ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk8/java/util/concurrent/SynchronousQueue.java
Revision: 1.1
Committed: Sat Mar 26 06:22:50 2016 UTC (8 years, 1 month ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Log Message:
fork jdk8 maintenance branch for source and jtreg tests

File Contents

# Content
1 /*
2 * Written by Doug Lea, Bill Scherer, and Michael Scott with
3 * assistance from members of JCP JSR-166 Expert Group and released to
4 * the public domain, as explained at
5 * http://creativecommons.org/publicdomain/zero/1.0/
6 */
7
8 package java.util.concurrent;
9
10 import java.util.AbstractQueue;
11 import java.util.Collection;
12 import java.util.Collections;
13 import java.util.Iterator;
14 import java.util.Spliterator;
15 import java.util.Spliterators;
16 import java.util.concurrent.locks.LockSupport;
17 import java.util.concurrent.locks.ReentrantLock;
18
19 /**
20 * A {@linkplain BlockingQueue blocking queue} in which each insert
21 * operation must wait for a corresponding remove operation by another
22 * thread, and vice versa. A synchronous queue does not have any
23 * internal capacity, not even a capacity of one. You cannot
24 * {@code peek} at a synchronous queue because an element is only
25 * present when you try to remove it; you cannot insert an element
26 * (using any method) unless another thread is trying to remove it;
27 * you cannot iterate as there is nothing to iterate. The
28 * <em>head</em> of the queue is the element that the first queued
29 * inserting thread is trying to add to the queue; if there is no such
30 * queued thread then no element is available for removal and
31 * {@code poll()} will return {@code null}. For purposes of other
32 * {@code Collection} methods (for example {@code contains}), a
33 * {@code SynchronousQueue} acts as an empty collection. This queue
34 * does not permit {@code null} elements.
35 *
36 * <p>Synchronous queues are similar to rendezvous channels used in
37 * CSP and Ada. They are well suited for handoff designs, in which an
38 * object running in one thread must sync up with an object running
39 * in another thread in order to hand it some information, event, or
40 * task.
41 *
42 * <p>This class supports an optional fairness policy for ordering
43 * waiting producer and consumer threads. By default, this ordering
44 * is not guaranteed. However, a queue constructed with fairness set
45 * to {@code true} grants threads access in FIFO order.
46 *
47 * <p>This class and its iterator implement all of the
48 * <em>optional</em> methods of the {@link Collection} and {@link
49 * Iterator} interfaces.
50 *
51 * <p>This class is a member of the
52 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
53 * Java Collections Framework</a>.
54 *
55 * @since 1.5
56 * @author Doug Lea and Bill Scherer and Michael Scott
57 * @param <E> the type of elements held in this queue
58 */
59 public class SynchronousQueue<E> extends AbstractQueue<E>
60 implements BlockingQueue<E>, java.io.Serializable {
61 private static final long serialVersionUID = -3223113410248163686L;
62
63 /*
64 * This class implements extensions of the dual stack and dual
65 * queue algorithms described in "Nonblocking Concurrent Objects
66 * with Condition Synchronization", by W. N. Scherer III and
67 * M. L. Scott. 18th Annual Conf. on Distributed Computing,
68 * Oct. 2004 (see also
69 * http://www.cs.rochester.edu/u/scott/synchronization/pseudocode/duals.html).
70 * The (Lifo) stack is used for non-fair mode, and the (Fifo)
71 * queue for fair mode. The performance of the two is generally
72 * similar. Fifo usually supports higher throughput under
73 * contention but Lifo maintains higher thread locality in common
74 * applications.
75 *
76 * A dual queue (and similarly stack) is one that at any given
77 * time either holds "data" -- items provided by put operations,
78 * or "requests" -- slots representing take operations, or is
79 * empty. A call to "fulfill" (i.e., a call requesting an item
80 * from a queue holding data or vice versa) dequeues a
81 * complementary node. The most interesting feature of these
82 * queues is that any operation can figure out which mode the
83 * queue is in, and act accordingly without needing locks.
84 *
85 * Both the queue and stack extend abstract class Transferer
86 * defining the single method transfer that does a put or a
87 * take. These are unified into a single method because in dual
88 * data structures, the put and take operations are symmetrical,
89 * so nearly all code can be combined. The resulting transfer
90 * methods are on the long side, but are easier to follow than
91 * they would be if broken up into nearly-duplicated parts.
92 *
93 * The queue and stack data structures share many conceptual
94 * similarities but very few concrete details. For simplicity,
95 * they are kept distinct so that they can later evolve
96 * separately.
97 *
98 * The algorithms here differ from the versions in the above paper
99 * in extending them for use in synchronous queues, as well as
100 * dealing with cancellation. The main differences include:
101 *
102 * 1. The original algorithms used bit-marked pointers, but
103 * the ones here use mode bits in nodes, leading to a number
104 * of further adaptations.
105 * 2. SynchronousQueues must block threads waiting to become
106 * fulfilled.
107 * 3. Support for cancellation via timeout and interrupts,
108 * including cleaning out cancelled nodes/threads
109 * from lists to avoid garbage retention and memory depletion.
110 *
111 * Blocking is mainly accomplished using LockSupport park/unpark,
112 * except that nodes that appear to be the next ones to become
113 * fulfilled first spin a bit (on multiprocessors only). On very
114 * busy synchronous queues, spinning can dramatically improve
115 * throughput. And on less busy ones, the amount of spinning is
116 * small enough not to be noticeable.
117 *
118 * Cleaning is done in different ways in queues vs stacks. For
119 * queues, we can almost always remove a node immediately in O(1)
120 * time (modulo retries for consistency checks) when it is
121 * cancelled. But if it may be pinned as the current tail, it must
122 * wait until some subsequent cancellation. For stacks, we need a
123 * potentially O(n) traversal to be sure that we can remove the
124 * node, but this can run concurrently with other threads
125 * accessing the stack.
126 *
127 * While garbage collection takes care of most node reclamation
128 * issues that otherwise complicate nonblocking algorithms, care
129 * is taken to "forget" references to data, other nodes, and
130 * threads that might be held on to long-term by blocked
131 * threads. In cases where setting to null would otherwise
132 * conflict with main algorithms, this is done by changing a
133 * node's link to now point to the node itself. This doesn't arise
134 * much for Stack nodes (because blocked threads do not hang on to
135 * old head pointers), but references in Queue nodes must be
136 * aggressively forgotten to avoid reachability of everything any
137 * node has ever referred to since arrival.
138 */
139
140 /**
141 * Shared internal API for dual stacks and queues.
142 */
143 abstract static class Transferer<E> {
144 /**
145 * Performs a put or take.
146 *
147 * @param e if non-null, the item to be handed to a consumer;
148 * if null, requests that transfer return an item
149 * offered by producer.
150 * @param timed if this operation should timeout
151 * @param nanos the timeout, in nanoseconds
152 * @return if non-null, the item provided or received; if null,
153 * the operation failed due to timeout or interrupt --
154 * the caller can distinguish which of these occurred
155 * by checking Thread.interrupted.
156 */
157 abstract E transfer(E e, boolean timed, long nanos);
158 }
159
160 /**
161 * The number of times to spin before blocking in timed waits.
162 * The value is empirically derived -- it works well across a
163 * variety of processors and OSes. Empirically, the best value
164 * seems not to vary with number of CPUs (beyond 2) so is just
165 * a constant.
166 */
167 static final int MAX_TIMED_SPINS =
168 (Runtime.getRuntime().availableProcessors() < 2) ? 0 : 32;
169
170 /**
171 * The number of times to spin before blocking in untimed waits.
172 * This is greater than timed value because untimed waits spin
173 * faster since they don't need to check times on each spin.
174 */
175 static final int MAX_UNTIMED_SPINS = MAX_TIMED_SPINS * 16;
176
177 /**
178 * The number of nanoseconds for which it is faster to spin
179 * rather than to use timed park. A rough estimate suffices.
180 */
181 static final long SPIN_FOR_TIMEOUT_THRESHOLD = 1000L;
182
183 /** Dual stack */
184 static final class TransferStack<E> extends Transferer<E> {
185 /*
186 * This extends Scherer-Scott dual stack algorithm, differing,
187 * among other ways, by using "covering" nodes rather than
188 * bit-marked pointers: Fulfilling operations push on marker
189 * nodes (with FULFILLING bit set in mode) to reserve a spot
190 * to match a waiting node.
191 */
192
193 /* Modes for SNodes, ORed together in node fields */
194 /** Node represents an unfulfilled consumer */
195 static final int REQUEST = 0;
196 /** Node represents an unfulfilled producer */
197 static final int DATA = 1;
198 /** Node is fulfilling another unfulfilled DATA or REQUEST */
199 static final int FULFILLING = 2;
200
201 /** Returns true if m has fulfilling bit set. */
202 static boolean isFulfilling(int m) { return (m & FULFILLING) != 0; }
203
204 /** Node class for TransferStacks. */
205 static final class SNode {
206 volatile SNode next; // next node in stack
207 volatile SNode match; // the node matched to this
208 volatile Thread waiter; // to control park/unpark
209 Object item; // data; or null for REQUESTs
210 int mode;
211 // Note: item and mode fields don't need to be volatile
212 // since they are always written before, and read after,
213 // other volatile/atomic operations.
214
215 SNode(Object item) {
216 this.item = item;
217 }
218
219 boolean casNext(SNode cmp, SNode val) {
220 return cmp == next &&
221 U.compareAndSwapObject(this, NEXT, cmp, val);
222 }
223
224 /**
225 * Tries to match node s to this node, if so, waking up thread.
226 * Fulfillers call tryMatch to identify their waiters.
227 * Waiters block until they have been matched.
228 *
229 * @param s the node to match
230 * @return true if successfully matched to s
231 */
232 boolean tryMatch(SNode s) {
233 if (match == null &&
234 U.compareAndSwapObject(this, MATCH, null, s)) {
235 Thread w = waiter;
236 if (w != null) { // waiters need at most one unpark
237 waiter = null;
238 LockSupport.unpark(w);
239 }
240 return true;
241 }
242 return match == s;
243 }
244
245 /**
246 * Tries to cancel a wait by matching node to itself.
247 */
248 void tryCancel() {
249 U.compareAndSwapObject(this, MATCH, null, this);
250 }
251
252 boolean isCancelled() {
253 return match == this;
254 }
255
256 // Unsafe mechanics
257 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
258 private static final long MATCH;
259 private static final long NEXT;
260
261 static {
262 try {
263 MATCH = U.objectFieldOffset
264 (SNode.class.getDeclaredField("match"));
265 NEXT = U.objectFieldOffset
266 (SNode.class.getDeclaredField("next"));
267 } catch (ReflectiveOperationException e) {
268 throw new Error(e);
269 }
270 }
271 }
272
273 /** The head (top) of the stack */
274 volatile SNode head;
275
276 boolean casHead(SNode h, SNode nh) {
277 return h == head &&
278 U.compareAndSwapObject(this, HEAD, h, nh);
279 }
280
281 /**
282 * Creates or resets fields of a node. Called only from transfer
283 * where the node to push on stack is lazily created and
284 * reused when possible to help reduce intervals between reads
285 * and CASes of head and to avoid surges of garbage when CASes
286 * to push nodes fail due to contention.
287 */
288 static SNode snode(SNode s, Object e, SNode next, int mode) {
289 if (s == null) s = new SNode(e);
290 s.mode = mode;
291 s.next = next;
292 return s;
293 }
294
295 /**
296 * Puts or takes an item.
297 */
298 @SuppressWarnings("unchecked")
299 E transfer(E e, boolean timed, long nanos) {
300 /*
301 * Basic algorithm is to loop trying one of three actions:
302 *
303 * 1. If apparently empty or already containing nodes of same
304 * mode, try to push node on stack and wait for a match,
305 * returning it, or null if cancelled.
306 *
307 * 2. If apparently containing node of complementary mode,
308 * try to push a fulfilling node on to stack, match
309 * with corresponding waiting node, pop both from
310 * stack, and return matched item. The matching or
311 * unlinking might not actually be necessary because of
312 * other threads performing action 3:
313 *
314 * 3. If top of stack already holds another fulfilling node,
315 * help it out by doing its match and/or pop
316 * operations, and then continue. The code for helping
317 * is essentially the same as for fulfilling, except
318 * that it doesn't return the item.
319 */
320
321 SNode s = null; // constructed/reused as needed
322 int mode = (e == null) ? REQUEST : DATA;
323
324 for (;;) {
325 SNode h = head;
326 if (h == null || h.mode == mode) { // empty or same-mode
327 if (timed && nanos <= 0L) { // can't wait
328 if (h != null && h.isCancelled())
329 casHead(h, h.next); // pop cancelled node
330 else
331 return null;
332 } else if (casHead(h, s = snode(s, e, h, mode))) {
333 SNode m = awaitFulfill(s, timed, nanos);
334 if (m == s) { // wait was cancelled
335 clean(s);
336 return null;
337 }
338 if ((h = head) != null && h.next == s)
339 casHead(h, s.next); // help s's fulfiller
340 return (E) ((mode == REQUEST) ? m.item : s.item);
341 }
342 } else if (!isFulfilling(h.mode)) { // try to fulfill
343 if (h.isCancelled()) // already cancelled
344 casHead(h, h.next); // pop and retry
345 else if (casHead(h, s=snode(s, e, h, FULFILLING|mode))) {
346 for (;;) { // loop until matched or waiters disappear
347 SNode m = s.next; // m is s's match
348 if (m == null) { // all waiters are gone
349 casHead(s, null); // pop fulfill node
350 s = null; // use new node next time
351 break; // restart main loop
352 }
353 SNode mn = m.next;
354 if (m.tryMatch(s)) {
355 casHead(s, mn); // pop both s and m
356 return (E) ((mode == REQUEST) ? m.item : s.item);
357 } else // lost match
358 s.casNext(m, mn); // help unlink
359 }
360 }
361 } else { // help a fulfiller
362 SNode m = h.next; // m is h's match
363 if (m == null) // waiter is gone
364 casHead(h, null); // pop fulfilling node
365 else {
366 SNode mn = m.next;
367 if (m.tryMatch(h)) // help match
368 casHead(h, mn); // pop both h and m
369 else // lost match
370 h.casNext(m, mn); // help unlink
371 }
372 }
373 }
374 }
375
376 /**
377 * Spins/blocks until node s is matched by a fulfill operation.
378 *
379 * @param s the waiting node
380 * @param timed true if timed wait
381 * @param nanos timeout value
382 * @return matched node, or s if cancelled
383 */
384 SNode awaitFulfill(SNode s, boolean timed, long nanos) {
385 /*
386 * When a node/thread is about to block, it sets its waiter
387 * field and then rechecks state at least one more time
388 * before actually parking, thus covering race vs
389 * fulfiller noticing that waiter is non-null so should be
390 * woken.
391 *
392 * When invoked by nodes that appear at the point of call
393 * to be at the head of the stack, calls to park are
394 * preceded by spins to avoid blocking when producers and
395 * consumers are arriving very close in time. This can
396 * happen enough to bother only on multiprocessors.
397 *
398 * The order of checks for returning out of main loop
399 * reflects fact that interrupts have precedence over
400 * normal returns, which have precedence over
401 * timeouts. (So, on timeout, one last check for match is
402 * done before giving up.) Except that calls from untimed
403 * SynchronousQueue.{poll/offer} don't check interrupts
404 * and don't wait at all, so are trapped in transfer
405 * method rather than calling awaitFulfill.
406 */
407 final long deadline = timed ? System.nanoTime() + nanos : 0L;
408 Thread w = Thread.currentThread();
409 int spins = shouldSpin(s)
410 ? (timed ? MAX_TIMED_SPINS : MAX_UNTIMED_SPINS)
411 : 0;
412 for (;;) {
413 if (w.isInterrupted())
414 s.tryCancel();
415 SNode m = s.match;
416 if (m != null)
417 return m;
418 if (timed) {
419 nanos = deadline - System.nanoTime();
420 if (nanos <= 0L) {
421 s.tryCancel();
422 continue;
423 }
424 }
425 if (spins > 0)
426 spins = shouldSpin(s) ? (spins - 1) : 0;
427 else if (s.waiter == null)
428 s.waiter = w; // establish waiter so can park next iter
429 else if (!timed)
430 LockSupport.park(this);
431 else if (nanos > SPIN_FOR_TIMEOUT_THRESHOLD)
432 LockSupport.parkNanos(this, nanos);
433 }
434 }
435
436 /**
437 * Returns true if node s is at head or there is an active
438 * fulfiller.
439 */
440 boolean shouldSpin(SNode s) {
441 SNode h = head;
442 return (h == s || h == null || isFulfilling(h.mode));
443 }
444
445 /**
446 * Unlinks s from the stack.
447 */
448 void clean(SNode s) {
449 s.item = null; // forget item
450 s.waiter = null; // forget thread
451
452 /*
453 * At worst we may need to traverse entire stack to unlink
454 * s. If there are multiple concurrent calls to clean, we
455 * might not see s if another thread has already removed
456 * it. But we can stop when we see any node known to
457 * follow s. We use s.next unless it too is cancelled, in
458 * which case we try the node one past. We don't check any
459 * further because we don't want to doubly traverse just to
460 * find sentinel.
461 */
462
463 SNode past = s.next;
464 if (past != null && past.isCancelled())
465 past = past.next;
466
467 // Absorb cancelled nodes at head
468 SNode p;
469 while ((p = head) != null && p != past && p.isCancelled())
470 casHead(p, p.next);
471
472 // Unsplice embedded nodes
473 while (p != null && p != past) {
474 SNode n = p.next;
475 if (n != null && n.isCancelled())
476 p.casNext(n, n.next);
477 else
478 p = n;
479 }
480 }
481
482 // Unsafe mechanics
483 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
484 private static final long HEAD;
485 static {
486 try {
487 HEAD = U.objectFieldOffset
488 (TransferStack.class.getDeclaredField("head"));
489 } catch (ReflectiveOperationException e) {
490 throw new Error(e);
491 }
492 }
493 }
494
495 /** Dual Queue */
496 static final class TransferQueue<E> extends Transferer<E> {
497 /*
498 * This extends Scherer-Scott dual queue algorithm, differing,
499 * among other ways, by using modes within nodes rather than
500 * marked pointers. The algorithm is a little simpler than
501 * that for stacks because fulfillers do not need explicit
502 * nodes, and matching is done by CAS'ing QNode.item field
503 * from non-null to null (for put) or vice versa (for take).
504 */
505
506 /** Node class for TransferQueue. */
507 static final class QNode {
508 volatile QNode next; // next node in queue
509 volatile Object item; // CAS'ed to or from null
510 volatile Thread waiter; // to control park/unpark
511 final boolean isData;
512
513 QNode(Object item, boolean isData) {
514 this.item = item;
515 this.isData = isData;
516 }
517
518 boolean casNext(QNode cmp, QNode val) {
519 return next == cmp &&
520 U.compareAndSwapObject(this, NEXT, cmp, val);
521 }
522
523 boolean casItem(Object cmp, Object val) {
524 return item == cmp &&
525 U.compareAndSwapObject(this, ITEM, cmp, val);
526 }
527
528 /**
529 * Tries to cancel by CAS'ing ref to this as item.
530 */
531 void tryCancel(Object cmp) {
532 U.compareAndSwapObject(this, ITEM, cmp, this);
533 }
534
535 boolean isCancelled() {
536 return item == this;
537 }
538
539 /**
540 * Returns true if this node is known to be off the queue
541 * because its next pointer has been forgotten due to
542 * an advanceHead operation.
543 */
544 boolean isOffList() {
545 return next == this;
546 }
547
548 // Unsafe mechanics
549 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
550 private static final long ITEM;
551 private static final long NEXT;
552
553 static {
554 try {
555 ITEM = U.objectFieldOffset
556 (QNode.class.getDeclaredField("item"));
557 NEXT = U.objectFieldOffset
558 (QNode.class.getDeclaredField("next"));
559 } catch (ReflectiveOperationException e) {
560 throw new Error(e);
561 }
562 }
563 }
564
565 /** Head of queue */
566 transient volatile QNode head;
567 /** Tail of queue */
568 transient volatile QNode tail;
569 /**
570 * Reference to a cancelled node that might not yet have been
571 * unlinked from queue because it was the last inserted node
572 * when it was cancelled.
573 */
574 transient volatile QNode cleanMe;
575
576 TransferQueue() {
577 QNode h = new QNode(null, false); // initialize to dummy node.
578 head = h;
579 tail = h;
580 }
581
582 /**
583 * Tries to cas nh as new head; if successful, unlink
584 * old head's next node to avoid garbage retention.
585 */
586 void advanceHead(QNode h, QNode nh) {
587 if (h == head &&
588 U.compareAndSwapObject(this, HEAD, h, nh))
589 h.next = h; // forget old next
590 }
591
592 /**
593 * Tries to cas nt as new tail.
594 */
595 void advanceTail(QNode t, QNode nt) {
596 if (tail == t)
597 U.compareAndSwapObject(this, TAIL, t, nt);
598 }
599
600 /**
601 * Tries to CAS cleanMe slot.
602 */
603 boolean casCleanMe(QNode cmp, QNode val) {
604 return cleanMe == cmp &&
605 U.compareAndSwapObject(this, CLEANME, cmp, val);
606 }
607
608 /**
609 * Puts or takes an item.
610 */
611 @SuppressWarnings("unchecked")
612 E transfer(E e, boolean timed, long nanos) {
613 /* Basic algorithm is to loop trying to take either of
614 * two actions:
615 *
616 * 1. If queue apparently empty or holding same-mode nodes,
617 * try to add node to queue of waiters, wait to be
618 * fulfilled (or cancelled) and return matching item.
619 *
620 * 2. If queue apparently contains waiting items, and this
621 * call is of complementary mode, try to fulfill by CAS'ing
622 * item field of waiting node and dequeuing it, and then
623 * returning matching item.
624 *
625 * In each case, along the way, check for and try to help
626 * advance head and tail on behalf of other stalled/slow
627 * threads.
628 *
629 * The loop starts off with a null check guarding against
630 * seeing uninitialized head or tail values. This never
631 * happens in current SynchronousQueue, but could if
632 * callers held non-volatile/final ref to the
633 * transferer. The check is here anyway because it places
634 * null checks at top of loop, which is usually faster
635 * than having them implicitly interspersed.
636 */
637
638 QNode s = null; // constructed/reused as needed
639 boolean isData = (e != null);
640
641 for (;;) {
642 QNode t = tail;
643 QNode h = head;
644 if (t == null || h == null) // saw uninitialized value
645 continue; // spin
646
647 if (h == t || t.isData == isData) { // empty or same-mode
648 QNode tn = t.next;
649 if (t != tail) // inconsistent read
650 continue;
651 if (tn != null) { // lagging tail
652 advanceTail(t, tn);
653 continue;
654 }
655 if (timed && nanos <= 0L) // can't wait
656 return null;
657 if (s == null)
658 s = new QNode(e, isData);
659 if (!t.casNext(null, s)) // failed to link in
660 continue;
661
662 advanceTail(t, s); // swing tail and wait
663 Object x = awaitFulfill(s, e, timed, nanos);
664 if (x == s) { // wait was cancelled
665 clean(t, s);
666 return null;
667 }
668
669 if (!s.isOffList()) { // not already unlinked
670 advanceHead(t, s); // unlink if head
671 if (x != null) // and forget fields
672 s.item = s;
673 s.waiter = null;
674 }
675 return (x != null) ? (E)x : e;
676
677 } else { // complementary-mode
678 QNode m = h.next; // node to fulfill
679 if (t != tail || m == null || h != head)
680 continue; // inconsistent read
681
682 Object x = m.item;
683 if (isData == (x != null) || // m already fulfilled
684 x == m || // m cancelled
685 !m.casItem(x, e)) { // lost CAS
686 advanceHead(h, m); // dequeue and retry
687 continue;
688 }
689
690 advanceHead(h, m); // successfully fulfilled
691 LockSupport.unpark(m.waiter);
692 return (x != null) ? (E)x : e;
693 }
694 }
695 }
696
697 /**
698 * Spins/blocks until node s is fulfilled.
699 *
700 * @param s the waiting node
701 * @param e the comparison value for checking match
702 * @param timed true if timed wait
703 * @param nanos timeout value
704 * @return matched item, or s if cancelled
705 */
706 Object awaitFulfill(QNode s, E e, boolean timed, long nanos) {
707 /* Same idea as TransferStack.awaitFulfill */
708 final long deadline = timed ? System.nanoTime() + nanos : 0L;
709 Thread w = Thread.currentThread();
710 int spins = (head.next == s)
711 ? (timed ? MAX_TIMED_SPINS : MAX_UNTIMED_SPINS)
712 : 0;
713 for (;;) {
714 if (w.isInterrupted())
715 s.tryCancel(e);
716 Object x = s.item;
717 if (x != e)
718 return x;
719 if (timed) {
720 nanos = deadline - System.nanoTime();
721 if (nanos <= 0L) {
722 s.tryCancel(e);
723 continue;
724 }
725 }
726 if (spins > 0)
727 --spins;
728 else if (s.waiter == null)
729 s.waiter = w;
730 else if (!timed)
731 LockSupport.park(this);
732 else if (nanos > SPIN_FOR_TIMEOUT_THRESHOLD)
733 LockSupport.parkNanos(this, nanos);
734 }
735 }
736
737 /**
738 * Gets rid of cancelled node s with original predecessor pred.
739 */
740 void clean(QNode pred, QNode s) {
741 s.waiter = null; // forget thread
742 /*
743 * At any given time, exactly one node on list cannot be
744 * deleted -- the last inserted node. To accommodate this,
745 * if we cannot delete s, we save its predecessor as
746 * "cleanMe", deleting the previously saved version
747 * first. At least one of node s or the node previously
748 * saved can always be deleted, so this always terminates.
749 */
750 while (pred.next == s) { // Return early if already unlinked
751 QNode h = head;
752 QNode hn = h.next; // Absorb cancelled first node as head
753 if (hn != null && hn.isCancelled()) {
754 advanceHead(h, hn);
755 continue;
756 }
757 QNode t = tail; // Ensure consistent read for tail
758 if (t == h)
759 return;
760 QNode tn = t.next;
761 if (t != tail)
762 continue;
763 if (tn != null) {
764 advanceTail(t, tn);
765 continue;
766 }
767 if (s != t) { // If not tail, try to unsplice
768 QNode sn = s.next;
769 if (sn == s || pred.casNext(s, sn))
770 return;
771 }
772 QNode dp = cleanMe;
773 if (dp != null) { // Try unlinking previous cancelled node
774 QNode d = dp.next;
775 QNode dn;
776 if (d == null || // d is gone or
777 d == dp || // d is off list or
778 !d.isCancelled() || // d not cancelled or
779 (d != t && // d not tail and
780 (dn = d.next) != null && // has successor
781 dn != d && // that is on list
782 dp.casNext(d, dn))) // d unspliced
783 casCleanMe(dp, null);
784 if (dp == pred)
785 return; // s is already saved node
786 } else if (casCleanMe(null, pred))
787 return; // Postpone cleaning s
788 }
789 }
790
791 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
792 private static final long HEAD;
793 private static final long TAIL;
794 private static final long CLEANME;
795 static {
796 try {
797 HEAD = U.objectFieldOffset
798 (TransferQueue.class.getDeclaredField("head"));
799 TAIL = U.objectFieldOffset
800 (TransferQueue.class.getDeclaredField("tail"));
801 CLEANME = U.objectFieldOffset
802 (TransferQueue.class.getDeclaredField("cleanMe"));
803 } catch (ReflectiveOperationException e) {
804 throw new Error(e);
805 }
806 }
807 }
808
809 /**
810 * The transferer. Set only in constructor, but cannot be declared
811 * as final without further complicating serialization. Since
812 * this is accessed only at most once per public method, there
813 * isn't a noticeable performance penalty for using volatile
814 * instead of final here.
815 */
816 private transient volatile Transferer<E> transferer;
817
818 /**
819 * Creates a {@code SynchronousQueue} with nonfair access policy.
820 */
821 public SynchronousQueue() {
822 this(false);
823 }
824
825 /**
826 * Creates a {@code SynchronousQueue} with the specified fairness policy.
827 *
828 * @param fair if true, waiting threads contend in FIFO order for
829 * access; otherwise the order is unspecified.
830 */
831 public SynchronousQueue(boolean fair) {
832 transferer = fair ? new TransferQueue<E>() : new TransferStack<E>();
833 }
834
835 /**
836 * Adds the specified element to this queue, waiting if necessary for
837 * another thread to receive it.
838 *
839 * @throws InterruptedException {@inheritDoc}
840 * @throws NullPointerException {@inheritDoc}
841 */
842 public void put(E e) throws InterruptedException {
843 if (e == null) throw new NullPointerException();
844 if (transferer.transfer(e, false, 0) == null) {
845 Thread.interrupted();
846 throw new InterruptedException();
847 }
848 }
849
850 /**
851 * Inserts the specified element into this queue, waiting if necessary
852 * up to the specified wait time for another thread to receive it.
853 *
854 * @return {@code true} if successful, or {@code false} if the
855 * specified waiting time elapses before a consumer appears
856 * @throws InterruptedException {@inheritDoc}
857 * @throws NullPointerException {@inheritDoc}
858 */
859 public boolean offer(E e, long timeout, TimeUnit unit)
860 throws InterruptedException {
861 if (e == null) throw new NullPointerException();
862 if (transferer.transfer(e, true, unit.toNanos(timeout)) != null)
863 return true;
864 if (!Thread.interrupted())
865 return false;
866 throw new InterruptedException();
867 }
868
869 /**
870 * Inserts the specified element into this queue, if another thread is
871 * waiting to receive it.
872 *
873 * @param e the element to add
874 * @return {@code true} if the element was added to this queue, else
875 * {@code false}
876 * @throws NullPointerException if the specified element is null
877 */
878 public boolean offer(E e) {
879 if (e == null) throw new NullPointerException();
880 return transferer.transfer(e, true, 0) != null;
881 }
882
883 /**
884 * Retrieves and removes the head of this queue, waiting if necessary
885 * for another thread to insert it.
886 *
887 * @return the head of this queue
888 * @throws InterruptedException {@inheritDoc}
889 */
890 public E take() throws InterruptedException {
891 E e = transferer.transfer(null, false, 0);
892 if (e != null)
893 return e;
894 Thread.interrupted();
895 throw new InterruptedException();
896 }
897
898 /**
899 * Retrieves and removes the head of this queue, waiting
900 * if necessary up to the specified wait time, for another thread
901 * to insert it.
902 *
903 * @return the head of this queue, or {@code null} if the
904 * specified waiting time elapses before an element is present
905 * @throws InterruptedException {@inheritDoc}
906 */
907 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
908 E e = transferer.transfer(null, true, unit.toNanos(timeout));
909 if (e != null || !Thread.interrupted())
910 return e;
911 throw new InterruptedException();
912 }
913
914 /**
915 * Retrieves and removes the head of this queue, if another thread
916 * is currently making an element available.
917 *
918 * @return the head of this queue, or {@code null} if no
919 * element is available
920 */
921 public E poll() {
922 return transferer.transfer(null, true, 0);
923 }
924
925 /**
926 * Always returns {@code true}.
927 * A {@code SynchronousQueue} has no internal capacity.
928 *
929 * @return {@code true}
930 */
931 public boolean isEmpty() {
932 return true;
933 }
934
935 /**
936 * Always returns zero.
937 * A {@code SynchronousQueue} has no internal capacity.
938 *
939 * @return zero
940 */
941 public int size() {
942 return 0;
943 }
944
945 /**
946 * Always returns zero.
947 * A {@code SynchronousQueue} has no internal capacity.
948 *
949 * @return zero
950 */
951 public int remainingCapacity() {
952 return 0;
953 }
954
955 /**
956 * Does nothing.
957 * A {@code SynchronousQueue} has no internal capacity.
958 */
959 public void clear() {
960 }
961
962 /**
963 * Always returns {@code false}.
964 * A {@code SynchronousQueue} has no internal capacity.
965 *
966 * @param o the element
967 * @return {@code false}
968 */
969 public boolean contains(Object o) {
970 return false;
971 }
972
973 /**
974 * Always returns {@code false}.
975 * A {@code SynchronousQueue} has no internal capacity.
976 *
977 * @param o the element to remove
978 * @return {@code false}
979 */
980 public boolean remove(Object o) {
981 return false;
982 }
983
984 /**
985 * Returns {@code false} unless the given collection is empty.
986 * A {@code SynchronousQueue} has no internal capacity.
987 *
988 * @param c the collection
989 * @return {@code false} unless given collection is empty
990 */
991 public boolean containsAll(Collection<?> c) {
992 return c.isEmpty();
993 }
994
995 /**
996 * Always returns {@code false}.
997 * A {@code SynchronousQueue} has no internal capacity.
998 *
999 * @param c the collection
1000 * @return {@code false}
1001 */
1002 public boolean removeAll(Collection<?> c) {
1003 return false;
1004 }
1005
1006 /**
1007 * Always returns {@code false}.
1008 * A {@code SynchronousQueue} has no internal capacity.
1009 *
1010 * @param c the collection
1011 * @return {@code false}
1012 */
1013 public boolean retainAll(Collection<?> c) {
1014 return false;
1015 }
1016
1017 /**
1018 * Always returns {@code null}.
1019 * A {@code SynchronousQueue} does not return elements
1020 * unless actively waited on.
1021 *
1022 * @return {@code null}
1023 */
1024 public E peek() {
1025 return null;
1026 }
1027
1028 /**
1029 * Returns an empty iterator in which {@code hasNext} always returns
1030 * {@code false}.
1031 *
1032 * @return an empty iterator
1033 */
1034 public Iterator<E> iterator() {
1035 return Collections.emptyIterator();
1036 }
1037
1038 /**
1039 * Returns an empty spliterator in which calls to
1040 * {@link java.util.Spliterator#trySplit()} always return {@code null}.
1041 *
1042 * @return an empty spliterator
1043 * @since 1.8
1044 */
1045 public Spliterator<E> spliterator() {
1046 return Spliterators.emptySpliterator();
1047 }
1048
1049 /**
1050 * Returns a zero-length array.
1051 * @return a zero-length array
1052 */
1053 public Object[] toArray() {
1054 return new Object[0];
1055 }
1056
1057 /**
1058 * Sets the zeroth element of the specified array to {@code null}
1059 * (if the array has non-zero length) and returns it.
1060 *
1061 * @param a the array
1062 * @return the specified array
1063 * @throws NullPointerException if the specified array is null
1064 */
1065 public <T> T[] toArray(T[] a) {
1066 if (a.length > 0)
1067 a[0] = null;
1068 return a;
1069 }
1070
1071 /**
1072 * Always returns {@code "[]"}.
1073 * @return {@code "[]"}
1074 */
1075 public String toString() {
1076 return "[]";
1077 }
1078
1079 /**
1080 * @throws UnsupportedOperationException {@inheritDoc}
1081 * @throws ClassCastException {@inheritDoc}
1082 * @throws NullPointerException {@inheritDoc}
1083 * @throws IllegalArgumentException {@inheritDoc}
1084 */
1085 public int drainTo(Collection<? super E> c) {
1086 if (c == null)
1087 throw new NullPointerException();
1088 if (c == this)
1089 throw new IllegalArgumentException();
1090 int n = 0;
1091 for (E e; (e = poll()) != null;) {
1092 c.add(e);
1093 ++n;
1094 }
1095 return n;
1096 }
1097
1098 /**
1099 * @throws UnsupportedOperationException {@inheritDoc}
1100 * @throws ClassCastException {@inheritDoc}
1101 * @throws NullPointerException {@inheritDoc}
1102 * @throws IllegalArgumentException {@inheritDoc}
1103 */
1104 public int drainTo(Collection<? super E> c, int maxElements) {
1105 if (c == null)
1106 throw new NullPointerException();
1107 if (c == this)
1108 throw new IllegalArgumentException();
1109 int n = 0;
1110 for (E e; n < maxElements && (e = poll()) != null;) {
1111 c.add(e);
1112 ++n;
1113 }
1114 return n;
1115 }
1116
1117 /*
1118 * To cope with serialization strategy in the 1.5 version of
1119 * SynchronousQueue, we declare some unused classes and fields
1120 * that exist solely to enable serializability across versions.
1121 * These fields are never used, so are initialized only if this
1122 * object is ever serialized or deserialized.
1123 */
1124
1125 @SuppressWarnings("serial")
1126 static class WaitQueue implements java.io.Serializable { }
1127 static class LifoWaitQueue extends WaitQueue {
1128 private static final long serialVersionUID = -3633113410248163686L;
1129 }
1130 static class FifoWaitQueue extends WaitQueue {
1131 private static final long serialVersionUID = -3623113410248163686L;
1132 }
1133 private ReentrantLock qlock;
1134 private WaitQueue waitingProducers;
1135 private WaitQueue waitingConsumers;
1136
1137 /**
1138 * Saves this queue to a stream (that is, serializes it).
1139 * @param s the stream
1140 * @throws java.io.IOException if an I/O error occurs
1141 */
1142 private void writeObject(java.io.ObjectOutputStream s)
1143 throws java.io.IOException {
1144 boolean fair = transferer instanceof TransferQueue;
1145 if (fair) {
1146 qlock = new ReentrantLock(true);
1147 waitingProducers = new FifoWaitQueue();
1148 waitingConsumers = new FifoWaitQueue();
1149 }
1150 else {
1151 qlock = new ReentrantLock();
1152 waitingProducers = new LifoWaitQueue();
1153 waitingConsumers = new LifoWaitQueue();
1154 }
1155 s.defaultWriteObject();
1156 }
1157
1158 /**
1159 * Reconstitutes this queue from a stream (that is, deserializes it).
1160 * @param s the stream
1161 * @throws ClassNotFoundException if the class of a serialized object
1162 * could not be found
1163 * @throws java.io.IOException if an I/O error occurs
1164 */
1165 private void readObject(java.io.ObjectInputStream s)
1166 throws java.io.IOException, ClassNotFoundException {
1167 s.defaultReadObject();
1168 if (waitingProducers instanceof FifoWaitQueue)
1169 transferer = new TransferQueue<E>();
1170 else
1171 transferer = new TransferStack<E>();
1172 }
1173
1174 static {
1175 // Reduce the risk of rare disastrous classloading in first call to
1176 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1177 Class<?> ensureLoaded = LockSupport.class;
1178 }
1179 }