ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk8/java/util/concurrent/ConcurrentLinkedDeque.java
Revision: 1.2
Committed: Sun Oct 22 23:20:10 2017 UTC (6 years, 6 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.1: +57 -24 lines
Log Message:
backport linearizability fixes

File Contents

# Content
1 /*
2 * Written by Doug Lea and Martin Buchholz with assistance from members of
3 * JCP JSR-166 Expert Group and released to the public domain, as explained
4 * at http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractCollection;
10 import java.util.Arrays;
11 import java.util.Collection;
12 import java.util.Deque;
13 import java.util.Iterator;
14 import java.util.NoSuchElementException;
15 import java.util.Objects;
16 import java.util.Queue;
17 import java.util.Spliterator;
18 import java.util.Spliterators;
19 import java.util.function.Consumer;
20
21 /**
22 * An unbounded concurrent {@linkplain Deque deque} based on linked nodes.
23 * Concurrent insertion, removal, and access operations execute safely
24 * across multiple threads.
25 * A {@code ConcurrentLinkedDeque} is an appropriate choice when
26 * many threads will share access to a common collection.
27 * Like most other concurrent collection implementations, this class
28 * does not permit the use of {@code null} elements.
29 *
30 * <p>Iterators and spliterators are
31 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
32 *
33 * <p>Beware that, unlike in most collections, the {@code size} method
34 * is <em>NOT</em> a constant-time operation. Because of the
35 * asynchronous nature of these deques, determining the current number
36 * of elements requires a traversal of the elements, and so may report
37 * inaccurate results if this collection is modified during traversal.
38 * Additionally, the bulk operations {@code addAll},
39 * {@code removeAll}, {@code retainAll}, {@code containsAll},
40 * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
41 * to be performed atomically. For example, an iterator operating
42 * concurrently with an {@code addAll} operation might view only some
43 * of the added elements.
44 *
45 * <p>This class and its iterator implement all of the <em>optional</em>
46 * methods of the {@link Deque} and {@link Iterator} interfaces.
47 *
48 * <p>Memory consistency effects: As with other concurrent collections,
49 * actions in a thread prior to placing an object into a
50 * {@code ConcurrentLinkedDeque}
51 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
52 * actions subsequent to the access or removal of that element from
53 * the {@code ConcurrentLinkedDeque} in another thread.
54 *
55 * <p>This class is a member of the
56 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
57 * Java Collections Framework</a>.
58 *
59 * @since 1.7
60 * @author Doug Lea
61 * @author Martin Buchholz
62 * @param <E> the type of elements held in this deque
63 */
64 public class ConcurrentLinkedDeque<E>
65 extends AbstractCollection<E>
66 implements Deque<E>, java.io.Serializable {
67
68 /*
69 * This is an implementation of a concurrent lock-free deque
70 * supporting interior removes but not interior insertions, as
71 * required to support the entire Deque interface.
72 *
73 * We extend the techniques developed for ConcurrentLinkedQueue and
74 * LinkedTransferQueue (see the internal docs for those classes).
75 * Understanding the ConcurrentLinkedQueue implementation is a
76 * prerequisite for understanding the implementation of this class.
77 *
78 * The data structure is a symmetrical doubly-linked "GC-robust"
79 * linked list of nodes. We minimize the number of volatile writes
80 * using two techniques: advancing multiple hops with a single CAS
81 * and mixing volatile and non-volatile writes of the same memory
82 * locations.
83 *
84 * A node contains the expected E ("item") and links to predecessor
85 * ("prev") and successor ("next") nodes:
86 *
87 * class Node<E> { volatile Node<E> prev, next; volatile E item; }
88 *
89 * A node p is considered "live" if it contains a non-null item
90 * (p.item != null). When an item is CASed to null, the item is
91 * atomically logically deleted from the collection.
92 *
93 * At any time, there is precisely one "first" node with a null
94 * prev reference that terminates any chain of prev references
95 * starting at a live node. Similarly there is precisely one
96 * "last" node terminating any chain of next references starting at
97 * a live node. The "first" and "last" nodes may or may not be live.
98 * The "first" and "last" nodes are always mutually reachable.
99 *
100 * A new element is added atomically by CASing the null prev or
101 * next reference in the first or last node to a fresh node
102 * containing the element. The element's node atomically becomes
103 * "live" at that point.
104 *
105 * A node is considered "active" if it is a live node, or the
106 * first or last node. Active nodes cannot be unlinked.
107 *
108 * A "self-link" is a next or prev reference that is the same node:
109 * p.prev == p or p.next == p
110 * Self-links are used in the node unlinking process. Active nodes
111 * never have self-links.
112 *
113 * A node p is active if and only if:
114 *
115 * p.item != null ||
116 * (p.prev == null && p.next != p) ||
117 * (p.next == null && p.prev != p)
118 *
119 * The deque object has two node references, "head" and "tail".
120 * The head and tail are only approximations to the first and last
121 * nodes of the deque. The first node can always be found by
122 * following prev pointers from head; likewise for tail. However,
123 * it is permissible for head and tail to be referring to deleted
124 * nodes that have been unlinked and so may not be reachable from
125 * any live node.
126 *
127 * There are 3 stages of node deletion;
128 * "logical deletion", "unlinking", and "gc-unlinking".
129 *
130 * 1. "logical deletion" by CASing item to null atomically removes
131 * the element from the collection, and makes the containing node
132 * eligible for unlinking.
133 *
134 * 2. "unlinking" makes a deleted node unreachable from active
135 * nodes, and thus eventually reclaimable by GC. Unlinked nodes
136 * may remain reachable indefinitely from an iterator.
137 *
138 * Physical node unlinking is merely an optimization (albeit a
139 * critical one), and so can be performed at our convenience. At
140 * any time, the set of live nodes maintained by prev and next
141 * links are identical, that is, the live nodes found via next
142 * links from the first node is equal to the elements found via
143 * prev links from the last node. However, this is not true for
144 * nodes that have already been logically deleted - such nodes may
145 * be reachable in one direction only.
146 *
147 * 3. "gc-unlinking" takes unlinking further by making active
148 * nodes unreachable from deleted nodes, making it easier for the
149 * GC to reclaim future deleted nodes. This step makes the data
150 * structure "gc-robust", as first described in detail by Boehm
151 * (http://portal.acm.org/citation.cfm?doid=503272.503282).
152 *
153 * GC-unlinked nodes may remain reachable indefinitely from an
154 * iterator, but unlike unlinked nodes, are never reachable from
155 * head or tail.
156 *
157 * Making the data structure GC-robust will eliminate the risk of
158 * unbounded memory retention with conservative GCs and is likely
159 * to improve performance with generational GCs.
160 *
161 * When a node is dequeued at either end, e.g. via poll(), we would
162 * like to break any references from the node to active nodes. We
163 * develop further the use of self-links that was very effective in
164 * other concurrent collection classes. The idea is to replace
165 * prev and next pointers with special values that are interpreted
166 * to mean off-the-list-at-one-end. These are approximations, but
167 * good enough to preserve the properties we want in our
168 * traversals, e.g. we guarantee that a traversal will never visit
169 * the same element twice, but we don't guarantee whether a
170 * traversal that runs out of elements will be able to see more
171 * elements later after enqueues at that end. Doing gc-unlinking
172 * safely is particularly tricky, since any node can be in use
173 * indefinitely (for example by an iterator). We must ensure that
174 * the nodes pointed at by head/tail never get gc-unlinked, since
175 * head/tail are needed to get "back on track" by other nodes that
176 * are gc-unlinked. gc-unlinking accounts for much of the
177 * implementation complexity.
178 *
179 * Since neither unlinking nor gc-unlinking are necessary for
180 * correctness, there are many implementation choices regarding
181 * frequency (eagerness) of these operations. Since volatile
182 * reads are likely to be much cheaper than CASes, saving CASes by
183 * unlinking multiple adjacent nodes at a time may be a win.
184 * gc-unlinking can be performed rarely and still be effective,
185 * since it is most important that long chains of deleted nodes
186 * are occasionally broken.
187 *
188 * The actual representation we use is that p.next == p means to
189 * goto the first node (which in turn is reached by following prev
190 * pointers from head), and p.next == null && p.prev == p means
191 * that the iteration is at an end and that p is a (static final)
192 * dummy node, NEXT_TERMINATOR, and not the last active node.
193 * Finishing the iteration when encountering such a TERMINATOR is
194 * good enough for read-only traversals, so such traversals can use
195 * p.next == null as the termination condition. When we need to
196 * find the last (active) node, for enqueueing a new node, we need
197 * to check whether we have reached a TERMINATOR node; if so,
198 * restart traversal from tail.
199 *
200 * The implementation is completely directionally symmetrical,
201 * except that most public methods that iterate through the list
202 * follow next pointers ("forward" direction).
203 *
204 * We believe (without full proof) that all single-element deque
205 * operations (e.g., addFirst, peekLast, pollLast) are linearizable
206 * (see Herlihy and Shavit's book). However, some combinations of
207 * operations are known not to be linearizable. In particular,
208 * when an addFirst(A) is racing with pollFirst() removing B, it is
209 * possible for an observer iterating over the elements to observe
210 * A B C and subsequently observe A C, even though no interior
211 * removes are ever performed. Nevertheless, iterators behave
212 * reasonably, providing the "weakly consistent" guarantees.
213 *
214 * Empirically, microbenchmarks suggest that this class adds about
215 * 40% overhead relative to ConcurrentLinkedQueue, which feels as
216 * good as we can hope for.
217 */
218
219 private static final long serialVersionUID = 876323262645176354L;
220
221 /**
222 * A node from which the first node on list (that is, the unique node p
223 * with p.prev == null && p.next != p) can be reached in O(1) time.
224 * Invariants:
225 * - the first node is always O(1) reachable from head via prev links
226 * - all live nodes are reachable from the first node via succ()
227 * - head != null
228 * - (tmp = head).next != tmp || tmp != head
229 * - head is never gc-unlinked (but may be unlinked)
230 * Non-invariants:
231 * - head.item may or may not be null
232 * - head may not be reachable from the first or last node, or from tail
233 */
234 private transient volatile Node<E> head;
235
236 /**
237 * A node from which the last node on list (that is, the unique node p
238 * with p.next == null && p.prev != p) can be reached in O(1) time.
239 * Invariants:
240 * - the last node is always O(1) reachable from tail via next links
241 * - all live nodes are reachable from the last node via pred()
242 * - tail != null
243 * - tail is never gc-unlinked (but may be unlinked)
244 * Non-invariants:
245 * - tail.item may or may not be null
246 * - tail may not be reachable from the first or last node, or from head
247 */
248 private transient volatile Node<E> tail;
249
250 private static final Node<Object> PREV_TERMINATOR, NEXT_TERMINATOR;
251
252 @SuppressWarnings("unchecked")
253 Node<E> prevTerminator() {
254 return (Node<E>) PREV_TERMINATOR;
255 }
256
257 @SuppressWarnings("unchecked")
258 Node<E> nextTerminator() {
259 return (Node<E>) NEXT_TERMINATOR;
260 }
261
262 static final class Node<E> {
263 volatile Node<E> prev;
264 volatile E item;
265 volatile Node<E> next;
266
267 Node() { // default constructor for NEXT_TERMINATOR, PREV_TERMINATOR
268 }
269
270 /**
271 * Constructs a new node. Uses relaxed write because item can
272 * only be seen after publication via casNext or casPrev.
273 */
274 Node(E item) {
275 U.putObject(this, ITEM, item);
276 }
277
278 boolean casItem(E cmp, E val) {
279 return U.compareAndSwapObject(this, ITEM, cmp, val);
280 }
281
282 void lazySetNext(Node<E> val) {
283 U.putOrderedObject(this, NEXT, val);
284 }
285
286 boolean casNext(Node<E> cmp, Node<E> val) {
287 return U.compareAndSwapObject(this, NEXT, cmp, val);
288 }
289
290 void lazySetPrev(Node<E> val) {
291 U.putOrderedObject(this, PREV, val);
292 }
293
294 boolean casPrev(Node<E> cmp, Node<E> val) {
295 return U.compareAndSwapObject(this, PREV, cmp, val);
296 }
297
298 // Unsafe mechanics
299
300 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
301 private static final long PREV;
302 private static final long ITEM;
303 private static final long NEXT;
304
305 static {
306 try {
307 PREV = U.objectFieldOffset
308 (Node.class.getDeclaredField("prev"));
309 ITEM = U.objectFieldOffset
310 (Node.class.getDeclaredField("item"));
311 NEXT = U.objectFieldOffset
312 (Node.class.getDeclaredField("next"));
313 } catch (ReflectiveOperationException e) {
314 throw new Error(e);
315 }
316 }
317 }
318
319 /**
320 * Links e as first element.
321 */
322 private void linkFirst(E e) {
323 final Node<E> newNode = new Node<E>(Objects.requireNonNull(e));
324
325 restartFromHead:
326 for (;;)
327 for (Node<E> h = head, p = h, q;;) {
328 if ((q = p.prev) != null &&
329 (q = (p = q).prev) != null)
330 // Check for head updates every other hop.
331 // If p == q, we are sure to follow head instead.
332 p = (h != (h = head)) ? h : q;
333 else if (p.next == p) // PREV_TERMINATOR
334 continue restartFromHead;
335 else {
336 // p is first node
337 newNode.lazySetNext(p); // CAS piggyback
338 if (p.casPrev(null, newNode)) {
339 // Successful CAS is the linearization point
340 // for e to become an element of this deque,
341 // and for newNode to become "live".
342 if (p != h) // hop two nodes at a time
343 casHead(h, newNode); // Failure is OK.
344 return;
345 }
346 // Lost CAS race to another thread; re-read prev
347 }
348 }
349 }
350
351 /**
352 * Links e as last element.
353 */
354 private void linkLast(E e) {
355 final Node<E> newNode = new Node<E>(Objects.requireNonNull(e));
356
357 restartFromTail:
358 for (;;)
359 for (Node<E> t = tail, p = t, q;;) {
360 if ((q = p.next) != null &&
361 (q = (p = q).next) != null)
362 // Check for tail updates every other hop.
363 // If p == q, we are sure to follow tail instead.
364 p = (t != (t = tail)) ? t : q;
365 else if (p.prev == p) // NEXT_TERMINATOR
366 continue restartFromTail;
367 else {
368 // p is last node
369 newNode.lazySetPrev(p); // CAS piggyback
370 if (p.casNext(null, newNode)) {
371 // Successful CAS is the linearization point
372 // for e to become an element of this deque,
373 // and for newNode to become "live".
374 if (p != t) // hop two nodes at a time
375 casTail(t, newNode); // Failure is OK.
376 return;
377 }
378 // Lost CAS race to another thread; re-read next
379 }
380 }
381 }
382
383 private static final int HOPS = 2;
384
385 /**
386 * Unlinks non-null node x.
387 */
388 void unlink(Node<E> x) {
389 // assert x != null;
390 // assert x.item == null;
391 // assert x != PREV_TERMINATOR;
392 // assert x != NEXT_TERMINATOR;
393
394 final Node<E> prev = x.prev;
395 final Node<E> next = x.next;
396 if (prev == null) {
397 unlinkFirst(x, next);
398 } else if (next == null) {
399 unlinkLast(x, prev);
400 } else {
401 // Unlink interior node.
402 //
403 // This is the common case, since a series of polls at the
404 // same end will be "interior" removes, except perhaps for
405 // the first one, since end nodes cannot be unlinked.
406 //
407 // At any time, all active nodes are mutually reachable by
408 // following a sequence of either next or prev pointers.
409 //
410 // Our strategy is to find the unique active predecessor
411 // and successor of x. Try to fix up their links so that
412 // they point to each other, leaving x unreachable from
413 // active nodes. If successful, and if x has no live
414 // predecessor/successor, we additionally try to gc-unlink,
415 // leaving active nodes unreachable from x, by rechecking
416 // that the status of predecessor and successor are
417 // unchanged and ensuring that x is not reachable from
418 // tail/head, before setting x's prev/next links to their
419 // logical approximate replacements, self/TERMINATOR.
420 Node<E> activePred, activeSucc;
421 boolean isFirst, isLast;
422 int hops = 1;
423
424 // Find active predecessor
425 for (Node<E> p = prev; ; ++hops) {
426 if (p.item != null) {
427 activePred = p;
428 isFirst = false;
429 break;
430 }
431 Node<E> q = p.prev;
432 if (q == null) {
433 if (p.next == p)
434 return;
435 activePred = p;
436 isFirst = true;
437 break;
438 }
439 else if (p == q)
440 return;
441 else
442 p = q;
443 }
444
445 // Find active successor
446 for (Node<E> p = next; ; ++hops) {
447 if (p.item != null) {
448 activeSucc = p;
449 isLast = false;
450 break;
451 }
452 Node<E> q = p.next;
453 if (q == null) {
454 if (p.prev == p)
455 return;
456 activeSucc = p;
457 isLast = true;
458 break;
459 }
460 else if (p == q)
461 return;
462 else
463 p = q;
464 }
465
466 // TODO: better HOP heuristics
467 if (hops < HOPS
468 // always squeeze out interior deleted nodes
469 && (isFirst | isLast))
470 return;
471
472 // Squeeze out deleted nodes between activePred and
473 // activeSucc, including x.
474 skipDeletedSuccessors(activePred);
475 skipDeletedPredecessors(activeSucc);
476
477 // Try to gc-unlink, if possible
478 if ((isFirst | isLast) &&
479
480 // Recheck expected state of predecessor and successor
481 (activePred.next == activeSucc) &&
482 (activeSucc.prev == activePred) &&
483 (isFirst ? activePred.prev == null : activePred.item != null) &&
484 (isLast ? activeSucc.next == null : activeSucc.item != null)) {
485
486 updateHead(); // Ensure x is not reachable from head
487 updateTail(); // Ensure x is not reachable from tail
488
489 // Finally, actually gc-unlink
490 x.lazySetPrev(isFirst ? prevTerminator() : x);
491 x.lazySetNext(isLast ? nextTerminator() : x);
492 }
493 }
494 }
495
496 /**
497 * Unlinks non-null first node.
498 */
499 private void unlinkFirst(Node<E> first, Node<E> next) {
500 // assert first != null;
501 // assert next != null;
502 // assert first.item == null;
503 for (Node<E> o = null, p = next, q;;) {
504 if (p.item != null || (q = p.next) == null) {
505 if (o != null && p.prev != p && first.casNext(next, p)) {
506 skipDeletedPredecessors(p);
507 if (first.prev == null &&
508 (p.next == null || p.item != null) &&
509 p.prev == first) {
510
511 updateHead(); // Ensure o is not reachable from head
512 updateTail(); // Ensure o is not reachable from tail
513
514 // Finally, actually gc-unlink
515 o.lazySetNext(o);
516 o.lazySetPrev(prevTerminator());
517 }
518 }
519 return;
520 }
521 else if (p == q)
522 return;
523 else {
524 o = p;
525 p = q;
526 }
527 }
528 }
529
530 /**
531 * Unlinks non-null last node.
532 */
533 private void unlinkLast(Node<E> last, Node<E> prev) {
534 // assert last != null;
535 // assert prev != null;
536 // assert last.item == null;
537 for (Node<E> o = null, p = prev, q;;) {
538 if (p.item != null || (q = p.prev) == null) {
539 if (o != null && p.next != p && last.casPrev(prev, p)) {
540 skipDeletedSuccessors(p);
541 if (last.next == null &&
542 (p.prev == null || p.item != null) &&
543 p.next == last) {
544
545 updateHead(); // Ensure o is not reachable from head
546 updateTail(); // Ensure o is not reachable from tail
547
548 // Finally, actually gc-unlink
549 o.lazySetPrev(o);
550 o.lazySetNext(nextTerminator());
551 }
552 }
553 return;
554 }
555 else if (p == q)
556 return;
557 else {
558 o = p;
559 p = q;
560 }
561 }
562 }
563
564 /**
565 * Guarantees that any node which was unlinked before a call to
566 * this method will be unreachable from head after it returns.
567 * Does not guarantee to eliminate slack, only that head will
568 * point to a node that was active while this method was running.
569 */
570 private final void updateHead() {
571 // Either head already points to an active node, or we keep
572 // trying to cas it to the first node until it does.
573 Node<E> h, p, q;
574 restartFromHead:
575 while ((h = head).item == null && (p = h.prev) != null) {
576 for (;;) {
577 if ((q = p.prev) == null ||
578 (q = (p = q).prev) == null) {
579 // It is possible that p is PREV_TERMINATOR,
580 // but if so, the CAS is guaranteed to fail.
581 if (casHead(h, p))
582 return;
583 else
584 continue restartFromHead;
585 }
586 else if (h != head)
587 continue restartFromHead;
588 else
589 p = q;
590 }
591 }
592 }
593
594 /**
595 * Guarantees that any node which was unlinked before a call to
596 * this method will be unreachable from tail after it returns.
597 * Does not guarantee to eliminate slack, only that tail will
598 * point to a node that was active while this method was running.
599 */
600 private final void updateTail() {
601 // Either tail already points to an active node, or we keep
602 // trying to cas it to the last node until it does.
603 Node<E> t, p, q;
604 restartFromTail:
605 while ((t = tail).item == null && (p = t.next) != null) {
606 for (;;) {
607 if ((q = p.next) == null ||
608 (q = (p = q).next) == null) {
609 // It is possible that p is NEXT_TERMINATOR,
610 // but if so, the CAS is guaranteed to fail.
611 if (casTail(t, p))
612 return;
613 else
614 continue restartFromTail;
615 }
616 else if (t != tail)
617 continue restartFromTail;
618 else
619 p = q;
620 }
621 }
622 }
623
624 private void skipDeletedPredecessors(Node<E> x) {
625 whileActive:
626 do {
627 Node<E> prev = x.prev;
628 // assert prev != null;
629 // assert x != NEXT_TERMINATOR;
630 // assert x != PREV_TERMINATOR;
631 Node<E> p = prev;
632 findActive:
633 for (;;) {
634 if (p.item != null)
635 break findActive;
636 Node<E> q = p.prev;
637 if (q == null) {
638 if (p.next == p)
639 continue whileActive;
640 break findActive;
641 }
642 else if (p == q)
643 continue whileActive;
644 else
645 p = q;
646 }
647
648 // found active CAS target
649 if (prev == p || x.casPrev(prev, p))
650 return;
651
652 } while (x.item != null || x.next == null);
653 }
654
655 private void skipDeletedSuccessors(Node<E> x) {
656 whileActive:
657 do {
658 Node<E> next = x.next;
659 // assert next != null;
660 // assert x != NEXT_TERMINATOR;
661 // assert x != PREV_TERMINATOR;
662 Node<E> p = next;
663 findActive:
664 for (;;) {
665 if (p.item != null)
666 break findActive;
667 Node<E> q = p.next;
668 if (q == null) {
669 if (p.prev == p)
670 continue whileActive;
671 break findActive;
672 }
673 else if (p == q)
674 continue whileActive;
675 else
676 p = q;
677 }
678
679 // found active CAS target
680 if (next == p || x.casNext(next, p))
681 return;
682
683 } while (x.item != null || x.prev == null);
684 }
685
686 /**
687 * Returns the successor of p, or the first node if p.next has been
688 * linked to self, which will only be true if traversing with a
689 * stale pointer that is now off the list.
690 */
691 final Node<E> succ(Node<E> p) {
692 // TODO: should we skip deleted nodes here?
693 Node<E> q = p.next;
694 return (p == q) ? first() : q;
695 }
696
697 /**
698 * Returns the predecessor of p, or the last node if p.prev has been
699 * linked to self, which will only be true if traversing with a
700 * stale pointer that is now off the list.
701 */
702 final Node<E> pred(Node<E> p) {
703 if (p == (p = p.prev))
704 p = last();
705 return p;
706 }
707
708 /**
709 * Returns the first node, the unique node p for which:
710 * p.prev == null && p.next != p
711 * The returned node may or may not be logically deleted.
712 * Guarantees that head is set to the returned node.
713 */
714 Node<E> first() {
715 restartFromHead:
716 for (;;)
717 for (Node<E> h = head, p = h, q;;) {
718 if ((q = p.prev) != null &&
719 (q = (p = q).prev) != null)
720 // Check for head updates every other hop.
721 // If p == q, we are sure to follow head instead.
722 p = (h != (h = head)) ? h : q;
723 else if (p == h
724 // It is possible that p is PREV_TERMINATOR,
725 // but if so, the CAS is guaranteed to fail.
726 || casHead(h, p))
727 return p;
728 else
729 continue restartFromHead;
730 }
731 }
732
733 /**
734 * Returns the last node, the unique node p for which:
735 * p.next == null && p.prev != p
736 * The returned node may or may not be logically deleted.
737 * Guarantees that tail is set to the returned node.
738 */
739 Node<E> last() {
740 restartFromTail:
741 for (;;)
742 for (Node<E> t = tail, p = t, q;;) {
743 if ((q = p.next) != null &&
744 (q = (p = q).next) != null)
745 // Check for tail updates every other hop.
746 // If p == q, we are sure to follow tail instead.
747 p = (t != (t = tail)) ? t : q;
748 else if (p == t
749 // It is possible that p is NEXT_TERMINATOR,
750 // but if so, the CAS is guaranteed to fail.
751 || casTail(t, p))
752 return p;
753 else
754 continue restartFromTail;
755 }
756 }
757
758 // Minor convenience utilities
759
760 /**
761 * Returns element unless it is null, in which case throws
762 * NoSuchElementException.
763 *
764 * @param v the element
765 * @return the element
766 */
767 private E screenNullResult(E v) {
768 if (v == null)
769 throw new NoSuchElementException();
770 return v;
771 }
772
773 /**
774 * Constructs an empty deque.
775 */
776 public ConcurrentLinkedDeque() {
777 head = tail = new Node<E>(null);
778 }
779
780 /**
781 * Constructs a deque initially containing the elements of
782 * the given collection, added in traversal order of the
783 * collection's iterator.
784 *
785 * @param c the collection of elements to initially contain
786 * @throws NullPointerException if the specified collection or any
787 * of its elements are null
788 */
789 public ConcurrentLinkedDeque(Collection<? extends E> c) {
790 // Copy c into a private chain of Nodes
791 Node<E> h = null, t = null;
792 for (E e : c) {
793 Node<E> newNode = new Node<E>(Objects.requireNonNull(e));
794 if (h == null)
795 h = t = newNode;
796 else {
797 t.lazySetNext(newNode);
798 newNode.lazySetPrev(t);
799 t = newNode;
800 }
801 }
802 initHeadTail(h, t);
803 }
804
805 /**
806 * Initializes head and tail, ensuring invariants hold.
807 */
808 private void initHeadTail(Node<E> h, Node<E> t) {
809 if (h == t) {
810 if (h == null)
811 h = t = new Node<E>(null);
812 else {
813 // Avoid edge case of a single Node with non-null item.
814 Node<E> newNode = new Node<E>(null);
815 t.lazySetNext(newNode);
816 newNode.lazySetPrev(t);
817 t = newNode;
818 }
819 }
820 head = h;
821 tail = t;
822 }
823
824 /**
825 * Inserts the specified element at the front of this deque.
826 * As the deque is unbounded, this method will never throw
827 * {@link IllegalStateException}.
828 *
829 * @throws NullPointerException if the specified element is null
830 */
831 public void addFirst(E e) {
832 linkFirst(e);
833 }
834
835 /**
836 * Inserts the specified element at the end of this deque.
837 * As the deque is unbounded, this method will never throw
838 * {@link IllegalStateException}.
839 *
840 * <p>This method is equivalent to {@link #add}.
841 *
842 * @throws NullPointerException if the specified element is null
843 */
844 public void addLast(E e) {
845 linkLast(e);
846 }
847
848 /**
849 * Inserts the specified element at the front of this deque.
850 * As the deque is unbounded, this method will never return {@code false}.
851 *
852 * @return {@code true} (as specified by {@link Deque#offerFirst})
853 * @throws NullPointerException if the specified element is null
854 */
855 public boolean offerFirst(E e) {
856 linkFirst(e);
857 return true;
858 }
859
860 /**
861 * Inserts the specified element at the end of this deque.
862 * As the deque is unbounded, this method will never return {@code false}.
863 *
864 * <p>This method is equivalent to {@link #add}.
865 *
866 * @return {@code true} (as specified by {@link Deque#offerLast})
867 * @throws NullPointerException if the specified element is null
868 */
869 public boolean offerLast(E e) {
870 linkLast(e);
871 return true;
872 }
873
874 public E peekFirst() {
875 restart: for (;;) {
876 E item;
877 Node<E> first = first(), p = first;
878 while ((item = p.item) == null) {
879 if (p == (p = p.next)) continue restart;
880 if (p == null)
881 break;
882 }
883 // recheck for linearizability
884 if (first.prev != null) continue restart;
885 return item;
886 }
887 }
888
889 public E peekLast() {
890 restart: for (;;) {
891 E item;
892 Node<E> last = last(), p = last;
893 while ((item = p.item) == null) {
894 if (p == (p = p.prev)) continue restart;
895 if (p == null)
896 break;
897 }
898 // recheck for linearizability
899 if (last.next != null) continue restart;
900 return item;
901 }
902 }
903
904 /**
905 * @throws NoSuchElementException {@inheritDoc}
906 */
907 public E getFirst() {
908 return screenNullResult(peekFirst());
909 }
910
911 /**
912 * @throws NoSuchElementException {@inheritDoc}
913 */
914 public E getLast() {
915 return screenNullResult(peekLast());
916 }
917
918 public E pollFirst() {
919 restart: for (;;) {
920 for (Node<E> first = first(), p = first;;) {
921 final E item;
922 if ((item = p.item) != null) {
923 // recheck for linearizability
924 if (first.prev != null) continue restart;
925 if (p.casItem(item, null)) {
926 unlink(p);
927 return item;
928 }
929 }
930 if (p == (p = p.next)) continue restart;
931 if (p == null) {
932 if (first.prev != null) continue restart;
933 return null;
934 }
935 }
936 }
937 }
938
939 public E pollLast() {
940 restart: for (;;) {
941 for (Node<E> last = last(), p = last;;) {
942 final E item;
943 if ((item = p.item) != null) {
944 // recheck for linearizability
945 if (last.next != null) continue restart;
946 if (p.casItem(item, null)) {
947 unlink(p);
948 return item;
949 }
950 }
951 if (p == (p = p.prev)) continue restart;
952 if (p == null) {
953 if (last.next != null) continue restart;
954 return null;
955 }
956 }
957 }
958 }
959
960 /**
961 * @throws NoSuchElementException {@inheritDoc}
962 */
963 public E removeFirst() {
964 return screenNullResult(pollFirst());
965 }
966
967 /**
968 * @throws NoSuchElementException {@inheritDoc}
969 */
970 public E removeLast() {
971 return screenNullResult(pollLast());
972 }
973
974 // *** Queue and stack methods ***
975
976 /**
977 * Inserts the specified element at the tail of this deque.
978 * As the deque is unbounded, this method will never return {@code false}.
979 *
980 * @return {@code true} (as specified by {@link Queue#offer})
981 * @throws NullPointerException if the specified element is null
982 */
983 public boolean offer(E e) {
984 return offerLast(e);
985 }
986
987 /**
988 * Inserts the specified element at the tail of this deque.
989 * As the deque is unbounded, this method will never throw
990 * {@link IllegalStateException} or return {@code false}.
991 *
992 * @return {@code true} (as specified by {@link Collection#add})
993 * @throws NullPointerException if the specified element is null
994 */
995 public boolean add(E e) {
996 return offerLast(e);
997 }
998
999 public E poll() { return pollFirst(); }
1000 public E peek() { return peekFirst(); }
1001
1002 /**
1003 * @throws NoSuchElementException {@inheritDoc}
1004 */
1005 public E remove() { return removeFirst(); }
1006
1007 /**
1008 * @throws NoSuchElementException {@inheritDoc}
1009 */
1010 public E pop() { return removeFirst(); }
1011
1012 /**
1013 * @throws NoSuchElementException {@inheritDoc}
1014 */
1015 public E element() { return getFirst(); }
1016
1017 /**
1018 * @throws NullPointerException {@inheritDoc}
1019 */
1020 public void push(E e) { addFirst(e); }
1021
1022 /**
1023 * Removes the first occurrence of the specified element from this deque.
1024 * If the deque does not contain the element, it is unchanged.
1025 * More formally, removes the first element {@code e} such that
1026 * {@code o.equals(e)} (if such an element exists).
1027 * Returns {@code true} if this deque contained the specified element
1028 * (or equivalently, if this deque changed as a result of the call).
1029 *
1030 * @param o element to be removed from this deque, if present
1031 * @return {@code true} if the deque contained the specified element
1032 * @throws NullPointerException if the specified element is null
1033 */
1034 public boolean removeFirstOccurrence(Object o) {
1035 Objects.requireNonNull(o);
1036 for (Node<E> p = first(); p != null; p = succ(p)) {
1037 E item = p.item;
1038 if (item != null && o.equals(item) && p.casItem(item, null)) {
1039 unlink(p);
1040 return true;
1041 }
1042 }
1043 return false;
1044 }
1045
1046 /**
1047 * Removes the last occurrence of the specified element from this deque.
1048 * If the deque does not contain the element, it is unchanged.
1049 * More formally, removes the last element {@code e} such that
1050 * {@code o.equals(e)} (if such an element exists).
1051 * Returns {@code true} if this deque contained the specified element
1052 * (or equivalently, if this deque changed as a result of the call).
1053 *
1054 * @param o element to be removed from this deque, if present
1055 * @return {@code true} if the deque contained the specified element
1056 * @throws NullPointerException if the specified element is null
1057 */
1058 public boolean removeLastOccurrence(Object o) {
1059 Objects.requireNonNull(o);
1060 for (Node<E> p = last(); p != null; p = pred(p)) {
1061 E item = p.item;
1062 if (item != null && o.equals(item) && p.casItem(item, null)) {
1063 unlink(p);
1064 return true;
1065 }
1066 }
1067 return false;
1068 }
1069
1070 /**
1071 * Returns {@code true} if this deque contains the specified element.
1072 * More formally, returns {@code true} if and only if this deque contains
1073 * at least one element {@code e} such that {@code o.equals(e)}.
1074 *
1075 * @param o element whose presence in this deque is to be tested
1076 * @return {@code true} if this deque contains the specified element
1077 */
1078 public boolean contains(Object o) {
1079 if (o != null) {
1080 for (Node<E> p = first(); p != null; p = succ(p)) {
1081 E item = p.item;
1082 if (item != null && o.equals(item))
1083 return true;
1084 }
1085 }
1086 return false;
1087 }
1088
1089 /**
1090 * Returns {@code true} if this collection contains no elements.
1091 *
1092 * @return {@code true} if this collection contains no elements
1093 */
1094 public boolean isEmpty() {
1095 return peekFirst() == null;
1096 }
1097
1098 /**
1099 * Returns the number of elements in this deque. If this deque
1100 * contains more than {@code Integer.MAX_VALUE} elements, it
1101 * returns {@code Integer.MAX_VALUE}.
1102 *
1103 * <p>Beware that, unlike in most collections, this method is
1104 * <em>NOT</em> a constant-time operation. Because of the
1105 * asynchronous nature of these deques, determining the current
1106 * number of elements requires traversing them all to count them.
1107 * Additionally, it is possible for the size to change during
1108 * execution of this method, in which case the returned result
1109 * will be inaccurate. Thus, this method is typically not very
1110 * useful in concurrent applications.
1111 *
1112 * @return the number of elements in this deque
1113 */
1114 public int size() {
1115 restartFromHead: for (;;) {
1116 int count = 0;
1117 for (Node<E> p = first(); p != null;) {
1118 if (p.item != null)
1119 if (++count == Integer.MAX_VALUE)
1120 break; // @see Collection.size()
1121 if (p == (p = p.next))
1122 continue restartFromHead;
1123 }
1124 return count;
1125 }
1126 }
1127
1128 /**
1129 * Removes the first occurrence of the specified element from this deque.
1130 * If the deque does not contain the element, it is unchanged.
1131 * More formally, removes the first element {@code e} such that
1132 * {@code o.equals(e)} (if such an element exists).
1133 * Returns {@code true} if this deque contained the specified element
1134 * (or equivalently, if this deque changed as a result of the call).
1135 *
1136 * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1137 *
1138 * @param o element to be removed from this deque, if present
1139 * @return {@code true} if the deque contained the specified element
1140 * @throws NullPointerException if the specified element is null
1141 */
1142 public boolean remove(Object o) {
1143 return removeFirstOccurrence(o);
1144 }
1145
1146 /**
1147 * Appends all of the elements in the specified collection to the end of
1148 * this deque, in the order that they are returned by the specified
1149 * collection's iterator. Attempts to {@code addAll} of a deque to
1150 * itself result in {@code IllegalArgumentException}.
1151 *
1152 * @param c the elements to be inserted into this deque
1153 * @return {@code true} if this deque changed as a result of the call
1154 * @throws NullPointerException if the specified collection or any
1155 * of its elements are null
1156 * @throws IllegalArgumentException if the collection is this deque
1157 */
1158 public boolean addAll(Collection<? extends E> c) {
1159 if (c == this)
1160 // As historically specified in AbstractQueue#addAll
1161 throw new IllegalArgumentException();
1162
1163 // Copy c into a private chain of Nodes
1164 Node<E> beginningOfTheEnd = null, last = null;
1165 for (E e : c) {
1166 Node<E> newNode = new Node<E>(Objects.requireNonNull(e));
1167 if (beginningOfTheEnd == null)
1168 beginningOfTheEnd = last = newNode;
1169 else {
1170 last.lazySetNext(newNode);
1171 newNode.lazySetPrev(last);
1172 last = newNode;
1173 }
1174 }
1175 if (beginningOfTheEnd == null)
1176 return false;
1177
1178 // Atomically append the chain at the tail of this collection
1179 restartFromTail:
1180 for (;;)
1181 for (Node<E> t = tail, p = t, q;;) {
1182 if ((q = p.next) != null &&
1183 (q = (p = q).next) != null)
1184 // Check for tail updates every other hop.
1185 // If p == q, we are sure to follow tail instead.
1186 p = (t != (t = tail)) ? t : q;
1187 else if (p.prev == p) // NEXT_TERMINATOR
1188 continue restartFromTail;
1189 else {
1190 // p is last node
1191 beginningOfTheEnd.lazySetPrev(p); // CAS piggyback
1192 if (p.casNext(null, beginningOfTheEnd)) {
1193 // Successful CAS is the linearization point
1194 // for all elements to be added to this deque.
1195 if (!casTail(t, last)) {
1196 // Try a little harder to update tail,
1197 // since we may be adding many elements.
1198 t = tail;
1199 if (last.next == null)
1200 casTail(t, last);
1201 }
1202 return true;
1203 }
1204 // Lost CAS race to another thread; re-read next
1205 }
1206 }
1207 }
1208
1209 /**
1210 * Removes all of the elements from this deque.
1211 */
1212 public void clear() {
1213 while (pollFirst() != null)
1214 ;
1215 }
1216
1217 public String toString() {
1218 String[] a = null;
1219 restartFromHead: for (;;) {
1220 int charLength = 0;
1221 int size = 0;
1222 for (Node<E> p = first(); p != null;) {
1223 E item = p.item;
1224 if (item != null) {
1225 if (a == null)
1226 a = new String[4];
1227 else if (size == a.length)
1228 a = Arrays.copyOf(a, 2 * size);
1229 String s = item.toString();
1230 a[size++] = s;
1231 charLength += s.length();
1232 }
1233 if (p == (p = p.next))
1234 continue restartFromHead;
1235 }
1236
1237 if (size == 0)
1238 return "[]";
1239
1240 return Helpers.toString(a, size, charLength);
1241 }
1242 }
1243
1244 private Object[] toArrayInternal(Object[] a) {
1245 Object[] x = a;
1246 restartFromHead: for (;;) {
1247 int size = 0;
1248 for (Node<E> p = first(); p != null;) {
1249 E item = p.item;
1250 if (item != null) {
1251 if (x == null)
1252 x = new Object[4];
1253 else if (size == x.length)
1254 x = Arrays.copyOf(x, 2 * (size + 4));
1255 x[size++] = item;
1256 }
1257 if (p == (p = p.next))
1258 continue restartFromHead;
1259 }
1260 if (x == null)
1261 return new Object[0];
1262 else if (a != null && size <= a.length) {
1263 if (a != x)
1264 System.arraycopy(x, 0, a, 0, size);
1265 if (size < a.length)
1266 a[size] = null;
1267 return a;
1268 }
1269 return (size == x.length) ? x : Arrays.copyOf(x, size);
1270 }
1271 }
1272
1273 /**
1274 * Returns an array containing all of the elements in this deque, in
1275 * proper sequence (from first to last element).
1276 *
1277 * <p>The returned array will be "safe" in that no references to it are
1278 * maintained by this deque. (In other words, this method must allocate
1279 * a new array). The caller is thus free to modify the returned array.
1280 *
1281 * <p>This method acts as bridge between array-based and collection-based
1282 * APIs.
1283 *
1284 * @return an array containing all of the elements in this deque
1285 */
1286 public Object[] toArray() {
1287 return toArrayInternal(null);
1288 }
1289
1290 /**
1291 * Returns an array containing all of the elements in this deque,
1292 * in proper sequence (from first to last element); the runtime
1293 * type of the returned array is that of the specified array. If
1294 * the deque fits in the specified array, it is returned therein.
1295 * Otherwise, a new array is allocated with the runtime type of
1296 * the specified array and the size of this deque.
1297 *
1298 * <p>If this deque fits in the specified array with room to spare
1299 * (i.e., the array has more elements than this deque), the element in
1300 * the array immediately following the end of the deque is set to
1301 * {@code null}.
1302 *
1303 * <p>Like the {@link #toArray()} method, this method acts as
1304 * bridge between array-based and collection-based APIs. Further,
1305 * this method allows precise control over the runtime type of the
1306 * output array, and may, under certain circumstances, be used to
1307 * save allocation costs.
1308 *
1309 * <p>Suppose {@code x} is a deque known to contain only strings.
1310 * The following code can be used to dump the deque into a newly
1311 * allocated array of {@code String}:
1312 *
1313 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1314 *
1315 * Note that {@code toArray(new Object[0])} is identical in function to
1316 * {@code toArray()}.
1317 *
1318 * @param a the array into which the elements of the deque are to
1319 * be stored, if it is big enough; otherwise, a new array of the
1320 * same runtime type is allocated for this purpose
1321 * @return an array containing all of the elements in this deque
1322 * @throws ArrayStoreException if the runtime type of the specified array
1323 * is not a supertype of the runtime type of every element in
1324 * this deque
1325 * @throws NullPointerException if the specified array is null
1326 */
1327 @SuppressWarnings("unchecked")
1328 public <T> T[] toArray(T[] a) {
1329 if (a == null) throw new NullPointerException();
1330 return (T[]) toArrayInternal(a);
1331 }
1332
1333 /**
1334 * Returns an iterator over the elements in this deque in proper sequence.
1335 * The elements will be returned in order from first (head) to last (tail).
1336 *
1337 * <p>The returned iterator is
1338 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1339 *
1340 * @return an iterator over the elements in this deque in proper sequence
1341 */
1342 public Iterator<E> iterator() {
1343 return new Itr();
1344 }
1345
1346 /**
1347 * Returns an iterator over the elements in this deque in reverse
1348 * sequential order. The elements will be returned in order from
1349 * last (tail) to first (head).
1350 *
1351 * <p>The returned iterator is
1352 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1353 *
1354 * @return an iterator over the elements in this deque in reverse order
1355 */
1356 public Iterator<E> descendingIterator() {
1357 return new DescendingItr();
1358 }
1359
1360 private abstract class AbstractItr implements Iterator<E> {
1361 /**
1362 * Next node to return item for.
1363 */
1364 private Node<E> nextNode;
1365
1366 /**
1367 * nextItem holds on to item fields because once we claim
1368 * that an element exists in hasNext(), we must return it in
1369 * the following next() call even if it was in the process of
1370 * being removed when hasNext() was called.
1371 */
1372 private E nextItem;
1373
1374 /**
1375 * Node returned by most recent call to next. Needed by remove.
1376 * Reset to null if this element is deleted by a call to remove.
1377 */
1378 private Node<E> lastRet;
1379
1380 abstract Node<E> startNode();
1381 abstract Node<E> nextNode(Node<E> p);
1382
1383 AbstractItr() {
1384 advance();
1385 }
1386
1387 /**
1388 * Sets nextNode and nextItem to next valid node, or to null
1389 * if no such.
1390 */
1391 private void advance() {
1392 lastRet = nextNode;
1393
1394 Node<E> p = (nextNode == null) ? startNode() : nextNode(nextNode);
1395 for (;; p = nextNode(p)) {
1396 if (p == null) {
1397 // might be at active end or TERMINATOR node; both are OK
1398 nextNode = null;
1399 nextItem = null;
1400 break;
1401 }
1402 E item = p.item;
1403 if (item != null) {
1404 nextNode = p;
1405 nextItem = item;
1406 break;
1407 }
1408 }
1409 }
1410
1411 public boolean hasNext() {
1412 return nextItem != null;
1413 }
1414
1415 public E next() {
1416 E item = nextItem;
1417 if (item == null) throw new NoSuchElementException();
1418 advance();
1419 return item;
1420 }
1421
1422 public void remove() {
1423 Node<E> l = lastRet;
1424 if (l == null) throw new IllegalStateException();
1425 l.item = null;
1426 unlink(l);
1427 lastRet = null;
1428 }
1429 }
1430
1431 /** Forward iterator */
1432 private class Itr extends AbstractItr {
1433 Node<E> startNode() { return first(); }
1434 Node<E> nextNode(Node<E> p) { return succ(p); }
1435 }
1436
1437 /** Descending iterator */
1438 private class DescendingItr extends AbstractItr {
1439 Node<E> startNode() { return last(); }
1440 Node<E> nextNode(Node<E> p) { return pred(p); }
1441 }
1442
1443 /** A customized variant of Spliterators.IteratorSpliterator */
1444 static final class CLDSpliterator<E> implements Spliterator<E> {
1445 static final int MAX_BATCH = 1 << 25; // max batch array size;
1446 final ConcurrentLinkedDeque<E> queue;
1447 Node<E> current; // current node; null until initialized
1448 int batch; // batch size for splits
1449 boolean exhausted; // true when no more nodes
1450 CLDSpliterator(ConcurrentLinkedDeque<E> queue) {
1451 this.queue = queue;
1452 }
1453
1454 public Spliterator<E> trySplit() {
1455 Node<E> p;
1456 final ConcurrentLinkedDeque<E> q = this.queue;
1457 int b = batch;
1458 int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
1459 if (!exhausted &&
1460 ((p = current) != null || (p = q.first()) != null)) {
1461 if (p.item == null && p == (p = p.next))
1462 current = p = q.first();
1463 if (p != null && p.next != null) {
1464 Object[] a = new Object[n];
1465 int i = 0;
1466 do {
1467 if ((a[i] = p.item) != null)
1468 ++i;
1469 if (p == (p = p.next))
1470 p = q.first();
1471 } while (p != null && i < n);
1472 if ((current = p) == null)
1473 exhausted = true;
1474 if (i > 0) {
1475 batch = i;
1476 return Spliterators.spliterator
1477 (a, 0, i, (Spliterator.ORDERED |
1478 Spliterator.NONNULL |
1479 Spliterator.CONCURRENT));
1480 }
1481 }
1482 }
1483 return null;
1484 }
1485
1486 public void forEachRemaining(Consumer<? super E> action) {
1487 Node<E> p;
1488 if (action == null) throw new NullPointerException();
1489 final ConcurrentLinkedDeque<E> q = this.queue;
1490 if (!exhausted &&
1491 ((p = current) != null || (p = q.first()) != null)) {
1492 exhausted = true;
1493 do {
1494 E e = p.item;
1495 if (p == (p = p.next))
1496 p = q.first();
1497 if (e != null)
1498 action.accept(e);
1499 } while (p != null);
1500 }
1501 }
1502
1503 public boolean tryAdvance(Consumer<? super E> action) {
1504 Node<E> p;
1505 if (action == null) throw new NullPointerException();
1506 final ConcurrentLinkedDeque<E> q = this.queue;
1507 if (!exhausted &&
1508 ((p = current) != null || (p = q.first()) != null)) {
1509 E e;
1510 do {
1511 e = p.item;
1512 if (p == (p = p.next))
1513 p = q.first();
1514 } while (e == null && p != null);
1515 if ((current = p) == null)
1516 exhausted = true;
1517 if (e != null) {
1518 action.accept(e);
1519 return true;
1520 }
1521 }
1522 return false;
1523 }
1524
1525 public long estimateSize() { return Long.MAX_VALUE; }
1526
1527 public int characteristics() {
1528 return Spliterator.ORDERED | Spliterator.NONNULL |
1529 Spliterator.CONCURRENT;
1530 }
1531 }
1532
1533 /**
1534 * Returns a {@link Spliterator} over the elements in this deque.
1535 *
1536 * <p>The returned spliterator is
1537 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1538 *
1539 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1540 * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1541 *
1542 * @implNote
1543 * The {@code Spliterator} implements {@code trySplit} to permit limited
1544 * parallelism.
1545 *
1546 * @return a {@code Spliterator} over the elements in this deque
1547 * @since 1.8
1548 */
1549 public Spliterator<E> spliterator() {
1550 return new CLDSpliterator<E>(this);
1551 }
1552
1553 /**
1554 * Saves this deque to a stream (that is, serializes it).
1555 *
1556 * @param s the stream
1557 * @throws java.io.IOException if an I/O error occurs
1558 * @serialData All of the elements (each an {@code E}) in
1559 * the proper order, followed by a null
1560 */
1561 private void writeObject(java.io.ObjectOutputStream s)
1562 throws java.io.IOException {
1563
1564 // Write out any hidden stuff
1565 s.defaultWriteObject();
1566
1567 // Write out all elements in the proper order.
1568 for (Node<E> p = first(); p != null; p = succ(p)) {
1569 E item = p.item;
1570 if (item != null)
1571 s.writeObject(item);
1572 }
1573
1574 // Use trailing null as sentinel
1575 s.writeObject(null);
1576 }
1577
1578 /**
1579 * Reconstitutes this deque from a stream (that is, deserializes it).
1580 * @param s the stream
1581 * @throws ClassNotFoundException if the class of a serialized object
1582 * could not be found
1583 * @throws java.io.IOException if an I/O error occurs
1584 */
1585 private void readObject(java.io.ObjectInputStream s)
1586 throws java.io.IOException, ClassNotFoundException {
1587 s.defaultReadObject();
1588
1589 // Read in elements until trailing null sentinel found
1590 Node<E> h = null, t = null;
1591 for (Object item; (item = s.readObject()) != null; ) {
1592 @SuppressWarnings("unchecked")
1593 Node<E> newNode = new Node<E>((E) item);
1594 if (h == null)
1595 h = t = newNode;
1596 else {
1597 t.lazySetNext(newNode);
1598 newNode.lazySetPrev(t);
1599 t = newNode;
1600 }
1601 }
1602 initHeadTail(h, t);
1603 }
1604
1605 private boolean casHead(Node<E> cmp, Node<E> val) {
1606 return U.compareAndSwapObject(this, HEAD, cmp, val);
1607 }
1608
1609 private boolean casTail(Node<E> cmp, Node<E> val) {
1610 return U.compareAndSwapObject(this, TAIL, cmp, val);
1611 }
1612
1613 // Unsafe mechanics
1614
1615 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1616 private static final long HEAD;
1617 private static final long TAIL;
1618 static {
1619 PREV_TERMINATOR = new Node<Object>();
1620 PREV_TERMINATOR.next = PREV_TERMINATOR;
1621 NEXT_TERMINATOR = new Node<Object>();
1622 NEXT_TERMINATOR.prev = NEXT_TERMINATOR;
1623 try {
1624 HEAD = U.objectFieldOffset
1625 (ConcurrentLinkedDeque.class.getDeclaredField("head"));
1626 TAIL = U.objectFieldOffset
1627 (ConcurrentLinkedDeque.class.getDeclaredField("tail"));
1628 } catch (ReflectiveOperationException e) {
1629 throw new Error(e);
1630 }
1631 }
1632 }