ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk8/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.5
Committed: Tue Oct 9 01:42:02 2018 UTC (5 years, 7 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.4: +2 -0 lines
Log Message:
fix 4jdk8-tck by backporting ConcurrentHashMap bug fix

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.io.Serializable;
11 import java.lang.reflect.ParameterizedType;
12 import java.lang.reflect.Type;
13 import java.util.AbstractMap;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Enumeration;
17 import java.util.HashMap;
18 import java.util.Hashtable;
19 import java.util.Iterator;
20 import java.util.Map;
21 import java.util.NoSuchElementException;
22 import java.util.Set;
23 import java.util.Spliterator;
24 import java.util.concurrent.atomic.AtomicReference;
25 import java.util.concurrent.locks.LockSupport;
26 import java.util.concurrent.locks.ReentrantLock;
27 import java.util.function.BiConsumer;
28 import java.util.function.BiFunction;
29 import java.util.function.Consumer;
30 import java.util.function.DoubleBinaryOperator;
31 import java.util.function.Function;
32 import java.util.function.IntBinaryOperator;
33 import java.util.function.LongBinaryOperator;
34 import java.util.function.Predicate;
35 import java.util.function.ToDoubleBiFunction;
36 import java.util.function.ToDoubleFunction;
37 import java.util.function.ToIntBiFunction;
38 import java.util.function.ToIntFunction;
39 import java.util.function.ToLongBiFunction;
40 import java.util.function.ToLongFunction;
41 import java.util.stream.Stream;
42
43 /**
44 * A hash table supporting full concurrency of retrievals and
45 * high expected concurrency for updates. This class obeys the
46 * same functional specification as {@link java.util.Hashtable}, and
47 * includes versions of methods corresponding to each method of
48 * {@code Hashtable}. However, even though all operations are
49 * thread-safe, retrieval operations do <em>not</em> entail locking,
50 * and there is <em>not</em> any support for locking the entire table
51 * in a way that prevents all access. This class is fully
52 * interoperable with {@code Hashtable} in programs that rely on its
53 * thread safety but not on its synchronization details.
54 *
55 * <p>Retrieval operations (including {@code get}) generally do not
56 * block, so may overlap with update operations (including {@code put}
57 * and {@code remove}). Retrievals reflect the results of the most
58 * recently <em>completed</em> update operations holding upon their
59 * onset. (More formally, an update operation for a given key bears a
60 * <em>happens-before</em> relation with any (non-null) retrieval for
61 * that key reporting the updated value.) For aggregate operations
62 * such as {@code putAll} and {@code clear}, concurrent retrievals may
63 * reflect insertion or removal of only some entries. Similarly,
64 * Iterators, Spliterators and Enumerations return elements reflecting the
65 * state of the hash table at some point at or since the creation of the
66 * iterator/enumeration. They do <em>not</em> throw {@link
67 * java.util.ConcurrentModificationException ConcurrentModificationException}.
68 * However, iterators are designed to be used by only one thread at a time.
69 * Bear in mind that the results of aggregate status methods including
70 * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
71 * useful only when a map is not undergoing concurrent updates in other threads.
72 * Otherwise the results of these methods reflect transient states
73 * that may be adequate for monitoring or estimation purposes, but not
74 * for program control.
75 *
76 * <p>The table is dynamically expanded when there are too many
77 * collisions (i.e., keys that have distinct hash codes but fall into
78 * the same slot modulo the table size), with the expected average
79 * effect of maintaining roughly two bins per mapping (corresponding
80 * to a 0.75 load factor threshold for resizing). There may be much
81 * variance around this average as mappings are added and removed, but
82 * overall, this maintains a commonly accepted time/space tradeoff for
83 * hash tables. However, resizing this or any other kind of hash
84 * table may be a relatively slow operation. When possible, it is a
85 * good idea to provide a size estimate as an optional {@code
86 * initialCapacity} constructor argument. An additional optional
87 * {@code loadFactor} constructor argument provides a further means of
88 * customizing initial table capacity by specifying the table density
89 * to be used in calculating the amount of space to allocate for the
90 * given number of elements. Also, for compatibility with previous
91 * versions of this class, constructors may optionally specify an
92 * expected {@code concurrencyLevel} as an additional hint for
93 * internal sizing. Note that using many keys with exactly the same
94 * {@code hashCode()} is a sure way to slow down performance of any
95 * hash table. To ameliorate impact, when keys are {@link Comparable},
96 * this class may use comparison order among keys to help break ties.
97 *
98 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
99 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
100 * (using {@link #keySet(Object)} when only keys are of interest, and the
101 * mapped values are (perhaps transiently) not used or all take the
102 * same mapping value.
103 *
104 * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
105 * form of histogram or multiset) by using {@link
106 * java.util.concurrent.atomic.LongAdder} values and initializing via
107 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
108 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
109 * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
110 *
111 * <p>This class and its views and iterators implement all of the
112 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
113 * interfaces.
114 *
115 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
116 * does <em>not</em> allow {@code null} to be used as a key or value.
117 *
118 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
119 * operations that, unlike most {@link Stream} methods, are designed
120 * to be safely, and often sensibly, applied even with maps that are
121 * being concurrently updated by other threads; for example, when
122 * computing a snapshot summary of the values in a shared registry.
123 * There are three kinds of operation, each with four forms, accepting
124 * functions with keys, values, entries, and (key, value) pairs as
125 * arguments and/or return values. Because the elements of a
126 * ConcurrentHashMap are not ordered in any particular way, and may be
127 * processed in different orders in different parallel executions, the
128 * correctness of supplied functions should not depend on any
129 * ordering, or on any other objects or values that may transiently
130 * change while computation is in progress; and except for forEach
131 * actions, should ideally be side-effect-free. Bulk operations on
132 * {@link java.util.Map.Entry} objects do not support method {@code
133 * setValue}.
134 *
135 * <ul>
136 * <li>forEach: Performs a given action on each element.
137 * A variant form applies a given transformation on each element
138 * before performing the action.
139 *
140 * <li>search: Returns the first available non-null result of
141 * applying a given function on each element; skipping further
142 * search when a result is found.
143 *
144 * <li>reduce: Accumulates each element. The supplied reduction
145 * function cannot rely on ordering (more formally, it should be
146 * both associative and commutative). There are five variants:
147 *
148 * <ul>
149 *
150 * <li>Plain reductions. (There is not a form of this method for
151 * (key, value) function arguments since there is no corresponding
152 * return type.)
153 *
154 * <li>Mapped reductions that accumulate the results of a given
155 * function applied to each element.
156 *
157 * <li>Reductions to scalar doubles, longs, and ints, using a
158 * given basis value.
159 *
160 * </ul>
161 * </ul>
162 *
163 * <p>These bulk operations accept a {@code parallelismThreshold}
164 * argument. Methods proceed sequentially if the current map size is
165 * estimated to be less than the given threshold. Using a value of
166 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
167 * of {@code 1} results in maximal parallelism by partitioning into
168 * enough subtasks to fully utilize the {@link
169 * ForkJoinPool#commonPool()} that is used for all parallel
170 * computations. Normally, you would initially choose one of these
171 * extreme values, and then measure performance of using in-between
172 * values that trade off overhead versus throughput.
173 *
174 * <p>The concurrency properties of bulk operations follow
175 * from those of ConcurrentHashMap: Any non-null result returned
176 * from {@code get(key)} and related access methods bears a
177 * happens-before relation with the associated insertion or
178 * update. The result of any bulk operation reflects the
179 * composition of these per-element relations (but is not
180 * necessarily atomic with respect to the map as a whole unless it
181 * is somehow known to be quiescent). Conversely, because keys
182 * and values in the map are never null, null serves as a reliable
183 * atomic indicator of the current lack of any result. To
184 * maintain this property, null serves as an implicit basis for
185 * all non-scalar reduction operations. For the double, long, and
186 * int versions, the basis should be one that, when combined with
187 * any other value, returns that other value (more formally, it
188 * should be the identity element for the reduction). Most common
189 * reductions have these properties; for example, computing a sum
190 * with basis 0 or a minimum with basis MAX_VALUE.
191 *
192 * <p>Search and transformation functions provided as arguments
193 * should similarly return null to indicate the lack of any result
194 * (in which case it is not used). In the case of mapped
195 * reductions, this also enables transformations to serve as
196 * filters, returning null (or, in the case of primitive
197 * specializations, the identity basis) if the element should not
198 * be combined. You can create compound transformations and
199 * filterings by composing them yourself under this "null means
200 * there is nothing there now" rule before using them in search or
201 * reduce operations.
202 *
203 * <p>Methods accepting and/or returning Entry arguments maintain
204 * key-value associations. They may be useful for example when
205 * finding the key for the greatest value. Note that "plain" Entry
206 * arguments can be supplied using {@code new
207 * AbstractMap.SimpleEntry(k,v)}.
208 *
209 * <p>Bulk operations may complete abruptly, throwing an
210 * exception encountered in the application of a supplied
211 * function. Bear in mind when handling such exceptions that other
212 * concurrently executing functions could also have thrown
213 * exceptions, or would have done so if the first exception had
214 * not occurred.
215 *
216 * <p>Speedups for parallel compared to sequential forms are common
217 * but not guaranteed. Parallel operations involving brief functions
218 * on small maps may execute more slowly than sequential forms if the
219 * underlying work to parallelize the computation is more expensive
220 * than the computation itself. Similarly, parallelization may not
221 * lead to much actual parallelism if all processors are busy
222 * performing unrelated tasks.
223 *
224 * <p>All arguments to all task methods must be non-null.
225 *
226 * <p>This class is a member of the
227 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
228 * Java Collections Framework</a>.
229 *
230 * @since 1.5
231 * @author Doug Lea
232 * @param <K> the type of keys maintained by this map
233 * @param <V> the type of mapped values
234 */
235 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
236 implements ConcurrentMap<K,V>, Serializable {
237 private static final long serialVersionUID = 7249069246763182397L;
238
239 /*
240 * Overview:
241 *
242 * The primary design goal of this hash table is to maintain
243 * concurrent readability (typically method get(), but also
244 * iterators and related methods) while minimizing update
245 * contention. Secondary goals are to keep space consumption about
246 * the same or better than java.util.HashMap, and to support high
247 * initial insertion rates on an empty table by many threads.
248 *
249 * This map usually acts as a binned (bucketed) hash table. Each
250 * key-value mapping is held in a Node. Most nodes are instances
251 * of the basic Node class with hash, key, value, and next
252 * fields. However, various subclasses exist: TreeNodes are
253 * arranged in balanced trees, not lists. TreeBins hold the roots
254 * of sets of TreeNodes. ForwardingNodes are placed at the heads
255 * of bins during resizing. ReservationNodes are used as
256 * placeholders while establishing values in computeIfAbsent and
257 * related methods. The types TreeBin, ForwardingNode, and
258 * ReservationNode do not hold normal user keys, values, or
259 * hashes, and are readily distinguishable during search etc
260 * because they have negative hash fields and null key and value
261 * fields. (These special nodes are either uncommon or transient,
262 * so the impact of carrying around some unused fields is
263 * insignificant.)
264 *
265 * The table is lazily initialized to a power-of-two size upon the
266 * first insertion. Each bin in the table normally contains a
267 * list of Nodes (most often, the list has only zero or one Node).
268 * Table accesses require volatile/atomic reads, writes, and
269 * CASes. Because there is no other way to arrange this without
270 * adding further indirections, we use intrinsics
271 * (sun.misc.Unsafe) operations.
272 *
273 * We use the top (sign) bit of Node hash fields for control
274 * purposes -- it is available anyway because of addressing
275 * constraints. Nodes with negative hash fields are specially
276 * handled or ignored in map methods.
277 *
278 * Insertion (via put or its variants) of the first node in an
279 * empty bin is performed by just CASing it to the bin. This is
280 * by far the most common case for put operations under most
281 * key/hash distributions. Other update operations (insert,
282 * delete, and replace) require locks. We do not want to waste
283 * the space required to associate a distinct lock object with
284 * each bin, so instead use the first node of a bin list itself as
285 * a lock. Locking support for these locks relies on builtin
286 * "synchronized" monitors.
287 *
288 * Using the first node of a list as a lock does not by itself
289 * suffice though: When a node is locked, any update must first
290 * validate that it is still the first node after locking it, and
291 * retry if not. Because new nodes are always appended to lists,
292 * once a node is first in a bin, it remains first until deleted
293 * or the bin becomes invalidated (upon resizing).
294 *
295 * The main disadvantage of per-bin locks is that other update
296 * operations on other nodes in a bin list protected by the same
297 * lock can stall, for example when user equals() or mapping
298 * functions take a long time. However, statistically, under
299 * random hash codes, this is not a common problem. Ideally, the
300 * frequency of nodes in bins follows a Poisson distribution
301 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
302 * parameter of about 0.5 on average, given the resizing threshold
303 * of 0.75, although with a large variance because of resizing
304 * granularity. Ignoring variance, the expected occurrences of
305 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
306 * first values are:
307 *
308 * 0: 0.60653066
309 * 1: 0.30326533
310 * 2: 0.07581633
311 * 3: 0.01263606
312 * 4: 0.00157952
313 * 5: 0.00015795
314 * 6: 0.00001316
315 * 7: 0.00000094
316 * 8: 0.00000006
317 * more: less than 1 in ten million
318 *
319 * Lock contention probability for two threads accessing distinct
320 * elements is roughly 1 / (8 * #elements) under random hashes.
321 *
322 * Actual hash code distributions encountered in practice
323 * sometimes deviate significantly from uniform randomness. This
324 * includes the case when N > (1<<30), so some keys MUST collide.
325 * Similarly for dumb or hostile usages in which multiple keys are
326 * designed to have identical hash codes or ones that differs only
327 * in masked-out high bits. So we use a secondary strategy that
328 * applies when the number of nodes in a bin exceeds a
329 * threshold. These TreeBins use a balanced tree to hold nodes (a
330 * specialized form of red-black trees), bounding search time to
331 * O(log N). Each search step in a TreeBin is at least twice as
332 * slow as in a regular list, but given that N cannot exceed
333 * (1<<64) (before running out of addresses) this bounds search
334 * steps, lock hold times, etc, to reasonable constants (roughly
335 * 100 nodes inspected per operation worst case) so long as keys
336 * are Comparable (which is very common -- String, Long, etc).
337 * TreeBin nodes (TreeNodes) also maintain the same "next"
338 * traversal pointers as regular nodes, so can be traversed in
339 * iterators in the same way.
340 *
341 * The table is resized when occupancy exceeds a percentage
342 * threshold (nominally, 0.75, but see below). Any thread
343 * noticing an overfull bin may assist in resizing after the
344 * initiating thread allocates and sets up the replacement array.
345 * However, rather than stalling, these other threads may proceed
346 * with insertions etc. The use of TreeBins shields us from the
347 * worst case effects of overfilling while resizes are in
348 * progress. Resizing proceeds by transferring bins, one by one,
349 * from the table to the next table. However, threads claim small
350 * blocks of indices to transfer (via field transferIndex) before
351 * doing so, reducing contention. A generation stamp in field
352 * sizeCtl ensures that resizings do not overlap. Because we are
353 * using power-of-two expansion, the elements from each bin must
354 * either stay at same index, or move with a power of two
355 * offset. We eliminate unnecessary node creation by catching
356 * cases where old nodes can be reused because their next fields
357 * won't change. On average, only about one-sixth of them need
358 * cloning when a table doubles. The nodes they replace will be
359 * garbage collectable as soon as they are no longer referenced by
360 * any reader thread that may be in the midst of concurrently
361 * traversing table. Upon transfer, the old table bin contains
362 * only a special forwarding node (with hash field "MOVED") that
363 * contains the next table as its key. On encountering a
364 * forwarding node, access and update operations restart, using
365 * the new table.
366 *
367 * Each bin transfer requires its bin lock, which can stall
368 * waiting for locks while resizing. However, because other
369 * threads can join in and help resize rather than contend for
370 * locks, average aggregate waits become shorter as resizing
371 * progresses. The transfer operation must also ensure that all
372 * accessible bins in both the old and new table are usable by any
373 * traversal. This is arranged in part by proceeding from the
374 * last bin (table.length - 1) up towards the first. Upon seeing
375 * a forwarding node, traversals (see class Traverser) arrange to
376 * move to the new table without revisiting nodes. To ensure that
377 * no intervening nodes are skipped even when moved out of order,
378 * a stack (see class TableStack) is created on first encounter of
379 * a forwarding node during a traversal, to maintain its place if
380 * later processing the current table. The need for these
381 * save/restore mechanics is relatively rare, but when one
382 * forwarding node is encountered, typically many more will be.
383 * So Traversers use a simple caching scheme to avoid creating so
384 * many new TableStack nodes. (Thanks to Peter Levart for
385 * suggesting use of a stack here.)
386 *
387 * The traversal scheme also applies to partial traversals of
388 * ranges of bins (via an alternate Traverser constructor)
389 * to support partitioned aggregate operations. Also, read-only
390 * operations give up if ever forwarded to a null table, which
391 * provides support for shutdown-style clearing, which is also not
392 * currently implemented.
393 *
394 * Lazy table initialization minimizes footprint until first use,
395 * and also avoids resizings when the first operation is from a
396 * putAll, constructor with map argument, or deserialization.
397 * These cases attempt to override the initial capacity settings,
398 * but harmlessly fail to take effect in cases of races.
399 *
400 * The element count is maintained using a specialization of
401 * LongAdder. We need to incorporate a specialization rather than
402 * just use a LongAdder in order to access implicit
403 * contention-sensing that leads to creation of multiple
404 * CounterCells. The counter mechanics avoid contention on
405 * updates but can encounter cache thrashing if read too
406 * frequently during concurrent access. To avoid reading so often,
407 * resizing under contention is attempted only upon adding to a
408 * bin already holding two or more nodes. Under uniform hash
409 * distributions, the probability of this occurring at threshold
410 * is around 13%, meaning that only about 1 in 8 puts check
411 * threshold (and after resizing, many fewer do so).
412 *
413 * TreeBins use a special form of comparison for search and
414 * related operations (which is the main reason we cannot use
415 * existing collections such as TreeMaps). TreeBins contain
416 * Comparable elements, but may contain others, as well as
417 * elements that are Comparable but not necessarily Comparable for
418 * the same T, so we cannot invoke compareTo among them. To handle
419 * this, the tree is ordered primarily by hash value, then by
420 * Comparable.compareTo order if applicable. On lookup at a node,
421 * if elements are not comparable or compare as 0 then both left
422 * and right children may need to be searched in the case of tied
423 * hash values. (This corresponds to the full list search that
424 * would be necessary if all elements were non-Comparable and had
425 * tied hashes.) On insertion, to keep a total ordering (or as
426 * close as is required here) across rebalancings, we compare
427 * classes and identityHashCodes as tie-breakers. The red-black
428 * balancing code is updated from pre-jdk-collections
429 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
430 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
431 * Algorithms" (CLR).
432 *
433 * TreeBins also require an additional locking mechanism. While
434 * list traversal is always possible by readers even during
435 * updates, tree traversal is not, mainly because of tree-rotations
436 * that may change the root node and/or its linkages. TreeBins
437 * include a simple read-write lock mechanism parasitic on the
438 * main bin-synchronization strategy: Structural adjustments
439 * associated with an insertion or removal are already bin-locked
440 * (and so cannot conflict with other writers) but must wait for
441 * ongoing readers to finish. Since there can be only one such
442 * waiter, we use a simple scheme using a single "waiter" field to
443 * block writers. However, readers need never block. If the root
444 * lock is held, they proceed along the slow traversal path (via
445 * next-pointers) until the lock becomes available or the list is
446 * exhausted, whichever comes first. These cases are not fast, but
447 * maximize aggregate expected throughput.
448 *
449 * Maintaining API and serialization compatibility with previous
450 * versions of this class introduces several oddities. Mainly: We
451 * leave untouched but unused constructor arguments referring to
452 * concurrencyLevel. We accept a loadFactor constructor argument,
453 * but apply it only to initial table capacity (which is the only
454 * time that we can guarantee to honor it.) We also declare an
455 * unused "Segment" class that is instantiated in minimal form
456 * only when serializing.
457 *
458 * Also, solely for compatibility with previous versions of this
459 * class, it extends AbstractMap, even though all of its methods
460 * are overridden, so it is just useless baggage.
461 *
462 * This file is organized to make things a little easier to follow
463 * while reading than they might otherwise: First the main static
464 * declarations and utilities, then fields, then main public
465 * methods (with a few factorings of multiple public methods into
466 * internal ones), then sizing methods, trees, traversers, and
467 * bulk operations.
468 */
469
470 /* ---------------- Constants -------------- */
471
472 /**
473 * The largest possible table capacity. This value must be
474 * exactly 1<<30 to stay within Java array allocation and indexing
475 * bounds for power of two table sizes, and is further required
476 * because the top two bits of 32bit hash fields are used for
477 * control purposes.
478 */
479 private static final int MAXIMUM_CAPACITY = 1 << 30;
480
481 /**
482 * The default initial table capacity. Must be a power of 2
483 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
484 */
485 private static final int DEFAULT_CAPACITY = 16;
486
487 /**
488 * The largest possible (non-power of two) array size.
489 * Needed by toArray and related methods.
490 */
491 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
492
493 /**
494 * The default concurrency level for this table. Unused but
495 * defined for compatibility with previous versions of this class.
496 */
497 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
498
499 /**
500 * The load factor for this table. Overrides of this value in
501 * constructors affect only the initial table capacity. The
502 * actual floating point value isn't normally used -- it is
503 * simpler to use expressions such as {@code n - (n >>> 2)} for
504 * the associated resizing threshold.
505 */
506 private static final float LOAD_FACTOR = 0.75f;
507
508 /**
509 * The bin count threshold for using a tree rather than list for a
510 * bin. Bins are converted to trees when adding an element to a
511 * bin with at least this many nodes. The value must be greater
512 * than 2, and should be at least 8 to mesh with assumptions in
513 * tree removal about conversion back to plain bins upon
514 * shrinkage.
515 */
516 static final int TREEIFY_THRESHOLD = 8;
517
518 /**
519 * The bin count threshold for untreeifying a (split) bin during a
520 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
521 * most 6 to mesh with shrinkage detection under removal.
522 */
523 static final int UNTREEIFY_THRESHOLD = 6;
524
525 /**
526 * The smallest table capacity for which bins may be treeified.
527 * (Otherwise the table is resized if too many nodes in a bin.)
528 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
529 * conflicts between resizing and treeification thresholds.
530 */
531 static final int MIN_TREEIFY_CAPACITY = 64;
532
533 /**
534 * Minimum number of rebinnings per transfer step. Ranges are
535 * subdivided to allow multiple resizer threads. This value
536 * serves as a lower bound to avoid resizers encountering
537 * excessive memory contention. The value should be at least
538 * DEFAULT_CAPACITY.
539 */
540 private static final int MIN_TRANSFER_STRIDE = 16;
541
542 /**
543 * The number of bits used for generation stamp in sizeCtl.
544 * Must be at least 6 for 32bit arrays.
545 */
546 private static final int RESIZE_STAMP_BITS = 16;
547
548 /**
549 * The maximum number of threads that can help resize.
550 * Must fit in 32 - RESIZE_STAMP_BITS bits.
551 */
552 private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
553
554 /**
555 * The bit shift for recording size stamp in sizeCtl.
556 */
557 private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
558
559 /*
560 * Encodings for Node hash fields. See above for explanation.
561 */
562 static final int MOVED = -1; // hash for forwarding nodes
563 static final int TREEBIN = -2; // hash for roots of trees
564 static final int RESERVED = -3; // hash for transient reservations
565 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
566
567 /** Number of CPUS, to place bounds on some sizings */
568 static final int NCPU = Runtime.getRuntime().availableProcessors();
569
570 /**
571 * Serialized pseudo-fields, provided only for jdk7 compatibility.
572 * @serialField segments Segment[]
573 * The segments, each of which is a specialized hash table.
574 * @serialField segmentMask int
575 * Mask value for indexing into segments. The upper bits of a
576 * key's hash code are used to choose the segment.
577 * @serialField segmentShift int
578 * Shift value for indexing within segments.
579 */
580 private static final ObjectStreamField[] serialPersistentFields = {
581 new ObjectStreamField("segments", Segment[].class),
582 new ObjectStreamField("segmentMask", Integer.TYPE),
583 new ObjectStreamField("segmentShift", Integer.TYPE),
584 };
585
586 /* ---------------- Nodes -------------- */
587
588 /**
589 * Key-value entry. This class is never exported out as a
590 * user-mutable Map.Entry (i.e., one supporting setValue; see
591 * MapEntry below), but can be used for read-only traversals used
592 * in bulk tasks. Subclasses of Node with a negative hash field
593 * are special, and contain null keys and values (but are never
594 * exported). Otherwise, keys and vals are never null.
595 */
596 static class Node<K,V> implements Map.Entry<K,V> {
597 final int hash;
598 final K key;
599 volatile V val;
600 volatile Node<K,V> next;
601
602 Node(int hash, K key, V val) {
603 this.hash = hash;
604 this.key = key;
605 this.val = val;
606 }
607
608 Node(int hash, K key, V val, Node<K,V> next) {
609 this(hash, key, val);
610 this.next = next;
611 }
612
613 public final K getKey() { return key; }
614 public final V getValue() { return val; }
615 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
616 public final String toString() {
617 return Helpers.mapEntryToString(key, val);
618 }
619 public final V setValue(V value) {
620 throw new UnsupportedOperationException();
621 }
622
623 public final boolean equals(Object o) {
624 Object k, v, u; Map.Entry<?,?> e;
625 return ((o instanceof Map.Entry) &&
626 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
627 (v = e.getValue()) != null &&
628 (k == key || k.equals(key)) &&
629 (v == (u = val) || v.equals(u)));
630 }
631
632 /**
633 * Virtualized support for map.get(); overridden in subclasses.
634 */
635 Node<K,V> find(int h, Object k) {
636 Node<K,V> e = this;
637 if (k != null) {
638 do {
639 K ek;
640 if (e.hash == h &&
641 ((ek = e.key) == k || (ek != null && k.equals(ek))))
642 return e;
643 } while ((e = e.next) != null);
644 }
645 return null;
646 }
647 }
648
649 /* ---------------- Static utilities -------------- */
650
651 /**
652 * Spreads (XORs) higher bits of hash to lower and also forces top
653 * bit to 0. Because the table uses power-of-two masking, sets of
654 * hashes that vary only in bits above the current mask will
655 * always collide. (Among known examples are sets of Float keys
656 * holding consecutive whole numbers in small tables.) So we
657 * apply a transform that spreads the impact of higher bits
658 * downward. There is a tradeoff between speed, utility, and
659 * quality of bit-spreading. Because many common sets of hashes
660 * are already reasonably distributed (so don't benefit from
661 * spreading), and because we use trees to handle large sets of
662 * collisions in bins, we just XOR some shifted bits in the
663 * cheapest possible way to reduce systematic lossage, as well as
664 * to incorporate impact of the highest bits that would otherwise
665 * never be used in index calculations because of table bounds.
666 */
667 static final int spread(int h) {
668 return (h ^ (h >>> 16)) & HASH_BITS;
669 }
670
671 /**
672 * Returns a power of two table size for the given desired capacity.
673 * See Hackers Delight, sec 3.2
674 */
675 private static final int tableSizeFor(int c) {
676 int n = c - 1;
677 n |= n >>> 1;
678 n |= n >>> 2;
679 n |= n >>> 4;
680 n |= n >>> 8;
681 n |= n >>> 16;
682 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
683 }
684
685 /**
686 * Returns x's Class if it is of the form "class C implements
687 * Comparable<C>", else null.
688 */
689 static Class<?> comparableClassFor(Object x) {
690 if (x instanceof Comparable) {
691 Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
692 if ((c = x.getClass()) == String.class) // bypass checks
693 return c;
694 if ((ts = c.getGenericInterfaces()) != null) {
695 for (int i = 0; i < ts.length; ++i) {
696 if (((t = ts[i]) instanceof ParameterizedType) &&
697 ((p = (ParameterizedType)t).getRawType() ==
698 Comparable.class) &&
699 (as = p.getActualTypeArguments()) != null &&
700 as.length == 1 && as[0] == c) // type arg is c
701 return c;
702 }
703 }
704 }
705 return null;
706 }
707
708 /**
709 * Returns k.compareTo(x) if x matches kc (k's screened comparable
710 * class), else 0.
711 */
712 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
713 static int compareComparables(Class<?> kc, Object k, Object x) {
714 return (x == null || x.getClass() != kc ? 0 :
715 ((Comparable)k).compareTo(x));
716 }
717
718 /* ---------------- Table element access -------------- */
719
720 /*
721 * Volatile access methods are used for table elements as well as
722 * elements of in-progress next table while resizing. All uses of
723 * the tab arguments must be null checked by callers. All callers
724 * also paranoically precheck that tab's length is not zero (or an
725 * equivalent check), thus ensuring that any index argument taking
726 * the form of a hash value anded with (length - 1) is a valid
727 * index. Note that, to be correct wrt arbitrary concurrency
728 * errors by users, these checks must operate on local variables,
729 * which accounts for some odd-looking inline assignments below.
730 * Note that calls to setTabAt always occur within locked regions,
731 * and so in principle require only release ordering, not
732 * full volatile semantics, but are currently coded as volatile
733 * writes to be conservative.
734 */
735
736 @SuppressWarnings("unchecked")
737 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
738 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
739 }
740
741 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
742 Node<K,V> c, Node<K,V> v) {
743 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
744 }
745
746 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
747 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
748 }
749
750 /* ---------------- Fields -------------- */
751
752 /**
753 * The array of bins. Lazily initialized upon first insertion.
754 * Size is always a power of two. Accessed directly by iterators.
755 */
756 transient volatile Node<K,V>[] table;
757
758 /**
759 * The next table to use; non-null only while resizing.
760 */
761 private transient volatile Node<K,V>[] nextTable;
762
763 /**
764 * Base counter value, used mainly when there is no contention,
765 * but also as a fallback during table initialization
766 * races. Updated via CAS.
767 */
768 private transient volatile long baseCount;
769
770 /**
771 * Table initialization and resizing control. When negative, the
772 * table is being initialized or resized: -1 for initialization,
773 * else -(1 + the number of active resizing threads). Otherwise,
774 * when table is null, holds the initial table size to use upon
775 * creation, or 0 for default. After initialization, holds the
776 * next element count value upon which to resize the table.
777 */
778 private transient volatile int sizeCtl;
779
780 /**
781 * The next table index (plus one) to split while resizing.
782 */
783 private transient volatile int transferIndex;
784
785 /**
786 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
787 */
788 private transient volatile int cellsBusy;
789
790 /**
791 * Table of counter cells. When non-null, size is a power of 2.
792 */
793 private transient volatile CounterCell[] counterCells;
794
795 // views
796 private transient KeySetView<K,V> keySet;
797 private transient ValuesView<K,V> values;
798 private transient EntrySetView<K,V> entrySet;
799
800
801 /* ---------------- Public operations -------------- */
802
803 /**
804 * Creates a new, empty map with the default initial table size (16).
805 */
806 public ConcurrentHashMap() {
807 }
808
809 /**
810 * Creates a new, empty map with an initial table size
811 * accommodating the specified number of elements without the need
812 * to dynamically resize.
813 *
814 * @param initialCapacity The implementation performs internal
815 * sizing to accommodate this many elements.
816 * @throws IllegalArgumentException if the initial capacity of
817 * elements is negative
818 */
819 public ConcurrentHashMap(int initialCapacity) {
820 if (initialCapacity < 0)
821 throw new IllegalArgumentException();
822 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
823 MAXIMUM_CAPACITY :
824 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
825 this.sizeCtl = cap;
826 }
827
828 /**
829 * Creates a new map with the same mappings as the given map.
830 *
831 * @param m the map
832 */
833 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
834 this.sizeCtl = DEFAULT_CAPACITY;
835 putAll(m);
836 }
837
838 /**
839 * Creates a new, empty map with an initial table size based on
840 * the given number of elements ({@code initialCapacity}) and
841 * initial table density ({@code loadFactor}).
842 *
843 * @param initialCapacity the initial capacity. The implementation
844 * performs internal sizing to accommodate this many elements,
845 * given the specified load factor.
846 * @param loadFactor the load factor (table density) for
847 * establishing the initial table size
848 * @throws IllegalArgumentException if the initial capacity of
849 * elements is negative or the load factor is nonpositive
850 *
851 * @since 1.6
852 */
853 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
854 this(initialCapacity, loadFactor, 1);
855 }
856
857 /**
858 * Creates a new, empty map with an initial table size based on
859 * the given number of elements ({@code initialCapacity}), table
860 * density ({@code loadFactor}), and number of concurrently
861 * updating threads ({@code concurrencyLevel}).
862 *
863 * @param initialCapacity the initial capacity. The implementation
864 * performs internal sizing to accommodate this many elements,
865 * given the specified load factor.
866 * @param loadFactor the load factor (table density) for
867 * establishing the initial table size
868 * @param concurrencyLevel the estimated number of concurrently
869 * updating threads. The implementation may use this value as
870 * a sizing hint.
871 * @throws IllegalArgumentException if the initial capacity is
872 * negative or the load factor or concurrencyLevel are
873 * nonpositive
874 */
875 public ConcurrentHashMap(int initialCapacity,
876 float loadFactor, int concurrencyLevel) {
877 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
878 throw new IllegalArgumentException();
879 if (initialCapacity < concurrencyLevel) // Use at least as many bins
880 initialCapacity = concurrencyLevel; // as estimated threads
881 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
882 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
883 MAXIMUM_CAPACITY : tableSizeFor((int)size);
884 this.sizeCtl = cap;
885 }
886
887 // Original (since JDK1.2) Map methods
888
889 /**
890 * {@inheritDoc}
891 */
892 public int size() {
893 long n = sumCount();
894 return ((n < 0L) ? 0 :
895 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
896 (int)n);
897 }
898
899 /**
900 * {@inheritDoc}
901 */
902 public boolean isEmpty() {
903 return sumCount() <= 0L; // ignore transient negative values
904 }
905
906 /**
907 * Returns the value to which the specified key is mapped,
908 * or {@code null} if this map contains no mapping for the key.
909 *
910 * <p>More formally, if this map contains a mapping from a key
911 * {@code k} to a value {@code v} such that {@code key.equals(k)},
912 * then this method returns {@code v}; otherwise it returns
913 * {@code null}. (There can be at most one such mapping.)
914 *
915 * @throws NullPointerException if the specified key is null
916 */
917 public V get(Object key) {
918 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
919 int h = spread(key.hashCode());
920 if ((tab = table) != null && (n = tab.length) > 0 &&
921 (e = tabAt(tab, (n - 1) & h)) != null) {
922 if ((eh = e.hash) == h) {
923 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
924 return e.val;
925 }
926 else if (eh < 0)
927 return (p = e.find(h, key)) != null ? p.val : null;
928 while ((e = e.next) != null) {
929 if (e.hash == h &&
930 ((ek = e.key) == key || (ek != null && key.equals(ek))))
931 return e.val;
932 }
933 }
934 return null;
935 }
936
937 /**
938 * Tests if the specified object is a key in this table.
939 *
940 * @param key possible key
941 * @return {@code true} if and only if the specified object
942 * is a key in this table, as determined by the
943 * {@code equals} method; {@code false} otherwise
944 * @throws NullPointerException if the specified key is null
945 */
946 public boolean containsKey(Object key) {
947 return get(key) != null;
948 }
949
950 /**
951 * Returns {@code true} if this map maps one or more keys to the
952 * specified value. Note: This method may require a full traversal
953 * of the map, and is much slower than method {@code containsKey}.
954 *
955 * @param value value whose presence in this map is to be tested
956 * @return {@code true} if this map maps one or more keys to the
957 * specified value
958 * @throws NullPointerException if the specified value is null
959 */
960 public boolean containsValue(Object value) {
961 if (value == null)
962 throw new NullPointerException();
963 Node<K,V>[] t;
964 if ((t = table) != null) {
965 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
966 for (Node<K,V> p; (p = it.advance()) != null; ) {
967 V v;
968 if ((v = p.val) == value || (v != null && value.equals(v)))
969 return true;
970 }
971 }
972 return false;
973 }
974
975 /**
976 * Maps the specified key to the specified value in this table.
977 * Neither the key nor the value can be null.
978 *
979 * <p>The value can be retrieved by calling the {@code get} method
980 * with a key that is equal to the original key.
981 *
982 * @param key key with which the specified value is to be associated
983 * @param value value to be associated with the specified key
984 * @return the previous value associated with {@code key}, or
985 * {@code null} if there was no mapping for {@code key}
986 * @throws NullPointerException if the specified key or value is null
987 */
988 public V put(K key, V value) {
989 return putVal(key, value, false);
990 }
991
992 /** Implementation for put and putIfAbsent */
993 final V putVal(K key, V value, boolean onlyIfAbsent) {
994 if (key == null || value == null) throw new NullPointerException();
995 int hash = spread(key.hashCode());
996 int binCount = 0;
997 for (Node<K,V>[] tab = table;;) {
998 Node<K,V> f; int n, i, fh;
999 if (tab == null || (n = tab.length) == 0)
1000 tab = initTable();
1001 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1002 if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))
1003 break; // no lock when adding to empty bin
1004 }
1005 else if ((fh = f.hash) == MOVED)
1006 tab = helpTransfer(tab, f);
1007 else {
1008 V oldVal = null;
1009 synchronized (f) {
1010 if (tabAt(tab, i) == f) {
1011 if (fh >= 0) {
1012 binCount = 1;
1013 for (Node<K,V> e = f;; ++binCount) {
1014 K ek;
1015 if (e.hash == hash &&
1016 ((ek = e.key) == key ||
1017 (ek != null && key.equals(ek)))) {
1018 oldVal = e.val;
1019 if (!onlyIfAbsent)
1020 e.val = value;
1021 break;
1022 }
1023 Node<K,V> pred = e;
1024 if ((e = e.next) == null) {
1025 pred.next = new Node<K,V>(hash, key, value);
1026 break;
1027 }
1028 }
1029 }
1030 else if (f instanceof TreeBin) {
1031 Node<K,V> p;
1032 binCount = 2;
1033 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1034 value)) != null) {
1035 oldVal = p.val;
1036 if (!onlyIfAbsent)
1037 p.val = value;
1038 }
1039 }
1040 else if (f instanceof ReservationNode)
1041 throw new IllegalStateException("Recursive update");
1042 }
1043 }
1044 if (binCount != 0) {
1045 if (binCount >= TREEIFY_THRESHOLD)
1046 treeifyBin(tab, i);
1047 if (oldVal != null)
1048 return oldVal;
1049 break;
1050 }
1051 }
1052 }
1053 addCount(1L, binCount);
1054 return null;
1055 }
1056
1057 /**
1058 * Copies all of the mappings from the specified map to this one.
1059 * These mappings replace any mappings that this map had for any of the
1060 * keys currently in the specified map.
1061 *
1062 * @param m mappings to be stored in this map
1063 */
1064 public void putAll(Map<? extends K, ? extends V> m) {
1065 tryPresize(m.size());
1066 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1067 putVal(e.getKey(), e.getValue(), false);
1068 }
1069
1070 /**
1071 * Removes the key (and its corresponding value) from this map.
1072 * This method does nothing if the key is not in the map.
1073 *
1074 * @param key the key that needs to be removed
1075 * @return the previous value associated with {@code key}, or
1076 * {@code null} if there was no mapping for {@code key}
1077 * @throws NullPointerException if the specified key is null
1078 */
1079 public V remove(Object key) {
1080 return replaceNode(key, null, null);
1081 }
1082
1083 /**
1084 * Implementation for the four public remove/replace methods:
1085 * Replaces node value with v, conditional upon match of cv if
1086 * non-null. If resulting value is null, delete.
1087 */
1088 final V replaceNode(Object key, V value, Object cv) {
1089 int hash = spread(key.hashCode());
1090 for (Node<K,V>[] tab = table;;) {
1091 Node<K,V> f; int n, i, fh;
1092 if (tab == null || (n = tab.length) == 0 ||
1093 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1094 break;
1095 else if ((fh = f.hash) == MOVED)
1096 tab = helpTransfer(tab, f);
1097 else {
1098 V oldVal = null;
1099 boolean validated = false;
1100 synchronized (f) {
1101 if (tabAt(tab, i) == f) {
1102 if (fh >= 0) {
1103 validated = true;
1104 for (Node<K,V> e = f, pred = null;;) {
1105 K ek;
1106 if (e.hash == hash &&
1107 ((ek = e.key) == key ||
1108 (ek != null && key.equals(ek)))) {
1109 V ev = e.val;
1110 if (cv == null || cv == ev ||
1111 (ev != null && cv.equals(ev))) {
1112 oldVal = ev;
1113 if (value != null)
1114 e.val = value;
1115 else if (pred != null)
1116 pred.next = e.next;
1117 else
1118 setTabAt(tab, i, e.next);
1119 }
1120 break;
1121 }
1122 pred = e;
1123 if ((e = e.next) == null)
1124 break;
1125 }
1126 }
1127 else if (f instanceof TreeBin) {
1128 validated = true;
1129 TreeBin<K,V> t = (TreeBin<K,V>)f;
1130 TreeNode<K,V> r, p;
1131 if ((r = t.root) != null &&
1132 (p = r.findTreeNode(hash, key, null)) != null) {
1133 V pv = p.val;
1134 if (cv == null || cv == pv ||
1135 (pv != null && cv.equals(pv))) {
1136 oldVal = pv;
1137 if (value != null)
1138 p.val = value;
1139 else if (t.removeTreeNode(p))
1140 setTabAt(tab, i, untreeify(t.first));
1141 }
1142 }
1143 }
1144 else if (f instanceof ReservationNode)
1145 throw new IllegalStateException("Recursive update");
1146 }
1147 }
1148 if (validated) {
1149 if (oldVal != null) {
1150 if (value == null)
1151 addCount(-1L, -1);
1152 return oldVal;
1153 }
1154 break;
1155 }
1156 }
1157 }
1158 return null;
1159 }
1160
1161 /**
1162 * Removes all of the mappings from this map.
1163 */
1164 public void clear() {
1165 long delta = 0L; // negative number of deletions
1166 int i = 0;
1167 Node<K,V>[] tab = table;
1168 while (tab != null && i < tab.length) {
1169 int fh;
1170 Node<K,V> f = tabAt(tab, i);
1171 if (f == null)
1172 ++i;
1173 else if ((fh = f.hash) == MOVED) {
1174 tab = helpTransfer(tab, f);
1175 i = 0; // restart
1176 }
1177 else {
1178 synchronized (f) {
1179 if (tabAt(tab, i) == f) {
1180 Node<K,V> p = (fh >= 0 ? f :
1181 (f instanceof TreeBin) ?
1182 ((TreeBin<K,V>)f).first : null);
1183 while (p != null) {
1184 --delta;
1185 p = p.next;
1186 }
1187 setTabAt(tab, i++, null);
1188 }
1189 }
1190 }
1191 }
1192 if (delta != 0L)
1193 addCount(delta, -1);
1194 }
1195
1196 /**
1197 * Returns a {@link Set} view of the keys contained in this map.
1198 * The set is backed by the map, so changes to the map are
1199 * reflected in the set, and vice-versa. The set supports element
1200 * removal, which removes the corresponding mapping from this map,
1201 * via the {@code Iterator.remove}, {@code Set.remove},
1202 * {@code removeAll}, {@code retainAll}, and {@code clear}
1203 * operations. It does not support the {@code add} or
1204 * {@code addAll} operations.
1205 *
1206 * <p>The view's iterators and spliterators are
1207 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1208 *
1209 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1210 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1211 *
1212 * @return the set view
1213 */
1214 public KeySetView<K,V> keySet() {
1215 KeySetView<K,V> ks;
1216 if ((ks = keySet) != null) return ks;
1217 return keySet = new KeySetView<K,V>(this, null);
1218 }
1219
1220 /**
1221 * Returns a {@link Collection} view of the values contained in this map.
1222 * The collection is backed by the map, so changes to the map are
1223 * reflected in the collection, and vice-versa. The collection
1224 * supports element removal, which removes the corresponding
1225 * mapping from this map, via the {@code Iterator.remove},
1226 * {@code Collection.remove}, {@code removeAll},
1227 * {@code retainAll}, and {@code clear} operations. It does not
1228 * support the {@code add} or {@code addAll} operations.
1229 *
1230 * <p>The view's iterators and spliterators are
1231 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1232 *
1233 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1234 * and {@link Spliterator#NONNULL}.
1235 *
1236 * @return the collection view
1237 */
1238 public Collection<V> values() {
1239 ValuesView<K,V> vs;
1240 if ((vs = values) != null) return vs;
1241 return values = new ValuesView<K,V>(this);
1242 }
1243
1244 /**
1245 * Returns a {@link Set} view of the mappings contained in this map.
1246 * The set is backed by the map, so changes to the map are
1247 * reflected in the set, and vice-versa. The set supports element
1248 * removal, which removes the corresponding mapping from the map,
1249 * via the {@code Iterator.remove}, {@code Set.remove},
1250 * {@code removeAll}, {@code retainAll}, and {@code clear}
1251 * operations.
1252 *
1253 * <p>The view's iterators and spliterators are
1254 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1255 *
1256 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1257 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1258 *
1259 * @return the set view
1260 */
1261 public Set<Map.Entry<K,V>> entrySet() {
1262 EntrySetView<K,V> es;
1263 if ((es = entrySet) != null) return es;
1264 return entrySet = new EntrySetView<K,V>(this);
1265 }
1266
1267 /**
1268 * Returns the hash code value for this {@link Map}, i.e.,
1269 * the sum of, for each key-value pair in the map,
1270 * {@code key.hashCode() ^ value.hashCode()}.
1271 *
1272 * @return the hash code value for this map
1273 */
1274 public int hashCode() {
1275 int h = 0;
1276 Node<K,V>[] t;
1277 if ((t = table) != null) {
1278 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1279 for (Node<K,V> p; (p = it.advance()) != null; )
1280 h += p.key.hashCode() ^ p.val.hashCode();
1281 }
1282 return h;
1283 }
1284
1285 /**
1286 * Returns a string representation of this map. The string
1287 * representation consists of a list of key-value mappings (in no
1288 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1289 * mappings are separated by the characters {@code ", "} (comma
1290 * and space). Each key-value mapping is rendered as the key
1291 * followed by an equals sign ("{@code =}") followed by the
1292 * associated value.
1293 *
1294 * @return a string representation of this map
1295 */
1296 public String toString() {
1297 Node<K,V>[] t;
1298 int f = (t = table) == null ? 0 : t.length;
1299 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1300 StringBuilder sb = new StringBuilder();
1301 sb.append('{');
1302 Node<K,V> p;
1303 if ((p = it.advance()) != null) {
1304 for (;;) {
1305 K k = p.key;
1306 V v = p.val;
1307 sb.append(k == this ? "(this Map)" : k);
1308 sb.append('=');
1309 sb.append(v == this ? "(this Map)" : v);
1310 if ((p = it.advance()) == null)
1311 break;
1312 sb.append(',').append(' ');
1313 }
1314 }
1315 return sb.append('}').toString();
1316 }
1317
1318 /**
1319 * Compares the specified object with this map for equality.
1320 * Returns {@code true} if the given object is a map with the same
1321 * mappings as this map. This operation may return misleading
1322 * results if either map is concurrently modified during execution
1323 * of this method.
1324 *
1325 * @param o object to be compared for equality with this map
1326 * @return {@code true} if the specified object is equal to this map
1327 */
1328 public boolean equals(Object o) {
1329 if (o != this) {
1330 if (!(o instanceof Map))
1331 return false;
1332 Map<?,?> m = (Map<?,?>) o;
1333 Node<K,V>[] t;
1334 int f = (t = table) == null ? 0 : t.length;
1335 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1336 for (Node<K,V> p; (p = it.advance()) != null; ) {
1337 V val = p.val;
1338 Object v = m.get(p.key);
1339 if (v == null || (v != val && !v.equals(val)))
1340 return false;
1341 }
1342 for (Map.Entry<?,?> e : m.entrySet()) {
1343 Object mk, mv, v;
1344 if ((mk = e.getKey()) == null ||
1345 (mv = e.getValue()) == null ||
1346 (v = get(mk)) == null ||
1347 (mv != v && !mv.equals(v)))
1348 return false;
1349 }
1350 }
1351 return true;
1352 }
1353
1354 /**
1355 * Stripped-down version of helper class used in previous version,
1356 * declared for the sake of serialization compatibility.
1357 */
1358 static class Segment<K,V> extends ReentrantLock implements Serializable {
1359 private static final long serialVersionUID = 2249069246763182397L;
1360 final float loadFactor;
1361 Segment(float lf) { this.loadFactor = lf; }
1362 }
1363
1364 /**
1365 * Saves the state of the {@code ConcurrentHashMap} instance to a
1366 * stream (i.e., serializes it).
1367 * @param s the stream
1368 * @throws java.io.IOException if an I/O error occurs
1369 * @serialData
1370 * the serialized fields, followed by the key (Object) and value
1371 * (Object) for each key-value mapping, followed by a null pair.
1372 * The key-value mappings are emitted in no particular order.
1373 */
1374 private void writeObject(java.io.ObjectOutputStream s)
1375 throws java.io.IOException {
1376 // For serialization compatibility
1377 // Emulate segment calculation from previous version of this class
1378 int sshift = 0;
1379 int ssize = 1;
1380 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1381 ++sshift;
1382 ssize <<= 1;
1383 }
1384 int segmentShift = 32 - sshift;
1385 int segmentMask = ssize - 1;
1386 @SuppressWarnings("unchecked")
1387 Segment<K,V>[] segments = (Segment<K,V>[])
1388 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1389 for (int i = 0; i < segments.length; ++i)
1390 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1391 java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1392 streamFields.put("segments", segments);
1393 streamFields.put("segmentShift", segmentShift);
1394 streamFields.put("segmentMask", segmentMask);
1395 s.writeFields();
1396
1397 Node<K,V>[] t;
1398 if ((t = table) != null) {
1399 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1400 for (Node<K,V> p; (p = it.advance()) != null; ) {
1401 s.writeObject(p.key);
1402 s.writeObject(p.val);
1403 }
1404 }
1405 s.writeObject(null);
1406 s.writeObject(null);
1407 }
1408
1409 /**
1410 * Reconstitutes the instance from a stream (that is, deserializes it).
1411 * @param s the stream
1412 * @throws ClassNotFoundException if the class of a serialized object
1413 * could not be found
1414 * @throws java.io.IOException if an I/O error occurs
1415 */
1416 private void readObject(java.io.ObjectInputStream s)
1417 throws java.io.IOException, ClassNotFoundException {
1418 /*
1419 * To improve performance in typical cases, we create nodes
1420 * while reading, then place in table once size is known.
1421 * However, we must also validate uniqueness and deal with
1422 * overpopulated bins while doing so, which requires
1423 * specialized versions of putVal mechanics.
1424 */
1425 sizeCtl = -1; // force exclusion for table construction
1426 s.defaultReadObject();
1427 long size = 0L;
1428 Node<K,V> p = null;
1429 for (;;) {
1430 @SuppressWarnings("unchecked")
1431 K k = (K) s.readObject();
1432 @SuppressWarnings("unchecked")
1433 V v = (V) s.readObject();
1434 if (k != null && v != null) {
1435 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1436 ++size;
1437 }
1438 else
1439 break;
1440 }
1441 if (size == 0L)
1442 sizeCtl = 0;
1443 else {
1444 int n;
1445 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1446 n = MAXIMUM_CAPACITY;
1447 else {
1448 int sz = (int)size;
1449 n = tableSizeFor(sz + (sz >>> 1) + 1);
1450 }
1451 @SuppressWarnings("unchecked")
1452 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1453 int mask = n - 1;
1454 long added = 0L;
1455 while (p != null) {
1456 boolean insertAtFront;
1457 Node<K,V> next = p.next, first;
1458 int h = p.hash, j = h & mask;
1459 if ((first = tabAt(tab, j)) == null)
1460 insertAtFront = true;
1461 else {
1462 K k = p.key;
1463 if (first.hash < 0) {
1464 TreeBin<K,V> t = (TreeBin<K,V>)first;
1465 if (t.putTreeVal(h, k, p.val) == null)
1466 ++added;
1467 insertAtFront = false;
1468 }
1469 else {
1470 int binCount = 0;
1471 insertAtFront = true;
1472 Node<K,V> q; K qk;
1473 for (q = first; q != null; q = q.next) {
1474 if (q.hash == h &&
1475 ((qk = q.key) == k ||
1476 (qk != null && k.equals(qk)))) {
1477 insertAtFront = false;
1478 break;
1479 }
1480 ++binCount;
1481 }
1482 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1483 insertAtFront = false;
1484 ++added;
1485 p.next = first;
1486 TreeNode<K,V> hd = null, tl = null;
1487 for (q = p; q != null; q = q.next) {
1488 TreeNode<K,V> t = new TreeNode<K,V>
1489 (q.hash, q.key, q.val, null, null);
1490 if ((t.prev = tl) == null)
1491 hd = t;
1492 else
1493 tl.next = t;
1494 tl = t;
1495 }
1496 setTabAt(tab, j, new TreeBin<K,V>(hd));
1497 }
1498 }
1499 }
1500 if (insertAtFront) {
1501 ++added;
1502 p.next = first;
1503 setTabAt(tab, j, p);
1504 }
1505 p = next;
1506 }
1507 table = tab;
1508 sizeCtl = n - (n >>> 2);
1509 baseCount = added;
1510 }
1511 }
1512
1513 // ConcurrentMap methods
1514
1515 /**
1516 * {@inheritDoc}
1517 *
1518 * @return the previous value associated with the specified key,
1519 * or {@code null} if there was no mapping for the key
1520 * @throws NullPointerException if the specified key or value is null
1521 */
1522 public V putIfAbsent(K key, V value) {
1523 return putVal(key, value, true);
1524 }
1525
1526 /**
1527 * {@inheritDoc}
1528 *
1529 * @throws NullPointerException if the specified key is null
1530 */
1531 public boolean remove(Object key, Object value) {
1532 if (key == null)
1533 throw new NullPointerException();
1534 return value != null && replaceNode(key, null, value) != null;
1535 }
1536
1537 /**
1538 * {@inheritDoc}
1539 *
1540 * @throws NullPointerException if any of the arguments are null
1541 */
1542 public boolean replace(K key, V oldValue, V newValue) {
1543 if (key == null || oldValue == null || newValue == null)
1544 throw new NullPointerException();
1545 return replaceNode(key, newValue, oldValue) != null;
1546 }
1547
1548 /**
1549 * {@inheritDoc}
1550 *
1551 * @return the previous value associated with the specified key,
1552 * or {@code null} if there was no mapping for the key
1553 * @throws NullPointerException if the specified key or value is null
1554 */
1555 public V replace(K key, V value) {
1556 if (key == null || value == null)
1557 throw new NullPointerException();
1558 return replaceNode(key, value, null);
1559 }
1560
1561 // Overrides of JDK8+ Map extension method defaults
1562
1563 /**
1564 * Returns the value to which the specified key is mapped, or the
1565 * given default value if this map contains no mapping for the
1566 * key.
1567 *
1568 * @param key the key whose associated value is to be returned
1569 * @param defaultValue the value to return if this map contains
1570 * no mapping for the given key
1571 * @return the mapping for the key, if present; else the default value
1572 * @throws NullPointerException if the specified key is null
1573 */
1574 public V getOrDefault(Object key, V defaultValue) {
1575 V v;
1576 return (v = get(key)) == null ? defaultValue : v;
1577 }
1578
1579 public void forEach(BiConsumer<? super K, ? super V> action) {
1580 if (action == null) throw new NullPointerException();
1581 Node<K,V>[] t;
1582 if ((t = table) != null) {
1583 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1584 for (Node<K,V> p; (p = it.advance()) != null; ) {
1585 action.accept(p.key, p.val);
1586 }
1587 }
1588 }
1589
1590 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1591 if (function == null) throw new NullPointerException();
1592 Node<K,V>[] t;
1593 if ((t = table) != null) {
1594 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1595 for (Node<K,V> p; (p = it.advance()) != null; ) {
1596 V oldValue = p.val;
1597 for (K key = p.key;;) {
1598 V newValue = function.apply(key, oldValue);
1599 if (newValue == null)
1600 throw new NullPointerException();
1601 if (replaceNode(key, newValue, oldValue) != null ||
1602 (oldValue = get(key)) == null)
1603 break;
1604 }
1605 }
1606 }
1607 }
1608
1609 /**
1610 * Helper method for EntrySetView.removeIf.
1611 */
1612 boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1613 if (function == null) throw new NullPointerException();
1614 Node<K,V>[] t;
1615 boolean removed = false;
1616 if ((t = table) != null) {
1617 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1618 for (Node<K,V> p; (p = it.advance()) != null; ) {
1619 K k = p.key;
1620 V v = p.val;
1621 Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1622 if (function.test(e) && replaceNode(k, null, v) != null)
1623 removed = true;
1624 }
1625 }
1626 return removed;
1627 }
1628
1629 /**
1630 * Helper method for ValuesView.removeIf.
1631 */
1632 boolean removeValueIf(Predicate<? super V> function) {
1633 if (function == null) throw new NullPointerException();
1634 Node<K,V>[] t;
1635 boolean removed = false;
1636 if ((t = table) != null) {
1637 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1638 for (Node<K,V> p; (p = it.advance()) != null; ) {
1639 K k = p.key;
1640 V v = p.val;
1641 if (function.test(v) && replaceNode(k, null, v) != null)
1642 removed = true;
1643 }
1644 }
1645 return removed;
1646 }
1647
1648 /**
1649 * If the specified key is not already associated with a value,
1650 * attempts to compute its value using the given mapping function
1651 * and enters it into this map unless {@code null}. The entire
1652 * method invocation is performed atomically, so the function is
1653 * applied at most once per key. Some attempted update operations
1654 * on this map by other threads may be blocked while computation
1655 * is in progress, so the computation should be short and simple,
1656 * and must not attempt to update any other mappings of this map.
1657 *
1658 * @param key key with which the specified value is to be associated
1659 * @param mappingFunction the function to compute a value
1660 * @return the current (existing or computed) value associated with
1661 * the specified key, or null if the computed value is null
1662 * @throws NullPointerException if the specified key or mappingFunction
1663 * is null
1664 * @throws IllegalStateException if the computation detectably
1665 * attempts a recursive update to this map that would
1666 * otherwise never complete
1667 * @throws RuntimeException or Error if the mappingFunction does so,
1668 * in which case the mapping is left unestablished
1669 */
1670 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1671 if (key == null || mappingFunction == null)
1672 throw new NullPointerException();
1673 int h = spread(key.hashCode());
1674 V val = null;
1675 int binCount = 0;
1676 for (Node<K,V>[] tab = table;;) {
1677 Node<K,V> f; int n, i, fh;
1678 if (tab == null || (n = tab.length) == 0)
1679 tab = initTable();
1680 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1681 Node<K,V> r = new ReservationNode<K,V>();
1682 synchronized (r) {
1683 if (casTabAt(tab, i, null, r)) {
1684 binCount = 1;
1685 Node<K,V> node = null;
1686 try {
1687 if ((val = mappingFunction.apply(key)) != null)
1688 node = new Node<K,V>(h, key, val);
1689 } finally {
1690 setTabAt(tab, i, node);
1691 }
1692 }
1693 }
1694 if (binCount != 0)
1695 break;
1696 }
1697 else if ((fh = f.hash) == MOVED)
1698 tab = helpTransfer(tab, f);
1699 else {
1700 boolean added = false;
1701 synchronized (f) {
1702 if (tabAt(tab, i) == f) {
1703 if (fh >= 0) {
1704 binCount = 1;
1705 for (Node<K,V> e = f;; ++binCount) {
1706 K ek;
1707 if (e.hash == h &&
1708 ((ek = e.key) == key ||
1709 (ek != null && key.equals(ek)))) {
1710 val = e.val;
1711 break;
1712 }
1713 Node<K,V> pred = e;
1714 if ((e = e.next) == null) {
1715 if ((val = mappingFunction.apply(key)) != null) {
1716 if (pred.next != null)
1717 throw new IllegalStateException("Recursive update");
1718 added = true;
1719 pred.next = new Node<K,V>(h, key, val);
1720 }
1721 break;
1722 }
1723 }
1724 }
1725 else if (f instanceof TreeBin) {
1726 binCount = 2;
1727 TreeBin<K,V> t = (TreeBin<K,V>)f;
1728 TreeNode<K,V> r, p;
1729 if ((r = t.root) != null &&
1730 (p = r.findTreeNode(h, key, null)) != null)
1731 val = p.val;
1732 else if ((val = mappingFunction.apply(key)) != null) {
1733 added = true;
1734 t.putTreeVal(h, key, val);
1735 }
1736 }
1737 else if (f instanceof ReservationNode)
1738 throw new IllegalStateException("Recursive update");
1739 }
1740 }
1741 if (binCount != 0) {
1742 if (binCount >= TREEIFY_THRESHOLD)
1743 treeifyBin(tab, i);
1744 if (!added)
1745 return val;
1746 break;
1747 }
1748 }
1749 }
1750 if (val != null)
1751 addCount(1L, binCount);
1752 return val;
1753 }
1754
1755 /**
1756 * If the value for the specified key is present, attempts to
1757 * compute a new mapping given the key and its current mapped
1758 * value. The entire method invocation is performed atomically.
1759 * Some attempted update operations on this map by other threads
1760 * may be blocked while computation is in progress, so the
1761 * computation should be short and simple, and must not attempt to
1762 * update any other mappings of this map.
1763 *
1764 * @param key key with which a value may be associated
1765 * @param remappingFunction the function to compute a value
1766 * @return the new value associated with the specified key, or null if none
1767 * @throws NullPointerException if the specified key or remappingFunction
1768 * is null
1769 * @throws IllegalStateException if the computation detectably
1770 * attempts a recursive update to this map that would
1771 * otherwise never complete
1772 * @throws RuntimeException or Error if the remappingFunction does so,
1773 * in which case the mapping is unchanged
1774 */
1775 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1776 if (key == null || remappingFunction == null)
1777 throw new NullPointerException();
1778 int h = spread(key.hashCode());
1779 V val = null;
1780 int delta = 0;
1781 int binCount = 0;
1782 for (Node<K,V>[] tab = table;;) {
1783 Node<K,V> f; int n, i, fh;
1784 if (tab == null || (n = tab.length) == 0)
1785 tab = initTable();
1786 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1787 break;
1788 else if ((fh = f.hash) == MOVED)
1789 tab = helpTransfer(tab, f);
1790 else {
1791 synchronized (f) {
1792 if (tabAt(tab, i) == f) {
1793 if (fh >= 0) {
1794 binCount = 1;
1795 for (Node<K,V> e = f, pred = null;; ++binCount) {
1796 K ek;
1797 if (e.hash == h &&
1798 ((ek = e.key) == key ||
1799 (ek != null && key.equals(ek)))) {
1800 val = remappingFunction.apply(key, e.val);
1801 if (val != null)
1802 e.val = val;
1803 else {
1804 delta = -1;
1805 Node<K,V> en = e.next;
1806 if (pred != null)
1807 pred.next = en;
1808 else
1809 setTabAt(tab, i, en);
1810 }
1811 break;
1812 }
1813 pred = e;
1814 if ((e = e.next) == null)
1815 break;
1816 }
1817 }
1818 else if (f instanceof TreeBin) {
1819 binCount = 2;
1820 TreeBin<K,V> t = (TreeBin<K,V>)f;
1821 TreeNode<K,V> r, p;
1822 if ((r = t.root) != null &&
1823 (p = r.findTreeNode(h, key, null)) != null) {
1824 val = remappingFunction.apply(key, p.val);
1825 if (val != null)
1826 p.val = val;
1827 else {
1828 delta = -1;
1829 if (t.removeTreeNode(p))
1830 setTabAt(tab, i, untreeify(t.first));
1831 }
1832 }
1833 }
1834 else if (f instanceof ReservationNode)
1835 throw new IllegalStateException("Recursive update");
1836 }
1837 }
1838 if (binCount != 0)
1839 break;
1840 }
1841 }
1842 if (delta != 0)
1843 addCount((long)delta, binCount);
1844 return val;
1845 }
1846
1847 /**
1848 * Attempts to compute a mapping for the specified key and its
1849 * current mapped value (or {@code null} if there is no current
1850 * mapping). The entire method invocation is performed atomically.
1851 * Some attempted update operations on this map by other threads
1852 * may be blocked while computation is in progress, so the
1853 * computation should be short and simple, and must not attempt to
1854 * update any other mappings of this Map.
1855 *
1856 * @param key key with which the specified value is to be associated
1857 * @param remappingFunction the function to compute a value
1858 * @return the new value associated with the specified key, or null if none
1859 * @throws NullPointerException if the specified key or remappingFunction
1860 * is null
1861 * @throws IllegalStateException if the computation detectably
1862 * attempts a recursive update to this map that would
1863 * otherwise never complete
1864 * @throws RuntimeException or Error if the remappingFunction does so,
1865 * in which case the mapping is unchanged
1866 */
1867 public V compute(K key,
1868 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1869 if (key == null || remappingFunction == null)
1870 throw new NullPointerException();
1871 int h = spread(key.hashCode());
1872 V val = null;
1873 int delta = 0;
1874 int binCount = 0;
1875 for (Node<K,V>[] tab = table;;) {
1876 Node<K,V> f; int n, i, fh;
1877 if (tab == null || (n = tab.length) == 0)
1878 tab = initTable();
1879 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1880 Node<K,V> r = new ReservationNode<K,V>();
1881 synchronized (r) {
1882 if (casTabAt(tab, i, null, r)) {
1883 binCount = 1;
1884 Node<K,V> node = null;
1885 try {
1886 if ((val = remappingFunction.apply(key, null)) != null) {
1887 delta = 1;
1888 node = new Node<K,V>(h, key, val);
1889 }
1890 } finally {
1891 setTabAt(tab, i, node);
1892 }
1893 }
1894 }
1895 if (binCount != 0)
1896 break;
1897 }
1898 else if ((fh = f.hash) == MOVED)
1899 tab = helpTransfer(tab, f);
1900 else {
1901 synchronized (f) {
1902 if (tabAt(tab, i) == f) {
1903 if (fh >= 0) {
1904 binCount = 1;
1905 for (Node<K,V> e = f, pred = null;; ++binCount) {
1906 K ek;
1907 if (e.hash == h &&
1908 ((ek = e.key) == key ||
1909 (ek != null && key.equals(ek)))) {
1910 val = remappingFunction.apply(key, e.val);
1911 if (val != null)
1912 e.val = val;
1913 else {
1914 delta = -1;
1915 Node<K,V> en = e.next;
1916 if (pred != null)
1917 pred.next = en;
1918 else
1919 setTabAt(tab, i, en);
1920 }
1921 break;
1922 }
1923 pred = e;
1924 if ((e = e.next) == null) {
1925 val = remappingFunction.apply(key, null);
1926 if (val != null) {
1927 if (pred.next != null)
1928 throw new IllegalStateException("Recursive update");
1929 delta = 1;
1930 pred.next = new Node<K,V>(h, key, val);
1931 }
1932 break;
1933 }
1934 }
1935 }
1936 else if (f instanceof TreeBin) {
1937 binCount = 1;
1938 TreeBin<K,V> t = (TreeBin<K,V>)f;
1939 TreeNode<K,V> r, p;
1940 if ((r = t.root) != null)
1941 p = r.findTreeNode(h, key, null);
1942 else
1943 p = null;
1944 V pv = (p == null) ? null : p.val;
1945 val = remappingFunction.apply(key, pv);
1946 if (val != null) {
1947 if (p != null)
1948 p.val = val;
1949 else {
1950 delta = 1;
1951 t.putTreeVal(h, key, val);
1952 }
1953 }
1954 else if (p != null) {
1955 delta = -1;
1956 if (t.removeTreeNode(p))
1957 setTabAt(tab, i, untreeify(t.first));
1958 }
1959 }
1960 else if (f instanceof ReservationNode)
1961 throw new IllegalStateException("Recursive update");
1962 }
1963 }
1964 if (binCount != 0) {
1965 if (binCount >= TREEIFY_THRESHOLD)
1966 treeifyBin(tab, i);
1967 break;
1968 }
1969 }
1970 }
1971 if (delta != 0)
1972 addCount((long)delta, binCount);
1973 return val;
1974 }
1975
1976 /**
1977 * If the specified key is not already associated with a
1978 * (non-null) value, associates it with the given value.
1979 * Otherwise, replaces the value with the results of the given
1980 * remapping function, or removes if {@code null}. The entire
1981 * method invocation is performed atomically. Some attempted
1982 * update operations on this map by other threads may be blocked
1983 * while computation is in progress, so the computation should be
1984 * short and simple, and must not attempt to update any other
1985 * mappings of this Map.
1986 *
1987 * @param key key with which the specified value is to be associated
1988 * @param value the value to use if absent
1989 * @param remappingFunction the function to recompute a value if present
1990 * @return the new value associated with the specified key, or null if none
1991 * @throws NullPointerException if the specified key or the
1992 * remappingFunction is null
1993 * @throws RuntimeException or Error if the remappingFunction does so,
1994 * in which case the mapping is unchanged
1995 */
1996 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1997 if (key == null || value == null || remappingFunction == null)
1998 throw new NullPointerException();
1999 int h = spread(key.hashCode());
2000 V val = null;
2001 int delta = 0;
2002 int binCount = 0;
2003 for (Node<K,V>[] tab = table;;) {
2004 Node<K,V> f; int n, i, fh;
2005 if (tab == null || (n = tab.length) == 0)
2006 tab = initTable();
2007 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
2008 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value))) {
2009 delta = 1;
2010 val = value;
2011 break;
2012 }
2013 }
2014 else if ((fh = f.hash) == MOVED)
2015 tab = helpTransfer(tab, f);
2016 else {
2017 synchronized (f) {
2018 if (tabAt(tab, i) == f) {
2019 if (fh >= 0) {
2020 binCount = 1;
2021 for (Node<K,V> e = f, pred = null;; ++binCount) {
2022 K ek;
2023 if (e.hash == h &&
2024 ((ek = e.key) == key ||
2025 (ek != null && key.equals(ek)))) {
2026 val = remappingFunction.apply(e.val, value);
2027 if (val != null)
2028 e.val = val;
2029 else {
2030 delta = -1;
2031 Node<K,V> en = e.next;
2032 if (pred != null)
2033 pred.next = en;
2034 else
2035 setTabAt(tab, i, en);
2036 }
2037 break;
2038 }
2039 pred = e;
2040 if ((e = e.next) == null) {
2041 delta = 1;
2042 val = value;
2043 pred.next = new Node<K,V>(h, key, val);
2044 break;
2045 }
2046 }
2047 }
2048 else if (f instanceof TreeBin) {
2049 binCount = 2;
2050 TreeBin<K,V> t = (TreeBin<K,V>)f;
2051 TreeNode<K,V> r = t.root;
2052 TreeNode<K,V> p = (r == null) ? null :
2053 r.findTreeNode(h, key, null);
2054 val = (p == null) ? value :
2055 remappingFunction.apply(p.val, value);
2056 if (val != null) {
2057 if (p != null)
2058 p.val = val;
2059 else {
2060 delta = 1;
2061 t.putTreeVal(h, key, val);
2062 }
2063 }
2064 else if (p != null) {
2065 delta = -1;
2066 if (t.removeTreeNode(p))
2067 setTabAt(tab, i, untreeify(t.first));
2068 }
2069 }
2070 else if (f instanceof ReservationNode)
2071 throw new IllegalStateException("Recursive update");
2072 }
2073 }
2074 if (binCount != 0) {
2075 if (binCount >= TREEIFY_THRESHOLD)
2076 treeifyBin(tab, i);
2077 break;
2078 }
2079 }
2080 }
2081 if (delta != 0)
2082 addCount((long)delta, binCount);
2083 return val;
2084 }
2085
2086 // Hashtable legacy methods
2087
2088 /**
2089 * Tests if some key maps into the specified value in this table.
2090 *
2091 * <p>Note that this method is identical in functionality to
2092 * {@link #containsValue(Object)}, and exists solely to ensure
2093 * full compatibility with class {@link java.util.Hashtable},
2094 * which supported this method prior to introduction of the
2095 * Java Collections Framework.
2096 *
2097 * @param value a value to search for
2098 * @return {@code true} if and only if some key maps to the
2099 * {@code value} argument in this table as
2100 * determined by the {@code equals} method;
2101 * {@code false} otherwise
2102 * @throws NullPointerException if the specified value is null
2103 */
2104 public boolean contains(Object value) {
2105 return containsValue(value);
2106 }
2107
2108 /**
2109 * Returns an enumeration of the keys in this table.
2110 *
2111 * @return an enumeration of the keys in this table
2112 * @see #keySet()
2113 */
2114 public Enumeration<K> keys() {
2115 Node<K,V>[] t;
2116 int f = (t = table) == null ? 0 : t.length;
2117 return new KeyIterator<K,V>(t, f, 0, f, this);
2118 }
2119
2120 /**
2121 * Returns an enumeration of the values in this table.
2122 *
2123 * @return an enumeration of the values in this table
2124 * @see #values()
2125 */
2126 public Enumeration<V> elements() {
2127 Node<K,V>[] t;
2128 int f = (t = table) == null ? 0 : t.length;
2129 return new ValueIterator<K,V>(t, f, 0, f, this);
2130 }
2131
2132 // ConcurrentHashMap-only methods
2133
2134 /**
2135 * Returns the number of mappings. This method should be used
2136 * instead of {@link #size} because a ConcurrentHashMap may
2137 * contain more mappings than can be represented as an int. The
2138 * value returned is an estimate; the actual count may differ if
2139 * there are concurrent insertions or removals.
2140 *
2141 * @return the number of mappings
2142 * @since 1.8
2143 */
2144 public long mappingCount() {
2145 long n = sumCount();
2146 return (n < 0L) ? 0L : n; // ignore transient negative values
2147 }
2148
2149 /**
2150 * Creates a new {@link Set} backed by a ConcurrentHashMap
2151 * from the given type to {@code Boolean.TRUE}.
2152 *
2153 * @param <K> the element type of the returned set
2154 * @return the new set
2155 * @since 1.8
2156 */
2157 public static <K> KeySetView<K,Boolean> newKeySet() {
2158 return new KeySetView<K,Boolean>
2159 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2160 }
2161
2162 /**
2163 * Creates a new {@link Set} backed by a ConcurrentHashMap
2164 * from the given type to {@code Boolean.TRUE}.
2165 *
2166 * @param initialCapacity The implementation performs internal
2167 * sizing to accommodate this many elements.
2168 * @param <K> the element type of the returned set
2169 * @return the new set
2170 * @throws IllegalArgumentException if the initial capacity of
2171 * elements is negative
2172 * @since 1.8
2173 */
2174 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2175 return new KeySetView<K,Boolean>
2176 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2177 }
2178
2179 /**
2180 * Returns a {@link Set} view of the keys in this map, using the
2181 * given common mapped value for any additions (i.e., {@link
2182 * Collection#add} and {@link Collection#addAll(Collection)}).
2183 * This is of course only appropriate if it is acceptable to use
2184 * the same value for all additions from this view.
2185 *
2186 * @param mappedValue the mapped value to use for any additions
2187 * @return the set view
2188 * @throws NullPointerException if the mappedValue is null
2189 */
2190 public KeySetView<K,V> keySet(V mappedValue) {
2191 if (mappedValue == null)
2192 throw new NullPointerException();
2193 return new KeySetView<K,V>(this, mappedValue);
2194 }
2195
2196 /* ---------------- Special Nodes -------------- */
2197
2198 /**
2199 * A node inserted at head of bins during transfer operations.
2200 */
2201 static final class ForwardingNode<K,V> extends Node<K,V> {
2202 final Node<K,V>[] nextTable;
2203 ForwardingNode(Node<K,V>[] tab) {
2204 super(MOVED, null, null);
2205 this.nextTable = tab;
2206 }
2207
2208 Node<K,V> find(int h, Object k) {
2209 // loop to avoid arbitrarily deep recursion on forwarding nodes
2210 outer: for (Node<K,V>[] tab = nextTable;;) {
2211 Node<K,V> e; int n;
2212 if (k == null || tab == null || (n = tab.length) == 0 ||
2213 (e = tabAt(tab, (n - 1) & h)) == null)
2214 return null;
2215 for (;;) {
2216 int eh; K ek;
2217 if ((eh = e.hash) == h &&
2218 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2219 return e;
2220 if (eh < 0) {
2221 if (e instanceof ForwardingNode) {
2222 tab = ((ForwardingNode<K,V>)e).nextTable;
2223 continue outer;
2224 }
2225 else
2226 return e.find(h, k);
2227 }
2228 if ((e = e.next) == null)
2229 return null;
2230 }
2231 }
2232 }
2233 }
2234
2235 /**
2236 * A place-holder node used in computeIfAbsent and compute.
2237 */
2238 static final class ReservationNode<K,V> extends Node<K,V> {
2239 ReservationNode() {
2240 super(RESERVED, null, null);
2241 }
2242
2243 Node<K,V> find(int h, Object k) {
2244 return null;
2245 }
2246 }
2247
2248 /* ---------------- Table Initialization and Resizing -------------- */
2249
2250 /**
2251 * Returns the stamp bits for resizing a table of size n.
2252 * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2253 */
2254 static final int resizeStamp(int n) {
2255 return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2256 }
2257
2258 /**
2259 * Initializes table, using the size recorded in sizeCtl.
2260 */
2261 private final Node<K,V>[] initTable() {
2262 Node<K,V>[] tab; int sc;
2263 while ((tab = table) == null || tab.length == 0) {
2264 if ((sc = sizeCtl) < 0)
2265 Thread.yield(); // lost initialization race; just spin
2266 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2267 try {
2268 if ((tab = table) == null || tab.length == 0) {
2269 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2270 @SuppressWarnings("unchecked")
2271 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2272 table = tab = nt;
2273 sc = n - (n >>> 2);
2274 }
2275 } finally {
2276 sizeCtl = sc;
2277 }
2278 break;
2279 }
2280 }
2281 return tab;
2282 }
2283
2284 /**
2285 * Adds to count, and if table is too small and not already
2286 * resizing, initiates transfer. If already resizing, helps
2287 * perform transfer if work is available. Rechecks occupancy
2288 * after a transfer to see if another resize is already needed
2289 * because resizings are lagging additions.
2290 *
2291 * @param x the count to add
2292 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2293 */
2294 private final void addCount(long x, int check) {
2295 CounterCell[] as; long b, s;
2296 if ((as = counterCells) != null ||
2297 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2298 CounterCell a; long v; int m;
2299 boolean uncontended = true;
2300 if (as == null || (m = as.length - 1) < 0 ||
2301 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2302 !(uncontended =
2303 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2304 fullAddCount(x, uncontended);
2305 return;
2306 }
2307 if (check <= 1)
2308 return;
2309 s = sumCount();
2310 }
2311 if (check >= 0) {
2312 Node<K,V>[] tab, nt; int n, sc;
2313 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2314 (n = tab.length) < MAXIMUM_CAPACITY) {
2315 int rs = resizeStamp(n);
2316 if (sc < 0) {
2317 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2318 sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2319 transferIndex <= 0)
2320 break;
2321 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2322 transfer(tab, nt);
2323 }
2324 else if (U.compareAndSwapInt(this, SIZECTL, sc,
2325 (rs << RESIZE_STAMP_SHIFT) + 2))
2326 transfer(tab, null);
2327 s = sumCount();
2328 }
2329 }
2330 }
2331
2332 /**
2333 * Helps transfer if a resize is in progress.
2334 */
2335 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2336 Node<K,V>[] nextTab; int sc;
2337 if (tab != null && (f instanceof ForwardingNode) &&
2338 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2339 int rs = resizeStamp(tab.length);
2340 while (nextTab == nextTable && table == tab &&
2341 (sc = sizeCtl) < 0) {
2342 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2343 sc == rs + MAX_RESIZERS || transferIndex <= 0)
2344 break;
2345 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2346 transfer(tab, nextTab);
2347 break;
2348 }
2349 }
2350 return nextTab;
2351 }
2352 return table;
2353 }
2354
2355 /**
2356 * Tries to presize table to accommodate the given number of elements.
2357 *
2358 * @param size number of elements (doesn't need to be perfectly accurate)
2359 */
2360 private final void tryPresize(int size) {
2361 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2362 tableSizeFor(size + (size >>> 1) + 1);
2363 int sc;
2364 while ((sc = sizeCtl) >= 0) {
2365 Node<K,V>[] tab = table; int n;
2366 if (tab == null || (n = tab.length) == 0) {
2367 n = (sc > c) ? sc : c;
2368 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2369 try {
2370 if (table == tab) {
2371 @SuppressWarnings("unchecked")
2372 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2373 table = nt;
2374 sc = n - (n >>> 2);
2375 }
2376 } finally {
2377 sizeCtl = sc;
2378 }
2379 }
2380 }
2381 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2382 break;
2383 else if (tab == table) {
2384 int rs = resizeStamp(n);
2385 if (U.compareAndSwapInt(this, SIZECTL, sc,
2386 (rs << RESIZE_STAMP_SHIFT) + 2))
2387 transfer(tab, null);
2388 }
2389 }
2390 }
2391
2392 /**
2393 * Moves and/or copies the nodes in each bin to new table. See
2394 * above for explanation.
2395 */
2396 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2397 int n = tab.length, stride;
2398 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2399 stride = MIN_TRANSFER_STRIDE; // subdivide range
2400 if (nextTab == null) { // initiating
2401 try {
2402 @SuppressWarnings("unchecked")
2403 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2404 nextTab = nt;
2405 } catch (Throwable ex) { // try to cope with OOME
2406 sizeCtl = Integer.MAX_VALUE;
2407 return;
2408 }
2409 nextTable = nextTab;
2410 transferIndex = n;
2411 }
2412 int nextn = nextTab.length;
2413 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2414 boolean advance = true;
2415 boolean finishing = false; // to ensure sweep before committing nextTab
2416 for (int i = 0, bound = 0;;) {
2417 Node<K,V> f; int fh;
2418 while (advance) {
2419 int nextIndex, nextBound;
2420 if (--i >= bound || finishing)
2421 advance = false;
2422 else if ((nextIndex = transferIndex) <= 0) {
2423 i = -1;
2424 advance = false;
2425 }
2426 else if (U.compareAndSwapInt
2427 (this, TRANSFERINDEX, nextIndex,
2428 nextBound = (nextIndex > stride ?
2429 nextIndex - stride : 0))) {
2430 bound = nextBound;
2431 i = nextIndex - 1;
2432 advance = false;
2433 }
2434 }
2435 if (i < 0 || i >= n || i + n >= nextn) {
2436 int sc;
2437 if (finishing) {
2438 nextTable = null;
2439 table = nextTab;
2440 sizeCtl = (n << 1) - (n >>> 1);
2441 return;
2442 }
2443 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2444 if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2445 return;
2446 finishing = advance = true;
2447 i = n; // recheck before commit
2448 }
2449 }
2450 else if ((f = tabAt(tab, i)) == null)
2451 advance = casTabAt(tab, i, null, fwd);
2452 else if ((fh = f.hash) == MOVED)
2453 advance = true; // already processed
2454 else {
2455 synchronized (f) {
2456 if (tabAt(tab, i) == f) {
2457 Node<K,V> ln, hn;
2458 if (fh >= 0) {
2459 int runBit = fh & n;
2460 Node<K,V> lastRun = f;
2461 for (Node<K,V> p = f.next; p != null; p = p.next) {
2462 int b = p.hash & n;
2463 if (b != runBit) {
2464 runBit = b;
2465 lastRun = p;
2466 }
2467 }
2468 if (runBit == 0) {
2469 ln = lastRun;
2470 hn = null;
2471 }
2472 else {
2473 hn = lastRun;
2474 ln = null;
2475 }
2476 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2477 int ph = p.hash; K pk = p.key; V pv = p.val;
2478 if ((ph & n) == 0)
2479 ln = new Node<K,V>(ph, pk, pv, ln);
2480 else
2481 hn = new Node<K,V>(ph, pk, pv, hn);
2482 }
2483 setTabAt(nextTab, i, ln);
2484 setTabAt(nextTab, i + n, hn);
2485 setTabAt(tab, i, fwd);
2486 advance = true;
2487 }
2488 else if (f instanceof TreeBin) {
2489 TreeBin<K,V> t = (TreeBin<K,V>)f;
2490 TreeNode<K,V> lo = null, loTail = null;
2491 TreeNode<K,V> hi = null, hiTail = null;
2492 int lc = 0, hc = 0;
2493 for (Node<K,V> e = t.first; e != null; e = e.next) {
2494 int h = e.hash;
2495 TreeNode<K,V> p = new TreeNode<K,V>
2496 (h, e.key, e.val, null, null);
2497 if ((h & n) == 0) {
2498 if ((p.prev = loTail) == null)
2499 lo = p;
2500 else
2501 loTail.next = p;
2502 loTail = p;
2503 ++lc;
2504 }
2505 else {
2506 if ((p.prev = hiTail) == null)
2507 hi = p;
2508 else
2509 hiTail.next = p;
2510 hiTail = p;
2511 ++hc;
2512 }
2513 }
2514 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2515 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2516 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2517 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2518 setTabAt(nextTab, i, ln);
2519 setTabAt(nextTab, i + n, hn);
2520 setTabAt(tab, i, fwd);
2521 advance = true;
2522 }
2523 else if (f instanceof ReservationNode)
2524 throw new IllegalStateException("Recursive update");
2525 }
2526 }
2527 }
2528 }
2529 }
2530
2531 /* ---------------- Counter support -------------- */
2532
2533 /**
2534 * A padded cell for distributing counts. Adapted from LongAdder
2535 * and Striped64. See their internal docs for explanation.
2536 */
2537 @sun.misc.Contended static final class CounterCell {
2538 volatile long value;
2539 CounterCell(long x) { value = x; }
2540 }
2541
2542 final long sumCount() {
2543 CounterCell[] as = counterCells; CounterCell a;
2544 long sum = baseCount;
2545 if (as != null) {
2546 for (int i = 0; i < as.length; ++i) {
2547 if ((a = as[i]) != null)
2548 sum += a.value;
2549 }
2550 }
2551 return sum;
2552 }
2553
2554 // See LongAdder version for explanation
2555 private final void fullAddCount(long x, boolean wasUncontended) {
2556 int h;
2557 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2558 ThreadLocalRandom.localInit(); // force initialization
2559 h = ThreadLocalRandom.getProbe();
2560 wasUncontended = true;
2561 }
2562 boolean collide = false; // True if last slot nonempty
2563 for (;;) {
2564 CounterCell[] as; CounterCell a; int n; long v;
2565 if ((as = counterCells) != null && (n = as.length) > 0) {
2566 if ((a = as[(n - 1) & h]) == null) {
2567 if (cellsBusy == 0) { // Try to attach new Cell
2568 CounterCell r = new CounterCell(x); // Optimistic create
2569 if (cellsBusy == 0 &&
2570 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2571 boolean created = false;
2572 try { // Recheck under lock
2573 CounterCell[] rs; int m, j;
2574 if ((rs = counterCells) != null &&
2575 (m = rs.length) > 0 &&
2576 rs[j = (m - 1) & h] == null) {
2577 rs[j] = r;
2578 created = true;
2579 }
2580 } finally {
2581 cellsBusy = 0;
2582 }
2583 if (created)
2584 break;
2585 continue; // Slot is now non-empty
2586 }
2587 }
2588 collide = false;
2589 }
2590 else if (!wasUncontended) // CAS already known to fail
2591 wasUncontended = true; // Continue after rehash
2592 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2593 break;
2594 else if (counterCells != as || n >= NCPU)
2595 collide = false; // At max size or stale
2596 else if (!collide)
2597 collide = true;
2598 else if (cellsBusy == 0 &&
2599 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2600 try {
2601 if (counterCells == as) {// Expand table unless stale
2602 CounterCell[] rs = new CounterCell[n << 1];
2603 for (int i = 0; i < n; ++i)
2604 rs[i] = as[i];
2605 counterCells = rs;
2606 }
2607 } finally {
2608 cellsBusy = 0;
2609 }
2610 collide = false;
2611 continue; // Retry with expanded table
2612 }
2613 h = ThreadLocalRandom.advanceProbe(h);
2614 }
2615 else if (cellsBusy == 0 && counterCells == as &&
2616 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2617 boolean init = false;
2618 try { // Initialize table
2619 if (counterCells == as) {
2620 CounterCell[] rs = new CounterCell[2];
2621 rs[h & 1] = new CounterCell(x);
2622 counterCells = rs;
2623 init = true;
2624 }
2625 } finally {
2626 cellsBusy = 0;
2627 }
2628 if (init)
2629 break;
2630 }
2631 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2632 break; // Fall back on using base
2633 }
2634 }
2635
2636 /* ---------------- Conversion from/to TreeBins -------------- */
2637
2638 /**
2639 * Replaces all linked nodes in bin at given index unless table is
2640 * too small, in which case resizes instead.
2641 */
2642 private final void treeifyBin(Node<K,V>[] tab, int index) {
2643 Node<K,V> b; int n;
2644 if (tab != null) {
2645 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2646 tryPresize(n << 1);
2647 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2648 synchronized (b) {
2649 if (tabAt(tab, index) == b) {
2650 TreeNode<K,V> hd = null, tl = null;
2651 for (Node<K,V> e = b; e != null; e = e.next) {
2652 TreeNode<K,V> p =
2653 new TreeNode<K,V>(e.hash, e.key, e.val,
2654 null, null);
2655 if ((p.prev = tl) == null)
2656 hd = p;
2657 else
2658 tl.next = p;
2659 tl = p;
2660 }
2661 setTabAt(tab, index, new TreeBin<K,V>(hd));
2662 }
2663 }
2664 }
2665 }
2666 }
2667
2668 /**
2669 * Returns a list of non-TreeNodes replacing those in given list.
2670 */
2671 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2672 Node<K,V> hd = null, tl = null;
2673 for (Node<K,V> q = b; q != null; q = q.next) {
2674 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val);
2675 if (tl == null)
2676 hd = p;
2677 else
2678 tl.next = p;
2679 tl = p;
2680 }
2681 return hd;
2682 }
2683
2684 /* ---------------- TreeNodes -------------- */
2685
2686 /**
2687 * Nodes for use in TreeBins.
2688 */
2689 static final class TreeNode<K,V> extends Node<K,V> {
2690 TreeNode<K,V> parent; // red-black tree links
2691 TreeNode<K,V> left;
2692 TreeNode<K,V> right;
2693 TreeNode<K,V> prev; // needed to unlink next upon deletion
2694 boolean red;
2695
2696 TreeNode(int hash, K key, V val, Node<K,V> next,
2697 TreeNode<K,V> parent) {
2698 super(hash, key, val, next);
2699 this.parent = parent;
2700 }
2701
2702 Node<K,V> find(int h, Object k) {
2703 return findTreeNode(h, k, null);
2704 }
2705
2706 /**
2707 * Returns the TreeNode (or null if not found) for the given key
2708 * starting at given root.
2709 */
2710 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2711 if (k != null) {
2712 TreeNode<K,V> p = this;
2713 do {
2714 int ph, dir; K pk; TreeNode<K,V> q;
2715 TreeNode<K,V> pl = p.left, pr = p.right;
2716 if ((ph = p.hash) > h)
2717 p = pl;
2718 else if (ph < h)
2719 p = pr;
2720 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2721 return p;
2722 else if (pl == null)
2723 p = pr;
2724 else if (pr == null)
2725 p = pl;
2726 else if ((kc != null ||
2727 (kc = comparableClassFor(k)) != null) &&
2728 (dir = compareComparables(kc, k, pk)) != 0)
2729 p = (dir < 0) ? pl : pr;
2730 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2731 return q;
2732 else
2733 p = pl;
2734 } while (p != null);
2735 }
2736 return null;
2737 }
2738 }
2739
2740 /* ---------------- TreeBins -------------- */
2741
2742 /**
2743 * TreeNodes used at the heads of bins. TreeBins do not hold user
2744 * keys or values, but instead point to list of TreeNodes and
2745 * their root. They also maintain a parasitic read-write lock
2746 * forcing writers (who hold bin lock) to wait for readers (who do
2747 * not) to complete before tree restructuring operations.
2748 */
2749 static final class TreeBin<K,V> extends Node<K,V> {
2750 TreeNode<K,V> root;
2751 volatile TreeNode<K,V> first;
2752 volatile Thread waiter;
2753 volatile int lockState;
2754 // values for lockState
2755 static final int WRITER = 1; // set while holding write lock
2756 static final int WAITER = 2; // set when waiting for write lock
2757 static final int READER = 4; // increment value for setting read lock
2758
2759 /**
2760 * Tie-breaking utility for ordering insertions when equal
2761 * hashCodes and non-comparable. We don't require a total
2762 * order, just a consistent insertion rule to maintain
2763 * equivalence across rebalancings. Tie-breaking further than
2764 * necessary simplifies testing a bit.
2765 */
2766 static int tieBreakOrder(Object a, Object b) {
2767 int d;
2768 if (a == null || b == null ||
2769 (d = a.getClass().getName().
2770 compareTo(b.getClass().getName())) == 0)
2771 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2772 -1 : 1);
2773 return d;
2774 }
2775
2776 /**
2777 * Creates bin with initial set of nodes headed by b.
2778 */
2779 TreeBin(TreeNode<K,V> b) {
2780 super(TREEBIN, null, null);
2781 this.first = b;
2782 TreeNode<K,V> r = null;
2783 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2784 next = (TreeNode<K,V>)x.next;
2785 x.left = x.right = null;
2786 if (r == null) {
2787 x.parent = null;
2788 x.red = false;
2789 r = x;
2790 }
2791 else {
2792 K k = x.key;
2793 int h = x.hash;
2794 Class<?> kc = null;
2795 for (TreeNode<K,V> p = r;;) {
2796 int dir, ph;
2797 K pk = p.key;
2798 if ((ph = p.hash) > h)
2799 dir = -1;
2800 else if (ph < h)
2801 dir = 1;
2802 else if ((kc == null &&
2803 (kc = comparableClassFor(k)) == null) ||
2804 (dir = compareComparables(kc, k, pk)) == 0)
2805 dir = tieBreakOrder(k, pk);
2806 TreeNode<K,V> xp = p;
2807 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2808 x.parent = xp;
2809 if (dir <= 0)
2810 xp.left = x;
2811 else
2812 xp.right = x;
2813 r = balanceInsertion(r, x);
2814 break;
2815 }
2816 }
2817 }
2818 }
2819 this.root = r;
2820 assert checkInvariants(root);
2821 }
2822
2823 /**
2824 * Acquires write lock for tree restructuring.
2825 */
2826 private final void lockRoot() {
2827 if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2828 contendedLock(); // offload to separate method
2829 }
2830
2831 /**
2832 * Releases write lock for tree restructuring.
2833 */
2834 private final void unlockRoot() {
2835 lockState = 0;
2836 }
2837
2838 /**
2839 * Possibly blocks awaiting root lock.
2840 */
2841 private final void contendedLock() {
2842 boolean waiting = false;
2843 for (int s;;) {
2844 if (((s = lockState) & ~WAITER) == 0) {
2845 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2846 if (waiting)
2847 waiter = null;
2848 return;
2849 }
2850 }
2851 else if ((s & WAITER) == 0) {
2852 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2853 waiting = true;
2854 waiter = Thread.currentThread();
2855 }
2856 }
2857 else if (waiting)
2858 LockSupport.park(this);
2859 }
2860 }
2861
2862 /**
2863 * Returns matching node or null if none. Tries to search
2864 * using tree comparisons from root, but continues linear
2865 * search when lock not available.
2866 */
2867 final Node<K,V> find(int h, Object k) {
2868 if (k != null) {
2869 for (Node<K,V> e = first; e != null; ) {
2870 int s; K ek;
2871 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2872 if (e.hash == h &&
2873 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2874 return e;
2875 e = e.next;
2876 }
2877 else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2878 s + READER)) {
2879 TreeNode<K,V> r, p;
2880 try {
2881 p = ((r = root) == null ? null :
2882 r.findTreeNode(h, k, null));
2883 } finally {
2884 Thread w;
2885 if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2886 (READER|WAITER) && (w = waiter) != null)
2887 LockSupport.unpark(w);
2888 }
2889 return p;
2890 }
2891 }
2892 }
2893 return null;
2894 }
2895
2896 /**
2897 * Finds or adds a node.
2898 * @return null if added
2899 */
2900 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2901 Class<?> kc = null;
2902 boolean searched = false;
2903 for (TreeNode<K,V> p = root;;) {
2904 int dir, ph; K pk;
2905 if (p == null) {
2906 first = root = new TreeNode<K,V>(h, k, v, null, null);
2907 break;
2908 }
2909 else if ((ph = p.hash) > h)
2910 dir = -1;
2911 else if (ph < h)
2912 dir = 1;
2913 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2914 return p;
2915 else if ((kc == null &&
2916 (kc = comparableClassFor(k)) == null) ||
2917 (dir = compareComparables(kc, k, pk)) == 0) {
2918 if (!searched) {
2919 TreeNode<K,V> q, ch;
2920 searched = true;
2921 if (((ch = p.left) != null &&
2922 (q = ch.findTreeNode(h, k, kc)) != null) ||
2923 ((ch = p.right) != null &&
2924 (q = ch.findTreeNode(h, k, kc)) != null))
2925 return q;
2926 }
2927 dir = tieBreakOrder(k, pk);
2928 }
2929
2930 TreeNode<K,V> xp = p;
2931 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2932 TreeNode<K,V> x, f = first;
2933 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2934 if (f != null)
2935 f.prev = x;
2936 if (dir <= 0)
2937 xp.left = x;
2938 else
2939 xp.right = x;
2940 if (!xp.red)
2941 x.red = true;
2942 else {
2943 lockRoot();
2944 try {
2945 root = balanceInsertion(root, x);
2946 } finally {
2947 unlockRoot();
2948 }
2949 }
2950 break;
2951 }
2952 }
2953 assert checkInvariants(root);
2954 return null;
2955 }
2956
2957 /**
2958 * Removes the given node, that must be present before this
2959 * call. This is messier than typical red-black deletion code
2960 * because we cannot swap the contents of an interior node
2961 * with a leaf successor that is pinned by "next" pointers
2962 * that are accessible independently of lock. So instead we
2963 * swap the tree linkages.
2964 *
2965 * @return true if now too small, so should be untreeified
2966 */
2967 final boolean removeTreeNode(TreeNode<K,V> p) {
2968 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2969 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2970 TreeNode<K,V> r, rl;
2971 if (pred == null)
2972 first = next;
2973 else
2974 pred.next = next;
2975 if (next != null)
2976 next.prev = pred;
2977 if (first == null) {
2978 root = null;
2979 return true;
2980 }
2981 if ((r = root) == null || r.right == null || // too small
2982 (rl = r.left) == null || rl.left == null)
2983 return true;
2984 lockRoot();
2985 try {
2986 TreeNode<K,V> replacement;
2987 TreeNode<K,V> pl = p.left;
2988 TreeNode<K,V> pr = p.right;
2989 if (pl != null && pr != null) {
2990 TreeNode<K,V> s = pr, sl;
2991 while ((sl = s.left) != null) // find successor
2992 s = sl;
2993 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2994 TreeNode<K,V> sr = s.right;
2995 TreeNode<K,V> pp = p.parent;
2996 if (s == pr) { // p was s's direct parent
2997 p.parent = s;
2998 s.right = p;
2999 }
3000 else {
3001 TreeNode<K,V> sp = s.parent;
3002 if ((p.parent = sp) != null) {
3003 if (s == sp.left)
3004 sp.left = p;
3005 else
3006 sp.right = p;
3007 }
3008 if ((s.right = pr) != null)
3009 pr.parent = s;
3010 }
3011 p.left = null;
3012 if ((p.right = sr) != null)
3013 sr.parent = p;
3014 if ((s.left = pl) != null)
3015 pl.parent = s;
3016 if ((s.parent = pp) == null)
3017 r = s;
3018 else if (p == pp.left)
3019 pp.left = s;
3020 else
3021 pp.right = s;
3022 if (sr != null)
3023 replacement = sr;
3024 else
3025 replacement = p;
3026 }
3027 else if (pl != null)
3028 replacement = pl;
3029 else if (pr != null)
3030 replacement = pr;
3031 else
3032 replacement = p;
3033 if (replacement != p) {
3034 TreeNode<K,V> pp = replacement.parent = p.parent;
3035 if (pp == null)
3036 r = replacement;
3037 else if (p == pp.left)
3038 pp.left = replacement;
3039 else
3040 pp.right = replacement;
3041 p.left = p.right = p.parent = null;
3042 }
3043
3044 root = (p.red) ? r : balanceDeletion(r, replacement);
3045
3046 if (p == replacement) { // detach pointers
3047 TreeNode<K,V> pp;
3048 if ((pp = p.parent) != null) {
3049 if (p == pp.left)
3050 pp.left = null;
3051 else if (p == pp.right)
3052 pp.right = null;
3053 p.parent = null;
3054 }
3055 }
3056 } finally {
3057 unlockRoot();
3058 }
3059 assert checkInvariants(root);
3060 return false;
3061 }
3062
3063 /* ------------------------------------------------------------ */
3064 // Red-black tree methods, all adapted from CLR
3065
3066 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3067 TreeNode<K,V> p) {
3068 TreeNode<K,V> r, pp, rl;
3069 if (p != null && (r = p.right) != null) {
3070 if ((rl = p.right = r.left) != null)
3071 rl.parent = p;
3072 if ((pp = r.parent = p.parent) == null)
3073 (root = r).red = false;
3074 else if (pp.left == p)
3075 pp.left = r;
3076 else
3077 pp.right = r;
3078 r.left = p;
3079 p.parent = r;
3080 }
3081 return root;
3082 }
3083
3084 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3085 TreeNode<K,V> p) {
3086 TreeNode<K,V> l, pp, lr;
3087 if (p != null && (l = p.left) != null) {
3088 if ((lr = p.left = l.right) != null)
3089 lr.parent = p;
3090 if ((pp = l.parent = p.parent) == null)
3091 (root = l).red = false;
3092 else if (pp.right == p)
3093 pp.right = l;
3094 else
3095 pp.left = l;
3096 l.right = p;
3097 p.parent = l;
3098 }
3099 return root;
3100 }
3101
3102 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3103 TreeNode<K,V> x) {
3104 x.red = true;
3105 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3106 if ((xp = x.parent) == null) {
3107 x.red = false;
3108 return x;
3109 }
3110 else if (!xp.red || (xpp = xp.parent) == null)
3111 return root;
3112 if (xp == (xppl = xpp.left)) {
3113 if ((xppr = xpp.right) != null && xppr.red) {
3114 xppr.red = false;
3115 xp.red = false;
3116 xpp.red = true;
3117 x = xpp;
3118 }
3119 else {
3120 if (x == xp.right) {
3121 root = rotateLeft(root, x = xp);
3122 xpp = (xp = x.parent) == null ? null : xp.parent;
3123 }
3124 if (xp != null) {
3125 xp.red = false;
3126 if (xpp != null) {
3127 xpp.red = true;
3128 root = rotateRight(root, xpp);
3129 }
3130 }
3131 }
3132 }
3133 else {
3134 if (xppl != null && xppl.red) {
3135 xppl.red = false;
3136 xp.red = false;
3137 xpp.red = true;
3138 x = xpp;
3139 }
3140 else {
3141 if (x == xp.left) {
3142 root = rotateRight(root, x = xp);
3143 xpp = (xp = x.parent) == null ? null : xp.parent;
3144 }
3145 if (xp != null) {
3146 xp.red = false;
3147 if (xpp != null) {
3148 xpp.red = true;
3149 root = rotateLeft(root, xpp);
3150 }
3151 }
3152 }
3153 }
3154 }
3155 }
3156
3157 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3158 TreeNode<K,V> x) {
3159 for (TreeNode<K,V> xp, xpl, xpr;;) {
3160 if (x == null || x == root)
3161 return root;
3162 else if ((xp = x.parent) == null) {
3163 x.red = false;
3164 return x;
3165 }
3166 else if (x.red) {
3167 x.red = false;
3168 return root;
3169 }
3170 else if ((xpl = xp.left) == x) {
3171 if ((xpr = xp.right) != null && xpr.red) {
3172 xpr.red = false;
3173 xp.red = true;
3174 root = rotateLeft(root, xp);
3175 xpr = (xp = x.parent) == null ? null : xp.right;
3176 }
3177 if (xpr == null)
3178 x = xp;
3179 else {
3180 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3181 if ((sr == null || !sr.red) &&
3182 (sl == null || !sl.red)) {
3183 xpr.red = true;
3184 x = xp;
3185 }
3186 else {
3187 if (sr == null || !sr.red) {
3188 if (sl != null)
3189 sl.red = false;
3190 xpr.red = true;
3191 root = rotateRight(root, xpr);
3192 xpr = (xp = x.parent) == null ?
3193 null : xp.right;
3194 }
3195 if (xpr != null) {
3196 xpr.red = (xp == null) ? false : xp.red;
3197 if ((sr = xpr.right) != null)
3198 sr.red = false;
3199 }
3200 if (xp != null) {
3201 xp.red = false;
3202 root = rotateLeft(root, xp);
3203 }
3204 x = root;
3205 }
3206 }
3207 }
3208 else { // symmetric
3209 if (xpl != null && xpl.red) {
3210 xpl.red = false;
3211 xp.red = true;
3212 root = rotateRight(root, xp);
3213 xpl = (xp = x.parent) == null ? null : xp.left;
3214 }
3215 if (xpl == null)
3216 x = xp;
3217 else {
3218 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3219 if ((sl == null || !sl.red) &&
3220 (sr == null || !sr.red)) {
3221 xpl.red = true;
3222 x = xp;
3223 }
3224 else {
3225 if (sl == null || !sl.red) {
3226 if (sr != null)
3227 sr.red = false;
3228 xpl.red = true;
3229 root = rotateLeft(root, xpl);
3230 xpl = (xp = x.parent) == null ?
3231 null : xp.left;
3232 }
3233 if (xpl != null) {
3234 xpl.red = (xp == null) ? false : xp.red;
3235 if ((sl = xpl.left) != null)
3236 sl.red = false;
3237 }
3238 if (xp != null) {
3239 xp.red = false;
3240 root = rotateRight(root, xp);
3241 }
3242 x = root;
3243 }
3244 }
3245 }
3246 }
3247 }
3248
3249 /**
3250 * Checks invariants recursively for the tree of Nodes rooted at t.
3251 */
3252 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3253 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3254 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3255 if (tb != null && tb.next != t)
3256 return false;
3257 if (tn != null && tn.prev != t)
3258 return false;
3259 if (tp != null && t != tp.left && t != tp.right)
3260 return false;
3261 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3262 return false;
3263 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3264 return false;
3265 if (t.red && tl != null && tl.red && tr != null && tr.red)
3266 return false;
3267 if (tl != null && !checkInvariants(tl))
3268 return false;
3269 if (tr != null && !checkInvariants(tr))
3270 return false;
3271 return true;
3272 }
3273
3274 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3275 private static final long LOCKSTATE;
3276 static {
3277 try {
3278 LOCKSTATE = U.objectFieldOffset
3279 (TreeBin.class.getDeclaredField("lockState"));
3280 } catch (ReflectiveOperationException e) {
3281 throw new Error(e);
3282 }
3283 }
3284 }
3285
3286 /* ----------------Table Traversal -------------- */
3287
3288 /**
3289 * Records the table, its length, and current traversal index for a
3290 * traverser that must process a region of a forwarded table before
3291 * proceeding with current table.
3292 */
3293 static final class TableStack<K,V> {
3294 int length;
3295 int index;
3296 Node<K,V>[] tab;
3297 TableStack<K,V> next;
3298 }
3299
3300 /**
3301 * Encapsulates traversal for methods such as containsValue; also
3302 * serves as a base class for other iterators and spliterators.
3303 *
3304 * Method advance visits once each still-valid node that was
3305 * reachable upon iterator construction. It might miss some that
3306 * were added to a bin after the bin was visited, which is OK wrt
3307 * consistency guarantees. Maintaining this property in the face
3308 * of possible ongoing resizes requires a fair amount of
3309 * bookkeeping state that is difficult to optimize away amidst
3310 * volatile accesses. Even so, traversal maintains reasonable
3311 * throughput.
3312 *
3313 * Normally, iteration proceeds bin-by-bin traversing lists.
3314 * However, if the table has been resized, then all future steps
3315 * must traverse both the bin at the current index as well as at
3316 * (index + baseSize); and so on for further resizings. To
3317 * paranoically cope with potential sharing by users of iterators
3318 * across threads, iteration terminates if a bounds checks fails
3319 * for a table read.
3320 */
3321 static class Traverser<K,V> {
3322 Node<K,V>[] tab; // current table; updated if resized
3323 Node<K,V> next; // the next entry to use
3324 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3325 int index; // index of bin to use next
3326 int baseIndex; // current index of initial table
3327 int baseLimit; // index bound for initial table
3328 final int baseSize; // initial table size
3329
3330 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3331 this.tab = tab;
3332 this.baseSize = size;
3333 this.baseIndex = this.index = index;
3334 this.baseLimit = limit;
3335 this.next = null;
3336 }
3337
3338 /**
3339 * Advances if possible, returning next valid node, or null if none.
3340 */
3341 final Node<K,V> advance() {
3342 Node<K,V> e;
3343 if ((e = next) != null)
3344 e = e.next;
3345 for (;;) {
3346 Node<K,V>[] t; int i, n; // must use locals in checks
3347 if (e != null)
3348 return next = e;
3349 if (baseIndex >= baseLimit || (t = tab) == null ||
3350 (n = t.length) <= (i = index) || i < 0)
3351 return next = null;
3352 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3353 if (e instanceof ForwardingNode) {
3354 tab = ((ForwardingNode<K,V>)e).nextTable;
3355 e = null;
3356 pushState(t, i, n);
3357 continue;
3358 }
3359 else if (e instanceof TreeBin)
3360 e = ((TreeBin<K,V>)e).first;
3361 else
3362 e = null;
3363 }
3364 if (stack != null)
3365 recoverState(n);
3366 else if ((index = i + baseSize) >= n)
3367 index = ++baseIndex; // visit upper slots if present
3368 }
3369 }
3370
3371 /**
3372 * Saves traversal state upon encountering a forwarding node.
3373 */
3374 private void pushState(Node<K,V>[] t, int i, int n) {
3375 TableStack<K,V> s = spare; // reuse if possible
3376 if (s != null)
3377 spare = s.next;
3378 else
3379 s = new TableStack<K,V>();
3380 s.tab = t;
3381 s.length = n;
3382 s.index = i;
3383 s.next = stack;
3384 stack = s;
3385 }
3386
3387 /**
3388 * Possibly pops traversal state.
3389 *
3390 * @param n length of current table
3391 */
3392 private void recoverState(int n) {
3393 TableStack<K,V> s; int len;
3394 while ((s = stack) != null && (index += (len = s.length)) >= n) {
3395 n = len;
3396 index = s.index;
3397 tab = s.tab;
3398 s.tab = null;
3399 TableStack<K,V> next = s.next;
3400 s.next = spare; // save for reuse
3401 stack = next;
3402 spare = s;
3403 }
3404 if (s == null && (index += baseSize) >= n)
3405 index = ++baseIndex;
3406 }
3407 }
3408
3409 /**
3410 * Base of key, value, and entry Iterators. Adds fields to
3411 * Traverser to support iterator.remove.
3412 */
3413 static class BaseIterator<K,V> extends Traverser<K,V> {
3414 final ConcurrentHashMap<K,V> map;
3415 Node<K,V> lastReturned;
3416 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3417 ConcurrentHashMap<K,V> map) {
3418 super(tab, size, index, limit);
3419 this.map = map;
3420 advance();
3421 }
3422
3423 public final boolean hasNext() { return next != null; }
3424 public final boolean hasMoreElements() { return next != null; }
3425
3426 public final void remove() {
3427 Node<K,V> p;
3428 if ((p = lastReturned) == null)
3429 throw new IllegalStateException();
3430 lastReturned = null;
3431 map.replaceNode(p.key, null, null);
3432 }
3433 }
3434
3435 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3436 implements Iterator<K>, Enumeration<K> {
3437 KeyIterator(Node<K,V>[] tab, int size, int index, int limit,
3438 ConcurrentHashMap<K,V> map) {
3439 super(tab, size, index, limit, map);
3440 }
3441
3442 public final K next() {
3443 Node<K,V> p;
3444 if ((p = next) == null)
3445 throw new NoSuchElementException();
3446 K k = p.key;
3447 lastReturned = p;
3448 advance();
3449 return k;
3450 }
3451
3452 public final K nextElement() { return next(); }
3453 }
3454
3455 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3456 implements Iterator<V>, Enumeration<V> {
3457 ValueIterator(Node<K,V>[] tab, int size, int index, int limit,
3458 ConcurrentHashMap<K,V> map) {
3459 super(tab, size, index, limit, map);
3460 }
3461
3462 public final V next() {
3463 Node<K,V> p;
3464 if ((p = next) == null)
3465 throw new NoSuchElementException();
3466 V v = p.val;
3467 lastReturned = p;
3468 advance();
3469 return v;
3470 }
3471
3472 public final V nextElement() { return next(); }
3473 }
3474
3475 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3476 implements Iterator<Map.Entry<K,V>> {
3477 EntryIterator(Node<K,V>[] tab, int size, int index, int limit,
3478 ConcurrentHashMap<K,V> map) {
3479 super(tab, size, index, limit, map);
3480 }
3481
3482 public final Map.Entry<K,V> next() {
3483 Node<K,V> p;
3484 if ((p = next) == null)
3485 throw new NoSuchElementException();
3486 K k = p.key;
3487 V v = p.val;
3488 lastReturned = p;
3489 advance();
3490 return new MapEntry<K,V>(k, v, map);
3491 }
3492 }
3493
3494 /**
3495 * Exported Entry for EntryIterator.
3496 */
3497 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3498 final K key; // non-null
3499 V val; // non-null
3500 final ConcurrentHashMap<K,V> map;
3501 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3502 this.key = key;
3503 this.val = val;
3504 this.map = map;
3505 }
3506 public K getKey() { return key; }
3507 public V getValue() { return val; }
3508 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3509 public String toString() {
3510 return Helpers.mapEntryToString(key, val);
3511 }
3512
3513 public boolean equals(Object o) {
3514 Object k, v; Map.Entry<?,?> e;
3515 return ((o instanceof Map.Entry) &&
3516 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3517 (v = e.getValue()) != null &&
3518 (k == key || k.equals(key)) &&
3519 (v == val || v.equals(val)));
3520 }
3521
3522 /**
3523 * Sets our entry's value and writes through to the map. The
3524 * value to return is somewhat arbitrary here. Since we do not
3525 * necessarily track asynchronous changes, the most recent
3526 * "previous" value could be different from what we return (or
3527 * could even have been removed, in which case the put will
3528 * re-establish). We do not and cannot guarantee more.
3529 */
3530 public V setValue(V value) {
3531 if (value == null) throw new NullPointerException();
3532 V v = val;
3533 val = value;
3534 map.put(key, value);
3535 return v;
3536 }
3537 }
3538
3539 static final class KeySpliterator<K,V> extends Traverser<K,V>
3540 implements Spliterator<K> {
3541 long est; // size estimate
3542 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3543 long est) {
3544 super(tab, size, index, limit);
3545 this.est = est;
3546 }
3547
3548 public KeySpliterator<K,V> trySplit() {
3549 int i, f, h;
3550 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3551 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3552 f, est >>>= 1);
3553 }
3554
3555 public void forEachRemaining(Consumer<? super K> action) {
3556 if (action == null) throw new NullPointerException();
3557 for (Node<K,V> p; (p = advance()) != null;)
3558 action.accept(p.key);
3559 }
3560
3561 public boolean tryAdvance(Consumer<? super K> action) {
3562 if (action == null) throw new NullPointerException();
3563 Node<K,V> p;
3564 if ((p = advance()) == null)
3565 return false;
3566 action.accept(p.key);
3567 return true;
3568 }
3569
3570 public long estimateSize() { return est; }
3571
3572 public int characteristics() {
3573 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3574 Spliterator.NONNULL;
3575 }
3576 }
3577
3578 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3579 implements Spliterator<V> {
3580 long est; // size estimate
3581 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3582 long est) {
3583 super(tab, size, index, limit);
3584 this.est = est;
3585 }
3586
3587 public ValueSpliterator<K,V> trySplit() {
3588 int i, f, h;
3589 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3590 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3591 f, est >>>= 1);
3592 }
3593
3594 public void forEachRemaining(Consumer<? super V> action) {
3595 if (action == null) throw new NullPointerException();
3596 for (Node<K,V> p; (p = advance()) != null;)
3597 action.accept(p.val);
3598 }
3599
3600 public boolean tryAdvance(Consumer<? super V> action) {
3601 if (action == null) throw new NullPointerException();
3602 Node<K,V> p;
3603 if ((p = advance()) == null)
3604 return false;
3605 action.accept(p.val);
3606 return true;
3607 }
3608
3609 public long estimateSize() { return est; }
3610
3611 public int characteristics() {
3612 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3613 }
3614 }
3615
3616 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3617 implements Spliterator<Map.Entry<K,V>> {
3618 final ConcurrentHashMap<K,V> map; // To export MapEntry
3619 long est; // size estimate
3620 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3621 long est, ConcurrentHashMap<K,V> map) {
3622 super(tab, size, index, limit);
3623 this.map = map;
3624 this.est = est;
3625 }
3626
3627 public EntrySpliterator<K,V> trySplit() {
3628 int i, f, h;
3629 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3630 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3631 f, est >>>= 1, map);
3632 }
3633
3634 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3635 if (action == null) throw new NullPointerException();
3636 for (Node<K,V> p; (p = advance()) != null; )
3637 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3638 }
3639
3640 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3641 if (action == null) throw new NullPointerException();
3642 Node<K,V> p;
3643 if ((p = advance()) == null)
3644 return false;
3645 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3646 return true;
3647 }
3648
3649 public long estimateSize() { return est; }
3650
3651 public int characteristics() {
3652 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3653 Spliterator.NONNULL;
3654 }
3655 }
3656
3657 // Parallel bulk operations
3658
3659 /**
3660 * Computes initial batch value for bulk tasks. The returned value
3661 * is approximately exp2 of the number of times (minus one) to
3662 * split task by two before executing leaf action. This value is
3663 * faster to compute and more convenient to use as a guide to
3664 * splitting than is the depth, since it is used while dividing by
3665 * two anyway.
3666 */
3667 final int batchFor(long b) {
3668 long n;
3669 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3670 return 0;
3671 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3672 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3673 }
3674
3675 /**
3676 * Performs the given action for each (key, value).
3677 *
3678 * @param parallelismThreshold the (estimated) number of elements
3679 * needed for this operation to be executed in parallel
3680 * @param action the action
3681 * @since 1.8
3682 */
3683 public void forEach(long parallelismThreshold,
3684 BiConsumer<? super K,? super V> action) {
3685 if (action == null) throw new NullPointerException();
3686 new ForEachMappingTask<K,V>
3687 (null, batchFor(parallelismThreshold), 0, 0, table,
3688 action).invoke();
3689 }
3690
3691 /**
3692 * Performs the given action for each non-null transformation
3693 * of each (key, value).
3694 *
3695 * @param parallelismThreshold the (estimated) number of elements
3696 * needed for this operation to be executed in parallel
3697 * @param transformer a function returning the transformation
3698 * for an element, or null if there is no transformation (in
3699 * which case the action is not applied)
3700 * @param action the action
3701 * @param <U> the return type of the transformer
3702 * @since 1.8
3703 */
3704 public <U> void forEach(long parallelismThreshold,
3705 BiFunction<? super K, ? super V, ? extends U> transformer,
3706 Consumer<? super U> action) {
3707 if (transformer == null || action == null)
3708 throw new NullPointerException();
3709 new ForEachTransformedMappingTask<K,V,U>
3710 (null, batchFor(parallelismThreshold), 0, 0, table,
3711 transformer, action).invoke();
3712 }
3713
3714 /**
3715 * Returns a non-null result from applying the given search
3716 * function on each (key, value), or null if none. Upon
3717 * success, further element processing is suppressed and the
3718 * results of any other parallel invocations of the search
3719 * function are ignored.
3720 *
3721 * @param parallelismThreshold the (estimated) number of elements
3722 * needed for this operation to be executed in parallel
3723 * @param searchFunction a function returning a non-null
3724 * result on success, else null
3725 * @param <U> the return type of the search function
3726 * @return a non-null result from applying the given search
3727 * function on each (key, value), or null if none
3728 * @since 1.8
3729 */
3730 public <U> U search(long parallelismThreshold,
3731 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3732 if (searchFunction == null) throw new NullPointerException();
3733 return new SearchMappingsTask<K,V,U>
3734 (null, batchFor(parallelismThreshold), 0, 0, table,
3735 searchFunction, new AtomicReference<U>()).invoke();
3736 }
3737
3738 /**
3739 * Returns the result of accumulating the given transformation
3740 * of all (key, value) pairs using the given reducer to
3741 * combine values, or null if none.
3742 *
3743 * @param parallelismThreshold the (estimated) number of elements
3744 * needed for this operation to be executed in parallel
3745 * @param transformer a function returning the transformation
3746 * for an element, or null if there is no transformation (in
3747 * which case it is not combined)
3748 * @param reducer a commutative associative combining function
3749 * @param <U> the return type of the transformer
3750 * @return the result of accumulating the given transformation
3751 * of all (key, value) pairs
3752 * @since 1.8
3753 */
3754 public <U> U reduce(long parallelismThreshold,
3755 BiFunction<? super K, ? super V, ? extends U> transformer,
3756 BiFunction<? super U, ? super U, ? extends U> reducer) {
3757 if (transformer == null || reducer == null)
3758 throw new NullPointerException();
3759 return new MapReduceMappingsTask<K,V,U>
3760 (null, batchFor(parallelismThreshold), 0, 0, table,
3761 null, transformer, reducer).invoke();
3762 }
3763
3764 /**
3765 * Returns the result of accumulating the given transformation
3766 * of all (key, value) pairs using the given reducer to
3767 * combine values, and the given basis as an identity value.
3768 *
3769 * @param parallelismThreshold the (estimated) number of elements
3770 * needed for this operation to be executed in parallel
3771 * @param transformer a function returning the transformation
3772 * for an element
3773 * @param basis the identity (initial default value) for the reduction
3774 * @param reducer a commutative associative combining function
3775 * @return the result of accumulating the given transformation
3776 * of all (key, value) pairs
3777 * @since 1.8
3778 */
3779 public double reduceToDouble(long parallelismThreshold,
3780 ToDoubleBiFunction<? super K, ? super V> transformer,
3781 double basis,
3782 DoubleBinaryOperator reducer) {
3783 if (transformer == null || reducer == null)
3784 throw new NullPointerException();
3785 return new MapReduceMappingsToDoubleTask<K,V>
3786 (null, batchFor(parallelismThreshold), 0, 0, table,
3787 null, transformer, basis, reducer).invoke();
3788 }
3789
3790 /**
3791 * Returns the result of accumulating the given transformation
3792 * of all (key, value) pairs using the given reducer to
3793 * combine values, and the given basis as an identity value.
3794 *
3795 * @param parallelismThreshold the (estimated) number of elements
3796 * needed for this operation to be executed in parallel
3797 * @param transformer a function returning the transformation
3798 * for an element
3799 * @param basis the identity (initial default value) for the reduction
3800 * @param reducer a commutative associative combining function
3801 * @return the result of accumulating the given transformation
3802 * of all (key, value) pairs
3803 * @since 1.8
3804 */
3805 public long reduceToLong(long parallelismThreshold,
3806 ToLongBiFunction<? super K, ? super V> transformer,
3807 long basis,
3808 LongBinaryOperator reducer) {
3809 if (transformer == null || reducer == null)
3810 throw new NullPointerException();
3811 return new MapReduceMappingsToLongTask<K,V>
3812 (null, batchFor(parallelismThreshold), 0, 0, table,
3813 null, transformer, basis, reducer).invoke();
3814 }
3815
3816 /**
3817 * Returns the result of accumulating the given transformation
3818 * of all (key, value) pairs using the given reducer to
3819 * combine values, and the given basis as an identity value.
3820 *
3821 * @param parallelismThreshold the (estimated) number of elements
3822 * needed for this operation to be executed in parallel
3823 * @param transformer a function returning the transformation
3824 * for an element
3825 * @param basis the identity (initial default value) for the reduction
3826 * @param reducer a commutative associative combining function
3827 * @return the result of accumulating the given transformation
3828 * of all (key, value) pairs
3829 * @since 1.8
3830 */
3831 public int reduceToInt(long parallelismThreshold,
3832 ToIntBiFunction<? super K, ? super V> transformer,
3833 int basis,
3834 IntBinaryOperator reducer) {
3835 if (transformer == null || reducer == null)
3836 throw new NullPointerException();
3837 return new MapReduceMappingsToIntTask<K,V>
3838 (null, batchFor(parallelismThreshold), 0, 0, table,
3839 null, transformer, basis, reducer).invoke();
3840 }
3841
3842 /**
3843 * Performs the given action for each key.
3844 *
3845 * @param parallelismThreshold the (estimated) number of elements
3846 * needed for this operation to be executed in parallel
3847 * @param action the action
3848 * @since 1.8
3849 */
3850 public void forEachKey(long parallelismThreshold,
3851 Consumer<? super K> action) {
3852 if (action == null) throw new NullPointerException();
3853 new ForEachKeyTask<K,V>
3854 (null, batchFor(parallelismThreshold), 0, 0, table,
3855 action).invoke();
3856 }
3857
3858 /**
3859 * Performs the given action for each non-null transformation
3860 * of each key.
3861 *
3862 * @param parallelismThreshold the (estimated) number of elements
3863 * needed for this operation to be executed in parallel
3864 * @param transformer a function returning the transformation
3865 * for an element, or null if there is no transformation (in
3866 * which case the action is not applied)
3867 * @param action the action
3868 * @param <U> the return type of the transformer
3869 * @since 1.8
3870 */
3871 public <U> void forEachKey(long parallelismThreshold,
3872 Function<? super K, ? extends U> transformer,
3873 Consumer<? super U> action) {
3874 if (transformer == null || action == null)
3875 throw new NullPointerException();
3876 new ForEachTransformedKeyTask<K,V,U>
3877 (null, batchFor(parallelismThreshold), 0, 0, table,
3878 transformer, action).invoke();
3879 }
3880
3881 /**
3882 * Returns a non-null result from applying the given search
3883 * function on each key, or null if none. Upon success,
3884 * further element processing is suppressed and the results of
3885 * any other parallel invocations of the search function are
3886 * ignored.
3887 *
3888 * @param parallelismThreshold the (estimated) number of elements
3889 * needed for this operation to be executed in parallel
3890 * @param searchFunction a function returning a non-null
3891 * result on success, else null
3892 * @param <U> the return type of the search function
3893 * @return a non-null result from applying the given search
3894 * function on each key, or null if none
3895 * @since 1.8
3896 */
3897 public <U> U searchKeys(long parallelismThreshold,
3898 Function<? super K, ? extends U> searchFunction) {
3899 if (searchFunction == null) throw new NullPointerException();
3900 return new SearchKeysTask<K,V,U>
3901 (null, batchFor(parallelismThreshold), 0, 0, table,
3902 searchFunction, new AtomicReference<U>()).invoke();
3903 }
3904
3905 /**
3906 * Returns the result of accumulating all keys using the given
3907 * reducer to combine values, or null if none.
3908 *
3909 * @param parallelismThreshold the (estimated) number of elements
3910 * needed for this operation to be executed in parallel
3911 * @param reducer a commutative associative combining function
3912 * @return the result of accumulating all keys using the given
3913 * reducer to combine values, or null if none
3914 * @since 1.8
3915 */
3916 public K reduceKeys(long parallelismThreshold,
3917 BiFunction<? super K, ? super K, ? extends K> reducer) {
3918 if (reducer == null) throw new NullPointerException();
3919 return new ReduceKeysTask<K,V>
3920 (null, batchFor(parallelismThreshold), 0, 0, table,
3921 null, reducer).invoke();
3922 }
3923
3924 /**
3925 * Returns the result of accumulating the given transformation
3926 * of all keys using the given reducer to combine values, or
3927 * null if none.
3928 *
3929 * @param parallelismThreshold the (estimated) number of elements
3930 * needed for this operation to be executed in parallel
3931 * @param transformer a function returning the transformation
3932 * for an element, or null if there is no transformation (in
3933 * which case it is not combined)
3934 * @param reducer a commutative associative combining function
3935 * @param <U> the return type of the transformer
3936 * @return the result of accumulating the given transformation
3937 * of all keys
3938 * @since 1.8
3939 */
3940 public <U> U reduceKeys(long parallelismThreshold,
3941 Function<? super K, ? extends U> transformer,
3942 BiFunction<? super U, ? super U, ? extends U> reducer) {
3943 if (transformer == null || reducer == null)
3944 throw new NullPointerException();
3945 return new MapReduceKeysTask<K,V,U>
3946 (null, batchFor(parallelismThreshold), 0, 0, table,
3947 null, transformer, reducer).invoke();
3948 }
3949
3950 /**
3951 * Returns the result of accumulating the given transformation
3952 * of all keys using the given reducer to combine values, and
3953 * the given basis as an identity value.
3954 *
3955 * @param parallelismThreshold the (estimated) number of elements
3956 * needed for this operation to be executed in parallel
3957 * @param transformer a function returning the transformation
3958 * for an element
3959 * @param basis the identity (initial default value) for the reduction
3960 * @param reducer a commutative associative combining function
3961 * @return the result of accumulating the given transformation
3962 * of all keys
3963 * @since 1.8
3964 */
3965 public double reduceKeysToDouble(long parallelismThreshold,
3966 ToDoubleFunction<? super K> transformer,
3967 double basis,
3968 DoubleBinaryOperator reducer) {
3969 if (transformer == null || reducer == null)
3970 throw new NullPointerException();
3971 return new MapReduceKeysToDoubleTask<K,V>
3972 (null, batchFor(parallelismThreshold), 0, 0, table,
3973 null, transformer, basis, reducer).invoke();
3974 }
3975
3976 /**
3977 * Returns the result of accumulating the given transformation
3978 * of all keys using the given reducer to combine values, and
3979 * the given basis as an identity value.
3980 *
3981 * @param parallelismThreshold the (estimated) number of elements
3982 * needed for this operation to be executed in parallel
3983 * @param transformer a function returning the transformation
3984 * for an element
3985 * @param basis the identity (initial default value) for the reduction
3986 * @param reducer a commutative associative combining function
3987 * @return the result of accumulating the given transformation
3988 * of all keys
3989 * @since 1.8
3990 */
3991 public long reduceKeysToLong(long parallelismThreshold,
3992 ToLongFunction<? super K> transformer,
3993 long basis,
3994 LongBinaryOperator reducer) {
3995 if (transformer == null || reducer == null)
3996 throw new NullPointerException();
3997 return new MapReduceKeysToLongTask<K,V>
3998 (null, batchFor(parallelismThreshold), 0, 0, table,
3999 null, transformer, basis, reducer).invoke();
4000 }
4001
4002 /**
4003 * Returns the result of accumulating the given transformation
4004 * of all keys using the given reducer to combine values, and
4005 * the given basis as an identity value.
4006 *
4007 * @param parallelismThreshold the (estimated) number of elements
4008 * needed for this operation to be executed in parallel
4009 * @param transformer a function returning the transformation
4010 * for an element
4011 * @param basis the identity (initial default value) for the reduction
4012 * @param reducer a commutative associative combining function
4013 * @return the result of accumulating the given transformation
4014 * of all keys
4015 * @since 1.8
4016 */
4017 public int reduceKeysToInt(long parallelismThreshold,
4018 ToIntFunction<? super K> transformer,
4019 int basis,
4020 IntBinaryOperator reducer) {
4021 if (transformer == null || reducer == null)
4022 throw new NullPointerException();
4023 return new MapReduceKeysToIntTask<K,V>
4024 (null, batchFor(parallelismThreshold), 0, 0, table,
4025 null, transformer, basis, reducer).invoke();
4026 }
4027
4028 /**
4029 * Performs the given action for each value.
4030 *
4031 * @param parallelismThreshold the (estimated) number of elements
4032 * needed for this operation to be executed in parallel
4033 * @param action the action
4034 * @since 1.8
4035 */
4036 public void forEachValue(long parallelismThreshold,
4037 Consumer<? super V> action) {
4038 if (action == null)
4039 throw new NullPointerException();
4040 new ForEachValueTask<K,V>
4041 (null, batchFor(parallelismThreshold), 0, 0, table,
4042 action).invoke();
4043 }
4044
4045 /**
4046 * Performs the given action for each non-null transformation
4047 * of each value.
4048 *
4049 * @param parallelismThreshold the (estimated) number of elements
4050 * needed for this operation to be executed in parallel
4051 * @param transformer a function returning the transformation
4052 * for an element, or null if there is no transformation (in
4053 * which case the action is not applied)
4054 * @param action the action
4055 * @param <U> the return type of the transformer
4056 * @since 1.8
4057 */
4058 public <U> void forEachValue(long parallelismThreshold,
4059 Function<? super V, ? extends U> transformer,
4060 Consumer<? super U> action) {
4061 if (transformer == null || action == null)
4062 throw new NullPointerException();
4063 new ForEachTransformedValueTask<K,V,U>
4064 (null, batchFor(parallelismThreshold), 0, 0, table,
4065 transformer, action).invoke();
4066 }
4067
4068 /**
4069 * Returns a non-null result from applying the given search
4070 * function on each value, or null if none. Upon success,
4071 * further element processing is suppressed and the results of
4072 * any other parallel invocations of the search function are
4073 * ignored.
4074 *
4075 * @param parallelismThreshold the (estimated) number of elements
4076 * needed for this operation to be executed in parallel
4077 * @param searchFunction a function returning a non-null
4078 * result on success, else null
4079 * @param <U> the return type of the search function
4080 * @return a non-null result from applying the given search
4081 * function on each value, or null if none
4082 * @since 1.8
4083 */
4084 public <U> U searchValues(long parallelismThreshold,
4085 Function<? super V, ? extends U> searchFunction) {
4086 if (searchFunction == null) throw new NullPointerException();
4087 return new SearchValuesTask<K,V,U>
4088 (null, batchFor(parallelismThreshold), 0, 0, table,
4089 searchFunction, new AtomicReference<U>()).invoke();
4090 }
4091
4092 /**
4093 * Returns the result of accumulating all values using the
4094 * given reducer to combine values, or null if none.
4095 *
4096 * @param parallelismThreshold the (estimated) number of elements
4097 * needed for this operation to be executed in parallel
4098 * @param reducer a commutative associative combining function
4099 * @return the result of accumulating all values
4100 * @since 1.8
4101 */
4102 public V reduceValues(long parallelismThreshold,
4103 BiFunction<? super V, ? super V, ? extends V> reducer) {
4104 if (reducer == null) throw new NullPointerException();
4105 return new ReduceValuesTask<K,V>
4106 (null, batchFor(parallelismThreshold), 0, 0, table,
4107 null, reducer).invoke();
4108 }
4109
4110 /**
4111 * Returns the result of accumulating the given transformation
4112 * of all values using the given reducer to combine values, or
4113 * null if none.
4114 *
4115 * @param parallelismThreshold the (estimated) number of elements
4116 * needed for this operation to be executed in parallel
4117 * @param transformer a function returning the transformation
4118 * for an element, or null if there is no transformation (in
4119 * which case it is not combined)
4120 * @param reducer a commutative associative combining function
4121 * @param <U> the return type of the transformer
4122 * @return the result of accumulating the given transformation
4123 * of all values
4124 * @since 1.8
4125 */
4126 public <U> U reduceValues(long parallelismThreshold,
4127 Function<? super V, ? extends U> transformer,
4128 BiFunction<? super U, ? super U, ? extends U> reducer) {
4129 if (transformer == null || reducer == null)
4130 throw new NullPointerException();
4131 return new MapReduceValuesTask<K,V,U>
4132 (null, batchFor(parallelismThreshold), 0, 0, table,
4133 null, transformer, reducer).invoke();
4134 }
4135
4136 /**
4137 * Returns the result of accumulating the given transformation
4138 * of all values using the given reducer to combine values,
4139 * and the given basis as an identity value.
4140 *
4141 * @param parallelismThreshold the (estimated) number of elements
4142 * needed for this operation to be executed in parallel
4143 * @param transformer a function returning the transformation
4144 * for an element
4145 * @param basis the identity (initial default value) for the reduction
4146 * @param reducer a commutative associative combining function
4147 * @return the result of accumulating the given transformation
4148 * of all values
4149 * @since 1.8
4150 */
4151 public double reduceValuesToDouble(long parallelismThreshold,
4152 ToDoubleFunction<? super V> transformer,
4153 double basis,
4154 DoubleBinaryOperator reducer) {
4155 if (transformer == null || reducer == null)
4156 throw new NullPointerException();
4157 return new MapReduceValuesToDoubleTask<K,V>
4158 (null, batchFor(parallelismThreshold), 0, 0, table,
4159 null, transformer, basis, reducer).invoke();
4160 }
4161
4162 /**
4163 * Returns the result of accumulating the given transformation
4164 * of all values using the given reducer to combine values,
4165 * and the given basis as an identity value.
4166 *
4167 * @param parallelismThreshold the (estimated) number of elements
4168 * needed for this operation to be executed in parallel
4169 * @param transformer a function returning the transformation
4170 * for an element
4171 * @param basis the identity (initial default value) for the reduction
4172 * @param reducer a commutative associative combining function
4173 * @return the result of accumulating the given transformation
4174 * of all values
4175 * @since 1.8
4176 */
4177 public long reduceValuesToLong(long parallelismThreshold,
4178 ToLongFunction<? super V> transformer,
4179 long basis,
4180 LongBinaryOperator reducer) {
4181 if (transformer == null || reducer == null)
4182 throw new NullPointerException();
4183 return new MapReduceValuesToLongTask<K,V>
4184 (null, batchFor(parallelismThreshold), 0, 0, table,
4185 null, transformer, basis, reducer).invoke();
4186 }
4187
4188 /**
4189 * Returns the result of accumulating the given transformation
4190 * of all values using the given reducer to combine values,
4191 * and the given basis as an identity value.
4192 *
4193 * @param parallelismThreshold the (estimated) number of elements
4194 * needed for this operation to be executed in parallel
4195 * @param transformer a function returning the transformation
4196 * for an element
4197 * @param basis the identity (initial default value) for the reduction
4198 * @param reducer a commutative associative combining function
4199 * @return the result of accumulating the given transformation
4200 * of all values
4201 * @since 1.8
4202 */
4203 public int reduceValuesToInt(long parallelismThreshold,
4204 ToIntFunction<? super V> transformer,
4205 int basis,
4206 IntBinaryOperator reducer) {
4207 if (transformer == null || reducer == null)
4208 throw new NullPointerException();
4209 return new MapReduceValuesToIntTask<K,V>
4210 (null, batchFor(parallelismThreshold), 0, 0, table,
4211 null, transformer, basis, reducer).invoke();
4212 }
4213
4214 /**
4215 * Performs the given action for each entry.
4216 *
4217 * @param parallelismThreshold the (estimated) number of elements
4218 * needed for this operation to be executed in parallel
4219 * @param action the action
4220 * @since 1.8
4221 */
4222 public void forEachEntry(long parallelismThreshold,
4223 Consumer<? super Map.Entry<K,V>> action) {
4224 if (action == null) throw new NullPointerException();
4225 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4226 action).invoke();
4227 }
4228
4229 /**
4230 * Performs the given action for each non-null transformation
4231 * of each entry.
4232 *
4233 * @param parallelismThreshold the (estimated) number of elements
4234 * needed for this operation to be executed in parallel
4235 * @param transformer a function returning the transformation
4236 * for an element, or null if there is no transformation (in
4237 * which case the action is not applied)
4238 * @param action the action
4239 * @param <U> the return type of the transformer
4240 * @since 1.8
4241 */
4242 public <U> void forEachEntry(long parallelismThreshold,
4243 Function<Map.Entry<K,V>, ? extends U> transformer,
4244 Consumer<? super U> action) {
4245 if (transformer == null || action == null)
4246 throw new NullPointerException();
4247 new ForEachTransformedEntryTask<K,V,U>
4248 (null, batchFor(parallelismThreshold), 0, 0, table,
4249 transformer, action).invoke();
4250 }
4251
4252 /**
4253 * Returns a non-null result from applying the given search
4254 * function on each entry, or null if none. Upon success,
4255 * further element processing is suppressed and the results of
4256 * any other parallel invocations of the search function are
4257 * ignored.
4258 *
4259 * @param parallelismThreshold the (estimated) number of elements
4260 * needed for this operation to be executed in parallel
4261 * @param searchFunction a function returning a non-null
4262 * result on success, else null
4263 * @param <U> the return type of the search function
4264 * @return a non-null result from applying the given search
4265 * function on each entry, or null if none
4266 * @since 1.8
4267 */
4268 public <U> U searchEntries(long parallelismThreshold,
4269 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4270 if (searchFunction == null) throw new NullPointerException();
4271 return new SearchEntriesTask<K,V,U>
4272 (null, batchFor(parallelismThreshold), 0, 0, table,
4273 searchFunction, new AtomicReference<U>()).invoke();
4274 }
4275
4276 /**
4277 * Returns the result of accumulating all entries using the
4278 * given reducer to combine values, or null if none.
4279 *
4280 * @param parallelismThreshold the (estimated) number of elements
4281 * needed for this operation to be executed in parallel
4282 * @param reducer a commutative associative combining function
4283 * @return the result of accumulating all entries
4284 * @since 1.8
4285 */
4286 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4287 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4288 if (reducer == null) throw new NullPointerException();
4289 return new ReduceEntriesTask<K,V>
4290 (null, batchFor(parallelismThreshold), 0, 0, table,
4291 null, reducer).invoke();
4292 }
4293
4294 /**
4295 * Returns the result of accumulating the given transformation
4296 * of all entries using the given reducer to combine values,
4297 * or null if none.
4298 *
4299 * @param parallelismThreshold the (estimated) number of elements
4300 * needed for this operation to be executed in parallel
4301 * @param transformer a function returning the transformation
4302 * for an element, or null if there is no transformation (in
4303 * which case it is not combined)
4304 * @param reducer a commutative associative combining function
4305 * @param <U> the return type of the transformer
4306 * @return the result of accumulating the given transformation
4307 * of all entries
4308 * @since 1.8
4309 */
4310 public <U> U reduceEntries(long parallelismThreshold,
4311 Function<Map.Entry<K,V>, ? extends U> transformer,
4312 BiFunction<? super U, ? super U, ? extends U> reducer) {
4313 if (transformer == null || reducer == null)
4314 throw new NullPointerException();
4315 return new MapReduceEntriesTask<K,V,U>
4316 (null, batchFor(parallelismThreshold), 0, 0, table,
4317 null, transformer, reducer).invoke();
4318 }
4319
4320 /**
4321 * Returns the result of accumulating the given transformation
4322 * of all entries using the given reducer to combine values,
4323 * and the given basis as an identity value.
4324 *
4325 * @param parallelismThreshold the (estimated) number of elements
4326 * needed for this operation to be executed in parallel
4327 * @param transformer a function returning the transformation
4328 * for an element
4329 * @param basis the identity (initial default value) for the reduction
4330 * @param reducer a commutative associative combining function
4331 * @return the result of accumulating the given transformation
4332 * of all entries
4333 * @since 1.8
4334 */
4335 public double reduceEntriesToDouble(long parallelismThreshold,
4336 ToDoubleFunction<Map.Entry<K,V>> transformer,
4337 double basis,
4338 DoubleBinaryOperator reducer) {
4339 if (transformer == null || reducer == null)
4340 throw new NullPointerException();
4341 return new MapReduceEntriesToDoubleTask<K,V>
4342 (null, batchFor(parallelismThreshold), 0, 0, table,
4343 null, transformer, basis, reducer).invoke();
4344 }
4345
4346 /**
4347 * Returns the result of accumulating the given transformation
4348 * of all entries using the given reducer to combine values,
4349 * and the given basis as an identity value.
4350 *
4351 * @param parallelismThreshold the (estimated) number of elements
4352 * needed for this operation to be executed in parallel
4353 * @param transformer a function returning the transformation
4354 * for an element
4355 * @param basis the identity (initial default value) for the reduction
4356 * @param reducer a commutative associative combining function
4357 * @return the result of accumulating the given transformation
4358 * of all entries
4359 * @since 1.8
4360 */
4361 public long reduceEntriesToLong(long parallelismThreshold,
4362 ToLongFunction<Map.Entry<K,V>> transformer,
4363 long basis,
4364 LongBinaryOperator reducer) {
4365 if (transformer == null || reducer == null)
4366 throw new NullPointerException();
4367 return new MapReduceEntriesToLongTask<K,V>
4368 (null, batchFor(parallelismThreshold), 0, 0, table,
4369 null, transformer, basis, reducer).invoke();
4370 }
4371
4372 /**
4373 * Returns the result of accumulating the given transformation
4374 * of all entries using the given reducer to combine values,
4375 * and the given basis as an identity value.
4376 *
4377 * @param parallelismThreshold the (estimated) number of elements
4378 * needed for this operation to be executed in parallel
4379 * @param transformer a function returning the transformation
4380 * for an element
4381 * @param basis the identity (initial default value) for the reduction
4382 * @param reducer a commutative associative combining function
4383 * @return the result of accumulating the given transformation
4384 * of all entries
4385 * @since 1.8
4386 */
4387 public int reduceEntriesToInt(long parallelismThreshold,
4388 ToIntFunction<Map.Entry<K,V>> transformer,
4389 int basis,
4390 IntBinaryOperator reducer) {
4391 if (transformer == null || reducer == null)
4392 throw new NullPointerException();
4393 return new MapReduceEntriesToIntTask<K,V>
4394 (null, batchFor(parallelismThreshold), 0, 0, table,
4395 null, transformer, basis, reducer).invoke();
4396 }
4397
4398
4399 /* ----------------Views -------------- */
4400
4401 /**
4402 * Base class for views.
4403 */
4404 abstract static class CollectionView<K,V,E>
4405 implements Collection<E>, java.io.Serializable {
4406 private static final long serialVersionUID = 7249069246763182397L;
4407 final ConcurrentHashMap<K,V> map;
4408 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4409
4410 /**
4411 * Returns the map backing this view.
4412 *
4413 * @return the map backing this view
4414 */
4415 public ConcurrentHashMap<K,V> getMap() { return map; }
4416
4417 /**
4418 * Removes all of the elements from this view, by removing all
4419 * the mappings from the map backing this view.
4420 */
4421 public final void clear() { map.clear(); }
4422 public final int size() { return map.size(); }
4423 public final boolean isEmpty() { return map.isEmpty(); }
4424
4425 // implementations below rely on concrete classes supplying these
4426 // abstract methods
4427 /**
4428 * Returns an iterator over the elements in this collection.
4429 *
4430 * <p>The returned iterator is
4431 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4432 *
4433 * @return an iterator over the elements in this collection
4434 */
4435 public abstract Iterator<E> iterator();
4436 public abstract boolean contains(Object o);
4437 public abstract boolean remove(Object o);
4438
4439 private static final String OOME_MSG = "Required array size too large";
4440
4441 public final Object[] toArray() {
4442 long sz = map.mappingCount();
4443 if (sz > MAX_ARRAY_SIZE)
4444 throw new OutOfMemoryError(OOME_MSG);
4445 int n = (int)sz;
4446 Object[] r = new Object[n];
4447 int i = 0;
4448 for (E e : this) {
4449 if (i == n) {
4450 if (n >= MAX_ARRAY_SIZE)
4451 throw new OutOfMemoryError(OOME_MSG);
4452 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4453 n = MAX_ARRAY_SIZE;
4454 else
4455 n += (n >>> 1) + 1;
4456 r = Arrays.copyOf(r, n);
4457 }
4458 r[i++] = e;
4459 }
4460 return (i == n) ? r : Arrays.copyOf(r, i);
4461 }
4462
4463 @SuppressWarnings("unchecked")
4464 public final <T> T[] toArray(T[] a) {
4465 long sz = map.mappingCount();
4466 if (sz > MAX_ARRAY_SIZE)
4467 throw new OutOfMemoryError(OOME_MSG);
4468 int m = (int)sz;
4469 T[] r = (a.length >= m) ? a :
4470 (T[])java.lang.reflect.Array
4471 .newInstance(a.getClass().getComponentType(), m);
4472 int n = r.length;
4473 int i = 0;
4474 for (E e : this) {
4475 if (i == n) {
4476 if (n >= MAX_ARRAY_SIZE)
4477 throw new OutOfMemoryError(OOME_MSG);
4478 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4479 n = MAX_ARRAY_SIZE;
4480 else
4481 n += (n >>> 1) + 1;
4482 r = Arrays.copyOf(r, n);
4483 }
4484 r[i++] = (T)e;
4485 }
4486 if (a == r && i < n) {
4487 r[i] = null; // null-terminate
4488 return r;
4489 }
4490 return (i == n) ? r : Arrays.copyOf(r, i);
4491 }
4492
4493 /**
4494 * Returns a string representation of this collection.
4495 * The string representation consists of the string representations
4496 * of the collection's elements in the order they are returned by
4497 * its iterator, enclosed in square brackets ({@code "[]"}).
4498 * Adjacent elements are separated by the characters {@code ", "}
4499 * (comma and space). Elements are converted to strings as by
4500 * {@link String#valueOf(Object)}.
4501 *
4502 * @return a string representation of this collection
4503 */
4504 public final String toString() {
4505 StringBuilder sb = new StringBuilder();
4506 sb.append('[');
4507 Iterator<E> it = iterator();
4508 if (it.hasNext()) {
4509 for (;;) {
4510 Object e = it.next();
4511 sb.append(e == this ? "(this Collection)" : e);
4512 if (!it.hasNext())
4513 break;
4514 sb.append(',').append(' ');
4515 }
4516 }
4517 return sb.append(']').toString();
4518 }
4519
4520 public final boolean containsAll(Collection<?> c) {
4521 if (c != this) {
4522 for (Object e : c) {
4523 if (e == null || !contains(e))
4524 return false;
4525 }
4526 }
4527 return true;
4528 }
4529
4530 public final boolean removeAll(Collection<?> c) {
4531 if (c == null) throw new NullPointerException();
4532 boolean modified = false;
4533 for (Iterator<E> it = iterator(); it.hasNext();) {
4534 if (c.contains(it.next())) {
4535 it.remove();
4536 modified = true;
4537 }
4538 }
4539 return modified;
4540 }
4541
4542 public final boolean retainAll(Collection<?> c) {
4543 if (c == null) throw new NullPointerException();
4544 boolean modified = false;
4545 for (Iterator<E> it = iterator(); it.hasNext();) {
4546 if (!c.contains(it.next())) {
4547 it.remove();
4548 modified = true;
4549 }
4550 }
4551 return modified;
4552 }
4553
4554 }
4555
4556 /**
4557 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4558 * which additions may optionally be enabled by mapping to a
4559 * common value. This class cannot be directly instantiated.
4560 * See {@link #keySet() keySet()},
4561 * {@link #keySet(Object) keySet(V)},
4562 * {@link #newKeySet() newKeySet()},
4563 * {@link #newKeySet(int) newKeySet(int)}.
4564 *
4565 * @since 1.8
4566 */
4567 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4568 implements Set<K>, java.io.Serializable {
4569 private static final long serialVersionUID = 7249069246763182397L;
4570 private final V value;
4571 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4572 super(map);
4573 this.value = value;
4574 }
4575
4576 /**
4577 * Returns the default mapped value for additions,
4578 * or {@code null} if additions are not supported.
4579 *
4580 * @return the default mapped value for additions, or {@code null}
4581 * if not supported
4582 */
4583 public V getMappedValue() { return value; }
4584
4585 /**
4586 * {@inheritDoc}
4587 * @throws NullPointerException if the specified key is null
4588 */
4589 public boolean contains(Object o) { return map.containsKey(o); }
4590
4591 /**
4592 * Removes the key from this map view, by removing the key (and its
4593 * corresponding value) from the backing map. This method does
4594 * nothing if the key is not in the map.
4595 *
4596 * @param o the key to be removed from the backing map
4597 * @return {@code true} if the backing map contained the specified key
4598 * @throws NullPointerException if the specified key is null
4599 */
4600 public boolean remove(Object o) { return map.remove(o) != null; }
4601
4602 /**
4603 * @return an iterator over the keys of the backing map
4604 */
4605 public Iterator<K> iterator() {
4606 Node<K,V>[] t;
4607 ConcurrentHashMap<K,V> m = map;
4608 int f = (t = m.table) == null ? 0 : t.length;
4609 return new KeyIterator<K,V>(t, f, 0, f, m);
4610 }
4611
4612 /**
4613 * Adds the specified key to this set view by mapping the key to
4614 * the default mapped value in the backing map, if defined.
4615 *
4616 * @param e key to be added
4617 * @return {@code true} if this set changed as a result of the call
4618 * @throws NullPointerException if the specified key is null
4619 * @throws UnsupportedOperationException if no default mapped value
4620 * for additions was provided
4621 */
4622 public boolean add(K e) {
4623 V v;
4624 if ((v = value) == null)
4625 throw new UnsupportedOperationException();
4626 return map.putVal(e, v, true) == null;
4627 }
4628
4629 /**
4630 * Adds all of the elements in the specified collection to this set,
4631 * as if by calling {@link #add} on each one.
4632 *
4633 * @param c the elements to be inserted into this set
4634 * @return {@code true} if this set changed as a result of the call
4635 * @throws NullPointerException if the collection or any of its
4636 * elements are {@code null}
4637 * @throws UnsupportedOperationException if no default mapped value
4638 * for additions was provided
4639 */
4640 public boolean addAll(Collection<? extends K> c) {
4641 boolean added = false;
4642 V v;
4643 if ((v = value) == null)
4644 throw new UnsupportedOperationException();
4645 for (K e : c) {
4646 if (map.putVal(e, v, true) == null)
4647 added = true;
4648 }
4649 return added;
4650 }
4651
4652 public int hashCode() {
4653 int h = 0;
4654 for (K e : this)
4655 h += e.hashCode();
4656 return h;
4657 }
4658
4659 public boolean equals(Object o) {
4660 Set<?> c;
4661 return ((o instanceof Set) &&
4662 ((c = (Set<?>)o) == this ||
4663 (containsAll(c) && c.containsAll(this))));
4664 }
4665
4666 public Spliterator<K> spliterator() {
4667 Node<K,V>[] t;
4668 ConcurrentHashMap<K,V> m = map;
4669 long n = m.sumCount();
4670 int f = (t = m.table) == null ? 0 : t.length;
4671 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4672 }
4673
4674 public void forEach(Consumer<? super K> action) {
4675 if (action == null) throw new NullPointerException();
4676 Node<K,V>[] t;
4677 if ((t = map.table) != null) {
4678 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4679 for (Node<K,V> p; (p = it.advance()) != null; )
4680 action.accept(p.key);
4681 }
4682 }
4683 }
4684
4685 /**
4686 * A view of a ConcurrentHashMap as a {@link Collection} of
4687 * values, in which additions are disabled. This class cannot be
4688 * directly instantiated. See {@link #values()}.
4689 */
4690 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4691 implements Collection<V>, java.io.Serializable {
4692 private static final long serialVersionUID = 2249069246763182397L;
4693 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4694 public final boolean contains(Object o) {
4695 return map.containsValue(o);
4696 }
4697
4698 public final boolean remove(Object o) {
4699 if (o != null) {
4700 for (Iterator<V> it = iterator(); it.hasNext();) {
4701 if (o.equals(it.next())) {
4702 it.remove();
4703 return true;
4704 }
4705 }
4706 }
4707 return false;
4708 }
4709
4710 public final Iterator<V> iterator() {
4711 ConcurrentHashMap<K,V> m = map;
4712 Node<K,V>[] t;
4713 int f = (t = m.table) == null ? 0 : t.length;
4714 return new ValueIterator<K,V>(t, f, 0, f, m);
4715 }
4716
4717 public final boolean add(V e) {
4718 throw new UnsupportedOperationException();
4719 }
4720 public final boolean addAll(Collection<? extends V> c) {
4721 throw new UnsupportedOperationException();
4722 }
4723
4724 public boolean removeIf(Predicate<? super V> filter) {
4725 return map.removeValueIf(filter);
4726 }
4727
4728 public Spliterator<V> spliterator() {
4729 Node<K,V>[] t;
4730 ConcurrentHashMap<K,V> m = map;
4731 long n = m.sumCount();
4732 int f = (t = m.table) == null ? 0 : t.length;
4733 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4734 }
4735
4736 public void forEach(Consumer<? super V> action) {
4737 if (action == null) throw new NullPointerException();
4738 Node<K,V>[] t;
4739 if ((t = map.table) != null) {
4740 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4741 for (Node<K,V> p; (p = it.advance()) != null; )
4742 action.accept(p.val);
4743 }
4744 }
4745 }
4746
4747 /**
4748 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4749 * entries. This class cannot be directly instantiated. See
4750 * {@link #entrySet()}.
4751 */
4752 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4753 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4754 private static final long serialVersionUID = 2249069246763182397L;
4755 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4756
4757 public boolean contains(Object o) {
4758 Object k, v, r; Map.Entry<?,?> e;
4759 return ((o instanceof Map.Entry) &&
4760 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4761 (r = map.get(k)) != null &&
4762 (v = e.getValue()) != null &&
4763 (v == r || v.equals(r)));
4764 }
4765
4766 public boolean remove(Object o) {
4767 Object k, v; Map.Entry<?,?> e;
4768 return ((o instanceof Map.Entry) &&
4769 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4770 (v = e.getValue()) != null &&
4771 map.remove(k, v));
4772 }
4773
4774 /**
4775 * @return an iterator over the entries of the backing map
4776 */
4777 public Iterator<Map.Entry<K,V>> iterator() {
4778 ConcurrentHashMap<K,V> m = map;
4779 Node<K,V>[] t;
4780 int f = (t = m.table) == null ? 0 : t.length;
4781 return new EntryIterator<K,V>(t, f, 0, f, m);
4782 }
4783
4784 public boolean add(Entry<K,V> e) {
4785 return map.putVal(e.getKey(), e.getValue(), false) == null;
4786 }
4787
4788 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4789 boolean added = false;
4790 for (Entry<K,V> e : c) {
4791 if (add(e))
4792 added = true;
4793 }
4794 return added;
4795 }
4796
4797 public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4798 return map.removeEntryIf(filter);
4799 }
4800
4801 public final int hashCode() {
4802 int h = 0;
4803 Node<K,V>[] t;
4804 if ((t = map.table) != null) {
4805 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4806 for (Node<K,V> p; (p = it.advance()) != null; ) {
4807 h += p.hashCode();
4808 }
4809 }
4810 return h;
4811 }
4812
4813 public final boolean equals(Object o) {
4814 Set<?> c;
4815 return ((o instanceof Set) &&
4816 ((c = (Set<?>)o) == this ||
4817 (containsAll(c) && c.containsAll(this))));
4818 }
4819
4820 public Spliterator<Map.Entry<K,V>> spliterator() {
4821 Node<K,V>[] t;
4822 ConcurrentHashMap<K,V> m = map;
4823 long n = m.sumCount();
4824 int f = (t = m.table) == null ? 0 : t.length;
4825 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4826 }
4827
4828 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4829 if (action == null) throw new NullPointerException();
4830 Node<K,V>[] t;
4831 if ((t = map.table) != null) {
4832 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4833 for (Node<K,V> p; (p = it.advance()) != null; )
4834 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4835 }
4836 }
4837
4838 }
4839
4840 // -------------------------------------------------------
4841
4842 /**
4843 * Base class for bulk tasks. Repeats some fields and code from
4844 * class Traverser, because we need to subclass CountedCompleter.
4845 */
4846 @SuppressWarnings("serial")
4847 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4848 Node<K,V>[] tab; // same as Traverser
4849 Node<K,V> next;
4850 TableStack<K,V> stack, spare;
4851 int index;
4852 int baseIndex;
4853 int baseLimit;
4854 final int baseSize;
4855 int batch; // split control
4856
4857 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4858 super(par);
4859 this.batch = b;
4860 this.index = this.baseIndex = i;
4861 if ((this.tab = t) == null)
4862 this.baseSize = this.baseLimit = 0;
4863 else if (par == null)
4864 this.baseSize = this.baseLimit = t.length;
4865 else {
4866 this.baseLimit = f;
4867 this.baseSize = par.baseSize;
4868 }
4869 }
4870
4871 /**
4872 * Same as Traverser version.
4873 */
4874 final Node<K,V> advance() {
4875 Node<K,V> e;
4876 if ((e = next) != null)
4877 e = e.next;
4878 for (;;) {
4879 Node<K,V>[] t; int i, n;
4880 if (e != null)
4881 return next = e;
4882 if (baseIndex >= baseLimit || (t = tab) == null ||
4883 (n = t.length) <= (i = index) || i < 0)
4884 return next = null;
4885 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4886 if (e instanceof ForwardingNode) {
4887 tab = ((ForwardingNode<K,V>)e).nextTable;
4888 e = null;
4889 pushState(t, i, n);
4890 continue;
4891 }
4892 else if (e instanceof TreeBin)
4893 e = ((TreeBin<K,V>)e).first;
4894 else
4895 e = null;
4896 }
4897 if (stack != null)
4898 recoverState(n);
4899 else if ((index = i + baseSize) >= n)
4900 index = ++baseIndex;
4901 }
4902 }
4903
4904 private void pushState(Node<K,V>[] t, int i, int n) {
4905 TableStack<K,V> s = spare;
4906 if (s != null)
4907 spare = s.next;
4908 else
4909 s = new TableStack<K,V>();
4910 s.tab = t;
4911 s.length = n;
4912 s.index = i;
4913 s.next = stack;
4914 stack = s;
4915 }
4916
4917 private void recoverState(int n) {
4918 TableStack<K,V> s; int len;
4919 while ((s = stack) != null && (index += (len = s.length)) >= n) {
4920 n = len;
4921 index = s.index;
4922 tab = s.tab;
4923 s.tab = null;
4924 TableStack<K,V> next = s.next;
4925 s.next = spare; // save for reuse
4926 stack = next;
4927 spare = s;
4928 }
4929 if (s == null && (index += baseSize) >= n)
4930 index = ++baseIndex;
4931 }
4932 }
4933
4934 /*
4935 * Task classes. Coded in a regular but ugly format/style to
4936 * simplify checks that each variant differs in the right way from
4937 * others. The null screenings exist because compilers cannot tell
4938 * that we've already null-checked task arguments, so we force
4939 * simplest hoisted bypass to help avoid convoluted traps.
4940 */
4941 @SuppressWarnings("serial")
4942 static final class ForEachKeyTask<K,V>
4943 extends BulkTask<K,V,Void> {
4944 final Consumer<? super K> action;
4945 ForEachKeyTask
4946 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4947 Consumer<? super K> action) {
4948 super(p, b, i, f, t);
4949 this.action = action;
4950 }
4951 public final void compute() {
4952 final Consumer<? super K> action;
4953 if ((action = this.action) != null) {
4954 for (int i = baseIndex, f, h; batch > 0 &&
4955 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4956 addToPendingCount(1);
4957 new ForEachKeyTask<K,V>
4958 (this, batch >>>= 1, baseLimit = h, f, tab,
4959 action).fork();
4960 }
4961 for (Node<K,V> p; (p = advance()) != null;)
4962 action.accept(p.key);
4963 propagateCompletion();
4964 }
4965 }
4966 }
4967
4968 @SuppressWarnings("serial")
4969 static final class ForEachValueTask<K,V>
4970 extends BulkTask<K,V,Void> {
4971 final Consumer<? super V> action;
4972 ForEachValueTask
4973 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4974 Consumer<? super V> action) {
4975 super(p, b, i, f, t);
4976 this.action = action;
4977 }
4978 public final void compute() {
4979 final Consumer<? super V> action;
4980 if ((action = this.action) != null) {
4981 for (int i = baseIndex, f, h; batch > 0 &&
4982 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4983 addToPendingCount(1);
4984 new ForEachValueTask<K,V>
4985 (this, batch >>>= 1, baseLimit = h, f, tab,
4986 action).fork();
4987 }
4988 for (Node<K,V> p; (p = advance()) != null;)
4989 action.accept(p.val);
4990 propagateCompletion();
4991 }
4992 }
4993 }
4994
4995 @SuppressWarnings("serial")
4996 static final class ForEachEntryTask<K,V>
4997 extends BulkTask<K,V,Void> {
4998 final Consumer<? super Entry<K,V>> action;
4999 ForEachEntryTask
5000 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5001 Consumer<? super Entry<K,V>> action) {
5002 super(p, b, i, f, t);
5003 this.action = action;
5004 }
5005 public final void compute() {
5006 final Consumer<? super Entry<K,V>> action;
5007 if ((action = this.action) != null) {
5008 for (int i = baseIndex, f, h; batch > 0 &&
5009 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5010 addToPendingCount(1);
5011 new ForEachEntryTask<K,V>
5012 (this, batch >>>= 1, baseLimit = h, f, tab,
5013 action).fork();
5014 }
5015 for (Node<K,V> p; (p = advance()) != null; )
5016 action.accept(p);
5017 propagateCompletion();
5018 }
5019 }
5020 }
5021
5022 @SuppressWarnings("serial")
5023 static final class ForEachMappingTask<K,V>
5024 extends BulkTask<K,V,Void> {
5025 final BiConsumer<? super K, ? super V> action;
5026 ForEachMappingTask
5027 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5028 BiConsumer<? super K,? super V> action) {
5029 super(p, b, i, f, t);
5030 this.action = action;
5031 }
5032 public final void compute() {
5033 final BiConsumer<? super K, ? super V> action;
5034 if ((action = this.action) != null) {
5035 for (int i = baseIndex, f, h; batch > 0 &&
5036 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5037 addToPendingCount(1);
5038 new ForEachMappingTask<K,V>
5039 (this, batch >>>= 1, baseLimit = h, f, tab,
5040 action).fork();
5041 }
5042 for (Node<K,V> p; (p = advance()) != null; )
5043 action.accept(p.key, p.val);
5044 propagateCompletion();
5045 }
5046 }
5047 }
5048
5049 @SuppressWarnings("serial")
5050 static final class ForEachTransformedKeyTask<K,V,U>
5051 extends BulkTask<K,V,Void> {
5052 final Function<? super K, ? extends U> transformer;
5053 final Consumer<? super U> action;
5054 ForEachTransformedKeyTask
5055 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5056 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5057 super(p, b, i, f, t);
5058 this.transformer = transformer; this.action = action;
5059 }
5060 public final void compute() {
5061 final Function<? super K, ? extends U> transformer;
5062 final Consumer<? super U> action;
5063 if ((transformer = this.transformer) != null &&
5064 (action = this.action) != null) {
5065 for (int i = baseIndex, f, h; batch > 0 &&
5066 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5067 addToPendingCount(1);
5068 new ForEachTransformedKeyTask<K,V,U>
5069 (this, batch >>>= 1, baseLimit = h, f, tab,
5070 transformer, action).fork();
5071 }
5072 for (Node<K,V> p; (p = advance()) != null; ) {
5073 U u;
5074 if ((u = transformer.apply(p.key)) != null)
5075 action.accept(u);
5076 }
5077 propagateCompletion();
5078 }
5079 }
5080 }
5081
5082 @SuppressWarnings("serial")
5083 static final class ForEachTransformedValueTask<K,V,U>
5084 extends BulkTask<K,V,Void> {
5085 final Function<? super V, ? extends U> transformer;
5086 final Consumer<? super U> action;
5087 ForEachTransformedValueTask
5088 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5089 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5090 super(p, b, i, f, t);
5091 this.transformer = transformer; this.action = action;
5092 }
5093 public final void compute() {
5094 final Function<? super V, ? extends U> transformer;
5095 final Consumer<? super U> action;
5096 if ((transformer = this.transformer) != null &&
5097 (action = this.action) != null) {
5098 for (int i = baseIndex, f, h; batch > 0 &&
5099 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5100 addToPendingCount(1);
5101 new ForEachTransformedValueTask<K,V,U>
5102 (this, batch >>>= 1, baseLimit = h, f, tab,
5103 transformer, action).fork();
5104 }
5105 for (Node<K,V> p; (p = advance()) != null; ) {
5106 U u;
5107 if ((u = transformer.apply(p.val)) != null)
5108 action.accept(u);
5109 }
5110 propagateCompletion();
5111 }
5112 }
5113 }
5114
5115 @SuppressWarnings("serial")
5116 static final class ForEachTransformedEntryTask<K,V,U>
5117 extends BulkTask<K,V,Void> {
5118 final Function<Map.Entry<K,V>, ? extends U> transformer;
5119 final Consumer<? super U> action;
5120 ForEachTransformedEntryTask
5121 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5122 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5123 super(p, b, i, f, t);
5124 this.transformer = transformer; this.action = action;
5125 }
5126 public final void compute() {
5127 final Function<Map.Entry<K,V>, ? extends U> transformer;
5128 final Consumer<? super U> action;
5129 if ((transformer = this.transformer) != null &&
5130 (action = this.action) != null) {
5131 for (int i = baseIndex, f, h; batch > 0 &&
5132 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5133 addToPendingCount(1);
5134 new ForEachTransformedEntryTask<K,V,U>
5135 (this, batch >>>= 1, baseLimit = h, f, tab,
5136 transformer, action).fork();
5137 }
5138 for (Node<K,V> p; (p = advance()) != null; ) {
5139 U u;
5140 if ((u = transformer.apply(p)) != null)
5141 action.accept(u);
5142 }
5143 propagateCompletion();
5144 }
5145 }
5146 }
5147
5148 @SuppressWarnings("serial")
5149 static final class ForEachTransformedMappingTask<K,V,U>
5150 extends BulkTask<K,V,Void> {
5151 final BiFunction<? super K, ? super V, ? extends U> transformer;
5152 final Consumer<? super U> action;
5153 ForEachTransformedMappingTask
5154 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5155 BiFunction<? super K, ? super V, ? extends U> transformer,
5156 Consumer<? super U> action) {
5157 super(p, b, i, f, t);
5158 this.transformer = transformer; this.action = action;
5159 }
5160 public final void compute() {
5161 final BiFunction<? super K, ? super V, ? extends U> transformer;
5162 final Consumer<? super U> action;
5163 if ((transformer = this.transformer) != null &&
5164 (action = this.action) != null) {
5165 for (int i = baseIndex, f, h; batch > 0 &&
5166 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5167 addToPendingCount(1);
5168 new ForEachTransformedMappingTask<K,V,U>
5169 (this, batch >>>= 1, baseLimit = h, f, tab,
5170 transformer, action).fork();
5171 }
5172 for (Node<K,V> p; (p = advance()) != null; ) {
5173 U u;
5174 if ((u = transformer.apply(p.key, p.val)) != null)
5175 action.accept(u);
5176 }
5177 propagateCompletion();
5178 }
5179 }
5180 }
5181
5182 @SuppressWarnings("serial")
5183 static final class SearchKeysTask<K,V,U>
5184 extends BulkTask<K,V,U> {
5185 final Function<? super K, ? extends U> searchFunction;
5186 final AtomicReference<U> result;
5187 SearchKeysTask
5188 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5189 Function<? super K, ? extends U> searchFunction,
5190 AtomicReference<U> result) {
5191 super(p, b, i, f, t);
5192 this.searchFunction = searchFunction; this.result = result;
5193 }
5194 public final U getRawResult() { return result.get(); }
5195 public final void compute() {
5196 final Function<? super K, ? extends U> searchFunction;
5197 final AtomicReference<U> result;
5198 if ((searchFunction = this.searchFunction) != null &&
5199 (result = this.result) != null) {
5200 for (int i = baseIndex, f, h; batch > 0 &&
5201 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5202 if (result.get() != null)
5203 return;
5204 addToPendingCount(1);
5205 new SearchKeysTask<K,V,U>
5206 (this, batch >>>= 1, baseLimit = h, f, tab,
5207 searchFunction, result).fork();
5208 }
5209 while (result.get() == null) {
5210 U u;
5211 Node<K,V> p;
5212 if ((p = advance()) == null) {
5213 propagateCompletion();
5214 break;
5215 }
5216 if ((u = searchFunction.apply(p.key)) != null) {
5217 if (result.compareAndSet(null, u))
5218 quietlyCompleteRoot();
5219 break;
5220 }
5221 }
5222 }
5223 }
5224 }
5225
5226 @SuppressWarnings("serial")
5227 static final class SearchValuesTask<K,V,U>
5228 extends BulkTask<K,V,U> {
5229 final Function<? super V, ? extends U> searchFunction;
5230 final AtomicReference<U> result;
5231 SearchValuesTask
5232 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5233 Function<? super V, ? extends U> searchFunction,
5234 AtomicReference<U> result) {
5235 super(p, b, i, f, t);
5236 this.searchFunction = searchFunction; this.result = result;
5237 }
5238 public final U getRawResult() { return result.get(); }
5239 public final void compute() {
5240 final Function<? super V, ? extends U> searchFunction;
5241 final AtomicReference<U> result;
5242 if ((searchFunction = this.searchFunction) != null &&
5243 (result = this.result) != null) {
5244 for (int i = baseIndex, f, h; batch > 0 &&
5245 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5246 if (result.get() != null)
5247 return;
5248 addToPendingCount(1);
5249 new SearchValuesTask<K,V,U>
5250 (this, batch >>>= 1, baseLimit = h, f, tab,
5251 searchFunction, result).fork();
5252 }
5253 while (result.get() == null) {
5254 U u;
5255 Node<K,V> p;
5256 if ((p = advance()) == null) {
5257 propagateCompletion();
5258 break;
5259 }
5260 if ((u = searchFunction.apply(p.val)) != null) {
5261 if (result.compareAndSet(null, u))
5262 quietlyCompleteRoot();
5263 break;
5264 }
5265 }
5266 }
5267 }
5268 }
5269
5270 @SuppressWarnings("serial")
5271 static final class SearchEntriesTask<K,V,U>
5272 extends BulkTask<K,V,U> {
5273 final Function<Entry<K,V>, ? extends U> searchFunction;
5274 final AtomicReference<U> result;
5275 SearchEntriesTask
5276 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5277 Function<Entry<K,V>, ? extends U> searchFunction,
5278 AtomicReference<U> result) {
5279 super(p, b, i, f, t);
5280 this.searchFunction = searchFunction; this.result = result;
5281 }
5282 public final U getRawResult() { return result.get(); }
5283 public final void compute() {
5284 final Function<Entry<K,V>, ? extends U> searchFunction;
5285 final AtomicReference<U> result;
5286 if ((searchFunction = this.searchFunction) != null &&
5287 (result = this.result) != null) {
5288 for (int i = baseIndex, f, h; batch > 0 &&
5289 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5290 if (result.get() != null)
5291 return;
5292 addToPendingCount(1);
5293 new SearchEntriesTask<K,V,U>
5294 (this, batch >>>= 1, baseLimit = h, f, tab,
5295 searchFunction, result).fork();
5296 }
5297 while (result.get() == null) {
5298 U u;
5299 Node<K,V> p;
5300 if ((p = advance()) == null) {
5301 propagateCompletion();
5302 break;
5303 }
5304 if ((u = searchFunction.apply(p)) != null) {
5305 if (result.compareAndSet(null, u))
5306 quietlyCompleteRoot();
5307 return;
5308 }
5309 }
5310 }
5311 }
5312 }
5313
5314 @SuppressWarnings("serial")
5315 static final class SearchMappingsTask<K,V,U>
5316 extends BulkTask<K,V,U> {
5317 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5318 final AtomicReference<U> result;
5319 SearchMappingsTask
5320 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5321 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5322 AtomicReference<U> result) {
5323 super(p, b, i, f, t);
5324 this.searchFunction = searchFunction; this.result = result;
5325 }
5326 public final U getRawResult() { return result.get(); }
5327 public final void compute() {
5328 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5329 final AtomicReference<U> result;
5330 if ((searchFunction = this.searchFunction) != null &&
5331 (result = this.result) != null) {
5332 for (int i = baseIndex, f, h; batch > 0 &&
5333 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5334 if (result.get() != null)
5335 return;
5336 addToPendingCount(1);
5337 new SearchMappingsTask<K,V,U>
5338 (this, batch >>>= 1, baseLimit = h, f, tab,
5339 searchFunction, result).fork();
5340 }
5341 while (result.get() == null) {
5342 U u;
5343 Node<K,V> p;
5344 if ((p = advance()) == null) {
5345 propagateCompletion();
5346 break;
5347 }
5348 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5349 if (result.compareAndSet(null, u))
5350 quietlyCompleteRoot();
5351 break;
5352 }
5353 }
5354 }
5355 }
5356 }
5357
5358 @SuppressWarnings("serial")
5359 static final class ReduceKeysTask<K,V>
5360 extends BulkTask<K,V,K> {
5361 final BiFunction<? super K, ? super K, ? extends K> reducer;
5362 K result;
5363 ReduceKeysTask<K,V> rights, nextRight;
5364 ReduceKeysTask
5365 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5366 ReduceKeysTask<K,V> nextRight,
5367 BiFunction<? super K, ? super K, ? extends K> reducer) {
5368 super(p, b, i, f, t); this.nextRight = nextRight;
5369 this.reducer = reducer;
5370 }
5371 public final K getRawResult() { return result; }
5372 public final void compute() {
5373 final BiFunction<? super K, ? super K, ? extends K> reducer;
5374 if ((reducer = this.reducer) != null) {
5375 for (int i = baseIndex, f, h; batch > 0 &&
5376 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5377 addToPendingCount(1);
5378 (rights = new ReduceKeysTask<K,V>
5379 (this, batch >>>= 1, baseLimit = h, f, tab,
5380 rights, reducer)).fork();
5381 }
5382 K r = null;
5383 for (Node<K,V> p; (p = advance()) != null; ) {
5384 K u = p.key;
5385 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5386 }
5387 result = r;
5388 CountedCompleter<?> c;
5389 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5390 @SuppressWarnings("unchecked")
5391 ReduceKeysTask<K,V>
5392 t = (ReduceKeysTask<K,V>)c,
5393 s = t.rights;
5394 while (s != null) {
5395 K tr, sr;
5396 if ((sr = s.result) != null)
5397 t.result = (((tr = t.result) == null) ? sr :
5398 reducer.apply(tr, sr));
5399 s = t.rights = s.nextRight;
5400 }
5401 }
5402 }
5403 }
5404 }
5405
5406 @SuppressWarnings("serial")
5407 static final class ReduceValuesTask<K,V>
5408 extends BulkTask<K,V,V> {
5409 final BiFunction<? super V, ? super V, ? extends V> reducer;
5410 V result;
5411 ReduceValuesTask<K,V> rights, nextRight;
5412 ReduceValuesTask
5413 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5414 ReduceValuesTask<K,V> nextRight,
5415 BiFunction<? super V, ? super V, ? extends V> reducer) {
5416 super(p, b, i, f, t); this.nextRight = nextRight;
5417 this.reducer = reducer;
5418 }
5419 public final V getRawResult() { return result; }
5420 public final void compute() {
5421 final BiFunction<? super V, ? super V, ? extends V> reducer;
5422 if ((reducer = this.reducer) != null) {
5423 for (int i = baseIndex, f, h; batch > 0 &&
5424 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5425 addToPendingCount(1);
5426 (rights = new ReduceValuesTask<K,V>
5427 (this, batch >>>= 1, baseLimit = h, f, tab,
5428 rights, reducer)).fork();
5429 }
5430 V r = null;
5431 for (Node<K,V> p; (p = advance()) != null; ) {
5432 V v = p.val;
5433 r = (r == null) ? v : reducer.apply(r, v);
5434 }
5435 result = r;
5436 CountedCompleter<?> c;
5437 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5438 @SuppressWarnings("unchecked")
5439 ReduceValuesTask<K,V>
5440 t = (ReduceValuesTask<K,V>)c,
5441 s = t.rights;
5442 while (s != null) {
5443 V tr, sr;
5444 if ((sr = s.result) != null)
5445 t.result = (((tr = t.result) == null) ? sr :
5446 reducer.apply(tr, sr));
5447 s = t.rights = s.nextRight;
5448 }
5449 }
5450 }
5451 }
5452 }
5453
5454 @SuppressWarnings("serial")
5455 static final class ReduceEntriesTask<K,V>
5456 extends BulkTask<K,V,Map.Entry<K,V>> {
5457 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5458 Map.Entry<K,V> result;
5459 ReduceEntriesTask<K,V> rights, nextRight;
5460 ReduceEntriesTask
5461 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5462 ReduceEntriesTask<K,V> nextRight,
5463 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5464 super(p, b, i, f, t); this.nextRight = nextRight;
5465 this.reducer = reducer;
5466 }
5467 public final Map.Entry<K,V> getRawResult() { return result; }
5468 public final void compute() {
5469 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5470 if ((reducer = this.reducer) != null) {
5471 for (int i = baseIndex, f, h; batch > 0 &&
5472 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5473 addToPendingCount(1);
5474 (rights = new ReduceEntriesTask<K,V>
5475 (this, batch >>>= 1, baseLimit = h, f, tab,
5476 rights, reducer)).fork();
5477 }
5478 Map.Entry<K,V> r = null;
5479 for (Node<K,V> p; (p = advance()) != null; )
5480 r = (r == null) ? p : reducer.apply(r, p);
5481 result = r;
5482 CountedCompleter<?> c;
5483 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5484 @SuppressWarnings("unchecked")
5485 ReduceEntriesTask<K,V>
5486 t = (ReduceEntriesTask<K,V>)c,
5487 s = t.rights;
5488 while (s != null) {
5489 Map.Entry<K,V> tr, sr;
5490 if ((sr = s.result) != null)
5491 t.result = (((tr = t.result) == null) ? sr :
5492 reducer.apply(tr, sr));
5493 s = t.rights = s.nextRight;
5494 }
5495 }
5496 }
5497 }
5498 }
5499
5500 @SuppressWarnings("serial")
5501 static final class MapReduceKeysTask<K,V,U>
5502 extends BulkTask<K,V,U> {
5503 final Function<? super K, ? extends U> transformer;
5504 final BiFunction<? super U, ? super U, ? extends U> reducer;
5505 U result;
5506 MapReduceKeysTask<K,V,U> rights, nextRight;
5507 MapReduceKeysTask
5508 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5509 MapReduceKeysTask<K,V,U> nextRight,
5510 Function<? super K, ? extends U> transformer,
5511 BiFunction<? super U, ? super U, ? extends U> reducer) {
5512 super(p, b, i, f, t); this.nextRight = nextRight;
5513 this.transformer = transformer;
5514 this.reducer = reducer;
5515 }
5516 public final U getRawResult() { return result; }
5517 public final void compute() {
5518 final Function<? super K, ? extends U> transformer;
5519 final BiFunction<? super U, ? super U, ? extends U> reducer;
5520 if ((transformer = this.transformer) != null &&
5521 (reducer = this.reducer) != null) {
5522 for (int i = baseIndex, f, h; batch > 0 &&
5523 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5524 addToPendingCount(1);
5525 (rights = new MapReduceKeysTask<K,V,U>
5526 (this, batch >>>= 1, baseLimit = h, f, tab,
5527 rights, transformer, reducer)).fork();
5528 }
5529 U r = null;
5530 for (Node<K,V> p; (p = advance()) != null; ) {
5531 U u;
5532 if ((u = transformer.apply(p.key)) != null)
5533 r = (r == null) ? u : reducer.apply(r, u);
5534 }
5535 result = r;
5536 CountedCompleter<?> c;
5537 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5538 @SuppressWarnings("unchecked")
5539 MapReduceKeysTask<K,V,U>
5540 t = (MapReduceKeysTask<K,V,U>)c,
5541 s = t.rights;
5542 while (s != null) {
5543 U tr, sr;
5544 if ((sr = s.result) != null)
5545 t.result = (((tr = t.result) == null) ? sr :
5546 reducer.apply(tr, sr));
5547 s = t.rights = s.nextRight;
5548 }
5549 }
5550 }
5551 }
5552 }
5553
5554 @SuppressWarnings("serial")
5555 static final class MapReduceValuesTask<K,V,U>
5556 extends BulkTask<K,V,U> {
5557 final Function<? super V, ? extends U> transformer;
5558 final BiFunction<? super U, ? super U, ? extends U> reducer;
5559 U result;
5560 MapReduceValuesTask<K,V,U> rights, nextRight;
5561 MapReduceValuesTask
5562 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5563 MapReduceValuesTask<K,V,U> nextRight,
5564 Function<? super V, ? extends U> transformer,
5565 BiFunction<? super U, ? super U, ? extends U> reducer) {
5566 super(p, b, i, f, t); this.nextRight = nextRight;
5567 this.transformer = transformer;
5568 this.reducer = reducer;
5569 }
5570 public final U getRawResult() { return result; }
5571 public final void compute() {
5572 final Function<? super V, ? extends U> transformer;
5573 final BiFunction<? super U, ? super U, ? extends U> reducer;
5574 if ((transformer = this.transformer) != null &&
5575 (reducer = this.reducer) != null) {
5576 for (int i = baseIndex, f, h; batch > 0 &&
5577 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5578 addToPendingCount(1);
5579 (rights = new MapReduceValuesTask<K,V,U>
5580 (this, batch >>>= 1, baseLimit = h, f, tab,
5581 rights, transformer, reducer)).fork();
5582 }
5583 U r = null;
5584 for (Node<K,V> p; (p = advance()) != null; ) {
5585 U u;
5586 if ((u = transformer.apply(p.val)) != null)
5587 r = (r == null) ? u : reducer.apply(r, u);
5588 }
5589 result = r;
5590 CountedCompleter<?> c;
5591 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5592 @SuppressWarnings("unchecked")
5593 MapReduceValuesTask<K,V,U>
5594 t = (MapReduceValuesTask<K,V,U>)c,
5595 s = t.rights;
5596 while (s != null) {
5597 U tr, sr;
5598 if ((sr = s.result) != null)
5599 t.result = (((tr = t.result) == null) ? sr :
5600 reducer.apply(tr, sr));
5601 s = t.rights = s.nextRight;
5602 }
5603 }
5604 }
5605 }
5606 }
5607
5608 @SuppressWarnings("serial")
5609 static final class MapReduceEntriesTask<K,V,U>
5610 extends BulkTask<K,V,U> {
5611 final Function<Map.Entry<K,V>, ? extends U> transformer;
5612 final BiFunction<? super U, ? super U, ? extends U> reducer;
5613 U result;
5614 MapReduceEntriesTask<K,V,U> rights, nextRight;
5615 MapReduceEntriesTask
5616 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5617 MapReduceEntriesTask<K,V,U> nextRight,
5618 Function<Map.Entry<K,V>, ? extends U> transformer,
5619 BiFunction<? super U, ? super U, ? extends U> reducer) {
5620 super(p, b, i, f, t); this.nextRight = nextRight;
5621 this.transformer = transformer;
5622 this.reducer = reducer;
5623 }
5624 public final U getRawResult() { return result; }
5625 public final void compute() {
5626 final Function<Map.Entry<K,V>, ? extends U> transformer;
5627 final BiFunction<? super U, ? super U, ? extends U> reducer;
5628 if ((transformer = this.transformer) != null &&
5629 (reducer = this.reducer) != null) {
5630 for (int i = baseIndex, f, h; batch > 0 &&
5631 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5632 addToPendingCount(1);
5633 (rights = new MapReduceEntriesTask<K,V,U>
5634 (this, batch >>>= 1, baseLimit = h, f, tab,
5635 rights, transformer, reducer)).fork();
5636 }
5637 U r = null;
5638 for (Node<K,V> p; (p = advance()) != null; ) {
5639 U u;
5640 if ((u = transformer.apply(p)) != null)
5641 r = (r == null) ? u : reducer.apply(r, u);
5642 }
5643 result = r;
5644 CountedCompleter<?> c;
5645 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5646 @SuppressWarnings("unchecked")
5647 MapReduceEntriesTask<K,V,U>
5648 t = (MapReduceEntriesTask<K,V,U>)c,
5649 s = t.rights;
5650 while (s != null) {
5651 U tr, sr;
5652 if ((sr = s.result) != null)
5653 t.result = (((tr = t.result) == null) ? sr :
5654 reducer.apply(tr, sr));
5655 s = t.rights = s.nextRight;
5656 }
5657 }
5658 }
5659 }
5660 }
5661
5662 @SuppressWarnings("serial")
5663 static final class MapReduceMappingsTask<K,V,U>
5664 extends BulkTask<K,V,U> {
5665 final BiFunction<? super K, ? super V, ? extends U> transformer;
5666 final BiFunction<? super U, ? super U, ? extends U> reducer;
5667 U result;
5668 MapReduceMappingsTask<K,V,U> rights, nextRight;
5669 MapReduceMappingsTask
5670 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5671 MapReduceMappingsTask<K,V,U> nextRight,
5672 BiFunction<? super K, ? super V, ? extends U> transformer,
5673 BiFunction<? super U, ? super U, ? extends U> reducer) {
5674 super(p, b, i, f, t); this.nextRight = nextRight;
5675 this.transformer = transformer;
5676 this.reducer = reducer;
5677 }
5678 public final U getRawResult() { return result; }
5679 public final void compute() {
5680 final BiFunction<? super K, ? super V, ? extends U> transformer;
5681 final BiFunction<? super U, ? super U, ? extends U> reducer;
5682 if ((transformer = this.transformer) != null &&
5683 (reducer = this.reducer) != null) {
5684 for (int i = baseIndex, f, h; batch > 0 &&
5685 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5686 addToPendingCount(1);
5687 (rights = new MapReduceMappingsTask<K,V,U>
5688 (this, batch >>>= 1, baseLimit = h, f, tab,
5689 rights, transformer, reducer)).fork();
5690 }
5691 U r = null;
5692 for (Node<K,V> p; (p = advance()) != null; ) {
5693 U u;
5694 if ((u = transformer.apply(p.key, p.val)) != null)
5695 r = (r == null) ? u : reducer.apply(r, u);
5696 }
5697 result = r;
5698 CountedCompleter<?> c;
5699 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5700 @SuppressWarnings("unchecked")
5701 MapReduceMappingsTask<K,V,U>
5702 t = (MapReduceMappingsTask<K,V,U>)c,
5703 s = t.rights;
5704 while (s != null) {
5705 U tr, sr;
5706 if ((sr = s.result) != null)
5707 t.result = (((tr = t.result) == null) ? sr :
5708 reducer.apply(tr, sr));
5709 s = t.rights = s.nextRight;
5710 }
5711 }
5712 }
5713 }
5714 }
5715
5716 @SuppressWarnings("serial")
5717 static final class MapReduceKeysToDoubleTask<K,V>
5718 extends BulkTask<K,V,Double> {
5719 final ToDoubleFunction<? super K> transformer;
5720 final DoubleBinaryOperator reducer;
5721 final double basis;
5722 double result;
5723 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5724 MapReduceKeysToDoubleTask
5725 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5726 MapReduceKeysToDoubleTask<K,V> nextRight,
5727 ToDoubleFunction<? super K> transformer,
5728 double basis,
5729 DoubleBinaryOperator reducer) {
5730 super(p, b, i, f, t); this.nextRight = nextRight;
5731 this.transformer = transformer;
5732 this.basis = basis; this.reducer = reducer;
5733 }
5734 public final Double getRawResult() { return result; }
5735 public final void compute() {
5736 final ToDoubleFunction<? super K> transformer;
5737 final DoubleBinaryOperator reducer;
5738 if ((transformer = this.transformer) != null &&
5739 (reducer = this.reducer) != null) {
5740 double r = this.basis;
5741 for (int i = baseIndex, f, h; batch > 0 &&
5742 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5743 addToPendingCount(1);
5744 (rights = new MapReduceKeysToDoubleTask<K,V>
5745 (this, batch >>>= 1, baseLimit = h, f, tab,
5746 rights, transformer, r, reducer)).fork();
5747 }
5748 for (Node<K,V> p; (p = advance()) != null; )
5749 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5750 result = r;
5751 CountedCompleter<?> c;
5752 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5753 @SuppressWarnings("unchecked")
5754 MapReduceKeysToDoubleTask<K,V>
5755 t = (MapReduceKeysToDoubleTask<K,V>)c,
5756 s = t.rights;
5757 while (s != null) {
5758 t.result = reducer.applyAsDouble(t.result, s.result);
5759 s = t.rights = s.nextRight;
5760 }
5761 }
5762 }
5763 }
5764 }
5765
5766 @SuppressWarnings("serial")
5767 static final class MapReduceValuesToDoubleTask<K,V>
5768 extends BulkTask<K,V,Double> {
5769 final ToDoubleFunction<? super V> transformer;
5770 final DoubleBinaryOperator reducer;
5771 final double basis;
5772 double result;
5773 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5774 MapReduceValuesToDoubleTask
5775 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5776 MapReduceValuesToDoubleTask<K,V> nextRight,
5777 ToDoubleFunction<? super V> transformer,
5778 double basis,
5779 DoubleBinaryOperator reducer) {
5780 super(p, b, i, f, t); this.nextRight = nextRight;
5781 this.transformer = transformer;
5782 this.basis = basis; this.reducer = reducer;
5783 }
5784 public final Double getRawResult() { return result; }
5785 public final void compute() {
5786 final ToDoubleFunction<? super V> transformer;
5787 final DoubleBinaryOperator reducer;
5788 if ((transformer = this.transformer) != null &&
5789 (reducer = this.reducer) != null) {
5790 double r = this.basis;
5791 for (int i = baseIndex, f, h; batch > 0 &&
5792 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5793 addToPendingCount(1);
5794 (rights = new MapReduceValuesToDoubleTask<K,V>
5795 (this, batch >>>= 1, baseLimit = h, f, tab,
5796 rights, transformer, r, reducer)).fork();
5797 }
5798 for (Node<K,V> p; (p = advance()) != null; )
5799 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5800 result = r;
5801 CountedCompleter<?> c;
5802 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5803 @SuppressWarnings("unchecked")
5804 MapReduceValuesToDoubleTask<K,V>
5805 t = (MapReduceValuesToDoubleTask<K,V>)c,
5806 s = t.rights;
5807 while (s != null) {
5808 t.result = reducer.applyAsDouble(t.result, s.result);
5809 s = t.rights = s.nextRight;
5810 }
5811 }
5812 }
5813 }
5814 }
5815
5816 @SuppressWarnings("serial")
5817 static final class MapReduceEntriesToDoubleTask<K,V>
5818 extends BulkTask<K,V,Double> {
5819 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5820 final DoubleBinaryOperator reducer;
5821 final double basis;
5822 double result;
5823 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5824 MapReduceEntriesToDoubleTask
5825 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5826 MapReduceEntriesToDoubleTask<K,V> nextRight,
5827 ToDoubleFunction<Map.Entry<K,V>> transformer,
5828 double basis,
5829 DoubleBinaryOperator reducer) {
5830 super(p, b, i, f, t); this.nextRight = nextRight;
5831 this.transformer = transformer;
5832 this.basis = basis; this.reducer = reducer;
5833 }
5834 public final Double getRawResult() { return result; }
5835 public final void compute() {
5836 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5837 final DoubleBinaryOperator reducer;
5838 if ((transformer = this.transformer) != null &&
5839 (reducer = this.reducer) != null) {
5840 double r = this.basis;
5841 for (int i = baseIndex, f, h; batch > 0 &&
5842 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5843 addToPendingCount(1);
5844 (rights = new MapReduceEntriesToDoubleTask<K,V>
5845 (this, batch >>>= 1, baseLimit = h, f, tab,
5846 rights, transformer, r, reducer)).fork();
5847 }
5848 for (Node<K,V> p; (p = advance()) != null; )
5849 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5850 result = r;
5851 CountedCompleter<?> c;
5852 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5853 @SuppressWarnings("unchecked")
5854 MapReduceEntriesToDoubleTask<K,V>
5855 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5856 s = t.rights;
5857 while (s != null) {
5858 t.result = reducer.applyAsDouble(t.result, s.result);
5859 s = t.rights = s.nextRight;
5860 }
5861 }
5862 }
5863 }
5864 }
5865
5866 @SuppressWarnings("serial")
5867 static final class MapReduceMappingsToDoubleTask<K,V>
5868 extends BulkTask<K,V,Double> {
5869 final ToDoubleBiFunction<? super K, ? super V> transformer;
5870 final DoubleBinaryOperator reducer;
5871 final double basis;
5872 double result;
5873 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5874 MapReduceMappingsToDoubleTask
5875 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5876 MapReduceMappingsToDoubleTask<K,V> nextRight,
5877 ToDoubleBiFunction<? super K, ? super V> transformer,
5878 double basis,
5879 DoubleBinaryOperator reducer) {
5880 super(p, b, i, f, t); this.nextRight = nextRight;
5881 this.transformer = transformer;
5882 this.basis = basis; this.reducer = reducer;
5883 }
5884 public final Double getRawResult() { return result; }
5885 public final void compute() {
5886 final ToDoubleBiFunction<? super K, ? super V> transformer;
5887 final DoubleBinaryOperator reducer;
5888 if ((transformer = this.transformer) != null &&
5889 (reducer = this.reducer) != null) {
5890 double r = this.basis;
5891 for (int i = baseIndex, f, h; batch > 0 &&
5892 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5893 addToPendingCount(1);
5894 (rights = new MapReduceMappingsToDoubleTask<K,V>
5895 (this, batch >>>= 1, baseLimit = h, f, tab,
5896 rights, transformer, r, reducer)).fork();
5897 }
5898 for (Node<K,V> p; (p = advance()) != null; )
5899 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5900 result = r;
5901 CountedCompleter<?> c;
5902 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5903 @SuppressWarnings("unchecked")
5904 MapReduceMappingsToDoubleTask<K,V>
5905 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5906 s = t.rights;
5907 while (s != null) {
5908 t.result = reducer.applyAsDouble(t.result, s.result);
5909 s = t.rights = s.nextRight;
5910 }
5911 }
5912 }
5913 }
5914 }
5915
5916 @SuppressWarnings("serial")
5917 static final class MapReduceKeysToLongTask<K,V>
5918 extends BulkTask<K,V,Long> {
5919 final ToLongFunction<? super K> transformer;
5920 final LongBinaryOperator reducer;
5921 final long basis;
5922 long result;
5923 MapReduceKeysToLongTask<K,V> rights, nextRight;
5924 MapReduceKeysToLongTask
5925 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5926 MapReduceKeysToLongTask<K,V> nextRight,
5927 ToLongFunction<? super K> transformer,
5928 long basis,
5929 LongBinaryOperator reducer) {
5930 super(p, b, i, f, t); this.nextRight = nextRight;
5931 this.transformer = transformer;
5932 this.basis = basis; this.reducer = reducer;
5933 }
5934 public final Long getRawResult() { return result; }
5935 public final void compute() {
5936 final ToLongFunction<? super K> transformer;
5937 final LongBinaryOperator reducer;
5938 if ((transformer = this.transformer) != null &&
5939 (reducer = this.reducer) != null) {
5940 long r = this.basis;
5941 for (int i = baseIndex, f, h; batch > 0 &&
5942 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5943 addToPendingCount(1);
5944 (rights = new MapReduceKeysToLongTask<K,V>
5945 (this, batch >>>= 1, baseLimit = h, f, tab,
5946 rights, transformer, r, reducer)).fork();
5947 }
5948 for (Node<K,V> p; (p = advance()) != null; )
5949 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5950 result = r;
5951 CountedCompleter<?> c;
5952 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5953 @SuppressWarnings("unchecked")
5954 MapReduceKeysToLongTask<K,V>
5955 t = (MapReduceKeysToLongTask<K,V>)c,
5956 s = t.rights;
5957 while (s != null) {
5958 t.result = reducer.applyAsLong(t.result, s.result);
5959 s = t.rights = s.nextRight;
5960 }
5961 }
5962 }
5963 }
5964 }
5965
5966 @SuppressWarnings("serial")
5967 static final class MapReduceValuesToLongTask<K,V>
5968 extends BulkTask<K,V,Long> {
5969 final ToLongFunction<? super V> transformer;
5970 final LongBinaryOperator reducer;
5971 final long basis;
5972 long result;
5973 MapReduceValuesToLongTask<K,V> rights, nextRight;
5974 MapReduceValuesToLongTask
5975 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5976 MapReduceValuesToLongTask<K,V> nextRight,
5977 ToLongFunction<? super V> transformer,
5978 long basis,
5979 LongBinaryOperator reducer) {
5980 super(p, b, i, f, t); this.nextRight = nextRight;
5981 this.transformer = transformer;
5982 this.basis = basis; this.reducer = reducer;
5983 }
5984 public final Long getRawResult() { return result; }
5985 public final void compute() {
5986 final ToLongFunction<? super V> transformer;
5987 final LongBinaryOperator reducer;
5988 if ((transformer = this.transformer) != null &&
5989 (reducer = this.reducer) != null) {
5990 long r = this.basis;
5991 for (int i = baseIndex, f, h; batch > 0 &&
5992 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5993 addToPendingCount(1);
5994 (rights = new MapReduceValuesToLongTask<K,V>
5995 (this, batch >>>= 1, baseLimit = h, f, tab,
5996 rights, transformer, r, reducer)).fork();
5997 }
5998 for (Node<K,V> p; (p = advance()) != null; )
5999 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
6000 result = r;
6001 CountedCompleter<?> c;
6002 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6003 @SuppressWarnings("unchecked")
6004 MapReduceValuesToLongTask<K,V>
6005 t = (MapReduceValuesToLongTask<K,V>)c,
6006 s = t.rights;
6007 while (s != null) {
6008 t.result = reducer.applyAsLong(t.result, s.result);
6009 s = t.rights = s.nextRight;
6010 }
6011 }
6012 }
6013 }
6014 }
6015
6016 @SuppressWarnings("serial")
6017 static final class MapReduceEntriesToLongTask<K,V>
6018 extends BulkTask<K,V,Long> {
6019 final ToLongFunction<Map.Entry<K,V>> transformer;
6020 final LongBinaryOperator reducer;
6021 final long basis;
6022 long result;
6023 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6024 MapReduceEntriesToLongTask
6025 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6026 MapReduceEntriesToLongTask<K,V> nextRight,
6027 ToLongFunction<Map.Entry<K,V>> transformer,
6028 long basis,
6029 LongBinaryOperator reducer) {
6030 super(p, b, i, f, t); this.nextRight = nextRight;
6031 this.transformer = transformer;
6032 this.basis = basis; this.reducer = reducer;
6033 }
6034 public final Long getRawResult() { return result; }
6035 public final void compute() {
6036 final ToLongFunction<Map.Entry<K,V>> transformer;
6037 final LongBinaryOperator reducer;
6038 if ((transformer = this.transformer) != null &&
6039 (reducer = this.reducer) != null) {
6040 long r = this.basis;
6041 for (int i = baseIndex, f, h; batch > 0 &&
6042 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6043 addToPendingCount(1);
6044 (rights = new MapReduceEntriesToLongTask<K,V>
6045 (this, batch >>>= 1, baseLimit = h, f, tab,
6046 rights, transformer, r, reducer)).fork();
6047 }
6048 for (Node<K,V> p; (p = advance()) != null; )
6049 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6050 result = r;
6051 CountedCompleter<?> c;
6052 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6053 @SuppressWarnings("unchecked")
6054 MapReduceEntriesToLongTask<K,V>
6055 t = (MapReduceEntriesToLongTask<K,V>)c,
6056 s = t.rights;
6057 while (s != null) {
6058 t.result = reducer.applyAsLong(t.result, s.result);
6059 s = t.rights = s.nextRight;
6060 }
6061 }
6062 }
6063 }
6064 }
6065
6066 @SuppressWarnings("serial")
6067 static final class MapReduceMappingsToLongTask<K,V>
6068 extends BulkTask<K,V,Long> {
6069 final ToLongBiFunction<? super K, ? super V> transformer;
6070 final LongBinaryOperator reducer;
6071 final long basis;
6072 long result;
6073 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6074 MapReduceMappingsToLongTask
6075 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6076 MapReduceMappingsToLongTask<K,V> nextRight,
6077 ToLongBiFunction<? super K, ? super V> transformer,
6078 long basis,
6079 LongBinaryOperator reducer) {
6080 super(p, b, i, f, t); this.nextRight = nextRight;
6081 this.transformer = transformer;
6082 this.basis = basis; this.reducer = reducer;
6083 }
6084 public final Long getRawResult() { return result; }
6085 public final void compute() {
6086 final ToLongBiFunction<? super K, ? super V> transformer;
6087 final LongBinaryOperator reducer;
6088 if ((transformer = this.transformer) != null &&
6089 (reducer = this.reducer) != null) {
6090 long r = this.basis;
6091 for (int i = baseIndex, f, h; batch > 0 &&
6092 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6093 addToPendingCount(1);
6094 (rights = new MapReduceMappingsToLongTask<K,V>
6095 (this, batch >>>= 1, baseLimit = h, f, tab,
6096 rights, transformer, r, reducer)).fork();
6097 }
6098 for (Node<K,V> p; (p = advance()) != null; )
6099 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6100 result = r;
6101 CountedCompleter<?> c;
6102 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6103 @SuppressWarnings("unchecked")
6104 MapReduceMappingsToLongTask<K,V>
6105 t = (MapReduceMappingsToLongTask<K,V>)c,
6106 s = t.rights;
6107 while (s != null) {
6108 t.result = reducer.applyAsLong(t.result, s.result);
6109 s = t.rights = s.nextRight;
6110 }
6111 }
6112 }
6113 }
6114 }
6115
6116 @SuppressWarnings("serial")
6117 static final class MapReduceKeysToIntTask<K,V>
6118 extends BulkTask<K,V,Integer> {
6119 final ToIntFunction<? super K> transformer;
6120 final IntBinaryOperator reducer;
6121 final int basis;
6122 int result;
6123 MapReduceKeysToIntTask<K,V> rights, nextRight;
6124 MapReduceKeysToIntTask
6125 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6126 MapReduceKeysToIntTask<K,V> nextRight,
6127 ToIntFunction<? super K> transformer,
6128 int basis,
6129 IntBinaryOperator reducer) {
6130 super(p, b, i, f, t); this.nextRight = nextRight;
6131 this.transformer = transformer;
6132 this.basis = basis; this.reducer = reducer;
6133 }
6134 public final Integer getRawResult() { return result; }
6135 public final void compute() {
6136 final ToIntFunction<? super K> transformer;
6137 final IntBinaryOperator reducer;
6138 if ((transformer = this.transformer) != null &&
6139 (reducer = this.reducer) != null) {
6140 int r = this.basis;
6141 for (int i = baseIndex, f, h; batch > 0 &&
6142 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6143 addToPendingCount(1);
6144 (rights = new MapReduceKeysToIntTask<K,V>
6145 (this, batch >>>= 1, baseLimit = h, f, tab,
6146 rights, transformer, r, reducer)).fork();
6147 }
6148 for (Node<K,V> p; (p = advance()) != null; )
6149 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6150 result = r;
6151 CountedCompleter<?> c;
6152 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6153 @SuppressWarnings("unchecked")
6154 MapReduceKeysToIntTask<K,V>
6155 t = (MapReduceKeysToIntTask<K,V>)c,
6156 s = t.rights;
6157 while (s != null) {
6158 t.result = reducer.applyAsInt(t.result, s.result);
6159 s = t.rights = s.nextRight;
6160 }
6161 }
6162 }
6163 }
6164 }
6165
6166 @SuppressWarnings("serial")
6167 static final class MapReduceValuesToIntTask<K,V>
6168 extends BulkTask<K,V,Integer> {
6169 final ToIntFunction<? super V> transformer;
6170 final IntBinaryOperator reducer;
6171 final int basis;
6172 int result;
6173 MapReduceValuesToIntTask<K,V> rights, nextRight;
6174 MapReduceValuesToIntTask
6175 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6176 MapReduceValuesToIntTask<K,V> nextRight,
6177 ToIntFunction<? super V> transformer,
6178 int basis,
6179 IntBinaryOperator reducer) {
6180 super(p, b, i, f, t); this.nextRight = nextRight;
6181 this.transformer = transformer;
6182 this.basis = basis; this.reducer = reducer;
6183 }
6184 public final Integer getRawResult() { return result; }
6185 public final void compute() {
6186 final ToIntFunction<? super V> transformer;
6187 final IntBinaryOperator reducer;
6188 if ((transformer = this.transformer) != null &&
6189 (reducer = this.reducer) != null) {
6190 int r = this.basis;
6191 for (int i = baseIndex, f, h; batch > 0 &&
6192 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6193 addToPendingCount(1);
6194 (rights = new MapReduceValuesToIntTask<K,V>
6195 (this, batch >>>= 1, baseLimit = h, f, tab,
6196 rights, transformer, r, reducer)).fork();
6197 }
6198 for (Node<K,V> p; (p = advance()) != null; )
6199 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6200 result = r;
6201 CountedCompleter<?> c;
6202 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6203 @SuppressWarnings("unchecked")
6204 MapReduceValuesToIntTask<K,V>
6205 t = (MapReduceValuesToIntTask<K,V>)c,
6206 s = t.rights;
6207 while (s != null) {
6208 t.result = reducer.applyAsInt(t.result, s.result);
6209 s = t.rights = s.nextRight;
6210 }
6211 }
6212 }
6213 }
6214 }
6215
6216 @SuppressWarnings("serial")
6217 static final class MapReduceEntriesToIntTask<K,V>
6218 extends BulkTask<K,V,Integer> {
6219 final ToIntFunction<Map.Entry<K,V>> transformer;
6220 final IntBinaryOperator reducer;
6221 final int basis;
6222 int result;
6223 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6224 MapReduceEntriesToIntTask
6225 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6226 MapReduceEntriesToIntTask<K,V> nextRight,
6227 ToIntFunction<Map.Entry<K,V>> transformer,
6228 int basis,
6229 IntBinaryOperator reducer) {
6230 super(p, b, i, f, t); this.nextRight = nextRight;
6231 this.transformer = transformer;
6232 this.basis = basis; this.reducer = reducer;
6233 }
6234 public final Integer getRawResult() { return result; }
6235 public final void compute() {
6236 final ToIntFunction<Map.Entry<K,V>> transformer;
6237 final IntBinaryOperator reducer;
6238 if ((transformer = this.transformer) != null &&
6239 (reducer = this.reducer) != null) {
6240 int r = this.basis;
6241 for (int i = baseIndex, f, h; batch > 0 &&
6242 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6243 addToPendingCount(1);
6244 (rights = new MapReduceEntriesToIntTask<K,V>
6245 (this, batch >>>= 1, baseLimit = h, f, tab,
6246 rights, transformer, r, reducer)).fork();
6247 }
6248 for (Node<K,V> p; (p = advance()) != null; )
6249 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6250 result = r;
6251 CountedCompleter<?> c;
6252 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6253 @SuppressWarnings("unchecked")
6254 MapReduceEntriesToIntTask<K,V>
6255 t = (MapReduceEntriesToIntTask<K,V>)c,
6256 s = t.rights;
6257 while (s != null) {
6258 t.result = reducer.applyAsInt(t.result, s.result);
6259 s = t.rights = s.nextRight;
6260 }
6261 }
6262 }
6263 }
6264 }
6265
6266 @SuppressWarnings("serial")
6267 static final class MapReduceMappingsToIntTask<K,V>
6268 extends BulkTask<K,V,Integer> {
6269 final ToIntBiFunction<? super K, ? super V> transformer;
6270 final IntBinaryOperator reducer;
6271 final int basis;
6272 int result;
6273 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6274 MapReduceMappingsToIntTask
6275 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6276 MapReduceMappingsToIntTask<K,V> nextRight,
6277 ToIntBiFunction<? super K, ? super V> transformer,
6278 int basis,
6279 IntBinaryOperator reducer) {
6280 super(p, b, i, f, t); this.nextRight = nextRight;
6281 this.transformer = transformer;
6282 this.basis = basis; this.reducer = reducer;
6283 }
6284 public final Integer getRawResult() { return result; }
6285 public final void compute() {
6286 final ToIntBiFunction<? super K, ? super V> transformer;
6287 final IntBinaryOperator reducer;
6288 if ((transformer = this.transformer) != null &&
6289 (reducer = this.reducer) != null) {
6290 int r = this.basis;
6291 for (int i = baseIndex, f, h; batch > 0 &&
6292 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6293 addToPendingCount(1);
6294 (rights = new MapReduceMappingsToIntTask<K,V>
6295 (this, batch >>>= 1, baseLimit = h, f, tab,
6296 rights, transformer, r, reducer)).fork();
6297 }
6298 for (Node<K,V> p; (p = advance()) != null; )
6299 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6300 result = r;
6301 CountedCompleter<?> c;
6302 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6303 @SuppressWarnings("unchecked")
6304 MapReduceMappingsToIntTask<K,V>
6305 t = (MapReduceMappingsToIntTask<K,V>)c,
6306 s = t.rights;
6307 while (s != null) {
6308 t.result = reducer.applyAsInt(t.result, s.result);
6309 s = t.rights = s.nextRight;
6310 }
6311 }
6312 }
6313 }
6314 }
6315
6316 // Unsafe mechanics
6317 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
6318 private static final long SIZECTL;
6319 private static final long TRANSFERINDEX;
6320 private static final long BASECOUNT;
6321 private static final long CELLSBUSY;
6322 private static final long CELLVALUE;
6323 private static final int ABASE;
6324 private static final int ASHIFT;
6325
6326 static {
6327 try {
6328 SIZECTL = U.objectFieldOffset
6329 (ConcurrentHashMap.class.getDeclaredField("sizeCtl"));
6330 TRANSFERINDEX = U.objectFieldOffset
6331 (ConcurrentHashMap.class.getDeclaredField("transferIndex"));
6332 BASECOUNT = U.objectFieldOffset
6333 (ConcurrentHashMap.class.getDeclaredField("baseCount"));
6334 CELLSBUSY = U.objectFieldOffset
6335 (ConcurrentHashMap.class.getDeclaredField("cellsBusy"));
6336
6337 CELLVALUE = U.objectFieldOffset
6338 (CounterCell.class.getDeclaredField("value"));
6339
6340 ABASE = U.arrayBaseOffset(Node[].class);
6341 int scale = U.arrayIndexScale(Node[].class);
6342 if ((scale & (scale - 1)) != 0)
6343 throw new Error("array index scale not a power of two");
6344 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6345 } catch (ReflectiveOperationException e) {
6346 throw new Error(e);
6347 }
6348
6349 // Reduce the risk of rare disastrous classloading in first call to
6350 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6351 Class<?> ensureLoaded = LockSupport.class;
6352 }
6353 }