ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk8/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.3
Committed: Tue Jan 3 04:44:37 2017 UTC (7 years, 4 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.2: +108 -52 lines
Log Message:
backport Spliterator from src/main

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractQueue;
10 import java.util.Arrays;
11 import java.util.Collection;
12 import java.util.Iterator;
13 import java.util.NoSuchElementException;
14 import java.util.Objects;
15 import java.util.Queue;
16 import java.util.Spliterator;
17 import java.util.Spliterators;
18 import java.util.concurrent.locks.LockSupport;
19 import java.util.function.Consumer;
20
21 /**
22 * An unbounded {@link TransferQueue} based on linked nodes.
23 * This queue orders elements FIFO (first-in-first-out) with respect
24 * to any given producer. The <em>head</em> of the queue is that
25 * element that has been on the queue the longest time for some
26 * producer. The <em>tail</em> of the queue is that element that has
27 * been on the queue the shortest time for some producer.
28 *
29 * <p>Beware that, unlike in most collections, the {@code size} method
30 * is <em>NOT</em> a constant-time operation. Because of the
31 * asynchronous nature of these queues, determining the current number
32 * of elements requires a traversal of the elements, and so may report
33 * inaccurate results if this collection is modified during traversal.
34 * Additionally, the bulk operations {@code addAll},
35 * {@code removeAll}, {@code retainAll}, {@code containsAll},
36 * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
37 * to be performed atomically. For example, an iterator operating
38 * concurrently with an {@code addAll} operation might view only some
39 * of the added elements.
40 *
41 * <p>This class and its iterator implement all of the
42 * <em>optional</em> methods of the {@link Collection} and {@link
43 * Iterator} interfaces.
44 *
45 * <p>Memory consistency effects: As with other concurrent
46 * collections, actions in a thread prior to placing an object into a
47 * {@code LinkedTransferQueue}
48 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
49 * actions subsequent to the access or removal of that element from
50 * the {@code LinkedTransferQueue} in another thread.
51 *
52 * <p>This class is a member of the
53 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
54 * Java Collections Framework</a>.
55 *
56 * @since 1.7
57 * @author Doug Lea
58 * @param <E> the type of elements held in this queue
59 */
60 public class LinkedTransferQueue<E> extends AbstractQueue<E>
61 implements TransferQueue<E>, java.io.Serializable {
62 private static final long serialVersionUID = -3223113410248163686L;
63
64 /*
65 * *** Overview of Dual Queues with Slack ***
66 *
67 * Dual Queues, introduced by Scherer and Scott
68 * (http://www.cs.rochester.edu/~scott/papers/2004_DISC_dual_DS.pdf)
69 * are (linked) queues in which nodes may represent either data or
70 * requests. When a thread tries to enqueue a data node, but
71 * encounters a request node, it instead "matches" and removes it;
72 * and vice versa for enqueuing requests. Blocking Dual Queues
73 * arrange that threads enqueuing unmatched requests block until
74 * other threads provide the match. Dual Synchronous Queues (see
75 * Scherer, Lea, & Scott
76 * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
77 * additionally arrange that threads enqueuing unmatched data also
78 * block. Dual Transfer Queues support all of these modes, as
79 * dictated by callers.
80 *
81 * A FIFO dual queue may be implemented using a variation of the
82 * Michael & Scott (M&S) lock-free queue algorithm
83 * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
84 * It maintains two pointer fields, "head", pointing to a
85 * (matched) node that in turn points to the first actual
86 * (unmatched) queue node (or null if empty); and "tail" that
87 * points to the last node on the queue (or again null if
88 * empty). For example, here is a possible queue with four data
89 * elements:
90 *
91 * head tail
92 * | |
93 * v v
94 * M -> U -> U -> U -> U
95 *
96 * The M&S queue algorithm is known to be prone to scalability and
97 * overhead limitations when maintaining (via CAS) these head and
98 * tail pointers. This has led to the development of
99 * contention-reducing variants such as elimination arrays (see
100 * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
101 * optimistic back pointers (see Ladan-Mozes & Shavit
102 * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
103 * However, the nature of dual queues enables a simpler tactic for
104 * improving M&S-style implementations when dual-ness is needed.
105 *
106 * In a dual queue, each node must atomically maintain its match
107 * status. While there are other possible variants, we implement
108 * this here as: for a data-mode node, matching entails CASing an
109 * "item" field from a non-null data value to null upon match, and
110 * vice-versa for request nodes, CASing from null to a data
111 * value. (Note that the linearization properties of this style of
112 * queue are easy to verify -- elements are made available by
113 * linking, and unavailable by matching.) Compared to plain M&S
114 * queues, this property of dual queues requires one additional
115 * successful atomic operation per enq/deq pair. But it also
116 * enables lower cost variants of queue maintenance mechanics. (A
117 * variation of this idea applies even for non-dual queues that
118 * support deletion of interior elements, such as
119 * j.u.c.ConcurrentLinkedQueue.)
120 *
121 * Once a node is matched, its match status can never again
122 * change. We may thus arrange that the linked list of them
123 * contain a prefix of zero or more matched nodes, followed by a
124 * suffix of zero or more unmatched nodes. (Note that we allow
125 * both the prefix and suffix to be zero length, which in turn
126 * means that we do not use a dummy header.) If we were not
127 * concerned with either time or space efficiency, we could
128 * correctly perform enqueue and dequeue operations by traversing
129 * from a pointer to the initial node; CASing the item of the
130 * first unmatched node on match and CASing the next field of the
131 * trailing node on appends. (Plus some special-casing when
132 * initially empty). While this would be a terrible idea in
133 * itself, it does have the benefit of not requiring ANY atomic
134 * updates on head/tail fields.
135 *
136 * We introduce here an approach that lies between the extremes of
137 * never versus always updating queue (head and tail) pointers.
138 * This offers a tradeoff between sometimes requiring extra
139 * traversal steps to locate the first and/or last unmatched
140 * nodes, versus the reduced overhead and contention of fewer
141 * updates to queue pointers. For example, a possible snapshot of
142 * a queue is:
143 *
144 * head tail
145 * | |
146 * v v
147 * M -> M -> U -> U -> U -> U
148 *
149 * The best value for this "slack" (the targeted maximum distance
150 * between the value of "head" and the first unmatched node, and
151 * similarly for "tail") is an empirical matter. We have found
152 * that using very small constants in the range of 1-3 work best
153 * over a range of platforms. Larger values introduce increasing
154 * costs of cache misses and risks of long traversal chains, while
155 * smaller values increase CAS contention and overhead.
156 *
157 * Dual queues with slack differ from plain M&S dual queues by
158 * virtue of only sometimes updating head or tail pointers when
159 * matching, appending, or even traversing nodes; in order to
160 * maintain a targeted slack. The idea of "sometimes" may be
161 * operationalized in several ways. The simplest is to use a
162 * per-operation counter incremented on each traversal step, and
163 * to try (via CAS) to update the associated queue pointer
164 * whenever the count exceeds a threshold. Another, that requires
165 * more overhead, is to use random number generators to update
166 * with a given probability per traversal step.
167 *
168 * In any strategy along these lines, because CASes updating
169 * fields may fail, the actual slack may exceed targeted
170 * slack. However, they may be retried at any time to maintain
171 * targets. Even when using very small slack values, this
172 * approach works well for dual queues because it allows all
173 * operations up to the point of matching or appending an item
174 * (hence potentially allowing progress by another thread) to be
175 * read-only, thus not introducing any further contention. As
176 * described below, we implement this by performing slack
177 * maintenance retries only after these points.
178 *
179 * As an accompaniment to such techniques, traversal overhead can
180 * be further reduced without increasing contention of head
181 * pointer updates: Threads may sometimes shortcut the "next" link
182 * path from the current "head" node to be closer to the currently
183 * known first unmatched node, and similarly for tail. Again, this
184 * may be triggered with using thresholds or randomization.
185 *
186 * These ideas must be further extended to avoid unbounded amounts
187 * of costly-to-reclaim garbage caused by the sequential "next"
188 * links of nodes starting at old forgotten head nodes: As first
189 * described in detail by Boehm
190 * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
191 * delays noticing that any arbitrarily old node has become
192 * garbage, all newer dead nodes will also be unreclaimed.
193 * (Similar issues arise in non-GC environments.) To cope with
194 * this in our implementation, upon CASing to advance the head
195 * pointer, we set the "next" link of the previous head to point
196 * only to itself; thus limiting the length of connected dead lists.
197 * (We also take similar care to wipe out possibly garbage
198 * retaining values held in other Node fields.) However, doing so
199 * adds some further complexity to traversal: If any "next"
200 * pointer links to itself, it indicates that the current thread
201 * has lagged behind a head-update, and so the traversal must
202 * continue from the "head". Traversals trying to find the
203 * current tail starting from "tail" may also encounter
204 * self-links, in which case they also continue at "head".
205 *
206 * It is tempting in slack-based scheme to not even use CAS for
207 * updates (similarly to Ladan-Mozes & Shavit). However, this
208 * cannot be done for head updates under the above link-forgetting
209 * mechanics because an update may leave head at a detached node.
210 * And while direct writes are possible for tail updates, they
211 * increase the risk of long retraversals, and hence long garbage
212 * chains, which can be much more costly than is worthwhile
213 * considering that the cost difference of performing a CAS vs
214 * write is smaller when they are not triggered on each operation
215 * (especially considering that writes and CASes equally require
216 * additional GC bookkeeping ("write barriers") that are sometimes
217 * more costly than the writes themselves because of contention).
218 *
219 * *** Overview of implementation ***
220 *
221 * We use a threshold-based approach to updates, with a slack
222 * threshold of two -- that is, we update head/tail when the
223 * current pointer appears to be two or more steps away from the
224 * first/last node. The slack value is hard-wired: a path greater
225 * than one is naturally implemented by checking equality of
226 * traversal pointers except when the list has only one element,
227 * in which case we keep slack threshold at one. Avoiding tracking
228 * explicit counts across method calls slightly simplifies an
229 * already-messy implementation. Using randomization would
230 * probably work better if there were a low-quality dirt-cheap
231 * per-thread one available, but even ThreadLocalRandom is too
232 * heavy for these purposes.
233 *
234 * With such a small slack threshold value, it is not worthwhile
235 * to augment this with path short-circuiting (i.e., unsplicing
236 * interior nodes) except in the case of cancellation/removal (see
237 * below).
238 *
239 * We allow both the head and tail fields to be null before any
240 * nodes are enqueued; initializing upon first append. This
241 * simplifies some other logic, as well as providing more
242 * efficient explicit control paths instead of letting JVMs insert
243 * implicit NullPointerExceptions when they are null. While not
244 * currently fully implemented, we also leave open the possibility
245 * of re-nulling these fields when empty (which is complicated to
246 * arrange, for little benefit.)
247 *
248 * All enqueue/dequeue operations are handled by the single method
249 * "xfer" with parameters indicating whether to act as some form
250 * of offer, put, poll, take, or transfer (each possibly with
251 * timeout). The relative complexity of using one monolithic
252 * method outweighs the code bulk and maintenance problems of
253 * using separate methods for each case.
254 *
255 * Operation consists of up to three phases. The first is
256 * implemented within method xfer, the second in tryAppend, and
257 * the third in method awaitMatch.
258 *
259 * 1. Try to match an existing node
260 *
261 * Starting at head, skip already-matched nodes until finding
262 * an unmatched node of opposite mode, if one exists, in which
263 * case matching it and returning, also if necessary updating
264 * head to one past the matched node (or the node itself if the
265 * list has no other unmatched nodes). If the CAS misses, then
266 * a loop retries advancing head by two steps until either
267 * success or the slack is at most two. By requiring that each
268 * attempt advances head by two (if applicable), we ensure that
269 * the slack does not grow without bound. Traversals also check
270 * if the initial head is now off-list, in which case they
271 * start at the new head.
272 *
273 * If no candidates are found and the call was untimed
274 * poll/offer, (argument "how" is NOW) return.
275 *
276 * 2. Try to append a new node (method tryAppend)
277 *
278 * Starting at current tail pointer, find the actual last node
279 * and try to append a new node (or if head was null, establish
280 * the first node). Nodes can be appended only if their
281 * predecessors are either already matched or are of the same
282 * mode. If we detect otherwise, then a new node with opposite
283 * mode must have been appended during traversal, so we must
284 * restart at phase 1. The traversal and update steps are
285 * otherwise similar to phase 1: Retrying upon CAS misses and
286 * checking for staleness. In particular, if a self-link is
287 * encountered, then we can safely jump to a node on the list
288 * by continuing the traversal at current head.
289 *
290 * On successful append, if the call was ASYNC, return.
291 *
292 * 3. Await match or cancellation (method awaitMatch)
293 *
294 * Wait for another thread to match node; instead cancelling if
295 * the current thread was interrupted or the wait timed out. On
296 * multiprocessors, we use front-of-queue spinning: If a node
297 * appears to be the first unmatched node in the queue, it
298 * spins a bit before blocking. In either case, before blocking
299 * it tries to unsplice any nodes between the current "head"
300 * and the first unmatched node.
301 *
302 * Front-of-queue spinning vastly improves performance of
303 * heavily contended queues. And so long as it is relatively
304 * brief and "quiet", spinning does not much impact performance
305 * of less-contended queues. During spins threads check their
306 * interrupt status and generate a thread-local random number
307 * to decide to occasionally perform a Thread.yield. While
308 * yield has underdefined specs, we assume that it might help,
309 * and will not hurt, in limiting impact of spinning on busy
310 * systems. We also use smaller (1/2) spins for nodes that are
311 * not known to be front but whose predecessors have not
312 * blocked -- these "chained" spins avoid artifacts of
313 * front-of-queue rules which otherwise lead to alternating
314 * nodes spinning vs blocking. Further, front threads that
315 * represent phase changes (from data to request node or vice
316 * versa) compared to their predecessors receive additional
317 * chained spins, reflecting longer paths typically required to
318 * unblock threads during phase changes.
319 *
320 *
321 * ** Unlinking removed interior nodes **
322 *
323 * In addition to minimizing garbage retention via self-linking
324 * described above, we also unlink removed interior nodes. These
325 * may arise due to timed out or interrupted waits, or calls to
326 * remove(x) or Iterator.remove. Normally, given a node that was
327 * at one time known to be the predecessor of some node s that is
328 * to be removed, we can unsplice s by CASing the next field of
329 * its predecessor if it still points to s (otherwise s must
330 * already have been removed or is now offlist). But there are two
331 * situations in which we cannot guarantee to make node s
332 * unreachable in this way: (1) If s is the trailing node of list
333 * (i.e., with null next), then it is pinned as the target node
334 * for appends, so can only be removed later after other nodes are
335 * appended. (2) We cannot necessarily unlink s given a
336 * predecessor node that is matched (including the case of being
337 * cancelled): the predecessor may already be unspliced, in which
338 * case some previous reachable node may still point to s.
339 * (For further explanation see Herlihy & Shavit "The Art of
340 * Multiprocessor Programming" chapter 9). Although, in both
341 * cases, we can rule out the need for further action if either s
342 * or its predecessor are (or can be made to be) at, or fall off
343 * from, the head of list.
344 *
345 * Without taking these into account, it would be possible for an
346 * unbounded number of supposedly removed nodes to remain
347 * reachable. Situations leading to such buildup are uncommon but
348 * can occur in practice; for example when a series of short timed
349 * calls to poll repeatedly time out but never otherwise fall off
350 * the list because of an untimed call to take at the front of the
351 * queue.
352 *
353 * When these cases arise, rather than always retraversing the
354 * entire list to find an actual predecessor to unlink (which
355 * won't help for case (1) anyway), we record a conservative
356 * estimate of possible unsplice failures (in "sweepVotes").
357 * We trigger a full sweep when the estimate exceeds a threshold
358 * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
359 * removal failures to tolerate before sweeping through, unlinking
360 * cancelled nodes that were not unlinked upon initial removal.
361 * We perform sweeps by the thread hitting threshold (rather than
362 * background threads or by spreading work to other threads)
363 * because in the main contexts in which removal occurs, the
364 * caller is already timed-out, cancelled, or performing a
365 * potentially O(n) operation (e.g. remove(x)), none of which are
366 * time-critical enough to warrant the overhead that alternatives
367 * would impose on other threads.
368 *
369 * Because the sweepVotes estimate is conservative, and because
370 * nodes become unlinked "naturally" as they fall off the head of
371 * the queue, and because we allow votes to accumulate even while
372 * sweeps are in progress, there are typically significantly fewer
373 * such nodes than estimated. Choice of a threshold value
374 * balances the likelihood of wasted effort and contention, versus
375 * providing a worst-case bound on retention of interior nodes in
376 * quiescent queues. The value defined below was chosen
377 * empirically to balance these under various timeout scenarios.
378 *
379 * Note that we cannot self-link unlinked interior nodes during
380 * sweeps. However, the associated garbage chains terminate when
381 * some successor ultimately falls off the head of the list and is
382 * self-linked.
383 */
384
385 /** True if on multiprocessor */
386 private static final boolean MP =
387 Runtime.getRuntime().availableProcessors() > 1;
388
389 /**
390 * The number of times to spin (with randomly interspersed calls
391 * to Thread.yield) on multiprocessor before blocking when a node
392 * is apparently the first waiter in the queue. See above for
393 * explanation. Must be a power of two. The value is empirically
394 * derived -- it works pretty well across a variety of processors,
395 * numbers of CPUs, and OSes.
396 */
397 private static final int FRONT_SPINS = 1 << 7;
398
399 /**
400 * The number of times to spin before blocking when a node is
401 * preceded by another node that is apparently spinning. Also
402 * serves as an increment to FRONT_SPINS on phase changes, and as
403 * base average frequency for yielding during spins. Must be a
404 * power of two.
405 */
406 private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
407
408 /**
409 * The maximum number of estimated removal failures (sweepVotes)
410 * to tolerate before sweeping through the queue unlinking
411 * cancelled nodes that were not unlinked upon initial
412 * removal. See above for explanation. The value must be at least
413 * two to avoid useless sweeps when removing trailing nodes.
414 */
415 static final int SWEEP_THRESHOLD = 32;
416
417 /**
418 * Queue nodes. Uses Object, not E, for items to allow forgetting
419 * them after use. Relies heavily on Unsafe mechanics to minimize
420 * unnecessary ordering constraints: Writes that are intrinsically
421 * ordered wrt other accesses or CASes use simple relaxed forms.
422 */
423 static final class Node {
424 final boolean isData; // false if this is a request node
425 volatile Object item; // initially non-null if isData; CASed to match
426 volatile Node next;
427 volatile Thread waiter; // null until waiting
428
429 // CAS methods for fields
430 final boolean casNext(Node cmp, Node val) {
431 return U.compareAndSwapObject(this, NEXT, cmp, val);
432 }
433
434 final boolean casItem(Object cmp, Object val) {
435 // assert cmp == null || cmp.getClass() != Node.class;
436 return U.compareAndSwapObject(this, ITEM, cmp, val);
437 }
438
439 /**
440 * Constructs a new node. Uses relaxed write because item can
441 * only be seen after publication via casNext.
442 */
443 Node(Object item, boolean isData) {
444 U.putObject(this, ITEM, item); // relaxed write
445 this.isData = isData;
446 }
447
448 /**
449 * Links node to itself to avoid garbage retention. Called
450 * only after CASing head field, so uses relaxed write.
451 */
452 final void forgetNext() {
453 U.putObject(this, NEXT, this);
454 }
455
456 /**
457 * Sets item to self and waiter to null, to avoid garbage
458 * retention after matching or cancelling. Uses relaxed writes
459 * because order is already constrained in the only calling
460 * contexts: item is forgotten only after volatile/atomic
461 * mechanics that extract items. Similarly, clearing waiter
462 * follows either CAS or return from park (if ever parked;
463 * else we don't care).
464 */
465 final void forgetContents() {
466 U.putObject(this, ITEM, this);
467 U.putObject(this, WAITER, null);
468 }
469
470 /**
471 * Returns true if this node has been matched, including the
472 * case of artificial matches due to cancellation.
473 */
474 final boolean isMatched() {
475 Object x = item;
476 return (x == this) || ((x == null) == isData);
477 }
478
479 /**
480 * Returns true if this is an unmatched request node.
481 */
482 final boolean isUnmatchedRequest() {
483 return !isData && item == null;
484 }
485
486 /**
487 * Returns true if a node with the given mode cannot be
488 * appended to this node because this node is unmatched and
489 * has opposite data mode.
490 */
491 final boolean cannotPrecede(boolean haveData) {
492 boolean d = isData;
493 Object x;
494 return d != haveData && (x = item) != this && (x != null) == d;
495 }
496
497 /**
498 * Tries to artificially match a data node -- used by remove.
499 */
500 final boolean tryMatchData() {
501 // assert isData;
502 Object x = item;
503 if (x != null && x != this && casItem(x, null)) {
504 LockSupport.unpark(waiter);
505 return true;
506 }
507 return false;
508 }
509
510 private static final long serialVersionUID = -3375979862319811754L;
511
512 // Unsafe mechanics
513 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
514 private static final long ITEM;
515 private static final long NEXT;
516 private static final long WAITER;
517 static {
518 try {
519 ITEM = U.objectFieldOffset
520 (Node.class.getDeclaredField("item"));
521 NEXT = U.objectFieldOffset
522 (Node.class.getDeclaredField("next"));
523 WAITER = U.objectFieldOffset
524 (Node.class.getDeclaredField("waiter"));
525 } catch (ReflectiveOperationException e) {
526 throw new Error(e);
527 }
528 }
529 }
530
531 /** head of the queue; null until first enqueue */
532 transient volatile Node head;
533
534 /** tail of the queue; null until first append */
535 private transient volatile Node tail;
536
537 /** The number of apparent failures to unsplice removed nodes */
538 private transient volatile int sweepVotes;
539
540 // CAS methods for fields
541 private boolean casTail(Node cmp, Node val) {
542 return U.compareAndSwapObject(this, TAIL, cmp, val);
543 }
544
545 private boolean casHead(Node cmp, Node val) {
546 return U.compareAndSwapObject(this, HEAD, cmp, val);
547 }
548
549 private boolean casSweepVotes(int cmp, int val) {
550 return U.compareAndSwapInt(this, SWEEPVOTES, cmp, val);
551 }
552
553 /**
554 * Tries to CAS pred.next (or head, if pred is null) from c to p.
555 * Caller must ensure that we're not unlinking the trailing node.
556 */
557 private boolean tryCasSuccessor(Node pred, Node c, Node p) {
558 // assert p != null;
559 // assert c != p;
560 if (pred != null)
561 return pred.casNext(c, p);
562 if (casHead(c, p)) {
563 c.forgetNext();
564 return true;
565 }
566 return false;
567 }
568
569 /*
570 * Possible values for "how" argument in xfer method.
571 */
572 private static final int NOW = 0; // for untimed poll, tryTransfer
573 private static final int ASYNC = 1; // for offer, put, add
574 private static final int SYNC = 2; // for transfer, take
575 private static final int TIMED = 3; // for timed poll, tryTransfer
576
577 /**
578 * Implements all queuing methods. See above for explanation.
579 *
580 * @param e the item or null for take
581 * @param haveData true if this is a put, else a take
582 * @param how NOW, ASYNC, SYNC, or TIMED
583 * @param nanos timeout in nanosecs, used only if mode is TIMED
584 * @return an item if matched, else e
585 * @throws NullPointerException if haveData mode but e is null
586 */
587 private E xfer(E e, boolean haveData, int how, long nanos) {
588 if (haveData && (e == null))
589 throw new NullPointerException();
590 Node s = null; // the node to append, if needed
591
592 retry:
593 for (;;) { // restart on append race
594
595 for (Node h = head, p = h; p != null;) { // find & match first node
596 boolean isData = p.isData;
597 Object item = p.item;
598 if (item != p && (item != null) == isData) { // unmatched
599 if (isData == haveData) // can't match
600 break;
601 if (p.casItem(item, e)) { // match
602 for (Node q = p; q != h;) {
603 Node n = q.next; // update by 2 unless singleton
604 if (head == h && casHead(h, n == null ? q : n)) {
605 h.forgetNext();
606 break;
607 } // advance and retry
608 if ((h = head) == null ||
609 (q = h.next) == null || !q.isMatched())
610 break; // unless slack < 2
611 }
612 LockSupport.unpark(p.waiter);
613 @SuppressWarnings("unchecked") E itemE = (E) item;
614 return itemE;
615 }
616 }
617 Node n = p.next;
618 p = (p != n) ? n : (h = head); // Use head if p offlist
619 }
620
621 if (how != NOW) { // No matches available
622 if (s == null)
623 s = new Node(e, haveData);
624 Node pred = tryAppend(s, haveData);
625 if (pred == null)
626 continue retry; // lost race vs opposite mode
627 if (how != ASYNC)
628 return awaitMatch(s, pred, e, (how == TIMED), nanos);
629 }
630 return e; // not waiting
631 }
632 }
633
634 /**
635 * Tries to append node s as tail.
636 *
637 * @param s the node to append
638 * @param haveData true if appending in data mode
639 * @return null on failure due to losing race with append in
640 * different mode, else s's predecessor, or s itself if no
641 * predecessor
642 */
643 private Node tryAppend(Node s, boolean haveData) {
644 for (Node t = tail, p = t;;) { // move p to last node and append
645 Node n, u; // temps for reads of next & tail
646 if (p == null && (p = head) == null) {
647 if (casHead(null, s))
648 return s; // initialize
649 }
650 else if (p.cannotPrecede(haveData))
651 return null; // lost race vs opposite mode
652 else if ((n = p.next) != null) // not last; keep traversing
653 p = p != t && t != (u = tail) ? (t = u) : // stale tail
654 (p != n) ? n : null; // restart if off list
655 else if (!p.casNext(null, s))
656 p = p.next; // re-read on CAS failure
657 else {
658 if (p != t) { // update if slack now >= 2
659 while ((tail != t || !casTail(t, s)) &&
660 (t = tail) != null &&
661 (s = t.next) != null && // advance and retry
662 (s = s.next) != null && s != t);
663 }
664 return p;
665 }
666 }
667 }
668
669 /**
670 * Spins/yields/blocks until node s is matched or caller gives up.
671 *
672 * @param s the waiting node
673 * @param pred the predecessor of s, or s itself if it has no
674 * predecessor, or null if unknown (the null case does not occur
675 * in any current calls but may in possible future extensions)
676 * @param e the comparison value for checking match
677 * @param timed if true, wait only until timeout elapses
678 * @param nanos timeout in nanosecs, used only if timed is true
679 * @return matched item, or e if unmatched on interrupt or timeout
680 */
681 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
682 final long deadline = timed ? System.nanoTime() + nanos : 0L;
683 Thread w = Thread.currentThread();
684 int spins = -1; // initialized after first item and cancel checks
685 ThreadLocalRandom randomYields = null; // bound if needed
686
687 for (;;) {
688 Object item = s.item;
689 if (item != e) { // matched
690 // assert item != s;
691 s.forgetContents(); // avoid garbage
692 @SuppressWarnings("unchecked") E itemE = (E) item;
693 return itemE;
694 }
695 else if (w.isInterrupted() || (timed && nanos <= 0L)) {
696 unsplice(pred, s); // try to unlink and cancel
697 if (s.casItem(e, s)) // return normally if lost CAS
698 return e;
699 }
700 else if (spins < 0) { // establish spins at/near front
701 if ((spins = spinsFor(pred, s.isData)) > 0)
702 randomYields = ThreadLocalRandom.current();
703 }
704 else if (spins > 0) { // spin
705 --spins;
706 if (randomYields.nextInt(CHAINED_SPINS) == 0)
707 Thread.yield(); // occasionally yield
708 }
709 else if (s.waiter == null) {
710 s.waiter = w; // request unpark then recheck
711 }
712 else if (timed) {
713 nanos = deadline - System.nanoTime();
714 if (nanos > 0L)
715 LockSupport.parkNanos(this, nanos);
716 }
717 else {
718 LockSupport.park(this);
719 }
720 }
721 }
722
723 /**
724 * Returns spin/yield value for a node with given predecessor and
725 * data mode. See above for explanation.
726 */
727 private static int spinsFor(Node pred, boolean haveData) {
728 if (MP && pred != null) {
729 if (pred.isData != haveData) // phase change
730 return FRONT_SPINS + CHAINED_SPINS;
731 if (pred.isMatched()) // probably at front
732 return FRONT_SPINS;
733 if (pred.waiter == null) // pred apparently spinning
734 return CHAINED_SPINS;
735 }
736 return 0;
737 }
738
739 /* -------------- Traversal methods -------------- */
740
741 /**
742 * Returns the successor of p, or the head node if p.next has been
743 * linked to self, which will only be true if traversing with a
744 * stale pointer that is now off the list.
745 */
746 final Node succ(Node p) {
747 Node next = p.next;
748 return (p == next) ? head : next;
749 }
750
751 /**
752 * Returns the first unmatched data node, or null if none.
753 * Callers must recheck if the returned node's item field is null
754 * or self-linked before using.
755 */
756 final Node firstDataNode() {
757 restartFromHead: for (;;) {
758 for (Node p = head; p != null;) {
759 Object item = p.item;
760 if (p.isData) {
761 if (item != null && item != p)
762 return p;
763 }
764 else if (item == null)
765 break;
766 if (p == (p = p.next))
767 continue restartFromHead;
768 }
769 return null;
770 }
771 }
772
773 /**
774 * Traverses and counts unmatched nodes of the given mode.
775 * Used by methods size and getWaitingConsumerCount.
776 */
777 private int countOfMode(boolean data) {
778 restartFromHead: for (;;) {
779 int count = 0;
780 for (Node p = head; p != null;) {
781 if (!p.isMatched()) {
782 if (p.isData != data)
783 return 0;
784 if (++count == Integer.MAX_VALUE)
785 break; // @see Collection.size()
786 }
787 if (p == (p = p.next))
788 continue restartFromHead;
789 }
790 return count;
791 }
792 }
793
794 public String toString() {
795 String[] a = null;
796 restartFromHead: for (;;) {
797 int charLength = 0;
798 int size = 0;
799 for (Node p = head; p != null;) {
800 Object item = p.item;
801 if (p.isData) {
802 if (item != null && item != p) {
803 if (a == null)
804 a = new String[4];
805 else if (size == a.length)
806 a = Arrays.copyOf(a, 2 * size);
807 String s = item.toString();
808 a[size++] = s;
809 charLength += s.length();
810 }
811 } else if (item == null)
812 break;
813 if (p == (p = p.next))
814 continue restartFromHead;
815 }
816
817 if (size == 0)
818 return "[]";
819
820 return Helpers.toString(a, size, charLength);
821 }
822 }
823
824 private Object[] toArrayInternal(Object[] a) {
825 Object[] x = a;
826 restartFromHead: for (;;) {
827 int size = 0;
828 for (Node p = head; p != null;) {
829 Object item = p.item;
830 if (p.isData) {
831 if (item != null && item != p) {
832 if (x == null)
833 x = new Object[4];
834 else if (size == x.length)
835 x = Arrays.copyOf(x, 2 * (size + 4));
836 x[size++] = item;
837 }
838 } else if (item == null)
839 break;
840 if (p == (p = p.next))
841 continue restartFromHead;
842 }
843 if (x == null)
844 return new Object[0];
845 else if (a != null && size <= a.length) {
846 if (a != x)
847 System.arraycopy(x, 0, a, 0, size);
848 if (size < a.length)
849 a[size] = null;
850 return a;
851 }
852 return (size == x.length) ? x : Arrays.copyOf(x, size);
853 }
854 }
855
856 /**
857 * Returns an array containing all of the elements in this queue, in
858 * proper sequence.
859 *
860 * <p>The returned array will be "safe" in that no references to it are
861 * maintained by this queue. (In other words, this method must allocate
862 * a new array). The caller is thus free to modify the returned array.
863 *
864 * <p>This method acts as bridge between array-based and collection-based
865 * APIs.
866 *
867 * @return an array containing all of the elements in this queue
868 */
869 public Object[] toArray() {
870 return toArrayInternal(null);
871 }
872
873 /**
874 * Returns an array containing all of the elements in this queue, in
875 * proper sequence; the runtime type of the returned array is that of
876 * the specified array. If the queue fits in the specified array, it
877 * is returned therein. Otherwise, a new array is allocated with the
878 * runtime type of the specified array and the size of this queue.
879 *
880 * <p>If this queue fits in the specified array with room to spare
881 * (i.e., the array has more elements than this queue), the element in
882 * the array immediately following the end of the queue is set to
883 * {@code null}.
884 *
885 * <p>Like the {@link #toArray()} method, this method acts as bridge between
886 * array-based and collection-based APIs. Further, this method allows
887 * precise control over the runtime type of the output array, and may,
888 * under certain circumstances, be used to save allocation costs.
889 *
890 * <p>Suppose {@code x} is a queue known to contain only strings.
891 * The following code can be used to dump the queue into a newly
892 * allocated array of {@code String}:
893 *
894 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
895 *
896 * Note that {@code toArray(new Object[0])} is identical in function to
897 * {@code toArray()}.
898 *
899 * @param a the array into which the elements of the queue are to
900 * be stored, if it is big enough; otherwise, a new array of the
901 * same runtime type is allocated for this purpose
902 * @return an array containing all of the elements in this queue
903 * @throws ArrayStoreException if the runtime type of the specified array
904 * is not a supertype of the runtime type of every element in
905 * this queue
906 * @throws NullPointerException if the specified array is null
907 */
908 @SuppressWarnings("unchecked")
909 public <T> T[] toArray(T[] a) {
910 if (a == null) throw new NullPointerException();
911 return (T[]) toArrayInternal(a);
912 }
913
914 final class Itr implements Iterator<E> {
915 private Node nextNode; // next node to return item for
916 private E nextItem; // the corresponding item
917 private Node lastRet; // last returned node, to support remove
918 private Node lastPred; // predecessor to unlink lastRet
919
920 /**
921 * Moves to next node after prev, or first node if prev null.
922 */
923 private void advance(Node prev) {
924 /*
925 * To track and avoid buildup of deleted nodes in the face
926 * of calls to both Queue.remove and Itr.remove, we must
927 * include variants of unsplice and sweep upon each
928 * advance: Upon Itr.remove, we may need to catch up links
929 * from lastPred, and upon other removes, we might need to
930 * skip ahead from stale nodes and unsplice deleted ones
931 * found while advancing.
932 */
933
934 Node r, b; // reset lastPred upon possible deletion of lastRet
935 if ((r = lastRet) != null && !r.isMatched())
936 lastPred = r; // next lastPred is old lastRet
937 else if ((b = lastPred) == null || b.isMatched())
938 lastPred = null; // at start of list
939 else {
940 Node s, n; // help with removal of lastPred.next
941 while ((s = b.next) != null &&
942 s != b && s.isMatched() &&
943 (n = s.next) != null && n != s)
944 b.casNext(s, n);
945 }
946
947 this.lastRet = prev;
948
949 for (Node p = prev, s, n;;) {
950 s = (p == null) ? head : p.next;
951 if (s == null)
952 break;
953 else if (s == p) {
954 p = null;
955 continue;
956 }
957 Object item = s.item;
958 if (s.isData) {
959 if (item != null && item != s) {
960 @SuppressWarnings("unchecked") E itemE = (E) item;
961 nextItem = itemE;
962 nextNode = s;
963 return;
964 }
965 }
966 else if (item == null)
967 break;
968 // assert s.isMatched();
969 if (p == null)
970 p = s;
971 else if ((n = s.next) == null)
972 break;
973 else if (s == n)
974 p = null;
975 else
976 p.casNext(s, n);
977 }
978 nextNode = null;
979 nextItem = null;
980 }
981
982 Itr() {
983 advance(null);
984 }
985
986 public final boolean hasNext() {
987 return nextNode != null;
988 }
989
990 public final E next() {
991 Node p = nextNode;
992 if (p == null) throw new NoSuchElementException();
993 E e = nextItem;
994 advance(p);
995 return e;
996 }
997
998 public final void remove() {
999 final Node lastRet = this.lastRet;
1000 if (lastRet == null)
1001 throw new IllegalStateException();
1002 this.lastRet = null;
1003 if (lastRet.tryMatchData())
1004 unsplice(lastPred, lastRet);
1005 }
1006 }
1007
1008 /** A customized variant of Spliterators.IteratorSpliterator */
1009 final class LTQSpliterator implements Spliterator<E> {
1010 static final int MAX_BATCH = 1 << 25; // max batch array size;
1011 Node current; // current node; null until initialized
1012 int batch; // batch size for splits
1013 boolean exhausted; // true when no more nodes
1014 LTQSpliterator() {}
1015
1016 public Spliterator<E> trySplit() {
1017 Node p, q;
1018 if ((p = current()) == null || (q = p.next) == null)
1019 return null;
1020 int i = 0, n = batch = Math.min(batch + 1, MAX_BATCH);
1021 Object[] a = null;
1022 do {
1023 final Object item = p.item;
1024 if (p.isData) {
1025 if (item != null)
1026 ((a != null) ? a : (a = new Object[n]))[i++] = item;
1027 } else if (item == null) {
1028 p = null;
1029 break;
1030 }
1031 if (p == (p = q))
1032 p = firstDataNode();
1033 } while (p != null && (q = p.next) != null && i < n);
1034 setCurrent(p);
1035 return (i == 0) ? null :
1036 Spliterators.spliterator(a, 0, i, (Spliterator.ORDERED |
1037 Spliterator.NONNULL |
1038 Spliterator.CONCURRENT));
1039 }
1040
1041 public void forEachRemaining(Consumer<? super E> action) {
1042 Objects.requireNonNull(action);
1043 final Node p;
1044 if ((p = current()) != null) {
1045 current = null;
1046 exhausted = true;
1047 forEachFrom(action, p);
1048 }
1049 }
1050
1051 @SuppressWarnings("unchecked")
1052 public boolean tryAdvance(Consumer<? super E> action) {
1053 Objects.requireNonNull(action);
1054 Node p;
1055 if ((p = current()) != null) {
1056 E e = null;
1057 do {
1058 final Object item = p.item;
1059 final boolean isData = p.isData;
1060 if (p == (p = p.next))
1061 p = head;
1062 if (isData) {
1063 if (item != null) {
1064 e = (E) item;
1065 break;
1066 }
1067 }
1068 else if (item == null)
1069 p = null;
1070 } while (p != null);
1071 setCurrent(p);
1072 if (e != null) {
1073 action.accept(e);
1074 return true;
1075 }
1076 }
1077 return false;
1078 }
1079
1080 private void setCurrent(Node p) {
1081 if ((current = p) == null)
1082 exhausted = true;
1083 }
1084
1085 private Node current() {
1086 Node p;
1087 if ((p = current) == null && !exhausted)
1088 setCurrent(p = firstDataNode());
1089 return p;
1090 }
1091
1092 public long estimateSize() { return Long.MAX_VALUE; }
1093
1094 public int characteristics() {
1095 return (Spliterator.ORDERED |
1096 Spliterator.NONNULL |
1097 Spliterator.CONCURRENT);
1098 }
1099 }
1100
1101 /**
1102 * Returns a {@link Spliterator} over the elements in this queue.
1103 *
1104 * <p>The returned spliterator is
1105 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1106 *
1107 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1108 * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1109 *
1110 * @implNote
1111 * The {@code Spliterator} implements {@code trySplit} to permit limited
1112 * parallelism.
1113 *
1114 * @return a {@code Spliterator} over the elements in this queue
1115 * @since 1.8
1116 */
1117 public Spliterator<E> spliterator() {
1118 return new LTQSpliterator();
1119 }
1120
1121 /* -------------- Removal methods -------------- */
1122
1123 /**
1124 * Unsplices (now or later) the given deleted/cancelled node with
1125 * the given predecessor.
1126 *
1127 * @param pred a node that was at one time known to be the
1128 * predecessor of s, or null or s itself if s is/was at head
1129 * @param s the node to be unspliced
1130 */
1131 final void unsplice(Node pred, Node s) {
1132 s.waiter = null; // disable signals
1133 /*
1134 * See above for rationale. Briefly: if pred still points to
1135 * s, try to unlink s. If s cannot be unlinked, because it is
1136 * trailing node or pred might be unlinked, and neither pred
1137 * nor s are head or offlist, add to sweepVotes, and if enough
1138 * votes have accumulated, sweep.
1139 */
1140 if (pred != null && pred != s && pred.next == s) {
1141 Node n = s.next;
1142 if (n == null ||
1143 (n != s && pred.casNext(s, n) && pred.isMatched())) {
1144 for (;;) { // check if at, or could be, head
1145 Node h = head;
1146 if (h == pred || h == s || h == null)
1147 return; // at head or list empty
1148 if (!h.isMatched())
1149 break;
1150 Node hn = h.next;
1151 if (hn == null)
1152 return; // now empty
1153 if (hn != h && casHead(h, hn))
1154 h.forgetNext(); // advance head
1155 }
1156 if (pred.next != pred && s.next != s) { // recheck if offlist
1157 for (;;) { // sweep now if enough votes
1158 int v = sweepVotes;
1159 if (v < SWEEP_THRESHOLD) {
1160 if (casSweepVotes(v, v + 1))
1161 break;
1162 }
1163 else if (casSweepVotes(v, 0)) {
1164 sweep();
1165 break;
1166 }
1167 }
1168 }
1169 }
1170 }
1171 }
1172
1173 /**
1174 * Unlinks matched (typically cancelled) nodes encountered in a
1175 * traversal from head.
1176 */
1177 private void sweep() {
1178 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1179 if (!s.isMatched())
1180 // Unmatched nodes are never self-linked
1181 p = s;
1182 else if ((n = s.next) == null) // trailing node is pinned
1183 break;
1184 else if (s == n) // stale
1185 // No need to also check for p == s, since that implies s == n
1186 p = head;
1187 else
1188 p.casNext(s, n);
1189 }
1190 }
1191
1192 /**
1193 * Main implementation of remove(Object)
1194 */
1195 private boolean findAndRemove(Object e) {
1196 if (e != null) {
1197 for (Node pred = null, p = head; p != null; ) {
1198 Object item = p.item;
1199 if (p.isData) {
1200 if (item != null && item != p && e.equals(item) &&
1201 p.tryMatchData()) {
1202 unsplice(pred, p);
1203 return true;
1204 }
1205 }
1206 else if (item == null)
1207 break;
1208 pred = p;
1209 if ((p = p.next) == pred) { // stale
1210 pred = null;
1211 p = head;
1212 }
1213 }
1214 }
1215 return false;
1216 }
1217
1218 /**
1219 * Creates an initially empty {@code LinkedTransferQueue}.
1220 */
1221 public LinkedTransferQueue() {
1222 }
1223
1224 /**
1225 * Creates a {@code LinkedTransferQueue}
1226 * initially containing the elements of the given collection,
1227 * added in traversal order of the collection's iterator.
1228 *
1229 * @param c the collection of elements to initially contain
1230 * @throws NullPointerException if the specified collection or any
1231 * of its elements are null
1232 */
1233 public LinkedTransferQueue(Collection<? extends E> c) {
1234 this();
1235 addAll(c);
1236 }
1237
1238 /**
1239 * Inserts the specified element at the tail of this queue.
1240 * As the queue is unbounded, this method will never block.
1241 *
1242 * @throws NullPointerException if the specified element is null
1243 */
1244 public void put(E e) {
1245 xfer(e, true, ASYNC, 0);
1246 }
1247
1248 /**
1249 * Inserts the specified element at the tail of this queue.
1250 * As the queue is unbounded, this method will never block or
1251 * return {@code false}.
1252 *
1253 * @return {@code true} (as specified by
1254 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1255 * BlockingQueue.offer})
1256 * @throws NullPointerException if the specified element is null
1257 */
1258 public boolean offer(E e, long timeout, TimeUnit unit) {
1259 xfer(e, true, ASYNC, 0);
1260 return true;
1261 }
1262
1263 /**
1264 * Inserts the specified element at the tail of this queue.
1265 * As the queue is unbounded, this method will never return {@code false}.
1266 *
1267 * @return {@code true} (as specified by {@link Queue#offer})
1268 * @throws NullPointerException if the specified element is null
1269 */
1270 public boolean offer(E e) {
1271 xfer(e, true, ASYNC, 0);
1272 return true;
1273 }
1274
1275 /**
1276 * Inserts the specified element at the tail of this queue.
1277 * As the queue is unbounded, this method will never throw
1278 * {@link IllegalStateException} or return {@code false}.
1279 *
1280 * @return {@code true} (as specified by {@link Collection#add})
1281 * @throws NullPointerException if the specified element is null
1282 */
1283 public boolean add(E e) {
1284 xfer(e, true, ASYNC, 0);
1285 return true;
1286 }
1287
1288 /**
1289 * Transfers the element to a waiting consumer immediately, if possible.
1290 *
1291 * <p>More precisely, transfers the specified element immediately
1292 * if there exists a consumer already waiting to receive it (in
1293 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1294 * otherwise returning {@code false} without enqueuing the element.
1295 *
1296 * @throws NullPointerException if the specified element is null
1297 */
1298 public boolean tryTransfer(E e) {
1299 return xfer(e, true, NOW, 0) == null;
1300 }
1301
1302 /**
1303 * Transfers the element to a consumer, waiting if necessary to do so.
1304 *
1305 * <p>More precisely, transfers the specified element immediately
1306 * if there exists a consumer already waiting to receive it (in
1307 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1308 * else inserts the specified element at the tail of this queue
1309 * and waits until the element is received by a consumer.
1310 *
1311 * @throws NullPointerException if the specified element is null
1312 */
1313 public void transfer(E e) throws InterruptedException {
1314 if (xfer(e, true, SYNC, 0) != null) {
1315 Thread.interrupted(); // failure possible only due to interrupt
1316 throw new InterruptedException();
1317 }
1318 }
1319
1320 /**
1321 * Transfers the element to a consumer if it is possible to do so
1322 * before the timeout elapses.
1323 *
1324 * <p>More precisely, transfers the specified element immediately
1325 * if there exists a consumer already waiting to receive it (in
1326 * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1327 * else inserts the specified element at the tail of this queue
1328 * and waits until the element is received by a consumer,
1329 * returning {@code false} if the specified wait time elapses
1330 * before the element can be transferred.
1331 *
1332 * @throws NullPointerException if the specified element is null
1333 */
1334 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1335 throws InterruptedException {
1336 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1337 return true;
1338 if (!Thread.interrupted())
1339 return false;
1340 throw new InterruptedException();
1341 }
1342
1343 public E take() throws InterruptedException {
1344 E e = xfer(null, false, SYNC, 0);
1345 if (e != null)
1346 return e;
1347 Thread.interrupted();
1348 throw new InterruptedException();
1349 }
1350
1351 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1352 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1353 if (e != null || !Thread.interrupted())
1354 return e;
1355 throw new InterruptedException();
1356 }
1357
1358 public E poll() {
1359 return xfer(null, false, NOW, 0);
1360 }
1361
1362 /**
1363 * @throws NullPointerException {@inheritDoc}
1364 * @throws IllegalArgumentException {@inheritDoc}
1365 */
1366 public int drainTo(Collection<? super E> c) {
1367 if (c == null)
1368 throw new NullPointerException();
1369 if (c == this)
1370 throw new IllegalArgumentException();
1371 int n = 0;
1372 for (E e; (e = poll()) != null;) {
1373 c.add(e);
1374 ++n;
1375 }
1376 return n;
1377 }
1378
1379 /**
1380 * @throws NullPointerException {@inheritDoc}
1381 * @throws IllegalArgumentException {@inheritDoc}
1382 */
1383 public int drainTo(Collection<? super E> c, int maxElements) {
1384 if (c == null)
1385 throw new NullPointerException();
1386 if (c == this)
1387 throw new IllegalArgumentException();
1388 int n = 0;
1389 for (E e; n < maxElements && (e = poll()) != null;) {
1390 c.add(e);
1391 ++n;
1392 }
1393 return n;
1394 }
1395
1396 /**
1397 * Returns an iterator over the elements in this queue in proper sequence.
1398 * The elements will be returned in order from first (head) to last (tail).
1399 *
1400 * <p>The returned iterator is
1401 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1402 *
1403 * @return an iterator over the elements in this queue in proper sequence
1404 */
1405 public Iterator<E> iterator() {
1406 return new Itr();
1407 }
1408
1409 public E peek() {
1410 restartFromHead: for (;;) {
1411 for (Node p = head; p != null;) {
1412 Object item = p.item;
1413 if (p.isData) {
1414 if (item != null && item != p) {
1415 @SuppressWarnings("unchecked") E e = (E) item;
1416 return e;
1417 }
1418 }
1419 else if (item == null)
1420 break;
1421 if (p == (p = p.next))
1422 continue restartFromHead;
1423 }
1424 return null;
1425 }
1426 }
1427
1428 /**
1429 * Returns {@code true} if this queue contains no elements.
1430 *
1431 * @return {@code true} if this queue contains no elements
1432 */
1433 public boolean isEmpty() {
1434 return firstDataNode() == null;
1435 }
1436
1437 public boolean hasWaitingConsumer() {
1438 restartFromHead: for (;;) {
1439 for (Node p = head; p != null;) {
1440 Object item = p.item;
1441 if (p.isData) {
1442 if (item != null && item != p)
1443 break;
1444 }
1445 else if (item == null)
1446 return true;
1447 if (p == (p = p.next))
1448 continue restartFromHead;
1449 }
1450 return false;
1451 }
1452 }
1453
1454 /**
1455 * Returns the number of elements in this queue. If this queue
1456 * contains more than {@code Integer.MAX_VALUE} elements, returns
1457 * {@code Integer.MAX_VALUE}.
1458 *
1459 * <p>Beware that, unlike in most collections, this method is
1460 * <em>NOT</em> a constant-time operation. Because of the
1461 * asynchronous nature of these queues, determining the current
1462 * number of elements requires an O(n) traversal.
1463 *
1464 * @return the number of elements in this queue
1465 */
1466 public int size() {
1467 return countOfMode(true);
1468 }
1469
1470 public int getWaitingConsumerCount() {
1471 return countOfMode(false);
1472 }
1473
1474 /**
1475 * Removes a single instance of the specified element from this queue,
1476 * if it is present. More formally, removes an element {@code e} such
1477 * that {@code o.equals(e)}, if this queue contains one or more such
1478 * elements.
1479 * Returns {@code true} if this queue contained the specified element
1480 * (or equivalently, if this queue changed as a result of the call).
1481 *
1482 * @param o element to be removed from this queue, if present
1483 * @return {@code true} if this queue changed as a result of the call
1484 */
1485 public boolean remove(Object o) {
1486 return findAndRemove(o);
1487 }
1488
1489 /**
1490 * Returns {@code true} if this queue contains the specified element.
1491 * More formally, returns {@code true} if and only if this queue contains
1492 * at least one element {@code e} such that {@code o.equals(e)}.
1493 *
1494 * @param o object to be checked for containment in this queue
1495 * @return {@code true} if this queue contains the specified element
1496 */
1497 public boolean contains(Object o) {
1498 if (o != null) {
1499 for (Node p = head; p != null; p = succ(p)) {
1500 Object item = p.item;
1501 if (p.isData) {
1502 if (item != null && item != p && o.equals(item))
1503 return true;
1504 }
1505 else if (item == null)
1506 break;
1507 }
1508 }
1509 return false;
1510 }
1511
1512 /**
1513 * Always returns {@code Integer.MAX_VALUE} because a
1514 * {@code LinkedTransferQueue} is not capacity constrained.
1515 *
1516 * @return {@code Integer.MAX_VALUE} (as specified by
1517 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1518 * BlockingQueue.remainingCapacity})
1519 */
1520 public int remainingCapacity() {
1521 return Integer.MAX_VALUE;
1522 }
1523
1524 /**
1525 * Saves this queue to a stream (that is, serializes it).
1526 *
1527 * @param s the stream
1528 * @throws java.io.IOException if an I/O error occurs
1529 * @serialData All of the elements (each an {@code E}) in
1530 * the proper order, followed by a null
1531 */
1532 private void writeObject(java.io.ObjectOutputStream s)
1533 throws java.io.IOException {
1534 s.defaultWriteObject();
1535 for (E e : this)
1536 s.writeObject(e);
1537 // Use trailing null as sentinel
1538 s.writeObject(null);
1539 }
1540
1541 /**
1542 * Reconstitutes this queue from a stream (that is, deserializes it).
1543 * @param s the stream
1544 * @throws ClassNotFoundException if the class of a serialized object
1545 * could not be found
1546 * @throws java.io.IOException if an I/O error occurs
1547 */
1548 private void readObject(java.io.ObjectInputStream s)
1549 throws java.io.IOException, ClassNotFoundException {
1550 s.defaultReadObject();
1551 for (;;) {
1552 @SuppressWarnings("unchecked")
1553 E item = (E) s.readObject();
1554 if (item == null)
1555 break;
1556 else
1557 offer(item);
1558 }
1559 }
1560
1561 /**
1562 * Runs action on each element found during a traversal starting at p.
1563 * If p is null, the action is not run.
1564 */
1565 @SuppressWarnings("unchecked")
1566 void forEachFrom(Consumer<? super E> action, Node p) {
1567 for (Node c = p, pred = null; p != null; ) {
1568 final Object item; final boolean pAlive;
1569 if (pAlive = ((item = p.item) != null && p.isData))
1570 action.accept((E) item);
1571 else if (!p.isData && item == null)
1572 break;
1573 if ((c != p && !tryCasSuccessor(pred, c, c = p)) || pAlive) {
1574 pred = p;
1575 c = p = p.next;
1576 }
1577 else if (p == (p = p.next)) {
1578 pred = null;
1579 c = p = head;
1580 }
1581 }
1582 }
1583
1584 /**
1585 * @throws NullPointerException {@inheritDoc}
1586 */
1587 public void forEach(Consumer<? super E> action) {
1588 Objects.requireNonNull(action);
1589 forEachFrom(action, head);
1590 }
1591
1592 // Unsafe mechanics
1593
1594 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1595 private static final long HEAD;
1596 private static final long TAIL;
1597 private static final long SWEEPVOTES;
1598 static {
1599 try {
1600 HEAD = U.objectFieldOffset
1601 (LinkedTransferQueue.class.getDeclaredField("head"));
1602 TAIL = U.objectFieldOffset
1603 (LinkedTransferQueue.class.getDeclaredField("tail"));
1604 SWEEPVOTES = U.objectFieldOffset
1605 (LinkedTransferQueue.class.getDeclaredField("sweepVotes"));
1606 } catch (ReflectiveOperationException e) {
1607 throw new Error(e);
1608 }
1609
1610 // Reduce the risk of rare disastrous classloading in first call to
1611 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1612 Class<?> ensureLoaded = LockSupport.class;
1613 }
1614 }