721 }
1722 else if (f instanceof TreeBin) {
1723 binCount = 2;
1724 TreeBin<K,V> t = (TreeBin<K,V>)f;
1725 TreeNode<K,V> r, p;
1726 if ((r = t.root) != null &&
1727 (p = r.findTreeNode(h, key, null)) != null)
1728 val = p.val;
1729 else if ((val = mappingFunction.apply(key)) != null) {
1730 added = true;
1731 t.putTreeVal(h, key, val);
1732 }
1733 }
1734 else if (f instanceof ReservationNode)
1735 throw new IllegalStateException("Recursive update");
1736 }
1737 }
1738 if (binCount != 0) {
1739 if (binCount >= TREEIFY_THRESHOLD)
1740 treeifyBin(tab, i);
1741 if (!added)
1742 return val;
1743 break;
1744 }
1745 }
1746 }
1747 if (val != null)
1748 addCount(1L, binCount);
1749 return val;
1750 }
1751
1752 /**
1753 * If the value for the specified key is present, attempts to
1754 * compute a new mapping given the key and its current mapped
1755 * value. The entire method invocation is performed atomically.
1756 * Some attempted update operations on this map by other threads
1757 * may be blocked while computation is in progress, so the
1758 * computation should be short and simple, and must not attempt to
1759 * update any other mappings of this map.
1760 *
1761 * @param key key with which a value may be associated
1762 * @param remappingFunction the function to compute a value
1763 * @return the new value associated with the specified key, or null if none
1764 * @throws NullPointerException if the specified key or remappingFunction
1765 * is null
1766 * @throws IllegalStateException if the computation detectably
1767 * attempts a recursive update to this map that would
1768 * otherwise never complete
1769 * @throws RuntimeException or Error if the remappingFunction does so,
1770 * in which case the mapping is unchanged
1771 */
1772 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1773 if (key == null || remappingFunction == null)
1774 throw new NullPointerException();
1775 int h = spread(key.hashCode());
1776 V val = null;
1777 int delta = 0;
1778 int binCount = 0;
1779 for (Node<K,V>[] tab = table;;) {
1780 Node<K,V> f; int n, i, fh;
1781 if (tab == null || (n = tab.length) == 0)
1782 tab = initTable();
1783 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1784 break;
1785 else if ((fh = f.hash) == MOVED)
1786 tab = helpTransfer(tab, f);
1787 else {
1788 synchronized (f) {
1789 if (tabAt(tab, i) == f) {
1790 if (fh >= 0) {
1791 binCount = 1;
1792 for (Node<K,V> e = f, pred = null;; ++binCount) {
1793 K ek;
1794 if (e.hash == h &&
1795 ((ek = e.key) == key ||
1796 (ek != null && key.equals(ek)))) {
1797 val = remappingFunction.apply(key, e.val);
1798 if (val != null)
1799 e.val = val;
1800 else {
1801 delta = -1;
1802 Node<K,V> en = e.next;
1803 if (pred != null)
1804 pred.next = en;
1805 else
1806 setTabAt(tab, i, en);
1807 }
1808 break;
1809 }
1810 pred = e;
1811 if ((e = e.next) == null)
1812 break;
1813 }
1814 }
1815 else if (f instanceof TreeBin) {
1816 binCount = 2;
1817 TreeBin<K,V> t = (TreeBin<K,V>)f;
1818 TreeNode<K,V> r, p;
1819 if ((r = t.root) != null &&
1820 (p = r.findTreeNode(h, key, null)) != null) {
1821 val = remappingFunction.apply(key, p.val);
1822 if (val != null)
1823 p.val = val;
1824 else {
1825 delta = -1;
1826 if (t.removeTreeNode(p))
1827 setTabAt(tab, i, untreeify(t.first));
1828 }
1829 }
1830 }
1831 else if (f instanceof ReservationNode)
1832 throw new IllegalStateException("Recursive update");
1833 }
1834 }
1835 if (binCount != 0)
1836 break;
1837 }
1838 }
1839 if (delta != 0)
1840 addCount((long)delta, binCount);
1841 return val;
1842 }
1843
1844 /**
1845 * Attempts to compute a mapping for the specified key and its
1846 * current mapped value (or {@code null} if there is no current
1847 * mapping). The entire method invocation is performed atomically.
1848 * Some attempted update operations on this map by other threads
1849 * may be blocked while computation is in progress, so the
1850 * computation should be short and simple, and must not attempt to
1851 * update any other mappings of this Map.
1852 *
1853 * @param key key with which the specified value is to be associated
1854 * @param remappingFunction the function to compute a value
1855 * @return the new value associated with the specified key, or null if none
1856 * @throws NullPointerException if the specified key or remappingFunction
1857 * is null
1858 * @throws IllegalStateException if the computation detectably
1859 * attempts a recursive update to this map that would
1860 * otherwise never complete
1861 * @throws RuntimeException or Error if the remappingFunction does so,
1862 * in which case the mapping is unchanged
1863 */
1864 public V compute(K key,
1865 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1866 if (key == null || remappingFunction == null)
1867 throw new NullPointerException();
1868 int h = spread(key.hashCode());
1869 V val = null;
1870 int delta = 0;
1871 int binCount = 0;
1872 for (Node<K,V>[] tab = table;;) {
1873 Node<K,V> f; int n, i, fh;
1874 if (tab == null || (n = tab.length) == 0)
1875 tab = initTable();
1876 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1877 Node<K,V> r = new ReservationNode<K,V>();
1878 synchronized (r) {
1879 if (casTabAt(tab, i, null, r)) {
1880 binCount = 1;
1881 Node<K,V> node = null;
1882 try {
1883 if ((val = remappingFunction.apply(key, null)) != null) {
1884 delta = 1;
1885 node = new Node<K,V>(h, key, val);
1886 }
1887 } finally {
1888 setTabAt(tab, i, node);
1889 }
1890 }
1891 }
1892 if (binCount != 0)
1893 break;
1894 }
1895 else if ((fh = f.hash) == MOVED)
1896 tab = helpTransfer(tab, f);
1897 else {
1898 synchronized (f) {
1899 if (tabAt(tab, i) == f) {
1900 if (fh >= 0) {
1901 binCount = 1;
1902 for (Node<K,V> e = f, pred = null;; ++binCount) {
1903 K ek;
1904 if (e.hash == h &&
1905 ((ek = e.key) == key ||
1906 (ek != null && key.equals(ek)))) {
1907 val = remappingFunction.apply(key, e.val);
1908 if (val != null)
1909 e.val = val;
1910 else {
1911 delta = -1;
1912 Node<K,V> en = e.next;
1913 if (pred != null)
1914 pred.next = en;
1915 else
1916 setTabAt(tab, i, en);
1917 }
1918 break;
1919 }
1920 pred = e;
1921 if ((e = e.next) == null) {
1922 val = remappingFunction.apply(key, null);
1923 if (val != null) {
1924 if (pred.next != null)
1925 throw new IllegalStateException("Recursive update");
1926 delta = 1;
1927 pred.next = new Node<K,V>(h, key, val);
1928 }
1929 break;
1930 }
1931 }
1932 }
1933 else if (f instanceof TreeBin) {
1934 binCount = 1;
1935 TreeBin<K,V> t = (TreeBin<K,V>)f;
1936 TreeNode<K,V> r, p;
1937 if ((r = t.root) != null)
1938 p = r.findTreeNode(h, key, null);
1939 else
1940 p = null;
1941 V pv = (p == null) ? null : p.val;
1942 val = remappingFunction.apply(key, pv);
1943 if (val != null) {
1944 if (p != null)
1945 p.val = val;
1946 else {
1947 delta = 1;
1948 t.putTreeVal(h, key, val);
1949 }
1950 }
1951 else if (p != null) {
1952 delta = -1;
1953 if (t.removeTreeNode(p))
1954 setTabAt(tab, i, untreeify(t.first));
1955 }
1956 }
1957 else if (f instanceof ReservationNode)
1958 throw new IllegalStateException("Recursive update");
1959 }
1960 }
1961 if (binCount != 0) {
1962 if (binCount >= TREEIFY_THRESHOLD)
1963 treeifyBin(tab, i);
1964 break;
1965 }
1966 }
1967 }
1968 if (delta != 0)
1969 addCount((long)delta, binCount);
1970 return val;
1971 }
1972
1973 /**
1974 * If the specified key is not already associated with a
1975 * (non-null) value, associates it with the given value.
1976 * Otherwise, replaces the value with the results of the given
1977 * remapping function, or removes if {@code null}. The entire
1978 * method invocation is performed atomically. Some attempted
1979 * update operations on this map by other threads may be blocked
1980 * while computation is in progress, so the computation should be
1981 * short and simple, and must not attempt to update any other
1982 * mappings of this Map.
1983 *
1984 * @param key key with which the specified value is to be associated
1985 * @param value the value to use if absent
1986 * @param remappingFunction the function to recompute a value if present
1987 * @return the new value associated with the specified key, or null if none
1988 * @throws NullPointerException if the specified key or the
1989 * remappingFunction is null
1990 * @throws RuntimeException or Error if the remappingFunction does so,
1991 * in which case the mapping is unchanged
1992 */
1993 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1994 if (key == null || value == null || remappingFunction == null)
1995 throw new NullPointerException();
1996 int h = spread(key.hashCode());
1997 V val = null;
1998 int delta = 0;
1999 int binCount = 0;
2000 for (Node<K,V>[] tab = table;;) {
2001 Node<K,V> f; int n, i, fh;
2002 if (tab == null || (n = tab.length) == 0)
2003 tab = initTable();
2004 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
2005 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value))) {
2006 delta = 1;
2007 val = value;
2008 break;
2009 }
2010 }
2011 else if ((fh = f.hash) == MOVED)
2012 tab = helpTransfer(tab, f);
2013 else {
2014 synchronized (f) {
2015 if (tabAt(tab, i) == f) {
2016 if (fh >= 0) {
2017 binCount = 1;
2018 for (Node<K,V> e = f, pred = null;; ++binCount) {
2019 K ek;
2020 if (e.hash == h &&
2021 ((ek = e.key) == key ||
2022 (ek != null && key.equals(ek)))) {
2023 val = remappingFunction.apply(e.val, value);
2024 if (val != null)
2025 e.val = val;
2026 else {
2027 delta = -1;
2028 Node<K,V> en = e.next;
2029 if (pred != null)
2030 pred.next = en;
2031 else
2032 setTabAt(tab, i, en);
2033 }
2034 break;
2035 }
2036 pred = e;
2037 if ((e = e.next) == null) {
2038 delta = 1;
2039 val = value;
2040 pred.next = new Node<K,V>(h, key, val);
2041 break;
2042 }
2043 }
2044 }
2045 else if (f instanceof TreeBin) {
2046 binCount = 2;
2047 TreeBin<K,V> t = (TreeBin<K,V>)f;
2048 TreeNode<K,V> r = t.root;
2049 TreeNode<K,V> p = (r == null) ? null :
2050 r.findTreeNode(h, key, null);
2051 val = (p == null) ? value :
2052 remappingFunction.apply(p.val, value);
2053 if (val != null) {
2054 if (p != null)
2055 p.val = val;
2056 else {
2057 delta = 1;
2058 t.putTreeVal(h, key, val);
2059 }
2060 }
2061 else if (p != null) {
2062 delta = -1;
2063 if (t.removeTreeNode(p))
2064 setTabAt(tab, i, untreeify(t.first));
2065 }
2066 }
2067 else if (f instanceof ReservationNode)
2068 throw new IllegalStateException("Recursive update");
2069 }
2070 }
2071 if (binCount != 0) {
2072 if (binCount >= TREEIFY_THRESHOLD)
2073 treeifyBin(tab, i);
2074 break;
2075 }
2076 }
2077 }
2078 if (delta != 0)
2079 addCount((long)delta, binCount);
2080 return val;
2081 }
2082
2083 // Hashtable legacy methods
2084
2085 /**
2086 * Tests if some key maps into the specified value in this table.
2087 *
2088 * <p>Note that this method is identical in functionality to
2089 * {@link #containsValue(Object)}, and exists solely to ensure
2090 * full compatibility with class {@link java.util.Hashtable},
2091 * which supported this method prior to introduction of the
2092 * Java Collections Framework.
2093 *
2094 * @param value a value to search for
2095 * @return {@code true} if and only if some key maps to the
2096 * {@code value} argument in this table as
2097 * determined by the {@code equals} method;
2098 * {@code false} otherwise
2099 * @throws NullPointerException if the specified value is null
2100 */
2101 public boolean contains(Object value) {
2102 return containsValue(value);
2103 }
2104
2105 /**
2106 * Returns an enumeration of the keys in this table.
2107 *
2108 * @return an enumeration of the keys in this table
2109 * @see #keySet()
2110 */
2111 public Enumeration<K> keys() {
2112 Node<K,V>[] t;
2113 int f = (t = table) == null ? 0 : t.length;
2114 return new KeyIterator<K,V>(t, f, 0, f, this);
2115 }
2116
2117 /**
2118 * Returns an enumeration of the values in this table.
2119 *
2120 * @return an enumeration of the values in this table
2121 * @see #values()
2122 */
2123 public Enumeration<V> elements() {
2124 Node<K,V>[] t;
2125 int f = (t = table) == null ? 0 : t.length;
2126 return new ValueIterator<K,V>(t, f, 0, f, this);
2127 }
2128
2129 // ConcurrentHashMap-only methods
2130
2131 /**
2132 * Returns the number of mappings. This method should be used
2133 * instead of {@link #size} because a ConcurrentHashMap may
2134 * contain more mappings than can be represented as an int. The
2135 * value returned is an estimate; the actual count may differ if
2136 * there are concurrent insertions or removals.
2137 *
2138 * @return the number of mappings
2139 * @since 1.8
2140 */
2141 public long mappingCount() {
2142 long n = sumCount();
2143 return (n < 0L) ? 0L : n; // ignore transient negative values
2144 }
2145
2146 /**
2147 * Creates a new {@link Set} backed by a ConcurrentHashMap
2148 * from the given type to {@code Boolean.TRUE}.
2149 *
2150 * @param <K> the element type of the returned set
2151 * @return the new set
2152 * @since 1.8
2153 */
2154 public static <K> KeySetView<K,Boolean> newKeySet() {
2155 return new KeySetView<K,Boolean>
2156 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2157 }
2158
2159 /**
2160 * Creates a new {@link Set} backed by a ConcurrentHashMap
2161 * from the given type to {@code Boolean.TRUE}.
2162 *
2163 * @param initialCapacity The implementation performs internal
2164 * sizing to accommodate this many elements.
2165 * @param <K> the element type of the returned set
2166 * @return the new set
2167 * @throws IllegalArgumentException if the initial capacity of
2168 * elements is negative
2169 * @since 1.8
2170 */
2171 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2172 return new KeySetView<K,Boolean>
2173 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2174 }
2175
2176 /**
2177 * Returns a {@link Set} view of the keys in this map, using the
2178 * given common mapped value for any additions (i.e., {@link
2179 * Collection#add} and {@link Collection#addAll(Collection)}).
2180 * This is of course only appropriate if it is acceptable to use
2181 * the same value for all additions from this view.
2182 *
2183 * @param mappedValue the mapped value to use for any additions
2184 * @return the set view
2185 * @throws NullPointerException if the mappedValue is null
2186 */
2187 public KeySetView<K,V> keySet(V mappedValue) {
2188 if (mappedValue == null)
2189 throw new NullPointerException();
2190 return new KeySetView<K,V>(this, mappedValue);
2191 }
2192
2193 /* ---------------- Special Nodes -------------- */
2194
2195 /**
2196 * A node inserted at head of bins during transfer operations.
2197 */
2198 static final class ForwardingNode<K,V> extends Node<K,V> {
2199 final Node<K,V>[] nextTable;
2200 ForwardingNode(Node<K,V>[] tab) {
2201 super(MOVED, null, null);
2202 this.nextTable = tab;
2203 }
2204
2205 Node<K,V> find(int h, Object k) {
2206 // loop to avoid arbitrarily deep recursion on forwarding nodes
2207 outer: for (Node<K,V>[] tab = nextTable;;) {
2208 Node<K,V> e; int n;
2209 if (k == null || tab == null || (n = tab.length) == 0 ||
2210 (e = tabAt(tab, (n - 1) & h)) == null)
2211 return null;
2212 for (;;) {
2213 int eh; K ek;
2214 if ((eh = e.hash) == h &&
2215 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2216 return e;
2217 if (eh < 0) {
2218 if (e instanceof ForwardingNode) {
2219 tab = ((ForwardingNode<K,V>)e).nextTable;
2220 continue outer;
2221 }
2222 else
2223 return e.find(h, k);
2224 }
2225 if ((e = e.next) == null)
2226 return null;
2227 }
2228 }
2229 }
2230 }
2231
2232 /**
2233 * A place-holder node used in computeIfAbsent and compute.
2234 */
2235 static final class ReservationNode<K,V> extends Node<K,V> {
2236 ReservationNode() {
2237 super(RESERVED, null, null);
2238 }
2239
2240 Node<K,V> find(int h, Object k) {
2241 return null;
2242 }
2243 }
2244
2245 /* ---------------- Table Initialization and Resizing -------------- */
2246
2247 /**
2248 * Returns the stamp bits for resizing a table of size n.
2249 * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2250 */
2251 static final int resizeStamp(int n) {
2252 return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2253 }
2254
2255 /**
2256 * Initializes table, using the size recorded in sizeCtl.
2257 */
2258 private final Node<K,V>[] initTable() {
2259 Node<K,V>[] tab; int sc;
2260 while ((tab = table) == null || tab.length == 0) {
2261 if ((sc = sizeCtl) < 0)
2262 Thread.yield(); // lost initialization race; just spin
2263 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2264 try {
2265 if ((tab = table) == null || tab.length == 0) {
2266 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2267 @SuppressWarnings("unchecked")
2268 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2269 table = tab = nt;
2270 sc = n - (n >>> 2);
2271 }
2272 } finally {
2273 sizeCtl = sc;
2274 }
2275 break;
2276 }
2277 }
2278 return tab;
2279 }
2280
2281 /**
2282 * Adds to count, and if table is too small and not already
2283 * resizing, initiates transfer. If already resizing, helps
2284 * perform transfer if work is available. Rechecks occupancy
2285 * after a transfer to see if another resize is already needed
2286 * because resizings are lagging additions.
2287 *
2288 * @param x the count to add
2289 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2290 */
2291 private final void addCount(long x, int check) {
2292 CounterCell[] as; long b, s;
2293 if ((as = counterCells) != null ||
2294 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2295 CounterCell a; long v; int m;
2296 boolean uncontended = true;
2297 if (as == null || (m = as.length - 1) < 0 ||
2298 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2299 !(uncontended =
2300 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2301 fullAddCount(x, uncontended);
2302 return;
2303 }
2304 if (check <= 1)
2305 return;
2306 s = sumCount();
2307 }
2308 if (check >= 0) {
2309 Node<K,V>[] tab, nt; int n, sc;
2310 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2311 (n = tab.length) < MAXIMUM_CAPACITY) {
2312 int rs = resizeStamp(n);
2313 if (sc < 0) {
2314 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2315 sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2316 transferIndex <= 0)
2317 break;
2318 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2319 transfer(tab, nt);
2320 }
2321 else if (U.compareAndSwapInt(this, SIZECTL, sc,
2322 (rs << RESIZE_STAMP_SHIFT) + 2))
2323 transfer(tab, null);
2324 s = sumCount();
2325 }
2326 }
2327 }
2328
2329 /**
2330 * Helps transfer if a resize is in progress.
2331 */
2332 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2333 Node<K,V>[] nextTab; int sc;
2334 if (tab != null && (f instanceof ForwardingNode) &&
2335 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2336 int rs = resizeStamp(tab.length);
2337 while (nextTab == nextTable && table == tab &&
2338 (sc = sizeCtl) < 0) {
2339 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2340 sc == rs + MAX_RESIZERS || transferIndex <= 0)
2341 break;
2342 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2343 transfer(tab, nextTab);
2344 break;
2345 }
2346 }
2347 return nextTab;
2348 }
2349 return table;
2350 }
2351
2352 /**
2353 * Tries to presize table to accommodate the given number of elements.
2354 *
2355 * @param size number of elements (doesn't need to be perfectly accurate)
2356 */
2357 private final void tryPresize(int size) {
2358 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2359 tableSizeFor(size + (size >>> 1) + 1);
2360 int sc;
2361 while ((sc = sizeCtl) >= 0) {
2362 Node<K,V>[] tab = table; int n;
2363 if (tab == null || (n = tab.length) == 0) {
2364 n = (sc > c) ? sc : c;
2365 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2366 try {
2367 if (table == tab) {
2368 @SuppressWarnings("unchecked")
2369 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2370 table = nt;
2371 sc = n - (n >>> 2);
2372 }
2373 } finally {
2374 sizeCtl = sc;
2375 }
2376 }
2377 }
2378 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2379 break;
2380 else if (tab == table) {
2381 int rs = resizeStamp(n);
2382 if (U.compareAndSwapInt(this, SIZECTL, sc,
2383 (rs << RESIZE_STAMP_SHIFT) + 2))
2384 transfer(tab, null);
2385 }
2386 }
2387 }
2388
2389 /**
2390 * Moves and/or copies the nodes in each bin to new table. See
2391 * above for explanation.
2392 */
2393 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2394 int n = tab.length, stride;
2395 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2396 stride = MIN_TRANSFER_STRIDE; // subdivide range
2397 if (nextTab == null) { // initiating
2398 try {
2399 @SuppressWarnings("unchecked")
2400 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2401 nextTab = nt;
2402 } catch (Throwable ex) { // try to cope with OOME
2403 sizeCtl = Integer.MAX_VALUE;
2404 return;
2405 }
2406 nextTable = nextTab;
2407 transferIndex = n;
2408 }
2409 int nextn = nextTab.length;
2410 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2411 boolean advance = true;
2412 boolean finishing = false; // to ensure sweep before committing nextTab
2413 for (int i = 0, bound = 0;;) {
2414 Node<K,V> f; int fh;
2415 while (advance) {
2416 int nextIndex, nextBound;
2417 if (--i >= bound || finishing)
2418 advance = false;
2419 else if ((nextIndex = transferIndex) <= 0) {
2420 i = -1;
2421 advance = false;
2422 }
2423 else if (U.compareAndSwapInt
2424 (this, TRANSFERINDEX, nextIndex,
2425 nextBound = (nextIndex > stride ?
2426 nextIndex - stride : 0))) {
2427 bound = nextBound;
2428 i = nextIndex - 1;
2429 advance = false;
2430 }
2431 }
2432 if (i < 0 || i >= n || i + n >= nextn) {
2433 int sc;
2434 if (finishing) {
2435 nextTable = null;
2436 table = nextTab;
2437 sizeCtl = (n << 1) - (n >>> 1);
2438 return;
2439 }
2440 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2441 if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2442 return;
2443 finishing = advance = true;
2444 i = n; // recheck before commit
2445 }
2446 }
2447 else if ((f = tabAt(tab, i)) == null)
2448 advance = casTabAt(tab, i, null, fwd);
2449 else if ((fh = f.hash) == MOVED)
2450 advance = true; // already processed
2451 else {
2452 synchronized (f) {
2453 if (tabAt(tab, i) == f) {
2454 Node<K,V> ln, hn;
2455 if (fh >= 0) {
2456 int runBit = fh & n;
2457 Node<K,V> lastRun = f;
2458 for (Node<K,V> p = f.next; p != null; p = p.next) {
2459 int b = p.hash & n;
2460 if (b != runBit) {
2461 runBit = b;
2462 lastRun = p;
2463 }
2464 }
2465 if (runBit == 0) {
2466 ln = lastRun;
2467 hn = null;
2468 }
2469 else {
2470 hn = lastRun;
2471 ln = null;
2472 }
2473 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2474 int ph = p.hash; K pk = p.key; V pv = p.val;
2475 if ((ph & n) == 0)
2476 ln = new Node<K,V>(ph, pk, pv, ln);
2477 else
2478 hn = new Node<K,V>(ph, pk, pv, hn);
2479 }
2480 setTabAt(nextTab, i, ln);
2481 setTabAt(nextTab, i + n, hn);
2482 setTabAt(tab, i, fwd);
2483 advance = true;
2484 }
2485 else if (f instanceof TreeBin) {
2486 TreeBin<K,V> t = (TreeBin<K,V>)f;
2487 TreeNode<K,V> lo = null, loTail = null;
2488 TreeNode<K,V> hi = null, hiTail = null;
2489 int lc = 0, hc = 0;
2490 for (Node<K,V> e = t.first; e != null; e = e.next) {
2491 int h = e.hash;
2492 TreeNode<K,V> p = new TreeNode<K,V>
2493 (h, e.key, e.val, null, null);
2494 if ((h & n) == 0) {
2495 if ((p.prev = loTail) == null)
2496 lo = p;
2497 else
2498 loTail.next = p;
2499 loTail = p;
2500 ++lc;
2501 }
2502 else {
2503 if ((p.prev = hiTail) == null)
2504 hi = p;
2505 else
2506 hiTail.next = p;
2507 hiTail = p;
2508 ++hc;
2509 }
2510 }
2511 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2512 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2513 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2514 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2515 setTabAt(nextTab, i, ln);
2516 setTabAt(nextTab, i + n, hn);
2517 setTabAt(tab, i, fwd);
2518 advance = true;
2519 }
2520 }
2521 }
2522 }
2523 }
2524 }
2525
2526 /* ---------------- Counter support -------------- */
2527
2528 /**
2529 * A padded cell for distributing counts. Adapted from LongAdder
2530 * and Striped64. See their internal docs for explanation.
2531 */
2532 @jdk.internal.vm.annotation.Contended static final class CounterCell {
2533 volatile long value;
2534 CounterCell(long x) { value = x; }
2535 }
2536
2537 final long sumCount() {
2538 CounterCell[] as = counterCells; CounterCell a;
2539 long sum = baseCount;
2540 if (as != null) {
2541 for (int i = 0; i < as.length; ++i) {
2542 if ((a = as[i]) != null)
2543 sum += a.value;
2544 }
2545 }
2546 return sum;
2547 }
2548
2549 // See LongAdder version for explanation
2550 private final void fullAddCount(long x, boolean wasUncontended) {
2551 int h;
2552 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2553 ThreadLocalRandom.localInit(); // force initialization
2554 h = ThreadLocalRandom.getProbe();
2555 wasUncontended = true;
2556 }
2557 boolean collide = false; // True if last slot nonempty
2558 for (;;) {
2559 CounterCell[] as; CounterCell a; int n; long v;
2560 if ((as = counterCells) != null && (n = as.length) > 0) {
2561 if ((a = as[(n - 1) & h]) == null) {
2562 if (cellsBusy == 0) { // Try to attach new Cell
2563 CounterCell r = new CounterCell(x); // Optimistic create
2564 if (cellsBusy == 0 &&
2565 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2566 boolean created = false;
2567 try { // Recheck under lock
2568 CounterCell[] rs; int m, j;
2569 if ((rs = counterCells) != null &&
2570 (m = rs.length) > 0 &&
2571 rs[j = (m - 1) & h] == null) {
2572 rs[j] = r;
2573 created = true;
2574 }
2575 } finally {
2576 cellsBusy = 0;
2577 }
2578 if (created)
2579 break;
2580 continue; // Slot is now non-empty
2581 }
2582 }
2583 collide = false;
2584 }
2585 else if (!wasUncontended) // CAS already known to fail
2586 wasUncontended = true; // Continue after rehash
2587 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2588 break;
2589 else if (counterCells != as || n >= NCPU)
2590 collide = false; // At max size or stale
2591 else if (!collide)
2592 collide = true;
2593 else if (cellsBusy == 0 &&
2594 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2595 try {
2596 if (counterCells == as) {// Expand table unless stale
2597 CounterCell[] rs = new CounterCell[n << 1];
2598 for (int i = 0; i < n; ++i)
2599 rs[i] = as[i];
2600 counterCells = rs;
2601 }
2602 } finally {
2603 cellsBusy = 0;
2604 }
2605 collide = false;
2606 continue; // Retry with expanded table
2607 }
2608 h = ThreadLocalRandom.advanceProbe(h);
2609 }
2610 else if (cellsBusy == 0 && counterCells == as &&
2611 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2612 boolean init = false;
2613 try { // Initialize table
2614 if (counterCells == as) {
2615 CounterCell[] rs = new CounterCell[2];
2616 rs[h & 1] = new CounterCell(x);
2617 counterCells = rs;
2618 init = true;
2619 }
2620 } finally {
2621 cellsBusy = 0;
2622 }
2623 if (init)
2624 break;
2625 }
2626 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2627 break; // Fall back on using base
2628 }
2629 }
2630
2631 /* ---------------- Conversion from/to TreeBins -------------- */
2632
2633 /**
2634 * Replaces all linked nodes in bin at given index unless table is
2635 * too small, in which case resizes instead.
2636 */
2637 private final void treeifyBin(Node<K,V>[] tab, int index) {
2638 Node<K,V> b; int n;
2639 if (tab != null) {
2640 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2641 tryPresize(n << 1);
2642 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2643 synchronized (b) {
2644 if (tabAt(tab, index) == b) {
2645 TreeNode<K,V> hd = null, tl = null;
2646 for (Node<K,V> e = b; e != null; e = e.next) {
2647 TreeNode<K,V> p =
2648 new TreeNode<K,V>(e.hash, e.key, e.val,
2649 null, null);
2650 if ((p.prev = tl) == null)
2651 hd = p;
2652 else
2653 tl.next = p;
2654 tl = p;
2655 }
2656 setTabAt(tab, index, new TreeBin<K,V>(hd));
2657 }
2658 }
2659 }
2660 }
2661 }
2662
2663 /**
2664 * Returns a list of non-TreeNodes replacing those in given list.
2665 */
2666 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2667 Node<K,V> hd = null, tl = null;
2668 for (Node<K,V> q = b; q != null; q = q.next) {
2669 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val);
2670 if (tl == null)
2671 hd = p;
2672 else
2673 tl.next = p;
2674 tl = p;
2675 }
2676 return hd;
2677 }
2678
2679 /* ---------------- TreeNodes -------------- */
2680
2681 /**
2682 * Nodes for use in TreeBins.
2683 */
2684 static final class TreeNode<K,V> extends Node<K,V> {
2685 TreeNode<K,V> parent; // red-black tree links
2686 TreeNode<K,V> left;
2687 TreeNode<K,V> right;
2688 TreeNode<K,V> prev; // needed to unlink next upon deletion
2689 boolean red;
2690
2691 TreeNode(int hash, K key, V val, Node<K,V> next,
2692 TreeNode<K,V> parent) {
2693 super(hash, key, val, next);
2694 this.parent = parent;
2695 }
2696
2697 Node<K,V> find(int h, Object k) {
2698 return findTreeNode(h, k, null);
2699 }
2700
2701 /**
2702 * Returns the TreeNode (or null if not found) for the given key
2703 * starting at given root.
2704 */
2705 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2706 if (k != null) {
2707 TreeNode<K,V> p = this;
2708 do {
2709 int ph, dir; K pk; TreeNode<K,V> q;
2710 TreeNode<K,V> pl = p.left, pr = p.right;
2711 if ((ph = p.hash) > h)
2712 p = pl;
2713 else if (ph < h)
2714 p = pr;
2715 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2716 return p;
2717 else if (pl == null)
2718 p = pr;
2719 else if (pr == null)
2720 p = pl;
2721 else if ((kc != null ||
2722 (kc = comparableClassFor(k)) != null) &&
2723 (dir = compareComparables(kc, k, pk)) != 0)
2724 p = (dir < 0) ? pl : pr;
2725 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2726 return q;
2727 else
2728 p = pl;
2729 } while (p != null);
2730 }
2731 return null;
2732 }
2733 }
2734
2735 /* ---------------- TreeBins -------------- */
2736
2737 /**
2738 * TreeNodes used at the heads of bins. TreeBins do not hold user
2739 * keys or values, but instead point to list of TreeNodes and
2740 * their root. They also maintain a parasitic read-write lock
2741 * forcing writers (who hold bin lock) to wait for readers (who do
2742 * not) to complete before tree restructuring operations.
2743 */
2744 static final class TreeBin<K,V> extends Node<K,V> {
2745 TreeNode<K,V> root;
2746 volatile TreeNode<K,V> first;
2747 volatile Thread waiter;
2748 volatile int lockState;
2749 // values for lockState
2750 static final int WRITER = 1; // set while holding write lock
2751 static final int WAITER = 2; // set when waiting for write lock
2752 static final int READER = 4; // increment value for setting read lock
2753
2754 /**
2755 * Tie-breaking utility for ordering insertions when equal
2756 * hashCodes and non-comparable. We don't require a total
2757 * order, just a consistent insertion rule to maintain
2758 * equivalence across rebalancings. Tie-breaking further than
2759 * necessary simplifies testing a bit.
2760 */
2761 static int tieBreakOrder(Object a, Object b) {
2762 int d;
2763 if (a == null || b == null ||
2764 (d = a.getClass().getName().
2765 compareTo(b.getClass().getName())) == 0)
2766 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2767 -1 : 1);
2768 return d;
2769 }
2770
2771 /**
2772 * Creates bin with initial set of nodes headed by b.
2773 */
2774 TreeBin(TreeNode<K,V> b) {
2775 super(TREEBIN, null, null);
2776 this.first = b;
2777 TreeNode<K,V> r = null;
2778 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2779 next = (TreeNode<K,V>)x.next;
2780 x.left = x.right = null;
2781 if (r == null) {
2782 x.parent = null;
2783 x.red = false;
2784 r = x;
2785 }
2786 else {
2787 K k = x.key;
2788 int h = x.hash;
2789 Class<?> kc = null;
2790 for (TreeNode<K,V> p = r;;) {
2791 int dir, ph;
2792 K pk = p.key;
2793 if ((ph = p.hash) > h)
2794 dir = -1;
2795 else if (ph < h)
2796 dir = 1;
2797 else if ((kc == null &&
2798 (kc = comparableClassFor(k)) == null) ||
2799 (dir = compareComparables(kc, k, pk)) == 0)
2800 dir = tieBreakOrder(k, pk);
2801 TreeNode<K,V> xp = p;
2802 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2803 x.parent = xp;
2804 if (dir <= 0)
2805 xp.left = x;
2806 else
2807 xp.right = x;
2808 r = balanceInsertion(r, x);
2809 break;
2810 }
2811 }
2812 }
2813 }
2814 this.root = r;
2815 assert checkInvariants(root);
2816 }
2817
2818 /**
2819 * Acquires write lock for tree restructuring.
2820 */
2821 private final void lockRoot() {
2822 if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2823 contendedLock(); // offload to separate method
2824 }
2825
2826 /**
2827 * Releases write lock for tree restructuring.
2828 */
2829 private final void unlockRoot() {
2830 lockState = 0;
2831 }
2832
2833 /**
2834 * Possibly blocks awaiting root lock.
2835 */
2836 private final void contendedLock() {
2837 boolean waiting = false;
2838 for (int s;;) {
2839 if (((s = lockState) & ~WAITER) == 0) {
2840 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2841 if (waiting)
2842 waiter = null;
2843 return;
2844 }
2845 }
2846 else if ((s & WAITER) == 0) {
2847 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2848 waiting = true;
2849 waiter = Thread.currentThread();
2850 }
2851 }
2852 else if (waiting)
2853 LockSupport.park(this);
2854 }
2855 }
2856
2857 /**
2858 * Returns matching node or null if none. Tries to search
2859 * using tree comparisons from root, but continues linear
2860 * search when lock not available.
2861 */
2862 final Node<K,V> find(int h, Object k) {
2863 if (k != null) {
2864 for (Node<K,V> e = first; e != null; ) {
2865 int s; K ek;
2866 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2867 if (e.hash == h &&
2868 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2869 return e;
2870 e = e.next;
2871 }
2872 else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2873 s + READER)) {
2874 TreeNode<K,V> r, p;
2875 try {
2876 p = ((r = root) == null ? null :
2877 r.findTreeNode(h, k, null));
2878 } finally {
2879 Thread w;
2880 if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2881 (READER|WAITER) && (w = waiter) != null)
2882 LockSupport.unpark(w);
2883 }
2884 return p;
2885 }
2886 }
2887 }
2888 return null;
2889 }
2890
2891 /**
2892 * Finds or adds a node.
2893 * @return null if added
2894 */
2895 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2896 Class<?> kc = null;
2897 boolean searched = false;
2898 for (TreeNode<K,V> p = root;;) {
2899 int dir, ph; K pk;
2900 if (p == null) {
2901 first = root = new TreeNode<K,V>(h, k, v, null, null);
2902 break;
2903 }
2904 else if ((ph = p.hash) > h)
2905 dir = -1;
2906 else if (ph < h)
2907 dir = 1;
2908 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2909 return p;
2910 else if ((kc == null &&
2911 (kc = comparableClassFor(k)) == null) ||
2912 (dir = compareComparables(kc, k, pk)) == 0) {
2913 if (!searched) {
2914 TreeNode<K,V> q, ch;
2915 searched = true;
2916 if (((ch = p.left) != null &&
2917 (q = ch.findTreeNode(h, k, kc)) != null) ||
2918 ((ch = p.right) != null &&
2919 (q = ch.findTreeNode(h, k, kc)) != null))
2920 return q;
2921 }
2922 dir = tieBreakOrder(k, pk);
2923 }
2924
2925 TreeNode<K,V> xp = p;
2926 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2927 TreeNode<K,V> x, f = first;
2928 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2929 if (f != null)
2930 f.prev = x;
2931 if (dir <= 0)
2932 xp.left = x;
2933 else
2934 xp.right = x;
2935 if (!xp.red)
2936 x.red = true;
2937 else {
2938 lockRoot();
2939 try {
2940 root = balanceInsertion(root, x);
2941 } finally {
2942 unlockRoot();
2943 }
2944 }
2945 break;
2946 }
2947 }
2948 assert checkInvariants(root);
2949 return null;
2950 }
2951
2952 /**
2953 * Removes the given node, that must be present before this
2954 * call. This is messier than typical red-black deletion code
2955 * because we cannot swap the contents of an interior node
2956 * with a leaf successor that is pinned by "next" pointers
2957 * that are accessible independently of lock. So instead we
2958 * swap the tree linkages.
2959 *
2960 * @return true if now too small, so should be untreeified
2961 */
2962 final boolean removeTreeNode(TreeNode<K,V> p) {
2963 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2964 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2965 TreeNode<K,V> r, rl;
2966 if (pred == null)
2967 first = next;
2968 else
2969 pred.next = next;
2970 if (next != null)
2971 next.prev = pred;
2972 if (first == null) {
2973 root = null;
2974 return true;
2975 }
2976 if ((r = root) == null || r.right == null || // too small
2977 (rl = r.left) == null || rl.left == null)
2978 return true;
2979 lockRoot();
2980 try {
2981 TreeNode<K,V> replacement;
2982 TreeNode<K,V> pl = p.left;
2983 TreeNode<K,V> pr = p.right;
2984 if (pl != null && pr != null) {
2985 TreeNode<K,V> s = pr, sl;
2986 while ((sl = s.left) != null) // find successor
2987 s = sl;
2988 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2989 TreeNode<K,V> sr = s.right;
2990 TreeNode<K,V> pp = p.parent;
2991 if (s == pr) { // p was s's direct parent
2992 p.parent = s;
2993 s.right = p;
2994 }
2995 else {
2996 TreeNode<K,V> sp = s.parent;
2997 if ((p.parent = sp) != null) {
2998 if (s == sp.left)
2999 sp.left = p;
3000 else
3001 sp.right = p;
3002 }
3003 if ((s.right = pr) != null)
3004 pr.parent = s;
3005 }
3006 p.left = null;
3007 if ((p.right = sr) != null)
3008 sr.parent = p;
3009 if ((s.left = pl) != null)
3010 pl.parent = s;
3011 if ((s.parent = pp) == null)
3012 r = s;
3013 else if (p == pp.left)
3014 pp.left = s;
3015 else
3016 pp.right = s;
3017 if (sr != null)
3018 replacement = sr;
3019 else
3020 replacement = p;
3021 }
3022 else if (pl != null)
3023 replacement = pl;
3024 else if (pr != null)
3025 replacement = pr;
3026 else
3027 replacement = p;
3028 if (replacement != p) {
3029 TreeNode<K,V> pp = replacement.parent = p.parent;
3030 if (pp == null)
3031 r = replacement;
3032 else if (p == pp.left)
3033 pp.left = replacement;
3034 else
3035 pp.right = replacement;
3036 p.left = p.right = p.parent = null;
3037 }
3038
3039 root = (p.red) ? r : balanceDeletion(r, replacement);
3040
3041 if (p == replacement) { // detach pointers
3042 TreeNode<K,V> pp;
3043 if ((pp = p.parent) != null) {
3044 if (p == pp.left)
3045 pp.left = null;
3046 else if (p == pp.right)
3047 pp.right = null;
3048 p.parent = null;
3049 }
3050 }
3051 } finally {
3052 unlockRoot();
3053 }
3054 assert checkInvariants(root);
3055 return false;
3056 }
3057
3058 /* ------------------------------------------------------------ */
3059 // Red-black tree methods, all adapted from CLR
3060
3061 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3062 TreeNode<K,V> p) {
3063 TreeNode<K,V> r, pp, rl;
3064 if (p != null && (r = p.right) != null) {
3065 if ((rl = p.right = r.left) != null)
3066 rl.parent = p;
3067 if ((pp = r.parent = p.parent) == null)
3068 (root = r).red = false;
3069 else if (pp.left == p)
3070 pp.left = r;
3071 else
3072 pp.right = r;
3073 r.left = p;
3074 p.parent = r;
3075 }
3076 return root;
3077 }
3078
3079 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3080 TreeNode<K,V> p) {
3081 TreeNode<K,V> l, pp, lr;
3082 if (p != null && (l = p.left) != null) {
3083 if ((lr = p.left = l.right) != null)
3084 lr.parent = p;
3085 if ((pp = l.parent = p.parent) == null)
3086 (root = l).red = false;
3087 else if (pp.right == p)
3088 pp.right = l;
3089 else
3090 pp.left = l;
3091 l.right = p;
3092 p.parent = l;
3093 }
3094 return root;
3095 }
3096
3097 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3098 TreeNode<K,V> x) {
3099 x.red = true;
3100 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3101 if ((xp = x.parent) == null) {
3102 x.red = false;
3103 return x;
3104 }
3105 else if (!xp.red || (xpp = xp.parent) == null)
3106 return root;
3107 if (xp == (xppl = xpp.left)) {
3108 if ((xppr = xpp.right) != null && xppr.red) {
3109 xppr.red = false;
3110 xp.red = false;
3111 xpp.red = true;
3112 x = xpp;
3113 }
3114 else {
3115 if (x == xp.right) {
3116 root = rotateLeft(root, x = xp);
3117 xpp = (xp = x.parent) == null ? null : xp.parent;
3118 }
3119 if (xp != null) {
3120 xp.red = false;
3121 if (xpp != null) {
3122 xpp.red = true;
3123 root = rotateRight(root, xpp);
3124 }
3125 }
3126 }
3127 }
3128 else {
3129 if (xppl != null && xppl.red) {
3130 xppl.red = false;
3131 xp.red = false;
3132 xpp.red = true;
3133 x = xpp;
3134 }
3135 else {
3136 if (x == xp.left) {
3137 root = rotateRight(root, x = xp);
3138 xpp = (xp = x.parent) == null ? null : xp.parent;
3139 }
3140 if (xp != null) {
3141 xp.red = false;
3142 if (xpp != null) {
3143 xpp.red = true;
3144 root = rotateLeft(root, xpp);
3145 }
3146 }
3147 }
3148 }
3149 }
3150 }
3151
3152 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3153 TreeNode<K,V> x) {
3154 for (TreeNode<K,V> xp, xpl, xpr;;) {
3155 if (x == null || x == root)
3156 return root;
3157 else if ((xp = x.parent) == null) {
3158 x.red = false;
3159 return x;
3160 }
3161 else if (x.red) {
3162 x.red = false;
3163 return root;
3164 }
3165 else if ((xpl = xp.left) == x) {
3166 if ((xpr = xp.right) != null && xpr.red) {
3167 xpr.red = false;
3168 xp.red = true;
3169 root = rotateLeft(root, xp);
3170 xpr = (xp = x.parent) == null ? null : xp.right;
3171 }
3172 if (xpr == null)
3173 x = xp;
3174 else {
3175 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3176 if ((sr == null || !sr.red) &&
3177 (sl == null || !sl.red)) {
3178 xpr.red = true;
3179 x = xp;
3180 }
3181 else {
3182 if (sr == null || !sr.red) {
3183 if (sl != null)
3184 sl.red = false;
3185 xpr.red = true;
3186 root = rotateRight(root, xpr);
3187 xpr = (xp = x.parent) == null ?
3188 null : xp.right;
3189 }
3190 if (xpr != null) {
3191 xpr.red = (xp == null) ? false : xp.red;
3192 if ((sr = xpr.right) != null)
3193 sr.red = false;
3194 }
3195 if (xp != null) {
3196 xp.red = false;
3197 root = rotateLeft(root, xp);
3198 }
3199 x = root;
3200 }
3201 }
3202 }
3203 else { // symmetric
3204 if (xpl != null && xpl.red) {
3205 xpl.red = false;
3206 xp.red = true;
3207 root = rotateRight(root, xp);
3208 xpl = (xp = x.parent) == null ? null : xp.left;
3209 }
3210 if (xpl == null)
3211 x = xp;
3212 else {
3213 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3214 if ((sl == null || !sl.red) &&
3215 (sr == null || !sr.red)) {
3216 xpl.red = true;
3217 x = xp;
3218 }
3219 else {
3220 if (sl == null || !sl.red) {
3221 if (sr != null)
3222 sr.red = false;
3223 xpl.red = true;
3224 root = rotateLeft(root, xpl);
3225 xpl = (xp = x.parent) == null ?
3226 null : xp.left;
3227 }
3228 if (xpl != null) {
3229 xpl.red = (xp == null) ? false : xp.red;
3230 if ((sl = xpl.left) != null)
3231 sl.red = false;
3232 }
3233 if (xp != null) {
3234 xp.red = false;
3235 root = rotateRight(root, xp);
3236 }
3237 x = root;
3238 }
3239 }
3240 }
3241 }
3242 }
3243
3244 /**
3245 * Checks invariants recursively for the tree of Nodes rooted at t.
3246 */
3247 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3248 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3249 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3250 if (tb != null && tb.next != t)
3251 return false;
3252 if (tn != null && tn.prev != t)
3253 return false;
3254 if (tp != null && t != tp.left && t != tp.right)
3255 return false;
3256 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3257 return false;
3258 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3259 return false;
3260 if (t.red && tl != null && tl.red && tr != null && tr.red)
3261 return false;
3262 if (tl != null && !checkInvariants(tl))
3263 return false;
3264 if (tr != null && !checkInvariants(tr))
3265 return false;
3266 return true;
3267 }
3268
3269 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3270 private static final long LOCKSTATE;
3271 static {
3272 try {
3273 LOCKSTATE = U.objectFieldOffset
3274 (TreeBin.class.getDeclaredField("lockState"));
3275 } catch (ReflectiveOperationException e) {
3276 throw new Error(e);
3277 }
3278 }
3279 }
3280
3281 /* ----------------Table Traversal -------------- */
3282
3283 /**
3284 * Records the table, its length, and current traversal index for a
3285 * traverser that must process a region of a forwarded table before
3286 * proceeding with current table.
3287 */
3288 static final class TableStack<K,V> {
3289 int length;
3290 int index;
3291 Node<K,V>[] tab;
3292 TableStack<K,V> next;
3293 }
3294
3295 /**
3296 * Encapsulates traversal for methods such as containsValue; also
3297 * serves as a base class for other iterators and spliterators.
3298 *
3299 * Method advance visits once each still-valid node that was
3300 * reachable upon iterator construction. It might miss some that
3301 * were added to a bin after the bin was visited, which is OK wrt
3302 * consistency guarantees. Maintaining this property in the face
3303 * of possible ongoing resizes requires a fair amount of
3304 * bookkeeping state that is difficult to optimize away amidst
3305 * volatile accesses. Even so, traversal maintains reasonable
3306 * throughput.
3307 *
3308 * Normally, iteration proceeds bin-by-bin traversing lists.
3309 * However, if the table has been resized, then all future steps
3310 * must traverse both the bin at the current index as well as at
3311 * (index + baseSize); and so on for further resizings. To
3312 * paranoically cope with potential sharing by users of iterators
3313 * across threads, iteration terminates if a bounds checks fails
3314 * for a table read.
3315 */
3316 static class Traverser<K,V> {
3317 Node<K,V>[] tab; // current table; updated if resized
3318 Node<K,V> next; // the next entry to use
3319 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3320 int index; // index of bin to use next
3321 int baseIndex; // current index of initial table
3322 int baseLimit; // index bound for initial table
3323 final int baseSize; // initial table size
3324
3325 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3326 this.tab = tab;
3327 this.baseSize = size;
3328 this.baseIndex = this.index = index;
3329 this.baseLimit = limit;
3330 this.next = null;
3331 }
3332
3333 /**
3334 * Advances if possible, returning next valid node, or null if none.
3335 */
3336 final Node<K,V> advance() {
3337 Node<K,V> e;
3338 if ((e = next) != null)
3339 e = e.next;
3340 for (;;) {
3341 Node<K,V>[] t; int i, n; // must use locals in checks
3342 if (e != null)
3343 return next = e;
3344 if (baseIndex >= baseLimit || (t = tab) == null ||
3345 (n = t.length) <= (i = index) || i < 0)
3346 return next = null;
3347 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3348 if (e instanceof ForwardingNode) {
3349 tab = ((ForwardingNode<K,V>)e).nextTable;
3350 e = null;
3351 pushState(t, i, n);
3352 continue;
3353 }
3354 else if (e instanceof TreeBin)
3355 e = ((TreeBin<K,V>)e).first;
3356 else
3357 e = null;
3358 }
3359 if (stack != null)
3360 recoverState(n);
3361 else if ((index = i + baseSize) >= n)
3362 index = ++baseIndex; // visit upper slots if present
3363 }
3364 }
3365
3366 /**
3367 * Saves traversal state upon encountering a forwarding node.
3368 */
3369 private void pushState(Node<K,V>[] t, int i, int n) {
3370 TableStack<K,V> s = spare; // reuse if possible
3371 if (s != null)
3372 spare = s.next;
3373 else
3374 s = new TableStack<K,V>();
3375 s.tab = t;
3376 s.length = n;
3377 s.index = i;
3378 s.next = stack;
3379 stack = s;
3380 }
3381
3382 /**
3383 * Possibly pops traversal state.
3384 *
3385 * @param n length of current table
3386 */
3387 private void recoverState(int n) {
3388 TableStack<K,V> s; int len;
3389 while ((s = stack) != null && (index += (len = s.length)) >= n) {
3390 n = len;
3391 index = s.index;
3392 tab = s.tab;
3393 s.tab = null;
3394 TableStack<K,V> next = s.next;
3395 s.next = spare; // save for reuse
3396 stack = next;
3397 spare = s;
3398 }
3399 if (s == null && (index += baseSize) >= n)
3400 index = ++baseIndex;
3401 }
3402 }
3403
3404 /**
3405 * Base of key, value, and entry Iterators. Adds fields to
3406 * Traverser to support iterator.remove.
3407 */
3408 static class BaseIterator<K,V> extends Traverser<K,V> {
3409 final ConcurrentHashMap<K,V> map;
3410 Node<K,V> lastReturned;
3411 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3412 ConcurrentHashMap<K,V> map) {
3413 super(tab, size, index, limit);
3414 this.map = map;
3415 advance();
3416 }
3417
3418 public final boolean hasNext() { return next != null; }
3419 public final boolean hasMoreElements() { return next != null; }
3420
3421 public final void remove() {
3422 Node<K,V> p;
3423 if ((p = lastReturned) == null)
3424 throw new IllegalStateException();
3425 lastReturned = null;
3426 map.replaceNode(p.key, null, null);
3427 }
3428 }
3429
3430 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3431 implements Iterator<K>, Enumeration<K> {
3432 KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3433 ConcurrentHashMap<K,V> map) {
3434 super(tab, index, size, limit, map);
3435 }
3436
3437 public final K next() {
3438 Node<K,V> p;
3439 if ((p = next) == null)
3440 throw new NoSuchElementException();
3441 K k = p.key;
3442 lastReturned = p;
3443 advance();
3444 return k;
3445 }
3446
3447 public final K nextElement() { return next(); }
3448 }
3449
3450 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3451 implements Iterator<V>, Enumeration<V> {
3452 ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3453 ConcurrentHashMap<K,V> map) {
3454 super(tab, index, size, limit, map);
3455 }
3456
3457 public final V next() {
3458 Node<K,V> p;
3459 if ((p = next) == null)
3460 throw new NoSuchElementException();
3461 V v = p.val;
3462 lastReturned = p;
3463 advance();
3464 return v;
3465 }
3466
3467 public final V nextElement() { return next(); }
3468 }
3469
3470 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3471 implements Iterator<Map.Entry<K,V>> {
3472 EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3473 ConcurrentHashMap<K,V> map) {
3474 super(tab, index, size, limit, map);
3475 }
3476
3477 public final Map.Entry<K,V> next() {
3478 Node<K,V> p;
3479 if ((p = next) == null)
3480 throw new NoSuchElementException();
3481 K k = p.key;
3482 V v = p.val;
3483 lastReturned = p;
3484 advance();
3485 return new MapEntry<K,V>(k, v, map);
3486 }
3487 }
3488
3489 /**
3490 * Exported Entry for EntryIterator.
3491 */
3492 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3493 final K key; // non-null
3494 V val; // non-null
3495 final ConcurrentHashMap<K,V> map;
3496 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3497 this.key = key;
3498 this.val = val;
3499 this.map = map;
3500 }
3501 public K getKey() { return key; }
3502 public V getValue() { return val; }
3503 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3504 public String toString() {
3505 return Helpers.mapEntryToString(key, val);
3506 }
3507
3508 public boolean equals(Object o) {
3509 Object k, v; Map.Entry<?,?> e;
3510 return ((o instanceof Map.Entry) &&
3511 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3512 (v = e.getValue()) != null &&
3513 (k == key || k.equals(key)) &&
3514 (v == val || v.equals(val)));
3515 }
3516
3517 /**
3518 * Sets our entry's value and writes through to the map. The
3519 * value to return is somewhat arbitrary here. Since we do not
3520 * necessarily track asynchronous changes, the most recent
3521 * "previous" value could be different from what we return (or
3522 * could even have been removed, in which case the put will
3523 * re-establish). We do not and cannot guarantee more.
3524 */
3525 public V setValue(V value) {
3526 if (value == null) throw new NullPointerException();
3527 V v = val;
3528 val = value;
3529 map.put(key, value);
3530 return v;
3531 }
3532 }
3533
3534 static final class KeySpliterator<K,V> extends Traverser<K,V>
3535 implements Spliterator<K> {
3536 long est; // size estimate
3537 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3538 long est) {
3539 super(tab, size, index, limit);
3540 this.est = est;
3541 }
3542
3543 public KeySpliterator<K,V> trySplit() {
3544 int i, f, h;
3545 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3546 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3547 f, est >>>= 1);
3548 }
3549
3550 public void forEachRemaining(Consumer<? super K> action) {
3551 if (action == null) throw new NullPointerException();
3552 for (Node<K,V> p; (p = advance()) != null;)
3553 action.accept(p.key);
3554 }
3555
3556 public boolean tryAdvance(Consumer<? super K> action) {
3557 if (action == null) throw new NullPointerException();
3558 Node<K,V> p;
3559 if ((p = advance()) == null)
3560 return false;
3561 action.accept(p.key);
3562 return true;
3563 }
3564
3565 public long estimateSize() { return est; }
3566
3567 public int characteristics() {
3568 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3569 Spliterator.NONNULL;
3570 }
3571 }
3572
3573 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3574 implements Spliterator<V> {
3575 long est; // size estimate
3576 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3577 long est) {
3578 super(tab, size, index, limit);
3579 this.est = est;
3580 }
3581
3582 public ValueSpliterator<K,V> trySplit() {
3583 int i, f, h;
3584 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3585 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3586 f, est >>>= 1);
3587 }
3588
3589 public void forEachRemaining(Consumer<? super V> action) {
3590 if (action == null) throw new NullPointerException();
3591 for (Node<K,V> p; (p = advance()) != null;)
3592 action.accept(p.val);
3593 }
3594
3595 public boolean tryAdvance(Consumer<? super V> action) {
3596 if (action == null) throw new NullPointerException();
3597 Node<K,V> p;
3598 if ((p = advance()) == null)
3599 return false;
3600 action.accept(p.val);
3601 return true;
3602 }
3603
3604 public long estimateSize() { return est; }
3605
3606 public int characteristics() {
3607 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3608 }
3609 }
3610
3611 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3612 implements Spliterator<Map.Entry<K,V>> {
3613 final ConcurrentHashMap<K,V> map; // To export MapEntry
3614 long est; // size estimate
3615 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3616 long est, ConcurrentHashMap<K,V> map) {
3617 super(tab, size, index, limit);
3618 this.map = map;
3619 this.est = est;
3620 }
3621
3622 public EntrySpliterator<K,V> trySplit() {
3623 int i, f, h;
3624 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3625 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3626 f, est >>>= 1, map);
3627 }
3628
3629 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3630 if (action == null) throw new NullPointerException();
3631 for (Node<K,V> p; (p = advance()) != null; )
3632 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3633 }
3634
3635 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3636 if (action == null) throw new NullPointerException();
3637 Node<K,V> p;
3638 if ((p = advance()) == null)
3639 return false;
3640 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3641 return true;
3642 }
3643
3644 public long estimateSize() { return est; }
3645
3646 public int characteristics() {
3647 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3648 Spliterator.NONNULL;
3649 }
3650 }
3651
3652 // Parallel bulk operations
3653
3654 /**
3655 * Computes initial batch value for bulk tasks. The returned value
3656 * is approximately exp2 of the number of times (minus one) to
3657 * split task by two before executing leaf action. This value is
3658 * faster to compute and more convenient to use as a guide to
3659 * splitting than is the depth, since it is used while dividing by
3660 * two anyway.
3661 */
3662 final int batchFor(long b) {
3663 long n;
3664 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3665 return 0;
3666 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3667 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3668 }
3669
3670 /**
3671 * Performs the given action for each (key, value).
3672 *
3673 * @param parallelismThreshold the (estimated) number of elements
3674 * needed for this operation to be executed in parallel
3675 * @param action the action
3676 * @since 1.8
3677 */
3678 public void forEach(long parallelismThreshold,
3679 BiConsumer<? super K,? super V> action) {
3680 if (action == null) throw new NullPointerException();
3681 new ForEachMappingTask<K,V>
3682 (null, batchFor(parallelismThreshold), 0, 0, table,
3683 action).invoke();
3684 }
3685
3686 /**
3687 * Performs the given action for each non-null transformation
3688 * of each (key, value).
3689 *
3690 * @param parallelismThreshold the (estimated) number of elements
3691 * needed for this operation to be executed in parallel
3692 * @param transformer a function returning the transformation
3693 * for an element, or null if there is no transformation (in
3694 * which case the action is not applied)
3695 * @param action the action
3696 * @param <U> the return type of the transformer
3697 * @since 1.8
3698 */
3699 public <U> void forEach(long parallelismThreshold,
3700 BiFunction<? super K, ? super V, ? extends U> transformer,
3701 Consumer<? super U> action) {
3702 if (transformer == null || action == null)
3703 throw new NullPointerException();
3704 new ForEachTransformedMappingTask<K,V,U>
3705 (null, batchFor(parallelismThreshold), 0, 0, table,
3706 transformer, action).invoke();
3707 }
3708
3709 /**
3710 * Returns a non-null result from applying the given search
3711 * function on each (key, value), or null if none. Upon
3712 * success, further element processing is suppressed and the
3713 * results of any other parallel invocations of the search
3714 * function are ignored.
3715 *
3716 * @param parallelismThreshold the (estimated) number of elements
3717 * needed for this operation to be executed in parallel
3718 * @param searchFunction a function returning a non-null
3719 * result on success, else null
3720 * @param <U> the return type of the search function
3721 * @return a non-null result from applying the given search
3722 * function on each (key, value), or null if none
3723 * @since 1.8
3724 */
3725 public <U> U search(long parallelismThreshold,
3726 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3727 if (searchFunction == null) throw new NullPointerException();
3728 return new SearchMappingsTask<K,V,U>
3729 (null, batchFor(parallelismThreshold), 0, 0, table,
3730 searchFunction, new AtomicReference<U>()).invoke();
3731 }
3732
3733 /**
3734 * Returns the result of accumulating the given transformation
3735 * of all (key, value) pairs using the given reducer to
3736 * combine values, or null if none.
3737 *
3738 * @param parallelismThreshold the (estimated) number of elements
3739 * needed for this operation to be executed in parallel
3740 * @param transformer a function returning the transformation
3741 * for an element, or null if there is no transformation (in
3742 * which case it is not combined)
3743 * @param reducer a commutative associative combining function
3744 * @param <U> the return type of the transformer
3745 * @return the result of accumulating the given transformation
3746 * of all (key, value) pairs
3747 * @since 1.8
3748 */
3749 public <U> U reduce(long parallelismThreshold,
3750 BiFunction<? super K, ? super V, ? extends U> transformer,
3751 BiFunction<? super U, ? super U, ? extends U> reducer) {
3752 if (transformer == null || reducer == null)
3753 throw new NullPointerException();
3754 return new MapReduceMappingsTask<K,V,U>
3755 (null, batchFor(parallelismThreshold), 0, 0, table,
3756 null, transformer, reducer).invoke();
3757 }
3758
3759 /**
3760 * Returns the result of accumulating the given transformation
3761 * of all (key, value) pairs using the given reducer to
3762 * combine values, and the given basis as an identity value.
3763 *
3764 * @param parallelismThreshold the (estimated) number of elements
3765 * needed for this operation to be executed in parallel
3766 * @param transformer a function returning the transformation
3767 * for an element
3768 * @param basis the identity (initial default value) for the reduction
3769 * @param reducer a commutative associative combining function
3770 * @return the result of accumulating the given transformation
3771 * of all (key, value) pairs
3772 * @since 1.8
3773 */
3774 public double reduceToDouble(long parallelismThreshold,
3775 ToDoubleBiFunction<? super K, ? super V> transformer,
3776 double basis,
3777 DoubleBinaryOperator reducer) {
3778 if (transformer == null || reducer == null)
3779 throw new NullPointerException();
3780 return new MapReduceMappingsToDoubleTask<K,V>
3781 (null, batchFor(parallelismThreshold), 0, 0, table,
3782 null, transformer, basis, reducer).invoke();
3783 }
3784
3785 /**
3786 * Returns the result of accumulating the given transformation
3787 * of all (key, value) pairs using the given reducer to
3788 * combine values, and the given basis as an identity value.
3789 *
3790 * @param parallelismThreshold the (estimated) number of elements
3791 * needed for this operation to be executed in parallel
3792 * @param transformer a function returning the transformation
3793 * for an element
3794 * @param basis the identity (initial default value) for the reduction
3795 * @param reducer a commutative associative combining function
3796 * @return the result of accumulating the given transformation
3797 * of all (key, value) pairs
3798 * @since 1.8
3799 */
3800 public long reduceToLong(long parallelismThreshold,
3801 ToLongBiFunction<? super K, ? super V> transformer,
3802 long basis,
3803 LongBinaryOperator reducer) {
3804 if (transformer == null || reducer == null)
3805 throw new NullPointerException();
3806 return new MapReduceMappingsToLongTask<K,V>
3807 (null, batchFor(parallelismThreshold), 0, 0, table,
3808 null, transformer, basis, reducer).invoke();
3809 }
3810
3811 /**
3812 * Returns the result of accumulating the given transformation
3813 * of all (key, value) pairs using the given reducer to
3814 * combine values, and the given basis as an identity value.
3815 *
3816 * @param parallelismThreshold the (estimated) number of elements
3817 * needed for this operation to be executed in parallel
3818 * @param transformer a function returning the transformation
3819 * for an element
3820 * @param basis the identity (initial default value) for the reduction
3821 * @param reducer a commutative associative combining function
3822 * @return the result of accumulating the given transformation
3823 * of all (key, value) pairs
3824 * @since 1.8
3825 */
3826 public int reduceToInt(long parallelismThreshold,
3827 ToIntBiFunction<? super K, ? super V> transformer,
3828 int basis,
3829 IntBinaryOperator reducer) {
3830 if (transformer == null || reducer == null)
3831 throw new NullPointerException();
3832 return new MapReduceMappingsToIntTask<K,V>
3833 (null, batchFor(parallelismThreshold), 0, 0, table,
3834 null, transformer, basis, reducer).invoke();
3835 }
3836
3837 /**
3838 * Performs the given action for each key.
3839 *
3840 * @param parallelismThreshold the (estimated) number of elements
3841 * needed for this operation to be executed in parallel
3842 * @param action the action
3843 * @since 1.8
3844 */
3845 public void forEachKey(long parallelismThreshold,
3846 Consumer<? super K> action) {
3847 if (action == null) throw new NullPointerException();
3848 new ForEachKeyTask<K,V>
3849 (null, batchFor(parallelismThreshold), 0, 0, table,
3850 action).invoke();
3851 }
3852
3853 /**
3854 * Performs the given action for each non-null transformation
3855 * of each key.
3856 *
3857 * @param parallelismThreshold the (estimated) number of elements
3858 * needed for this operation to be executed in parallel
3859 * @param transformer a function returning the transformation
3860 * for an element, or null if there is no transformation (in
3861 * which case the action is not applied)
3862 * @param action the action
3863 * @param <U> the return type of the transformer
3864 * @since 1.8
3865 */
3866 public <U> void forEachKey(long parallelismThreshold,
3867 Function<? super K, ? extends U> transformer,
3868 Consumer<? super U> action) {
3869 if (transformer == null || action == null)
3870 throw new NullPointerException();
3871 new ForEachTransformedKeyTask<K,V,U>
3872 (null, batchFor(parallelismThreshold), 0, 0, table,
3873 transformer, action).invoke();
3874 }
3875
3876 /**
3877 * Returns a non-null result from applying the given search
3878 * function on each key, or null if none. Upon success,
3879 * further element processing is suppressed and the results of
3880 * any other parallel invocations of the search function are
3881 * ignored.
3882 *
3883 * @param parallelismThreshold the (estimated) number of elements
3884 * needed for this operation to be executed in parallel
3885 * @param searchFunction a function returning a non-null
3886 * result on success, else null
3887 * @param <U> the return type of the search function
3888 * @return a non-null result from applying the given search
3889 * function on each key, or null if none
3890 * @since 1.8
3891 */
3892 public <U> U searchKeys(long parallelismThreshold,
3893 Function<? super K, ? extends U> searchFunction) {
3894 if (searchFunction == null) throw new NullPointerException();
3895 return new SearchKeysTask<K,V,U>
3896 (null, batchFor(parallelismThreshold), 0, 0, table,
3897 searchFunction, new AtomicReference<U>()).invoke();
3898 }
3899
3900 /**
3901 * Returns the result of accumulating all keys using the given
3902 * reducer to combine values, or null if none.
3903 *
3904 * @param parallelismThreshold the (estimated) number of elements
3905 * needed for this operation to be executed in parallel
3906 * @param reducer a commutative associative combining function
3907 * @return the result of accumulating all keys using the given
3908 * reducer to combine values, or null if none
3909 * @since 1.8
3910 */
3911 public K reduceKeys(long parallelismThreshold,
3912 BiFunction<? super K, ? super K, ? extends K> reducer) {
3913 if (reducer == null) throw new NullPointerException();
3914 return new ReduceKeysTask<K,V>
3915 (null, batchFor(parallelismThreshold), 0, 0, table,
3916 null, reducer).invoke();
3917 }
3918
3919 /**
3920 * Returns the result of accumulating the given transformation
3921 * of all keys using the given reducer to combine values, or
3922 * null if none.
3923 *
3924 * @param parallelismThreshold the (estimated) number of elements
3925 * needed for this operation to be executed in parallel
3926 * @param transformer a function returning the transformation
3927 * for an element, or null if there is no transformation (in
3928 * which case it is not combined)
3929 * @param reducer a commutative associative combining function
3930 * @param <U> the return type of the transformer
3931 * @return the result of accumulating the given transformation
3932 * of all keys
3933 * @since 1.8
3934 */
3935 public <U> U reduceKeys(long parallelismThreshold,
3936 Function<? super K, ? extends U> transformer,
3937 BiFunction<? super U, ? super U, ? extends U> reducer) {
3938 if (transformer == null || reducer == null)
3939 throw new NullPointerException();
3940 return new MapReduceKeysTask<K,V,U>
3941 (null, batchFor(parallelismThreshold), 0, 0, table,
3942 null, transformer, reducer).invoke();
3943 }
3944
3945 /**
3946 * Returns the result of accumulating the given transformation
3947 * of all keys using the given reducer to combine values, and
3948 * the given basis as an identity value.
3949 *
3950 * @param parallelismThreshold the (estimated) number of elements
3951 * needed for this operation to be executed in parallel
3952 * @param transformer a function returning the transformation
3953 * for an element
3954 * @param basis the identity (initial default value) for the reduction
3955 * @param reducer a commutative associative combining function
3956 * @return the result of accumulating the given transformation
3957 * of all keys
3958 * @since 1.8
3959 */
3960 public double reduceKeysToDouble(long parallelismThreshold,
3961 ToDoubleFunction<? super K> transformer,
3962 double basis,
3963 DoubleBinaryOperator reducer) {
3964 if (transformer == null || reducer == null)
3965 throw new NullPointerException();
3966 return new MapReduceKeysToDoubleTask<K,V>
3967 (null, batchFor(parallelismThreshold), 0, 0, table,
3968 null, transformer, basis, reducer).invoke();
3969 }
3970
3971 /**
3972 * Returns the result of accumulating the given transformation
3973 * of all keys using the given reducer to combine values, and
3974 * the given basis as an identity value.
3975 *
3976 * @param parallelismThreshold the (estimated) number of elements
3977 * needed for this operation to be executed in parallel
3978 * @param transformer a function returning the transformation
3979 * for an element
3980 * @param basis the identity (initial default value) for the reduction
3981 * @param reducer a commutative associative combining function
3982 * @return the result of accumulating the given transformation
3983 * of all keys
3984 * @since 1.8
3985 */
3986 public long reduceKeysToLong(long parallelismThreshold,
3987 ToLongFunction<? super K> transformer,
3988 long basis,
3989 LongBinaryOperator reducer) {
3990 if (transformer == null || reducer == null)
3991 throw new NullPointerException();
3992 return new MapReduceKeysToLongTask<K,V>
3993 (null, batchFor(parallelismThreshold), 0, 0, table,
3994 null, transformer, basis, reducer).invoke();
3995 }
3996
3997 /**
3998 * Returns the result of accumulating the given transformation
3999 * of all keys using the given reducer to combine values, and
4000 * the given basis as an identity value.
4001 *
4002 * @param parallelismThreshold the (estimated) number of elements
4003 * needed for this operation to be executed in parallel
4004 * @param transformer a function returning the transformation
4005 * for an element
4006 * @param basis the identity (initial default value) for the reduction
4007 * @param reducer a commutative associative combining function
4008 * @return the result of accumulating the given transformation
4009 * of all keys
4010 * @since 1.8
4011 */
4012 public int reduceKeysToInt(long parallelismThreshold,
4013 ToIntFunction<? super K> transformer,
4014 int basis,
4015 IntBinaryOperator reducer) {
4016 if (transformer == null || reducer == null)
4017 throw new NullPointerException();
4018 return new MapReduceKeysToIntTask<K,V>
4019 (null, batchFor(parallelismThreshold), 0, 0, table,
4020 null, transformer, basis, reducer).invoke();
4021 }
4022
4023 /**
4024 * Performs the given action for each value.
4025 *
4026 * @param parallelismThreshold the (estimated) number of elements
4027 * needed for this operation to be executed in parallel
4028 * @param action the action
4029 * @since 1.8
4030 */
4031 public void forEachValue(long parallelismThreshold,
4032 Consumer<? super V> action) {
4033 if (action == null)
4034 throw new NullPointerException();
4035 new ForEachValueTask<K,V>
4036 (null, batchFor(parallelismThreshold), 0, 0, table,
4037 action).invoke();
4038 }
4039
4040 /**
4041 * Performs the given action for each non-null transformation
4042 * of each value.
4043 *
4044 * @param parallelismThreshold the (estimated) number of elements
4045 * needed for this operation to be executed in parallel
4046 * @param transformer a function returning the transformation
4047 * for an element, or null if there is no transformation (in
4048 * which case the action is not applied)
4049 * @param action the action
4050 * @param <U> the return type of the transformer
4051 * @since 1.8
4052 */
4053 public <U> void forEachValue(long parallelismThreshold,
4054 Function<? super V, ? extends U> transformer,
4055 Consumer<? super U> action) {
4056 if (transformer == null || action == null)
4057 throw new NullPointerException();
4058 new ForEachTransformedValueTask<K,V,U>
4059 (null, batchFor(parallelismThreshold), 0, 0, table,
4060 transformer, action).invoke();
4061 }
4062
4063 /**
4064 * Returns a non-null result from applying the given search
4065 * function on each value, or null if none. Upon success,
4066 * further element processing is suppressed and the results of
4067 * any other parallel invocations of the search function are
4068 * ignored.
4069 *
4070 * @param parallelismThreshold the (estimated) number of elements
4071 * needed for this operation to be executed in parallel
4072 * @param searchFunction a function returning a non-null
4073 * result on success, else null
4074 * @param <U> the return type of the search function
4075 * @return a non-null result from applying the given search
4076 * function on each value, or null if none
4077 * @since 1.8
4078 */
4079 public <U> U searchValues(long parallelismThreshold,
4080 Function<? super V, ? extends U> searchFunction) {
4081 if (searchFunction == null) throw new NullPointerException();
4082 return new SearchValuesTask<K,V,U>
4083 (null, batchFor(parallelismThreshold), 0, 0, table,
4084 searchFunction, new AtomicReference<U>()).invoke();
4085 }
4086
4087 /**
4088 * Returns the result of accumulating all values using the
4089 * given reducer to combine values, or null if none.
4090 *
4091 * @param parallelismThreshold the (estimated) number of elements
4092 * needed for this operation to be executed in parallel
4093 * @param reducer a commutative associative combining function
4094 * @return the result of accumulating all values
4095 * @since 1.8
4096 */
4097 public V reduceValues(long parallelismThreshold,
4098 BiFunction<? super V, ? super V, ? extends V> reducer) {
4099 if (reducer == null) throw new NullPointerException();
4100 return new ReduceValuesTask<K,V>
4101 (null, batchFor(parallelismThreshold), 0, 0, table,
4102 null, reducer).invoke();
4103 }
4104
4105 /**
4106 * Returns the result of accumulating the given transformation
4107 * of all values using the given reducer to combine values, or
4108 * null if none.
4109 *
4110 * @param parallelismThreshold the (estimated) number of elements
4111 * needed for this operation to be executed in parallel
4112 * @param transformer a function returning the transformation
4113 * for an element, or null if there is no transformation (in
4114 * which case it is not combined)
4115 * @param reducer a commutative associative combining function
4116 * @param <U> the return type of the transformer
4117 * @return the result of accumulating the given transformation
4118 * of all values
4119 * @since 1.8
4120 */
4121 public <U> U reduceValues(long parallelismThreshold,
4122 Function<? super V, ? extends U> transformer,
4123 BiFunction<? super U, ? super U, ? extends U> reducer) {
4124 if (transformer == null || reducer == null)
4125 throw new NullPointerException();
4126 return new MapReduceValuesTask<K,V,U>
4127 (null, batchFor(parallelismThreshold), 0, 0, table,
4128 null, transformer, reducer).invoke();
4129 }
4130
4131 /**
4132 * Returns the result of accumulating the given transformation
4133 * of all values using the given reducer to combine values,
4134 * and the given basis as an identity value.
4135 *
4136 * @param parallelismThreshold the (estimated) number of elements
4137 * needed for this operation to be executed in parallel
4138 * @param transformer a function returning the transformation
4139 * for an element
4140 * @param basis the identity (initial default value) for the reduction
4141 * @param reducer a commutative associative combining function
4142 * @return the result of accumulating the given transformation
4143 * of all values
4144 * @since 1.8
4145 */
4146 public double reduceValuesToDouble(long parallelismThreshold,
4147 ToDoubleFunction<? super V> transformer,
4148 double basis,
4149 DoubleBinaryOperator reducer) {
4150 if (transformer == null || reducer == null)
4151 throw new NullPointerException();
4152 return new MapReduceValuesToDoubleTask<K,V>
4153 (null, batchFor(parallelismThreshold), 0, 0, table,
4154 null, transformer, basis, reducer).invoke();
4155 }
4156
4157 /**
4158 * Returns the result of accumulating the given transformation
4159 * of all values using the given reducer to combine values,
4160 * and the given basis as an identity value.
4161 *
4162 * @param parallelismThreshold the (estimated) number of elements
4163 * needed for this operation to be executed in parallel
4164 * @param transformer a function returning the transformation
4165 * for an element
4166 * @param basis the identity (initial default value) for the reduction
4167 * @param reducer a commutative associative combining function
4168 * @return the result of accumulating the given transformation
4169 * of all values
4170 * @since 1.8
4171 */
4172 public long reduceValuesToLong(long parallelismThreshold,
4173 ToLongFunction<? super V> transformer,
4174 long basis,
4175 LongBinaryOperator reducer) {
4176 if (transformer == null || reducer == null)
4177 throw new NullPointerException();
4178 return new MapReduceValuesToLongTask<K,V>
4179 (null, batchFor(parallelismThreshold), 0, 0, table,
4180 null, transformer, basis, reducer).invoke();
4181 }
4182
4183 /**
4184 * Returns the result of accumulating the given transformation
4185 * of all values using the given reducer to combine values,
4186 * and the given basis as an identity value.
4187 *
4188 * @param parallelismThreshold the (estimated) number of elements
4189 * needed for this operation to be executed in parallel
4190 * @param transformer a function returning the transformation
4191 * for an element
4192 * @param basis the identity (initial default value) for the reduction
4193 * @param reducer a commutative associative combining function
4194 * @return the result of accumulating the given transformation
4195 * of all values
4196 * @since 1.8
4197 */
4198 public int reduceValuesToInt(long parallelismThreshold,
4199 ToIntFunction<? super V> transformer,
4200 int basis,
4201 IntBinaryOperator reducer) {
4202 if (transformer == null || reducer == null)
4203 throw new NullPointerException();
4204 return new MapReduceValuesToIntTask<K,V>
4205 (null, batchFor(parallelismThreshold), 0, 0, table,
4206 null, transformer, basis, reducer).invoke();
4207 }
4208
4209 /**
4210 * Performs the given action for each entry.
4211 *
4212 * @param parallelismThreshold the (estimated) number of elements
4213 * needed for this operation to be executed in parallel
4214 * @param action the action
4215 * @since 1.8
4216 */
4217 public void forEachEntry(long parallelismThreshold,
4218 Consumer<? super Map.Entry<K,V>> action) {
4219 if (action == null) throw new NullPointerException();
4220 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4221 action).invoke();
4222 }
4223
4224 /**
4225 * Performs the given action for each non-null transformation
4226 * of each entry.
4227 *
4228 * @param parallelismThreshold the (estimated) number of elements
4229 * needed for this operation to be executed in parallel
4230 * @param transformer a function returning the transformation
4231 * for an element, or null if there is no transformation (in
4232 * which case the action is not applied)
4233 * @param action the action
4234 * @param <U> the return type of the transformer
4235 * @since 1.8
4236 */
4237 public <U> void forEachEntry(long parallelismThreshold,
4238 Function<Map.Entry<K,V>, ? extends U> transformer,
4239 Consumer<? super U> action) {
4240 if (transformer == null || action == null)
4241 throw new NullPointerException();
4242 new ForEachTransformedEntryTask<K,V,U>
4243 (null, batchFor(parallelismThreshold), 0, 0, table,
4244 transformer, action).invoke();
4245 }
4246
4247 /**
4248 * Returns a non-null result from applying the given search
4249 * function on each entry, or null if none. Upon success,
4250 * further element processing is suppressed and the results of
4251 * any other parallel invocations of the search function are
4252 * ignored.
4253 *
4254 * @param parallelismThreshold the (estimated) number of elements
4255 * needed for this operation to be executed in parallel
4256 * @param searchFunction a function returning a non-null
4257 * result on success, else null
4258 * @param <U> the return type of the search function
4259 * @return a non-null result from applying the given search
4260 * function on each entry, or null if none
4261 * @since 1.8
4262 */
4263 public <U> U searchEntries(long parallelismThreshold,
4264 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4265 if (searchFunction == null) throw new NullPointerException();
4266 return new SearchEntriesTask<K,V,U>
4267 (null, batchFor(parallelismThreshold), 0, 0, table,
4268 searchFunction, new AtomicReference<U>()).invoke();
4269 }
4270
4271 /**
4272 * Returns the result of accumulating all entries using the
4273 * given reducer to combine values, or null if none.
4274 *
4275 * @param parallelismThreshold the (estimated) number of elements
4276 * needed for this operation to be executed in parallel
4277 * @param reducer a commutative associative combining function
4278 * @return the result of accumulating all entries
4279 * @since 1.8
4280 */
4281 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4282 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4283 if (reducer == null) throw new NullPointerException();
4284 return new ReduceEntriesTask<K,V>
4285 (null, batchFor(parallelismThreshold), 0, 0, table,
4286 null, reducer).invoke();
4287 }
4288
4289 /**
4290 * Returns the result of accumulating the given transformation
4291 * of all entries using the given reducer to combine values,
4292 * or null if none.
4293 *
4294 * @param parallelismThreshold the (estimated) number of elements
4295 * needed for this operation to be executed in parallel
4296 * @param transformer a function returning the transformation
4297 * for an element, or null if there is no transformation (in
4298 * which case it is not combined)
4299 * @param reducer a commutative associative combining function
4300 * @param <U> the return type of the transformer
4301 * @return the result of accumulating the given transformation
4302 * of all entries
4303 * @since 1.8
4304 */
4305 public <U> U reduceEntries(long parallelismThreshold,
4306 Function<Map.Entry<K,V>, ? extends U> transformer,
4307 BiFunction<? super U, ? super U, ? extends U> reducer) {
4308 if (transformer == null || reducer == null)
4309 throw new NullPointerException();
4310 return new MapReduceEntriesTask<K,V,U>
4311 (null, batchFor(parallelismThreshold), 0, 0, table,
4312 null, transformer, reducer).invoke();
4313 }
4314
4315 /**
4316 * Returns the result of accumulating the given transformation
4317 * of all entries using the given reducer to combine values,
4318 * and the given basis as an identity value.
4319 *
4320 * @param parallelismThreshold the (estimated) number of elements
4321 * needed for this operation to be executed in parallel
4322 * @param transformer a function returning the transformation
4323 * for an element
4324 * @param basis the identity (initial default value) for the reduction
4325 * @param reducer a commutative associative combining function
4326 * @return the result of accumulating the given transformation
4327 * of all entries
4328 * @since 1.8
4329 */
4330 public double reduceEntriesToDouble(long parallelismThreshold,
4331 ToDoubleFunction<Map.Entry<K,V>> transformer,
4332 double basis,
4333 DoubleBinaryOperator reducer) {
4334 if (transformer == null || reducer == null)
4335 throw new NullPointerException();
4336 return new MapReduceEntriesToDoubleTask<K,V>
4337 (null, batchFor(parallelismThreshold), 0, 0, table,
4338 null, transformer, basis, reducer).invoke();
4339 }
4340
4341 /**
4342 * Returns the result of accumulating the given transformation
4343 * of all entries using the given reducer to combine values,
4344 * and the given basis as an identity value.
4345 *
4346 * @param parallelismThreshold the (estimated) number of elements
4347 * needed for this operation to be executed in parallel
4348 * @param transformer a function returning the transformation
4349 * for an element
4350 * @param basis the identity (initial default value) for the reduction
4351 * @param reducer a commutative associative combining function
4352 * @return the result of accumulating the given transformation
4353 * of all entries
4354 * @since 1.8
4355 */
4356 public long reduceEntriesToLong(long parallelismThreshold,
4357 ToLongFunction<Map.Entry<K,V>> transformer,
4358 long basis,
4359 LongBinaryOperator reducer) {
4360 if (transformer == null || reducer == null)
4361 throw new NullPointerException();
4362 return new MapReduceEntriesToLongTask<K,V>
4363 (null, batchFor(parallelismThreshold), 0, 0, table,
4364 null, transformer, basis, reducer).invoke();
4365 }
4366
4367 /**
4368 * Returns the result of accumulating the given transformation
4369 * of all entries using the given reducer to combine values,
4370 * and the given basis as an identity value.
4371 *
4372 * @param parallelismThreshold the (estimated) number of elements
4373 * needed for this operation to be executed in parallel
4374 * @param transformer a function returning the transformation
4375 * for an element
4376 * @param basis the identity (initial default value) for the reduction
4377 * @param reducer a commutative associative combining function
4378 * @return the result of accumulating the given transformation
4379 * of all entries
4380 * @since 1.8
4381 */
4382 public int reduceEntriesToInt(long parallelismThreshold,
4383 ToIntFunction<Map.Entry<K,V>> transformer,
4384 int basis,
4385 IntBinaryOperator reducer) {
4386 if (transformer == null || reducer == null)
4387 throw new NullPointerException();
4388 return new MapReduceEntriesToIntTask<K,V>
4389 (null, batchFor(parallelismThreshold), 0, 0, table,
4390 null, transformer, basis, reducer).invoke();
4391 }
4392
4393
4394 /* ----------------Views -------------- */
4395
4396 /**
4397 * Base class for views.
4398 */
4399 abstract static class CollectionView<K,V,E>
4400 implements Collection<E>, java.io.Serializable {
4401 private static final long serialVersionUID = 7249069246763182397L;
4402 final ConcurrentHashMap<K,V> map;
4403 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4404
4405 /**
4406 * Returns the map backing this view.
4407 *
4408 * @return the map backing this view
4409 */
4410 public ConcurrentHashMap<K,V> getMap() { return map; }
4411
4412 /**
4413 * Removes all of the elements from this view, by removing all
4414 * the mappings from the map backing this view.
4415 */
4416 public final void clear() { map.clear(); }
4417 public final int size() { return map.size(); }
4418 public final boolean isEmpty() { return map.isEmpty(); }
4419
4420 // implementations below rely on concrete classes supplying these
4421 // abstract methods
4422 /**
4423 * Returns an iterator over the elements in this collection.
4424 *
4425 * <p>The returned iterator is
4426 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4427 *
4428 * @return an iterator over the elements in this collection
4429 */
4430 public abstract Iterator<E> iterator();
4431 public abstract boolean contains(Object o);
4432 public abstract boolean remove(Object o);
4433
4434 private static final String OOME_MSG = "Required array size too large";
4435
4436 public final Object[] toArray() {
4437 long sz = map.mappingCount();
4438 if (sz > MAX_ARRAY_SIZE)
4439 throw new OutOfMemoryError(OOME_MSG);
4440 int n = (int)sz;
4441 Object[] r = new Object[n];
4442 int i = 0;
4443 for (E e : this) {
4444 if (i == n) {
4445 if (n >= MAX_ARRAY_SIZE)
4446 throw new OutOfMemoryError(OOME_MSG);
4447 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4448 n = MAX_ARRAY_SIZE;
4449 else
4450 n += (n >>> 1) + 1;
4451 r = Arrays.copyOf(r, n);
4452 }
4453 r[i++] = e;
4454 }
4455 return (i == n) ? r : Arrays.copyOf(r, i);
4456 }
4457
4458 @SuppressWarnings("unchecked")
4459 public final <T> T[] toArray(T[] a) {
4460 long sz = map.mappingCount();
4461 if (sz > MAX_ARRAY_SIZE)
4462 throw new OutOfMemoryError(OOME_MSG);
4463 int m = (int)sz;
4464 T[] r = (a.length >= m) ? a :
4465 (T[])java.lang.reflect.Array
4466 .newInstance(a.getClass().getComponentType(), m);
4467 int n = r.length;
4468 int i = 0;
4469 for (E e : this) {
4470 if (i == n) {
4471 if (n >= MAX_ARRAY_SIZE)
4472 throw new OutOfMemoryError(OOME_MSG);
4473 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4474 n = MAX_ARRAY_SIZE;
4475 else
4476 n += (n >>> 1) + 1;
4477 r = Arrays.copyOf(r, n);
4478 }
4479 r[i++] = (T)e;
4480 }
4481 if (a == r && i < n) {
4482 r[i] = null; // null-terminate
4483 return r;
4484 }
4485 return (i == n) ? r : Arrays.copyOf(r, i);
4486 }
4487
4488 /**
4489 * Returns a string representation of this collection.
4490 * The string representation consists of the string representations
4491 * of the collection's elements in the order they are returned by
4492 * its iterator, enclosed in square brackets ({@code "[]"}).
4493 * Adjacent elements are separated by the characters {@code ", "}
4494 * (comma and space). Elements are converted to strings as by
4495 * {@link String#valueOf(Object)}.
4496 *
4497 * @return a string representation of this collection
4498 */
4499 public final String toString() {
4500 StringBuilder sb = new StringBuilder();
4501 sb.append('[');
4502 Iterator<E> it = iterator();
4503 if (it.hasNext()) {
4504 for (;;) {
4505 Object e = it.next();
4506 sb.append(e == this ? "(this Collection)" : e);
4507 if (!it.hasNext())
4508 break;
4509 sb.append(',').append(' ');
4510 }
4511 }
4512 return sb.append(']').toString();
4513 }
4514
4515 public final boolean containsAll(Collection<?> c) {
4516 if (c != this) {
4517 for (Object e : c) {
4518 if (e == null || !contains(e))
4519 return false;
4520 }
4521 }
4522 return true;
4523 }
4524
4525 public final boolean removeAll(Collection<?> c) {
4526 if (c == null) throw new NullPointerException();
4527 boolean modified = false;
4528 for (Iterator<E> it = iterator(); it.hasNext();) {
4529 if (c.contains(it.next())) {
4530 it.remove();
4531 modified = true;
4532 }
4533 }
4534 return modified;
4535 }
4536
4537 public final boolean retainAll(Collection<?> c) {
4538 if (c == null) throw new NullPointerException();
4539 boolean modified = false;
4540 for (Iterator<E> it = iterator(); it.hasNext();) {
4541 if (!c.contains(it.next())) {
4542 it.remove();
4543 modified = true;
4544 }
4545 }
4546 return modified;
4547 }
4548
4549 }
4550
4551 /**
4552 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4553 * which additions may optionally be enabled by mapping to a
4554 * common value. This class cannot be directly instantiated.
4555 * See {@link #keySet() keySet()},
4556 * {@link #keySet(Object) keySet(V)},
4557 * {@link #newKeySet() newKeySet()},
4558 * {@link #newKeySet(int) newKeySet(int)}.
4559 *
4560 * @since 1.8
4561 */
4562 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4563 implements Set<K>, java.io.Serializable {
4564 private static final long serialVersionUID = 7249069246763182397L;
4565 private final V value;
4566 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4567 super(map);
4568 this.value = value;
4569 }
4570
4571 /**
4572 * Returns the default mapped value for additions,
4573 * or {@code null} if additions are not supported.
4574 *
4575 * @return the default mapped value for additions, or {@code null}
4576 * if not supported
4577 */
4578 public V getMappedValue() { return value; }
4579
4580 /**
4581 * {@inheritDoc}
4582 * @throws NullPointerException if the specified key is null
4583 */
4584 public boolean contains(Object o) { return map.containsKey(o); }
4585
4586 /**
4587 * Removes the key from this map view, by removing the key (and its
4588 * corresponding value) from the backing map. This method does
4589 * nothing if the key is not in the map.
4590 *
4591 * @param o the key to be removed from the backing map
4592 * @return {@code true} if the backing map contained the specified key
4593 * @throws NullPointerException if the specified key is null
4594 */
4595 public boolean remove(Object o) { return map.remove(o) != null; }
4596
4597 /**
4598 * @return an iterator over the keys of the backing map
4599 */
4600 public Iterator<K> iterator() {
4601 Node<K,V>[] t;
4602 ConcurrentHashMap<K,V> m = map;
4603 int f = (t = m.table) == null ? 0 : t.length;
4604 return new KeyIterator<K,V>(t, f, 0, f, m);
4605 }
4606
4607 /**
4608 * Adds the specified key to this set view by mapping the key to
4609 * the default mapped value in the backing map, if defined.
4610 *
4611 * @param e key to be added
4612 * @return {@code true} if this set changed as a result of the call
4613 * @throws NullPointerException if the specified key is null
4614 * @throws UnsupportedOperationException if no default mapped value
4615 * for additions was provided
4616 */
4617 public boolean add(K e) {
4618 V v;
4619 if ((v = value) == null)
4620 throw new UnsupportedOperationException();
4621 return map.putVal(e, v, true) == null;
4622 }
4623
4624 /**
4625 * Adds all of the elements in the specified collection to this set,
4626 * as if by calling {@link #add} on each one.
4627 *
4628 * @param c the elements to be inserted into this set
4629 * @return {@code true} if this set changed as a result of the call
4630 * @throws NullPointerException if the collection or any of its
4631 * elements are {@code null}
4632 * @throws UnsupportedOperationException if no default mapped value
4633 * for additions was provided
4634 */
4635 public boolean addAll(Collection<? extends K> c) {
4636 boolean added = false;
4637 V v;
4638 if ((v = value) == null)
4639 throw new UnsupportedOperationException();
4640 for (K e : c) {
4641 if (map.putVal(e, v, true) == null)
4642 added = true;
4643 }
4644 return added;
4645 }
4646
4647 public int hashCode() {
4648 int h = 0;
4649 for (K e : this)
4650 h += e.hashCode();
4651 return h;
4652 }
4653
4654 public boolean equals(Object o) {
4655 Set<?> c;
4656 return ((o instanceof Set) &&
4657 ((c = (Set<?>)o) == this ||
4658 (containsAll(c) && c.containsAll(this))));
4659 }
4660
4661 public Spliterator<K> spliterator() {
4662 Node<K,V>[] t;
4663 ConcurrentHashMap<K,V> m = map;
4664 long n = m.sumCount();
4665 int f = (t = m.table) == null ? 0 : t.length;
4666 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4667 }
4668
4669 public void forEach(Consumer<? super K> action) {
4670 if (action == null) throw new NullPointerException();
4671 Node<K,V>[] t;
4672 if ((t = map.table) != null) {
4673 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4674 for (Node<K,V> p; (p = it.advance()) != null; )
4675 action.accept(p.key);
4676 }
4677 }
4678 }
4679
4680 /**
4681 * A view of a ConcurrentHashMap as a {@link Collection} of
4682 * values, in which additions are disabled. This class cannot be
4683 * directly instantiated. See {@link #values()}.
4684 */
4685 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4686 implements Collection<V>, java.io.Serializable {
4687 private static final long serialVersionUID = 2249069246763182397L;
4688 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4689 public final boolean contains(Object o) {
4690 return map.containsValue(o);
4691 }
4692
4693 public final boolean remove(Object o) {
4694 if (o != null) {
4695 for (Iterator<V> it = iterator(); it.hasNext();) {
4696 if (o.equals(it.next())) {
4697 it.remove();
4698 return true;
4699 }
4700 }
4701 }
4702 return false;
4703 }
4704
4705 public final Iterator<V> iterator() {
4706 ConcurrentHashMap<K,V> m = map;
4707 Node<K,V>[] t;
4708 int f = (t = m.table) == null ? 0 : t.length;
4709 return new ValueIterator<K,V>(t, f, 0, f, m);
4710 }
4711
4712 public final boolean add(V e) {
4713 throw new UnsupportedOperationException();
4714 }
4715 public final boolean addAll(Collection<? extends V> c) {
4716 throw new UnsupportedOperationException();
4717 }
4718
4719 public boolean removeIf(Predicate<? super V> filter) {
4720 return map.removeValueIf(filter);
4721 }
4722
4723 public Spliterator<V> spliterator() {
4724 Node<K,V>[] t;
4725 ConcurrentHashMap<K,V> m = map;
4726 long n = m.sumCount();
4727 int f = (t = m.table) == null ? 0 : t.length;
4728 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4729 }
4730
4731 public void forEach(Consumer<? super V> action) {
4732 if (action == null) throw new NullPointerException();
4733 Node<K,V>[] t;
4734 if ((t = map.table) != null) {
4735 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4736 for (Node<K,V> p; (p = it.advance()) != null; )
4737 action.accept(p.val);
4738 }
4739 }
4740 }
4741
4742 /**
4743 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4744 * entries. This class cannot be directly instantiated. See
4745 * {@link #entrySet()}.
4746 */
4747 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4748 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4749 private static final long serialVersionUID = 2249069246763182397L;
4750 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4751
4752 public boolean contains(Object o) {
4753 Object k, v, r; Map.Entry<?,?> e;
4754 return ((o instanceof Map.Entry) &&
4755 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4756 (r = map.get(k)) != null &&
4757 (v = e.getValue()) != null &&
4758 (v == r || v.equals(r)));
4759 }
4760
4761 public boolean remove(Object o) {
4762 Object k, v; Map.Entry<?,?> e;
4763 return ((o instanceof Map.Entry) &&
4764 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4765 (v = e.getValue()) != null &&
4766 map.remove(k, v));
4767 }
4768
4769 /**
4770 * @return an iterator over the entries of the backing map
4771 */
4772 public Iterator<Map.Entry<K,V>> iterator() {
4773 ConcurrentHashMap<K,V> m = map;
4774 Node<K,V>[] t;
4775 int f = (t = m.table) == null ? 0 : t.length;
4776 return new EntryIterator<K,V>(t, f, 0, f, m);
4777 }
4778
4779 public boolean add(Entry<K,V> e) {
4780 return map.putVal(e.getKey(), e.getValue(), false) == null;
4781 }
4782
4783 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4784 boolean added = false;
4785 for (Entry<K,V> e : c) {
4786 if (add(e))
4787 added = true;
4788 }
4789 return added;
4790 }
4791
4792 public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4793 return map.removeEntryIf(filter);
4794 }
4795
4796 public final int hashCode() {
4797 int h = 0;
4798 Node<K,V>[] t;
4799 if ((t = map.table) != null) {
4800 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4801 for (Node<K,V> p; (p = it.advance()) != null; ) {
4802 h += p.hashCode();
4803 }
4804 }
4805 return h;
4806 }
4807
4808 public final boolean equals(Object o) {
4809 Set<?> c;
4810 return ((o instanceof Set) &&
4811 ((c = (Set<?>)o) == this ||
4812 (containsAll(c) && c.containsAll(this))));
4813 }
4814
4815 public Spliterator<Map.Entry<K,V>> spliterator() {
4816 Node<K,V>[] t;
4817 ConcurrentHashMap<K,V> m = map;
4818 long n = m.sumCount();
4819 int f = (t = m.table) == null ? 0 : t.length;
4820 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4821 }
4822
4823 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4824 if (action == null) throw new NullPointerException();
4825 Node<K,V>[] t;
4826 if ((t = map.table) != null) {
4827 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4828 for (Node<K,V> p; (p = it.advance()) != null; )
4829 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4830 }
4831 }
4832
4833 }
4834
4835 // -------------------------------------------------------
4836
4837 /**
4838 * Base class for bulk tasks. Repeats some fields and code from
4839 * class Traverser, because we need to subclass CountedCompleter.
4840 */
4841 @SuppressWarnings("serial")
4842 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4843 Node<K,V>[] tab; // same as Traverser
4844 Node<K,V> next;
4845 TableStack<K,V> stack, spare;
4846 int index;
4847 int baseIndex;
4848 int baseLimit;
4849 final int baseSize;
4850 int batch; // split control
4851
4852 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4853 super(par);
4854 this.batch = b;
4855 this.index = this.baseIndex = i;
4856 if ((this.tab = t) == null)
4857 this.baseSize = this.baseLimit = 0;
4858 else if (par == null)
4859 this.baseSize = this.baseLimit = t.length;
4860 else {
4861 this.baseLimit = f;
4862 this.baseSize = par.baseSize;
4863 }
4864 }
4865
4866 /**
4867 * Same as Traverser version.
4868 */
4869 final Node<K,V> advance() {
4870 Node<K,V> e;
4871 if ((e = next) != null)
4872 e = e.next;
4873 for (;;) {
4874 Node<K,V>[] t; int i, n;
4875 if (e != null)
4876 return next = e;
4877 if (baseIndex >= baseLimit || (t = tab) == null ||
4878 (n = t.length) <= (i = index) || i < 0)
4879 return next = null;
4880 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4881 if (e instanceof ForwardingNode) {
4882 tab = ((ForwardingNode<K,V>)e).nextTable;
4883 e = null;
4884 pushState(t, i, n);
4885 continue;
4886 }
4887 else if (e instanceof TreeBin)
4888 e = ((TreeBin<K,V>)e).first;
4889 else
4890 e = null;
4891 }
4892 if (stack != null)
4893 recoverState(n);
4894 else if ((index = i + baseSize) >= n)
4895 index = ++baseIndex;
4896 }
4897 }
4898
4899 private void pushState(Node<K,V>[] t, int i, int n) {
4900 TableStack<K,V> s = spare;
4901 if (s != null)
4902 spare = s.next;
4903 else
4904 s = new TableStack<K,V>();
4905 s.tab = t;
4906 s.length = n;
4907 s.index = i;
4908 s.next = stack;
4909 stack = s;
4910 }
4911
4912 private void recoverState(int n) {
4913 TableStack<K,V> s; int len;
4914 while ((s = stack) != null && (index += (len = s.length)) >= n) {
4915 n = len;
4916 index = s.index;
4917 tab = s.tab;
4918 s.tab = null;
4919 TableStack<K,V> next = s.next;
4920 s.next = spare; // save for reuse
4921 stack = next;
4922 spare = s;
4923 }
4924 if (s == null && (index += baseSize) >= n)
4925 index = ++baseIndex;
4926 }
4927 }
4928
4929 /*
4930 * Task classes. Coded in a regular but ugly format/style to
4931 * simplify checks that each variant differs in the right way from
4932 * others. The null screenings exist because compilers cannot tell
4933 * that we've already null-checked task arguments, so we force
4934 * simplest hoisted bypass to help avoid convoluted traps.
4935 */
4936 @SuppressWarnings("serial")
4937 static final class ForEachKeyTask<K,V>
4938 extends BulkTask<K,V,Void> {
4939 final Consumer<? super K> action;
4940 ForEachKeyTask
4941 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4942 Consumer<? super K> action) {
4943 super(p, b, i, f, t);
4944 this.action = action;
4945 }
4946 public final void compute() {
4947 final Consumer<? super K> action;
4948 if ((action = this.action) != null) {
4949 for (int i = baseIndex, f, h; batch > 0 &&
4950 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4951 addToPendingCount(1);
4952 new ForEachKeyTask<K,V>
4953 (this, batch >>>= 1, baseLimit = h, f, tab,
4954 action).fork();
4955 }
4956 for (Node<K,V> p; (p = advance()) != null;)
4957 action.accept(p.key);
4958 propagateCompletion();
4959 }
4960 }
4961 }
4962
4963 @SuppressWarnings("serial")
4964 static final class ForEachValueTask<K,V>
4965 extends BulkTask<K,V,Void> {
4966 final Consumer<? super V> action;
4967 ForEachValueTask
4968 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4969 Consumer<? super V> action) {
4970 super(p, b, i, f, t);
4971 this.action = action;
4972 }
4973 public final void compute() {
4974 final Consumer<? super V> action;
4975 if ((action = this.action) != null) {
4976 for (int i = baseIndex, f, h; batch > 0 &&
4977 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4978 addToPendingCount(1);
4979 new ForEachValueTask<K,V>
4980 (this, batch >>>= 1, baseLimit = h, f, tab,
4981 action).fork();
4982 }
4983 for (Node<K,V> p; (p = advance()) != null;)
4984 action.accept(p.val);
4985 propagateCompletion();
4986 }
4987 }
4988 }
4989
4990 @SuppressWarnings("serial")
4991 static final class ForEachEntryTask<K,V>
4992 extends BulkTask<K,V,Void> {
4993 final Consumer<? super Entry<K,V>> action;
4994 ForEachEntryTask
4995 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4996 Consumer<? super Entry<K,V>> action) {
4997 super(p, b, i, f, t);
4998 this.action = action;
4999 }
5000 public final void compute() {
5001 final Consumer<? super Entry<K,V>> action;
5002 if ((action = this.action) != null) {
5003 for (int i = baseIndex, f, h; batch > 0 &&
5004 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5005 addToPendingCount(1);
5006 new ForEachEntryTask<K,V>
5007 (this, batch >>>= 1, baseLimit = h, f, tab,
5008 action).fork();
5009 }
5010 for (Node<K,V> p; (p = advance()) != null; )
5011 action.accept(p);
5012 propagateCompletion();
5013 }
5014 }
5015 }
5016
5017 @SuppressWarnings("serial")
5018 static final class ForEachMappingTask<K,V>
5019 extends BulkTask<K,V,Void> {
5020 final BiConsumer<? super K, ? super V> action;
5021 ForEachMappingTask
5022 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5023 BiConsumer<? super K,? super V> action) {
5024 super(p, b, i, f, t);
5025 this.action = action;
5026 }
5027 public final void compute() {
5028 final BiConsumer<? super K, ? super V> action;
5029 if ((action = this.action) != null) {
5030 for (int i = baseIndex, f, h; batch > 0 &&
5031 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5032 addToPendingCount(1);
5033 new ForEachMappingTask<K,V>
5034 (this, batch >>>= 1, baseLimit = h, f, tab,
5035 action).fork();
5036 }
5037 for (Node<K,V> p; (p = advance()) != null; )
5038 action.accept(p.key, p.val);
5039 propagateCompletion();
5040 }
5041 }
5042 }
5043
5044 @SuppressWarnings("serial")
5045 static final class ForEachTransformedKeyTask<K,V,U>
5046 extends BulkTask<K,V,Void> {
5047 final Function<? super K, ? extends U> transformer;
5048 final Consumer<? super U> action;
5049 ForEachTransformedKeyTask
5050 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5051 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5052 super(p, b, i, f, t);
5053 this.transformer = transformer; this.action = action;
5054 }
5055 public final void compute() {
5056 final Function<? super K, ? extends U> transformer;
5057 final Consumer<? super U> action;
5058 if ((transformer = this.transformer) != null &&
5059 (action = this.action) != null) {
5060 for (int i = baseIndex, f, h; batch > 0 &&
5061 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5062 addToPendingCount(1);
5063 new ForEachTransformedKeyTask<K,V,U>
5064 (this, batch >>>= 1, baseLimit = h, f, tab,
5065 transformer, action).fork();
5066 }
5067 for (Node<K,V> p; (p = advance()) != null; ) {
5068 U u;
5069 if ((u = transformer.apply(p.key)) != null)
5070 action.accept(u);
5071 }
5072 propagateCompletion();
5073 }
5074 }
5075 }
5076
5077 @SuppressWarnings("serial")
5078 static final class ForEachTransformedValueTask<K,V,U>
5079 extends BulkTask<K,V,Void> {
5080 final Function<? super V, ? extends U> transformer;
5081 final Consumer<? super U> action;
5082 ForEachTransformedValueTask
5083 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5084 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5085 super(p, b, i, f, t);
5086 this.transformer = transformer; this.action = action;
5087 }
5088 public final void compute() {
5089 final Function<? super V, ? extends U> transformer;
5090 final Consumer<? super U> action;
5091 if ((transformer = this.transformer) != null &&
5092 (action = this.action) != null) {
5093 for (int i = baseIndex, f, h; batch > 0 &&
5094 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5095 addToPendingCount(1);
5096 new ForEachTransformedValueTask<K,V,U>
5097 (this, batch >>>= 1, baseLimit = h, f, tab,
5098 transformer, action).fork();
5099 }
5100 for (Node<K,V> p; (p = advance()) != null; ) {
5101 U u;
5102 if ((u = transformer.apply(p.val)) != null)
5103 action.accept(u);
5104 }
5105 propagateCompletion();
5106 }
5107 }
5108 }
5109
5110 @SuppressWarnings("serial")
5111 static final class ForEachTransformedEntryTask<K,V,U>
5112 extends BulkTask<K,V,Void> {
5113 final Function<Map.Entry<K,V>, ? extends U> transformer;
5114 final Consumer<? super U> action;
5115 ForEachTransformedEntryTask
5116 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5117 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5118 super(p, b, i, f, t);
5119 this.transformer = transformer; this.action = action;
5120 }
5121 public final void compute() {
5122 final Function<Map.Entry<K,V>, ? extends U> transformer;
5123 final Consumer<? super U> action;
5124 if ((transformer = this.transformer) != null &&
5125 (action = this.action) != null) {
5126 for (int i = baseIndex, f, h; batch > 0 &&
5127 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5128 addToPendingCount(1);
5129 new ForEachTransformedEntryTask<K,V,U>
5130 (this, batch >>>= 1, baseLimit = h, f, tab,
5131 transformer, action).fork();
5132 }
5133 for (Node<K,V> p; (p = advance()) != null; ) {
5134 U u;
5135 if ((u = transformer.apply(p)) != null)
5136 action.accept(u);
5137 }
5138 propagateCompletion();
5139 }
5140 }
5141 }
5142
5143 @SuppressWarnings("serial")
5144 static final class ForEachTransformedMappingTask<K,V,U>
5145 extends BulkTask<K,V,Void> {
5146 final BiFunction<? super K, ? super V, ? extends U> transformer;
5147 final Consumer<? super U> action;
5148 ForEachTransformedMappingTask
5149 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5150 BiFunction<? super K, ? super V, ? extends U> transformer,
5151 Consumer<? super U> action) {
5152 super(p, b, i, f, t);
5153 this.transformer = transformer; this.action = action;
5154 }
5155 public final void compute() {
5156 final BiFunction<? super K, ? super V, ? extends U> transformer;
5157 final Consumer<? super U> action;
5158 if ((transformer = this.transformer) != null &&
5159 (action = this.action) != null) {
5160 for (int i = baseIndex, f, h; batch > 0 &&
5161 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5162 addToPendingCount(1);
5163 new ForEachTransformedMappingTask<K,V,U>
5164 (this, batch >>>= 1, baseLimit = h, f, tab,
5165 transformer, action).fork();
5166 }
5167 for (Node<K,V> p; (p = advance()) != null; ) {
5168 U u;
5169 if ((u = transformer.apply(p.key, p.val)) != null)
5170 action.accept(u);
5171 }
5172 propagateCompletion();
5173 }
5174 }
5175 }
5176
5177 @SuppressWarnings("serial")
5178 static final class SearchKeysTask<K,V,U>
5179 extends BulkTask<K,V,U> {
5180 final Function<? super K, ? extends U> searchFunction;
5181 final AtomicReference<U> result;
5182 SearchKeysTask
5183 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5184 Function<? super K, ? extends U> searchFunction,
5185 AtomicReference<U> result) {
5186 super(p, b, i, f, t);
5187 this.searchFunction = searchFunction; this.result = result;
5188 }
5189 public final U getRawResult() { return result.get(); }
5190 public final void compute() {
5191 final Function<? super K, ? extends U> searchFunction;
5192 final AtomicReference<U> result;
5193 if ((searchFunction = this.searchFunction) != null &&
5194 (result = this.result) != null) {
5195 for (int i = baseIndex, f, h; batch > 0 &&
5196 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5197 if (result.get() != null)
5198 return;
5199 addToPendingCount(1);
5200 new SearchKeysTask<K,V,U>
5201 (this, batch >>>= 1, baseLimit = h, f, tab,
5202 searchFunction, result).fork();
5203 }
5204 while (result.get() == null) {
5205 U u;
5206 Node<K,V> p;
5207 if ((p = advance()) == null) {
5208 propagateCompletion();
5209 break;
5210 }
5211 if ((u = searchFunction.apply(p.key)) != null) {
5212 if (result.compareAndSet(null, u))
5213 quietlyCompleteRoot();
5214 break;
5215 }
5216 }
5217 }
5218 }
5219 }
5220
5221 @SuppressWarnings("serial")
5222 static final class SearchValuesTask<K,V,U>
5223 extends BulkTask<K,V,U> {
5224 final Function<? super V, ? extends U> searchFunction;
5225 final AtomicReference<U> result;
5226 SearchValuesTask
5227 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5228 Function<? super V, ? extends U> searchFunction,
5229 AtomicReference<U> result) {
5230 super(p, b, i, f, t);
5231 this.searchFunction = searchFunction; this.result = result;
5232 }
5233 public final U getRawResult() { return result.get(); }
5234 public final void compute() {
5235 final Function<? super V, ? extends U> searchFunction;
5236 final AtomicReference<U> result;
5237 if ((searchFunction = this.searchFunction) != null &&
5238 (result = this.result) != null) {
5239 for (int i = baseIndex, f, h; batch > 0 &&
5240 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5241 if (result.get() != null)
5242 return;
5243 addToPendingCount(1);
5244 new SearchValuesTask<K,V,U>
5245 (this, batch >>>= 1, baseLimit = h, f, tab,
5246 searchFunction, result).fork();
5247 }
5248 while (result.get() == null) {
5249 U u;
5250 Node<K,V> p;
5251 if ((p = advance()) == null) {
5252 propagateCompletion();
5253 break;
5254 }
5255 if ((u = searchFunction.apply(p.val)) != null) {
5256 if (result.compareAndSet(null, u))
5257 quietlyCompleteRoot();
5258 break;
5259 }
5260 }
5261 }
5262 }
5263 }
5264
5265 @SuppressWarnings("serial")
5266 static final class SearchEntriesTask<K,V,U>
5267 extends BulkTask<K,V,U> {
5268 final Function<Entry<K,V>, ? extends U> searchFunction;
5269 final AtomicReference<U> result;
5270 SearchEntriesTask
5271 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5272 Function<Entry<K,V>, ? extends U> searchFunction,
5273 AtomicReference<U> result) {
5274 super(p, b, i, f, t);
5275 this.searchFunction = searchFunction; this.result = result;
5276 }
5277 public final U getRawResult() { return result.get(); }
5278 public final void compute() {
5279 final Function<Entry<K,V>, ? extends U> searchFunction;
5280 final AtomicReference<U> result;
5281 if ((searchFunction = this.searchFunction) != null &&
5282 (result = this.result) != null) {
5283 for (int i = baseIndex, f, h; batch > 0 &&
5284 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5285 if (result.get() != null)
5286 return;
5287 addToPendingCount(1);
5288 new SearchEntriesTask<K,V,U>
5289 (this, batch >>>= 1, baseLimit = h, f, tab,
5290 searchFunction, result).fork();
5291 }
5292 while (result.get() == null) {
5293 U u;
5294 Node<K,V> p;
5295 if ((p = advance()) == null) {
5296 propagateCompletion();
5297 break;
5298 }
5299 if ((u = searchFunction.apply(p)) != null) {
5300 if (result.compareAndSet(null, u))
5301 quietlyCompleteRoot();
5302 return;
5303 }
5304 }
5305 }
5306 }
5307 }
5308
5309 @SuppressWarnings("serial")
5310 static final class SearchMappingsTask<K,V,U>
5311 extends BulkTask<K,V,U> {
5312 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5313 final AtomicReference<U> result;
5314 SearchMappingsTask
5315 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5316 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5317 AtomicReference<U> result) {
5318 super(p, b, i, f, t);
5319 this.searchFunction = searchFunction; this.result = result;
5320 }
5321 public final U getRawResult() { return result.get(); }
5322 public final void compute() {
5323 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5324 final AtomicReference<U> result;
5325 if ((searchFunction = this.searchFunction) != null &&
5326 (result = this.result) != null) {
5327 for (int i = baseIndex, f, h; batch > 0 &&
5328 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5329 if (result.get() != null)
5330 return;
5331 addToPendingCount(1);
5332 new SearchMappingsTask<K,V,U>
5333 (this, batch >>>= 1, baseLimit = h, f, tab,
5334 searchFunction, result).fork();
5335 }
5336 while (result.get() == null) {
5337 U u;
5338 Node<K,V> p;
5339 if ((p = advance()) == null) {
5340 propagateCompletion();
5341 break;
5342 }
5343 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5344 if (result.compareAndSet(null, u))
5345 quietlyCompleteRoot();
5346 break;
5347 }
5348 }
5349 }
5350 }
5351 }
5352
5353 @SuppressWarnings("serial")
5354 static final class ReduceKeysTask<K,V>
5355 extends BulkTask<K,V,K> {
5356 final BiFunction<? super K, ? super K, ? extends K> reducer;
5357 K result;
5358 ReduceKeysTask<K,V> rights, nextRight;
5359 ReduceKeysTask
5360 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5361 ReduceKeysTask<K,V> nextRight,
5362 BiFunction<? super K, ? super K, ? extends K> reducer) {
5363 super(p, b, i, f, t); this.nextRight = nextRight;
5364 this.reducer = reducer;
5365 }
5366 public final K getRawResult() { return result; }
5367 public final void compute() {
5368 final BiFunction<? super K, ? super K, ? extends K> reducer;
5369 if ((reducer = this.reducer) != null) {
5370 for (int i = baseIndex, f, h; batch > 0 &&
5371 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5372 addToPendingCount(1);
5373 (rights = new ReduceKeysTask<K,V>
5374 (this, batch >>>= 1, baseLimit = h, f, tab,
5375 rights, reducer)).fork();
5376 }
5377 K r = null;
5378 for (Node<K,V> p; (p = advance()) != null; ) {
5379 K u = p.key;
5380 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5381 }
5382 result = r;
5383 CountedCompleter<?> c;
5384 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5385 @SuppressWarnings("unchecked")
5386 ReduceKeysTask<K,V>
5387 t = (ReduceKeysTask<K,V>)c,
5388 s = t.rights;
5389 while (s != null) {
5390 K tr, sr;
5391 if ((sr = s.result) != null)
5392 t.result = (((tr = t.result) == null) ? sr :
5393 reducer.apply(tr, sr));
5394 s = t.rights = s.nextRight;
5395 }
5396 }
5397 }
5398 }
5399 }
5400
5401 @SuppressWarnings("serial")
5402 static final class ReduceValuesTask<K,V>
5403 extends BulkTask<K,V,V> {
5404 final BiFunction<? super V, ? super V, ? extends V> reducer;
5405 V result;
5406 ReduceValuesTask<K,V> rights, nextRight;
5407 ReduceValuesTask
5408 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5409 ReduceValuesTask<K,V> nextRight,
5410 BiFunction<? super V, ? super V, ? extends V> reducer) {
5411 super(p, b, i, f, t); this.nextRight = nextRight;
5412 this.reducer = reducer;
5413 }
5414 public final V getRawResult() { return result; }
5415 public final void compute() {
5416 final BiFunction<? super V, ? super V, ? extends V> reducer;
5417 if ((reducer = this.reducer) != null) {
5418 for (int i = baseIndex, f, h; batch > 0 &&
5419 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5420 addToPendingCount(1);
5421 (rights = new ReduceValuesTask<K,V>
5422 (this, batch >>>= 1, baseLimit = h, f, tab,
5423 rights, reducer)).fork();
5424 }
5425 V r = null;
5426 for (Node<K,V> p; (p = advance()) != null; ) {
5427 V v = p.val;
5428 r = (r == null) ? v : reducer.apply(r, v);
5429 }
5430 result = r;
5431 CountedCompleter<?> c;
5432 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5433 @SuppressWarnings("unchecked")
5434 ReduceValuesTask<K,V>
5435 t = (ReduceValuesTask<K,V>)c,
5436 s = t.rights;
5437 while (s != null) {
5438 V tr, sr;
5439 if ((sr = s.result) != null)
5440 t.result = (((tr = t.result) == null) ? sr :
5441 reducer.apply(tr, sr));
5442 s = t.rights = s.nextRight;
5443 }
5444 }
5445 }
5446 }
5447 }
5448
5449 @SuppressWarnings("serial")
5450 static final class ReduceEntriesTask<K,V>
5451 extends BulkTask<K,V,Map.Entry<K,V>> {
5452 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5453 Map.Entry<K,V> result;
5454 ReduceEntriesTask<K,V> rights, nextRight;
5455 ReduceEntriesTask
5456 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5457 ReduceEntriesTask<K,V> nextRight,
5458 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5459 super(p, b, i, f, t); this.nextRight = nextRight;
5460 this.reducer = reducer;
5461 }
5462 public final Map.Entry<K,V> getRawResult() { return result; }
5463 public final void compute() {
5464 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5465 if ((reducer = this.reducer) != null) {
5466 for (int i = baseIndex, f, h; batch > 0 &&
5467 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5468 addToPendingCount(1);
5469 (rights = new ReduceEntriesTask<K,V>
5470 (this, batch >>>= 1, baseLimit = h, f, tab,
5471 rights, reducer)).fork();
5472 }
5473 Map.Entry<K,V> r = null;
5474 for (Node<K,V> p; (p = advance()) != null; )
5475 r = (r == null) ? p : reducer.apply(r, p);
5476 result = r;
5477 CountedCompleter<?> c;
5478 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5479 @SuppressWarnings("unchecked")
5480 ReduceEntriesTask<K,V>
5481 t = (ReduceEntriesTask<K,V>)c,
5482 s = t.rights;
5483 while (s != null) {
5484 Map.Entry<K,V> tr, sr;
5485 if ((sr = s.result) != null)
5486 t.result = (((tr = t.result) == null) ? sr :
5487 reducer.apply(tr, sr));
5488 s = t.rights = s.nextRight;
5489 }
5490 }
5491 }
5492 }
5493 }
5494
5495 @SuppressWarnings("serial")
5496 static final class MapReduceKeysTask<K,V,U>
5497 extends BulkTask<K,V,U> {
5498 final Function<? super K, ? extends U> transformer;
5499 final BiFunction<? super U, ? super U, ? extends U> reducer;
5500 U result;
5501 MapReduceKeysTask<K,V,U> rights, nextRight;
5502 MapReduceKeysTask
5503 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5504 MapReduceKeysTask<K,V,U> nextRight,
5505 Function<? super K, ? extends U> transformer,
5506 BiFunction<? super U, ? super U, ? extends U> reducer) {
5507 super(p, b, i, f, t); this.nextRight = nextRight;
5508 this.transformer = transformer;
5509 this.reducer = reducer;
5510 }
5511 public final U getRawResult() { return result; }
5512 public final void compute() {
5513 final Function<? super K, ? extends U> transformer;
5514 final BiFunction<? super U, ? super U, ? extends U> reducer;
5515 if ((transformer = this.transformer) != null &&
5516 (reducer = this.reducer) != null) {
5517 for (int i = baseIndex, f, h; batch > 0 &&
5518 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5519 addToPendingCount(1);
5520 (rights = new MapReduceKeysTask<K,V,U>
5521 (this, batch >>>= 1, baseLimit = h, f, tab,
5522 rights, transformer, reducer)).fork();
5523 }
5524 U r = null;
5525 for (Node<K,V> p; (p = advance()) != null; ) {
5526 U u;
5527 if ((u = transformer.apply(p.key)) != null)
5528 r = (r == null) ? u : reducer.apply(r, u);
5529 }
5530 result = r;
5531 CountedCompleter<?> c;
5532 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5533 @SuppressWarnings("unchecked")
5534 MapReduceKeysTask<K,V,U>
5535 t = (MapReduceKeysTask<K,V,U>)c,
5536 s = t.rights;
5537 while (s != null) {
5538 U tr, sr;
5539 if ((sr = s.result) != null)
5540 t.result = (((tr = t.result) == null) ? sr :
5541 reducer.apply(tr, sr));
5542 s = t.rights = s.nextRight;
5543 }
5544 }
5545 }
5546 }
5547 }
5548
5549 @SuppressWarnings("serial")
5550 static final class MapReduceValuesTask<K,V,U>
5551 extends BulkTask<K,V,U> {
5552 final Function<? super V, ? extends U> transformer;
5553 final BiFunction<? super U, ? super U, ? extends U> reducer;
5554 U result;
5555 MapReduceValuesTask<K,V,U> rights, nextRight;
5556 MapReduceValuesTask
5557 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5558 MapReduceValuesTask<K,V,U> nextRight,
5559 Function<? super V, ? extends U> transformer,
5560 BiFunction<? super U, ? super U, ? extends U> reducer) {
5561 super(p, b, i, f, t); this.nextRight = nextRight;
5562 this.transformer = transformer;
5563 this.reducer = reducer;
5564 }
5565 public final U getRawResult() { return result; }
5566 public final void compute() {
5567 final Function<? super V, ? extends U> transformer;
5568 final BiFunction<? super U, ? super U, ? extends U> reducer;
5569 if ((transformer = this.transformer) != null &&
5570 (reducer = this.reducer) != null) {
5571 for (int i = baseIndex, f, h; batch > 0 &&
5572 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5573 addToPendingCount(1);
5574 (rights = new MapReduceValuesTask<K,V,U>
5575 (this, batch >>>= 1, baseLimit = h, f, tab,
5576 rights, transformer, reducer)).fork();
5577 }
5578 U r = null;
5579 for (Node<K,V> p; (p = advance()) != null; ) {
5580 U u;
5581 if ((u = transformer.apply(p.val)) != null)
5582 r = (r == null) ? u : reducer.apply(r, u);
5583 }
5584 result = r;
5585 CountedCompleter<?> c;
5586 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5587 @SuppressWarnings("unchecked")
5588 MapReduceValuesTask<K,V,U>
5589 t = (MapReduceValuesTask<K,V,U>)c,
5590 s = t.rights;
5591 while (s != null) {
5592 U tr, sr;
5593 if ((sr = s.result) != null)
5594 t.result = (((tr = t.result) == null) ? sr :
5595 reducer.apply(tr, sr));
5596 s = t.rights = s.nextRight;
5597 }
5598 }
5599 }
5600 }
5601 }
5602
5603 @SuppressWarnings("serial")
5604 static final class MapReduceEntriesTask<K,V,U>
5605 extends BulkTask<K,V,U> {
5606 final Function<Map.Entry<K,V>, ? extends U> transformer;
5607 final BiFunction<? super U, ? super U, ? extends U> reducer;
5608 U result;
5609 MapReduceEntriesTask<K,V,U> rights, nextRight;
5610 MapReduceEntriesTask
5611 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5612 MapReduceEntriesTask<K,V,U> nextRight,
5613 Function<Map.Entry<K,V>, ? extends U> transformer,
5614 BiFunction<? super U, ? super U, ? extends U> reducer) {
5615 super(p, b, i, f, t); this.nextRight = nextRight;
5616 this.transformer = transformer;
5617 this.reducer = reducer;
5618 }
5619 public final U getRawResult() { return result; }
5620 public final void compute() {
5621 final Function<Map.Entry<K,V>, ? extends U> transformer;
5622 final BiFunction<? super U, ? super U, ? extends U> reducer;
5623 if ((transformer = this.transformer) != null &&
5624 (reducer = this.reducer) != null) {
5625 for (int i = baseIndex, f, h; batch > 0 &&
5626 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5627 addToPendingCount(1);
5628 (rights = new MapReduceEntriesTask<K,V,U>
5629 (this, batch >>>= 1, baseLimit = h, f, tab,
5630 rights, transformer, reducer)).fork();
5631 }
5632 U r = null;
5633 for (Node<K,V> p; (p = advance()) != null; ) {
5634 U u;
5635 if ((u = transformer.apply(p)) != null)
5636 r = (r == null) ? u : reducer.apply(r, u);
5637 }
5638 result = r;
5639 CountedCompleter<?> c;
5640 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5641 @SuppressWarnings("unchecked")
5642 MapReduceEntriesTask<K,V,U>
5643 t = (MapReduceEntriesTask<K,V,U>)c,
5644 s = t.rights;
5645 while (s != null) {
5646 U tr, sr;
5647 if ((sr = s.result) != null)
5648 t.result = (((tr = t.result) == null) ? sr :
5649 reducer.apply(tr, sr));
5650 s = t.rights = s.nextRight;
5651 }
5652 }
5653 }
5654 }
5655 }
5656
5657 @SuppressWarnings("serial")
5658 static final class MapReduceMappingsTask<K,V,U>
5659 extends BulkTask<K,V,U> {
5660 final BiFunction<? super K, ? super V, ? extends U> transformer;
5661 final BiFunction<? super U, ? super U, ? extends U> reducer;
5662 U result;
5663 MapReduceMappingsTask<K,V,U> rights, nextRight;
5664 MapReduceMappingsTask
5665 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5666 MapReduceMappingsTask<K,V,U> nextRight,
5667 BiFunction<? super K, ? super V, ? extends U> transformer,
5668 BiFunction<? super U, ? super U, ? extends U> reducer) {
5669 super(p, b, i, f, t); this.nextRight = nextRight;
5670 this.transformer = transformer;
5671 this.reducer = reducer;
5672 }
5673 public final U getRawResult() { return result; }
5674 public final void compute() {
5675 final BiFunction<? super K, ? super V, ? extends U> transformer;
5676 final BiFunction<? super U, ? super U, ? extends U> reducer;
5677 if ((transformer = this.transformer) != null &&
5678 (reducer = this.reducer) != null) {
5679 for (int i = baseIndex, f, h; batch > 0 &&
5680 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5681 addToPendingCount(1);
5682 (rights = new MapReduceMappingsTask<K,V,U>
5683 (this, batch >>>= 1, baseLimit = h, f, tab,
5684 rights, transformer, reducer)).fork();
5685 }
5686 U r = null;
5687 for (Node<K,V> p; (p = advance()) != null; ) {
5688 U u;
5689 if ((u = transformer.apply(p.key, p.val)) != null)
5690 r = (r == null) ? u : reducer.apply(r, u);
5691 }
5692 result = r;
5693 CountedCompleter<?> c;
5694 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5695 @SuppressWarnings("unchecked")
5696 MapReduceMappingsTask<K,V,U>
5697 t = (MapReduceMappingsTask<K,V,U>)c,
5698 s = t.rights;
5699 while (s != null) {
5700 U tr, sr;
5701 if ((sr = s.result) != null)
5702 t.result = (((tr = t.result) == null) ? sr :
5703 reducer.apply(tr, sr));
5704 s = t.rights = s.nextRight;
5705 }
5706 }
5707 }
5708 }
5709 }
5710
5711 @SuppressWarnings("serial")
5712 static final class MapReduceKeysToDoubleTask<K,V>
5713 extends BulkTask<K,V,Double> {
5714 final ToDoubleFunction<? super K> transformer;
5715 final DoubleBinaryOperator reducer;
5716 final double basis;
5717 double result;
5718 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5719 MapReduceKeysToDoubleTask
5720 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5721 MapReduceKeysToDoubleTask<K,V> nextRight,
5722 ToDoubleFunction<? super K> transformer,
5723 double basis,
5724 DoubleBinaryOperator reducer) {
5725 super(p, b, i, f, t); this.nextRight = nextRight;
5726 this.transformer = transformer;
5727 this.basis = basis; this.reducer = reducer;
5728 }
5729 public final Double getRawResult() { return result; }
5730 public final void compute() {
5731 final ToDoubleFunction<? super K> transformer;
5732 final DoubleBinaryOperator reducer;
5733 if ((transformer = this.transformer) != null &&
5734 (reducer = this.reducer) != null) {
5735 double r = this.basis;
5736 for (int i = baseIndex, f, h; batch > 0 &&
5737 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5738 addToPendingCount(1);
5739 (rights = new MapReduceKeysToDoubleTask<K,V>
5740 (this, batch >>>= 1, baseLimit = h, f, tab,
5741 rights, transformer, r, reducer)).fork();
5742 }
5743 for (Node<K,V> p; (p = advance()) != null; )
5744 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5745 result = r;
5746 CountedCompleter<?> c;
5747 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5748 @SuppressWarnings("unchecked")
5749 MapReduceKeysToDoubleTask<K,V>
5750 t = (MapReduceKeysToDoubleTask<K,V>)c,
5751 s = t.rights;
5752 while (s != null) {
5753 t.result = reducer.applyAsDouble(t.result, s.result);
5754 s = t.rights = s.nextRight;
5755 }
5756 }
5757 }
5758 }
5759 }
5760
5761 @SuppressWarnings("serial")
5762 static final class MapReduceValuesToDoubleTask<K,V>
5763 extends BulkTask<K,V,Double> {
5764 final ToDoubleFunction<? super V> transformer;
5765 final DoubleBinaryOperator reducer;
5766 final double basis;
5767 double result;
5768 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5769 MapReduceValuesToDoubleTask
5770 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5771 MapReduceValuesToDoubleTask<K,V> nextRight,
5772 ToDoubleFunction<? super V> transformer,
5773 double basis,
5774 DoubleBinaryOperator reducer) {
5775 super(p, b, i, f, t); this.nextRight = nextRight;
5776 this.transformer = transformer;
5777 this.basis = basis; this.reducer = reducer;
5778 }
5779 public final Double getRawResult() { return result; }
5780 public final void compute() {
5781 final ToDoubleFunction<? super V> transformer;
5782 final DoubleBinaryOperator reducer;
5783 if ((transformer = this.transformer) != null &&
5784 (reducer = this.reducer) != null) {
5785 double r = this.basis;
5786 for (int i = baseIndex, f, h; batch > 0 &&
5787 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5788 addToPendingCount(1);
5789 (rights = new MapReduceValuesToDoubleTask<K,V>
5790 (this, batch >>>= 1, baseLimit = h, f, tab,
5791 rights, transformer, r, reducer)).fork();
5792 }
5793 for (Node<K,V> p; (p = advance()) != null; )
5794 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5795 result = r;
5796 CountedCompleter<?> c;
5797 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5798 @SuppressWarnings("unchecked")
5799 MapReduceValuesToDoubleTask<K,V>
5800 t = (MapReduceValuesToDoubleTask<K,V>)c,
5801 s = t.rights;
5802 while (s != null) {
5803 t.result = reducer.applyAsDouble(t.result, s.result);
5804 s = t.rights = s.nextRight;
5805 }
5806 }
5807 }
5808 }
5809 }
5810
5811 @SuppressWarnings("serial")
5812 static final class MapReduceEntriesToDoubleTask<K,V>
5813 extends BulkTask<K,V,Double> {
5814 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5815 final DoubleBinaryOperator reducer;
5816 final double basis;
5817 double result;
5818 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5819 MapReduceEntriesToDoubleTask
5820 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5821 MapReduceEntriesToDoubleTask<K,V> nextRight,
5822 ToDoubleFunction<Map.Entry<K,V>> transformer,
5823 double basis,
5824 DoubleBinaryOperator reducer) {
5825 super(p, b, i, f, t); this.nextRight = nextRight;
5826 this.transformer = transformer;
5827 this.basis = basis; this.reducer = reducer;
5828 }
5829 public final Double getRawResult() { return result; }
5830 public final void compute() {
5831 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5832 final DoubleBinaryOperator reducer;
5833 if ((transformer = this.transformer) != null &&
5834 (reducer = this.reducer) != null) {
5835 double r = this.basis;
5836 for (int i = baseIndex, f, h; batch > 0 &&
5837 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5838 addToPendingCount(1);
5839 (rights = new MapReduceEntriesToDoubleTask<K,V>
5840 (this, batch >>>= 1, baseLimit = h, f, tab,
5841 rights, transformer, r, reducer)).fork();
5842 }
5843 for (Node<K,V> p; (p = advance()) != null; )
5844 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5845 result = r;
5846 CountedCompleter<?> c;
5847 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5848 @SuppressWarnings("unchecked")
5849 MapReduceEntriesToDoubleTask<K,V>
5850 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5851 s = t.rights;
5852 while (s != null) {
5853 t.result = reducer.applyAsDouble(t.result, s.result);
5854 s = t.rights = s.nextRight;
5855 }
5856 }
5857 }
5858 }
5859 }
5860
5861 @SuppressWarnings("serial")
5862 static final class MapReduceMappingsToDoubleTask<K,V>
5863 extends BulkTask<K,V,Double> {
5864 final ToDoubleBiFunction<? super K, ? super V> transformer;
5865 final DoubleBinaryOperator reducer;
5866 final double basis;
5867 double result;
5868 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5869 MapReduceMappingsToDoubleTask
5870 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5871 MapReduceMappingsToDoubleTask<K,V> nextRight,
5872 ToDoubleBiFunction<? super K, ? super V> transformer,
5873 double basis,
5874 DoubleBinaryOperator reducer) {
5875 super(p, b, i, f, t); this.nextRight = nextRight;
5876 this.transformer = transformer;
5877 this.basis = basis; this.reducer = reducer;
5878 }
5879 public final Double getRawResult() { return result; }
5880 public final void compute() {
5881 final ToDoubleBiFunction<? super K, ? super V> transformer;
5882 final DoubleBinaryOperator reducer;
5883 if ((transformer = this.transformer) != null &&
5884 (reducer = this.reducer) != null) {
5885 double r = this.basis;
5886 for (int i = baseIndex, f, h; batch > 0 &&
5887 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5888 addToPendingCount(1);
5889 (rights = new MapReduceMappingsToDoubleTask<K,V>
5890 (this, batch >>>= 1, baseLimit = h, f, tab,
5891 rights, transformer, r, reducer)).fork();
5892 }
5893 for (Node<K,V> p; (p = advance()) != null; )
5894 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5895 result = r;
5896 CountedCompleter<?> c;
5897 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5898 @SuppressWarnings("unchecked")
5899 MapReduceMappingsToDoubleTask<K,V>
5900 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5901 s = t.rights;
5902 while (s != null) {
5903 t.result = reducer.applyAsDouble(t.result, s.result);
5904 s = t.rights = s.nextRight;
5905 }
5906 }
5907 }
5908 }
5909 }
5910
5911 @SuppressWarnings("serial")
5912 static final class MapReduceKeysToLongTask<K,V>
5913 extends BulkTask<K,V,Long> {
5914 final ToLongFunction<? super K> transformer;
5915 final LongBinaryOperator reducer;
5916 final long basis;
5917 long result;
5918 MapReduceKeysToLongTask<K,V> rights, nextRight;
5919 MapReduceKeysToLongTask
5920 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5921 MapReduceKeysToLongTask<K,V> nextRight,
5922 ToLongFunction<? super K> transformer,
5923 long basis,
5924 LongBinaryOperator reducer) {
5925 super(p, b, i, f, t); this.nextRight = nextRight;
5926 this.transformer = transformer;
5927 this.basis = basis; this.reducer = reducer;
5928 }
5929 public final Long getRawResult() { return result; }
5930 public final void compute() {
5931 final ToLongFunction<? super K> transformer;
5932 final LongBinaryOperator reducer;
5933 if ((transformer = this.transformer) != null &&
5934 (reducer = this.reducer) != null) {
5935 long r = this.basis;
5936 for (int i = baseIndex, f, h; batch > 0 &&
5937 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5938 addToPendingCount(1);
5939 (rights = new MapReduceKeysToLongTask<K,V>
5940 (this, batch >>>= 1, baseLimit = h, f, tab,
5941 rights, transformer, r, reducer)).fork();
5942 }
5943 for (Node<K,V> p; (p = advance()) != null; )
5944 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5945 result = r;
5946 CountedCompleter<?> c;
5947 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5948 @SuppressWarnings("unchecked")
5949 MapReduceKeysToLongTask<K,V>
5950 t = (MapReduceKeysToLongTask<K,V>)c,
5951 s = t.rights;
5952 while (s != null) {
5953 t.result = reducer.applyAsLong(t.result, s.result);
5954 s = t.rights = s.nextRight;
5955 }
5956 }
5957 }
5958 }
5959 }
5960
5961 @SuppressWarnings("serial")
5962 static final class MapReduceValuesToLongTask<K,V>
5963 extends BulkTask<K,V,Long> {
5964 final ToLongFunction<? super V> transformer;
5965 final LongBinaryOperator reducer;
5966 final long basis;
5967 long result;
5968 MapReduceValuesToLongTask<K,V> rights, nextRight;
5969 MapReduceValuesToLongTask
5970 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5971 MapReduceValuesToLongTask<K,V> nextRight,
5972 ToLongFunction<? super V> transformer,
5973 long basis,
5974 LongBinaryOperator reducer) {
5975 super(p, b, i, f, t); this.nextRight = nextRight;
5976 this.transformer = transformer;
5977 this.basis = basis; this.reducer = reducer;
5978 }
5979 public final Long getRawResult() { return result; }
5980 public final void compute() {
5981 final ToLongFunction<? super V> transformer;
5982 final LongBinaryOperator reducer;
5983 if ((transformer = this.transformer) != null &&
5984 (reducer = this.reducer) != null) {
5985 long r = this.basis;
5986 for (int i = baseIndex, f, h; batch > 0 &&
5987 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5988 addToPendingCount(1);
5989 (rights = new MapReduceValuesToLongTask<K,V>
5990 (this, batch >>>= 1, baseLimit = h, f, tab,
5991 rights, transformer, r, reducer)).fork();
5992 }
5993 for (Node<K,V> p; (p = advance()) != null; )
5994 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5995 result = r;
5996 CountedCompleter<?> c;
5997 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5998 @SuppressWarnings("unchecked")
5999 MapReduceValuesToLongTask<K,V>
6000 t = (MapReduceValuesToLongTask<K,V>)c,
6001 s = t.rights;
6002 while (s != null) {
6003 t.result = reducer.applyAsLong(t.result, s.result);
6004 s = t.rights = s.nextRight;
6005 }
6006 }
6007 }
6008 }
6009 }
6010
6011 @SuppressWarnings("serial")
6012 static final class MapReduceEntriesToLongTask<K,V>
6013 extends BulkTask<K,V,Long> {
6014 final ToLongFunction<Map.Entry<K,V>> transformer;
6015 final LongBinaryOperator reducer;
6016 final long basis;
6017 long result;
6018 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6019 MapReduceEntriesToLongTask
6020 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6021 MapReduceEntriesToLongTask<K,V> nextRight,
6022 ToLongFunction<Map.Entry<K,V>> transformer,
6023 long basis,
6024 LongBinaryOperator reducer) {
6025 super(p, b, i, f, t); this.nextRight = nextRight;
6026 this.transformer = transformer;
6027 this.basis = basis; this.reducer = reducer;
6028 }
6029 public final Long getRawResult() { return result; }
6030 public final void compute() {
6031 final ToLongFunction<Map.Entry<K,V>> transformer;
6032 final LongBinaryOperator reducer;
6033 if ((transformer = this.transformer) != null &&
6034 (reducer = this.reducer) != null) {
6035 long r = this.basis;
6036 for (int i = baseIndex, f, h; batch > 0 &&
6037 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6038 addToPendingCount(1);
6039 (rights = new MapReduceEntriesToLongTask<K,V>
6040 (this, batch >>>= 1, baseLimit = h, f, tab,
6041 rights, transformer, r, reducer)).fork();
6042 }
6043 for (Node<K,V> p; (p = advance()) != null; )
6044 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6045 result = r;
6046 CountedCompleter<?> c;
6047 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6048 @SuppressWarnings("unchecked")
6049 MapReduceEntriesToLongTask<K,V>
6050 t = (MapReduceEntriesToLongTask<K,V>)c,
6051 s = t.rights;
6052 while (s != null) {
6053 t.result = reducer.applyAsLong(t.result, s.result);
6054 s = t.rights = s.nextRight;
6055 }
6056 }
6057 }
6058 }
6059 }
6060
6061 @SuppressWarnings("serial")
6062 static final class MapReduceMappingsToLongTask<K,V>
6063 extends BulkTask<K,V,Long> {
6064 final ToLongBiFunction<? super K, ? super V> transformer;
6065 final LongBinaryOperator reducer;
6066 final long basis;
6067 long result;
6068 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6069 MapReduceMappingsToLongTask
6070 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6071 MapReduceMappingsToLongTask<K,V> nextRight,
6072 ToLongBiFunction<? super K, ? super V> transformer,
6073 long basis,
6074 LongBinaryOperator reducer) {
6075 super(p, b, i, f, t); this.nextRight = nextRight;
6076 this.transformer = transformer;
6077 this.basis = basis; this.reducer = reducer;
6078 }
6079 public final Long getRawResult() { return result; }
6080 public final void compute() {
6081 final ToLongBiFunction<? super K, ? super V> transformer;
6082 final LongBinaryOperator reducer;
6083 if ((transformer = this.transformer) != null &&
6084 (reducer = this.reducer) != null) {
6085 long r = this.basis;
6086 for (int i = baseIndex, f, h; batch > 0 &&
6087 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6088 addToPendingCount(1);
6089 (rights = new MapReduceMappingsToLongTask<K,V>
6090 (this, batch >>>= 1, baseLimit = h, f, tab,
6091 rights, transformer, r, reducer)).fork();
6092 }
6093 for (Node<K,V> p; (p = advance()) != null; )
6094 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6095 result = r;
6096 CountedCompleter<?> c;
6097 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6098 @SuppressWarnings("unchecked")
6099 MapReduceMappingsToLongTask<K,V>
6100 t = (MapReduceMappingsToLongTask<K,V>)c,
6101 s = t.rights;
6102 while (s != null) {
6103 t.result = reducer.applyAsLong(t.result, s.result);
6104 s = t.rights = s.nextRight;
6105 }
6106 }
6107 }
6108 }
6109 }
6110
6111 @SuppressWarnings("serial")
6112 static final class MapReduceKeysToIntTask<K,V>
6113 extends BulkTask<K,V,Integer> {
6114 final ToIntFunction<? super K> transformer;
6115 final IntBinaryOperator reducer;
6116 final int basis;
6117 int result;
6118 MapReduceKeysToIntTask<K,V> rights, nextRight;
6119 MapReduceKeysToIntTask
6120 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6121 MapReduceKeysToIntTask<K,V> nextRight,
6122 ToIntFunction<? super K> transformer,
6123 int basis,
6124 IntBinaryOperator reducer) {
6125 super(p, b, i, f, t); this.nextRight = nextRight;
6126 this.transformer = transformer;
6127 this.basis = basis; this.reducer = reducer;
6128 }
6129 public final Integer getRawResult() { return result; }
6130 public final void compute() {
6131 final ToIntFunction<? super K> transformer;
6132 final IntBinaryOperator reducer;
6133 if ((transformer = this.transformer) != null &&
6134 (reducer = this.reducer) != null) {
6135 int r = this.basis;
6136 for (int i = baseIndex, f, h; batch > 0 &&
6137 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6138 addToPendingCount(1);
6139 (rights = new MapReduceKeysToIntTask<K,V>
6140 (this, batch >>>= 1, baseLimit = h, f, tab,
6141 rights, transformer, r, reducer)).fork();
6142 }
6143 for (Node<K,V> p; (p = advance()) != null; )
6144 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6145 result = r;
6146 CountedCompleter<?> c;
6147 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6148 @SuppressWarnings("unchecked")
6149 MapReduceKeysToIntTask<K,V>
6150 t = (MapReduceKeysToIntTask<K,V>)c,
6151 s = t.rights;
6152 while (s != null) {
6153 t.result = reducer.applyAsInt(t.result, s.result);
6154 s = t.rights = s.nextRight;
6155 }
6156 }
6157 }
6158 }
6159 }
6160
6161 @SuppressWarnings("serial")
6162 static final class MapReduceValuesToIntTask<K,V>
6163 extends BulkTask<K,V,Integer> {
6164 final ToIntFunction<? super V> transformer;
6165 final IntBinaryOperator reducer;
6166 final int basis;
6167 int result;
6168 MapReduceValuesToIntTask<K,V> rights, nextRight;
6169 MapReduceValuesToIntTask
6170 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6171 MapReduceValuesToIntTask<K,V> nextRight,
6172 ToIntFunction<? super V> transformer,
6173 int basis,
6174 IntBinaryOperator reducer) {
6175 super(p, b, i, f, t); this.nextRight = nextRight;
6176 this.transformer = transformer;
6177 this.basis = basis; this.reducer = reducer;
6178 }
6179 public final Integer getRawResult() { return result; }
6180 public final void compute() {
6181 final ToIntFunction<? super V> transformer;
6182 final IntBinaryOperator reducer;
6183 if ((transformer = this.transformer) != null &&
6184 (reducer = this.reducer) != null) {
6185 int r = this.basis;
6186 for (int i = baseIndex, f, h; batch > 0 &&
6187 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6188 addToPendingCount(1);
6189 (rights = new MapReduceValuesToIntTask<K,V>
6190 (this, batch >>>= 1, baseLimit = h, f, tab,
6191 rights, transformer, r, reducer)).fork();
6192 }
6193 for (Node<K,V> p; (p = advance()) != null; )
6194 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6195 result = r;
6196 CountedCompleter<?> c;
6197 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6198 @SuppressWarnings("unchecked")
6199 MapReduceValuesToIntTask<K,V>
6200 t = (MapReduceValuesToIntTask<K,V>)c,
6201 s = t.rights;
6202 while (s != null) {
6203 t.result = reducer.applyAsInt(t.result, s.result);
6204 s = t.rights = s.nextRight;
6205 }
6206 }
6207 }
6208 }
6209 }
6210
6211 @SuppressWarnings("serial")
6212 static final class MapReduceEntriesToIntTask<K,V>
6213 extends BulkTask<K,V,Integer> {
6214 final ToIntFunction<Map.Entry<K,V>> transformer;
6215 final IntBinaryOperator reducer;
6216 final int basis;
6217 int result;
6218 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6219 MapReduceEntriesToIntTask
6220 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6221 MapReduceEntriesToIntTask<K,V> nextRight,
6222 ToIntFunction<Map.Entry<K,V>> transformer,
6223 int basis,
6224 IntBinaryOperator reducer) {
6225 super(p, b, i, f, t); this.nextRight = nextRight;
6226 this.transformer = transformer;
6227 this.basis = basis; this.reducer = reducer;
6228 }
6229 public final Integer getRawResult() { return result; }
6230 public final void compute() {
6231 final ToIntFunction<Map.Entry<K,V>> transformer;
6232 final IntBinaryOperator reducer;
6233 if ((transformer = this.transformer) != null &&
6234 (reducer = this.reducer) != null) {
6235 int r = this.basis;
6236 for (int i = baseIndex, f, h; batch > 0 &&
6237 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6238 addToPendingCount(1);
6239 (rights = new MapReduceEntriesToIntTask<K,V>
6240 (this, batch >>>= 1, baseLimit = h, f, tab,
6241 rights, transformer, r, reducer)).fork();
6242 }
6243 for (Node<K,V> p; (p = advance()) != null; )
6244 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6245 result = r;
6246 CountedCompleter<?> c;
6247 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6248 @SuppressWarnings("unchecked")
6249 MapReduceEntriesToIntTask<K,V>
6250 t = (MapReduceEntriesToIntTask<K,V>)c,
6251 s = t.rights;
6252 while (s != null) {
6253 t.result = reducer.applyAsInt(t.result, s.result);
6254 s = t.rights = s.nextRight;
6255 }
6256 }
6257 }
6258 }
6259 }
6260
6261 @SuppressWarnings("serial")
6262 static final class MapReduceMappingsToIntTask<K,V>
6263 extends BulkTask<K,V,Integer> {
6264 final ToIntBiFunction<? super K, ? super V> transformer;
6265 final IntBinaryOperator reducer;
6266 final int basis;
6267 int result;
6268 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6269 MapReduceMappingsToIntTask
6270 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6271 MapReduceMappingsToIntTask<K,V> nextRight,
6272 ToIntBiFunction<? super K, ? super V> transformer,
6273 int basis,
6274 IntBinaryOperator reducer) {
6275 super(p, b, i, f, t); this.nextRight = nextRight;
6276 this.transformer = transformer;
6277 this.basis = basis; this.reducer = reducer;
6278 }
6279 public final Integer getRawResult() { return result; }
6280 public final void compute() {
6281 final ToIntBiFunction<? super K, ? super V> transformer;
6282 final IntBinaryOperator reducer;
6283 if ((transformer = this.transformer) != null &&
6284 (reducer = this.reducer) != null) {
6285 int r = this.basis;
6286 for (int i = baseIndex, f, h; batch > 0 &&
6287 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6288 addToPendingCount(1);
6289 (rights = new MapReduceMappingsToIntTask<K,V>
6290 (this, batch >>>= 1, baseLimit = h, f, tab,
6291 rights, transformer, r, reducer)).fork();
6292 }
6293 for (Node<K,V> p; (p = advance()) != null; )
6294 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6295 result = r;
6296 CountedCompleter<?> c;
6297 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6298 @SuppressWarnings("unchecked")
6299 MapReduceMappingsToIntTask<K,V>
6300 t = (MapReduceMappingsToIntTask<K,V>)c,
6301 s = t.rights;
6302 while (s != null) {
6303 t.result = reducer.applyAsInt(t.result, s.result);
6304 s = t.rights = s.nextRight;
6305 }
6306 }
6307 }
6308 }
6309 }
6310
6311 // Unsafe mechanics
6312 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
6313 private static final long SIZECTL;
6314 private static final long TRANSFERINDEX;
6315 private static final long BASECOUNT;
6316 private static final long CELLSBUSY;
6317 private static final long CELLVALUE;
6318 private static final int ABASE;
6319 private static final int ASHIFT;
6320
6321 static {
6322 try {
6323 SIZECTL = U.objectFieldOffset
6324 (ConcurrentHashMap.class.getDeclaredField("sizeCtl"));
6325 TRANSFERINDEX = U.objectFieldOffset
6326 (ConcurrentHashMap.class.getDeclaredField("transferIndex"));
6327 BASECOUNT = U.objectFieldOffset
6328 (ConcurrentHashMap.class.getDeclaredField("baseCount"));
6329 CELLSBUSY = U.objectFieldOffset
6330 (ConcurrentHashMap.class.getDeclaredField("cellsBusy"));
6331
6332 CELLVALUE = U.objectFieldOffset
6333 (CounterCell.class.getDeclaredField("value"));
6334
6335 ABASE = U.arrayBaseOffset(Node[].class);
6336 int scale = U.arrayIndexScale(Node[].class);
6337 if ((scale & (scale - 1)) != 0)
6338 throw new Error("array index scale not a power of two");
6339 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6340 } catch (ReflectiveOperationException e) {
6341 throw new Error(e);
6342 }
6343
6344 // Reduce the risk of rare disastrous classloading in first call to
6345 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6346 Class<?> ensureLoaded = LockSupport.class;
6347 }
6348 }