ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk8/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.3
Committed: Tue Jan 3 04:44:37 2017 UTC (7 years, 4 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.2: +108 -52 lines
Log Message:
backport Spliterator from src/main

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package java.util.concurrent;
8    
9     import java.util.AbstractQueue;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Iterator;
13     import java.util.NoSuchElementException;
14 jsr166 1.3 import java.util.Objects;
15 jsr166 1.1 import java.util.Queue;
16     import java.util.Spliterator;
17     import java.util.Spliterators;
18     import java.util.concurrent.locks.LockSupport;
19     import java.util.function.Consumer;
20    
21     /**
22     * An unbounded {@link TransferQueue} based on linked nodes.
23     * This queue orders elements FIFO (first-in-first-out) with respect
24     * to any given producer. The <em>head</em> of the queue is that
25     * element that has been on the queue the longest time for some
26     * producer. The <em>tail</em> of the queue is that element that has
27     * been on the queue the shortest time for some producer.
28     *
29     * <p>Beware that, unlike in most collections, the {@code size} method
30     * is <em>NOT</em> a constant-time operation. Because of the
31     * asynchronous nature of these queues, determining the current number
32     * of elements requires a traversal of the elements, and so may report
33     * inaccurate results if this collection is modified during traversal.
34     * Additionally, the bulk operations {@code addAll},
35     * {@code removeAll}, {@code retainAll}, {@code containsAll},
36     * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
37     * to be performed atomically. For example, an iterator operating
38     * concurrently with an {@code addAll} operation might view only some
39     * of the added elements.
40     *
41     * <p>This class and its iterator implement all of the
42     * <em>optional</em> methods of the {@link Collection} and {@link
43     * Iterator} interfaces.
44     *
45     * <p>Memory consistency effects: As with other concurrent
46     * collections, actions in a thread prior to placing an object into a
47     * {@code LinkedTransferQueue}
48     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
49     * actions subsequent to the access or removal of that element from
50     * the {@code LinkedTransferQueue} in another thread.
51     *
52     * <p>This class is a member of the
53     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
54     * Java Collections Framework</a>.
55     *
56     * @since 1.7
57     * @author Doug Lea
58     * @param <E> the type of elements held in this queue
59     */
60     public class LinkedTransferQueue<E> extends AbstractQueue<E>
61     implements TransferQueue<E>, java.io.Serializable {
62     private static final long serialVersionUID = -3223113410248163686L;
63    
64     /*
65     * *** Overview of Dual Queues with Slack ***
66     *
67     * Dual Queues, introduced by Scherer and Scott
68 jsr166 1.2 * (http://www.cs.rochester.edu/~scott/papers/2004_DISC_dual_DS.pdf)
69     * are (linked) queues in which nodes may represent either data or
70 jsr166 1.1 * requests. When a thread tries to enqueue a data node, but
71     * encounters a request node, it instead "matches" and removes it;
72     * and vice versa for enqueuing requests. Blocking Dual Queues
73     * arrange that threads enqueuing unmatched requests block until
74     * other threads provide the match. Dual Synchronous Queues (see
75     * Scherer, Lea, & Scott
76     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
77     * additionally arrange that threads enqueuing unmatched data also
78     * block. Dual Transfer Queues support all of these modes, as
79     * dictated by callers.
80     *
81     * A FIFO dual queue may be implemented using a variation of the
82     * Michael & Scott (M&S) lock-free queue algorithm
83     * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
84     * It maintains two pointer fields, "head", pointing to a
85     * (matched) node that in turn points to the first actual
86     * (unmatched) queue node (or null if empty); and "tail" that
87     * points to the last node on the queue (or again null if
88     * empty). For example, here is a possible queue with four data
89     * elements:
90     *
91     * head tail
92     * | |
93     * v v
94     * M -> U -> U -> U -> U
95     *
96     * The M&S queue algorithm is known to be prone to scalability and
97     * overhead limitations when maintaining (via CAS) these head and
98     * tail pointers. This has led to the development of
99     * contention-reducing variants such as elimination arrays (see
100     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
101     * optimistic back pointers (see Ladan-Mozes & Shavit
102     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
103     * However, the nature of dual queues enables a simpler tactic for
104     * improving M&S-style implementations when dual-ness is needed.
105     *
106     * In a dual queue, each node must atomically maintain its match
107     * status. While there are other possible variants, we implement
108     * this here as: for a data-mode node, matching entails CASing an
109     * "item" field from a non-null data value to null upon match, and
110     * vice-versa for request nodes, CASing from null to a data
111     * value. (Note that the linearization properties of this style of
112     * queue are easy to verify -- elements are made available by
113     * linking, and unavailable by matching.) Compared to plain M&S
114     * queues, this property of dual queues requires one additional
115     * successful atomic operation per enq/deq pair. But it also
116     * enables lower cost variants of queue maintenance mechanics. (A
117     * variation of this idea applies even for non-dual queues that
118     * support deletion of interior elements, such as
119     * j.u.c.ConcurrentLinkedQueue.)
120     *
121     * Once a node is matched, its match status can never again
122     * change. We may thus arrange that the linked list of them
123     * contain a prefix of zero or more matched nodes, followed by a
124     * suffix of zero or more unmatched nodes. (Note that we allow
125     * both the prefix and suffix to be zero length, which in turn
126     * means that we do not use a dummy header.) If we were not
127     * concerned with either time or space efficiency, we could
128     * correctly perform enqueue and dequeue operations by traversing
129     * from a pointer to the initial node; CASing the item of the
130     * first unmatched node on match and CASing the next field of the
131     * trailing node on appends. (Plus some special-casing when
132     * initially empty). While this would be a terrible idea in
133     * itself, it does have the benefit of not requiring ANY atomic
134     * updates on head/tail fields.
135     *
136     * We introduce here an approach that lies between the extremes of
137     * never versus always updating queue (head and tail) pointers.
138     * This offers a tradeoff between sometimes requiring extra
139     * traversal steps to locate the first and/or last unmatched
140     * nodes, versus the reduced overhead and contention of fewer
141     * updates to queue pointers. For example, a possible snapshot of
142     * a queue is:
143     *
144     * head tail
145     * | |
146     * v v
147     * M -> M -> U -> U -> U -> U
148     *
149     * The best value for this "slack" (the targeted maximum distance
150     * between the value of "head" and the first unmatched node, and
151     * similarly for "tail") is an empirical matter. We have found
152     * that using very small constants in the range of 1-3 work best
153     * over a range of platforms. Larger values introduce increasing
154     * costs of cache misses and risks of long traversal chains, while
155     * smaller values increase CAS contention and overhead.
156     *
157     * Dual queues with slack differ from plain M&S dual queues by
158     * virtue of only sometimes updating head or tail pointers when
159     * matching, appending, or even traversing nodes; in order to
160     * maintain a targeted slack. The idea of "sometimes" may be
161     * operationalized in several ways. The simplest is to use a
162     * per-operation counter incremented on each traversal step, and
163     * to try (via CAS) to update the associated queue pointer
164     * whenever the count exceeds a threshold. Another, that requires
165     * more overhead, is to use random number generators to update
166     * with a given probability per traversal step.
167     *
168     * In any strategy along these lines, because CASes updating
169     * fields may fail, the actual slack may exceed targeted
170     * slack. However, they may be retried at any time to maintain
171     * targets. Even when using very small slack values, this
172     * approach works well for dual queues because it allows all
173     * operations up to the point of matching or appending an item
174     * (hence potentially allowing progress by another thread) to be
175     * read-only, thus not introducing any further contention. As
176     * described below, we implement this by performing slack
177     * maintenance retries only after these points.
178     *
179     * As an accompaniment to such techniques, traversal overhead can
180     * be further reduced without increasing contention of head
181     * pointer updates: Threads may sometimes shortcut the "next" link
182     * path from the current "head" node to be closer to the currently
183     * known first unmatched node, and similarly for tail. Again, this
184     * may be triggered with using thresholds or randomization.
185     *
186     * These ideas must be further extended to avoid unbounded amounts
187     * of costly-to-reclaim garbage caused by the sequential "next"
188     * links of nodes starting at old forgotten head nodes: As first
189     * described in detail by Boehm
190     * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
191     * delays noticing that any arbitrarily old node has become
192     * garbage, all newer dead nodes will also be unreclaimed.
193     * (Similar issues arise in non-GC environments.) To cope with
194     * this in our implementation, upon CASing to advance the head
195     * pointer, we set the "next" link of the previous head to point
196     * only to itself; thus limiting the length of connected dead lists.
197     * (We also take similar care to wipe out possibly garbage
198     * retaining values held in other Node fields.) However, doing so
199     * adds some further complexity to traversal: If any "next"
200     * pointer links to itself, it indicates that the current thread
201     * has lagged behind a head-update, and so the traversal must
202     * continue from the "head". Traversals trying to find the
203     * current tail starting from "tail" may also encounter
204     * self-links, in which case they also continue at "head".
205     *
206     * It is tempting in slack-based scheme to not even use CAS for
207     * updates (similarly to Ladan-Mozes & Shavit). However, this
208     * cannot be done for head updates under the above link-forgetting
209     * mechanics because an update may leave head at a detached node.
210     * And while direct writes are possible for tail updates, they
211     * increase the risk of long retraversals, and hence long garbage
212     * chains, which can be much more costly than is worthwhile
213     * considering that the cost difference of performing a CAS vs
214     * write is smaller when they are not triggered on each operation
215     * (especially considering that writes and CASes equally require
216     * additional GC bookkeeping ("write barriers") that are sometimes
217     * more costly than the writes themselves because of contention).
218     *
219     * *** Overview of implementation ***
220     *
221     * We use a threshold-based approach to updates, with a slack
222     * threshold of two -- that is, we update head/tail when the
223     * current pointer appears to be two or more steps away from the
224     * first/last node. The slack value is hard-wired: a path greater
225     * than one is naturally implemented by checking equality of
226     * traversal pointers except when the list has only one element,
227     * in which case we keep slack threshold at one. Avoiding tracking
228     * explicit counts across method calls slightly simplifies an
229     * already-messy implementation. Using randomization would
230     * probably work better if there were a low-quality dirt-cheap
231     * per-thread one available, but even ThreadLocalRandom is too
232     * heavy for these purposes.
233     *
234     * With such a small slack threshold value, it is not worthwhile
235     * to augment this with path short-circuiting (i.e., unsplicing
236     * interior nodes) except in the case of cancellation/removal (see
237     * below).
238     *
239     * We allow both the head and tail fields to be null before any
240     * nodes are enqueued; initializing upon first append. This
241     * simplifies some other logic, as well as providing more
242     * efficient explicit control paths instead of letting JVMs insert
243     * implicit NullPointerExceptions when they are null. While not
244     * currently fully implemented, we also leave open the possibility
245     * of re-nulling these fields when empty (which is complicated to
246     * arrange, for little benefit.)
247     *
248     * All enqueue/dequeue operations are handled by the single method
249     * "xfer" with parameters indicating whether to act as some form
250     * of offer, put, poll, take, or transfer (each possibly with
251     * timeout). The relative complexity of using one monolithic
252     * method outweighs the code bulk and maintenance problems of
253     * using separate methods for each case.
254     *
255     * Operation consists of up to three phases. The first is
256     * implemented within method xfer, the second in tryAppend, and
257     * the third in method awaitMatch.
258     *
259     * 1. Try to match an existing node
260     *
261     * Starting at head, skip already-matched nodes until finding
262     * an unmatched node of opposite mode, if one exists, in which
263     * case matching it and returning, also if necessary updating
264     * head to one past the matched node (or the node itself if the
265     * list has no other unmatched nodes). If the CAS misses, then
266     * a loop retries advancing head by two steps until either
267     * success or the slack is at most two. By requiring that each
268     * attempt advances head by two (if applicable), we ensure that
269     * the slack does not grow without bound. Traversals also check
270     * if the initial head is now off-list, in which case they
271     * start at the new head.
272     *
273     * If no candidates are found and the call was untimed
274     * poll/offer, (argument "how" is NOW) return.
275     *
276     * 2. Try to append a new node (method tryAppend)
277     *
278     * Starting at current tail pointer, find the actual last node
279     * and try to append a new node (or if head was null, establish
280     * the first node). Nodes can be appended only if their
281     * predecessors are either already matched or are of the same
282     * mode. If we detect otherwise, then a new node with opposite
283     * mode must have been appended during traversal, so we must
284     * restart at phase 1. The traversal and update steps are
285     * otherwise similar to phase 1: Retrying upon CAS misses and
286     * checking for staleness. In particular, if a self-link is
287     * encountered, then we can safely jump to a node on the list
288     * by continuing the traversal at current head.
289     *
290     * On successful append, if the call was ASYNC, return.
291     *
292     * 3. Await match or cancellation (method awaitMatch)
293     *
294     * Wait for another thread to match node; instead cancelling if
295     * the current thread was interrupted or the wait timed out. On
296     * multiprocessors, we use front-of-queue spinning: If a node
297     * appears to be the first unmatched node in the queue, it
298     * spins a bit before blocking. In either case, before blocking
299     * it tries to unsplice any nodes between the current "head"
300     * and the first unmatched node.
301     *
302     * Front-of-queue spinning vastly improves performance of
303     * heavily contended queues. And so long as it is relatively
304     * brief and "quiet", spinning does not much impact performance
305     * of less-contended queues. During spins threads check their
306     * interrupt status and generate a thread-local random number
307     * to decide to occasionally perform a Thread.yield. While
308     * yield has underdefined specs, we assume that it might help,
309     * and will not hurt, in limiting impact of spinning on busy
310     * systems. We also use smaller (1/2) spins for nodes that are
311     * not known to be front but whose predecessors have not
312     * blocked -- these "chained" spins avoid artifacts of
313     * front-of-queue rules which otherwise lead to alternating
314     * nodes spinning vs blocking. Further, front threads that
315     * represent phase changes (from data to request node or vice
316     * versa) compared to their predecessors receive additional
317     * chained spins, reflecting longer paths typically required to
318     * unblock threads during phase changes.
319     *
320     *
321     * ** Unlinking removed interior nodes **
322     *
323     * In addition to minimizing garbage retention via self-linking
324     * described above, we also unlink removed interior nodes. These
325     * may arise due to timed out or interrupted waits, or calls to
326     * remove(x) or Iterator.remove. Normally, given a node that was
327     * at one time known to be the predecessor of some node s that is
328     * to be removed, we can unsplice s by CASing the next field of
329     * its predecessor if it still points to s (otherwise s must
330     * already have been removed or is now offlist). But there are two
331     * situations in which we cannot guarantee to make node s
332     * unreachable in this way: (1) If s is the trailing node of list
333     * (i.e., with null next), then it is pinned as the target node
334     * for appends, so can only be removed later after other nodes are
335     * appended. (2) We cannot necessarily unlink s given a
336     * predecessor node that is matched (including the case of being
337     * cancelled): the predecessor may already be unspliced, in which
338     * case some previous reachable node may still point to s.
339     * (For further explanation see Herlihy & Shavit "The Art of
340     * Multiprocessor Programming" chapter 9). Although, in both
341     * cases, we can rule out the need for further action if either s
342     * or its predecessor are (or can be made to be) at, or fall off
343     * from, the head of list.
344     *
345     * Without taking these into account, it would be possible for an
346     * unbounded number of supposedly removed nodes to remain
347     * reachable. Situations leading to such buildup are uncommon but
348     * can occur in practice; for example when a series of short timed
349     * calls to poll repeatedly time out but never otherwise fall off
350     * the list because of an untimed call to take at the front of the
351     * queue.
352     *
353     * When these cases arise, rather than always retraversing the
354     * entire list to find an actual predecessor to unlink (which
355     * won't help for case (1) anyway), we record a conservative
356     * estimate of possible unsplice failures (in "sweepVotes").
357     * We trigger a full sweep when the estimate exceeds a threshold
358     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
359     * removal failures to tolerate before sweeping through, unlinking
360     * cancelled nodes that were not unlinked upon initial removal.
361     * We perform sweeps by the thread hitting threshold (rather than
362     * background threads or by spreading work to other threads)
363     * because in the main contexts in which removal occurs, the
364     * caller is already timed-out, cancelled, or performing a
365     * potentially O(n) operation (e.g. remove(x)), none of which are
366     * time-critical enough to warrant the overhead that alternatives
367     * would impose on other threads.
368     *
369     * Because the sweepVotes estimate is conservative, and because
370     * nodes become unlinked "naturally" as they fall off the head of
371     * the queue, and because we allow votes to accumulate even while
372     * sweeps are in progress, there are typically significantly fewer
373     * such nodes than estimated. Choice of a threshold value
374     * balances the likelihood of wasted effort and contention, versus
375     * providing a worst-case bound on retention of interior nodes in
376     * quiescent queues. The value defined below was chosen
377     * empirically to balance these under various timeout scenarios.
378     *
379     * Note that we cannot self-link unlinked interior nodes during
380     * sweeps. However, the associated garbage chains terminate when
381     * some successor ultimately falls off the head of the list and is
382     * self-linked.
383     */
384    
385     /** True if on multiprocessor */
386     private static final boolean MP =
387     Runtime.getRuntime().availableProcessors() > 1;
388    
389     /**
390     * The number of times to spin (with randomly interspersed calls
391     * to Thread.yield) on multiprocessor before blocking when a node
392     * is apparently the first waiter in the queue. See above for
393     * explanation. Must be a power of two. The value is empirically
394     * derived -- it works pretty well across a variety of processors,
395     * numbers of CPUs, and OSes.
396     */
397     private static final int FRONT_SPINS = 1 << 7;
398    
399     /**
400     * The number of times to spin before blocking when a node is
401     * preceded by another node that is apparently spinning. Also
402     * serves as an increment to FRONT_SPINS on phase changes, and as
403     * base average frequency for yielding during spins. Must be a
404     * power of two.
405     */
406     private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
407    
408     /**
409     * The maximum number of estimated removal failures (sweepVotes)
410     * to tolerate before sweeping through the queue unlinking
411     * cancelled nodes that were not unlinked upon initial
412     * removal. See above for explanation. The value must be at least
413     * two to avoid useless sweeps when removing trailing nodes.
414     */
415     static final int SWEEP_THRESHOLD = 32;
416    
417     /**
418     * Queue nodes. Uses Object, not E, for items to allow forgetting
419     * them after use. Relies heavily on Unsafe mechanics to minimize
420     * unnecessary ordering constraints: Writes that are intrinsically
421     * ordered wrt other accesses or CASes use simple relaxed forms.
422     */
423     static final class Node {
424     final boolean isData; // false if this is a request node
425     volatile Object item; // initially non-null if isData; CASed to match
426     volatile Node next;
427     volatile Thread waiter; // null until waiting
428    
429     // CAS methods for fields
430     final boolean casNext(Node cmp, Node val) {
431     return U.compareAndSwapObject(this, NEXT, cmp, val);
432     }
433    
434     final boolean casItem(Object cmp, Object val) {
435     // assert cmp == null || cmp.getClass() != Node.class;
436     return U.compareAndSwapObject(this, ITEM, cmp, val);
437     }
438    
439     /**
440     * Constructs a new node. Uses relaxed write because item can
441     * only be seen after publication via casNext.
442     */
443     Node(Object item, boolean isData) {
444     U.putObject(this, ITEM, item); // relaxed write
445     this.isData = isData;
446     }
447    
448     /**
449     * Links node to itself to avoid garbage retention. Called
450     * only after CASing head field, so uses relaxed write.
451     */
452     final void forgetNext() {
453     U.putObject(this, NEXT, this);
454     }
455    
456     /**
457     * Sets item to self and waiter to null, to avoid garbage
458     * retention after matching or cancelling. Uses relaxed writes
459     * because order is already constrained in the only calling
460     * contexts: item is forgotten only after volatile/atomic
461     * mechanics that extract items. Similarly, clearing waiter
462     * follows either CAS or return from park (if ever parked;
463     * else we don't care).
464     */
465     final void forgetContents() {
466     U.putObject(this, ITEM, this);
467     U.putObject(this, WAITER, null);
468     }
469    
470     /**
471     * Returns true if this node has been matched, including the
472     * case of artificial matches due to cancellation.
473     */
474     final boolean isMatched() {
475     Object x = item;
476     return (x == this) || ((x == null) == isData);
477     }
478    
479     /**
480     * Returns true if this is an unmatched request node.
481     */
482     final boolean isUnmatchedRequest() {
483     return !isData && item == null;
484     }
485    
486     /**
487     * Returns true if a node with the given mode cannot be
488     * appended to this node because this node is unmatched and
489     * has opposite data mode.
490     */
491     final boolean cannotPrecede(boolean haveData) {
492     boolean d = isData;
493     Object x;
494     return d != haveData && (x = item) != this && (x != null) == d;
495     }
496    
497     /**
498     * Tries to artificially match a data node -- used by remove.
499     */
500     final boolean tryMatchData() {
501     // assert isData;
502     Object x = item;
503     if (x != null && x != this && casItem(x, null)) {
504     LockSupport.unpark(waiter);
505     return true;
506     }
507     return false;
508     }
509    
510     private static final long serialVersionUID = -3375979862319811754L;
511    
512     // Unsafe mechanics
513     private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
514     private static final long ITEM;
515     private static final long NEXT;
516     private static final long WAITER;
517     static {
518     try {
519     ITEM = U.objectFieldOffset
520     (Node.class.getDeclaredField("item"));
521     NEXT = U.objectFieldOffset
522     (Node.class.getDeclaredField("next"));
523     WAITER = U.objectFieldOffset
524     (Node.class.getDeclaredField("waiter"));
525     } catch (ReflectiveOperationException e) {
526     throw new Error(e);
527     }
528     }
529     }
530    
531     /** head of the queue; null until first enqueue */
532     transient volatile Node head;
533    
534     /** tail of the queue; null until first append */
535     private transient volatile Node tail;
536    
537     /** The number of apparent failures to unsplice removed nodes */
538     private transient volatile int sweepVotes;
539    
540     // CAS methods for fields
541     private boolean casTail(Node cmp, Node val) {
542     return U.compareAndSwapObject(this, TAIL, cmp, val);
543     }
544    
545     private boolean casHead(Node cmp, Node val) {
546     return U.compareAndSwapObject(this, HEAD, cmp, val);
547     }
548    
549     private boolean casSweepVotes(int cmp, int val) {
550     return U.compareAndSwapInt(this, SWEEPVOTES, cmp, val);
551     }
552    
553 jsr166 1.3 /**
554     * Tries to CAS pred.next (or head, if pred is null) from c to p.
555     * Caller must ensure that we're not unlinking the trailing node.
556     */
557     private boolean tryCasSuccessor(Node pred, Node c, Node p) {
558     // assert p != null;
559     // assert c != p;
560     if (pred != null)
561     return pred.casNext(c, p);
562     if (casHead(c, p)) {
563     c.forgetNext();
564     return true;
565     }
566     return false;
567     }
568    
569 jsr166 1.1 /*
570     * Possible values for "how" argument in xfer method.
571     */
572     private static final int NOW = 0; // for untimed poll, tryTransfer
573     private static final int ASYNC = 1; // for offer, put, add
574     private static final int SYNC = 2; // for transfer, take
575     private static final int TIMED = 3; // for timed poll, tryTransfer
576    
577     /**
578     * Implements all queuing methods. See above for explanation.
579     *
580     * @param e the item or null for take
581     * @param haveData true if this is a put, else a take
582     * @param how NOW, ASYNC, SYNC, or TIMED
583     * @param nanos timeout in nanosecs, used only if mode is TIMED
584     * @return an item if matched, else e
585     * @throws NullPointerException if haveData mode but e is null
586     */
587     private E xfer(E e, boolean haveData, int how, long nanos) {
588     if (haveData && (e == null))
589     throw new NullPointerException();
590     Node s = null; // the node to append, if needed
591    
592     retry:
593     for (;;) { // restart on append race
594    
595     for (Node h = head, p = h; p != null;) { // find & match first node
596     boolean isData = p.isData;
597     Object item = p.item;
598     if (item != p && (item != null) == isData) { // unmatched
599     if (isData == haveData) // can't match
600     break;
601     if (p.casItem(item, e)) { // match
602     for (Node q = p; q != h;) {
603     Node n = q.next; // update by 2 unless singleton
604     if (head == h && casHead(h, n == null ? q : n)) {
605     h.forgetNext();
606     break;
607     } // advance and retry
608     if ((h = head) == null ||
609     (q = h.next) == null || !q.isMatched())
610     break; // unless slack < 2
611     }
612     LockSupport.unpark(p.waiter);
613     @SuppressWarnings("unchecked") E itemE = (E) item;
614     return itemE;
615     }
616     }
617     Node n = p.next;
618     p = (p != n) ? n : (h = head); // Use head if p offlist
619     }
620    
621     if (how != NOW) { // No matches available
622     if (s == null)
623     s = new Node(e, haveData);
624     Node pred = tryAppend(s, haveData);
625     if (pred == null)
626     continue retry; // lost race vs opposite mode
627     if (how != ASYNC)
628     return awaitMatch(s, pred, e, (how == TIMED), nanos);
629     }
630     return e; // not waiting
631     }
632     }
633    
634     /**
635     * Tries to append node s as tail.
636     *
637     * @param s the node to append
638     * @param haveData true if appending in data mode
639     * @return null on failure due to losing race with append in
640     * different mode, else s's predecessor, or s itself if no
641     * predecessor
642     */
643     private Node tryAppend(Node s, boolean haveData) {
644     for (Node t = tail, p = t;;) { // move p to last node and append
645     Node n, u; // temps for reads of next & tail
646     if (p == null && (p = head) == null) {
647     if (casHead(null, s))
648     return s; // initialize
649     }
650     else if (p.cannotPrecede(haveData))
651     return null; // lost race vs opposite mode
652     else if ((n = p.next) != null) // not last; keep traversing
653     p = p != t && t != (u = tail) ? (t = u) : // stale tail
654     (p != n) ? n : null; // restart if off list
655     else if (!p.casNext(null, s))
656     p = p.next; // re-read on CAS failure
657     else {
658     if (p != t) { // update if slack now >= 2
659     while ((tail != t || !casTail(t, s)) &&
660     (t = tail) != null &&
661     (s = t.next) != null && // advance and retry
662     (s = s.next) != null && s != t);
663     }
664     return p;
665     }
666     }
667     }
668    
669     /**
670     * Spins/yields/blocks until node s is matched or caller gives up.
671     *
672     * @param s the waiting node
673     * @param pred the predecessor of s, or s itself if it has no
674     * predecessor, or null if unknown (the null case does not occur
675     * in any current calls but may in possible future extensions)
676     * @param e the comparison value for checking match
677     * @param timed if true, wait only until timeout elapses
678     * @param nanos timeout in nanosecs, used only if timed is true
679     * @return matched item, or e if unmatched on interrupt or timeout
680     */
681     private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
682     final long deadline = timed ? System.nanoTime() + nanos : 0L;
683     Thread w = Thread.currentThread();
684     int spins = -1; // initialized after first item and cancel checks
685     ThreadLocalRandom randomYields = null; // bound if needed
686    
687     for (;;) {
688     Object item = s.item;
689     if (item != e) { // matched
690     // assert item != s;
691     s.forgetContents(); // avoid garbage
692     @SuppressWarnings("unchecked") E itemE = (E) item;
693     return itemE;
694     }
695     else if (w.isInterrupted() || (timed && nanos <= 0L)) {
696     unsplice(pred, s); // try to unlink and cancel
697     if (s.casItem(e, s)) // return normally if lost CAS
698     return e;
699     }
700     else if (spins < 0) { // establish spins at/near front
701     if ((spins = spinsFor(pred, s.isData)) > 0)
702     randomYields = ThreadLocalRandom.current();
703     }
704     else if (spins > 0) { // spin
705     --spins;
706     if (randomYields.nextInt(CHAINED_SPINS) == 0)
707     Thread.yield(); // occasionally yield
708     }
709     else if (s.waiter == null) {
710     s.waiter = w; // request unpark then recheck
711     }
712     else if (timed) {
713     nanos = deadline - System.nanoTime();
714     if (nanos > 0L)
715     LockSupport.parkNanos(this, nanos);
716     }
717     else {
718     LockSupport.park(this);
719     }
720     }
721     }
722    
723     /**
724     * Returns spin/yield value for a node with given predecessor and
725     * data mode. See above for explanation.
726     */
727     private static int spinsFor(Node pred, boolean haveData) {
728     if (MP && pred != null) {
729     if (pred.isData != haveData) // phase change
730     return FRONT_SPINS + CHAINED_SPINS;
731     if (pred.isMatched()) // probably at front
732     return FRONT_SPINS;
733     if (pred.waiter == null) // pred apparently spinning
734     return CHAINED_SPINS;
735     }
736     return 0;
737     }
738    
739     /* -------------- Traversal methods -------------- */
740    
741     /**
742     * Returns the successor of p, or the head node if p.next has been
743     * linked to self, which will only be true if traversing with a
744     * stale pointer that is now off the list.
745     */
746     final Node succ(Node p) {
747     Node next = p.next;
748     return (p == next) ? head : next;
749     }
750    
751     /**
752     * Returns the first unmatched data node, or null if none.
753     * Callers must recheck if the returned node's item field is null
754     * or self-linked before using.
755     */
756     final Node firstDataNode() {
757     restartFromHead: for (;;) {
758     for (Node p = head; p != null;) {
759     Object item = p.item;
760     if (p.isData) {
761     if (item != null && item != p)
762     return p;
763     }
764     else if (item == null)
765     break;
766     if (p == (p = p.next))
767     continue restartFromHead;
768     }
769     return null;
770     }
771     }
772    
773     /**
774     * Traverses and counts unmatched nodes of the given mode.
775     * Used by methods size and getWaitingConsumerCount.
776     */
777     private int countOfMode(boolean data) {
778     restartFromHead: for (;;) {
779     int count = 0;
780     for (Node p = head; p != null;) {
781     if (!p.isMatched()) {
782     if (p.isData != data)
783     return 0;
784     if (++count == Integer.MAX_VALUE)
785     break; // @see Collection.size()
786     }
787     if (p == (p = p.next))
788     continue restartFromHead;
789     }
790     return count;
791     }
792     }
793    
794     public String toString() {
795     String[] a = null;
796     restartFromHead: for (;;) {
797     int charLength = 0;
798     int size = 0;
799     for (Node p = head; p != null;) {
800     Object item = p.item;
801     if (p.isData) {
802     if (item != null && item != p) {
803     if (a == null)
804     a = new String[4];
805     else if (size == a.length)
806     a = Arrays.copyOf(a, 2 * size);
807     String s = item.toString();
808     a[size++] = s;
809     charLength += s.length();
810     }
811     } else if (item == null)
812     break;
813     if (p == (p = p.next))
814     continue restartFromHead;
815     }
816    
817     if (size == 0)
818     return "[]";
819    
820     return Helpers.toString(a, size, charLength);
821     }
822     }
823    
824     private Object[] toArrayInternal(Object[] a) {
825     Object[] x = a;
826     restartFromHead: for (;;) {
827     int size = 0;
828     for (Node p = head; p != null;) {
829     Object item = p.item;
830     if (p.isData) {
831     if (item != null && item != p) {
832     if (x == null)
833     x = new Object[4];
834     else if (size == x.length)
835     x = Arrays.copyOf(x, 2 * (size + 4));
836     x[size++] = item;
837     }
838     } else if (item == null)
839     break;
840     if (p == (p = p.next))
841     continue restartFromHead;
842     }
843     if (x == null)
844     return new Object[0];
845     else if (a != null && size <= a.length) {
846     if (a != x)
847     System.arraycopy(x, 0, a, 0, size);
848     if (size < a.length)
849     a[size] = null;
850     return a;
851     }
852     return (size == x.length) ? x : Arrays.copyOf(x, size);
853     }
854     }
855    
856     /**
857     * Returns an array containing all of the elements in this queue, in
858     * proper sequence.
859     *
860     * <p>The returned array will be "safe" in that no references to it are
861     * maintained by this queue. (In other words, this method must allocate
862     * a new array). The caller is thus free to modify the returned array.
863     *
864     * <p>This method acts as bridge between array-based and collection-based
865     * APIs.
866     *
867     * @return an array containing all of the elements in this queue
868     */
869     public Object[] toArray() {
870     return toArrayInternal(null);
871     }
872    
873     /**
874     * Returns an array containing all of the elements in this queue, in
875     * proper sequence; the runtime type of the returned array is that of
876     * the specified array. If the queue fits in the specified array, it
877     * is returned therein. Otherwise, a new array is allocated with the
878     * runtime type of the specified array and the size of this queue.
879     *
880     * <p>If this queue fits in the specified array with room to spare
881     * (i.e., the array has more elements than this queue), the element in
882     * the array immediately following the end of the queue is set to
883     * {@code null}.
884     *
885     * <p>Like the {@link #toArray()} method, this method acts as bridge between
886     * array-based and collection-based APIs. Further, this method allows
887     * precise control over the runtime type of the output array, and may,
888     * under certain circumstances, be used to save allocation costs.
889     *
890     * <p>Suppose {@code x} is a queue known to contain only strings.
891     * The following code can be used to dump the queue into a newly
892     * allocated array of {@code String}:
893     *
894     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
895     *
896     * Note that {@code toArray(new Object[0])} is identical in function to
897     * {@code toArray()}.
898     *
899     * @param a the array into which the elements of the queue are to
900     * be stored, if it is big enough; otherwise, a new array of the
901     * same runtime type is allocated for this purpose
902     * @return an array containing all of the elements in this queue
903     * @throws ArrayStoreException if the runtime type of the specified array
904     * is not a supertype of the runtime type of every element in
905     * this queue
906     * @throws NullPointerException if the specified array is null
907     */
908     @SuppressWarnings("unchecked")
909     public <T> T[] toArray(T[] a) {
910     if (a == null) throw new NullPointerException();
911     return (T[]) toArrayInternal(a);
912     }
913    
914     final class Itr implements Iterator<E> {
915     private Node nextNode; // next node to return item for
916     private E nextItem; // the corresponding item
917     private Node lastRet; // last returned node, to support remove
918     private Node lastPred; // predecessor to unlink lastRet
919    
920     /**
921     * Moves to next node after prev, or first node if prev null.
922     */
923     private void advance(Node prev) {
924     /*
925     * To track and avoid buildup of deleted nodes in the face
926     * of calls to both Queue.remove and Itr.remove, we must
927     * include variants of unsplice and sweep upon each
928     * advance: Upon Itr.remove, we may need to catch up links
929     * from lastPred, and upon other removes, we might need to
930     * skip ahead from stale nodes and unsplice deleted ones
931     * found while advancing.
932     */
933    
934     Node r, b; // reset lastPred upon possible deletion of lastRet
935     if ((r = lastRet) != null && !r.isMatched())
936     lastPred = r; // next lastPred is old lastRet
937     else if ((b = lastPred) == null || b.isMatched())
938     lastPred = null; // at start of list
939     else {
940     Node s, n; // help with removal of lastPred.next
941     while ((s = b.next) != null &&
942     s != b && s.isMatched() &&
943     (n = s.next) != null && n != s)
944     b.casNext(s, n);
945     }
946    
947     this.lastRet = prev;
948    
949     for (Node p = prev, s, n;;) {
950     s = (p == null) ? head : p.next;
951     if (s == null)
952     break;
953     else if (s == p) {
954     p = null;
955     continue;
956     }
957     Object item = s.item;
958     if (s.isData) {
959     if (item != null && item != s) {
960     @SuppressWarnings("unchecked") E itemE = (E) item;
961     nextItem = itemE;
962     nextNode = s;
963     return;
964     }
965     }
966     else if (item == null)
967     break;
968     // assert s.isMatched();
969     if (p == null)
970     p = s;
971     else if ((n = s.next) == null)
972     break;
973     else if (s == n)
974     p = null;
975     else
976     p.casNext(s, n);
977     }
978     nextNode = null;
979     nextItem = null;
980     }
981    
982     Itr() {
983     advance(null);
984     }
985    
986     public final boolean hasNext() {
987     return nextNode != null;
988     }
989    
990     public final E next() {
991     Node p = nextNode;
992     if (p == null) throw new NoSuchElementException();
993     E e = nextItem;
994     advance(p);
995     return e;
996     }
997    
998     public final void remove() {
999     final Node lastRet = this.lastRet;
1000     if (lastRet == null)
1001     throw new IllegalStateException();
1002     this.lastRet = null;
1003     if (lastRet.tryMatchData())
1004     unsplice(lastPred, lastRet);
1005     }
1006     }
1007    
1008     /** A customized variant of Spliterators.IteratorSpliterator */
1009 jsr166 1.3 final class LTQSpliterator implements Spliterator<E> {
1010 jsr166 1.1 static final int MAX_BATCH = 1 << 25; // max batch array size;
1011     Node current; // current node; null until initialized
1012     int batch; // batch size for splits
1013     boolean exhausted; // true when no more nodes
1014     LTQSpliterator() {}
1015    
1016     public Spliterator<E> trySplit() {
1017 jsr166 1.3 Node p, q;
1018     if ((p = current()) == null || (q = p.next) == null)
1019     return null;
1020     int i = 0, n = batch = Math.min(batch + 1, MAX_BATCH);
1021     Object[] a = null;
1022     do {
1023     final Object item = p.item;
1024     if (p.isData) {
1025     if (item != null)
1026     ((a != null) ? a : (a = new Object[n]))[i++] = item;
1027     } else if (item == null) {
1028     p = null;
1029     break;
1030 jsr166 1.1 }
1031 jsr166 1.3 if (p == (p = q))
1032     p = firstDataNode();
1033     } while (p != null && (q = p.next) != null && i < n);
1034     setCurrent(p);
1035     return (i == 0) ? null :
1036     Spliterators.spliterator(a, 0, i, (Spliterator.ORDERED |
1037     Spliterator.NONNULL |
1038     Spliterator.CONCURRENT));
1039 jsr166 1.1 }
1040    
1041     public void forEachRemaining(Consumer<? super E> action) {
1042 jsr166 1.3 Objects.requireNonNull(action);
1043     final Node p;
1044     if ((p = current()) != null) {
1045     current = null;
1046 jsr166 1.1 exhausted = true;
1047 jsr166 1.3 forEachFrom(action, p);
1048 jsr166 1.1 }
1049     }
1050    
1051     @SuppressWarnings("unchecked")
1052     public boolean tryAdvance(Consumer<? super E> action) {
1053 jsr166 1.3 Objects.requireNonNull(action);
1054 jsr166 1.1 Node p;
1055 jsr166 1.3 if ((p = current()) != null) {
1056     E e = null;
1057 jsr166 1.1 do {
1058 jsr166 1.3 final Object item = p.item;
1059     final boolean isData = p.isData;
1060 jsr166 1.1 if (p == (p = p.next))
1061 jsr166 1.3 p = head;
1062     if (isData) {
1063     if (item != null) {
1064     e = (E) item;
1065     break;
1066     }
1067     }
1068     else if (item == null)
1069     p = null;
1070     } while (p != null);
1071     setCurrent(p);
1072 jsr166 1.1 if (e != null) {
1073 jsr166 1.3 action.accept(e);
1074 jsr166 1.1 return true;
1075     }
1076     }
1077     return false;
1078     }
1079    
1080 jsr166 1.3 private void setCurrent(Node p) {
1081     if ((current = p) == null)
1082     exhausted = true;
1083     }
1084    
1085     private Node current() {
1086     Node p;
1087     if ((p = current) == null && !exhausted)
1088     setCurrent(p = firstDataNode());
1089     return p;
1090     }
1091    
1092 jsr166 1.1 public long estimateSize() { return Long.MAX_VALUE; }
1093    
1094     public int characteristics() {
1095 jsr166 1.3 return (Spliterator.ORDERED |
1096     Spliterator.NONNULL |
1097     Spliterator.CONCURRENT);
1098 jsr166 1.1 }
1099     }
1100    
1101     /**
1102     * Returns a {@link Spliterator} over the elements in this queue.
1103     *
1104     * <p>The returned spliterator is
1105     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1106     *
1107     * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1108     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1109     *
1110     * @implNote
1111     * The {@code Spliterator} implements {@code trySplit} to permit limited
1112     * parallelism.
1113     *
1114     * @return a {@code Spliterator} over the elements in this queue
1115     * @since 1.8
1116     */
1117     public Spliterator<E> spliterator() {
1118 jsr166 1.3 return new LTQSpliterator();
1119 jsr166 1.1 }
1120    
1121     /* -------------- Removal methods -------------- */
1122    
1123     /**
1124     * Unsplices (now or later) the given deleted/cancelled node with
1125     * the given predecessor.
1126     *
1127     * @param pred a node that was at one time known to be the
1128     * predecessor of s, or null or s itself if s is/was at head
1129     * @param s the node to be unspliced
1130     */
1131     final void unsplice(Node pred, Node s) {
1132     s.waiter = null; // disable signals
1133     /*
1134     * See above for rationale. Briefly: if pred still points to
1135     * s, try to unlink s. If s cannot be unlinked, because it is
1136     * trailing node or pred might be unlinked, and neither pred
1137     * nor s are head or offlist, add to sweepVotes, and if enough
1138     * votes have accumulated, sweep.
1139     */
1140     if (pred != null && pred != s && pred.next == s) {
1141     Node n = s.next;
1142     if (n == null ||
1143     (n != s && pred.casNext(s, n) && pred.isMatched())) {
1144     for (;;) { // check if at, or could be, head
1145     Node h = head;
1146     if (h == pred || h == s || h == null)
1147     return; // at head or list empty
1148     if (!h.isMatched())
1149     break;
1150     Node hn = h.next;
1151     if (hn == null)
1152     return; // now empty
1153     if (hn != h && casHead(h, hn))
1154     h.forgetNext(); // advance head
1155     }
1156     if (pred.next != pred && s.next != s) { // recheck if offlist
1157     for (;;) { // sweep now if enough votes
1158     int v = sweepVotes;
1159     if (v < SWEEP_THRESHOLD) {
1160     if (casSweepVotes(v, v + 1))
1161     break;
1162     }
1163     else if (casSweepVotes(v, 0)) {
1164     sweep();
1165     break;
1166     }
1167     }
1168     }
1169     }
1170     }
1171     }
1172    
1173     /**
1174     * Unlinks matched (typically cancelled) nodes encountered in a
1175     * traversal from head.
1176     */
1177     private void sweep() {
1178     for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1179     if (!s.isMatched())
1180     // Unmatched nodes are never self-linked
1181     p = s;
1182     else if ((n = s.next) == null) // trailing node is pinned
1183     break;
1184     else if (s == n) // stale
1185     // No need to also check for p == s, since that implies s == n
1186     p = head;
1187     else
1188     p.casNext(s, n);
1189     }
1190     }
1191    
1192     /**
1193     * Main implementation of remove(Object)
1194     */
1195     private boolean findAndRemove(Object e) {
1196     if (e != null) {
1197     for (Node pred = null, p = head; p != null; ) {
1198     Object item = p.item;
1199     if (p.isData) {
1200     if (item != null && item != p && e.equals(item) &&
1201     p.tryMatchData()) {
1202     unsplice(pred, p);
1203     return true;
1204     }
1205     }
1206     else if (item == null)
1207     break;
1208     pred = p;
1209     if ((p = p.next) == pred) { // stale
1210     pred = null;
1211     p = head;
1212     }
1213     }
1214     }
1215     return false;
1216     }
1217    
1218     /**
1219     * Creates an initially empty {@code LinkedTransferQueue}.
1220     */
1221     public LinkedTransferQueue() {
1222     }
1223    
1224     /**
1225     * Creates a {@code LinkedTransferQueue}
1226     * initially containing the elements of the given collection,
1227     * added in traversal order of the collection's iterator.
1228     *
1229     * @param c the collection of elements to initially contain
1230     * @throws NullPointerException if the specified collection or any
1231     * of its elements are null
1232     */
1233     public LinkedTransferQueue(Collection<? extends E> c) {
1234     this();
1235     addAll(c);
1236     }
1237    
1238     /**
1239     * Inserts the specified element at the tail of this queue.
1240     * As the queue is unbounded, this method will never block.
1241     *
1242     * @throws NullPointerException if the specified element is null
1243     */
1244     public void put(E e) {
1245     xfer(e, true, ASYNC, 0);
1246     }
1247    
1248     /**
1249     * Inserts the specified element at the tail of this queue.
1250     * As the queue is unbounded, this method will never block or
1251     * return {@code false}.
1252     *
1253     * @return {@code true} (as specified by
1254     * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1255     * BlockingQueue.offer})
1256     * @throws NullPointerException if the specified element is null
1257     */
1258     public boolean offer(E e, long timeout, TimeUnit unit) {
1259     xfer(e, true, ASYNC, 0);
1260     return true;
1261     }
1262    
1263     /**
1264     * Inserts the specified element at the tail of this queue.
1265     * As the queue is unbounded, this method will never return {@code false}.
1266     *
1267     * @return {@code true} (as specified by {@link Queue#offer})
1268     * @throws NullPointerException if the specified element is null
1269     */
1270     public boolean offer(E e) {
1271     xfer(e, true, ASYNC, 0);
1272     return true;
1273     }
1274    
1275     /**
1276     * Inserts the specified element at the tail of this queue.
1277     * As the queue is unbounded, this method will never throw
1278     * {@link IllegalStateException} or return {@code false}.
1279     *
1280     * @return {@code true} (as specified by {@link Collection#add})
1281     * @throws NullPointerException if the specified element is null
1282     */
1283     public boolean add(E e) {
1284     xfer(e, true, ASYNC, 0);
1285     return true;
1286     }
1287    
1288     /**
1289     * Transfers the element to a waiting consumer immediately, if possible.
1290     *
1291     * <p>More precisely, transfers the specified element immediately
1292     * if there exists a consumer already waiting to receive it (in
1293     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1294     * otherwise returning {@code false} without enqueuing the element.
1295     *
1296     * @throws NullPointerException if the specified element is null
1297     */
1298     public boolean tryTransfer(E e) {
1299     return xfer(e, true, NOW, 0) == null;
1300     }
1301    
1302     /**
1303     * Transfers the element to a consumer, waiting if necessary to do so.
1304     *
1305     * <p>More precisely, transfers the specified element immediately
1306     * if there exists a consumer already waiting to receive it (in
1307     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1308     * else inserts the specified element at the tail of this queue
1309     * and waits until the element is received by a consumer.
1310     *
1311     * @throws NullPointerException if the specified element is null
1312     */
1313     public void transfer(E e) throws InterruptedException {
1314     if (xfer(e, true, SYNC, 0) != null) {
1315     Thread.interrupted(); // failure possible only due to interrupt
1316     throw new InterruptedException();
1317     }
1318     }
1319    
1320     /**
1321     * Transfers the element to a consumer if it is possible to do so
1322     * before the timeout elapses.
1323     *
1324     * <p>More precisely, transfers the specified element immediately
1325     * if there exists a consumer already waiting to receive it (in
1326     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1327     * else inserts the specified element at the tail of this queue
1328     * and waits until the element is received by a consumer,
1329     * returning {@code false} if the specified wait time elapses
1330     * before the element can be transferred.
1331     *
1332     * @throws NullPointerException if the specified element is null
1333     */
1334     public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1335     throws InterruptedException {
1336     if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1337     return true;
1338     if (!Thread.interrupted())
1339     return false;
1340     throw new InterruptedException();
1341     }
1342    
1343     public E take() throws InterruptedException {
1344     E e = xfer(null, false, SYNC, 0);
1345     if (e != null)
1346     return e;
1347     Thread.interrupted();
1348     throw new InterruptedException();
1349     }
1350    
1351     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1352     E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1353     if (e != null || !Thread.interrupted())
1354     return e;
1355     throw new InterruptedException();
1356     }
1357    
1358     public E poll() {
1359     return xfer(null, false, NOW, 0);
1360     }
1361    
1362     /**
1363     * @throws NullPointerException {@inheritDoc}
1364     * @throws IllegalArgumentException {@inheritDoc}
1365     */
1366     public int drainTo(Collection<? super E> c) {
1367     if (c == null)
1368     throw new NullPointerException();
1369     if (c == this)
1370     throw new IllegalArgumentException();
1371     int n = 0;
1372     for (E e; (e = poll()) != null;) {
1373     c.add(e);
1374     ++n;
1375     }
1376     return n;
1377     }
1378    
1379     /**
1380     * @throws NullPointerException {@inheritDoc}
1381     * @throws IllegalArgumentException {@inheritDoc}
1382     */
1383     public int drainTo(Collection<? super E> c, int maxElements) {
1384     if (c == null)
1385     throw new NullPointerException();
1386     if (c == this)
1387     throw new IllegalArgumentException();
1388     int n = 0;
1389     for (E e; n < maxElements && (e = poll()) != null;) {
1390     c.add(e);
1391     ++n;
1392     }
1393     return n;
1394     }
1395    
1396     /**
1397     * Returns an iterator over the elements in this queue in proper sequence.
1398     * The elements will be returned in order from first (head) to last (tail).
1399     *
1400     * <p>The returned iterator is
1401     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1402     *
1403     * @return an iterator over the elements in this queue in proper sequence
1404     */
1405     public Iterator<E> iterator() {
1406     return new Itr();
1407     }
1408    
1409     public E peek() {
1410     restartFromHead: for (;;) {
1411     for (Node p = head; p != null;) {
1412     Object item = p.item;
1413     if (p.isData) {
1414     if (item != null && item != p) {
1415     @SuppressWarnings("unchecked") E e = (E) item;
1416     return e;
1417     }
1418     }
1419     else if (item == null)
1420     break;
1421     if (p == (p = p.next))
1422     continue restartFromHead;
1423     }
1424     return null;
1425     }
1426     }
1427    
1428     /**
1429     * Returns {@code true} if this queue contains no elements.
1430     *
1431     * @return {@code true} if this queue contains no elements
1432     */
1433     public boolean isEmpty() {
1434     return firstDataNode() == null;
1435     }
1436    
1437     public boolean hasWaitingConsumer() {
1438     restartFromHead: for (;;) {
1439     for (Node p = head; p != null;) {
1440     Object item = p.item;
1441     if (p.isData) {
1442     if (item != null && item != p)
1443     break;
1444     }
1445     else if (item == null)
1446     return true;
1447     if (p == (p = p.next))
1448     continue restartFromHead;
1449     }
1450     return false;
1451     }
1452     }
1453    
1454     /**
1455     * Returns the number of elements in this queue. If this queue
1456     * contains more than {@code Integer.MAX_VALUE} elements, returns
1457     * {@code Integer.MAX_VALUE}.
1458     *
1459     * <p>Beware that, unlike in most collections, this method is
1460     * <em>NOT</em> a constant-time operation. Because of the
1461     * asynchronous nature of these queues, determining the current
1462     * number of elements requires an O(n) traversal.
1463     *
1464     * @return the number of elements in this queue
1465     */
1466     public int size() {
1467     return countOfMode(true);
1468     }
1469    
1470     public int getWaitingConsumerCount() {
1471     return countOfMode(false);
1472     }
1473    
1474     /**
1475     * Removes a single instance of the specified element from this queue,
1476     * if it is present. More formally, removes an element {@code e} such
1477     * that {@code o.equals(e)}, if this queue contains one or more such
1478     * elements.
1479     * Returns {@code true} if this queue contained the specified element
1480     * (or equivalently, if this queue changed as a result of the call).
1481     *
1482     * @param o element to be removed from this queue, if present
1483     * @return {@code true} if this queue changed as a result of the call
1484     */
1485     public boolean remove(Object o) {
1486     return findAndRemove(o);
1487     }
1488    
1489     /**
1490     * Returns {@code true} if this queue contains the specified element.
1491     * More formally, returns {@code true} if and only if this queue contains
1492     * at least one element {@code e} such that {@code o.equals(e)}.
1493     *
1494     * @param o object to be checked for containment in this queue
1495     * @return {@code true} if this queue contains the specified element
1496     */
1497     public boolean contains(Object o) {
1498     if (o != null) {
1499     for (Node p = head; p != null; p = succ(p)) {
1500     Object item = p.item;
1501     if (p.isData) {
1502     if (item != null && item != p && o.equals(item))
1503     return true;
1504     }
1505     else if (item == null)
1506     break;
1507     }
1508     }
1509     return false;
1510     }
1511    
1512     /**
1513     * Always returns {@code Integer.MAX_VALUE} because a
1514     * {@code LinkedTransferQueue} is not capacity constrained.
1515     *
1516     * @return {@code Integer.MAX_VALUE} (as specified by
1517     * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1518     * BlockingQueue.remainingCapacity})
1519     */
1520     public int remainingCapacity() {
1521     return Integer.MAX_VALUE;
1522     }
1523    
1524     /**
1525     * Saves this queue to a stream (that is, serializes it).
1526     *
1527     * @param s the stream
1528     * @throws java.io.IOException if an I/O error occurs
1529     * @serialData All of the elements (each an {@code E}) in
1530     * the proper order, followed by a null
1531     */
1532     private void writeObject(java.io.ObjectOutputStream s)
1533     throws java.io.IOException {
1534     s.defaultWriteObject();
1535     for (E e : this)
1536     s.writeObject(e);
1537     // Use trailing null as sentinel
1538     s.writeObject(null);
1539     }
1540    
1541     /**
1542     * Reconstitutes this queue from a stream (that is, deserializes it).
1543     * @param s the stream
1544     * @throws ClassNotFoundException if the class of a serialized object
1545     * could not be found
1546     * @throws java.io.IOException if an I/O error occurs
1547     */
1548     private void readObject(java.io.ObjectInputStream s)
1549     throws java.io.IOException, ClassNotFoundException {
1550     s.defaultReadObject();
1551     for (;;) {
1552     @SuppressWarnings("unchecked")
1553     E item = (E) s.readObject();
1554     if (item == null)
1555     break;
1556     else
1557     offer(item);
1558     }
1559     }
1560    
1561 jsr166 1.3 /**
1562     * Runs action on each element found during a traversal starting at p.
1563     * If p is null, the action is not run.
1564     */
1565     @SuppressWarnings("unchecked")
1566     void forEachFrom(Consumer<? super E> action, Node p) {
1567     for (Node c = p, pred = null; p != null; ) {
1568     final Object item; final boolean pAlive;
1569     if (pAlive = ((item = p.item) != null && p.isData))
1570     action.accept((E) item);
1571     else if (!p.isData && item == null)
1572     break;
1573     if ((c != p && !tryCasSuccessor(pred, c, c = p)) || pAlive) {
1574     pred = p;
1575     c = p = p.next;
1576     }
1577     else if (p == (p = p.next)) {
1578     pred = null;
1579     c = p = head;
1580     }
1581     }
1582     }
1583    
1584     /**
1585     * @throws NullPointerException {@inheritDoc}
1586     */
1587     public void forEach(Consumer<? super E> action) {
1588     Objects.requireNonNull(action);
1589     forEachFrom(action, head);
1590     }
1591    
1592 jsr166 1.1 // Unsafe mechanics
1593    
1594     private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1595     private static final long HEAD;
1596     private static final long TAIL;
1597     private static final long SWEEPVOTES;
1598     static {
1599     try {
1600     HEAD = U.objectFieldOffset
1601     (LinkedTransferQueue.class.getDeclaredField("head"));
1602     TAIL = U.objectFieldOffset
1603     (LinkedTransferQueue.class.getDeclaredField("tail"));
1604     SWEEPVOTES = U.objectFieldOffset
1605     (LinkedTransferQueue.class.getDeclaredField("sweepVotes"));
1606     } catch (ReflectiveOperationException e) {
1607     throw new Error(e);
1608     }
1609    
1610     // Reduce the risk of rare disastrous classloading in first call to
1611     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1612     Class<?> ensureLoaded = LockSupport.class;
1613     }
1614     }