ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk8/java/util/concurrent/ConcurrentLinkedQueue.java
Revision: 1.2
Committed: Tue Jan 3 04:34:23 2017 UTC (7 years, 4 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.1: +240 -125 lines
Log Message:
backport from src/main

File Contents

# Content
1 /*
2 * Written by Doug Lea and Martin Buchholz with assistance from members of
3 * JCP JSR-166 Expert Group and released to the public domain, as explained
4 * at http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractQueue;
10 import java.util.Arrays;
11 import java.util.Collection;
12 import java.util.Iterator;
13 import java.util.NoSuchElementException;
14 import java.util.Objects;
15 import java.util.Queue;
16 import java.util.Spliterator;
17 import java.util.Spliterators;
18 import java.util.function.Consumer;
19 import java.util.function.Predicate;
20
21 /**
22 * An unbounded thread-safe {@linkplain Queue queue} based on linked nodes.
23 * This queue orders elements FIFO (first-in-first-out).
24 * The <em>head</em> of the queue is that element that has been on the
25 * queue the longest time.
26 * The <em>tail</em> of the queue is that element that has been on the
27 * queue the shortest time. New elements
28 * are inserted at the tail of the queue, and the queue retrieval
29 * operations obtain elements at the head of the queue.
30 * A {@code ConcurrentLinkedQueue} is an appropriate choice when
31 * many threads will share access to a common collection.
32 * Like most other concurrent collection implementations, this class
33 * does not permit the use of {@code null} elements.
34 *
35 * <p>This implementation employs an efficient <em>non-blocking</em>
36 * algorithm based on one described in
37 * <a href="http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf">
38 * Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue
39 * Algorithms</a> by Maged M. Michael and Michael L. Scott.
40 *
41 * <p>Iterators are <i>weakly consistent</i>, returning elements
42 * reflecting the state of the queue at some point at or since the
43 * creation of the iterator. They do <em>not</em> throw {@link
44 * java.util.ConcurrentModificationException}, and may proceed concurrently
45 * with other operations. Elements contained in the queue since the creation
46 * of the iterator will be returned exactly once.
47 *
48 * <p>Beware that, unlike in most collections, the {@code size} method
49 * is <em>NOT</em> a constant-time operation. Because of the
50 * asynchronous nature of these queues, determining the current number
51 * of elements requires a traversal of the elements, and so may report
52 * inaccurate results if this collection is modified during traversal.
53 *
54 * <p>Bulk operations that add, remove, or examine multiple elements,
55 * such as {@link #addAll}, {@link #removeIf} or {@link #forEach},
56 * are <em>not</em> guaranteed to be performed atomically.
57 * For example, a {@code forEach} traversal concurrent with an {@code
58 * addAll} operation might observe only some of the added elements.
59 *
60 * <p>This class and its iterator implement all of the <em>optional</em>
61 * methods of the {@link Queue} and {@link Iterator} interfaces.
62 *
63 * <p>Memory consistency effects: As with other concurrent
64 * collections, actions in a thread prior to placing an object into a
65 * {@code ConcurrentLinkedQueue}
66 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
67 * actions subsequent to the access or removal of that element from
68 * the {@code ConcurrentLinkedQueue} in another thread.
69 *
70 * <p>This class is a member of the
71 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
72 * Java Collections Framework</a>.
73 *
74 * @since 1.5
75 * @author Doug Lea
76 * @param <E> the type of elements held in this queue
77 */
78 public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>
79 implements Queue<E>, java.io.Serializable {
80 private static final long serialVersionUID = 196745693267521676L;
81
82 /*
83 * This is a modification of the Michael & Scott algorithm,
84 * adapted for a garbage-collected environment, with support for
85 * interior node deletion (to support e.g. remove(Object)). For
86 * explanation, read the paper.
87 *
88 * Note that like most non-blocking algorithms in this package,
89 * this implementation relies on the fact that in garbage
90 * collected systems, there is no possibility of ABA problems due
91 * to recycled nodes, so there is no need to use "counted
92 * pointers" or related techniques seen in versions used in
93 * non-GC'ed settings.
94 *
95 * The fundamental invariants are:
96 * - There is exactly one (last) Node with a null next reference,
97 * which is CASed when enqueueing. This last Node can be
98 * reached in O(1) time from tail, but tail is merely an
99 * optimization - it can always be reached in O(N) time from
100 * head as well.
101 * - The elements contained in the queue are the non-null items in
102 * Nodes that are reachable from head. CASing the item
103 * reference of a Node to null atomically removes it from the
104 * queue. Reachability of all elements from head must remain
105 * true even in the case of concurrent modifications that cause
106 * head to advance. A dequeued Node may remain in use
107 * indefinitely due to creation of an Iterator or simply a
108 * poll() that has lost its time slice.
109 *
110 * The above might appear to imply that all Nodes are GC-reachable
111 * from a predecessor dequeued Node. That would cause two problems:
112 * - allow a rogue Iterator to cause unbounded memory retention
113 * - cause cross-generational linking of old Nodes to new Nodes if
114 * a Node was tenured while live, which generational GCs have a
115 * hard time dealing with, causing repeated major collections.
116 * However, only non-deleted Nodes need to be reachable from
117 * dequeued Nodes, and reachability does not necessarily have to
118 * be of the kind understood by the GC. We use the trick of
119 * linking a Node that has just been dequeued to itself. Such a
120 * self-link implicitly means to advance to head.
121 *
122 * Both head and tail are permitted to lag. In fact, failing to
123 * update them every time one could is a significant optimization
124 * (fewer CASes). As with LinkedTransferQueue (see the internal
125 * documentation for that class), we use a slack threshold of two;
126 * that is, we update head/tail when the current pointer appears
127 * to be two or more steps away from the first/last node.
128 *
129 * Since head and tail are updated concurrently and independently,
130 * it is possible for tail to lag behind head (why not)?
131 *
132 * CASing a Node's item reference to null atomically removes the
133 * element from the queue, leaving a "dead" node that should later
134 * be unlinked (but unlinking is merely an optimization).
135 * Interior element removal methods (other than Iterator.remove())
136 * keep track of the predecessor node during traversal so that the
137 * node can be CAS-unlinked. Some traversal methods try to unlink
138 * any deleted nodes encountered during traversal. See comments
139 * in bulkRemove.
140 *
141 * When constructing a Node (before enqueuing it) we avoid paying
142 * for a volatile write to item. This allows the cost of enqueue
143 * to be "one-and-a-half" CASes.
144 *
145 * Both head and tail may or may not point to a Node with a
146 * non-null item. If the queue is empty, all items must of course
147 * be null. Upon creation, both head and tail refer to a dummy
148 * Node with null item. Both head and tail are only updated using
149 * CAS, so they never regress, although again this is merely an
150 * optimization.
151 */
152
153 static class Node<E> {
154 volatile E item;
155 volatile Node<E> next;
156 }
157
158 /**
159 * Returns a new node holding item. Uses relaxed write because item
160 * can only be seen after piggy-backing publication via CAS.
161 */
162 static <E> Node<E> newNode(E item) {
163 Node<E> node = new Node<E>();
164 U.putObject(node, ITEM, item);
165 return node;
166 }
167
168 static <E> boolean casItem(Node<E> node, E cmp, E val) {
169 return U.compareAndSwapObject(node, ITEM, cmp, val);
170 }
171
172 static <E> void lazySetNext(Node<E> node, Node<E> val) {
173 U.putOrderedObject(node, NEXT, val);
174 }
175
176 static <E> boolean casNext(Node<E> node, Node<E> cmp, Node<E> val) {
177 return U.compareAndSwapObject(node, NEXT, cmp, val);
178 }
179
180 /**
181 * A node from which the first live (non-deleted) node (if any)
182 * can be reached in O(1) time.
183 * Invariants:
184 * - all live nodes are reachable from head via succ()
185 * - head != null
186 * - (tmp = head).next != tmp || tmp != head
187 * Non-invariants:
188 * - head.item may or may not be null.
189 * - it is permitted for tail to lag behind head, that is, for tail
190 * to not be reachable from head!
191 */
192 transient volatile Node<E> head;
193
194 /**
195 * A node from which the last node on list (that is, the unique
196 * node with node.next == null) can be reached in O(1) time.
197 * Invariants:
198 * - the last node is always reachable from tail via succ()
199 * - tail != null
200 * Non-invariants:
201 * - tail.item may or may not be null.
202 * - it is permitted for tail to lag behind head, that is, for tail
203 * to not be reachable from head!
204 * - tail.next may or may not be self-pointing to tail.
205 */
206 private transient volatile Node<E> tail;
207
208 /**
209 * Creates a {@code ConcurrentLinkedQueue} that is initially empty.
210 */
211 public ConcurrentLinkedQueue() {
212 head = tail = newNode(null);
213 }
214
215 /**
216 * Creates a {@code ConcurrentLinkedQueue}
217 * initially containing the elements of the given collection,
218 * added in traversal order of the collection's iterator.
219 *
220 * @param c the collection of elements to initially contain
221 * @throws NullPointerException if the specified collection or any
222 * of its elements are null
223 */
224 public ConcurrentLinkedQueue(Collection<? extends E> c) {
225 Node<E> h = null, t = null;
226 for (E e : c) {
227 Node<E> newNode = newNode(Objects.requireNonNull(e));
228 if (h == null)
229 h = t = newNode;
230 else {
231 lazySetNext(t, newNode);
232 t = newNode;
233 }
234 }
235 if (h == null)
236 h = t = newNode(null);
237 head = h;
238 tail = t;
239 }
240
241 // Have to override just to update the javadoc
242
243 /**
244 * Inserts the specified element at the tail of this queue.
245 * As the queue is unbounded, this method will never throw
246 * {@link IllegalStateException} or return {@code false}.
247 *
248 * @return {@code true} (as specified by {@link Collection#add})
249 * @throws NullPointerException if the specified element is null
250 */
251 public boolean add(E e) {
252 return offer(e);
253 }
254
255 /**
256 * Tries to CAS head to p. If successful, repoint old head to itself
257 * as sentinel for succ(), below.
258 */
259 final void updateHead(Node<E> h, Node<E> p) {
260 // assert h != null && p != null && (h == p || h.item == null);
261 if (h != p && casHead(h, p))
262 lazySetNext(h, h);
263 }
264
265 /**
266 * Returns the successor of p, or the head node if p.next has been
267 * linked to self, which will only be true if traversing with a
268 * stale pointer that is now off the list.
269 */
270 final Node<E> succ(Node<E> p) {
271 if (p == (p = p.next))
272 p = head;
273 return p;
274 }
275
276 /**
277 * Tries to CAS pred.next (or head, if pred is null) from c to p.
278 * Caller must ensure that we're not unlinking the trailing node.
279 */
280 private boolean tryCasSuccessor(Node<E> pred, Node<E> c, Node<E> p) {
281 // assert p != null;
282 // assert c.item == null;
283 // assert c != p;
284 if (pred != null)
285 return casNext(pred, c, p);
286 if (casHead(c, p)) {
287 lazySetNext(c, c);
288 return true;
289 }
290 return false;
291 }
292
293 /**
294 * Inserts the specified element at the tail of this queue.
295 * As the queue is unbounded, this method will never return {@code false}.
296 *
297 * @return {@code true} (as specified by {@link Queue#offer})
298 * @throws NullPointerException if the specified element is null
299 */
300 public boolean offer(E e) {
301 final Node<E> newNode = newNode(Objects.requireNonNull(e));
302
303 for (Node<E> t = tail, p = t;;) {
304 Node<E> q = p.next;
305 if (q == null) {
306 // p is last node
307 if (casNext(p, null, newNode)) {
308 // Successful CAS is the linearization point
309 // for e to become an element of this queue,
310 // and for newNode to become "live".
311 if (p != t) // hop two nodes at a time; failure is OK
312 casTail(t, newNode);
313 return true;
314 }
315 // Lost CAS race to another thread; re-read next
316 }
317 else if (p == q)
318 // We have fallen off list. If tail is unchanged, it
319 // will also be off-list, in which case we need to
320 // jump to head, from which all live nodes are always
321 // reachable. Else the new tail is a better bet.
322 p = (t != (t = tail)) ? t : head;
323 else
324 // Check for tail updates after two hops.
325 p = (p != t && t != (t = tail)) ? t : q;
326 }
327 }
328
329 public E poll() {
330 restartFromHead: for (;;) {
331 for (Node<E> h = head, p = h, q;; p = q) {
332 final E item;
333 if ((item = p.item) != null
334 && casItem(p, item, null)) {
335 // Successful CAS is the linearization point
336 // for item to be removed from this queue.
337 if (p != h) // hop two nodes at a time
338 updateHead(h, ((q = p.next) != null) ? q : p);
339 return item;
340 }
341 else if ((q = p.next) == null) {
342 updateHead(h, p);
343 return null;
344 }
345 else if (p == q)
346 continue restartFromHead;
347 }
348 }
349 }
350
351 public E peek() {
352 restartFromHead: for (;;) {
353 for (Node<E> h = head, p = h, q;; p = q) {
354 final E item;
355 if ((item = p.item) != null
356 || (q = p.next) == null) {
357 updateHead(h, p);
358 return item;
359 }
360 else if (p == q)
361 continue restartFromHead;
362 }
363 }
364 }
365
366 /**
367 * Returns the first live (non-deleted) node on list, or null if none.
368 * This is yet another variant of poll/peek; here returning the
369 * first node, not element. We could make peek() a wrapper around
370 * first(), but that would cost an extra volatile read of item,
371 * and the need to add a retry loop to deal with the possibility
372 * of losing a race to a concurrent poll().
373 */
374 Node<E> first() {
375 restartFromHead: for (;;) {
376 for (Node<E> h = head, p = h, q;; p = q) {
377 boolean hasItem = (p.item != null);
378 if (hasItem || (q = p.next) == null) {
379 updateHead(h, p);
380 return hasItem ? p : null;
381 }
382 else if (p == q)
383 continue restartFromHead;
384 }
385 }
386 }
387
388 /**
389 * Returns {@code true} if this queue contains no elements.
390 *
391 * @return {@code true} if this queue contains no elements
392 */
393 public boolean isEmpty() {
394 return first() == null;
395 }
396
397 /**
398 * Returns the number of elements in this queue. If this queue
399 * contains more than {@code Integer.MAX_VALUE} elements, returns
400 * {@code Integer.MAX_VALUE}.
401 *
402 * <p>Beware that, unlike in most collections, this method is
403 * <em>NOT</em> a constant-time operation. Because of the
404 * asynchronous nature of these queues, determining the current
405 * number of elements requires an O(n) traversal.
406 * Additionally, if elements are added or removed during execution
407 * of this method, the returned result may be inaccurate. Thus,
408 * this method is typically not very useful in concurrent
409 * applications.
410 *
411 * @return the number of elements in this queue
412 */
413 public int size() {
414 restartFromHead: for (;;) {
415 int count = 0;
416 for (Node<E> p = first(); p != null;) {
417 if (p.item != null)
418 if (++count == Integer.MAX_VALUE)
419 break; // @see Collection.size()
420 if (p == (p = p.next))
421 continue restartFromHead;
422 }
423 return count;
424 }
425 }
426
427 /**
428 * Returns {@code true} if this queue contains the specified element.
429 * More formally, returns {@code true} if and only if this queue contains
430 * at least one element {@code e} such that {@code o.equals(e)}.
431 *
432 * @param o object to be checked for containment in this queue
433 * @return {@code true} if this queue contains the specified element
434 */
435 public boolean contains(Object o) {
436 if (o == null) return false;
437 restartFromHead: for (;;) {
438 for (Node<E> p = head, c = p, pred = null, q; p != null; ) {
439 final E item;
440 if ((item = p.item) != null && o.equals(item))
441 return true;
442 if (c != p && tryCasSuccessor(pred, c, p))
443 c = p;
444 q = p.next;
445 if (item != null || c != p) {
446 pred = p;
447 c = p = q;
448 }
449 else if (p == (p = q))
450 continue restartFromHead;
451 }
452 return false;
453 }
454 }
455
456 /**
457 * Removes a single instance of the specified element from this queue,
458 * if it is present. More formally, removes an element {@code e} such
459 * that {@code o.equals(e)}, if this queue contains one or more such
460 * elements.
461 * Returns {@code true} if this queue contained the specified element
462 * (or equivalently, if this queue changed as a result of the call).
463 *
464 * @param o element to be removed from this queue, if present
465 * @return {@code true} if this queue changed as a result of the call
466 */
467 public boolean remove(Object o) {
468 if (o == null) return false;
469 restartFromHead: for (;;) {
470 for (Node<E> p = head, c = p, pred = null, q; p != null; ) {
471 final E item;
472 final boolean removed =
473 (item = p.item) != null
474 && o.equals(item)
475 && casItem(p, item, null);
476 if (c != p && tryCasSuccessor(pred, c, p))
477 c = p;
478 if (removed)
479 return true;
480 q = p.next;
481 if (item != null || c != p) {
482 pred = p;
483 c = p = q;
484 }
485 else if (p == (p = q))
486 continue restartFromHead;
487 }
488 return false;
489 }
490 }
491
492 /**
493 * Appends all of the elements in the specified collection to the end of
494 * this queue, in the order that they are returned by the specified
495 * collection's iterator. Attempts to {@code addAll} of a queue to
496 * itself result in {@code IllegalArgumentException}.
497 *
498 * @param c the elements to be inserted into this queue
499 * @return {@code true} if this queue changed as a result of the call
500 * @throws NullPointerException if the specified collection or any
501 * of its elements are null
502 * @throws IllegalArgumentException if the collection is this queue
503 */
504 public boolean addAll(Collection<? extends E> c) {
505 if (c == this)
506 // As historically specified in AbstractQueue#addAll
507 throw new IllegalArgumentException();
508
509 // Copy c into a private chain of Nodes
510 Node<E> beginningOfTheEnd = null, last = null;
511 for (E e : c) {
512 Node<E> newNode = newNode(Objects.requireNonNull(e));
513 if (beginningOfTheEnd == null)
514 beginningOfTheEnd = last = newNode;
515 else {
516 lazySetNext(last, newNode);
517 last = newNode;
518 }
519 }
520 if (beginningOfTheEnd == null)
521 return false;
522
523 // Atomically append the chain at the tail of this collection
524 for (Node<E> t = tail, p = t;;) {
525 Node<E> q = p.next;
526 if (q == null) {
527 // p is last node
528 if (casNext(p, null, beginningOfTheEnd)) {
529 // Successful CAS is the linearization point
530 // for all elements to be added to this queue.
531 if (!casTail(t, last)) {
532 // Try a little harder to update tail,
533 // since we may be adding many elements.
534 t = tail;
535 if (last.next == null)
536 casTail(t, last);
537 }
538 return true;
539 }
540 // Lost CAS race to another thread; re-read next
541 }
542 else if (p == q)
543 // We have fallen off list. If tail is unchanged, it
544 // will also be off-list, in which case we need to
545 // jump to head, from which all live nodes are always
546 // reachable. Else the new tail is a better bet.
547 p = (t != (t = tail)) ? t : head;
548 else
549 // Check for tail updates after two hops.
550 p = (p != t && t != (t = tail)) ? t : q;
551 }
552 }
553
554 public String toString() {
555 String[] a = null;
556 restartFromHead: for (;;) {
557 int charLength = 0;
558 int size = 0;
559 for (Node<E> p = first(); p != null;) {
560 final E item;
561 if ((item = p.item) != null) {
562 if (a == null)
563 a = new String[4];
564 else if (size == a.length)
565 a = Arrays.copyOf(a, 2 * size);
566 String s = item.toString();
567 a[size++] = s;
568 charLength += s.length();
569 }
570 if (p == (p = p.next))
571 continue restartFromHead;
572 }
573
574 if (size == 0)
575 return "[]";
576
577 return Helpers.toString(a, size, charLength);
578 }
579 }
580
581 private Object[] toArrayInternal(Object[] a) {
582 Object[] x = a;
583 restartFromHead: for (;;) {
584 int size = 0;
585 for (Node<E> p = first(); p != null;) {
586 final E item;
587 if ((item = p.item) != null) {
588 if (x == null)
589 x = new Object[4];
590 else if (size == x.length)
591 x = Arrays.copyOf(x, 2 * (size + 4));
592 x[size++] = item;
593 }
594 if (p == (p = p.next))
595 continue restartFromHead;
596 }
597 if (x == null)
598 return new Object[0];
599 else if (a != null && size <= a.length) {
600 if (a != x)
601 System.arraycopy(x, 0, a, 0, size);
602 if (size < a.length)
603 a[size] = null;
604 return a;
605 }
606 return (size == x.length) ? x : Arrays.copyOf(x, size);
607 }
608 }
609
610 /**
611 * Returns an array containing all of the elements in this queue, in
612 * proper sequence.
613 *
614 * <p>The returned array will be "safe" in that no references to it are
615 * maintained by this queue. (In other words, this method must allocate
616 * a new array). The caller is thus free to modify the returned array.
617 *
618 * <p>This method acts as bridge between array-based and collection-based
619 * APIs.
620 *
621 * @return an array containing all of the elements in this queue
622 */
623 public Object[] toArray() {
624 return toArrayInternal(null);
625 }
626
627 /**
628 * Returns an array containing all of the elements in this queue, in
629 * proper sequence; the runtime type of the returned array is that of
630 * the specified array. If the queue fits in the specified array, it
631 * is returned therein. Otherwise, a new array is allocated with the
632 * runtime type of the specified array and the size of this queue.
633 *
634 * <p>If this queue fits in the specified array with room to spare
635 * (i.e., the array has more elements than this queue), the element in
636 * the array immediately following the end of the queue is set to
637 * {@code null}.
638 *
639 * <p>Like the {@link #toArray()} method, this method acts as bridge between
640 * array-based and collection-based APIs. Further, this method allows
641 * precise control over the runtime type of the output array, and may,
642 * under certain circumstances, be used to save allocation costs.
643 *
644 * <p>Suppose {@code x} is a queue known to contain only strings.
645 * The following code can be used to dump the queue into a newly
646 * allocated array of {@code String}:
647 *
648 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
649 *
650 * Note that {@code toArray(new Object[0])} is identical in function to
651 * {@code toArray()}.
652 *
653 * @param a the array into which the elements of the queue are to
654 * be stored, if it is big enough; otherwise, a new array of the
655 * same runtime type is allocated for this purpose
656 * @return an array containing all of the elements in this queue
657 * @throws ArrayStoreException if the runtime type of the specified array
658 * is not a supertype of the runtime type of every element in
659 * this queue
660 * @throws NullPointerException if the specified array is null
661 */
662 @SuppressWarnings("unchecked")
663 public <T> T[] toArray(T[] a) {
664 Objects.requireNonNull(a);
665 return (T[]) toArrayInternal(a);
666 }
667
668 /**
669 * Returns an iterator over the elements in this queue in proper sequence.
670 * The elements will be returned in order from first (head) to last (tail).
671 *
672 * <p>The returned iterator is
673 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
674 *
675 * @return an iterator over the elements in this queue in proper sequence
676 */
677 public Iterator<E> iterator() {
678 return new Itr();
679 }
680
681 private class Itr implements Iterator<E> {
682 /**
683 * Next node to return item for.
684 */
685 private Node<E> nextNode;
686
687 /**
688 * nextItem holds on to item fields because once we claim
689 * that an element exists in hasNext(), we must return it in
690 * the following next() call even if it was in the process of
691 * being removed when hasNext() was called.
692 */
693 private E nextItem;
694
695 /**
696 * Node of the last returned item, to support remove.
697 */
698 private Node<E> lastRet;
699
700 Itr() {
701 restartFromHead: for (;;) {
702 Node<E> h, p, q;
703 for (p = h = head;; p = q) {
704 final E item;
705 if ((item = p.item) != null) {
706 nextNode = p;
707 nextItem = item;
708 break;
709 }
710 else if ((q = p.next) == null)
711 break;
712 else if (p == q)
713 continue restartFromHead;
714 }
715 updateHead(h, p);
716 return;
717 }
718 }
719
720 public boolean hasNext() {
721 return nextItem != null;
722 }
723
724 public E next() {
725 final Node<E> pred = nextNode;
726 if (pred == null) throw new NoSuchElementException();
727 // assert nextItem != null;
728 lastRet = pred;
729 E item = null;
730
731 for (Node<E> p = succ(pred), q;; p = q) {
732 if (p == null || (item = p.item) != null) {
733 nextNode = p;
734 E x = nextItem;
735 nextItem = item;
736 return x;
737 }
738 // unlink deleted nodes
739 if ((q = succ(p)) != null)
740 casNext(pred, p, q);
741 }
742 }
743
744 // Default implementation of forEachRemaining is "good enough".
745
746 public void remove() {
747 Node<E> l = lastRet;
748 if (l == null) throw new IllegalStateException();
749 // rely on a future traversal to relink.
750 l.item = null;
751 lastRet = null;
752 }
753 }
754
755 /**
756 * Saves this queue to a stream (that is, serializes it).
757 *
758 * @param s the stream
759 * @throws java.io.IOException if an I/O error occurs
760 * @serialData All of the elements (each an {@code E}) in
761 * the proper order, followed by a null
762 */
763 private void writeObject(java.io.ObjectOutputStream s)
764 throws java.io.IOException {
765
766 // Write out any hidden stuff
767 s.defaultWriteObject();
768
769 // Write out all elements in the proper order.
770 for (Node<E> p = first(); p != null; p = succ(p)) {
771 final E item;
772 if ((item = p.item) != null)
773 s.writeObject(item);
774 }
775
776 // Use trailing null as sentinel
777 s.writeObject(null);
778 }
779
780 /**
781 * Reconstitutes this queue from a stream (that is, deserializes it).
782 * @param s the stream
783 * @throws ClassNotFoundException if the class of a serialized object
784 * could not be found
785 * @throws java.io.IOException if an I/O error occurs
786 */
787 private void readObject(java.io.ObjectInputStream s)
788 throws java.io.IOException, ClassNotFoundException {
789 s.defaultReadObject();
790
791 // Read in elements until trailing null sentinel found
792 Node<E> h = null, t = null;
793 for (Object item; (item = s.readObject()) != null; ) {
794 @SuppressWarnings("unchecked")
795 Node<E> newNode = newNode((E) item);
796 if (h == null)
797 h = t = newNode;
798 else {
799 lazySetNext(t, newNode);
800 t = newNode;
801 }
802 }
803 if (h == null)
804 h = t = newNode(null);
805 head = h;
806 tail = t;
807 }
808
809 /** A customized variant of Spliterators.IteratorSpliterator */
810 final class CLQSpliterator implements Spliterator<E> {
811 static final int MAX_BATCH = 1 << 25; // max batch array size;
812 Node<E> current; // current node; null until initialized
813 int batch; // batch size for splits
814 boolean exhausted; // true when no more nodes
815
816 public Spliterator<E> trySplit() {
817 Node<E> p, q;
818 if ((p = current()) == null || (q = p.next) == null)
819 return null;
820 int i = 0, n = batch = Math.min(batch + 1, MAX_BATCH);
821 Object[] a = null;
822 do {
823 final E e;
824 if ((e = p.item) != null)
825 ((a != null) ? a : (a = new Object[n]))[i++] = e;
826 if (p == (p = q))
827 p = first();
828 } while (p != null && (q = p.next) != null && i < n);
829 setCurrent(p);
830 return (i == 0) ? null :
831 Spliterators.spliterator(a, 0, i, (Spliterator.ORDERED |
832 Spliterator.NONNULL |
833 Spliterator.CONCURRENT));
834 }
835
836 public void forEachRemaining(Consumer<? super E> action) {
837 Objects.requireNonNull(action);
838 final Node<E> p;
839 if ((p = current()) != null) {
840 current = null;
841 exhausted = true;
842 forEachFrom(action, p);
843 }
844 }
845
846 public boolean tryAdvance(Consumer<? super E> action) {
847 Objects.requireNonNull(action);
848 Node<E> p;
849 if ((p = current()) != null) {
850 E e;
851 do {
852 e = p.item;
853 if (p == (p = p.next))
854 p = first();
855 } while (e == null && p != null);
856 setCurrent(p);
857 if (e != null) {
858 action.accept(e);
859 return true;
860 }
861 }
862 return false;
863 }
864
865 private void setCurrent(Node<E> p) {
866 if ((current = p) == null)
867 exhausted = true;
868 }
869
870 private Node<E> current() {
871 Node<E> p;
872 if ((p = current) == null && !exhausted)
873 setCurrent(p = first());
874 return p;
875 }
876
877 public long estimateSize() { return Long.MAX_VALUE; }
878
879 public int characteristics() {
880 return (Spliterator.ORDERED |
881 Spliterator.NONNULL |
882 Spliterator.CONCURRENT);
883 }
884 }
885
886 /**
887 * Returns a {@link Spliterator} over the elements in this queue.
888 *
889 * <p>The returned spliterator is
890 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
891 *
892 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
893 * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
894 *
895 * @implNote
896 * The {@code Spliterator} implements {@code trySplit} to permit limited
897 * parallelism.
898 *
899 * @return a {@code Spliterator} over the elements in this queue
900 * @since 1.8
901 */
902 @Override
903 public Spliterator<E> spliterator() {
904 return new CLQSpliterator();
905 }
906
907 private boolean casTail(Node<E> cmp, Node<E> val) {
908 return U.compareAndSwapObject(this, TAIL, cmp, val);
909 }
910
911 private boolean casHead(Node<E> cmp, Node<E> val) {
912 return U.compareAndSwapObject(this, HEAD, cmp, val);
913 }
914
915 /**
916 * @throws NullPointerException {@inheritDoc}
917 */
918 public boolean removeIf(Predicate<? super E> filter) {
919 Objects.requireNonNull(filter);
920 return bulkRemove(filter);
921 }
922
923 /**
924 * @throws NullPointerException {@inheritDoc}
925 */
926 public boolean removeAll(Collection<?> c) {
927 Objects.requireNonNull(c);
928 return bulkRemove(e -> c.contains(e));
929 }
930
931 /**
932 * @throws NullPointerException {@inheritDoc}
933 */
934 public boolean retainAll(Collection<?> c) {
935 Objects.requireNonNull(c);
936 return bulkRemove(e -> !c.contains(e));
937 }
938
939 public void clear() {
940 bulkRemove(e -> true);
941 }
942
943 /**
944 * Tolerate this many consecutive dead nodes before CAS-collapsing.
945 * Amortized cost of clear() is (1 + 1/MAX_HOPS) CASes per element.
946 */
947 private static final int MAX_HOPS = 8;
948
949 /** Implementation of bulk remove methods. */
950 private boolean bulkRemove(Predicate<? super E> filter) {
951 boolean removed = false;
952 restartFromHead: for (;;) {
953 int hops = MAX_HOPS;
954 // c will be CASed to collapse intervening dead nodes between
955 // pred (or head if null) and p.
956 for (Node<E> p = head, c = p, pred = null, q; p != null; p = q) {
957 final E item; boolean pAlive;
958 if (pAlive = ((item = p.item) != null)) {
959 if (filter.test(item)) {
960 if (casItem(p, item, null))
961 removed = true;
962 pAlive = false;
963 }
964 }
965 if ((q = p.next) == null || pAlive || --hops == 0) {
966 // p might already be self-linked here, but if so:
967 // - CASing head will surely fail
968 // - CASing pred's next will be useless but harmless.
969 if (c != p && tryCasSuccessor(pred, c, p))
970 c = p;
971 // if c != p, CAS failed, so abandon old pred
972 if (pAlive || c != p) {
973 hops = MAX_HOPS;
974 pred = p;
975 c = q;
976 }
977 } else if (p == q)
978 continue restartFromHead;
979 }
980 return removed;
981 }
982 }
983
984 /**
985 * Runs action on each element found during a traversal starting at p.
986 * If p is null, the action is not run.
987 */
988 @SuppressWarnings("unchecked")
989 void forEachFrom(Consumer<? super E> action, Node<E> p) {
990 for (Node<E> c = p, pred = null, q; p != null; ) {
991 final Object item; final boolean pAlive;
992 if (pAlive = ((item = p.item) != null))
993 action.accept((E) item);
994 if (c != p && tryCasSuccessor(pred, c, p))
995 c = p;
996 q = p.next;
997 if (pAlive || c != p) {
998 pred = p;
999 c = p = q;
1000 }
1001 else if (p == (p = q)) {
1002 pred = null;
1003 c = p = head;
1004 }
1005 }
1006 }
1007
1008 /**
1009 * @throws NullPointerException {@inheritDoc}
1010 */
1011 public void forEach(Consumer<? super E> action) {
1012 Objects.requireNonNull(action);
1013 forEachFrom(action, head);
1014 }
1015
1016 // Unsafe mechanics
1017
1018 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1019 private static final long HEAD;
1020 private static final long TAIL;
1021 private static final long ITEM;
1022 private static final long NEXT;
1023 static {
1024 try {
1025 HEAD = U.objectFieldOffset
1026 (ConcurrentLinkedQueue.class.getDeclaredField("head"));
1027 TAIL = U.objectFieldOffset
1028 (ConcurrentLinkedQueue.class.getDeclaredField("tail"));
1029 ITEM = U.objectFieldOffset
1030 (Node.class.getDeclaredField("item"));
1031 NEXT = U.objectFieldOffset
1032 (Node.class.getDeclaredField("next"));
1033 } catch (ReflectiveOperationException e) {
1034 throw new Error(e);
1035 }
1036 }
1037 }