ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk8/java/util/concurrent/PriorityBlockingQueue.java
Revision: 1.4
Committed: Tue Jan 3 04:52:20 2017 UTC (7 years, 4 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.3: +28 -32 lines
Log Message:
backport Spliterator from src/main

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractQueue;
10 import java.util.Arrays;
11 import java.util.Collection;
12 import java.util.Comparator;
13 import java.util.Iterator;
14 import java.util.NoSuchElementException;
15 import java.util.Objects;
16 import java.util.PriorityQueue;
17 import java.util.Queue;
18 import java.util.SortedSet;
19 import java.util.Spliterator;
20 import java.util.concurrent.locks.Condition;
21 import java.util.concurrent.locks.ReentrantLock;
22 import java.util.function.Consumer;
23
24 /**
25 * An unbounded {@linkplain BlockingQueue blocking queue} that uses
26 * the same ordering rules as class {@link PriorityQueue} and supplies
27 * blocking retrieval operations. While this queue is logically
28 * unbounded, attempted additions may fail due to resource exhaustion
29 * (causing {@code OutOfMemoryError}). This class does not permit
30 * {@code null} elements. A priority queue relying on {@linkplain
31 * Comparable natural ordering} also does not permit insertion of
32 * non-comparable objects (doing so results in
33 * {@code ClassCastException}).
34 *
35 * <p>This class and its iterator implement all of the
36 * <em>optional</em> methods of the {@link Collection} and {@link
37 * Iterator} interfaces. The Iterator provided in method {@link
38 * #iterator()} is <em>not</em> guaranteed to traverse the elements of
39 * the PriorityBlockingQueue in any particular order. If you need
40 * ordered traversal, consider using
41 * {@code Arrays.sort(pq.toArray())}. Also, method {@code drainTo}
42 * can be used to <em>remove</em> some or all elements in priority
43 * order and place them in another collection.
44 *
45 * <p>Operations on this class make no guarantees about the ordering
46 * of elements with equal priority. If you need to enforce an
47 * ordering, you can define custom classes or comparators that use a
48 * secondary key to break ties in primary priority values. For
49 * example, here is a class that applies first-in-first-out
50 * tie-breaking to comparable elements. To use it, you would insert a
51 * {@code new FIFOEntry(anEntry)} instead of a plain entry object.
52 *
53 * <pre> {@code
54 * class FIFOEntry<E extends Comparable<? super E>>
55 * implements Comparable<FIFOEntry<E>> {
56 * static final AtomicLong seq = new AtomicLong(0);
57 * final long seqNum;
58 * final E entry;
59 * public FIFOEntry(E entry) {
60 * seqNum = seq.getAndIncrement();
61 * this.entry = entry;
62 * }
63 * public E getEntry() { return entry; }
64 * public int compareTo(FIFOEntry<E> other) {
65 * int res = entry.compareTo(other.entry);
66 * if (res == 0 && other.entry != this.entry)
67 * res = (seqNum < other.seqNum ? -1 : 1);
68 * return res;
69 * }
70 * }}</pre>
71 *
72 * <p>This class is a member of the
73 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
74 * Java Collections Framework</a>.
75 *
76 * @since 1.5
77 * @author Doug Lea
78 * @param <E> the type of elements held in this queue
79 */
80 @SuppressWarnings("unchecked")
81 public class PriorityBlockingQueue<E> extends AbstractQueue<E>
82 implements BlockingQueue<E>, java.io.Serializable {
83 private static final long serialVersionUID = 5595510919245408276L;
84
85 /*
86 * The implementation uses an array-based binary heap, with public
87 * operations protected with a single lock. However, allocation
88 * during resizing uses a simple spinlock (used only while not
89 * holding main lock) in order to allow takes to operate
90 * concurrently with allocation. This avoids repeated
91 * postponement of waiting consumers and consequent element
92 * build-up. The need to back away from lock during allocation
93 * makes it impossible to simply wrap delegated
94 * java.util.PriorityQueue operations within a lock, as was done
95 * in a previous version of this class. To maintain
96 * interoperability, a plain PriorityQueue is still used during
97 * serialization, which maintains compatibility at the expense of
98 * transiently doubling overhead.
99 */
100
101 /**
102 * Default array capacity.
103 */
104 private static final int DEFAULT_INITIAL_CAPACITY = 11;
105
106 /**
107 * The maximum size of array to allocate.
108 * Some VMs reserve some header words in an array.
109 * Attempts to allocate larger arrays may result in
110 * OutOfMemoryError: Requested array size exceeds VM limit
111 */
112 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
113
114 /**
115 * Priority queue represented as a balanced binary heap: the two
116 * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
117 * priority queue is ordered by comparator, or by the elements'
118 * natural ordering, if comparator is null: For each node n in the
119 * heap and each descendant d of n, n <= d. The element with the
120 * lowest value is in queue[0], assuming the queue is nonempty.
121 */
122 private transient Object[] queue;
123
124 /**
125 * The number of elements in the priority queue.
126 */
127 private transient int size;
128
129 /**
130 * The comparator, or null if priority queue uses elements'
131 * natural ordering.
132 */
133 private transient Comparator<? super E> comparator;
134
135 /**
136 * Lock used for all public operations.
137 */
138 private final ReentrantLock lock;
139
140 /**
141 * Condition for blocking when empty.
142 */
143 private final Condition notEmpty;
144
145 /**
146 * Spinlock for allocation, acquired via CAS.
147 */
148 private transient volatile int allocationSpinLock;
149
150 /**
151 * A plain PriorityQueue used only for serialization,
152 * to maintain compatibility with previous versions
153 * of this class. Non-null only during serialization/deserialization.
154 */
155 private PriorityQueue<E> q;
156
157 /**
158 * Creates a {@code PriorityBlockingQueue} with the default
159 * initial capacity (11) that orders its elements according to
160 * their {@linkplain Comparable natural ordering}.
161 */
162 public PriorityBlockingQueue() {
163 this(DEFAULT_INITIAL_CAPACITY, null);
164 }
165
166 /**
167 * Creates a {@code PriorityBlockingQueue} with the specified
168 * initial capacity that orders its elements according to their
169 * {@linkplain Comparable natural ordering}.
170 *
171 * @param initialCapacity the initial capacity for this priority queue
172 * @throws IllegalArgumentException if {@code initialCapacity} is less
173 * than 1
174 */
175 public PriorityBlockingQueue(int initialCapacity) {
176 this(initialCapacity, null);
177 }
178
179 /**
180 * Creates a {@code PriorityBlockingQueue} with the specified initial
181 * capacity that orders its elements according to the specified
182 * comparator.
183 *
184 * @param initialCapacity the initial capacity for this priority queue
185 * @param comparator the comparator that will be used to order this
186 * priority queue. If {@code null}, the {@linkplain Comparable
187 * natural ordering} of the elements will be used.
188 * @throws IllegalArgumentException if {@code initialCapacity} is less
189 * than 1
190 */
191 public PriorityBlockingQueue(int initialCapacity,
192 Comparator<? super E> comparator) {
193 if (initialCapacity < 1)
194 throw new IllegalArgumentException();
195 this.lock = new ReentrantLock();
196 this.notEmpty = lock.newCondition();
197 this.comparator = comparator;
198 this.queue = new Object[initialCapacity];
199 }
200
201 /**
202 * Creates a {@code PriorityBlockingQueue} containing the elements
203 * in the specified collection. If the specified collection is a
204 * {@link SortedSet} or a {@link PriorityQueue}, this
205 * priority queue will be ordered according to the same ordering.
206 * Otherwise, this priority queue will be ordered according to the
207 * {@linkplain Comparable natural ordering} of its elements.
208 *
209 * @param c the collection whose elements are to be placed
210 * into this priority queue
211 * @throws ClassCastException if elements of the specified collection
212 * cannot be compared to one another according to the priority
213 * queue's ordering
214 * @throws NullPointerException if the specified collection or any
215 * of its elements are null
216 */
217 public PriorityBlockingQueue(Collection<? extends E> c) {
218 this.lock = new ReentrantLock();
219 this.notEmpty = lock.newCondition();
220 boolean heapify = true; // true if not known to be in heap order
221 boolean screen = true; // true if must screen for nulls
222 if (c instanceof SortedSet<?>) {
223 SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
224 this.comparator = (Comparator<? super E>) ss.comparator();
225 heapify = false;
226 }
227 else if (c instanceof PriorityBlockingQueue<?>) {
228 PriorityBlockingQueue<? extends E> pq =
229 (PriorityBlockingQueue<? extends E>) c;
230 this.comparator = (Comparator<? super E>) pq.comparator();
231 screen = false;
232 if (pq.getClass() == PriorityBlockingQueue.class) // exact match
233 heapify = false;
234 }
235 Object[] a = c.toArray();
236 int n = a.length;
237 // If c.toArray incorrectly doesn't return Object[], copy it.
238 if (a.getClass() != Object[].class)
239 a = Arrays.copyOf(a, n, Object[].class);
240 if (screen && (n == 1 || this.comparator != null)) {
241 for (int i = 0; i < n; ++i)
242 if (a[i] == null)
243 throw new NullPointerException();
244 }
245 this.queue = a;
246 this.size = n;
247 if (heapify)
248 heapify();
249 }
250
251 /**
252 * Tries to grow array to accommodate at least one more element
253 * (but normally expand by about 50%), giving up (allowing retry)
254 * on contention (which we expect to be rare). Call only while
255 * holding lock.
256 *
257 * @param array the heap array
258 * @param oldCap the length of the array
259 */
260 private void tryGrow(Object[] array, int oldCap) {
261 lock.unlock(); // must release and then re-acquire main lock
262 Object[] newArray = null;
263 if (allocationSpinLock == 0 &&
264 U.compareAndSwapInt(this, ALLOCATIONSPINLOCK, 0, 1)) {
265 try {
266 int newCap = oldCap + ((oldCap < 64) ?
267 (oldCap + 2) : // grow faster if small
268 (oldCap >> 1));
269 if (newCap - MAX_ARRAY_SIZE > 0) { // possible overflow
270 int minCap = oldCap + 1;
271 if (minCap < 0 || minCap > MAX_ARRAY_SIZE)
272 throw new OutOfMemoryError();
273 newCap = MAX_ARRAY_SIZE;
274 }
275 if (newCap > oldCap && queue == array)
276 newArray = new Object[newCap];
277 } finally {
278 allocationSpinLock = 0;
279 }
280 }
281 if (newArray == null) // back off if another thread is allocating
282 Thread.yield();
283 lock.lock();
284 if (newArray != null && queue == array) {
285 queue = newArray;
286 System.arraycopy(array, 0, newArray, 0, oldCap);
287 }
288 }
289
290 /**
291 * Mechanics for poll(). Call only while holding lock.
292 */
293 private E dequeue() {
294 int n = size - 1;
295 if (n < 0)
296 return null;
297 else {
298 Object[] array = queue;
299 E result = (E) array[0];
300 E x = (E) array[n];
301 array[n] = null;
302 Comparator<? super E> cmp = comparator;
303 if (cmp == null)
304 siftDownComparable(0, x, array, n);
305 else
306 siftDownUsingComparator(0, x, array, n, cmp);
307 size = n;
308 return result;
309 }
310 }
311
312 /**
313 * Inserts item x at position k, maintaining heap invariant by
314 * promoting x up the tree until it is greater than or equal to
315 * its parent, or is the root.
316 *
317 * To simplify and speed up coercions and comparisons, the
318 * Comparable and Comparator versions are separated into different
319 * methods that are otherwise identical. (Similarly for siftDown.)
320 *
321 * @param k the position to fill
322 * @param x the item to insert
323 * @param array the heap array
324 */
325 private static <T> void siftUpComparable(int k, T x, Object[] array) {
326 Comparable<? super T> key = (Comparable<? super T>) x;
327 while (k > 0) {
328 int parent = (k - 1) >>> 1;
329 Object e = array[parent];
330 if (key.compareTo((T) e) >= 0)
331 break;
332 array[k] = e;
333 k = parent;
334 }
335 array[k] = key;
336 }
337
338 private static <T> void siftUpUsingComparator(int k, T x, Object[] array,
339 Comparator<? super T> cmp) {
340 while (k > 0) {
341 int parent = (k - 1) >>> 1;
342 Object e = array[parent];
343 if (cmp.compare(x, (T) e) >= 0)
344 break;
345 array[k] = e;
346 k = parent;
347 }
348 array[k] = x;
349 }
350
351 /**
352 * Inserts item x at position k, maintaining heap invariant by
353 * demoting x down the tree repeatedly until it is less than or
354 * equal to its children or is a leaf.
355 *
356 * @param k the position to fill
357 * @param x the item to insert
358 * @param array the heap array
359 * @param n heap size
360 */
361 private static <T> void siftDownComparable(int k, T x, Object[] array,
362 int n) {
363 if (n > 0) {
364 Comparable<? super T> key = (Comparable<? super T>)x;
365 int half = n >>> 1; // loop while a non-leaf
366 while (k < half) {
367 int child = (k << 1) + 1; // assume left child is least
368 Object c = array[child];
369 int right = child + 1;
370 if (right < n &&
371 ((Comparable<? super T>) c).compareTo((T) array[right]) > 0)
372 c = array[child = right];
373 if (key.compareTo((T) c) <= 0)
374 break;
375 array[k] = c;
376 k = child;
377 }
378 array[k] = key;
379 }
380 }
381
382 private static <T> void siftDownUsingComparator(int k, T x, Object[] array,
383 int n,
384 Comparator<? super T> cmp) {
385 if (n > 0) {
386 int half = n >>> 1;
387 while (k < half) {
388 int child = (k << 1) + 1;
389 Object c = array[child];
390 int right = child + 1;
391 if (right < n && cmp.compare((T) c, (T) array[right]) > 0)
392 c = array[child = right];
393 if (cmp.compare(x, (T) c) <= 0)
394 break;
395 array[k] = c;
396 k = child;
397 }
398 array[k] = x;
399 }
400 }
401
402 /**
403 * Establishes the heap invariant (described above) in the entire tree,
404 * assuming nothing about the order of the elements prior to the call.
405 */
406 private void heapify() {
407 Object[] array = queue;
408 int n = size;
409 int half = (n >>> 1) - 1;
410 Comparator<? super E> cmp = comparator;
411 if (cmp == null) {
412 for (int i = half; i >= 0; i--)
413 siftDownComparable(i, (E) array[i], array, n);
414 }
415 else {
416 for (int i = half; i >= 0; i--)
417 siftDownUsingComparator(i, (E) array[i], array, n, cmp);
418 }
419 }
420
421 /**
422 * Inserts the specified element into this priority queue.
423 *
424 * @param e the element to add
425 * @return {@code true} (as specified by {@link Collection#add})
426 * @throws ClassCastException if the specified element cannot be compared
427 * with elements currently in the priority queue according to the
428 * priority queue's ordering
429 * @throws NullPointerException if the specified element is null
430 */
431 public boolean add(E e) {
432 return offer(e);
433 }
434
435 /**
436 * Inserts the specified element into this priority queue.
437 * As the queue is unbounded, this method will never return {@code false}.
438 *
439 * @param e the element to add
440 * @return {@code true} (as specified by {@link Queue#offer})
441 * @throws ClassCastException if the specified element cannot be compared
442 * with elements currently in the priority queue according to the
443 * priority queue's ordering
444 * @throws NullPointerException if the specified element is null
445 */
446 public boolean offer(E e) {
447 if (e == null)
448 throw new NullPointerException();
449 final ReentrantLock lock = this.lock;
450 lock.lock();
451 int n, cap;
452 Object[] array;
453 while ((n = size) >= (cap = (array = queue).length))
454 tryGrow(array, cap);
455 try {
456 Comparator<? super E> cmp = comparator;
457 if (cmp == null)
458 siftUpComparable(n, e, array);
459 else
460 siftUpUsingComparator(n, e, array, cmp);
461 size = n + 1;
462 notEmpty.signal();
463 } finally {
464 lock.unlock();
465 }
466 return true;
467 }
468
469 /**
470 * Inserts the specified element into this priority queue.
471 * As the queue is unbounded, this method will never block.
472 *
473 * @param e the element to add
474 * @throws ClassCastException if the specified element cannot be compared
475 * with elements currently in the priority queue according to the
476 * priority queue's ordering
477 * @throws NullPointerException if the specified element is null
478 */
479 public void put(E e) {
480 offer(e); // never need to block
481 }
482
483 /**
484 * Inserts the specified element into this priority queue.
485 * As the queue is unbounded, this method will never block or
486 * return {@code false}.
487 *
488 * @param e the element to add
489 * @param timeout This parameter is ignored as the method never blocks
490 * @param unit This parameter is ignored as the method never blocks
491 * @return {@code true} (as specified by
492 * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
493 * @throws ClassCastException if the specified element cannot be compared
494 * with elements currently in the priority queue according to the
495 * priority queue's ordering
496 * @throws NullPointerException if the specified element is null
497 */
498 public boolean offer(E e, long timeout, TimeUnit unit) {
499 return offer(e); // never need to block
500 }
501
502 public E poll() {
503 final ReentrantLock lock = this.lock;
504 lock.lock();
505 try {
506 return dequeue();
507 } finally {
508 lock.unlock();
509 }
510 }
511
512 public E take() throws InterruptedException {
513 final ReentrantLock lock = this.lock;
514 lock.lockInterruptibly();
515 E result;
516 try {
517 while ( (result = dequeue()) == null)
518 notEmpty.await();
519 } finally {
520 lock.unlock();
521 }
522 return result;
523 }
524
525 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
526 long nanos = unit.toNanos(timeout);
527 final ReentrantLock lock = this.lock;
528 lock.lockInterruptibly();
529 E result;
530 try {
531 while ( (result = dequeue()) == null && nanos > 0)
532 nanos = notEmpty.awaitNanos(nanos);
533 } finally {
534 lock.unlock();
535 }
536 return result;
537 }
538
539 public E peek() {
540 final ReentrantLock lock = this.lock;
541 lock.lock();
542 try {
543 return (size == 0) ? null : (E) queue[0];
544 } finally {
545 lock.unlock();
546 }
547 }
548
549 /**
550 * Returns the comparator used to order the elements in this queue,
551 * or {@code null} if this queue uses the {@linkplain Comparable
552 * natural ordering} of its elements.
553 *
554 * @return the comparator used to order the elements in this queue,
555 * or {@code null} if this queue uses the natural
556 * ordering of its elements
557 */
558 public Comparator<? super E> comparator() {
559 return comparator;
560 }
561
562 public int size() {
563 final ReentrantLock lock = this.lock;
564 lock.lock();
565 try {
566 return size;
567 } finally {
568 lock.unlock();
569 }
570 }
571
572 /**
573 * Always returns {@code Integer.MAX_VALUE} because
574 * a {@code PriorityBlockingQueue} is not capacity constrained.
575 * @return {@code Integer.MAX_VALUE} always
576 */
577 public int remainingCapacity() {
578 return Integer.MAX_VALUE;
579 }
580
581 private int indexOf(Object o) {
582 if (o != null) {
583 Object[] array = queue;
584 int n = size;
585 for (int i = 0; i < n; i++)
586 if (o.equals(array[i]))
587 return i;
588 }
589 return -1;
590 }
591
592 /**
593 * Removes the ith element from queue.
594 */
595 private void removeAt(int i) {
596 Object[] array = queue;
597 int n = size - 1;
598 if (n == i) // removed last element
599 array[i] = null;
600 else {
601 E moved = (E) array[n];
602 array[n] = null;
603 Comparator<? super E> cmp = comparator;
604 if (cmp == null)
605 siftDownComparable(i, moved, array, n);
606 else
607 siftDownUsingComparator(i, moved, array, n, cmp);
608 if (array[i] == moved) {
609 if (cmp == null)
610 siftUpComparable(i, moved, array);
611 else
612 siftUpUsingComparator(i, moved, array, cmp);
613 }
614 }
615 size = n;
616 }
617
618 /**
619 * Removes a single instance of the specified element from this queue,
620 * if it is present. More formally, removes an element {@code e} such
621 * that {@code o.equals(e)}, if this queue contains one or more such
622 * elements. Returns {@code true} if and only if this queue contained
623 * the specified element (or equivalently, if this queue changed as a
624 * result of the call).
625 *
626 * @param o element to be removed from this queue, if present
627 * @return {@code true} if this queue changed as a result of the call
628 */
629 public boolean remove(Object o) {
630 final ReentrantLock lock = this.lock;
631 lock.lock();
632 try {
633 int i = indexOf(o);
634 if (i == -1)
635 return false;
636 removeAt(i);
637 return true;
638 } finally {
639 lock.unlock();
640 }
641 }
642
643 /**
644 * Identity-based version for use in Itr.remove.
645 */
646 void removeEQ(Object o) {
647 final ReentrantLock lock = this.lock;
648 lock.lock();
649 try {
650 Object[] array = queue;
651 for (int i = 0, n = size; i < n; i++) {
652 if (o == array[i]) {
653 removeAt(i);
654 break;
655 }
656 }
657 } finally {
658 lock.unlock();
659 }
660 }
661
662 /**
663 * Returns {@code true} if this queue contains the specified element.
664 * More formally, returns {@code true} if and only if this queue contains
665 * at least one element {@code e} such that {@code o.equals(e)}.
666 *
667 * @param o object to be checked for containment in this queue
668 * @return {@code true} if this queue contains the specified element
669 */
670 public boolean contains(Object o) {
671 final ReentrantLock lock = this.lock;
672 lock.lock();
673 try {
674 return indexOf(o) != -1;
675 } finally {
676 lock.unlock();
677 }
678 }
679
680 public String toString() {
681 return Helpers.collectionToString(this);
682 }
683
684 /**
685 * @throws UnsupportedOperationException {@inheritDoc}
686 * @throws ClassCastException {@inheritDoc}
687 * @throws NullPointerException {@inheritDoc}
688 * @throws IllegalArgumentException {@inheritDoc}
689 */
690 public int drainTo(Collection<? super E> c) {
691 return drainTo(c, Integer.MAX_VALUE);
692 }
693
694 /**
695 * @throws UnsupportedOperationException {@inheritDoc}
696 * @throws ClassCastException {@inheritDoc}
697 * @throws NullPointerException {@inheritDoc}
698 * @throws IllegalArgumentException {@inheritDoc}
699 */
700 public int drainTo(Collection<? super E> c, int maxElements) {
701 if (c == null)
702 throw new NullPointerException();
703 if (c == this)
704 throw new IllegalArgumentException();
705 if (maxElements <= 0)
706 return 0;
707 final ReentrantLock lock = this.lock;
708 lock.lock();
709 try {
710 int n = Math.min(size, maxElements);
711 for (int i = 0; i < n; i++) {
712 c.add((E) queue[0]); // In this order, in case add() throws.
713 dequeue();
714 }
715 return n;
716 } finally {
717 lock.unlock();
718 }
719 }
720
721 /**
722 * Atomically removes all of the elements from this queue.
723 * The queue will be empty after this call returns.
724 */
725 public void clear() {
726 final ReentrantLock lock = this.lock;
727 lock.lock();
728 try {
729 Object[] array = queue;
730 int n = size;
731 size = 0;
732 for (int i = 0; i < n; i++)
733 array[i] = null;
734 } finally {
735 lock.unlock();
736 }
737 }
738
739 /**
740 * Returns an array containing all of the elements in this queue.
741 * The returned array elements are in no particular order.
742 *
743 * <p>The returned array will be "safe" in that no references to it are
744 * maintained by this queue. (In other words, this method must allocate
745 * a new array). The caller is thus free to modify the returned array.
746 *
747 * <p>This method acts as bridge between array-based and collection-based
748 * APIs.
749 *
750 * @return an array containing all of the elements in this queue
751 */
752 public Object[] toArray() {
753 final ReentrantLock lock = this.lock;
754 lock.lock();
755 try {
756 return Arrays.copyOf(queue, size);
757 } finally {
758 lock.unlock();
759 }
760 }
761
762 /**
763 * Returns an array containing all of the elements in this queue; the
764 * runtime type of the returned array is that of the specified array.
765 * The returned array elements are in no particular order.
766 * If the queue fits in the specified array, it is returned therein.
767 * Otherwise, a new array is allocated with the runtime type of the
768 * specified array and the size of this queue.
769 *
770 * <p>If this queue fits in the specified array with room to spare
771 * (i.e., the array has more elements than this queue), the element in
772 * the array immediately following the end of the queue is set to
773 * {@code null}.
774 *
775 * <p>Like the {@link #toArray()} method, this method acts as bridge between
776 * array-based and collection-based APIs. Further, this method allows
777 * precise control over the runtime type of the output array, and may,
778 * under certain circumstances, be used to save allocation costs.
779 *
780 * <p>Suppose {@code x} is a queue known to contain only strings.
781 * The following code can be used to dump the queue into a newly
782 * allocated array of {@code String}:
783 *
784 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
785 *
786 * Note that {@code toArray(new Object[0])} is identical in function to
787 * {@code toArray()}.
788 *
789 * @param a the array into which the elements of the queue are to
790 * be stored, if it is big enough; otherwise, a new array of the
791 * same runtime type is allocated for this purpose
792 * @return an array containing all of the elements in this queue
793 * @throws ArrayStoreException if the runtime type of the specified array
794 * is not a supertype of the runtime type of every element in
795 * this queue
796 * @throws NullPointerException if the specified array is null
797 */
798 public <T> T[] toArray(T[] a) {
799 final ReentrantLock lock = this.lock;
800 lock.lock();
801 try {
802 int n = size;
803 if (a.length < n)
804 // Make a new array of a's runtime type, but my contents:
805 return (T[]) Arrays.copyOf(queue, size, a.getClass());
806 System.arraycopy(queue, 0, a, 0, n);
807 if (a.length > n)
808 a[n] = null;
809 return a;
810 } finally {
811 lock.unlock();
812 }
813 }
814
815 /**
816 * Returns an iterator over the elements in this queue. The
817 * iterator does not return the elements in any particular order.
818 *
819 * <p>The returned iterator is
820 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
821 *
822 * @return an iterator over the elements in this queue
823 */
824 public Iterator<E> iterator() {
825 return new Itr(toArray());
826 }
827
828 /**
829 * Snapshot iterator that works off copy of underlying q array.
830 */
831 final class Itr implements Iterator<E> {
832 final Object[] array; // Array of all elements
833 int cursor; // index of next element to return
834 int lastRet; // index of last element, or -1 if no such
835
836 Itr(Object[] array) {
837 lastRet = -1;
838 this.array = array;
839 }
840
841 public boolean hasNext() {
842 return cursor < array.length;
843 }
844
845 public E next() {
846 if (cursor >= array.length)
847 throw new NoSuchElementException();
848 lastRet = cursor;
849 return (E)array[cursor++];
850 }
851
852 public void remove() {
853 if (lastRet < 0)
854 throw new IllegalStateException();
855 removeEQ(array[lastRet]);
856 lastRet = -1;
857 }
858 }
859
860 /**
861 * Saves this queue to a stream (that is, serializes it).
862 *
863 * For compatibility with previous version of this class, elements
864 * are first copied to a java.util.PriorityQueue, which is then
865 * serialized.
866 *
867 * @param s the stream
868 * @throws java.io.IOException if an I/O error occurs
869 */
870 private void writeObject(java.io.ObjectOutputStream s)
871 throws java.io.IOException {
872 lock.lock();
873 try {
874 // avoid zero capacity argument
875 q = new PriorityQueue<E>(Math.max(size, 1), comparator);
876 q.addAll(this);
877 s.defaultWriteObject();
878 } finally {
879 q = null;
880 lock.unlock();
881 }
882 }
883
884 /**
885 * Reconstitutes this queue from a stream (that is, deserializes it).
886 * @param s the stream
887 * @throws ClassNotFoundException if the class of a serialized object
888 * could not be found
889 * @throws java.io.IOException if an I/O error occurs
890 */
891 private void readObject(java.io.ObjectInputStream s)
892 throws java.io.IOException, ClassNotFoundException {
893 try {
894 s.defaultReadObject();
895 this.queue = new Object[q.size()];
896 comparator = q.comparator();
897 addAll(q);
898 } finally {
899 q = null;
900 }
901 }
902
903 /**
904 * Immutable snapshot spliterator that binds to elements "late".
905 */
906 final class PBQSpliterator implements Spliterator<E> {
907 Object[] array; // null until late-bound-initialized
908 int index;
909 int fence;
910
911 PBQSpliterator() {}
912
913 PBQSpliterator(Object[] array, int index, int fence) {
914 this.array = array;
915 this.index = index;
916 this.fence = fence;
917 }
918
919 private int getFence() {
920 if (array == null)
921 fence = (array = toArray()).length;
922 return fence;
923 }
924
925 public PBQSpliterator trySplit() {
926 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
927 return (lo >= mid) ? null :
928 new PBQSpliterator(array, lo, index = mid);
929 }
930
931 public void forEachRemaining(Consumer<? super E> action) {
932 Objects.requireNonNull(action);
933 final int hi = getFence(), lo = index;
934 final Object[] a = array;
935 index = hi; // ensure exhaustion
936 for (int i = lo; i < hi; i++)
937 action.accept((E) a[i]);
938 }
939
940 public boolean tryAdvance(Consumer<? super E> action) {
941 Objects.requireNonNull(action);
942 if (getFence() > index && index >= 0) {
943 action.accept((E) array[index++]);
944 return true;
945 }
946 return false;
947 }
948
949 public long estimateSize() { return getFence() - index; }
950
951 public int characteristics() {
952 return (Spliterator.NONNULL |
953 Spliterator.SIZED |
954 Spliterator.SUBSIZED);
955 }
956 }
957
958 /**
959 * Returns a {@link Spliterator} over the elements in this queue.
960 *
961 * <p>The returned spliterator is
962 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
963 *
964 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED} and
965 * {@link Spliterator#NONNULL}.
966 *
967 * @implNote
968 * The {@code Spliterator} additionally reports {@link Spliterator#SUBSIZED}.
969 *
970 * @return a {@code Spliterator} over the elements in this queue
971 * @since 1.8
972 */
973 public Spliterator<E> spliterator() {
974 return new PBQSpliterator();
975 }
976
977 // Unsafe mechanics
978 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
979 private static final long ALLOCATIONSPINLOCK;
980 static {
981 try {
982 ALLOCATIONSPINLOCK = U.objectFieldOffset
983 (PriorityBlockingQueue.class.getDeclaredField("allocationSpinLock"));
984 } catch (ReflectiveOperationException e) {
985 throw new Error(e);
986 }
987 }
988 }