ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk8/java/util/concurrent/ForkJoinPool.java
Revision: 1.5
Committed: Thu Sep 15 16:28:43 2016 UTC (7 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.4: +14 -12 lines
Log Message:
switch to non-deprecated Constructor.newInstance

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.Thread.UncaughtExceptionHandler;
10 import java.security.AccessControlContext;
11 import java.security.Permissions;
12 import java.security.ProtectionDomain;
13 import java.util.ArrayList;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Collections;
17 import java.util.List;
18 import java.util.function.Predicate;
19 import java.util.concurrent.TimeUnit;
20 import java.util.concurrent.CountedCompleter;
21 import java.util.concurrent.ForkJoinTask;
22 import java.util.concurrent.ForkJoinWorkerThread;
23 import java.util.concurrent.locks.LockSupport;
24
25 /**
26 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
27 * A {@code ForkJoinPool} provides the entry point for submissions
28 * from non-{@code ForkJoinTask} clients, as well as management and
29 * monitoring operations.
30 *
31 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
32 * ExecutorService} mainly by virtue of employing
33 * <em>work-stealing</em>: all threads in the pool attempt to find and
34 * execute tasks submitted to the pool and/or created by other active
35 * tasks (eventually blocking waiting for work if none exist). This
36 * enables efficient processing when most tasks spawn other subtasks
37 * (as do most {@code ForkJoinTask}s), as well as when many small
38 * tasks are submitted to the pool from external clients. Especially
39 * when setting <em>asyncMode</em> to true in constructors, {@code
40 * ForkJoinPool}s may also be appropriate for use with event-style
41 * tasks that are never joined.
42 *
43 * <p>A static {@link #commonPool()} is available and appropriate for
44 * most applications. The common pool is used by any ForkJoinTask that
45 * is not explicitly submitted to a specified pool. Using the common
46 * pool normally reduces resource usage (its threads are slowly
47 * reclaimed during periods of non-use, and reinstated upon subsequent
48 * use).
49 *
50 * <p>For applications that require separate or custom pools, a {@code
51 * ForkJoinPool} may be constructed with a given target parallelism
52 * level; by default, equal to the number of available processors.
53 * The pool attempts to maintain enough active (or available) threads
54 * by dynamically adding, suspending, or resuming internal worker
55 * threads, even if some tasks are stalled waiting to join others.
56 * However, no such adjustments are guaranteed in the face of blocked
57 * I/O or other unmanaged synchronization. The nested {@link
58 * ManagedBlocker} interface enables extension of the kinds of
59 * synchronization accommodated. The default policies may be
60 * overridden using a constructor with parameters corresponding to
61 * those documented in class {@link ThreadPoolExecutor}.
62 *
63 * <p>In addition to execution and lifecycle control methods, this
64 * class provides status check methods (for example
65 * {@link #getStealCount}) that are intended to aid in developing,
66 * tuning, and monitoring fork/join applications. Also, method
67 * {@link #toString} returns indications of pool state in a
68 * convenient form for informal monitoring.
69 *
70 * <p>As is the case with other ExecutorServices, there are three
71 * main task execution methods summarized in the following table.
72 * These are designed to be used primarily by clients not already
73 * engaged in fork/join computations in the current pool. The main
74 * forms of these methods accept instances of {@code ForkJoinTask},
75 * but overloaded forms also allow mixed execution of plain {@code
76 * Runnable}- or {@code Callable}- based activities as well. However,
77 * tasks that are already executing in a pool should normally instead
78 * use the within-computation forms listed in the table unless using
79 * async event-style tasks that are not usually joined, in which case
80 * there is little difference among choice of methods.
81 *
82 * <table BORDER CELLPADDING=3 CELLSPACING=1>
83 * <caption>Summary of task execution methods</caption>
84 * <tr>
85 * <td></td>
86 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
87 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
88 * </tr>
89 * <tr>
90 * <td> <b>Arrange async execution</b></td>
91 * <td> {@link #execute(ForkJoinTask)}</td>
92 * <td> {@link ForkJoinTask#fork}</td>
93 * </tr>
94 * <tr>
95 * <td> <b>Await and obtain result</b></td>
96 * <td> {@link #invoke(ForkJoinTask)}</td>
97 * <td> {@link ForkJoinTask#invoke}</td>
98 * </tr>
99 * <tr>
100 * <td> <b>Arrange exec and obtain Future</b></td>
101 * <td> {@link #submit(ForkJoinTask)}</td>
102 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
103 * </tr>
104 * </table>
105 *
106 * <p>The common pool is by default constructed with default
107 * parameters, but these may be controlled by setting three
108 * {@linkplain System#getProperty system properties}:
109 * <ul>
110 * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
111 * - the parallelism level, a non-negative integer
112 * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
113 * - the class name of a {@link ForkJoinWorkerThreadFactory}
114 * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
115 * - the class name of a {@link UncaughtExceptionHandler}
116 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
117 * - the maximum number of allowed extra threads to maintain target
118 * parallelism (default 256).
119 * </ul>
120 * If a {@link SecurityManager} is present and no factory is
121 * specified, then the default pool uses a factory supplying
122 * threads that have no {@link Permissions} enabled.
123 * The system class loader is used to load these classes.
124 * Upon any error in establishing these settings, default parameters
125 * are used. It is possible to disable or limit the use of threads in
126 * the common pool by setting the parallelism property to zero, and/or
127 * using a factory that may return {@code null}. However doing so may
128 * cause unjoined tasks to never be executed.
129 *
130 * <p><b>Implementation notes</b>: This implementation restricts the
131 * maximum number of running threads to 32767. Attempts to create
132 * pools with greater than the maximum number result in
133 * {@code IllegalArgumentException}.
134 *
135 * <p>This implementation rejects submitted tasks (that is, by throwing
136 * {@link RejectedExecutionException}) only when the pool is shut down
137 * or internal resources have been exhausted.
138 *
139 * @since 1.7
140 * @author Doug Lea
141 */
142 public class ForkJoinPool extends AbstractExecutorService {
143
144 /*
145 * Implementation Overview
146 *
147 * This class and its nested classes provide the main
148 * functionality and control for a set of worker threads:
149 * Submissions from non-FJ threads enter into submission queues.
150 * Workers take these tasks and typically split them into subtasks
151 * that may be stolen by other workers. Preference rules give
152 * first priority to processing tasks from their own queues (LIFO
153 * or FIFO, depending on mode), then to randomized FIFO steals of
154 * tasks in other queues. This framework began as vehicle for
155 * supporting tree-structured parallelism using work-stealing.
156 * Over time, its scalability advantages led to extensions and
157 * changes to better support more diverse usage contexts. Because
158 * most internal methods and nested classes are interrelated,
159 * their main rationale and descriptions are presented here;
160 * individual methods and nested classes contain only brief
161 * comments about details.
162 *
163 * WorkQueues
164 * ==========
165 *
166 * Most operations occur within work-stealing queues (in nested
167 * class WorkQueue). These are special forms of Deques that
168 * support only three of the four possible end-operations -- push,
169 * pop, and poll (aka steal), under the further constraints that
170 * push and pop are called only from the owning thread (or, as
171 * extended here, under a lock), while poll may be called from
172 * other threads. (If you are unfamiliar with them, you probably
173 * want to read Herlihy and Shavit's book "The Art of
174 * Multiprocessor programming", chapter 16 describing these in
175 * more detail before proceeding.) The main work-stealing queue
176 * design is roughly similar to those in the papers "Dynamic
177 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
178 * (http://research.sun.com/scalable/pubs/index.html) and
179 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
180 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
181 * The main differences ultimately stem from GC requirements that
182 * we null out taken slots as soon as we can, to maintain as small
183 * a footprint as possible even in programs generating huge
184 * numbers of tasks. To accomplish this, we shift the CAS
185 * arbitrating pop vs poll (steal) from being on the indices
186 * ("base" and "top") to the slots themselves.
187 *
188 * Adding tasks then takes the form of a classic array push(task)
189 * in a circular buffer:
190 * q.array[q.top++ % length] = task;
191 *
192 * (The actual code needs to null-check and size-check the array,
193 * uses masking, not mod, for indexing a power-of-two-sized array,
194 * properly fences accesses, and possibly signals waiting workers
195 * to start scanning -- see below.) Both a successful pop and
196 * poll mainly entail a CAS of a slot from non-null to null.
197 *
198 * The pop operation (always performed by owner) is:
199 * if ((the task at top slot is not null) and
200 * (CAS slot to null))
201 * decrement top and return task;
202 *
203 * And the poll operation (usually by a stealer) is
204 * if ((the task at base slot is not null) and
205 * (CAS slot to null))
206 * increment base and return task;
207 *
208 * There are several variants of each of these. In particular,
209 * almost all uses of poll occur within scan operations that also
210 * interleave contention tracking (with associated code sprawl.)
211 *
212 * Memory ordering. See "Correct and Efficient Work-Stealing for
213 * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
214 * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
215 * analysis of memory ordering requirements in work-stealing
216 * algorithms similar to (but different than) the one used here.
217 * Extracting tasks in array slots via (fully fenced) CAS provides
218 * primary synchronization. The base and top indices imprecisely
219 * guide where to extract from. We do not always require strict
220 * orderings of array and index updates, so sometimes let them be
221 * subject to compiler and processor reorderings. However, the
222 * volatile "base" index also serves as a basis for memory
223 * ordering: Slot accesses are preceded by a read of base,
224 * ensuring happens-before ordering with respect to stealers (so
225 * the slots themselves can be read via plain array reads.) The
226 * only other memory orderings relied on are maintained in the
227 * course of signalling and activation (see below). A check that
228 * base == top indicates (momentary) emptiness, but otherwise may
229 * err on the side of possibly making the queue appear nonempty
230 * when a push, pop, or poll have not fully committed, or making
231 * it appear empty when an update of top has not yet been visibly
232 * written. (Method isEmpty() checks the case of a partially
233 * completed removal of the last element.) Because of this, the
234 * poll operation, considered individually, is not wait-free. One
235 * thief cannot successfully continue until another in-progress
236 * one (or, if previously empty, a push) visibly completes.
237 * However, in the aggregate, we ensure at least probabilistic
238 * non-blockingness. If an attempted steal fails, a scanning
239 * thief chooses a different random victim target to try next. So,
240 * in order for one thief to progress, it suffices for any
241 * in-progress poll or new push on any empty queue to
242 * complete.
243 *
244 * This approach also enables support of a user mode in which
245 * local task processing is in FIFO, not LIFO order, simply by
246 * using poll rather than pop. This can be useful in
247 * message-passing frameworks in which tasks are never joined.
248 *
249 * WorkQueues are also used in a similar way for tasks submitted
250 * to the pool. We cannot mix these tasks in the same queues used
251 * by workers. Instead, we randomly associate submission queues
252 * with submitting threads, using a form of hashing. The
253 * ThreadLocalRandom probe value serves as a hash code for
254 * choosing existing queues, and may be randomly repositioned upon
255 * contention with other submitters. In essence, submitters act
256 * like workers except that they are restricted to executing local
257 * tasks that they submitted. Insertion of tasks in shared mode
258 * requires a lock but we use only a simple spinlock (using field
259 * phase), because submitters encountering a busy queue move to a
260 * different position to use or create other queues -- they block
261 * only when creating and registering new queues. Because it is
262 * used only as a spinlock, unlocking requires only a "releasing"
263 * store (using putOrderedInt).
264 *
265 * Management
266 * ==========
267 *
268 * The main throughput advantages of work-stealing stem from
269 * decentralized control -- workers mostly take tasks from
270 * themselves or each other, at rates that can exceed a billion
271 * per second. The pool itself creates, activates (enables
272 * scanning for and running tasks), deactivates, blocks, and
273 * terminates threads, all with minimal central information.
274 * There are only a few properties that we can globally track or
275 * maintain, so we pack them into a small number of variables,
276 * often maintaining atomicity without blocking or locking.
277 * Nearly all essentially atomic control state is held in a few
278 * volatile variables that are by far most often read (not
279 * written) as status and consistency checks. We pack as much
280 * information into them as we can.
281 *
282 * Field "ctl" contains 64 bits holding information needed to
283 * atomically decide to add, enqueue (on an event queue), and
284 * dequeue (and release)-activate workers. To enable this
285 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
286 * far in excess of normal operating range) to allow ids, counts,
287 * and their negations (used for thresholding) to fit into 16bit
288 * subfields.
289 *
290 * Field "mode" holds configuration parameters as well as lifetime
291 * status, atomically and monotonically setting SHUTDOWN, STOP,
292 * and finally TERMINATED bits.
293 *
294 * Field "workQueues" holds references to WorkQueues. It is
295 * updated (only during worker creation and termination) under
296 * lock (using field workerNamePrefix as lock), but is otherwise
297 * concurrently readable, and accessed directly. We also ensure
298 * that uses of the array reference itself never become too stale
299 * in case of resizing. To simplify index-based operations, the
300 * array size is always a power of two, and all readers must
301 * tolerate null slots. Worker queues are at odd indices. Shared
302 * (submission) queues are at even indices, up to a maximum of 64
303 * slots, to limit growth even if array needs to expand to add
304 * more workers. Grouping them together in this way simplifies and
305 * speeds up task scanning.
306 *
307 * All worker thread creation is on-demand, triggered by task
308 * submissions, replacement of terminated workers, and/or
309 * compensation for blocked workers. However, all other support
310 * code is set up to work with other policies. To ensure that we
311 * do not hold on to worker references that would prevent GC, all
312 * accesses to workQueues are via indices into the workQueues
313 * array (which is one source of some of the messy code
314 * constructions here). In essence, the workQueues array serves as
315 * a weak reference mechanism. Thus for example the stack top
316 * subfield of ctl stores indices, not references.
317 *
318 * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
319 * cannot let workers spin indefinitely scanning for tasks when
320 * none can be found immediately, and we cannot start/resume
321 * workers unless there appear to be tasks available. On the
322 * other hand, we must quickly prod them into action when new
323 * tasks are submitted or generated. In many usages, ramp-up time
324 * is the main limiting factor in overall performance, which is
325 * compounded at program start-up by JIT compilation and
326 * allocation. So we streamline this as much as possible.
327 *
328 * The "ctl" field atomically maintains total worker and
329 * "released" worker counts, plus the head of the available worker
330 * queue (actually stack, represented by the lower 32bit subfield
331 * of ctl). Released workers are those known to be scanning for
332 * and/or running tasks. Unreleased ("available") workers are
333 * recorded in the ctl stack. These workers are made available for
334 * signalling by enqueuing in ctl (see method runWorker). The
335 * "queue" is a form of Treiber stack. This is ideal for
336 * activating threads in most-recently used order, and improves
337 * performance and locality, outweighing the disadvantages of
338 * being prone to contention and inability to release a worker
339 * unless it is topmost on stack. To avoid missed signal problems
340 * inherent in any wait/signal design, available workers rescan
341 * for (and if found run) tasks after enqueuing. Normally their
342 * release status will be updated while doing so, but the released
343 * worker ctl count may underestimate the number of active
344 * threads. (However, it is still possible to determine quiescence
345 * via a validation traversal -- see isQuiescent). After an
346 * unsuccessful rescan, available workers are blocked until
347 * signalled (see signalWork). The top stack state holds the
348 * value of the "phase" field of the worker: its index and status,
349 * plus a version counter that, in addition to the count subfields
350 * (also serving as version stamps) provide protection against
351 * Treiber stack ABA effects.
352 *
353 * Creating workers. To create a worker, we pre-increment counts
354 * (serving as a reservation), and attempt to construct a
355 * ForkJoinWorkerThread via its factory. Upon construction, the
356 * new thread invokes registerWorker, where it constructs a
357 * WorkQueue and is assigned an index in the workQueues array
358 * (expanding the array if necessary). The thread is then started.
359 * Upon any exception across these steps, or null return from
360 * factory, deregisterWorker adjusts counts and records
361 * accordingly. If a null return, the pool continues running with
362 * fewer than the target number workers. If exceptional, the
363 * exception is propagated, generally to some external caller.
364 * Worker index assignment avoids the bias in scanning that would
365 * occur if entries were sequentially packed starting at the front
366 * of the workQueues array. We treat the array as a simple
367 * power-of-two hash table, expanding as needed. The seedIndex
368 * increment ensures no collisions until a resize is needed or a
369 * worker is deregistered and replaced, and thereafter keeps
370 * probability of collision low. We cannot use
371 * ThreadLocalRandom.getProbe() for similar purposes here because
372 * the thread has not started yet, but do so for creating
373 * submission queues for existing external threads (see
374 * externalPush).
375 *
376 * WorkQueue field "phase" is used by both workers and the pool to
377 * manage and track whether a worker is UNSIGNALLED (possibly
378 * blocked waiting for a signal). When a worker is enqueued its
379 * phase field is set. Note that phase field updates lag queue CAS
380 * releases so usage requires care -- seeing a negative phase does
381 * not guarantee that the worker is available. When queued, the
382 * lower 16 bits of scanState must hold its pool index. So we
383 * place the index there upon initialization (see registerWorker)
384 * and otherwise keep it there or restore it when necessary.
385 *
386 * The ctl field also serves as the basis for memory
387 * synchronization surrounding activation. This uses a more
388 * efficient version of a Dekker-like rule that task producers and
389 * consumers sync with each other by both writing/CASing ctl (even
390 * if to its current value). This would be extremely costly. So
391 * we relax it in several ways: (1) Producers only signal when
392 * their queue is empty. Other workers propagate this signal (in
393 * method scan) when they find tasks; to further reduce flailing,
394 * each worker signals only one other per activation. (2) Workers
395 * only enqueue after scanning (see below) and not finding any
396 * tasks. (3) Rather than CASing ctl to its current value in the
397 * common case where no action is required, we reduce write
398 * contention by equivalently prefacing signalWork when called by
399 * an external task producer using a memory access with
400 * full-volatile semantics or a "fullFence".
401 *
402 * Almost always, too many signals are issued. A task producer
403 * cannot in general tell if some existing worker is in the midst
404 * of finishing one task (or already scanning) and ready to take
405 * another without being signalled. So the producer might instead
406 * activate a different worker that does not find any work, and
407 * then inactivates. This scarcely matters in steady-state
408 * computations involving all workers, but can create contention
409 * and bookkeeping bottlenecks during ramp-up, ramp-down, and small
410 * computations involving only a few workers.
411 *
412 * Scanning. Method runWorker performs top-level scanning for
413 * tasks. Each scan traverses and tries to poll from each queue
414 * starting at a random index and circularly stepping. Scans are
415 * not performed in ideal random permutation order, to reduce
416 * cacheline contention. The pseudorandom generator need not have
417 * high-quality statistical properties in the long term, but just
418 * within computations; We use Marsaglia XorShifts (often via
419 * ThreadLocalRandom.nextSecondarySeed), which are cheap and
420 * suffice. Scanning also employs contention reduction: When
421 * scanning workers fail to extract an apparently existing task,
422 * they soon restart at a different pseudorandom index. This
423 * improves throughput when many threads are trying to take tasks
424 * from few queues, which can be common in some usages. Scans do
425 * not otherwise explicitly take into account core affinities,
426 * loads, cache localities, etc, However, they do exploit temporal
427 * locality (which usually approximates these) by preferring to
428 * re-poll (at most #workers times) from the same queue after a
429 * successful poll before trying others.
430 *
431 * Trimming workers. To release resources after periods of lack of
432 * use, a worker starting to wait when the pool is quiescent will
433 * time out and terminate (see method scan) if the pool has
434 * remained quiescent for period given by field keepAlive.
435 *
436 * Shutdown and Termination. A call to shutdownNow invokes
437 * tryTerminate to atomically set a runState bit. The calling
438 * thread, as well as every other worker thereafter terminating,
439 * helps terminate others by cancelling their unprocessed tasks,
440 * and waking them up, doing so repeatedly until stable. Calls to
441 * non-abrupt shutdown() preface this by checking whether
442 * termination should commence by sweeping through queues (until
443 * stable) to ensure lack of in-flight submissions and workers
444 * about to process them before triggering the "STOP" phase of
445 * termination.
446 *
447 * Joining Tasks
448 * =============
449 *
450 * Any of several actions may be taken when one worker is waiting
451 * to join a task stolen (or always held) by another. Because we
452 * are multiplexing many tasks on to a pool of workers, we can't
453 * always just let them block (as in Thread.join). We also cannot
454 * just reassign the joiner's run-time stack with another and
455 * replace it later, which would be a form of "continuation", that
456 * even if possible is not necessarily a good idea since we may
457 * need both an unblocked task and its continuation to progress.
458 * Instead we combine two tactics:
459 *
460 * Helping: Arranging for the joiner to execute some task that it
461 * would be running if the steal had not occurred.
462 *
463 * Compensating: Unless there are already enough live threads,
464 * method tryCompensate() may create or re-activate a spare
465 * thread to compensate for blocked joiners until they unblock.
466 *
467 * A third form (implemented in tryRemoveAndExec) amounts to
468 * helping a hypothetical compensator: If we can readily tell that
469 * a possible action of a compensator is to steal and execute the
470 * task being joined, the joining thread can do so directly,
471 * without the need for a compensation thread.
472 *
473 * The ManagedBlocker extension API can't use helping so relies
474 * only on compensation in method awaitBlocker.
475 *
476 * The algorithm in awaitJoin entails a form of "linear helping".
477 * Each worker records (in field source) the id of the queue from
478 * which it last stole a task. The scan in method awaitJoin uses
479 * these markers to try to find a worker to help (i.e., steal back
480 * a task from and execute it) that could hasten completion of the
481 * actively joined task. Thus, the joiner executes a task that
482 * would be on its own local deque if the to-be-joined task had
483 * not been stolen. This is a conservative variant of the approach
484 * described in Wagner & Calder "Leapfrogging: a portable
485 * technique for implementing efficient futures" SIGPLAN Notices,
486 * 1993 (http://portal.acm.org/citation.cfm?id=155354). It differs
487 * mainly in that we only record queue ids, not full dependency
488 * links. This requires a linear scan of the workQueues array to
489 * locate stealers, but isolates cost to when it is needed, rather
490 * than adding to per-task overhead. Searches can fail to locate
491 * stealers GC stalls and the like delay recording sources.
492 * Further, even when accurately identified, stealers might not
493 * ever produce a task that the joiner can in turn help with. So,
494 * compensation is tried upon failure to find tasks to run.
495 *
496 * Compensation does not by default aim to keep exactly the target
497 * parallelism number of unblocked threads running at any given
498 * time. Some previous versions of this class employed immediate
499 * compensations for any blocked join. However, in practice, the
500 * vast majority of blockages are transient byproducts of GC and
501 * other JVM or OS activities that are made worse by replacement.
502 * Rather than impose arbitrary policies, we allow users to
503 * override the default of only adding threads upon apparent
504 * starvation. The compensation mechanism may also be bounded.
505 * Bounds for the commonPool (see COMMON_MAX_SPARES) better enable
506 * JVMs to cope with programming errors and abuse before running
507 * out of resources to do so.
508 *
509 * Common Pool
510 * ===========
511 *
512 * The static common pool always exists after static
513 * initialization. Since it (or any other created pool) need
514 * never be used, we minimize initial construction overhead and
515 * footprint to the setup of about a dozen fields.
516 *
517 * When external threads submit to the common pool, they can
518 * perform subtask processing (see externalHelpComplete and
519 * related methods) upon joins. This caller-helps policy makes it
520 * sensible to set common pool parallelism level to one (or more)
521 * less than the total number of available cores, or even zero for
522 * pure caller-runs. We do not need to record whether external
523 * submissions are to the common pool -- if not, external help
524 * methods return quickly. These submitters would otherwise be
525 * blocked waiting for completion, so the extra effort (with
526 * liberally sprinkled task status checks) in inapplicable cases
527 * amounts to an odd form of limited spin-wait before blocking in
528 * ForkJoinTask.join.
529 *
530 * As a more appropriate default in managed environments, unless
531 * overridden by system properties, we use workers of subclass
532 * InnocuousForkJoinWorkerThread when there is a SecurityManager
533 * present. These workers have no permissions set, do not belong
534 * to any user-defined ThreadGroup, and erase all ThreadLocals
535 * after executing any top-level task (see
536 * WorkQueue.afterTopLevelExec). The associated mechanics (mainly
537 * in ForkJoinWorkerThread) may be JVM-dependent and must access
538 * particular Thread class fields to achieve this effect.
539 *
540 * Style notes
541 * ===========
542 *
543 * Memory ordering relies mainly on Unsafe intrinsics that carry
544 * the further responsibility of explicitly performing null- and
545 * bounds- checks otherwise carried out implicitly by JVMs. This
546 * can be awkward and ugly, but also reflects the need to control
547 * outcomes across the unusual cases that arise in very racy code
548 * with very few invariants. So these explicit checks would exist
549 * in some form anyway. All fields are read into locals before
550 * use, and null-checked if they are references. This is usually
551 * done in a "C"-like style of listing declarations at the heads
552 * of methods or blocks, and using inline assignments on first
553 * encounter. Array bounds-checks are usually performed by
554 * masking with array.length-1, which relies on the invariant that
555 * these arrays are created with positive lengths, which is itself
556 * paranoically checked. Nearly all explicit checks lead to
557 * bypass/return, not exception throws, because they may
558 * legitimately arise due to cancellation/revocation during
559 * shutdown.
560 *
561 * There is a lot of representation-level coupling among classes
562 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
563 * fields of WorkQueue maintain data structures managed by
564 * ForkJoinPool, so are directly accessed. There is little point
565 * trying to reduce this, since any associated future changes in
566 * representations will need to be accompanied by algorithmic
567 * changes anyway. Several methods intrinsically sprawl because
568 * they must accumulate sets of consistent reads of fields held in
569 * local variables. There are also other coding oddities
570 * (including several unnecessary-looking hoisted null checks)
571 * that help some methods perform reasonably even when interpreted
572 * (not compiled).
573 *
574 * The order of declarations in this file is (with a few exceptions):
575 * (1) Static utility functions
576 * (2) Nested (static) classes
577 * (3) Static fields
578 * (4) Fields, along with constants used when unpacking some of them
579 * (5) Internal control methods
580 * (6) Callbacks and other support for ForkJoinTask methods
581 * (7) Exported methods
582 * (8) Static block initializing statics in minimally dependent order
583 */
584
585 // Static utilities
586
587 /**
588 * If there is a security manager, makes sure caller has
589 * permission to modify threads.
590 */
591 private static void checkPermission() {
592 SecurityManager security = System.getSecurityManager();
593 if (security != null)
594 security.checkPermission(modifyThreadPermission);
595 }
596
597 // Nested classes
598
599 /**
600 * Factory for creating new {@link ForkJoinWorkerThread}s.
601 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
602 * for {@code ForkJoinWorkerThread} subclasses that extend base
603 * functionality or initialize threads with different contexts.
604 */
605 public static interface ForkJoinWorkerThreadFactory {
606 /**
607 * Returns a new worker thread operating in the given pool.
608 * Returning null or throwing an exception may result in tasks
609 * never being executed. If this method throws an exception,
610 * it is relayed to the caller of the method (for example
611 * {@code execute}) causing attempted thread creation. If this
612 * method returns null or throws an exception, it is not
613 * retried until the next attempted creation (for example
614 * another call to {@code execute}).
615 *
616 * @param pool the pool this thread works in
617 * @return the new worker thread, or {@code null} if the request
618 * to create a thread is rejected.
619 * @throws NullPointerException if the pool is null
620 */
621 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
622 }
623
624 /**
625 * Default ForkJoinWorkerThreadFactory implementation; creates a
626 * new ForkJoinWorkerThread.
627 */
628 private static final class DefaultForkJoinWorkerThreadFactory
629 implements ForkJoinWorkerThreadFactory {
630 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
631 return new ForkJoinWorkerThread(pool);
632 }
633 }
634
635 // Constants shared across ForkJoinPool and WorkQueue
636
637 // Bounds
638 static final int SWIDTH = 16; // width of short
639 static final int SMASK = 0xffff; // short bits == max index
640 static final int MAX_CAP = 0x7fff; // max #workers - 1
641 static final int SQMASK = 0x007e; // max 64 (even) slots
642
643 // Masks and units for WorkQueue.phase and ctl sp subfield
644 static final int UNSIGNALLED = 1 << 31; // must be negative
645 static final int SS_SEQ = 1 << 16; // version count
646 static final int QLOCK = 1; // must be 1
647
648 // Mode bits and sentinels, some also used in WorkQueue id and.source fields
649 static final int OWNED = 1; // queue has owner thread
650 static final int FIFO = 1 << 16; // fifo queue or access mode
651 static final int SHUTDOWN = 1 << 18;
652 static final int TERMINATED = 1 << 19;
653 static final int STOP = 1 << 31; // must be negative
654 static final int QUIET = 1 << 30; // not scanning or working
655 static final int DORMANT = QUIET | UNSIGNALLED;
656
657 /**
658 * The maximum number of local polls from the same queue before
659 * checking others. This is a safeguard against infinitely unfair
660 * looping under unbounded user task recursion, and must be larger
661 * than plausible cases of intentional bounded task recursion.
662 */
663 static final int POLL_LIMIT = 1 << 10;
664
665 /**
666 * Queues supporting work-stealing as well as external task
667 * submission. See above for descriptions and algorithms.
668 * Performance on most platforms is very sensitive to placement of
669 * instances of both WorkQueues and their arrays -- we absolutely
670 * do not want multiple WorkQueue instances or multiple queue
671 * arrays sharing cache lines. The @Contended annotation alerts
672 * JVMs to try to keep instances apart.
673 */
674 // For now, using manual padding.
675 // @jdk.internal.vm.annotation.Contended
676 // @sun.misc.Contended
677 static final class WorkQueue {
678
679 /**
680 * Capacity of work-stealing queue array upon initialization.
681 * Must be a power of two; at least 4, but should be larger to
682 * reduce or eliminate cacheline sharing among queues.
683 * Currently, it is much larger, as a partial workaround for
684 * the fact that JVMs often place arrays in locations that
685 * share GC bookkeeping (especially cardmarks) such that
686 * per-write accesses encounter serious memory contention.
687 */
688 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
689
690 /**
691 * Maximum size for queue arrays. Must be a power of two less
692 * than or equal to 1 << (31 - width of array entry) to ensure
693 * lack of wraparound of index calculations, but defined to a
694 * value a bit less than this to help users trap runaway
695 * programs before saturating systems.
696 */
697 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
698
699 // Instance fields
700 volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06, pad07;
701 volatile long pad08, pad09, pad0a, pad0b, pad0c, pad0d, pad0e, pad0f;
702 volatile int phase; // versioned, negative: queued, 1: locked
703 int stackPred; // pool stack (ctl) predecessor link
704 int nsteals; // number of steals
705 int id; // index, mode, tag
706 volatile int source; // source queue id, or sentinel
707 volatile int base; // index of next slot for poll
708 int top; // index of next slot for push
709 ForkJoinTask<?>[] array; // the elements (initially unallocated)
710 final ForkJoinPool pool; // the containing pool (may be null)
711 final ForkJoinWorkerThread owner; // owning thread or null if shared
712 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
713 volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d, pad1e, pad1f;
714
715 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
716 this.pool = pool;
717 this.owner = owner;
718 // Place indices in the center of array (that is not yet allocated)
719 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
720 }
721
722 /**
723 * Returns an exportable index (used by ForkJoinWorkerThread).
724 */
725 final int getPoolIndex() {
726 return (id & 0xffff) >>> 1; // ignore odd/even tag bit
727 }
728
729 /**
730 * Returns the approximate number of tasks in the queue.
731 */
732 final int queueSize() {
733 int n = base - top; // read base first
734 return (n >= 0) ? 0 : -n; // ignore transient negative
735 }
736
737 /**
738 * Provides a more accurate estimate of whether this queue has
739 * any tasks than does queueSize, by checking whether a
740 * near-empty queue has at least one unclaimed task.
741 */
742 final boolean isEmpty() {
743 ForkJoinTask<?>[] a; int n, al, b;
744 return ((n = (b = base) - top) >= 0 || // possibly one task
745 (n == -1 && ((a = array) == null ||
746 (al = a.length) == 0 ||
747 a[(al - 1) & b] == null)));
748 }
749
750
751 /**
752 * Pushes a task. Call only by owner in unshared queues.
753 *
754 * @param task the task. Caller must ensure non-null.
755 * @throws RejectedExecutionException if array cannot be resized
756 */
757 final void push(ForkJoinTask<?> task) {
758 int s = top; ForkJoinTask<?>[] a; int al, d;
759 if ((a = array) != null && (al = a.length) > 0) {
760 int index = (al - 1) & s;
761 long offset = ((long)index << ASHIFT) + ABASE;
762 ForkJoinPool p = pool;
763 top = s + 1;
764 U.putOrderedObject(a, offset, task);
765 if ((d = base - s) == 0 && p != null) {
766 U.fullFence();
767 p.signalWork();
768 }
769 else if (d + al == 1)
770 growArray();
771 }
772 }
773
774 /**
775 * Initializes or doubles the capacity of array. Call either
776 * by owner or with lock held -- it is OK for base, but not
777 * top, to move while resizings are in progress.
778 */
779 final ForkJoinTask<?>[] growArray() {
780 ForkJoinTask<?>[] oldA = array;
781 int oldSize = oldA != null ? oldA.length : 0;
782 int size = oldSize > 0 ? oldSize << 1 : INITIAL_QUEUE_CAPACITY;
783 if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY)
784 throw new RejectedExecutionException("Queue capacity exceeded");
785 int oldMask, t, b;
786 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
787 if (oldA != null && (oldMask = oldSize - 1) > 0 &&
788 (t = top) - (b = base) > 0) {
789 int mask = size - 1;
790 do { // emulate poll from old array, push to new array
791 int index = b & oldMask;
792 long offset = ((long)index << ASHIFT) + ABASE;
793 ForkJoinTask<?> x = (ForkJoinTask<?>)
794 U.getObjectVolatile(oldA, offset);
795 if (x != null &&
796 U.compareAndSwapObject(oldA, offset, x, null))
797 a[b & mask] = x;
798 } while (++b != t);
799 U.storeFence();
800 }
801 return a;
802 }
803
804 /**
805 * Takes next task, if one exists, in LIFO order. Call only
806 * by owner in unshared queues.
807 */
808 final ForkJoinTask<?> pop() {
809 int b = base, s = top, al, i; ForkJoinTask<?>[] a;
810 if ((a = array) != null && b != s && (al = a.length) > 0) {
811 int index = (al - 1) & --s;
812 long offset = ((long)index << ASHIFT) + ABASE;
813 ForkJoinTask<?> t = (ForkJoinTask<?>)
814 U.getObject(a, offset);
815 if (t != null &&
816 U.compareAndSwapObject(a, offset, t, null)) {
817 top = s;
818 U.storeFence();
819 return t;
820 }
821 }
822 return null;
823 }
824
825 /**
826 * Takes next task, if one exists, in FIFO order.
827 */
828 final ForkJoinTask<?> poll() {
829 for (;;) {
830 int b = base, s = top, d, al; ForkJoinTask<?>[] a;
831 if ((a = array) != null && (d = b - s) < 0 &&
832 (al = a.length) > 0) {
833 int index = (al - 1) & b;
834 long offset = ((long)index << ASHIFT) + ABASE;
835 ForkJoinTask<?> t = (ForkJoinTask<?>)
836 U.getObjectVolatile(a, offset);
837 if (b++ == base) {
838 if (t != null) {
839 if (U.compareAndSwapObject(a, offset, t, null)) {
840 base = b;
841 return t;
842 }
843 }
844 else if (d == -1)
845 break; // now empty
846 }
847 }
848 else
849 break;
850 }
851 return null;
852 }
853
854 /**
855 * Takes next task, if one exists, in order specified by mode.
856 */
857 final ForkJoinTask<?> nextLocalTask() {
858 return ((id & FIFO) != 0) ? poll() : pop();
859 }
860
861 /**
862 * Returns next task, if one exists, in order specified by mode.
863 */
864 final ForkJoinTask<?> peek() {
865 int al; ForkJoinTask<?>[] a;
866 return ((a = array) != null && (al = a.length) > 0) ?
867 a[(al - 1) &
868 ((id & FIFO) != 0 ? base : top - 1)] : null;
869 }
870
871 /**
872 * Pops the given task only if it is at the current top.
873 */
874 final boolean tryUnpush(ForkJoinTask<?> task) {
875 int b = base, s = top, al; ForkJoinTask<?>[] a;
876 if ((a = array) != null && b != s && (al = a.length) > 0) {
877 int index = (al - 1) & --s;
878 long offset = ((long)index << ASHIFT) + ABASE;
879 if (U.compareAndSwapObject(a, offset, task, null)) {
880 top = s;
881 U.storeFence();
882 return true;
883 }
884 }
885 return false;
886 }
887
888 /**
889 * Removes and cancels all known tasks, ignoring any exceptions.
890 */
891 final void cancelAll() {
892 for (ForkJoinTask<?> t; (t = poll()) != null; )
893 ForkJoinTask.cancelIgnoringExceptions(t);
894 }
895
896 // Specialized execution methods
897
898 /**
899 * Pops and executes up to limit consecutive tasks or until empty.
900 *
901 * @param limit max runs, or zero for no limit
902 */
903 final void localPopAndExec(int limit) {
904 for (;;) {
905 int b = base, s = top, al; ForkJoinTask<?>[] a;
906 if ((a = array) != null && b != s && (al = a.length) > 0) {
907 int index = (al - 1) & --s;
908 long offset = ((long)index << ASHIFT) + ABASE;
909 ForkJoinTask<?> t = (ForkJoinTask<?>)
910 U.getAndSetObject(a, offset, null);
911 if (t != null) {
912 top = s;
913 U.storeFence();
914 t.doExec();
915 if (limit != 0 && --limit == 0)
916 break;
917 }
918 else
919 break;
920 }
921 else
922 break;
923 }
924 }
925
926 /**
927 * Polls and executes up to limit consecutive tasks or until empty.
928 *
929 * @param limit, or zero for no limit
930 */
931 final void localPollAndExec(int limit) {
932 for (int polls = 0;;) {
933 int b = base, s = top, d, al; ForkJoinTask<?>[] a;
934 if ((a = array) != null && (d = b - s) < 0 &&
935 (al = a.length) > 0) {
936 int index = (al - 1) & b++;
937 long offset = ((long)index << ASHIFT) + ABASE;
938 ForkJoinTask<?> t = (ForkJoinTask<?>)
939 U.getAndSetObject(a, offset, null);
940 if (t != null) {
941 base = b;
942 t.doExec();
943 if (limit != 0 && ++polls == limit)
944 break;
945 }
946 else if (d == -1)
947 break; // now empty
948 else
949 polls = 0; // stolen; reset
950 }
951 else
952 break;
953 }
954 }
955
956 /**
957 * If present, removes task from queue and executes it.
958 */
959 final void tryRemoveAndExec(ForkJoinTask<?> task) {
960 ForkJoinTask<?>[] wa; int s, wal;
961 if (base - (s = top) < 0 && // traverse from top
962 (wa = array) != null && (wal = wa.length) > 0) {
963 for (int m = wal - 1, ns = s - 1, i = ns; ; --i) {
964 int index = i & m;
965 long offset = (index << ASHIFT) + ABASE;
966 ForkJoinTask<?> t = (ForkJoinTask<?>)
967 U.getObject(wa, offset);
968 if (t == null)
969 break;
970 else if (t == task) {
971 if (U.compareAndSwapObject(wa, offset, t, null)) {
972 top = ns; // safely shift down
973 for (int j = i; j != ns; ++j) {
974 ForkJoinTask<?> f;
975 int pindex = (j + 1) & m;
976 long pOffset = (pindex << ASHIFT) + ABASE;
977 f = (ForkJoinTask<?>)U.getObject(wa, pOffset);
978 U.putObjectVolatile(wa, pOffset, null);
979
980 int jindex = j & m;
981 long jOffset = (jindex << ASHIFT) + ABASE;
982 U.putOrderedObject(wa, jOffset, f);
983 }
984 U.storeFence();
985 t.doExec();
986 }
987 break;
988 }
989 }
990 }
991 }
992
993 /**
994 * Tries to steal and run tasks within the target's
995 * computation until done, not found, or limit exceeded.
996 *
997 * @param task root of CountedCompleter computation
998 * @param limit max runs, or zero for no limit
999 * @return task status on exit
1000 */
1001 final int localHelpCC(CountedCompleter<?> task, int limit) {
1002 int status = 0;
1003 if (task != null && (status = task.status) >= 0) {
1004 for (;;) {
1005 boolean help = false;
1006 int b = base, s = top, al; ForkJoinTask<?>[] a;
1007 if ((a = array) != null && b != s && (al = a.length) > 0) {
1008 int index = (al - 1) & (s - 1);
1009 long offset = ((long)index << ASHIFT) + ABASE;
1010 ForkJoinTask<?> o = (ForkJoinTask<?>)
1011 U.getObject(a, offset);
1012 if (o instanceof CountedCompleter) {
1013 CountedCompleter<?> t = (CountedCompleter<?>)o;
1014 for (CountedCompleter<?> f = t;;) {
1015 if (f != task) {
1016 if ((f = f.completer) == null) // try parent
1017 break;
1018 }
1019 else {
1020 if (U.compareAndSwapObject(a, offset,
1021 t, null)) {
1022 top = s - 1;
1023 U.storeFence();
1024 t.doExec();
1025 help = true;
1026 }
1027 break;
1028 }
1029 }
1030 }
1031 }
1032 if ((status = task.status) < 0 || !help ||
1033 (limit != 0 && --limit == 0))
1034 break;
1035 }
1036 }
1037 return status;
1038 }
1039
1040 // Operations on shared queues
1041
1042 /**
1043 * Tries to lock shared queue by CASing phase field.
1044 */
1045 final boolean tryLockSharedQueue() {
1046 return U.compareAndSwapInt(this, PHASE, 0, QLOCK);
1047 }
1048
1049 /**
1050 * Shared version of tryUnpush.
1051 */
1052 final boolean trySharedUnpush(ForkJoinTask<?> task) {
1053 boolean popped = false;
1054 int s = top - 1, al; ForkJoinTask<?>[] a;
1055 if ((a = array) != null && (al = a.length) > 0) {
1056 int index = (al - 1) & s;
1057 long offset = ((long)index << ASHIFT) + ABASE;
1058 ForkJoinTask<?> t = (ForkJoinTask<?>) U.getObject(a, offset);
1059 if (t == task &&
1060 U.compareAndSwapInt(this, PHASE, 0, QLOCK)) {
1061 if (top == s + 1 && array == a &&
1062 U.compareAndSwapObject(a, offset, task, null)) {
1063 popped = true;
1064 top = s;
1065 }
1066 U.putOrderedInt(this, PHASE, 0);
1067 }
1068 }
1069 return popped;
1070 }
1071
1072 /**
1073 * Shared version of localHelpCC.
1074 */
1075 final int sharedHelpCC(CountedCompleter<?> task, int limit) {
1076 int status = 0;
1077 if (task != null && (status = task.status) >= 0) {
1078 for (;;) {
1079 boolean help = false;
1080 int b = base, s = top, al; ForkJoinTask<?>[] a;
1081 if ((a = array) != null && b != s && (al = a.length) > 0) {
1082 int index = (al - 1) & (s - 1);
1083 long offset = ((long)index << ASHIFT) + ABASE;
1084 ForkJoinTask<?> o = (ForkJoinTask<?>)
1085 U.getObject(a, offset);
1086 if (o instanceof CountedCompleter) {
1087 CountedCompleter<?> t = (CountedCompleter<?>)o;
1088 for (CountedCompleter<?> f = t;;) {
1089 if (f != task) {
1090 if ((f = f.completer) == null)
1091 break;
1092 }
1093 else {
1094 if (U.compareAndSwapInt(this, PHASE,
1095 0, QLOCK)) {
1096 if (top == s && array == a &&
1097 U.compareAndSwapObject(a, offset,
1098 t, null)) {
1099 help = true;
1100 top = s - 1;
1101 }
1102 U.putOrderedInt(this, PHASE, 0);
1103 if (help)
1104 t.doExec();
1105 }
1106 break;
1107 }
1108 }
1109 }
1110 }
1111 if ((status = task.status) < 0 || !help ||
1112 (limit != 0 && --limit == 0))
1113 break;
1114 }
1115 }
1116 return status;
1117 }
1118
1119 /**
1120 * Returns true if owned and not known to be blocked.
1121 */
1122 final boolean isApparentlyUnblocked() {
1123 Thread wt; Thread.State s;
1124 return ((wt = owner) != null &&
1125 (s = wt.getState()) != Thread.State.BLOCKED &&
1126 s != Thread.State.WAITING &&
1127 s != Thread.State.TIMED_WAITING);
1128 }
1129
1130 // Unsafe mechanics. Note that some are (and must be) the same as in FJP
1131 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1132 private static final long PHASE;
1133 private static final int ABASE;
1134 private static final int ASHIFT;
1135 static {
1136 try {
1137 PHASE = U.objectFieldOffset
1138 (WorkQueue.class.getDeclaredField("phase"));
1139 ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
1140 int scale = U.arrayIndexScale(ForkJoinTask[].class);
1141 if ((scale & (scale - 1)) != 0)
1142 throw new Error("array index scale not a power of two");
1143 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1144 } catch (ReflectiveOperationException e) {
1145 throw new Error(e);
1146 }
1147 }
1148 }
1149
1150 // static fields (initialized in static initializer below)
1151
1152 /**
1153 * Creates a new ForkJoinWorkerThread. This factory is used unless
1154 * overridden in ForkJoinPool constructors.
1155 */
1156 public static final ForkJoinWorkerThreadFactory
1157 defaultForkJoinWorkerThreadFactory;
1158
1159 /**
1160 * Permission required for callers of methods that may start or
1161 * kill threads.
1162 */
1163 static final RuntimePermission modifyThreadPermission;
1164
1165 /**
1166 * Common (static) pool. Non-null for public use unless a static
1167 * construction exception, but internal usages null-check on use
1168 * to paranoically avoid potential initialization circularities
1169 * as well as to simplify generated code.
1170 */
1171 static final ForkJoinPool common;
1172
1173 /**
1174 * Common pool parallelism. To allow simpler use and management
1175 * when common pool threads are disabled, we allow the underlying
1176 * common.parallelism field to be zero, but in that case still report
1177 * parallelism as 1 to reflect resulting caller-runs mechanics.
1178 */
1179 static final int COMMON_PARALLELISM;
1180
1181 /**
1182 * Limit on spare thread construction in tryCompensate.
1183 */
1184 private static final int COMMON_MAX_SPARES;
1185
1186 /**
1187 * Sequence number for creating workerNamePrefix.
1188 */
1189 private static int poolNumberSequence;
1190
1191 /**
1192 * Returns the next sequence number. We don't expect this to
1193 * ever contend, so use simple builtin sync.
1194 */
1195 private static final synchronized int nextPoolId() {
1196 return ++poolNumberSequence;
1197 }
1198
1199 // static configuration constants
1200
1201 /**
1202 * Default idle timeout value (in milliseconds) for the thread
1203 * triggering quiescence to park waiting for new work
1204 */
1205 private static final long DEFAULT_KEEPALIVE = 60000L;
1206
1207 /**
1208 * Undershoot tolerance for idle timeouts
1209 */
1210 private static final long TIMEOUT_SLOP = 20L;
1211
1212 /**
1213 * The default value for COMMON_MAX_SPARES. Overridable using the
1214 * "java.util.concurrent.ForkJoinPool.common.maximumSpares" system
1215 * property. The default value is far in excess of normal
1216 * requirements, but also far short of MAX_CAP and typical OS
1217 * thread limits, so allows JVMs to catch misuse/abuse before
1218 * running out of resources needed to do so.
1219 */
1220 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1221
1222 /**
1223 * Increment for seed generators. See class ThreadLocal for
1224 * explanation.
1225 */
1226 private static final int SEED_INCREMENT = 0x9e3779b9;
1227
1228 /*
1229 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1230 * RC: Number of released (unqueued) workers minus target parallelism
1231 * TC: Number of total workers minus target parallelism
1232 * SS: version count and status of top waiting thread
1233 * ID: poolIndex of top of Treiber stack of waiters
1234 *
1235 * When convenient, we can extract the lower 32 stack top bits
1236 * (including version bits) as sp=(int)ctl. The offsets of counts
1237 * by the target parallelism and the positionings of fields makes
1238 * it possible to perform the most common checks via sign tests of
1239 * fields: When ac is negative, there are not enough unqueued
1240 * workers, when tc is negative, there are not enough total
1241 * workers. When sp is non-zero, there are waiting workers. To
1242 * deal with possibly negative fields, we use casts in and out of
1243 * "short" and/or signed shifts to maintain signedness.
1244 *
1245 * Because it occupies uppermost bits, we can add one release count
1246 * using getAndAddLong of RC_UNIT, rather than CAS, when returning
1247 * from a blocked join. Other updates entail multiple subfields
1248 * and masking, requiring CAS.
1249 *
1250 * The limits packed in field "bounds" are also offset by the
1251 * parallelism level to make them comparable to the ctl rc and tc
1252 * fields.
1253 */
1254
1255 // Lower and upper word masks
1256 private static final long SP_MASK = 0xffffffffL;
1257 private static final long UC_MASK = ~SP_MASK;
1258
1259 // Release counts
1260 private static final int RC_SHIFT = 48;
1261 private static final long RC_UNIT = 0x0001L << RC_SHIFT;
1262 private static final long RC_MASK = 0xffffL << RC_SHIFT;
1263
1264 // Total counts
1265 private static final int TC_SHIFT = 32;
1266 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1267 private static final long TC_MASK = 0xffffL << TC_SHIFT;
1268 private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1269
1270 // Instance fields
1271
1272 // Segregate ctl field, For now using padding vs @Contended
1273 // @jdk.internal.vm.annotation.Contended("fjpctl")
1274 // @sun.misc.Contended("fjpctl")
1275 volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06, pad07;
1276 volatile long pad08, pad09, pad0a, pad0b, pad0c, pad0d, pad0e, pad0f;
1277 volatile long ctl; // main pool control
1278 volatile long pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1279 volatile long pad18, pad19, pad1a, pad1b, pad1c, pad1d, pad1e;
1280
1281 volatile long stealCount; // collects worker nsteals
1282 final long keepAlive; // milliseconds before dropping if idle
1283 int indexSeed; // next worker index
1284 final int bounds; // min, max threads packed as shorts
1285 volatile int mode; // parallelism, runstate, queue mode
1286 WorkQueue[] workQueues; // main registry
1287 final String workerNamePrefix; // for worker thread string; sync lock
1288 final ForkJoinWorkerThreadFactory factory;
1289 final UncaughtExceptionHandler ueh; // per-worker UEH
1290 final Predicate<? super ForkJoinPool> saturate;
1291
1292 // Creating, registering and deregistering workers
1293
1294 /**
1295 * Tries to construct and start one worker. Assumes that total
1296 * count has already been incremented as a reservation. Invokes
1297 * deregisterWorker on any failure.
1298 *
1299 * @return true if successful
1300 */
1301 private boolean createWorker() {
1302 ForkJoinWorkerThreadFactory fac = factory;
1303 Throwable ex = null;
1304 ForkJoinWorkerThread wt = null;
1305 try {
1306 if (fac != null && (wt = fac.newThread(this)) != null) {
1307 wt.start();
1308 return true;
1309 }
1310 } catch (Throwable rex) {
1311 ex = rex;
1312 }
1313 deregisterWorker(wt, ex);
1314 return false;
1315 }
1316
1317 /**
1318 * Tries to add one worker, incrementing ctl counts before doing
1319 * so, relying on createWorker to back out on failure.
1320 *
1321 * @param c incoming ctl value, with total count negative and no
1322 * idle workers. On CAS failure, c is refreshed and retried if
1323 * this holds (otherwise, a new worker is not needed).
1324 */
1325 private void tryAddWorker(long c) {
1326 do {
1327 long nc = ((RC_MASK & (c + RC_UNIT)) |
1328 (TC_MASK & (c + TC_UNIT)));
1329 if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1330 createWorker();
1331 break;
1332 }
1333 } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1334 }
1335
1336 /**
1337 * Callback from ForkJoinWorkerThread constructor to establish and
1338 * record its WorkQueue.
1339 *
1340 * @param wt the worker thread
1341 * @return the worker's queue
1342 */
1343 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1344 UncaughtExceptionHandler handler;
1345 wt.setDaemon(true); // configure thread
1346 if ((handler = ueh) != null)
1347 wt.setUncaughtExceptionHandler(handler);
1348 WorkQueue w = new WorkQueue(this, wt);
1349 int tid = 0; // for thread name
1350 int fifo = mode & FIFO;
1351 String prefix = workerNamePrefix;
1352 if (prefix != null) {
1353 synchronized (prefix) {
1354 WorkQueue[] ws = workQueues; int n;
1355 int s = indexSeed += SEED_INCREMENT;
1356 if (ws != null && (n = ws.length) > 1) {
1357 int m = n - 1;
1358 tid = s & m;
1359 int i = m & ((s << 1) | 1); // odd-numbered indices
1360 for (int probes = n >>> 1;;) { // find empty slot
1361 WorkQueue q;
1362 if ((q = ws[i]) == null || q.phase == QUIET)
1363 break;
1364 else if (--probes == 0) {
1365 i = n | 1; // resize below
1366 break;
1367 }
1368 else
1369 i = (i + 2) & m;
1370 }
1371
1372 int id = i | fifo | (s & ~(SMASK | FIFO | DORMANT));
1373 w.phase = w.id = id; // now publishable
1374
1375 if (i < n)
1376 ws[i] = w;
1377 else { // expand array
1378 int an = n << 1;
1379 WorkQueue[] as = new WorkQueue[an];
1380 as[i] = w;
1381 int am = an - 1;
1382 for (int j = 0; j < n; ++j) {
1383 WorkQueue v; // copy external queue
1384 if ((v = ws[j]) != null) // position may change
1385 as[v.id & am & SQMASK] = v;
1386 if (++j >= n)
1387 break;
1388 as[j] = ws[j]; // copy worker
1389 }
1390 workQueues = as;
1391 }
1392 }
1393 }
1394 wt.setName(prefix.concat(Integer.toString(tid)));
1395 }
1396 return w;
1397 }
1398
1399 /**
1400 * Final callback from terminating worker, as well as upon failure
1401 * to construct or start a worker. Removes record of worker from
1402 * array, and adjusts counts. If pool is shutting down, tries to
1403 * complete termination.
1404 *
1405 * @param wt the worker thread, or null if construction failed
1406 * @param ex the exception causing failure, or null if none
1407 */
1408 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1409 WorkQueue w = null;
1410 int phase = 0;
1411 if (wt != null && (w = wt.workQueue) != null) {
1412 Object lock = workerNamePrefix;
1413 long ns = (long)w.nsteals & 0xffffffffL;
1414 int idx = w.id & SMASK;
1415 if (lock != null) {
1416 WorkQueue[] ws; // remove index from array
1417 synchronized (lock) {
1418 if ((ws = workQueues) != null && ws.length > idx &&
1419 ws[idx] == w)
1420 ws[idx] = null;
1421 stealCount += ns;
1422 }
1423 }
1424 phase = w.phase;
1425 }
1426 if (phase != QUIET) { // else pre-adjusted
1427 long c; // decrement counts
1428 do {} while (!U.compareAndSwapLong
1429 (this, CTL, c = ctl, ((RC_MASK & (c - RC_UNIT)) |
1430 (TC_MASK & (c - TC_UNIT)) |
1431 (SP_MASK & c))));
1432 }
1433 if (w != null)
1434 w.cancelAll(); // cancel remaining tasks
1435
1436 if (!tryTerminate(false, false) && // possibly replace worker
1437 w != null && w.array != null) // avoid repeated failures
1438 signalWork();
1439
1440 if (ex == null) // help clean on way out
1441 ForkJoinTask.helpExpungeStaleExceptions();
1442 else // rethrow
1443 ForkJoinTask.rethrow(ex);
1444 }
1445
1446 /**
1447 * Tries to create or release a worker if too few are running.
1448 */
1449 final void signalWork() {
1450 for (;;) {
1451 long c; int sp; WorkQueue[] ws; int i; WorkQueue v;
1452 if ((c = ctl) >= 0L) // enough workers
1453 break;
1454 else if ((sp = (int)c) == 0) { // no idle workers
1455 if ((c & ADD_WORKER) != 0L) // too few workers
1456 tryAddWorker(c);
1457 break;
1458 }
1459 else if ((ws = workQueues) == null)
1460 break; // unstarted/terminated
1461 else if (ws.length <= (i = sp & SMASK))
1462 break; // terminated
1463 else if ((v = ws[i]) == null)
1464 break; // terminating
1465 else {
1466 int np = sp & ~UNSIGNALLED;
1467 int vp = v.phase;
1468 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + RC_UNIT));
1469 Thread vt = v.owner;
1470 if (sp == vp && U.compareAndSwapLong(this, CTL, c, nc)) {
1471 v.phase = np;
1472 if (v.source < 0)
1473 LockSupport.unpark(vt);
1474 break;
1475 }
1476 }
1477 }
1478 }
1479
1480 /**
1481 * Tries to decrement counts (sometimes implicitly) and possibly
1482 * arrange for a compensating worker in preparation for blocking:
1483 * If not all core workers yet exist, creates one, else if any are
1484 * unreleased (possibly including caller) releases one, else if
1485 * fewer than the minimum allowed number of workers running,
1486 * checks to see that they are all active, and if so creates an
1487 * extra worker unless over maximum limit and policy is to
1488 * saturate. Most of these steps can fail due to interference, in
1489 * which case 0 is returned so caller will retry. A negative
1490 * return value indicates that the caller doesn't need to
1491 * re-adjust counts when later unblocked.
1492 *
1493 * @return 1: block then adjust, -1: block without adjust, 0 : retry
1494 */
1495 private int tryCompensate(WorkQueue w) {
1496 int t, n, sp;
1497 long c = ctl;
1498 WorkQueue[] ws = workQueues;
1499 if ((t = (short)(c >>> TC_SHIFT)) >= 0) {
1500 if (ws == null || (n = ws.length) <= 0 || w == null)
1501 return 0; // disabled
1502 else if ((sp = (int)c) != 0) { // replace or release
1503 WorkQueue v = ws[sp & (n - 1)];
1504 int wp = w.phase;
1505 long uc = UC_MASK & ((wp < 0) ? c + RC_UNIT : c);
1506 int np = sp & ~UNSIGNALLED;
1507 if (v != null) {
1508 int vp = v.phase;
1509 Thread vt = v.owner;
1510 long nc = ((long)v.stackPred & SP_MASK) | uc;
1511 if (vp == sp && U.compareAndSwapLong(this, CTL, c, nc)) {
1512 v.phase = np;
1513 if (v.source < 0)
1514 LockSupport.unpark(vt);
1515 return (wp < 0) ? -1 : 1;
1516 }
1517 }
1518 return 0;
1519 }
1520 else if ((int)(c >> RC_SHIFT) - // reduce parallelism
1521 (short)(bounds & SMASK) > 0) {
1522 long nc = ((RC_MASK & (c - RC_UNIT)) | (~RC_MASK & c));
1523 return U.compareAndSwapLong(this, CTL, c, nc) ? 1 : 0;
1524 }
1525 else { // validate
1526 int md = mode, pc = md & SMASK, tc = pc + t, bc = 0;
1527 boolean unstable = false;
1528 for (int i = 1; i < n; i += 2) {
1529 WorkQueue q; Thread wt; Thread.State ts;
1530 if ((q = ws[i]) != null) {
1531 if (q.source == 0) {
1532 unstable = true;
1533 break;
1534 }
1535 else {
1536 --tc;
1537 if ((wt = q.owner) != null &&
1538 ((ts = wt.getState()) == Thread.State.BLOCKED ||
1539 ts == Thread.State.WAITING))
1540 ++bc; // worker is blocking
1541 }
1542 }
1543 }
1544 if (unstable || tc != 0 || ctl != c)
1545 return 0; // inconsistent
1546 else if (t + pc >= MAX_CAP || t >= (bounds >>> SWIDTH)) {
1547 Predicate<? super ForkJoinPool> sat;
1548 if ((sat = saturate) != null && sat.test(this))
1549 return -1;
1550 else if (bc < pc) { // lagging
1551 Thread.yield(); // for retry spins
1552 return 0;
1553 }
1554 else
1555 throw new RejectedExecutionException(
1556 "Thread limit exceeded replacing blocked worker");
1557 }
1558 }
1559 }
1560
1561 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK); // expand pool
1562 return U.compareAndSwapLong(this, CTL, c, nc) && createWorker() ? 1 : 0;
1563 }
1564
1565 /**
1566 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1567 * See above for explanation.
1568 */
1569 final void runWorker(WorkQueue w) {
1570 WorkQueue[] ws;
1571 w.growArray(); // allocate queue
1572 int r = w.id ^ ThreadLocalRandom.nextSecondarySeed();
1573 if (r == 0) // initial nonzero seed
1574 r = 1;
1575 int lastSignalId = 0; // avoid unneeded signals
1576 while ((ws = workQueues) != null) {
1577 boolean nonempty = false; // scan
1578 for (int n = ws.length, j = n, m = n - 1; j > 0; --j) {
1579 WorkQueue q; int i, b, al; ForkJoinTask<?>[] a;
1580 if ((i = r & m) >= 0 && i < n && // always true
1581 (q = ws[i]) != null && (b = q.base) - q.top < 0 &&
1582 (a = q.array) != null && (al = a.length) > 0) {
1583 int qid = q.id; // (never zero)
1584 int index = (al - 1) & b;
1585 long offset = ((long)index << ASHIFT) + ABASE;
1586 ForkJoinTask<?> t = (ForkJoinTask<?>)
1587 U.getObjectVolatile(a, offset);
1588 if (t != null && b++ == q.base &&
1589 U.compareAndSwapObject(a, offset, t, null)) {
1590 if ((q.base = b) - q.top < 0 && qid != lastSignalId)
1591 signalWork(); // propagate signal
1592 w.source = lastSignalId = qid;
1593 t.doExec();
1594 if ((w.id & FIFO) != 0) // run remaining locals
1595 w.localPollAndExec(POLL_LIMIT);
1596 else
1597 w.localPopAndExec(POLL_LIMIT);
1598 ForkJoinWorkerThread thread = w.owner;
1599 ++w.nsteals;
1600 w.source = 0; // now idle
1601 if (thread != null)
1602 thread.afterTopLevelExec();
1603 }
1604 nonempty = true;
1605 }
1606 else if (nonempty)
1607 break;
1608 else
1609 ++r;
1610 }
1611
1612 if (nonempty) { // move (xorshift)
1613 r ^= r << 13; r ^= r >>> 17; r ^= r << 5;
1614 }
1615 else {
1616 int phase;
1617 lastSignalId = 0; // clear for next scan
1618 if ((phase = w.phase) >= 0) { // enqueue
1619 int np = w.phase = (phase + SS_SEQ) | UNSIGNALLED;
1620 long c, nc;
1621 do {
1622 w.stackPred = (int)(c = ctl);
1623 nc = ((c - RC_UNIT) & UC_MASK) | (SP_MASK & np);
1624 } while (!U.compareAndSwapLong(this, CTL, c, nc));
1625 }
1626 else { // already queued
1627 int pred = w.stackPred;
1628 w.source = DORMANT; // enable signal
1629 for (int steps = 0;;) {
1630 int md, rc; long c;
1631 if (w.phase >= 0) {
1632 w.source = 0;
1633 break;
1634 }
1635 else if ((md = mode) < 0) // shutting down
1636 return;
1637 else if ((rc = ((md & SMASK) + // possibly quiescent
1638 (int)((c = ctl) >> RC_SHIFT))) <= 0 &&
1639 (md & SHUTDOWN) != 0 &&
1640 tryTerminate(false, false))
1641 return; // help terminate
1642 else if ((++steps & 1) == 0)
1643 Thread.interrupted(); // clear between parks
1644 else if (rc <= 0 && pred != 0 && phase == (int)c) {
1645 long d = keepAlive + System.currentTimeMillis();
1646 LockSupport.parkUntil(this, d);
1647 if (ctl == c &&
1648 d - System.currentTimeMillis() <= TIMEOUT_SLOP) {
1649 long nc = ((UC_MASK & (c - TC_UNIT)) |
1650 (SP_MASK & pred));
1651 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1652 w.phase = QUIET;
1653 return; // drop on timeout
1654 }
1655 }
1656 }
1657 else
1658 LockSupport.park(this);
1659 }
1660 }
1661 }
1662 }
1663 }
1664
1665 /**
1666 * Helps and/or blocks until the given task is done or timeout.
1667 * First tries locally helping, then scans other queues for a task
1668 * produced by one of w's stealers; compensating and blocking if
1669 * none are found (rescanning if tryCompensate fails).
1670 *
1671 * @param w caller
1672 * @param task the task
1673 * @param deadline for timed waits, if nonzero
1674 * @return task status on exit
1675 */
1676 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
1677 int s = 0;
1678 if (w != null && task != null &&
1679 (!(task instanceof CountedCompleter) ||
1680 (s = w.localHelpCC((CountedCompleter<?>)task, 0)) >= 0)) {
1681 w.tryRemoveAndExec(task);
1682 int src = w.source, id = w.id;
1683 s = task.status;
1684 while (s >= 0) {
1685 WorkQueue[] ws;
1686 boolean nonempty = false;
1687 int r = ThreadLocalRandom.nextSecondarySeed() | 1; // odd indices
1688 if ((ws = workQueues) != null) { // scan for matching id
1689 for (int n = ws.length, m = n - 1, j = -n; j < n; j += 2) {
1690 WorkQueue q; int i, b, al; ForkJoinTask<?>[] a;
1691 if ((i = (r + j) & m) >= 0 && i < n &&
1692 (q = ws[i]) != null && q.source == id &&
1693 (b = q.base) - q.top < 0 &&
1694 (a = q.array) != null && (al = a.length) > 0) {
1695 int qid = q.id;
1696 int index = (al - 1) & b;
1697 long offset = ((long)index << ASHIFT) + ABASE;
1698 ForkJoinTask<?> t = (ForkJoinTask<?>)
1699 U.getObjectVolatile(a, offset);
1700 if (t != null && b++ == q.base && id == q.source &&
1701 U.compareAndSwapObject(a, offset, t, null)) {
1702 q.base = b;
1703 w.source = qid;
1704 t.doExec();
1705 w.source = src;
1706 }
1707 nonempty = true;
1708 break;
1709 }
1710 }
1711 }
1712 if ((s = task.status) < 0)
1713 break;
1714 else if (!nonempty) {
1715 long ms, ns; int block;
1716 if (deadline == 0L)
1717 ms = 0L; // untimed
1718 else if ((ns = deadline - System.nanoTime()) <= 0L)
1719 break; // timeout
1720 else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
1721 ms = 1L; // avoid 0 for timed wait
1722 if ((block = tryCompensate(w)) != 0) {
1723 task.internalWait(ms);
1724 U.getAndAddLong(this, CTL, (block > 0) ? RC_UNIT : 0L);
1725 }
1726 s = task.status;
1727 }
1728 }
1729 }
1730 return s;
1731 }
1732
1733 /**
1734 * Runs tasks until {@code isQuiescent()}. Rather than blocking
1735 * when tasks cannot be found, rescans until all others cannot
1736 * find tasks either.
1737 */
1738 final void helpQuiescePool(WorkQueue w) {
1739 int prevSrc = w.source, fifo = w.id & FIFO;
1740 for (int source = prevSrc, released = -1;;) { // -1 until known
1741 WorkQueue[] ws;
1742 if (fifo != 0)
1743 w.localPollAndExec(0);
1744 else
1745 w.localPopAndExec(0);
1746 if (released == -1 && w.phase >= 0)
1747 released = 1;
1748 boolean quiet = true, empty = true;
1749 int r = ThreadLocalRandom.nextSecondarySeed();
1750 if ((ws = workQueues) != null) {
1751 for (int n = ws.length, j = n, m = n - 1; j > 0; --j) {
1752 WorkQueue q; int i, b, al; ForkJoinTask<?>[] a;
1753 if ((i = (r - j) & m) >= 0 && i < n && (q = ws[i]) != null) {
1754 if ((b = q.base) - q.top < 0 &&
1755 (a = q.array) != null && (al = a.length) > 0) {
1756 int qid = q.id;
1757 if (released == 0) { // increment
1758 released = 1;
1759 U.getAndAddLong(this, CTL, RC_UNIT);
1760 }
1761 int index = (al - 1) & b;
1762 long offset = ((long)index << ASHIFT) + ABASE;
1763 ForkJoinTask<?> t = (ForkJoinTask<?>)
1764 U.getObjectVolatile(a, offset);
1765 if (t != null && b++ == q.base &&
1766 U.compareAndSwapObject(a, offset, t, null)) {
1767 q.base = b;
1768 w.source = source = q.id;
1769 t.doExec();
1770 w.source = source = prevSrc;
1771 }
1772 quiet = empty = false;
1773 break;
1774 }
1775 else if ((q.source & QUIET) == 0)
1776 quiet = false;
1777 }
1778 }
1779 }
1780 if (quiet) {
1781 if (released == 0)
1782 U.getAndAddLong(this, CTL, RC_UNIT);
1783 w.source = prevSrc;
1784 break;
1785 }
1786 else if (empty) {
1787 if (source != QUIET)
1788 w.source = source = QUIET;
1789 if (released == 1) { // decrement
1790 released = 0;
1791 U.getAndAddLong(this, CTL, RC_MASK & -RC_UNIT);
1792 }
1793 }
1794 }
1795 }
1796
1797 /**
1798 * Scans for and returns a polled task, if available.
1799 * Used only for untracked polls.
1800 *
1801 * @param submissionsOnly if true, only scan submission queues
1802 */
1803 private ForkJoinTask<?> pollScan(boolean submissionsOnly) {
1804 WorkQueue[] ws; int n;
1805 rescan: while ((mode & STOP) == 0 && (ws = workQueues) != null &&
1806 (n = ws.length) > 0) {
1807 int m = n - 1;
1808 int r = ThreadLocalRandom.nextSecondarySeed();
1809 int h = r >>> 16;
1810 int origin, step;
1811 if (submissionsOnly) {
1812 origin = (r & ~1) & m; // even indices and steps
1813 step = (h & ~1) | 2;
1814 }
1815 else {
1816 origin = r & m;
1817 step = h | 1;
1818 }
1819 for (int k = origin, oldSum = 0, checkSum = 0;;) {
1820 WorkQueue q; int b, al; ForkJoinTask<?>[] a;
1821 if ((q = ws[k]) != null) {
1822 checkSum += b = q.base;
1823 if (b - q.top < 0 &&
1824 (a = q.array) != null && (al = a.length) > 0) {
1825 int index = (al - 1) & b;
1826 long offset = ((long)index << ASHIFT) + ABASE;
1827 ForkJoinTask<?> t = (ForkJoinTask<?>)
1828 U.getObjectVolatile(a, offset);
1829 if (t != null && b++ == q.base &&
1830 U.compareAndSwapObject(a, offset, t, null)) {
1831 q.base = b;
1832 return t;
1833 }
1834 else
1835 break; // restart
1836 }
1837 }
1838 if ((k = (k + step) & m) == origin) {
1839 if (oldSum == (oldSum = checkSum))
1840 break rescan;
1841 checkSum = 0;
1842 }
1843 }
1844 }
1845 return null;
1846 }
1847
1848 /**
1849 * Gets and removes a local or stolen task for the given worker.
1850 *
1851 * @return a task, if available
1852 */
1853 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1854 ForkJoinTask<?> t;
1855 if (w != null &&
1856 (t = (w.id & FIFO) != 0 ? w.poll() : w.pop()) != null)
1857 return t;
1858 else
1859 return pollScan(false);
1860 }
1861
1862 // External operations
1863
1864 /**
1865 * Adds the given task to a submission queue at submitter's
1866 * current queue, creating one if null or contended.
1867 *
1868 * @param task the task. Caller must ensure non-null.
1869 */
1870 final void externalPush(ForkJoinTask<?> task) {
1871 int r; // initialize caller's probe
1872 if ((r = ThreadLocalRandom.getProbe()) == 0) {
1873 ThreadLocalRandom.localInit();
1874 r = ThreadLocalRandom.getProbe();
1875 }
1876 for (;;) {
1877 int md = mode, n;
1878 WorkQueue[] ws = workQueues;
1879 if ((md & SHUTDOWN) != 0 || ws == null || (n = ws.length) <= 0)
1880 throw new RejectedExecutionException();
1881 else {
1882 WorkQueue q;
1883 boolean push = false, grow = false;
1884 if ((q = ws[(n - 1) & r & SQMASK]) == null) {
1885 Object lock = workerNamePrefix;
1886 int qid = (r | QUIET) & ~(FIFO | OWNED);
1887 q = new WorkQueue(this, null);
1888 q.id = qid;
1889 q.source = QUIET;
1890 q.phase = QLOCK; // lock queue
1891 if (lock != null) {
1892 synchronized (lock) { // lock pool to install
1893 int i;
1894 if ((ws = workQueues) != null &&
1895 (n = ws.length) > 0 &&
1896 ws[i = qid & (n - 1) & SQMASK] == null) {
1897 ws[i] = q;
1898 push = grow = true;
1899 }
1900 }
1901 }
1902 }
1903 else if (q.tryLockSharedQueue()) {
1904 int b = q.base, s = q.top, al, d; ForkJoinTask<?>[] a;
1905 if ((a = q.array) != null && (al = a.length) > 0 &&
1906 al - 1 + (d = b - s) > 0) {
1907 a[(al - 1) & s] = task;
1908 q.top = s + 1; // relaxed writes OK here
1909 q.phase = 0;
1910 if (d < 0 && q.base - s < -1)
1911 break; // no signal needed
1912 }
1913 else
1914 grow = true;
1915 push = true;
1916 }
1917 if (push) {
1918 if (grow) {
1919 try {
1920 q.growArray();
1921 int s = q.top, al; ForkJoinTask<?>[] a;
1922 if ((a = q.array) != null && (al = a.length) > 0) {
1923 a[(al - 1) & s] = task;
1924 q.top = s + 1;
1925 }
1926 } finally {
1927 q.phase = 0;
1928 }
1929 }
1930 signalWork();
1931 break;
1932 }
1933 else // move if busy
1934 r = ThreadLocalRandom.advanceProbe(r);
1935 }
1936 }
1937 }
1938
1939 /**
1940 * Pushes a possibly-external submission.
1941 */
1942 private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
1943 Thread t; ForkJoinWorkerThread w; WorkQueue q;
1944 if (task == null)
1945 throw new NullPointerException();
1946 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
1947 (w = (ForkJoinWorkerThread)t).pool == this &&
1948 (q = w.workQueue) != null)
1949 q.push(task);
1950 else
1951 externalPush(task);
1952 return task;
1953 }
1954
1955 /**
1956 * Returns common pool queue for an external thread.
1957 */
1958 static WorkQueue commonSubmitterQueue() {
1959 ForkJoinPool p = common;
1960 int r = ThreadLocalRandom.getProbe();
1961 WorkQueue[] ws; int n;
1962 return (p != null && (ws = p.workQueues) != null &&
1963 (n = ws.length) > 0) ?
1964 ws[(n - 1) & r & SQMASK] : null;
1965 }
1966
1967 /**
1968 * Performs tryUnpush for an external submitter.
1969 */
1970 final boolean tryExternalUnpush(ForkJoinTask<?> task) {
1971 int r = ThreadLocalRandom.getProbe();
1972 WorkQueue[] ws; WorkQueue w; int n;
1973 return ((ws = workQueues) != null &&
1974 (n = ws.length) > 0 &&
1975 (w = ws[(n - 1) & r & SQMASK]) != null &&
1976 w.trySharedUnpush(task));
1977 }
1978
1979 /**
1980 * Performs helpComplete for an external submitter.
1981 */
1982 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
1983 int r = ThreadLocalRandom.getProbe();
1984 WorkQueue[] ws; WorkQueue w; int n;
1985 return ((ws = workQueues) != null && (n = ws.length) > 0 &&
1986 (w = ws[(n - 1) & r & SQMASK]) != null) ?
1987 w.sharedHelpCC(task, maxTasks) : 0;
1988 }
1989
1990 /**
1991 * Tries to steal and run tasks within the target's computation.
1992 * The maxTasks argument supports external usages; internal calls
1993 * use zero, allowing unbounded steps (external calls trap
1994 * non-positive values).
1995 *
1996 * @param w caller
1997 * @param maxTasks if non-zero, the maximum number of other tasks to run
1998 * @return task status on exit
1999 */
2000 final int helpComplete(WorkQueue w, CountedCompleter<?> task,
2001 int maxTasks) {
2002 return (w == null) ? 0 : w.localHelpCC(task, maxTasks);
2003 }
2004
2005 /**
2006 * Returns a cheap heuristic guide for task partitioning when
2007 * programmers, frameworks, tools, or languages have little or no
2008 * idea about task granularity. In essence, by offering this
2009 * method, we ask users only about tradeoffs in overhead vs
2010 * expected throughput and its variance, rather than how finely to
2011 * partition tasks.
2012 *
2013 * In a steady state strict (tree-structured) computation, each
2014 * thread makes available for stealing enough tasks for other
2015 * threads to remain active. Inductively, if all threads play by
2016 * the same rules, each thread should make available only a
2017 * constant number of tasks.
2018 *
2019 * The minimum useful constant is just 1. But using a value of 1
2020 * would require immediate replenishment upon each steal to
2021 * maintain enough tasks, which is infeasible. Further,
2022 * partitionings/granularities of offered tasks should minimize
2023 * steal rates, which in general means that threads nearer the top
2024 * of computation tree should generate more than those nearer the
2025 * bottom. In perfect steady state, each thread is at
2026 * approximately the same level of computation tree. However,
2027 * producing extra tasks amortizes the uncertainty of progress and
2028 * diffusion assumptions.
2029 *
2030 * So, users will want to use values larger (but not much larger)
2031 * than 1 to both smooth over transient shortages and hedge
2032 * against uneven progress; as traded off against the cost of
2033 * extra task overhead. We leave the user to pick a threshold
2034 * value to compare with the results of this call to guide
2035 * decisions, but recommend values such as 3.
2036 *
2037 * When all threads are active, it is on average OK to estimate
2038 * surplus strictly locally. In steady-state, if one thread is
2039 * maintaining say 2 surplus tasks, then so are others. So we can
2040 * just use estimated queue length. However, this strategy alone
2041 * leads to serious mis-estimates in some non-steady-state
2042 * conditions (ramp-up, ramp-down, other stalls). We can detect
2043 * many of these by further considering the number of "idle"
2044 * threads, that are known to have zero queued tasks, so
2045 * compensate by a factor of (#idle/#active) threads.
2046 */
2047 static int getSurplusQueuedTaskCount() {
2048 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2049 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2050 (pool = (wt = (ForkJoinWorkerThread)t).pool) != null &&
2051 (q = wt.workQueue) != null) {
2052 int p = pool.mode & SMASK;
2053 int a = p + (int)(pool.ctl >> RC_SHIFT);
2054 int n = q.top - q.base;
2055 return n - (a > (p >>>= 1) ? 0 :
2056 a > (p >>>= 1) ? 1 :
2057 a > (p >>>= 1) ? 2 :
2058 a > (p >>>= 1) ? 4 :
2059 8);
2060 }
2061 return 0;
2062 }
2063
2064 // Termination
2065
2066 /**
2067 * Possibly initiates and/or completes termination.
2068 *
2069 * @param now if true, unconditionally terminate, else only
2070 * if no work and no active workers
2071 * @param enable if true, terminate when next possible
2072 * @return true if terminating or terminated
2073 */
2074 private boolean tryTerminate(boolean now, boolean enable) {
2075 int md; // 3 phases: try to set SHUTDOWN, then STOP, then TERMINATED
2076
2077 while (((md = mode) & SHUTDOWN) == 0) {
2078 if (!enable || this == common) // cannot shutdown
2079 return false;
2080 else
2081 U.compareAndSwapInt(this, MODE, md, md | SHUTDOWN);
2082 }
2083
2084 while (((md = mode) & STOP) == 0) { // try to initiate termination
2085 if (!now) { // check if quiescent & empty
2086 for (long oldSum = 0L;;) { // repeat until stable
2087 boolean running = false;
2088 long checkSum = ctl;
2089 WorkQueue[] ws = workQueues;
2090 if ((md & SMASK) + (int)(checkSum >> RC_SHIFT) > 0)
2091 running = true;
2092 else if (ws != null) {
2093 WorkQueue w; int b;
2094 for (int i = 0; i < ws.length; ++i) {
2095 if ((w = ws[i]) != null) {
2096 checkSum += (b = w.base) + w.id;
2097 if (b != w.top ||
2098 ((i & 1) == 1 && w.source >= 0)) {
2099 running = true;
2100 break;
2101 }
2102 }
2103 }
2104 }
2105 if (((md = mode) & STOP) != 0)
2106 break; // already triggered
2107 else if (running)
2108 return false;
2109 else if (workQueues == ws && oldSum == (oldSum = checkSum))
2110 break;
2111 }
2112 }
2113 if ((md & STOP) == 0)
2114 U.compareAndSwapInt(this, MODE, md, md | STOP);
2115 }
2116
2117 while (((md = mode) & TERMINATED) == 0) { // help terminate others
2118 for (long oldSum = 0L;;) { // repeat until stable
2119 WorkQueue[] ws; WorkQueue w;
2120 long checkSum = ctl;
2121 if ((ws = workQueues) != null) {
2122 for (int i = 0; i < ws.length; ++i) {
2123 if ((w = ws[i]) != null) {
2124 ForkJoinWorkerThread wt = w.owner;
2125 w.cancelAll(); // clear queues
2126 if (wt != null) {
2127 try { // unblock join or park
2128 wt.interrupt();
2129 } catch (Throwable ignore) {
2130 }
2131 }
2132 checkSum += w.base + w.id;
2133 }
2134 }
2135 }
2136 if (((md = mode) & TERMINATED) != 0 ||
2137 (workQueues == ws && oldSum == (oldSum = checkSum)))
2138 break;
2139 }
2140 if ((md & TERMINATED) != 0)
2141 break;
2142 else if ((md & SMASK) + (short)(ctl >>> TC_SHIFT) > 0)
2143 break;
2144 else if (U.compareAndSwapInt(this, MODE, md, md | TERMINATED)) {
2145 synchronized (this) {
2146 notifyAll(); // for awaitTermination
2147 }
2148 break;
2149 }
2150 }
2151 return true;
2152 }
2153
2154 // Exported methods
2155
2156 // Constructors
2157
2158 /**
2159 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2160 * java.lang.Runtime#availableProcessors}, using defaults for all
2161 * other parameters.
2162 *
2163 * @throws SecurityException if a security manager exists and
2164 * the caller is not permitted to modify threads
2165 * because it does not hold {@link
2166 * java.lang.RuntimePermission}{@code ("modifyThread")}
2167 */
2168 public ForkJoinPool() {
2169 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2170 defaultForkJoinWorkerThreadFactory, null, false,
2171 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2172 }
2173
2174 /**
2175 * Creates a {@code ForkJoinPool} with the indicated parallelism
2176 * level, using defaults for all other parameters.
2177 *
2178 * @param parallelism the parallelism level
2179 * @throws IllegalArgumentException if parallelism less than or
2180 * equal to zero, or greater than implementation limit
2181 * @throws SecurityException if a security manager exists and
2182 * the caller is not permitted to modify threads
2183 * because it does not hold {@link
2184 * java.lang.RuntimePermission}{@code ("modifyThread")}
2185 */
2186 public ForkJoinPool(int parallelism) {
2187 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false,
2188 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2189 }
2190
2191 /**
2192 * Creates a {@code ForkJoinPool} with the given parameters (using
2193 * defaults for others).
2194 *
2195 * @param parallelism the parallelism level. For default value,
2196 * use {@link java.lang.Runtime#availableProcessors}.
2197 * @param factory the factory for creating new threads. For default value,
2198 * use {@link #defaultForkJoinWorkerThreadFactory}.
2199 * @param handler the handler for internal worker threads that
2200 * terminate due to unrecoverable errors encountered while executing
2201 * tasks. For default value, use {@code null}.
2202 * @param asyncMode if true,
2203 * establishes local first-in-first-out scheduling mode for forked
2204 * tasks that are never joined. This mode may be more appropriate
2205 * than default locally stack-based mode in applications in which
2206 * worker threads only process event-style asynchronous tasks.
2207 * For default value, use {@code false}.
2208 * @throws IllegalArgumentException if parallelism less than or
2209 * equal to zero, or greater than implementation limit
2210 * @throws NullPointerException if the factory is null
2211 * @throws SecurityException if a security manager exists and
2212 * the caller is not permitted to modify threads
2213 * because it does not hold {@link
2214 * java.lang.RuntimePermission}{@code ("modifyThread")}
2215 */
2216 public ForkJoinPool(int parallelism,
2217 ForkJoinWorkerThreadFactory factory,
2218 UncaughtExceptionHandler handler,
2219 boolean asyncMode) {
2220 this(parallelism, factory, handler, asyncMode,
2221 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2222 }
2223
2224 /**
2225 * Creates a {@code ForkJoinPool} with the given parameters.
2226 *
2227 * @param parallelism the parallelism level. For default value,
2228 * use {@link java.lang.Runtime#availableProcessors}.
2229 *
2230 * @param factory the factory for creating new threads. For
2231 * default value, use {@link #defaultForkJoinWorkerThreadFactory}.
2232 *
2233 * @param handler the handler for internal worker threads that
2234 * terminate due to unrecoverable errors encountered while
2235 * executing tasks. For default value, use {@code null}.
2236 *
2237 * @param asyncMode if true, establishes local first-in-first-out
2238 * scheduling mode for forked tasks that are never joined. This
2239 * mode may be more appropriate than default locally stack-based
2240 * mode in applications in which worker threads only process
2241 * event-style asynchronous tasks. For default value, use {@code
2242 * false}.
2243 *
2244 * @param corePoolSize the number of threads to keep in the pool
2245 * (unless timed out after an elapsed keep-alive). Normally (and
2246 * by default) this is the same value as the parallelism level,
2247 * but may be set to a larger value to reduce dynamic overhead if
2248 * tasks regularly block. Using a smaller value (for example
2249 * {@code 0}) has the same effect as the default.
2250 *
2251 * @param maximumPoolSize the maximum number of threads allowed.
2252 * When the maximum is reached, attempts to replace blocked
2253 * threads fail. (However, because creation and termination of
2254 * different threads may overlap, and may be managed by the given
2255 * thread factory, this value may be transiently exceeded.) To
2256 * arrange the same value as is used by default for the common
2257 * pool, use {@code 256} plus the parallelism level. Using a value
2258 * (for example {@code Integer.MAX_VALUE}) larger than the
2259 * implementation's total thread limit has the same effect as
2260 * using this limit (which is the default).
2261 *
2262 * @param minimumRunnable the minimum allowed number of core
2263 * threads not blocked by a join or {@link ManagedBlocker}. To
2264 * ensure progress, when too few unblocked threads exist and
2265 * unexecuted tasks may exist, new threads are constructed, up to
2266 * the given maximumPoolSize. For the default value, use {@code
2267 * 1}, that ensures liveness. A larger value might improve
2268 * throughput in the presence of blocked activities, but might
2269 * not, due to increased overhead. A value of zero may be
2270 * acceptable when submitted tasks cannot have dependencies
2271 * requiring additional threads.
2272 *
2273 * @param saturate if non-null, a predicate invoked upon attempts
2274 * to create more than the maximum total allowed threads. By
2275 * default, when a thread is about to block on a join or {@link
2276 * ManagedBlocker}, but cannot be replaced because the
2277 * maximumPoolSize would be exceeded, a {@link
2278 * RejectedExecutionException} is thrown. But if this predicate
2279 * returns {@code true}, then no exception is thrown, so the pool
2280 * continues to operate with fewer than the target number of
2281 * runnable threads, which might not ensure progress.
2282 *
2283 * @param keepAliveTime the elapsed time since last use before
2284 * a thread is terminated (and then later replaced if needed).
2285 * For the default value, use {@code 60, TimeUnit.SECONDS}.
2286 *
2287 * @param unit the time unit for the {@code keepAliveTime} argument
2288 *
2289 * @throws IllegalArgumentException if parallelism is less than or
2290 * equal to zero, or is greater than implementation limit,
2291 * or if maximumPoolSize is less than parallelism,
2292 * of if the keepAliveTime is less than or equal to zero.
2293 * @throws NullPointerException if the factory is null
2294 * @throws SecurityException if a security manager exists and
2295 * the caller is not permitted to modify threads
2296 * because it does not hold {@link
2297 * java.lang.RuntimePermission}{@code ("modifyThread")}
2298 * @since 9
2299 */
2300 public ForkJoinPool(int parallelism,
2301 ForkJoinWorkerThreadFactory factory,
2302 UncaughtExceptionHandler handler,
2303 boolean asyncMode,
2304 int corePoolSize,
2305 int maximumPoolSize,
2306 int minimumRunnable,
2307 Predicate<? super ForkJoinPool> saturate,
2308 long keepAliveTime,
2309 TimeUnit unit) {
2310 // check, encode, pack parameters
2311 if (parallelism <= 0 || parallelism > MAX_CAP ||
2312 maximumPoolSize < parallelism || keepAliveTime <= 0L)
2313 throw new IllegalArgumentException();
2314 if (factory == null)
2315 throw new NullPointerException();
2316 long ms = Math.max(unit.toMillis(keepAliveTime), TIMEOUT_SLOP);
2317
2318 int corep = Math.min(Math.max(corePoolSize, parallelism), MAX_CAP);
2319 long c = ((((long)(-corep) << TC_SHIFT) & TC_MASK) |
2320 (((long)(-parallelism) << RC_SHIFT) & RC_MASK));
2321 int m = parallelism | (asyncMode ? FIFO : 0);
2322 int maxSpares = Math.min(maximumPoolSize, MAX_CAP) - parallelism;
2323 int minAvail = Math.min(Math.max(minimumRunnable, 0), MAX_CAP);
2324 int b = ((minAvail - parallelism) & SMASK) | (maxSpares << SWIDTH);
2325 int n = (parallelism > 1) ? parallelism - 1 : 1; // at least 2 slots
2326 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2327 n = (n + 1) << 1; // power of two, including space for submission queues
2328
2329 this.workQueues = new WorkQueue[n];
2330 this.workerNamePrefix = "ForkJoinPool-" + nextPoolId() + "-worker-";
2331 this.factory = factory;
2332 this.ueh = handler;
2333 this.saturate = saturate;
2334 this.keepAlive = ms;
2335 this.bounds = b;
2336 this.mode = m;
2337 this.ctl = c;
2338 checkPermission();
2339 }
2340
2341 private Object newInstanceFromSystemProperty(String property)
2342 throws ReflectiveOperationException {
2343 String className = System.getProperty(property);
2344 return (className == null)
2345 ? null
2346 : ClassLoader.getSystemClassLoader().loadClass(className)
2347 .getConstructor().newInstance();
2348 }
2349
2350 /**
2351 * Constructor for common pool using parameters possibly
2352 * overridden by system properties
2353 */
2354 private ForkJoinPool(byte forCommonPoolOnly) {
2355 int parallelism = -1;
2356 ForkJoinWorkerThreadFactory fac = null;
2357 UncaughtExceptionHandler handler = null;
2358 try { // ignore exceptions in accessing/parsing properties
2359 String pp = System.getProperty
2360 ("java.util.concurrent.ForkJoinPool.common.parallelism");
2361 if (pp != null)
2362 parallelism = Integer.parseInt(pp);
2363 fac = (ForkJoinWorkerThreadFactory) newInstanceFromSystemProperty(
2364 "java.util.concurrent.ForkJoinPool.common.threadFactory");
2365 handler = (UncaughtExceptionHandler) newInstanceFromSystemProperty(
2366 "java.util.concurrent.ForkJoinPool.common.exceptionHandler");
2367 } catch (Exception ignore) {
2368 }
2369
2370 if (fac == null) {
2371 if (System.getSecurityManager() == null)
2372 fac = defaultForkJoinWorkerThreadFactory;
2373 else // use security-managed default
2374 fac = new InnocuousForkJoinWorkerThreadFactory();
2375 }
2376 if (parallelism < 0 && // default 1 less than #cores
2377 (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
2378 parallelism = 1;
2379 if (parallelism > MAX_CAP)
2380 parallelism = MAX_CAP;
2381
2382 long c = ((((long)(-parallelism) << TC_SHIFT) & TC_MASK) |
2383 (((long)(-parallelism) << RC_SHIFT) & RC_MASK));
2384 int b = ((1 - parallelism) & SMASK) | (COMMON_MAX_SPARES << SWIDTH);
2385 int n = (parallelism > 1) ? parallelism - 1 : 1;
2386 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2387 n = (n + 1) << 1;
2388
2389 this.workQueues = new WorkQueue[n];
2390 this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2391 this.factory = fac;
2392 this.ueh = handler;
2393 this.saturate = null;
2394 this.keepAlive = DEFAULT_KEEPALIVE;
2395 this.bounds = b;
2396 this.mode = parallelism;
2397 this.ctl = c;
2398 }
2399
2400 /**
2401 * Returns the common pool instance. This pool is statically
2402 * constructed; its run state is unaffected by attempts to {@link
2403 * #shutdown} or {@link #shutdownNow}. However this pool and any
2404 * ongoing processing are automatically terminated upon program
2405 * {@link System#exit}. Any program that relies on asynchronous
2406 * task processing to complete before program termination should
2407 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2408 * before exit.
2409 *
2410 * @return the common pool instance
2411 * @since 1.8
2412 */
2413 public static ForkJoinPool commonPool() {
2414 // assert common != null : "static init error";
2415 return common;
2416 }
2417
2418 // Execution methods
2419
2420 /**
2421 * Performs the given task, returning its result upon completion.
2422 * If the computation encounters an unchecked Exception or Error,
2423 * it is rethrown as the outcome of this invocation. Rethrown
2424 * exceptions behave in the same way as regular exceptions, but,
2425 * when possible, contain stack traces (as displayed for example
2426 * using {@code ex.printStackTrace()}) of both the current thread
2427 * as well as the thread actually encountering the exception;
2428 * minimally only the latter.
2429 *
2430 * @param task the task
2431 * @param <T> the type of the task's result
2432 * @return the task's result
2433 * @throws NullPointerException if the task is null
2434 * @throws RejectedExecutionException if the task cannot be
2435 * scheduled for execution
2436 */
2437 public <T> T invoke(ForkJoinTask<T> task) {
2438 if (task == null)
2439 throw new NullPointerException();
2440 externalSubmit(task);
2441 return task.join();
2442 }
2443
2444 /**
2445 * Arranges for (asynchronous) execution of the given task.
2446 *
2447 * @param task the task
2448 * @throws NullPointerException if the task is null
2449 * @throws RejectedExecutionException if the task cannot be
2450 * scheduled for execution
2451 */
2452 public void execute(ForkJoinTask<?> task) {
2453 externalSubmit(task);
2454 }
2455
2456 // AbstractExecutorService methods
2457
2458 /**
2459 * @throws NullPointerException if the task is null
2460 * @throws RejectedExecutionException if the task cannot be
2461 * scheduled for execution
2462 */
2463 public void execute(Runnable task) {
2464 if (task == null)
2465 throw new NullPointerException();
2466 ForkJoinTask<?> job;
2467 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2468 job = (ForkJoinTask<?>) task;
2469 else
2470 job = new ForkJoinTask.RunnableExecuteAction(task);
2471 externalSubmit(job);
2472 }
2473
2474 /**
2475 * Submits a ForkJoinTask for execution.
2476 *
2477 * @param task the task to submit
2478 * @param <T> the type of the task's result
2479 * @return the task
2480 * @throws NullPointerException if the task is null
2481 * @throws RejectedExecutionException if the task cannot be
2482 * scheduled for execution
2483 */
2484 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2485 return externalSubmit(task);
2486 }
2487
2488 /**
2489 * @throws NullPointerException if the task is null
2490 * @throws RejectedExecutionException if the task cannot be
2491 * scheduled for execution
2492 */
2493 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2494 return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2495 }
2496
2497 /**
2498 * @throws NullPointerException if the task is null
2499 * @throws RejectedExecutionException if the task cannot be
2500 * scheduled for execution
2501 */
2502 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2503 return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2504 }
2505
2506 /**
2507 * @throws NullPointerException if the task is null
2508 * @throws RejectedExecutionException if the task cannot be
2509 * scheduled for execution
2510 */
2511 public ForkJoinTask<?> submit(Runnable task) {
2512 if (task == null)
2513 throw new NullPointerException();
2514 ForkJoinTask<?> job;
2515 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2516 job = (ForkJoinTask<?>) task;
2517 else
2518 job = new ForkJoinTask.AdaptedRunnableAction(task);
2519 return externalSubmit(job);
2520 }
2521
2522 /**
2523 * @throws NullPointerException {@inheritDoc}
2524 * @throws RejectedExecutionException {@inheritDoc}
2525 */
2526 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2527 // In previous versions of this class, this method constructed
2528 // a task to run ForkJoinTask.invokeAll, but now external
2529 // invocation of multiple tasks is at least as efficient.
2530 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2531
2532 try {
2533 for (Callable<T> t : tasks) {
2534 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2535 futures.add(f);
2536 externalSubmit(f);
2537 }
2538 for (int i = 0, size = futures.size(); i < size; i++)
2539 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2540 return futures;
2541 } catch (Throwable t) {
2542 for (int i = 0, size = futures.size(); i < size; i++)
2543 futures.get(i).cancel(false);
2544 throw t;
2545 }
2546 }
2547
2548 /**
2549 * Returns the factory used for constructing new workers.
2550 *
2551 * @return the factory used for constructing new workers
2552 */
2553 public ForkJoinWorkerThreadFactory getFactory() {
2554 return factory;
2555 }
2556
2557 /**
2558 * Returns the handler for internal worker threads that terminate
2559 * due to unrecoverable errors encountered while executing tasks.
2560 *
2561 * @return the handler, or {@code null} if none
2562 */
2563 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2564 return ueh;
2565 }
2566
2567 /**
2568 * Returns the targeted parallelism level of this pool.
2569 *
2570 * @return the targeted parallelism level of this pool
2571 */
2572 public int getParallelism() {
2573 int par = mode & SMASK;
2574 return (par > 0) ? par : 1;
2575 }
2576
2577 /**
2578 * Returns the targeted parallelism level of the common pool.
2579 *
2580 * @return the targeted parallelism level of the common pool
2581 * @since 1.8
2582 */
2583 public static int getCommonPoolParallelism() {
2584 return COMMON_PARALLELISM;
2585 }
2586
2587 /**
2588 * Returns the number of worker threads that have started but not
2589 * yet terminated. The result returned by this method may differ
2590 * from {@link #getParallelism} when threads are created to
2591 * maintain parallelism when others are cooperatively blocked.
2592 *
2593 * @return the number of worker threads
2594 */
2595 public int getPoolSize() {
2596 return ((mode & SMASK) + (short)(ctl >>> TC_SHIFT));
2597 }
2598
2599 /**
2600 * Returns {@code true} if this pool uses local first-in-first-out
2601 * scheduling mode for forked tasks that are never joined.
2602 *
2603 * @return {@code true} if this pool uses async mode
2604 */
2605 public boolean getAsyncMode() {
2606 return (mode & FIFO) != 0;
2607 }
2608
2609 /**
2610 * Returns an estimate of the number of worker threads that are
2611 * not blocked waiting to join tasks or for other managed
2612 * synchronization. This method may overestimate the
2613 * number of running threads.
2614 *
2615 * @return the number of worker threads
2616 */
2617 public int getRunningThreadCount() {
2618 int rc = 0;
2619 WorkQueue[] ws; WorkQueue w;
2620 if ((ws = workQueues) != null) {
2621 for (int i = 1; i < ws.length; i += 2) {
2622 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2623 ++rc;
2624 }
2625 }
2626 return rc;
2627 }
2628
2629 /**
2630 * Returns an estimate of the number of threads that are currently
2631 * stealing or executing tasks. This method may overestimate the
2632 * number of active threads.
2633 *
2634 * @return the number of active threads
2635 */
2636 public int getActiveThreadCount() {
2637 int r = (mode & SMASK) + (int)(ctl >> RC_SHIFT);
2638 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2639 }
2640
2641 /**
2642 * Returns {@code true} if all worker threads are currently idle.
2643 * An idle worker is one that cannot obtain a task to execute
2644 * because none are available to steal from other threads, and
2645 * there are no pending submissions to the pool. This method is
2646 * conservative; it might not return {@code true} immediately upon
2647 * idleness of all threads, but will eventually become true if
2648 * threads remain inactive.
2649 *
2650 * @return {@code true} if all threads are currently idle
2651 */
2652 public boolean isQuiescent() {
2653 for (;;) {
2654 long c = ctl;
2655 int md = mode, pc = md & SMASK;
2656 int tc = pc + (short)(c >>> TC_SHIFT);
2657 int rc = pc + (int)(c >> RC_SHIFT);
2658 if ((md & (STOP | TERMINATED)) != 0)
2659 return true;
2660 else if (rc > 0)
2661 return false;
2662 else {
2663 WorkQueue[] ws; WorkQueue v;
2664 if ((ws = workQueues) != null) {
2665 for (int i = 1; i < ws.length; i += 2) {
2666 if ((v = ws[i]) != null) {
2667 if ((v.source & QUIET) == 0)
2668 return false;
2669 --tc;
2670 }
2671 }
2672 }
2673 if (tc == 0 && ctl == c)
2674 return true;
2675 }
2676 }
2677 }
2678
2679 /**
2680 * Returns an estimate of the total number of tasks stolen from
2681 * one thread's work queue by another. The reported value
2682 * underestimates the actual total number of steals when the pool
2683 * is not quiescent. This value may be useful for monitoring and
2684 * tuning fork/join programs: in general, steal counts should be
2685 * high enough to keep threads busy, but low enough to avoid
2686 * overhead and contention across threads.
2687 *
2688 * @return the number of steals
2689 */
2690 public long getStealCount() {
2691 long count = stealCount;
2692 WorkQueue[] ws; WorkQueue w;
2693 if ((ws = workQueues) != null) {
2694 for (int i = 1; i < ws.length; i += 2) {
2695 if ((w = ws[i]) != null)
2696 count += (long)w.nsteals & 0xffffffffL;
2697 }
2698 }
2699 return count;
2700 }
2701
2702 /**
2703 * Returns an estimate of the total number of tasks currently held
2704 * in queues by worker threads (but not including tasks submitted
2705 * to the pool that have not begun executing). This value is only
2706 * an approximation, obtained by iterating across all threads in
2707 * the pool. This method may be useful for tuning task
2708 * granularities.
2709 *
2710 * @return the number of queued tasks
2711 */
2712 public long getQueuedTaskCount() {
2713 long count = 0;
2714 WorkQueue[] ws; WorkQueue w;
2715 if ((ws = workQueues) != null) {
2716 for (int i = 1; i < ws.length; i += 2) {
2717 if ((w = ws[i]) != null)
2718 count += w.queueSize();
2719 }
2720 }
2721 return count;
2722 }
2723
2724 /**
2725 * Returns an estimate of the number of tasks submitted to this
2726 * pool that have not yet begun executing. This method may take
2727 * time proportional to the number of submissions.
2728 *
2729 * @return the number of queued submissions
2730 */
2731 public int getQueuedSubmissionCount() {
2732 int count = 0;
2733 WorkQueue[] ws; WorkQueue w;
2734 if ((ws = workQueues) != null) {
2735 for (int i = 0; i < ws.length; i += 2) {
2736 if ((w = ws[i]) != null)
2737 count += w.queueSize();
2738 }
2739 }
2740 return count;
2741 }
2742
2743 /**
2744 * Returns {@code true} if there are any tasks submitted to this
2745 * pool that have not yet begun executing.
2746 *
2747 * @return {@code true} if there are any queued submissions
2748 */
2749 public boolean hasQueuedSubmissions() {
2750 WorkQueue[] ws; WorkQueue w;
2751 if ((ws = workQueues) != null) {
2752 for (int i = 0; i < ws.length; i += 2) {
2753 if ((w = ws[i]) != null && !w.isEmpty())
2754 return true;
2755 }
2756 }
2757 return false;
2758 }
2759
2760 /**
2761 * Removes and returns the next unexecuted submission if one is
2762 * available. This method may be useful in extensions to this
2763 * class that re-assign work in systems with multiple pools.
2764 *
2765 * @return the next submission, or {@code null} if none
2766 */
2767 protected ForkJoinTask<?> pollSubmission() {
2768 return pollScan(true);
2769 }
2770
2771 /**
2772 * Removes all available unexecuted submitted and forked tasks
2773 * from scheduling queues and adds them to the given collection,
2774 * without altering their execution status. These may include
2775 * artificially generated or wrapped tasks. This method is
2776 * designed to be invoked only when the pool is known to be
2777 * quiescent. Invocations at other times may not remove all
2778 * tasks. A failure encountered while attempting to add elements
2779 * to collection {@code c} may result in elements being in
2780 * neither, either or both collections when the associated
2781 * exception is thrown. The behavior of this operation is
2782 * undefined if the specified collection is modified while the
2783 * operation is in progress.
2784 *
2785 * @param c the collection to transfer elements into
2786 * @return the number of elements transferred
2787 */
2788 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2789 int count = 0;
2790 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2791 if ((ws = workQueues) != null) {
2792 for (int i = 0; i < ws.length; ++i) {
2793 if ((w = ws[i]) != null) {
2794 while ((t = w.poll()) != null) {
2795 c.add(t);
2796 ++count;
2797 }
2798 }
2799 }
2800 }
2801 return count;
2802 }
2803
2804 /**
2805 * Returns a string identifying this pool, as well as its state,
2806 * including indications of run state, parallelism level, and
2807 * worker and task counts.
2808 *
2809 * @return a string identifying this pool, as well as its state
2810 */
2811 public String toString() {
2812 // Use a single pass through workQueues to collect counts
2813 long qt = 0L, qs = 0L; int rc = 0;
2814 long st = stealCount;
2815 WorkQueue[] ws; WorkQueue w;
2816 if ((ws = workQueues) != null) {
2817 for (int i = 0; i < ws.length; ++i) {
2818 if ((w = ws[i]) != null) {
2819 int size = w.queueSize();
2820 if ((i & 1) == 0)
2821 qs += size;
2822 else {
2823 qt += size;
2824 st += (long)w.nsteals & 0xffffffffL;
2825 if (w.isApparentlyUnblocked())
2826 ++rc;
2827 }
2828 }
2829 }
2830 }
2831
2832 int md = mode;
2833 int pc = (md & SMASK);
2834 long c = ctl;
2835 int tc = pc + (short)(c >>> TC_SHIFT);
2836 int ac = pc + (int)(c >> RC_SHIFT);
2837 if (ac < 0) // ignore transient negative
2838 ac = 0;
2839 String level = ((md & TERMINATED) != 0 ? "Terminated" :
2840 (md & STOP) != 0 ? "Terminating" :
2841 (md & SHUTDOWN) != 0 ? "Shutting down" :
2842 "Running");
2843 return super.toString() +
2844 "[" + level +
2845 ", parallelism = " + pc +
2846 ", size = " + tc +
2847 ", active = " + ac +
2848 ", running = " + rc +
2849 ", steals = " + st +
2850 ", tasks = " + qt +
2851 ", submissions = " + qs +
2852 "]";
2853 }
2854
2855 /**
2856 * Possibly initiates an orderly shutdown in which previously
2857 * submitted tasks are executed, but no new tasks will be
2858 * accepted. Invocation has no effect on execution state if this
2859 * is the {@link #commonPool()}, and no additional effect if
2860 * already shut down. Tasks that are in the process of being
2861 * submitted concurrently during the course of this method may or
2862 * may not be rejected.
2863 *
2864 * @throws SecurityException if a security manager exists and
2865 * the caller is not permitted to modify threads
2866 * because it does not hold {@link
2867 * java.lang.RuntimePermission}{@code ("modifyThread")}
2868 */
2869 public void shutdown() {
2870 checkPermission();
2871 tryTerminate(false, true);
2872 }
2873
2874 /**
2875 * Possibly attempts to cancel and/or stop all tasks, and reject
2876 * all subsequently submitted tasks. Invocation has no effect on
2877 * execution state if this is the {@link #commonPool()}, and no
2878 * additional effect if already shut down. Otherwise, tasks that
2879 * are in the process of being submitted or executed concurrently
2880 * during the course of this method may or may not be
2881 * rejected. This method cancels both existing and unexecuted
2882 * tasks, in order to permit termination in the presence of task
2883 * dependencies. So the method always returns an empty list
2884 * (unlike the case for some other Executors).
2885 *
2886 * @return an empty list
2887 * @throws SecurityException if a security manager exists and
2888 * the caller is not permitted to modify threads
2889 * because it does not hold {@link
2890 * java.lang.RuntimePermission}{@code ("modifyThread")}
2891 */
2892 public List<Runnable> shutdownNow() {
2893 checkPermission();
2894 tryTerminate(true, true);
2895 return Collections.emptyList();
2896 }
2897
2898 /**
2899 * Returns {@code true} if all tasks have completed following shut down.
2900 *
2901 * @return {@code true} if all tasks have completed following shut down
2902 */
2903 public boolean isTerminated() {
2904 return (mode & TERMINATED) != 0;
2905 }
2906
2907 /**
2908 * Returns {@code true} if the process of termination has
2909 * commenced but not yet completed. This method may be useful for
2910 * debugging. A return of {@code true} reported a sufficient
2911 * period after shutdown may indicate that submitted tasks have
2912 * ignored or suppressed interruption, or are waiting for I/O,
2913 * causing this executor not to properly terminate. (See the
2914 * advisory notes for class {@link ForkJoinTask} stating that
2915 * tasks should not normally entail blocking operations. But if
2916 * they do, they must abort them on interrupt.)
2917 *
2918 * @return {@code true} if terminating but not yet terminated
2919 */
2920 public boolean isTerminating() {
2921 int md = mode;
2922 return (md & STOP) != 0 && (md & TERMINATED) == 0;
2923 }
2924
2925 /**
2926 * Returns {@code true} if this pool has been shut down.
2927 *
2928 * @return {@code true} if this pool has been shut down
2929 */
2930 public boolean isShutdown() {
2931 return (mode & SHUTDOWN) != 0;
2932 }
2933
2934 /**
2935 * Blocks until all tasks have completed execution after a
2936 * shutdown request, or the timeout occurs, or the current thread
2937 * is interrupted, whichever happens first. Because the {@link
2938 * #commonPool()} never terminates until program shutdown, when
2939 * applied to the common pool, this method is equivalent to {@link
2940 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
2941 *
2942 * @param timeout the maximum time to wait
2943 * @param unit the time unit of the timeout argument
2944 * @return {@code true} if this executor terminated and
2945 * {@code false} if the timeout elapsed before termination
2946 * @throws InterruptedException if interrupted while waiting
2947 */
2948 public boolean awaitTermination(long timeout, TimeUnit unit)
2949 throws InterruptedException {
2950 if (Thread.interrupted())
2951 throw new InterruptedException();
2952 if (this == common) {
2953 awaitQuiescence(timeout, unit);
2954 return false;
2955 }
2956 long nanos = unit.toNanos(timeout);
2957 if (isTerminated())
2958 return true;
2959 if (nanos <= 0L)
2960 return false;
2961 long deadline = System.nanoTime() + nanos;
2962 synchronized (this) {
2963 for (;;) {
2964 if (isTerminated())
2965 return true;
2966 if (nanos <= 0L)
2967 return false;
2968 long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
2969 wait(millis > 0L ? millis : 1L);
2970 nanos = deadline - System.nanoTime();
2971 }
2972 }
2973 }
2974
2975 /**
2976 * If called by a ForkJoinTask operating in this pool, equivalent
2977 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
2978 * waits and/or attempts to assist performing tasks until this
2979 * pool {@link #isQuiescent} or the indicated timeout elapses.
2980 *
2981 * @param timeout the maximum time to wait
2982 * @param unit the time unit of the timeout argument
2983 * @return {@code true} if quiescent; {@code false} if the
2984 * timeout elapsed.
2985 */
2986 public boolean awaitQuiescence(long timeout, TimeUnit unit) {
2987 long nanos = unit.toNanos(timeout);
2988 ForkJoinWorkerThread wt;
2989 Thread thread = Thread.currentThread();
2990 if ((thread instanceof ForkJoinWorkerThread) &&
2991 (wt = (ForkJoinWorkerThread)thread).pool == this) {
2992 helpQuiescePool(wt.workQueue);
2993 return true;
2994 }
2995 else {
2996 for (long startTime = System.nanoTime();;) {
2997 ForkJoinTask<?> t;
2998 if ((t = pollScan(false)) != null)
2999 t.doExec();
3000 else if (isQuiescent())
3001 return true;
3002 else if ((System.nanoTime() - startTime) > nanos)
3003 return false;
3004 else
3005 Thread.yield(); // cannot block
3006 }
3007 }
3008 }
3009
3010 /**
3011 * Waits and/or attempts to assist performing tasks indefinitely
3012 * until the {@link #commonPool()} {@link #isQuiescent}.
3013 */
3014 static void quiesceCommonPool() {
3015 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3016 }
3017
3018 /**
3019 * Interface for extending managed parallelism for tasks running
3020 * in {@link ForkJoinPool}s.
3021 *
3022 * <p>A {@code ManagedBlocker} provides two methods. Method
3023 * {@link #isReleasable} must return {@code true} if blocking is
3024 * not necessary. Method {@link #block} blocks the current thread
3025 * if necessary (perhaps internally invoking {@code isReleasable}
3026 * before actually blocking). These actions are performed by any
3027 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3028 * The unusual methods in this API accommodate synchronizers that
3029 * may, but don't usually, block for long periods. Similarly, they
3030 * allow more efficient internal handling of cases in which
3031 * additional workers may be, but usually are not, needed to
3032 * ensure sufficient parallelism. Toward this end,
3033 * implementations of method {@code isReleasable} must be amenable
3034 * to repeated invocation.
3035 *
3036 * <p>For example, here is a ManagedBlocker based on a
3037 * ReentrantLock:
3038 * <pre> {@code
3039 * class ManagedLocker implements ManagedBlocker {
3040 * final ReentrantLock lock;
3041 * boolean hasLock = false;
3042 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3043 * public boolean block() {
3044 * if (!hasLock)
3045 * lock.lock();
3046 * return true;
3047 * }
3048 * public boolean isReleasable() {
3049 * return hasLock || (hasLock = lock.tryLock());
3050 * }
3051 * }}</pre>
3052 *
3053 * <p>Here is a class that possibly blocks waiting for an
3054 * item on a given queue:
3055 * <pre> {@code
3056 * class QueueTaker<E> implements ManagedBlocker {
3057 * final BlockingQueue<E> queue;
3058 * volatile E item = null;
3059 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3060 * public boolean block() throws InterruptedException {
3061 * if (item == null)
3062 * item = queue.take();
3063 * return true;
3064 * }
3065 * public boolean isReleasable() {
3066 * return item != null || (item = queue.poll()) != null;
3067 * }
3068 * public E getItem() { // call after pool.managedBlock completes
3069 * return item;
3070 * }
3071 * }}</pre>
3072 */
3073 public static interface ManagedBlocker {
3074 /**
3075 * Possibly blocks the current thread, for example waiting for
3076 * a lock or condition.
3077 *
3078 * @return {@code true} if no additional blocking is necessary
3079 * (i.e., if isReleasable would return true)
3080 * @throws InterruptedException if interrupted while waiting
3081 * (the method is not required to do so, but is allowed to)
3082 */
3083 boolean block() throws InterruptedException;
3084
3085 /**
3086 * Returns {@code true} if blocking is unnecessary.
3087 * @return {@code true} if blocking is unnecessary
3088 */
3089 boolean isReleasable();
3090 }
3091
3092 /**
3093 * Runs the given possibly blocking task. When {@linkplain
3094 * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3095 * method possibly arranges for a spare thread to be activated if
3096 * necessary to ensure sufficient parallelism while the current
3097 * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3098 *
3099 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3100 * {@code blocker.block()} until either method returns {@code true}.
3101 * Every call to {@code blocker.block()} is preceded by a call to
3102 * {@code blocker.isReleasable()} that returned {@code false}.
3103 *
3104 * <p>If not running in a ForkJoinPool, this method is
3105 * behaviorally equivalent to
3106 * <pre> {@code
3107 * while (!blocker.isReleasable())
3108 * if (blocker.block())
3109 * break;}</pre>
3110 *
3111 * If running in a ForkJoinPool, the pool may first be expanded to
3112 * ensure sufficient parallelism available during the call to
3113 * {@code blocker.block()}.
3114 *
3115 * @param blocker the blocker task
3116 * @throws InterruptedException if {@code blocker.block()} did so
3117 */
3118 public static void managedBlock(ManagedBlocker blocker)
3119 throws InterruptedException {
3120 ForkJoinPool p;
3121 ForkJoinWorkerThread wt;
3122 WorkQueue w;
3123 Thread t = Thread.currentThread();
3124 if ((t instanceof ForkJoinWorkerThread) &&
3125 (p = (wt = (ForkJoinWorkerThread)t).pool) != null &&
3126 (w = wt.workQueue) != null) {
3127 int block;
3128 while (!blocker.isReleasable()) {
3129 if ((block = p.tryCompensate(w)) != 0) {
3130 try {
3131 do {} while (!blocker.isReleasable() &&
3132 !blocker.block());
3133 } finally {
3134 U.getAndAddLong(p, CTL, (block > 0) ? RC_UNIT : 0L);
3135 }
3136 break;
3137 }
3138 }
3139 }
3140 else {
3141 do {} while (!blocker.isReleasable() &&
3142 !blocker.block());
3143 }
3144 }
3145
3146 /**
3147 * If the given executor is a ForkJoinPool, poll and execute
3148 * AsynchronousCompletionTasks from worker's queue until none are
3149 * available or blocker is released.
3150 */
3151 static void helpAsyncBlocker(Executor e, ManagedBlocker blocker) {
3152 if (blocker != null && (e instanceof ForkJoinPool)) {
3153 WorkQueue w; ForkJoinWorkerThread wt; WorkQueue[] ws; int r, n;
3154 ForkJoinPool p = (ForkJoinPool)e;
3155 Thread thread = Thread.currentThread();
3156 if (thread instanceof ForkJoinWorkerThread &&
3157 (wt = (ForkJoinWorkerThread)thread).pool == p)
3158 w = wt.workQueue;
3159 else if ((r = ThreadLocalRandom.getProbe()) != 0 &&
3160 (ws = p.workQueues) != null && (n = ws.length) > 0)
3161 w = ws[(n - 1) & r & SQMASK];
3162 else
3163 w = null;
3164 if (w != null) {
3165 for (;;) {
3166 int b = w.base, s = w.top, d, al; ForkJoinTask<?>[] a;
3167 if ((a = w.array) != null && (d = b - s) < 0 &&
3168 (al = a.length) > 0) {
3169 int index = (al - 1) & b;
3170 long offset = ((long)index << ASHIFT) + ABASE;
3171 ForkJoinTask<?> t = (ForkJoinTask<?>)
3172 U.getObjectVolatile(a, offset);
3173 if (blocker.isReleasable())
3174 break;
3175 else if (b++ == w.base) {
3176 if (t == null) {
3177 if (d == -1)
3178 break;
3179 }
3180 else if (!(t instanceof CompletableFuture.
3181 AsynchronousCompletionTask))
3182 break;
3183 else if (U.compareAndSwapObject(a, offset,
3184 t, null)) {
3185 w.base = b;
3186 t.doExec();
3187 }
3188 }
3189 }
3190 else
3191 break;
3192 }
3193 }
3194 }
3195 }
3196
3197 // AbstractExecutorService overrides. These rely on undocumented
3198 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3199 // implement RunnableFuture.
3200
3201 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3202 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3203 }
3204
3205 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3206 return new ForkJoinTask.AdaptedCallable<T>(callable);
3207 }
3208
3209 // Unsafe mechanics
3210 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3211 private static final long CTL;
3212 private static final long MODE;
3213 private static final int ABASE;
3214 private static final int ASHIFT;
3215
3216 static {
3217 try {
3218 CTL = U.objectFieldOffset
3219 (ForkJoinPool.class.getDeclaredField("ctl"));
3220 MODE = U.objectFieldOffset
3221 (ForkJoinPool.class.getDeclaredField("mode"));
3222 ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
3223 int scale = U.arrayIndexScale(ForkJoinTask[].class);
3224 if ((scale & (scale - 1)) != 0)
3225 throw new Error("array index scale not a power of two");
3226 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3227 } catch (ReflectiveOperationException e) {
3228 throw new Error(e);
3229 }
3230
3231 // Reduce the risk of rare disastrous classloading in first call to
3232 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3233 Class<?> ensureLoaded = LockSupport.class;
3234
3235 int commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3236 try {
3237 String p = System.getProperty
3238 ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3239 if (p != null)
3240 commonMaxSpares = Integer.parseInt(p);
3241 } catch (Exception ignore) {}
3242 COMMON_MAX_SPARES = commonMaxSpares;
3243
3244 defaultForkJoinWorkerThreadFactory =
3245 new DefaultForkJoinWorkerThreadFactory();
3246 modifyThreadPermission = new RuntimePermission("modifyThread");
3247
3248 common = java.security.AccessController.doPrivileged
3249 (new java.security.PrivilegedAction<ForkJoinPool>() {
3250 public ForkJoinPool run() {
3251 return new ForkJoinPool((byte)0); }});
3252
3253 COMMON_PARALLELISM = Math.max(common.mode & SMASK, 1);
3254 }
3255
3256 /**
3257 * Factory for innocuous worker threads.
3258 */
3259 private static final class InnocuousForkJoinWorkerThreadFactory
3260 implements ForkJoinWorkerThreadFactory {
3261
3262 /**
3263 * An ACC to restrict permissions for the factory itself.
3264 * The constructed workers have no permissions set.
3265 */
3266 private static final AccessControlContext innocuousAcc;
3267 static {
3268 Permissions innocuousPerms = new Permissions();
3269 innocuousPerms.add(modifyThreadPermission);
3270 innocuousPerms.add(new RuntimePermission(
3271 "enableContextClassLoaderOverride"));
3272 innocuousPerms.add(new RuntimePermission(
3273 "modifyThreadGroup"));
3274 innocuousAcc = new AccessControlContext(new ProtectionDomain[] {
3275 new ProtectionDomain(null, innocuousPerms)
3276 });
3277 }
3278
3279 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3280 return java.security.AccessController.doPrivileged(
3281 new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
3282 public ForkJoinWorkerThread run() {
3283 return new ForkJoinWorkerThread.
3284 InnocuousForkJoinWorkerThread(pool);
3285 }}, innocuousAcc);
3286 }
3287 }
3288
3289 }