ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk8/java/util/concurrent/CountedCompleter.java
Revision: 1.1
Committed: Sat Mar 26 06:22:50 2016 UTC (8 years, 2 months ago) by jsr166
Branch: MAIN
Log Message:
fork jdk8 maintenance branch for source and jtreg tests

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package java.util.concurrent;
8    
9     /**
10     * A {@link ForkJoinTask} with a completion action performed when
11     * triggered and there are no remaining pending actions.
12     * CountedCompleters are in general more robust in the
13     * presence of subtask stalls and blockage than are other forms of
14     * ForkJoinTasks, but are less intuitive to program. Uses of
15     * CountedCompleter are similar to those of other completion based
16     * components (such as {@link java.nio.channels.CompletionHandler})
17     * except that multiple <em>pending</em> completions may be necessary
18     * to trigger the completion action {@link #onCompletion(CountedCompleter)},
19     * not just one.
20     * Unless initialized otherwise, the {@linkplain #getPendingCount pending
21     * count} starts at zero, but may be (atomically) changed using
22     * methods {@link #setPendingCount}, {@link #addToPendingCount}, and
23     * {@link #compareAndSetPendingCount}. Upon invocation of {@link
24     * #tryComplete}, if the pending action count is nonzero, it is
25     * decremented; otherwise, the completion action is performed, and if
26     * this completer itself has a completer, the process is continued
27     * with its completer. As is the case with related synchronization
28     * components such as {@link java.util.concurrent.Phaser Phaser} and
29     * {@link java.util.concurrent.Semaphore Semaphore}, these methods
30     * affect only internal counts; they do not establish any further
31     * internal bookkeeping. In particular, the identities of pending
32     * tasks are not maintained. As illustrated below, you can create
33     * subclasses that do record some or all pending tasks or their
34     * results when needed. As illustrated below, utility methods
35     * supporting customization of completion traversals are also
36     * provided. However, because CountedCompleters provide only basic
37     * synchronization mechanisms, it may be useful to create further
38     * abstract subclasses that maintain linkages, fields, and additional
39     * support methods appropriate for a set of related usages.
40     *
41     * <p>A concrete CountedCompleter class must define method {@link
42     * #compute}, that should in most cases (as illustrated below), invoke
43     * {@code tryComplete()} once before returning. The class may also
44     * optionally override method {@link #onCompletion(CountedCompleter)}
45     * to perform an action upon normal completion, and method
46     * {@link #onExceptionalCompletion(Throwable, CountedCompleter)} to
47     * perform an action upon any exception.
48     *
49     * <p>CountedCompleters most often do not bear results, in which case
50     * they are normally declared as {@code CountedCompleter<Void>}, and
51     * will always return {@code null} as a result value. In other cases,
52     * you should override method {@link #getRawResult} to provide a
53     * result from {@code join(), invoke()}, and related methods. In
54     * general, this method should return the value of a field (or a
55     * function of one or more fields) of the CountedCompleter object that
56     * holds the result upon completion. Method {@link #setRawResult} by
57     * default plays no role in CountedCompleters. It is possible, but
58     * rarely applicable, to override this method to maintain other
59     * objects or fields holding result data.
60     *
61     * <p>A CountedCompleter that does not itself have a completer (i.e.,
62     * one for which {@link #getCompleter} returns {@code null}) can be
63     * used as a regular ForkJoinTask with this added functionality.
64     * However, any completer that in turn has another completer serves
65     * only as an internal helper for other computations, so its own task
66     * status (as reported in methods such as {@link ForkJoinTask#isDone})
67     * is arbitrary; this status changes only upon explicit invocations of
68     * {@link #complete}, {@link ForkJoinTask#cancel},
69     * {@link ForkJoinTask#completeExceptionally(Throwable)} or upon
70     * exceptional completion of method {@code compute}. Upon any
71     * exceptional completion, the exception may be relayed to a task's
72     * completer (and its completer, and so on), if one exists and it has
73     * not otherwise already completed. Similarly, cancelling an internal
74     * CountedCompleter has only a local effect on that completer, so is
75     * not often useful.
76     *
77     * <p><b>Sample Usages.</b>
78     *
79     * <p><b>Parallel recursive decomposition.</b> CountedCompleters may
80     * be arranged in trees similar to those often used with {@link
81     * RecursiveAction}s, although the constructions involved in setting
82     * them up typically vary. Here, the completer of each task is its
83     * parent in the computation tree. Even though they entail a bit more
84     * bookkeeping, CountedCompleters may be better choices when applying
85     * a possibly time-consuming operation (that cannot be further
86     * subdivided) to each element of an array or collection; especially
87     * when the operation takes a significantly different amount of time
88     * to complete for some elements than others, either because of
89     * intrinsic variation (for example I/O) or auxiliary effects such as
90     * garbage collection. Because CountedCompleters provide their own
91     * continuations, other threads need not block waiting to perform
92     * them.
93     *
94     * <p>For example, here is an initial version of a class that uses
95     * divide-by-two recursive decomposition to divide work into single
96     * pieces (leaf tasks). Even when work is split into individual calls,
97     * tree-based techniques are usually preferable to directly forking
98     * leaf tasks, because they reduce inter-thread communication and
99     * improve load balancing. In the recursive case, the second of each
100     * pair of subtasks to finish triggers completion of its parent
101     * (because no result combination is performed, the default no-op
102     * implementation of method {@code onCompletion} is not overridden).
103     * A static utility method sets up the base task and invokes it
104     * (here, implicitly using the {@link ForkJoinPool#commonPool()}).
105     *
106     * <pre> {@code
107     * class MyOperation<E> { void apply(E e) { ... } }
108     *
109     * class ForEach<E> extends CountedCompleter<Void> {
110     *
111     * public static <E> void forEach(E[] array, MyOperation<E> op) {
112     * new ForEach<E>(null, array, op, 0, array.length).invoke();
113     * }
114     *
115     * final E[] array; final MyOperation<E> op; final int lo, hi;
116     * ForEach(CountedCompleter<?> p, E[] array, MyOperation<E> op, int lo, int hi) {
117     * super(p);
118     * this.array = array; this.op = op; this.lo = lo; this.hi = hi;
119     * }
120     *
121     * public void compute() { // version 1
122     * if (hi - lo >= 2) {
123     * int mid = (lo + hi) >>> 1;
124     * setPendingCount(2); // must set pending count before fork
125     * new ForEach(this, array, op, mid, hi).fork(); // right child
126     * new ForEach(this, array, op, lo, mid).fork(); // left child
127     * }
128     * else if (hi > lo)
129     * op.apply(array[lo]);
130     * tryComplete();
131     * }
132     * }}</pre>
133     *
134     * This design can be improved by noticing that in the recursive case,
135     * the task has nothing to do after forking its right task, so can
136     * directly invoke its left task before returning. (This is an analog
137     * of tail recursion removal.) Also, because the task returns upon
138     * executing its left task (rather than falling through to invoke
139     * {@code tryComplete}) the pending count is set to one:
140     *
141     * <pre> {@code
142     * class ForEach<E> ... {
143     * ...
144     * public void compute() { // version 2
145     * if (hi - lo >= 2) {
146     * int mid = (lo + hi) >>> 1;
147     * setPendingCount(1); // only one pending
148     * new ForEach(this, array, op, mid, hi).fork(); // right child
149     * new ForEach(this, array, op, lo, mid).compute(); // direct invoke
150     * }
151     * else {
152     * if (hi > lo)
153     * op.apply(array[lo]);
154     * tryComplete();
155     * }
156     * }
157     * }}</pre>
158     *
159     * As a further optimization, notice that the left task need not even exist.
160     * Instead of creating a new one, we can iterate using the original task,
161     * and add a pending count for each fork. Additionally, because no task
162     * in this tree implements an {@link #onCompletion(CountedCompleter)} method,
163     * {@code tryComplete()} can be replaced with {@link #propagateCompletion}.
164     *
165     * <pre> {@code
166     * class ForEach<E> ... {
167     * ...
168     * public void compute() { // version 3
169     * int l = lo, h = hi;
170     * while (h - l >= 2) {
171     * int mid = (l + h) >>> 1;
172     * addToPendingCount(1);
173     * new ForEach(this, array, op, mid, h).fork(); // right child
174     * h = mid;
175     * }
176     * if (h > l)
177     * op.apply(array[l]);
178     * propagateCompletion();
179     * }
180     * }}</pre>
181     *
182     * Additional optimizations of such classes might entail precomputing
183     * pending counts so that they can be established in constructors,
184     * specializing classes for leaf steps, subdividing by say, four,
185     * instead of two per iteration, and using an adaptive threshold
186     * instead of always subdividing down to single elements.
187     *
188     * <p><b>Searching.</b> A tree of CountedCompleters can search for a
189     * value or property in different parts of a data structure, and
190     * report a result in an {@link
191     * java.util.concurrent.atomic.AtomicReference AtomicReference} as
192     * soon as one is found. The others can poll the result to avoid
193     * unnecessary work. (You could additionally {@linkplain #cancel
194     * cancel} other tasks, but it is usually simpler and more efficient
195     * to just let them notice that the result is set and if so skip
196     * further processing.) Illustrating again with an array using full
197     * partitioning (again, in practice, leaf tasks will almost always
198     * process more than one element):
199     *
200     * <pre> {@code
201     * class Searcher<E> extends CountedCompleter<E> {
202     * final E[] array; final AtomicReference<E> result; final int lo, hi;
203     * Searcher(CountedCompleter<?> p, E[] array, AtomicReference<E> result, int lo, int hi) {
204     * super(p);
205     * this.array = array; this.result = result; this.lo = lo; this.hi = hi;
206     * }
207     * public E getRawResult() { return result.get(); }
208     * public void compute() { // similar to ForEach version 3
209     * int l = lo, h = hi;
210     * while (result.get() == null && h >= l) {
211     * if (h - l >= 2) {
212     * int mid = (l + h) >>> 1;
213     * addToPendingCount(1);
214     * new Searcher(this, array, result, mid, h).fork();
215     * h = mid;
216     * }
217     * else {
218     * E x = array[l];
219     * if (matches(x) && result.compareAndSet(null, x))
220     * quietlyCompleteRoot(); // root task is now joinable
221     * break;
222     * }
223     * }
224     * tryComplete(); // normally complete whether or not found
225     * }
226     * boolean matches(E e) { ... } // return true if found
227     *
228     * public static <E> E search(E[] array) {
229     * return new Searcher<E>(null, array, new AtomicReference<E>(), 0, array.length).invoke();
230     * }
231     * }}</pre>
232     *
233     * In this example, as well as others in which tasks have no other
234     * effects except to {@code compareAndSet} a common result, the
235     * trailing unconditional invocation of {@code tryComplete} could be
236     * made conditional ({@code if (result.get() == null) tryComplete();})
237     * because no further bookkeeping is required to manage completions
238     * once the root task completes.
239     *
240     * <p><b>Recording subtasks.</b> CountedCompleter tasks that combine
241     * results of multiple subtasks usually need to access these results
242     * in method {@link #onCompletion(CountedCompleter)}. As illustrated in the following
243     * class (that performs a simplified form of map-reduce where mappings
244     * and reductions are all of type {@code E}), one way to do this in
245     * divide and conquer designs is to have each subtask record its
246     * sibling, so that it can be accessed in method {@code onCompletion}.
247     * This technique applies to reductions in which the order of
248     * combining left and right results does not matter; ordered
249     * reductions require explicit left/right designations. Variants of
250     * other streamlinings seen in the above examples may also apply.
251     *
252     * <pre> {@code
253     * class MyMapper<E> { E apply(E v) { ... } }
254     * class MyReducer<E> { E apply(E x, E y) { ... } }
255     * class MapReducer<E> extends CountedCompleter<E> {
256     * final E[] array; final MyMapper<E> mapper;
257     * final MyReducer<E> reducer; final int lo, hi;
258     * MapReducer<E> sibling;
259     * E result;
260     * MapReducer(CountedCompleter<?> p, E[] array, MyMapper<E> mapper,
261     * MyReducer<E> reducer, int lo, int hi) {
262     * super(p);
263     * this.array = array; this.mapper = mapper;
264     * this.reducer = reducer; this.lo = lo; this.hi = hi;
265     * }
266     * public void compute() {
267     * if (hi - lo >= 2) {
268     * int mid = (lo + hi) >>> 1;
269     * MapReducer<E> left = new MapReducer(this, array, mapper, reducer, lo, mid);
270     * MapReducer<E> right = new MapReducer(this, array, mapper, reducer, mid, hi);
271     * left.sibling = right;
272     * right.sibling = left;
273     * setPendingCount(1); // only right is pending
274     * right.fork();
275     * left.compute(); // directly execute left
276     * }
277     * else {
278     * if (hi > lo)
279     * result = mapper.apply(array[lo]);
280     * tryComplete();
281     * }
282     * }
283     * public void onCompletion(CountedCompleter<?> caller) {
284     * if (caller != this) {
285     * MapReducer<E> child = (MapReducer<E>)caller;
286     * MapReducer<E> sib = child.sibling;
287     * if (sib == null || sib.result == null)
288     * result = child.result;
289     * else
290     * result = reducer.apply(child.result, sib.result);
291     * }
292     * }
293     * public E getRawResult() { return result; }
294     *
295     * public static <E> E mapReduce(E[] array, MyMapper<E> mapper, MyReducer<E> reducer) {
296     * return new MapReducer<E>(null, array, mapper, reducer,
297     * 0, array.length).invoke();
298     * }
299     * }}</pre>
300     *
301     * Here, method {@code onCompletion} takes a form common to many
302     * completion designs that combine results. This callback-style method
303     * is triggered once per task, in either of the two different contexts
304     * in which the pending count is, or becomes, zero: (1) by a task
305     * itself, if its pending count is zero upon invocation of {@code
306     * tryComplete}, or (2) by any of its subtasks when they complete and
307     * decrement the pending count to zero. The {@code caller} argument
308     * distinguishes cases. Most often, when the caller is {@code this},
309     * no action is necessary. Otherwise the caller argument can be used
310     * (usually via a cast) to supply a value (and/or links to other
311     * values) to be combined. Assuming proper use of pending counts, the
312     * actions inside {@code onCompletion} occur (once) upon completion of
313     * a task and its subtasks. No additional synchronization is required
314     * within this method to ensure thread safety of accesses to fields of
315     * this task or other completed tasks.
316     *
317     * <p><b>Completion Traversals</b>. If using {@code onCompletion} to
318     * process completions is inapplicable or inconvenient, you can use
319     * methods {@link #firstComplete} and {@link #nextComplete} to create
320     * custom traversals. For example, to define a MapReducer that only
321     * splits out right-hand tasks in the form of the third ForEach
322     * example, the completions must cooperatively reduce along
323     * unexhausted subtask links, which can be done as follows:
324     *
325     * <pre> {@code
326     * class MapReducer<E> extends CountedCompleter<E> { // version 2
327     * final E[] array; final MyMapper<E> mapper;
328     * final MyReducer<E> reducer; final int lo, hi;
329     * MapReducer<E> forks, next; // record subtask forks in list
330     * E result;
331     * MapReducer(CountedCompleter<?> p, E[] array, MyMapper<E> mapper,
332     * MyReducer<E> reducer, int lo, int hi, MapReducer<E> next) {
333     * super(p);
334     * this.array = array; this.mapper = mapper;
335     * this.reducer = reducer; this.lo = lo; this.hi = hi;
336     * this.next = next;
337     * }
338     * public void compute() {
339     * int l = lo, h = hi;
340     * while (h - l >= 2) {
341     * int mid = (l + h) >>> 1;
342     * addToPendingCount(1);
343     * (forks = new MapReducer(this, array, mapper, reducer, mid, h, forks)).fork();
344     * h = mid;
345     * }
346     * if (h > l)
347     * result = mapper.apply(array[l]);
348     * // process completions by reducing along and advancing subtask links
349     * for (CountedCompleter<?> c = firstComplete(); c != null; c = c.nextComplete()) {
350     * for (MapReducer t = (MapReducer)c, s = t.forks; s != null; s = t.forks = s.next)
351     * t.result = reducer.apply(t.result, s.result);
352     * }
353     * }
354     * public E getRawResult() { return result; }
355     *
356     * public static <E> E mapReduce(E[] array, MyMapper<E> mapper, MyReducer<E> reducer) {
357     * return new MapReducer<E>(null, array, mapper, reducer,
358     * 0, array.length, null).invoke();
359     * }
360     * }}</pre>
361     *
362     * <p><b>Triggers.</b> Some CountedCompleters are themselves never
363     * forked, but instead serve as bits of plumbing in other designs;
364     * including those in which the completion of one or more async tasks
365     * triggers another async task. For example:
366     *
367     * <pre> {@code
368     * class HeaderBuilder extends CountedCompleter<...> { ... }
369     * class BodyBuilder extends CountedCompleter<...> { ... }
370     * class PacketSender extends CountedCompleter<...> {
371     * PacketSender(...) { super(null, 1); ... } // trigger on second completion
372     * public void compute() { } // never called
373     * public void onCompletion(CountedCompleter<?> caller) { sendPacket(); }
374     * }
375     * // sample use:
376     * PacketSender p = new PacketSender();
377     * new HeaderBuilder(p, ...).fork();
378     * new BodyBuilder(p, ...).fork();}</pre>
379     *
380     * @since 1.8
381     * @author Doug Lea
382     */
383     public abstract class CountedCompleter<T> extends ForkJoinTask<T> {
384     private static final long serialVersionUID = 5232453752276485070L;
385    
386     /** This task's completer, or null if none */
387     final CountedCompleter<?> completer;
388     /** The number of pending tasks until completion */
389     volatile int pending;
390    
391     /**
392     * Creates a new CountedCompleter with the given completer
393     * and initial pending count.
394     *
395     * @param completer this task's completer, or {@code null} if none
396     * @param initialPendingCount the initial pending count
397     */
398     protected CountedCompleter(CountedCompleter<?> completer,
399     int initialPendingCount) {
400     this.completer = completer;
401     this.pending = initialPendingCount;
402     }
403    
404     /**
405     * Creates a new CountedCompleter with the given completer
406     * and an initial pending count of zero.
407     *
408     * @param completer this task's completer, or {@code null} if none
409     */
410     protected CountedCompleter(CountedCompleter<?> completer) {
411     this.completer = completer;
412     }
413    
414     /**
415     * Creates a new CountedCompleter with no completer
416     * and an initial pending count of zero.
417     */
418     protected CountedCompleter() {
419     this.completer = null;
420     }
421    
422     /**
423     * The main computation performed by this task.
424     */
425     public abstract void compute();
426    
427     /**
428     * Performs an action when method {@link #tryComplete} is invoked
429     * and the pending count is zero, or when the unconditional
430     * method {@link #complete} is invoked. By default, this method
431     * does nothing. You can distinguish cases by checking the
432     * identity of the given caller argument. If not equal to {@code
433     * this}, then it is typically a subtask that may contain results
434     * (and/or links to other results) to combine.
435     *
436     * @param caller the task invoking this method (which may
437     * be this task itself)
438     */
439     public void onCompletion(CountedCompleter<?> caller) {
440     }
441    
442     /**
443     * Performs an action when method {@link
444     * #completeExceptionally(Throwable)} is invoked or method {@link
445     * #compute} throws an exception, and this task has not already
446     * otherwise completed normally. On entry to this method, this task
447     * {@link ForkJoinTask#isCompletedAbnormally}. The return value
448     * of this method controls further propagation: If {@code true}
449     * and this task has a completer that has not completed, then that
450     * completer is also completed exceptionally, with the same
451     * exception as this completer. The default implementation of
452     * this method does nothing except return {@code true}.
453     *
454     * @param ex the exception
455     * @param caller the task invoking this method (which may
456     * be this task itself)
457     * @return {@code true} if this exception should be propagated to this
458     * task's completer, if one exists
459     */
460     public boolean onExceptionalCompletion(Throwable ex, CountedCompleter<?> caller) {
461     return true;
462     }
463    
464     /**
465     * Returns the completer established in this task's constructor,
466     * or {@code null} if none.
467     *
468     * @return the completer
469     */
470     public final CountedCompleter<?> getCompleter() {
471     return completer;
472     }
473    
474     /**
475     * Returns the current pending count.
476     *
477     * @return the current pending count
478     */
479     public final int getPendingCount() {
480     return pending;
481     }
482    
483     /**
484     * Sets the pending count to the given value.
485     *
486     * @param count the count
487     */
488     public final void setPendingCount(int count) {
489     pending = count;
490     }
491    
492     /**
493     * Adds (atomically) the given value to the pending count.
494     *
495     * @param delta the value to add
496     */
497     public final void addToPendingCount(int delta) {
498     U.getAndAddInt(this, PENDING, delta);
499     }
500    
501     /**
502     * Sets (atomically) the pending count to the given count only if
503     * it currently holds the given expected value.
504     *
505     * @param expected the expected value
506     * @param count the new value
507     * @return {@code true} if successful
508     */
509     public final boolean compareAndSetPendingCount(int expected, int count) {
510     return U.compareAndSwapInt(this, PENDING, expected, count);
511     }
512    
513     /**
514     * If the pending count is nonzero, (atomically) decrements it.
515     *
516     * @return the initial (undecremented) pending count holding on entry
517     * to this method
518     */
519     public final int decrementPendingCountUnlessZero() {
520     int c;
521     do {} while ((c = pending) != 0 &&
522     !U.compareAndSwapInt(this, PENDING, c, c - 1));
523     return c;
524     }
525    
526     /**
527     * Returns the root of the current computation; i.e., this
528     * task if it has no completer, else its completer's root.
529     *
530     * @return the root of the current computation
531     */
532     public final CountedCompleter<?> getRoot() {
533     CountedCompleter<?> a = this, p;
534     while ((p = a.completer) != null)
535     a = p;
536     return a;
537     }
538    
539     /**
540     * If the pending count is nonzero, decrements the count;
541     * otherwise invokes {@link #onCompletion(CountedCompleter)}
542     * and then similarly tries to complete this task's completer,
543     * if one exists, else marks this task as complete.
544     */
545     public final void tryComplete() {
546     CountedCompleter<?> a = this, s = a;
547     for (int c;;) {
548     if ((c = a.pending) == 0) {
549     a.onCompletion(s);
550     if ((a = (s = a).completer) == null) {
551     s.quietlyComplete();
552     return;
553     }
554     }
555     else if (U.compareAndSwapInt(a, PENDING, c, c - 1))
556     return;
557     }
558     }
559    
560     /**
561     * Equivalent to {@link #tryComplete} but does not invoke {@link
562     * #onCompletion(CountedCompleter)} along the completion path:
563     * If the pending count is nonzero, decrements the count;
564     * otherwise, similarly tries to complete this task's completer, if
565     * one exists, else marks this task as complete. This method may be
566     * useful in cases where {@code onCompletion} should not, or need
567     * not, be invoked for each completer in a computation.
568     */
569     public final void propagateCompletion() {
570     CountedCompleter<?> a = this, s = a;
571     for (int c;;) {
572     if ((c = a.pending) == 0) {
573     if ((a = (s = a).completer) == null) {
574     s.quietlyComplete();
575     return;
576     }
577     }
578     else if (U.compareAndSwapInt(a, PENDING, c, c - 1))
579     return;
580     }
581     }
582    
583     /**
584     * Regardless of pending count, invokes
585     * {@link #onCompletion(CountedCompleter)}, marks this task as
586     * complete and further triggers {@link #tryComplete} on this
587     * task's completer, if one exists. The given rawResult is
588     * used as an argument to {@link #setRawResult} before invoking
589     * {@link #onCompletion(CountedCompleter)} or marking this task
590     * as complete; its value is meaningful only for classes
591     * overriding {@code setRawResult}. This method does not modify
592     * the pending count.
593     *
594     * <p>This method may be useful when forcing completion as soon as
595     * any one (versus all) of several subtask results are obtained.
596     * However, in the common (and recommended) case in which {@code
597     * setRawResult} is not overridden, this effect can be obtained
598     * more simply using {@link #quietlyCompleteRoot()}.
599     *
600     * @param rawResult the raw result
601     */
602     public void complete(T rawResult) {
603     CountedCompleter<?> p;
604     setRawResult(rawResult);
605     onCompletion(this);
606     quietlyComplete();
607     if ((p = completer) != null)
608     p.tryComplete();
609     }
610    
611     /**
612     * If this task's pending count is zero, returns this task;
613     * otherwise decrements its pending count and returns {@code null}.
614     * This method is designed to be used with {@link #nextComplete} in
615     * completion traversal loops.
616     *
617     * @return this task, if pending count was zero, else {@code null}
618     */
619     public final CountedCompleter<?> firstComplete() {
620     for (int c;;) {
621     if ((c = pending) == 0)
622     return this;
623     else if (U.compareAndSwapInt(this, PENDING, c, c - 1))
624     return null;
625     }
626     }
627    
628     /**
629     * If this task does not have a completer, invokes {@link
630     * ForkJoinTask#quietlyComplete} and returns {@code null}. Or, if
631     * the completer's pending count is non-zero, decrements that
632     * pending count and returns {@code null}. Otherwise, returns the
633     * completer. This method can be used as part of a completion
634     * traversal loop for homogeneous task hierarchies:
635     *
636     * <pre> {@code
637     * for (CountedCompleter<?> c = firstComplete();
638     * c != null;
639     * c = c.nextComplete()) {
640     * // ... process c ...
641     * }}</pre>
642     *
643     * @return the completer, or {@code null} if none
644     */
645     public final CountedCompleter<?> nextComplete() {
646     CountedCompleter<?> p;
647     if ((p = completer) != null)
648     return p.firstComplete();
649     else {
650     quietlyComplete();
651     return null;
652     }
653     }
654    
655     /**
656     * Equivalent to {@code getRoot().quietlyComplete()}.
657     */
658     public final void quietlyCompleteRoot() {
659     for (CountedCompleter<?> a = this, p;;) {
660     if ((p = a.completer) == null) {
661     a.quietlyComplete();
662     return;
663     }
664     a = p;
665     }
666     }
667    
668     /**
669     * If this task has not completed, attempts to process at most the
670     * given number of other unprocessed tasks for which this task is
671     * on the completion path, if any are known to exist.
672     *
673     * @param maxTasks the maximum number of tasks to process. If
674     * less than or equal to zero, then no tasks are
675     * processed.
676     */
677     public final void helpComplete(int maxTasks) {
678     Thread t; ForkJoinWorkerThread wt;
679     if (maxTasks > 0 && status >= 0) {
680     if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)
681     (wt = (ForkJoinWorkerThread)t).pool.
682     helpComplete(wt.workQueue, this, maxTasks);
683     else
684     ForkJoinPool.common.externalHelpComplete(this, maxTasks);
685     }
686     }
687    
688     /**
689     * Supports ForkJoinTask exception propagation.
690     */
691     void internalPropagateException(Throwable ex) {
692     CountedCompleter<?> a = this, s = a;
693     while (a.onExceptionalCompletion(ex, s) &&
694     (a = (s = a).completer) != null && a.status >= 0 &&
695     a.recordExceptionalCompletion(ex) == EXCEPTIONAL)
696     ;
697     }
698    
699     /**
700     * Implements execution conventions for CountedCompleters.
701     */
702     protected final boolean exec() {
703     compute();
704     return false;
705     }
706    
707     /**
708     * Returns the result of the computation. By default,
709     * returns {@code null}, which is appropriate for {@code Void}
710     * actions, but in other cases should be overridden, almost
711     * always to return a field or function of a field that
712     * holds the result upon completion.
713     *
714     * @return the result of the computation
715     */
716     public T getRawResult() { return null; }
717    
718     /**
719     * A method that result-bearing CountedCompleters may optionally
720     * use to help maintain result data. By default, does nothing.
721     * Overrides are not recommended. However, if this method is
722     * overridden to update existing objects or fields, then it must
723     * in general be defined to be thread-safe.
724     */
725     protected void setRawResult(T t) { }
726    
727     // Unsafe mechanics
728     private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
729     private static final long PENDING;
730     static {
731     try {
732     PENDING = U.objectFieldOffset
733     (CountedCompleter.class.getDeclaredField("pending"));
734     } catch (ReflectiveOperationException e) {
735     throw new Error(e);
736     }
737     }
738     }