ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk8/java/util/concurrent/ThreadPoolExecutor.java
Revision: 1.3
Committed: Mon Jul 24 15:09:05 2017 UTC (6 years, 9 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.2: +19 -1 lines
Log Message:
backport 8172204: Better Thread Pool execution

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package java.util.concurrent;
8    
9 jsr166 1.3 import java.security.AccessControlContext;
10     import java.security.AccessController;
11     import java.security.PrivilegedAction;
12 jsr166 1.1 import java.util.ArrayList;
13     import java.util.ConcurrentModificationException;
14     import java.util.HashSet;
15     import java.util.Iterator;
16     import java.util.List;
17     import java.util.concurrent.atomic.AtomicInteger;
18     import java.util.concurrent.locks.AbstractQueuedSynchronizer;
19     import java.util.concurrent.locks.Condition;
20     import java.util.concurrent.locks.ReentrantLock;
21    
22     /**
23     * An {@link ExecutorService} that executes each submitted task using
24     * one of possibly several pooled threads, normally configured
25     * using {@link Executors} factory methods.
26     *
27     * <p>Thread pools address two different problems: they usually
28     * provide improved performance when executing large numbers of
29     * asynchronous tasks, due to reduced per-task invocation overhead,
30     * and they provide a means of bounding and managing the resources,
31     * including threads, consumed when executing a collection of tasks.
32     * Each {@code ThreadPoolExecutor} also maintains some basic
33     * statistics, such as the number of completed tasks.
34     *
35     * <p>To be useful across a wide range of contexts, this class
36     * provides many adjustable parameters and extensibility
37     * hooks. However, programmers are urged to use the more convenient
38     * {@link Executors} factory methods {@link
39     * Executors#newCachedThreadPool} (unbounded thread pool, with
40     * automatic thread reclamation), {@link Executors#newFixedThreadPool}
41     * (fixed size thread pool) and {@link
42     * Executors#newSingleThreadExecutor} (single background thread), that
43     * preconfigure settings for the most common usage
44     * scenarios. Otherwise, use the following guide when manually
45     * configuring and tuning this class:
46     *
47     * <dl>
48     *
49     * <dt>Core and maximum pool sizes</dt>
50     *
51 jsr166 1.2 * <dd>A {@code ThreadPoolExecutor} will automatically adjust the
52 jsr166 1.1 * pool size (see {@link #getPoolSize})
53     * according to the bounds set by
54     * corePoolSize (see {@link #getCorePoolSize}) and
55     * maximumPoolSize (see {@link #getMaximumPoolSize}).
56     *
57     * When a new task is submitted in method {@link #execute(Runnable)},
58 jsr166 1.2 * if fewer than corePoolSize threads are running, a new thread is
59 jsr166 1.1 * created to handle the request, even if other worker threads are
60 jsr166 1.2 * idle. Else if fewer than maximumPoolSize threads are running, a
61     * new thread will be created to handle the request only if the queue
62     * is full. By setting corePoolSize and maximumPoolSize the same, you
63     * create a fixed-size thread pool. By setting maximumPoolSize to an
64     * essentially unbounded value such as {@code Integer.MAX_VALUE}, you
65     * allow the pool to accommodate an arbitrary number of concurrent
66     * tasks. Most typically, core and maximum pool sizes are set only
67     * upon construction, but they may also be changed dynamically using
68     * {@link #setCorePoolSize} and {@link #setMaximumPoolSize}. </dd>
69 jsr166 1.1 *
70     * <dt>On-demand construction</dt>
71     *
72 jsr166 1.2 * <dd>By default, even core threads are initially created and
73 jsr166 1.1 * started only when new tasks arrive, but this can be overridden
74     * dynamically using method {@link #prestartCoreThread} or {@link
75     * #prestartAllCoreThreads}. You probably want to prestart threads if
76     * you construct the pool with a non-empty queue. </dd>
77     *
78     * <dt>Creating new threads</dt>
79     *
80 jsr166 1.2 * <dd>New threads are created using a {@link ThreadFactory}. If not
81 jsr166 1.1 * otherwise specified, a {@link Executors#defaultThreadFactory} is
82     * used, that creates threads to all be in the same {@link
83     * ThreadGroup} and with the same {@code NORM_PRIORITY} priority and
84     * non-daemon status. By supplying a different ThreadFactory, you can
85     * alter the thread's name, thread group, priority, daemon status,
86     * etc. If a {@code ThreadFactory} fails to create a thread when asked
87     * by returning null from {@code newThread}, the executor will
88     * continue, but might not be able to execute any tasks. Threads
89     * should possess the "modifyThread" {@code RuntimePermission}. If
90     * worker threads or other threads using the pool do not possess this
91     * permission, service may be degraded: configuration changes may not
92     * take effect in a timely manner, and a shutdown pool may remain in a
93     * state in which termination is possible but not completed.</dd>
94     *
95     * <dt>Keep-alive times</dt>
96     *
97 jsr166 1.2 * <dd>If the pool currently has more than corePoolSize threads,
98 jsr166 1.1 * excess threads will be terminated if they have been idle for more
99     * than the keepAliveTime (see {@link #getKeepAliveTime(TimeUnit)}).
100     * This provides a means of reducing resource consumption when the
101     * pool is not being actively used. If the pool becomes more active
102     * later, new threads will be constructed. This parameter can also be
103     * changed dynamically using method {@link #setKeepAliveTime(long,
104     * TimeUnit)}. Using a value of {@code Long.MAX_VALUE} {@link
105     * TimeUnit#NANOSECONDS} effectively disables idle threads from ever
106     * terminating prior to shut down. By default, the keep-alive policy
107     * applies only when there are more than corePoolSize threads, but
108     * method {@link #allowCoreThreadTimeOut(boolean)} can be used to
109     * apply this time-out policy to core threads as well, so long as the
110     * keepAliveTime value is non-zero. </dd>
111     *
112     * <dt>Queuing</dt>
113     *
114 jsr166 1.2 * <dd>Any {@link BlockingQueue} may be used to transfer and hold
115 jsr166 1.1 * submitted tasks. The use of this queue interacts with pool sizing:
116     *
117     * <ul>
118     *
119     * <li>If fewer than corePoolSize threads are running, the Executor
120     * always prefers adding a new thread
121     * rather than queuing.
122     *
123     * <li>If corePoolSize or more threads are running, the Executor
124     * always prefers queuing a request rather than adding a new
125     * thread.
126     *
127     * <li>If a request cannot be queued, a new thread is created unless
128     * this would exceed maximumPoolSize, in which case, the task will be
129     * rejected.
130     *
131     * </ul>
132     *
133     * There are three general strategies for queuing:
134     * <ol>
135     *
136     * <li><em> Direct handoffs.</em> A good default choice for a work
137     * queue is a {@link SynchronousQueue} that hands off tasks to threads
138     * without otherwise holding them. Here, an attempt to queue a task
139     * will fail if no threads are immediately available to run it, so a
140     * new thread will be constructed. This policy avoids lockups when
141     * handling sets of requests that might have internal dependencies.
142     * Direct handoffs generally require unbounded maximumPoolSizes to
143     * avoid rejection of new submitted tasks. This in turn admits the
144     * possibility of unbounded thread growth when commands continue to
145     * arrive on average faster than they can be processed.
146     *
147     * <li><em> Unbounded queues.</em> Using an unbounded queue (for
148     * example a {@link LinkedBlockingQueue} without a predefined
149     * capacity) will cause new tasks to wait in the queue when all
150     * corePoolSize threads are busy. Thus, no more than corePoolSize
151     * threads will ever be created. (And the value of the maximumPoolSize
152     * therefore doesn't have any effect.) This may be appropriate when
153     * each task is completely independent of others, so tasks cannot
154     * affect each others execution; for example, in a web page server.
155     * While this style of queuing can be useful in smoothing out
156     * transient bursts of requests, it admits the possibility of
157     * unbounded work queue growth when commands continue to arrive on
158     * average faster than they can be processed.
159     *
160     * <li><em>Bounded queues.</em> A bounded queue (for example, an
161     * {@link ArrayBlockingQueue}) helps prevent resource exhaustion when
162     * used with finite maximumPoolSizes, but can be more difficult to
163     * tune and control. Queue sizes and maximum pool sizes may be traded
164     * off for each other: Using large queues and small pools minimizes
165     * CPU usage, OS resources, and context-switching overhead, but can
166     * lead to artificially low throughput. If tasks frequently block (for
167     * example if they are I/O bound), a system may be able to schedule
168     * time for more threads than you otherwise allow. Use of small queues
169     * generally requires larger pool sizes, which keeps CPUs busier but
170     * may encounter unacceptable scheduling overhead, which also
171     * decreases throughput.
172     *
173     * </ol>
174     *
175     * </dd>
176     *
177     * <dt>Rejected tasks</dt>
178     *
179 jsr166 1.2 * <dd>New tasks submitted in method {@link #execute(Runnable)} will be
180 jsr166 1.1 * <em>rejected</em> when the Executor has been shut down, and also when
181     * the Executor uses finite bounds for both maximum threads and work queue
182     * capacity, and is saturated. In either case, the {@code execute} method
183     * invokes the {@link
184     * RejectedExecutionHandler#rejectedExecution(Runnable, ThreadPoolExecutor)}
185     * method of its {@link RejectedExecutionHandler}. Four predefined handler
186     * policies are provided:
187     *
188     * <ol>
189     *
190 jsr166 1.2 * <li>In the default {@link ThreadPoolExecutor.AbortPolicy}, the handler
191     * throws a runtime {@link RejectedExecutionException} upon rejection.
192 jsr166 1.1 *
193     * <li>In {@link ThreadPoolExecutor.CallerRunsPolicy}, the thread
194     * that invokes {@code execute} itself runs the task. This provides a
195     * simple feedback control mechanism that will slow down the rate that
196     * new tasks are submitted.
197     *
198     * <li>In {@link ThreadPoolExecutor.DiscardPolicy}, a task that
199     * cannot be executed is simply dropped.
200     *
201     * <li>In {@link ThreadPoolExecutor.DiscardOldestPolicy}, if the
202     * executor is not shut down, the task at the head of the work queue
203     * is dropped, and then execution is retried (which can fail again,
204     * causing this to be repeated.)
205     *
206     * </ol>
207     *
208     * It is possible to define and use other kinds of {@link
209     * RejectedExecutionHandler} classes. Doing so requires some care
210     * especially when policies are designed to work only under particular
211     * capacity or queuing policies. </dd>
212     *
213     * <dt>Hook methods</dt>
214     *
215 jsr166 1.2 * <dd>This class provides {@code protected} overridable
216 jsr166 1.1 * {@link #beforeExecute(Thread, Runnable)} and
217     * {@link #afterExecute(Runnable, Throwable)} methods that are called
218     * before and after execution of each task. These can be used to
219     * manipulate the execution environment; for example, reinitializing
220     * ThreadLocals, gathering statistics, or adding log entries.
221     * Additionally, method {@link #terminated} can be overridden to perform
222     * any special processing that needs to be done once the Executor has
223     * fully terminated.
224     *
225     * <p>If hook, callback, or BlockingQueue methods throw exceptions,
226     * internal worker threads may in turn fail, abruptly terminate, and
227     * possibly be replaced.</dd>
228     *
229     * <dt>Queue maintenance</dt>
230     *
231 jsr166 1.2 * <dd>Method {@link #getQueue()} allows access to the work queue
232 jsr166 1.1 * for purposes of monitoring and debugging. Use of this method for
233     * any other purpose is strongly discouraged. Two supplied methods,
234     * {@link #remove(Runnable)} and {@link #purge} are available to
235     * assist in storage reclamation when large numbers of queued tasks
236     * become cancelled.</dd>
237     *
238     * <dt>Finalization</dt>
239     *
240 jsr166 1.2 * <dd>A pool that is no longer referenced in a program <em>AND</em>
241 jsr166 1.1 * has no remaining threads will be {@code shutdown} automatically. If
242     * you would like to ensure that unreferenced pools are reclaimed even
243     * if users forget to call {@link #shutdown}, then you must arrange
244     * that unused threads eventually die, by setting appropriate
245     * keep-alive times, using a lower bound of zero core threads and/or
246     * setting {@link #allowCoreThreadTimeOut(boolean)}. </dd>
247     *
248     * </dl>
249     *
250     * <p><b>Extension example</b>. Most extensions of this class
251     * override one or more of the protected hook methods. For example,
252     * here is a subclass that adds a simple pause/resume feature:
253     *
254     * <pre> {@code
255     * class PausableThreadPoolExecutor extends ThreadPoolExecutor {
256     * private boolean isPaused;
257     * private ReentrantLock pauseLock = new ReentrantLock();
258     * private Condition unpaused = pauseLock.newCondition();
259     *
260     * public PausableThreadPoolExecutor(...) { super(...); }
261     *
262     * protected void beforeExecute(Thread t, Runnable r) {
263     * super.beforeExecute(t, r);
264     * pauseLock.lock();
265     * try {
266     * while (isPaused) unpaused.await();
267     * } catch (InterruptedException ie) {
268     * t.interrupt();
269     * } finally {
270     * pauseLock.unlock();
271     * }
272     * }
273     *
274     * public void pause() {
275     * pauseLock.lock();
276     * try {
277     * isPaused = true;
278     * } finally {
279     * pauseLock.unlock();
280     * }
281     * }
282     *
283     * public void resume() {
284     * pauseLock.lock();
285     * try {
286     * isPaused = false;
287     * unpaused.signalAll();
288     * } finally {
289     * pauseLock.unlock();
290     * }
291     * }
292     * }}</pre>
293     *
294     * @since 1.5
295     * @author Doug Lea
296     */
297     public class ThreadPoolExecutor extends AbstractExecutorService {
298     /**
299     * The main pool control state, ctl, is an atomic integer packing
300     * two conceptual fields
301     * workerCount, indicating the effective number of threads
302     * runState, indicating whether running, shutting down etc
303     *
304     * In order to pack them into one int, we limit workerCount to
305     * (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2
306     * billion) otherwise representable. If this is ever an issue in
307     * the future, the variable can be changed to be an AtomicLong,
308     * and the shift/mask constants below adjusted. But until the need
309     * arises, this code is a bit faster and simpler using an int.
310     *
311     * The workerCount is the number of workers that have been
312     * permitted to start and not permitted to stop. The value may be
313     * transiently different from the actual number of live threads,
314     * for example when a ThreadFactory fails to create a thread when
315     * asked, and when exiting threads are still performing
316     * bookkeeping before terminating. The user-visible pool size is
317     * reported as the current size of the workers set.
318     *
319     * The runState provides the main lifecycle control, taking on values:
320     *
321     * RUNNING: Accept new tasks and process queued tasks
322     * SHUTDOWN: Don't accept new tasks, but process queued tasks
323     * STOP: Don't accept new tasks, don't process queued tasks,
324     * and interrupt in-progress tasks
325     * TIDYING: All tasks have terminated, workerCount is zero,
326     * the thread transitioning to state TIDYING
327     * will run the terminated() hook method
328     * TERMINATED: terminated() has completed
329     *
330     * The numerical order among these values matters, to allow
331     * ordered comparisons. The runState monotonically increases over
332     * time, but need not hit each state. The transitions are:
333     *
334     * RUNNING -> SHUTDOWN
335     * On invocation of shutdown(), perhaps implicitly in finalize()
336     * (RUNNING or SHUTDOWN) -> STOP
337     * On invocation of shutdownNow()
338     * SHUTDOWN -> TIDYING
339     * When both queue and pool are empty
340     * STOP -> TIDYING
341     * When pool is empty
342     * TIDYING -> TERMINATED
343     * When the terminated() hook method has completed
344     *
345     * Threads waiting in awaitTermination() will return when the
346     * state reaches TERMINATED.
347     *
348     * Detecting the transition from SHUTDOWN to TIDYING is less
349     * straightforward than you'd like because the queue may become
350     * empty after non-empty and vice versa during SHUTDOWN state, but
351     * we can only terminate if, after seeing that it is empty, we see
352     * that workerCount is 0 (which sometimes entails a recheck -- see
353     * below).
354     */
355     private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
356     private static final int COUNT_BITS = Integer.SIZE - 3;
357     private static final int CAPACITY = (1 << COUNT_BITS) - 1;
358    
359     // runState is stored in the high-order bits
360     private static final int RUNNING = -1 << COUNT_BITS;
361     private static final int SHUTDOWN = 0 << COUNT_BITS;
362     private static final int STOP = 1 << COUNT_BITS;
363     private static final int TIDYING = 2 << COUNT_BITS;
364     private static final int TERMINATED = 3 << COUNT_BITS;
365    
366     // Packing and unpacking ctl
367     private static int runStateOf(int c) { return c & ~CAPACITY; }
368     private static int workerCountOf(int c) { return c & CAPACITY; }
369     private static int ctlOf(int rs, int wc) { return rs | wc; }
370    
371     /*
372     * Bit field accessors that don't require unpacking ctl.
373     * These depend on the bit layout and on workerCount being never negative.
374     */
375    
376     private static boolean runStateLessThan(int c, int s) {
377     return c < s;
378     }
379    
380     private static boolean runStateAtLeast(int c, int s) {
381     return c >= s;
382     }
383    
384     private static boolean isRunning(int c) {
385     return c < SHUTDOWN;
386     }
387    
388     /**
389     * Attempts to CAS-increment the workerCount field of ctl.
390     */
391     private boolean compareAndIncrementWorkerCount(int expect) {
392     return ctl.compareAndSet(expect, expect + 1);
393     }
394    
395     /**
396     * Attempts to CAS-decrement the workerCount field of ctl.
397     */
398     private boolean compareAndDecrementWorkerCount(int expect) {
399     return ctl.compareAndSet(expect, expect - 1);
400     }
401    
402     /**
403     * Decrements the workerCount field of ctl. This is called only on
404     * abrupt termination of a thread (see processWorkerExit). Other
405     * decrements are performed within getTask.
406     */
407     private void decrementWorkerCount() {
408     do {} while (! compareAndDecrementWorkerCount(ctl.get()));
409     }
410    
411     /**
412     * The queue used for holding tasks and handing off to worker
413     * threads. We do not require that workQueue.poll() returning
414     * null necessarily means that workQueue.isEmpty(), so rely
415     * solely on isEmpty to see if the queue is empty (which we must
416     * do for example when deciding whether to transition from
417     * SHUTDOWN to TIDYING). This accommodates special-purpose
418     * queues such as DelayQueues for which poll() is allowed to
419     * return null even if it may later return non-null when delays
420     * expire.
421     */
422     private final BlockingQueue<Runnable> workQueue;
423    
424     /**
425     * Lock held on access to workers set and related bookkeeping.
426     * While we could use a concurrent set of some sort, it turns out
427     * to be generally preferable to use a lock. Among the reasons is
428     * that this serializes interruptIdleWorkers, which avoids
429     * unnecessary interrupt storms, especially during shutdown.
430     * Otherwise exiting threads would concurrently interrupt those
431     * that have not yet interrupted. It also simplifies some of the
432     * associated statistics bookkeeping of largestPoolSize etc. We
433     * also hold mainLock on shutdown and shutdownNow, for the sake of
434     * ensuring workers set is stable while separately checking
435     * permission to interrupt and actually interrupting.
436     */
437     private final ReentrantLock mainLock = new ReentrantLock();
438    
439     /**
440     * Set containing all worker threads in pool. Accessed only when
441     * holding mainLock.
442     */
443     private final HashSet<Worker> workers = new HashSet<>();
444    
445     /**
446     * Wait condition to support awaitTermination.
447     */
448     private final Condition termination = mainLock.newCondition();
449    
450     /**
451     * Tracks largest attained pool size. Accessed only under
452     * mainLock.
453     */
454     private int largestPoolSize;
455    
456     /**
457     * Counter for completed tasks. Updated only on termination of
458     * worker threads. Accessed only under mainLock.
459     */
460     private long completedTaskCount;
461    
462     /*
463     * All user control parameters are declared as volatiles so that
464     * ongoing actions are based on freshest values, but without need
465     * for locking, since no internal invariants depend on them
466     * changing synchronously with respect to other actions.
467     */
468    
469     /**
470     * Factory for new threads. All threads are created using this
471     * factory (via method addWorker). All callers must be prepared
472     * for addWorker to fail, which may reflect a system or user's
473     * policy limiting the number of threads. Even though it is not
474     * treated as an error, failure to create threads may result in
475     * new tasks being rejected or existing ones remaining stuck in
476     * the queue.
477     *
478     * We go further and preserve pool invariants even in the face of
479     * errors such as OutOfMemoryError, that might be thrown while
480     * trying to create threads. Such errors are rather common due to
481     * the need to allocate a native stack in Thread.start, and users
482     * will want to perform clean pool shutdown to clean up. There
483     * will likely be enough memory available for the cleanup code to
484     * complete without encountering yet another OutOfMemoryError.
485     */
486     private volatile ThreadFactory threadFactory;
487    
488     /**
489     * Handler called when saturated or shutdown in execute.
490     */
491     private volatile RejectedExecutionHandler handler;
492    
493     /**
494     * Timeout in nanoseconds for idle threads waiting for work.
495     * Threads use this timeout when there are more than corePoolSize
496     * present or if allowCoreThreadTimeOut. Otherwise they wait
497     * forever for new work.
498     */
499     private volatile long keepAliveTime;
500    
501     /**
502     * If false (default), core threads stay alive even when idle.
503     * If true, core threads use keepAliveTime to time out waiting
504     * for work.
505     */
506     private volatile boolean allowCoreThreadTimeOut;
507    
508     /**
509     * Core pool size is the minimum number of workers to keep alive
510     * (and not allow to time out etc) unless allowCoreThreadTimeOut
511     * is set, in which case the minimum is zero.
512     */
513     private volatile int corePoolSize;
514    
515     /**
516     * Maximum pool size. Note that the actual maximum is internally
517     * bounded by CAPACITY.
518     */
519     private volatile int maximumPoolSize;
520    
521     /**
522     * The default rejected execution handler.
523     */
524     private static final RejectedExecutionHandler defaultHandler =
525     new AbortPolicy();
526    
527     /**
528     * Permission required for callers of shutdown and shutdownNow.
529     * We additionally require (see checkShutdownAccess) that callers
530     * have permission to actually interrupt threads in the worker set
531     * (as governed by Thread.interrupt, which relies on
532     * ThreadGroup.checkAccess, which in turn relies on
533     * SecurityManager.checkAccess). Shutdowns are attempted only if
534     * these checks pass.
535     *
536     * All actual invocations of Thread.interrupt (see
537     * interruptIdleWorkers and interruptWorkers) ignore
538     * SecurityExceptions, meaning that the attempted interrupts
539     * silently fail. In the case of shutdown, they should not fail
540     * unless the SecurityManager has inconsistent policies, sometimes
541     * allowing access to a thread and sometimes not. In such cases,
542     * failure to actually interrupt threads may disable or delay full
543     * termination. Other uses of interruptIdleWorkers are advisory,
544     * and failure to actually interrupt will merely delay response to
545     * configuration changes so is not handled exceptionally.
546     */
547     private static final RuntimePermission shutdownPerm =
548     new RuntimePermission("modifyThread");
549    
550 jsr166 1.3 /** The context to be used when executing the finalizer, or null. */
551     private final AccessControlContext acc;
552    
553 jsr166 1.1 /**
554     * Class Worker mainly maintains interrupt control state for
555     * threads running tasks, along with other minor bookkeeping.
556     * This class opportunistically extends AbstractQueuedSynchronizer
557     * to simplify acquiring and releasing a lock surrounding each
558     * task execution. This protects against interrupts that are
559     * intended to wake up a worker thread waiting for a task from
560     * instead interrupting a task being run. We implement a simple
561     * non-reentrant mutual exclusion lock rather than use
562     * ReentrantLock because we do not want worker tasks to be able to
563     * reacquire the lock when they invoke pool control methods like
564     * setCorePoolSize. Additionally, to suppress interrupts until
565     * the thread actually starts running tasks, we initialize lock
566     * state to a negative value, and clear it upon start (in
567     * runWorker).
568     */
569     private final class Worker
570     extends AbstractQueuedSynchronizer
571     implements Runnable
572     {
573     /**
574     * This class will never be serialized, but we provide a
575     * serialVersionUID to suppress a javac warning.
576     */
577     private static final long serialVersionUID = 6138294804551838833L;
578    
579     /** Thread this worker is running in. Null if factory fails. */
580     final Thread thread;
581     /** Initial task to run. Possibly null. */
582     Runnable firstTask;
583     /** Per-thread task counter */
584     volatile long completedTasks;
585    
586 jsr166 1.2 // TODO: switch to AbstractQueuedLongSynchronizer and move
587     // completedTasks into the lock word.
588    
589 jsr166 1.1 /**
590     * Creates with given first task and thread from ThreadFactory.
591     * @param firstTask the first task (null if none)
592     */
593     Worker(Runnable firstTask) {
594     setState(-1); // inhibit interrupts until runWorker
595     this.firstTask = firstTask;
596     this.thread = getThreadFactory().newThread(this);
597     }
598    
599     /** Delegates main run loop to outer runWorker. */
600     public void run() {
601     runWorker(this);
602     }
603    
604     // Lock methods
605     //
606     // The value 0 represents the unlocked state.
607     // The value 1 represents the locked state.
608    
609     protected boolean isHeldExclusively() {
610     return getState() != 0;
611     }
612    
613     protected boolean tryAcquire(int unused) {
614     if (compareAndSetState(0, 1)) {
615     setExclusiveOwnerThread(Thread.currentThread());
616     return true;
617     }
618     return false;
619     }
620    
621     protected boolean tryRelease(int unused) {
622     setExclusiveOwnerThread(null);
623     setState(0);
624     return true;
625     }
626    
627     public void lock() { acquire(1); }
628     public boolean tryLock() { return tryAcquire(1); }
629     public void unlock() { release(1); }
630     public boolean isLocked() { return isHeldExclusively(); }
631    
632     void interruptIfStarted() {
633     Thread t;
634     if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
635     try {
636     t.interrupt();
637     } catch (SecurityException ignore) {
638     }
639     }
640     }
641     }
642    
643     /*
644     * Methods for setting control state
645     */
646    
647     /**
648     * Transitions runState to given target, or leaves it alone if
649     * already at least the given target.
650     *
651     * @param targetState the desired state, either SHUTDOWN or STOP
652     * (but not TIDYING or TERMINATED -- use tryTerminate for that)
653     */
654     private void advanceRunState(int targetState) {
655     // assert targetState == SHUTDOWN || targetState == STOP;
656     for (;;) {
657     int c = ctl.get();
658     if (runStateAtLeast(c, targetState) ||
659     ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
660     break;
661     }
662     }
663    
664     /**
665     * Transitions to TERMINATED state if either (SHUTDOWN and pool
666     * and queue empty) or (STOP and pool empty). If otherwise
667     * eligible to terminate but workerCount is nonzero, interrupts an
668     * idle worker to ensure that shutdown signals propagate. This
669     * method must be called following any action that might make
670     * termination possible -- reducing worker count or removing tasks
671     * from the queue during shutdown. The method is non-private to
672     * allow access from ScheduledThreadPoolExecutor.
673     */
674     final void tryTerminate() {
675     for (;;) {
676     int c = ctl.get();
677     if (isRunning(c) ||
678     runStateAtLeast(c, TIDYING) ||
679     (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
680     return;
681     if (workerCountOf(c) != 0) { // Eligible to terminate
682     interruptIdleWorkers(ONLY_ONE);
683     return;
684     }
685    
686     final ReentrantLock mainLock = this.mainLock;
687     mainLock.lock();
688     try {
689     if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
690     try {
691     terminated();
692     } finally {
693     ctl.set(ctlOf(TERMINATED, 0));
694     termination.signalAll();
695     }
696     return;
697     }
698     } finally {
699     mainLock.unlock();
700     }
701     // else retry on failed CAS
702     }
703     }
704    
705     /*
706     * Methods for controlling interrupts to worker threads.
707     */
708    
709     /**
710     * If there is a security manager, makes sure caller has
711     * permission to shut down threads in general (see shutdownPerm).
712     * If this passes, additionally makes sure the caller is allowed
713     * to interrupt each worker thread. This might not be true even if
714     * first check passed, if the SecurityManager treats some threads
715     * specially.
716     */
717     private void checkShutdownAccess() {
718     SecurityManager security = System.getSecurityManager();
719     if (security != null) {
720     security.checkPermission(shutdownPerm);
721     final ReentrantLock mainLock = this.mainLock;
722     mainLock.lock();
723     try {
724     for (Worker w : workers)
725     security.checkAccess(w.thread);
726     } finally {
727     mainLock.unlock();
728     }
729     }
730     }
731    
732     /**
733     * Interrupts all threads, even if active. Ignores SecurityExceptions
734     * (in which case some threads may remain uninterrupted).
735     */
736     private void interruptWorkers() {
737     final ReentrantLock mainLock = this.mainLock;
738     mainLock.lock();
739     try {
740     for (Worker w : workers)
741     w.interruptIfStarted();
742     } finally {
743     mainLock.unlock();
744     }
745     }
746    
747     /**
748     * Interrupts threads that might be waiting for tasks (as
749     * indicated by not being locked) so they can check for
750     * termination or configuration changes. Ignores
751     * SecurityExceptions (in which case some threads may remain
752     * uninterrupted).
753     *
754     * @param onlyOne If true, interrupt at most one worker. This is
755     * called only from tryTerminate when termination is otherwise
756     * enabled but there are still other workers. In this case, at
757     * most one waiting worker is interrupted to propagate shutdown
758     * signals in case all threads are currently waiting.
759     * Interrupting any arbitrary thread ensures that newly arriving
760     * workers since shutdown began will also eventually exit.
761     * To guarantee eventual termination, it suffices to always
762     * interrupt only one idle worker, but shutdown() interrupts all
763     * idle workers so that redundant workers exit promptly, not
764     * waiting for a straggler task to finish.
765     */
766     private void interruptIdleWorkers(boolean onlyOne) {
767     final ReentrantLock mainLock = this.mainLock;
768     mainLock.lock();
769     try {
770     for (Worker w : workers) {
771     Thread t = w.thread;
772     if (!t.isInterrupted() && w.tryLock()) {
773     try {
774     t.interrupt();
775     } catch (SecurityException ignore) {
776     } finally {
777     w.unlock();
778     }
779     }
780     if (onlyOne)
781     break;
782     }
783     } finally {
784     mainLock.unlock();
785     }
786     }
787    
788     /**
789     * Common form of interruptIdleWorkers, to avoid having to
790     * remember what the boolean argument means.
791     */
792     private void interruptIdleWorkers() {
793     interruptIdleWorkers(false);
794     }
795    
796     private static final boolean ONLY_ONE = true;
797    
798     /*
799     * Misc utilities, most of which are also exported to
800     * ScheduledThreadPoolExecutor
801     */
802    
803     /**
804     * Invokes the rejected execution handler for the given command.
805     * Package-protected for use by ScheduledThreadPoolExecutor.
806     */
807     final void reject(Runnable command) {
808     handler.rejectedExecution(command, this);
809     }
810    
811     /**
812     * Performs any further cleanup following run state transition on
813     * invocation of shutdown. A no-op here, but used by
814     * ScheduledThreadPoolExecutor to cancel delayed tasks.
815     */
816     void onShutdown() {
817     }
818    
819     /**
820     * Drains the task queue into a new list, normally using
821     * drainTo. But if the queue is a DelayQueue or any other kind of
822     * queue for which poll or drainTo may fail to remove some
823     * elements, it deletes them one by one.
824     */
825     private List<Runnable> drainQueue() {
826     BlockingQueue<Runnable> q = workQueue;
827     ArrayList<Runnable> taskList = new ArrayList<>();
828     q.drainTo(taskList);
829     if (!q.isEmpty()) {
830     for (Runnable r : q.toArray(new Runnable[0])) {
831     if (q.remove(r))
832     taskList.add(r);
833     }
834     }
835     return taskList;
836     }
837    
838     /*
839     * Methods for creating, running and cleaning up after workers
840     */
841    
842     /**
843     * Checks if a new worker can be added with respect to current
844     * pool state and the given bound (either core or maximum). If so,
845     * the worker count is adjusted accordingly, and, if possible, a
846     * new worker is created and started, running firstTask as its
847     * first task. This method returns false if the pool is stopped or
848     * eligible to shut down. It also returns false if the thread
849     * factory fails to create a thread when asked. If the thread
850     * creation fails, either due to the thread factory returning
851     * null, or due to an exception (typically OutOfMemoryError in
852     * Thread.start()), we roll back cleanly.
853     *
854     * @param firstTask the task the new thread should run first (or
855     * null if none). Workers are created with an initial first task
856     * (in method execute()) to bypass queuing when there are fewer
857     * than corePoolSize threads (in which case we always start one),
858     * or when the queue is full (in which case we must bypass queue).
859     * Initially idle threads are usually created via
860     * prestartCoreThread or to replace other dying workers.
861     *
862     * @param core if true use corePoolSize as bound, else
863     * maximumPoolSize. (A boolean indicator is used here rather than a
864     * value to ensure reads of fresh values after checking other pool
865     * state).
866     * @return true if successful
867     */
868     private boolean addWorker(Runnable firstTask, boolean core) {
869     retry:
870     for (;;) {
871     int c = ctl.get();
872     int rs = runStateOf(c);
873    
874     // Check if queue empty only if necessary.
875     if (rs >= SHUTDOWN &&
876     ! (rs == SHUTDOWN &&
877     firstTask == null &&
878     ! workQueue.isEmpty()))
879     return false;
880    
881     for (;;) {
882     int wc = workerCountOf(c);
883     if (wc >= CAPACITY ||
884     wc >= (core ? corePoolSize : maximumPoolSize))
885     return false;
886     if (compareAndIncrementWorkerCount(c))
887     break retry;
888     c = ctl.get(); // Re-read ctl
889     if (runStateOf(c) != rs)
890     continue retry;
891     // else CAS failed due to workerCount change; retry inner loop
892     }
893     }
894    
895     boolean workerStarted = false;
896     boolean workerAdded = false;
897     Worker w = null;
898     try {
899     w = new Worker(firstTask);
900     final Thread t = w.thread;
901     if (t != null) {
902     final ReentrantLock mainLock = this.mainLock;
903     mainLock.lock();
904     try {
905     // Recheck while holding lock.
906     // Back out on ThreadFactory failure or if
907     // shut down before lock acquired.
908     int rs = runStateOf(ctl.get());
909    
910     if (rs < SHUTDOWN ||
911     (rs == SHUTDOWN && firstTask == null)) {
912     if (t.isAlive()) // precheck that t is startable
913     throw new IllegalThreadStateException();
914     workers.add(w);
915     int s = workers.size();
916     if (s > largestPoolSize)
917     largestPoolSize = s;
918     workerAdded = true;
919     }
920     } finally {
921     mainLock.unlock();
922     }
923     if (workerAdded) {
924     t.start();
925     workerStarted = true;
926     }
927     }
928     } finally {
929     if (! workerStarted)
930     addWorkerFailed(w);
931     }
932     return workerStarted;
933     }
934    
935     /**
936     * Rolls back the worker thread creation.
937     * - removes worker from workers, if present
938     * - decrements worker count
939     * - rechecks for termination, in case the existence of this
940     * worker was holding up termination
941     */
942     private void addWorkerFailed(Worker w) {
943     final ReentrantLock mainLock = this.mainLock;
944     mainLock.lock();
945     try {
946     if (w != null)
947     workers.remove(w);
948     decrementWorkerCount();
949     tryTerminate();
950     } finally {
951     mainLock.unlock();
952     }
953     }
954    
955     /**
956     * Performs cleanup and bookkeeping for a dying worker. Called
957     * only from worker threads. Unless completedAbruptly is set,
958     * assumes that workerCount has already been adjusted to account
959     * for exit. This method removes thread from worker set, and
960     * possibly terminates the pool or replaces the worker if either
961     * it exited due to user task exception or if fewer than
962     * corePoolSize workers are running or queue is non-empty but
963     * there are no workers.
964     *
965     * @param w the worker
966     * @param completedAbruptly if the worker died due to user exception
967     */
968     private void processWorkerExit(Worker w, boolean completedAbruptly) {
969     if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
970     decrementWorkerCount();
971    
972     final ReentrantLock mainLock = this.mainLock;
973     mainLock.lock();
974     try {
975     completedTaskCount += w.completedTasks;
976     workers.remove(w);
977     } finally {
978     mainLock.unlock();
979     }
980    
981     tryTerminate();
982    
983     int c = ctl.get();
984     if (runStateLessThan(c, STOP)) {
985     if (!completedAbruptly) {
986     int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
987     if (min == 0 && ! workQueue.isEmpty())
988     min = 1;
989     if (workerCountOf(c) >= min)
990     return; // replacement not needed
991     }
992     addWorker(null, false);
993     }
994     }
995    
996     /**
997     * Performs blocking or timed wait for a task, depending on
998     * current configuration settings, or returns null if this worker
999     * must exit because of any of:
1000     * 1. There are more than maximumPoolSize workers (due to
1001     * a call to setMaximumPoolSize).
1002     * 2. The pool is stopped.
1003     * 3. The pool is shutdown and the queue is empty.
1004     * 4. This worker timed out waiting for a task, and timed-out
1005     * workers are subject to termination (that is,
1006     * {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
1007     * both before and after the timed wait, and if the queue is
1008     * non-empty, this worker is not the last thread in the pool.
1009     *
1010     * @return task, or null if the worker must exit, in which case
1011     * workerCount is decremented
1012     */
1013     private Runnable getTask() {
1014     boolean timedOut = false; // Did the last poll() time out?
1015    
1016     for (;;) {
1017     int c = ctl.get();
1018     int rs = runStateOf(c);
1019    
1020     // Check if queue empty only if necessary.
1021     if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
1022     decrementWorkerCount();
1023     return null;
1024     }
1025    
1026     int wc = workerCountOf(c);
1027    
1028     // Are workers subject to culling?
1029     boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
1030    
1031     if ((wc > maximumPoolSize || (timed && timedOut))
1032     && (wc > 1 || workQueue.isEmpty())) {
1033     if (compareAndDecrementWorkerCount(c))
1034     return null;
1035     continue;
1036     }
1037    
1038     try {
1039     Runnable r = timed ?
1040     workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
1041     workQueue.take();
1042     if (r != null)
1043     return r;
1044     timedOut = true;
1045     } catch (InterruptedException retry) {
1046     timedOut = false;
1047     }
1048     }
1049     }
1050    
1051     /**
1052     * Main worker run loop. Repeatedly gets tasks from queue and
1053     * executes them, while coping with a number of issues:
1054     *
1055     * 1. We may start out with an initial task, in which case we
1056     * don't need to get the first one. Otherwise, as long as pool is
1057     * running, we get tasks from getTask. If it returns null then the
1058     * worker exits due to changed pool state or configuration
1059     * parameters. Other exits result from exception throws in
1060     * external code, in which case completedAbruptly holds, which
1061     * usually leads processWorkerExit to replace this thread.
1062     *
1063     * 2. Before running any task, the lock is acquired to prevent
1064     * other pool interrupts while the task is executing, and then we
1065     * ensure that unless pool is stopping, this thread does not have
1066     * its interrupt set.
1067     *
1068     * 3. Each task run is preceded by a call to beforeExecute, which
1069     * might throw an exception, in which case we cause thread to die
1070     * (breaking loop with completedAbruptly true) without processing
1071     * the task.
1072     *
1073     * 4. Assuming beforeExecute completes normally, we run the task,
1074     * gathering any of its thrown exceptions to send to afterExecute.
1075     * We separately handle RuntimeException, Error (both of which the
1076     * specs guarantee that we trap) and arbitrary Throwables.
1077     * Because we cannot rethrow Throwables within Runnable.run, we
1078     * wrap them within Errors on the way out (to the thread's
1079     * UncaughtExceptionHandler). Any thrown exception also
1080     * conservatively causes thread to die.
1081     *
1082     * 5. After task.run completes, we call afterExecute, which may
1083     * also throw an exception, which will also cause thread to
1084     * die. According to JLS Sec 14.20, this exception is the one that
1085     * will be in effect even if task.run throws.
1086     *
1087     * The net effect of the exception mechanics is that afterExecute
1088     * and the thread's UncaughtExceptionHandler have as accurate
1089     * information as we can provide about any problems encountered by
1090     * user code.
1091     *
1092     * @param w the worker
1093     */
1094     final void runWorker(Worker w) {
1095     Thread wt = Thread.currentThread();
1096     Runnable task = w.firstTask;
1097     w.firstTask = null;
1098     w.unlock(); // allow interrupts
1099     boolean completedAbruptly = true;
1100     try {
1101     while (task != null || (task = getTask()) != null) {
1102     w.lock();
1103     // If pool is stopping, ensure thread is interrupted;
1104     // if not, ensure thread is not interrupted. This
1105     // requires a recheck in second case to deal with
1106     // shutdownNow race while clearing interrupt
1107     if ((runStateAtLeast(ctl.get(), STOP) ||
1108     (Thread.interrupted() &&
1109     runStateAtLeast(ctl.get(), STOP))) &&
1110     !wt.isInterrupted())
1111     wt.interrupt();
1112     try {
1113     beforeExecute(wt, task);
1114     Throwable thrown = null;
1115     try {
1116     task.run();
1117     } catch (RuntimeException x) {
1118     thrown = x; throw x;
1119     } catch (Error x) {
1120     thrown = x; throw x;
1121     } catch (Throwable x) {
1122     thrown = x; throw new Error(x);
1123     } finally {
1124     afterExecute(task, thrown);
1125     }
1126     } finally {
1127     task = null;
1128     w.completedTasks++;
1129     w.unlock();
1130     }
1131     }
1132     completedAbruptly = false;
1133     } finally {
1134     processWorkerExit(w, completedAbruptly);
1135     }
1136     }
1137    
1138     // Public constructors and methods
1139    
1140     /**
1141     * Creates a new {@code ThreadPoolExecutor} with the given initial
1142 jsr166 1.2 * parameters, the default thread factory and the default rejected
1143     * execution handler.
1144     *
1145     * <p>It may be more convenient to use one of the {@link Executors}
1146     * factory methods instead of this general purpose constructor.
1147 jsr166 1.1 *
1148     * @param corePoolSize the number of threads to keep in the pool, even
1149     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1150     * @param maximumPoolSize the maximum number of threads to allow in the
1151     * pool
1152     * @param keepAliveTime when the number of threads is greater than
1153     * the core, this is the maximum time that excess idle threads
1154     * will wait for new tasks before terminating.
1155     * @param unit the time unit for the {@code keepAliveTime} argument
1156     * @param workQueue the queue to use for holding tasks before they are
1157     * executed. This queue will hold only the {@code Runnable}
1158     * tasks submitted by the {@code execute} method.
1159     * @throws IllegalArgumentException if one of the following holds:<br>
1160     * {@code corePoolSize < 0}<br>
1161     * {@code keepAliveTime < 0}<br>
1162     * {@code maximumPoolSize <= 0}<br>
1163     * {@code maximumPoolSize < corePoolSize}
1164     * @throws NullPointerException if {@code workQueue} is null
1165     */
1166     public ThreadPoolExecutor(int corePoolSize,
1167     int maximumPoolSize,
1168     long keepAliveTime,
1169     TimeUnit unit,
1170     BlockingQueue<Runnable> workQueue) {
1171     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1172     Executors.defaultThreadFactory(), defaultHandler);
1173     }
1174    
1175     /**
1176     * Creates a new {@code ThreadPoolExecutor} with the given initial
1177 jsr166 1.2 * parameters and {@linkplain ThreadPoolExecutor.AbortPolicy
1178     * default rejected execution handler}.
1179 jsr166 1.1 *
1180     * @param corePoolSize the number of threads to keep in the pool, even
1181     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1182     * @param maximumPoolSize the maximum number of threads to allow in the
1183     * pool
1184     * @param keepAliveTime when the number of threads is greater than
1185     * the core, this is the maximum time that excess idle threads
1186     * will wait for new tasks before terminating.
1187     * @param unit the time unit for the {@code keepAliveTime} argument
1188     * @param workQueue the queue to use for holding tasks before they are
1189     * executed. This queue will hold only the {@code Runnable}
1190     * tasks submitted by the {@code execute} method.
1191     * @param threadFactory the factory to use when the executor
1192     * creates a new thread
1193     * @throws IllegalArgumentException if one of the following holds:<br>
1194     * {@code corePoolSize < 0}<br>
1195     * {@code keepAliveTime < 0}<br>
1196     * {@code maximumPoolSize <= 0}<br>
1197     * {@code maximumPoolSize < corePoolSize}
1198     * @throws NullPointerException if {@code workQueue}
1199     * or {@code threadFactory} is null
1200     */
1201     public ThreadPoolExecutor(int corePoolSize,
1202     int maximumPoolSize,
1203     long keepAliveTime,
1204     TimeUnit unit,
1205     BlockingQueue<Runnable> workQueue,
1206     ThreadFactory threadFactory) {
1207     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1208     threadFactory, defaultHandler);
1209     }
1210    
1211     /**
1212     * Creates a new {@code ThreadPoolExecutor} with the given initial
1213 jsr166 1.2 * parameters and
1214     * {@linkplain Executors#defaultThreadFactory default thread factory}.
1215 jsr166 1.1 *
1216     * @param corePoolSize the number of threads to keep in the pool, even
1217     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1218     * @param maximumPoolSize the maximum number of threads to allow in the
1219     * pool
1220     * @param keepAliveTime when the number of threads is greater than
1221     * the core, this is the maximum time that excess idle threads
1222     * will wait for new tasks before terminating.
1223     * @param unit the time unit for the {@code keepAliveTime} argument
1224     * @param workQueue the queue to use for holding tasks before they are
1225     * executed. This queue will hold only the {@code Runnable}
1226     * tasks submitted by the {@code execute} method.
1227     * @param handler the handler to use when execution is blocked
1228     * because the thread bounds and queue capacities are reached
1229     * @throws IllegalArgumentException if one of the following holds:<br>
1230     * {@code corePoolSize < 0}<br>
1231     * {@code keepAliveTime < 0}<br>
1232     * {@code maximumPoolSize <= 0}<br>
1233     * {@code maximumPoolSize < corePoolSize}
1234     * @throws NullPointerException if {@code workQueue}
1235     * or {@code handler} is null
1236     */
1237     public ThreadPoolExecutor(int corePoolSize,
1238     int maximumPoolSize,
1239     long keepAliveTime,
1240     TimeUnit unit,
1241     BlockingQueue<Runnable> workQueue,
1242     RejectedExecutionHandler handler) {
1243     this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
1244     Executors.defaultThreadFactory(), handler);
1245     }
1246    
1247     /**
1248     * Creates a new {@code ThreadPoolExecutor} with the given initial
1249     * parameters.
1250     *
1251     * @param corePoolSize the number of threads to keep in the pool, even
1252     * if they are idle, unless {@code allowCoreThreadTimeOut} is set
1253     * @param maximumPoolSize the maximum number of threads to allow in the
1254     * pool
1255     * @param keepAliveTime when the number of threads is greater than
1256     * the core, this is the maximum time that excess idle threads
1257     * will wait for new tasks before terminating.
1258     * @param unit the time unit for the {@code keepAliveTime} argument
1259     * @param workQueue the queue to use for holding tasks before they are
1260     * executed. This queue will hold only the {@code Runnable}
1261     * tasks submitted by the {@code execute} method.
1262     * @param threadFactory the factory to use when the executor
1263     * creates a new thread
1264     * @param handler the handler to use when execution is blocked
1265     * because the thread bounds and queue capacities are reached
1266     * @throws IllegalArgumentException if one of the following holds:<br>
1267     * {@code corePoolSize < 0}<br>
1268     * {@code keepAliveTime < 0}<br>
1269     * {@code maximumPoolSize <= 0}<br>
1270     * {@code maximumPoolSize < corePoolSize}
1271     * @throws NullPointerException if {@code workQueue}
1272     * or {@code threadFactory} or {@code handler} is null
1273     */
1274     public ThreadPoolExecutor(int corePoolSize,
1275     int maximumPoolSize,
1276     long keepAliveTime,
1277     TimeUnit unit,
1278     BlockingQueue<Runnable> workQueue,
1279     ThreadFactory threadFactory,
1280     RejectedExecutionHandler handler) {
1281     if (corePoolSize < 0 ||
1282     maximumPoolSize <= 0 ||
1283     maximumPoolSize < corePoolSize ||
1284     keepAliveTime < 0)
1285     throw new IllegalArgumentException();
1286     if (workQueue == null || threadFactory == null || handler == null)
1287     throw new NullPointerException();
1288 jsr166 1.3 this.acc = (System.getSecurityManager() == null)
1289     ? null
1290     : AccessController.getContext();
1291 jsr166 1.1 this.corePoolSize = corePoolSize;
1292     this.maximumPoolSize = maximumPoolSize;
1293     this.workQueue = workQueue;
1294     this.keepAliveTime = unit.toNanos(keepAliveTime);
1295     this.threadFactory = threadFactory;
1296     this.handler = handler;
1297     }
1298    
1299     /**
1300     * Executes the given task sometime in the future. The task
1301     * may execute in a new thread or in an existing pooled thread.
1302     *
1303     * If the task cannot be submitted for execution, either because this
1304     * executor has been shutdown or because its capacity has been reached,
1305     * the task is handled by the current {@code RejectedExecutionHandler}.
1306     *
1307     * @param command the task to execute
1308     * @throws RejectedExecutionException at discretion of
1309     * {@code RejectedExecutionHandler}, if the task
1310     * cannot be accepted for execution
1311     * @throws NullPointerException if {@code command} is null
1312     */
1313     public void execute(Runnable command) {
1314     if (command == null)
1315     throw new NullPointerException();
1316     /*
1317     * Proceed in 3 steps:
1318     *
1319     * 1. If fewer than corePoolSize threads are running, try to
1320     * start a new thread with the given command as its first
1321     * task. The call to addWorker atomically checks runState and
1322     * workerCount, and so prevents false alarms that would add
1323     * threads when it shouldn't, by returning false.
1324     *
1325     * 2. If a task can be successfully queued, then we still need
1326     * to double-check whether we should have added a thread
1327     * (because existing ones died since last checking) or that
1328     * the pool shut down since entry into this method. So we
1329     * recheck state and if necessary roll back the enqueuing if
1330     * stopped, or start a new thread if there are none.
1331     *
1332     * 3. If we cannot queue task, then we try to add a new
1333     * thread. If it fails, we know we are shut down or saturated
1334     * and so reject the task.
1335     */
1336     int c = ctl.get();
1337     if (workerCountOf(c) < corePoolSize) {
1338     if (addWorker(command, true))
1339     return;
1340     c = ctl.get();
1341     }
1342     if (isRunning(c) && workQueue.offer(command)) {
1343     int recheck = ctl.get();
1344     if (! isRunning(recheck) && remove(command))
1345     reject(command);
1346     else if (workerCountOf(recheck) == 0)
1347     addWorker(null, false);
1348     }
1349     else if (!addWorker(command, false))
1350     reject(command);
1351     }
1352    
1353     /**
1354     * Initiates an orderly shutdown in which previously submitted
1355     * tasks are executed, but no new tasks will be accepted.
1356     * Invocation has no additional effect if already shut down.
1357     *
1358     * <p>This method does not wait for previously submitted tasks to
1359     * complete execution. Use {@link #awaitTermination awaitTermination}
1360     * to do that.
1361     *
1362     * @throws SecurityException {@inheritDoc}
1363     */
1364     public void shutdown() {
1365     final ReentrantLock mainLock = this.mainLock;
1366     mainLock.lock();
1367     try {
1368     checkShutdownAccess();
1369     advanceRunState(SHUTDOWN);
1370     interruptIdleWorkers();
1371     onShutdown(); // hook for ScheduledThreadPoolExecutor
1372     } finally {
1373     mainLock.unlock();
1374     }
1375     tryTerminate();
1376     }
1377    
1378     /**
1379     * Attempts to stop all actively executing tasks, halts the
1380     * processing of waiting tasks, and returns a list of the tasks
1381     * that were awaiting execution. These tasks are drained (removed)
1382     * from the task queue upon return from this method.
1383     *
1384     * <p>This method does not wait for actively executing tasks to
1385     * terminate. Use {@link #awaitTermination awaitTermination} to
1386     * do that.
1387     *
1388     * <p>There are no guarantees beyond best-effort attempts to stop
1389     * processing actively executing tasks. This implementation
1390     * interrupts tasks via {@link Thread#interrupt}; any task that
1391     * fails to respond to interrupts may never terminate.
1392     *
1393     * @throws SecurityException {@inheritDoc}
1394     */
1395     public List<Runnable> shutdownNow() {
1396     List<Runnable> tasks;
1397     final ReentrantLock mainLock = this.mainLock;
1398     mainLock.lock();
1399     try {
1400     checkShutdownAccess();
1401     advanceRunState(STOP);
1402     interruptWorkers();
1403     tasks = drainQueue();
1404     } finally {
1405     mainLock.unlock();
1406     }
1407     tryTerminate();
1408     return tasks;
1409     }
1410    
1411     public boolean isShutdown() {
1412     return ! isRunning(ctl.get());
1413     }
1414    
1415 jsr166 1.2 /** Used by ScheduledThreadPoolExecutor. */
1416     boolean isStopped() {
1417     return runStateAtLeast(ctl.get(), STOP);
1418     }
1419    
1420 jsr166 1.1 /**
1421     * Returns true if this executor is in the process of terminating
1422     * after {@link #shutdown} or {@link #shutdownNow} but has not
1423     * completely terminated. This method may be useful for
1424     * debugging. A return of {@code true} reported a sufficient
1425     * period after shutdown may indicate that submitted tasks have
1426     * ignored or suppressed interruption, causing this executor not
1427     * to properly terminate.
1428     *
1429     * @return {@code true} if terminating but not yet terminated
1430     */
1431     public boolean isTerminating() {
1432     int c = ctl.get();
1433     return ! isRunning(c) && runStateLessThan(c, TERMINATED);
1434     }
1435    
1436     public boolean isTerminated() {
1437     return runStateAtLeast(ctl.get(), TERMINATED);
1438     }
1439    
1440     public boolean awaitTermination(long timeout, TimeUnit unit)
1441     throws InterruptedException {
1442     long nanos = unit.toNanos(timeout);
1443     final ReentrantLock mainLock = this.mainLock;
1444     mainLock.lock();
1445     try {
1446     while (!runStateAtLeast(ctl.get(), TERMINATED)) {
1447     if (nanos <= 0L)
1448     return false;
1449     nanos = termination.awaitNanos(nanos);
1450     }
1451     return true;
1452     } finally {
1453     mainLock.unlock();
1454     }
1455     }
1456    
1457     /**
1458     * Invokes {@code shutdown} when this executor is no longer
1459     * referenced and it has no threads.
1460 jsr166 1.3 *
1461     * <p>This method is invoked with privileges that are restricted by
1462     * the security context of the caller that invokes the constructor.
1463 jsr166 1.1 */
1464     protected void finalize() {
1465 jsr166 1.3 SecurityManager sm = System.getSecurityManager();
1466     if (sm == null || acc == null) {
1467     shutdown();
1468     } else {
1469     PrivilegedAction<Void> pa = () -> { shutdown(); return null; };
1470     AccessController.doPrivileged(pa, acc);
1471     }
1472 jsr166 1.1 }
1473    
1474     /**
1475     * Sets the thread factory used to create new threads.
1476     *
1477     * @param threadFactory the new thread factory
1478     * @throws NullPointerException if threadFactory is null
1479     * @see #getThreadFactory
1480     */
1481     public void setThreadFactory(ThreadFactory threadFactory) {
1482     if (threadFactory == null)
1483     throw new NullPointerException();
1484     this.threadFactory = threadFactory;
1485     }
1486    
1487     /**
1488     * Returns the thread factory used to create new threads.
1489     *
1490     * @return the current thread factory
1491     * @see #setThreadFactory(ThreadFactory)
1492     */
1493     public ThreadFactory getThreadFactory() {
1494     return threadFactory;
1495     }
1496    
1497     /**
1498     * Sets a new handler for unexecutable tasks.
1499     *
1500     * @param handler the new handler
1501     * @throws NullPointerException if handler is null
1502     * @see #getRejectedExecutionHandler
1503     */
1504     public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {
1505     if (handler == null)
1506     throw new NullPointerException();
1507     this.handler = handler;
1508     }
1509    
1510     /**
1511     * Returns the current handler for unexecutable tasks.
1512     *
1513     * @return the current handler
1514     * @see #setRejectedExecutionHandler(RejectedExecutionHandler)
1515     */
1516     public RejectedExecutionHandler getRejectedExecutionHandler() {
1517     return handler;
1518     }
1519    
1520     /**
1521     * Sets the core number of threads. This overrides any value set
1522     * in the constructor. If the new value is smaller than the
1523     * current value, excess existing threads will be terminated when
1524     * they next become idle. If larger, new threads will, if needed,
1525     * be started to execute any queued tasks.
1526     *
1527     * @param corePoolSize the new core size
1528     * @throws IllegalArgumentException if {@code corePoolSize < 0}
1529     * or {@code corePoolSize} is greater than the {@linkplain
1530     * #getMaximumPoolSize() maximum pool size}
1531     * @see #getCorePoolSize
1532     */
1533     public void setCorePoolSize(int corePoolSize) {
1534     if (corePoolSize < 0 || maximumPoolSize < corePoolSize)
1535     throw new IllegalArgumentException();
1536     int delta = corePoolSize - this.corePoolSize;
1537     this.corePoolSize = corePoolSize;
1538     if (workerCountOf(ctl.get()) > corePoolSize)
1539     interruptIdleWorkers();
1540     else if (delta > 0) {
1541     // We don't really know how many new threads are "needed".
1542     // As a heuristic, prestart enough new workers (up to new
1543     // core size) to handle the current number of tasks in
1544     // queue, but stop if queue becomes empty while doing so.
1545     int k = Math.min(delta, workQueue.size());
1546     while (k-- > 0 && addWorker(null, true)) {
1547     if (workQueue.isEmpty())
1548     break;
1549     }
1550     }
1551     }
1552    
1553     /**
1554     * Returns the core number of threads.
1555     *
1556     * @return the core number of threads
1557     * @see #setCorePoolSize
1558     */
1559     public int getCorePoolSize() {
1560     return corePoolSize;
1561     }
1562    
1563     /**
1564     * Starts a core thread, causing it to idly wait for work. This
1565     * overrides the default policy of starting core threads only when
1566     * new tasks are executed. This method will return {@code false}
1567     * if all core threads have already been started.
1568     *
1569     * @return {@code true} if a thread was started
1570     */
1571     public boolean prestartCoreThread() {
1572     return workerCountOf(ctl.get()) < corePoolSize &&
1573     addWorker(null, true);
1574     }
1575    
1576     /**
1577     * Same as prestartCoreThread except arranges that at least one
1578     * thread is started even if corePoolSize is 0.
1579     */
1580     void ensurePrestart() {
1581     int wc = workerCountOf(ctl.get());
1582     if (wc < corePoolSize)
1583     addWorker(null, true);
1584     else if (wc == 0)
1585     addWorker(null, false);
1586     }
1587    
1588     /**
1589     * Starts all core threads, causing them to idly wait for work. This
1590     * overrides the default policy of starting core threads only when
1591     * new tasks are executed.
1592     *
1593     * @return the number of threads started
1594     */
1595     public int prestartAllCoreThreads() {
1596     int n = 0;
1597     while (addWorker(null, true))
1598     ++n;
1599     return n;
1600     }
1601    
1602     /**
1603     * Returns true if this pool allows core threads to time out and
1604     * terminate if no tasks arrive within the keepAlive time, being
1605     * replaced if needed when new tasks arrive. When true, the same
1606     * keep-alive policy applying to non-core threads applies also to
1607     * core threads. When false (the default), core threads are never
1608     * terminated due to lack of incoming tasks.
1609     *
1610     * @return {@code true} if core threads are allowed to time out,
1611     * else {@code false}
1612     *
1613     * @since 1.6
1614     */
1615     public boolean allowsCoreThreadTimeOut() {
1616     return allowCoreThreadTimeOut;
1617     }
1618    
1619     /**
1620     * Sets the policy governing whether core threads may time out and
1621     * terminate if no tasks arrive within the keep-alive time, being
1622     * replaced if needed when new tasks arrive. When false, core
1623     * threads are never terminated due to lack of incoming
1624     * tasks. When true, the same keep-alive policy applying to
1625     * non-core threads applies also to core threads. To avoid
1626     * continual thread replacement, the keep-alive time must be
1627     * greater than zero when setting {@code true}. This method
1628     * should in general be called before the pool is actively used.
1629     *
1630     * @param value {@code true} if should time out, else {@code false}
1631     * @throws IllegalArgumentException if value is {@code true}
1632     * and the current keep-alive time is not greater than zero
1633     *
1634     * @since 1.6
1635     */
1636     public void allowCoreThreadTimeOut(boolean value) {
1637     if (value && keepAliveTime <= 0)
1638     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1639     if (value != allowCoreThreadTimeOut) {
1640     allowCoreThreadTimeOut = value;
1641     if (value)
1642     interruptIdleWorkers();
1643     }
1644     }
1645    
1646     /**
1647     * Sets the maximum allowed number of threads. This overrides any
1648     * value set in the constructor. If the new value is smaller than
1649     * the current value, excess existing threads will be
1650     * terminated when they next become idle.
1651     *
1652     * @param maximumPoolSize the new maximum
1653     * @throws IllegalArgumentException if the new maximum is
1654     * less than or equal to zero, or
1655     * less than the {@linkplain #getCorePoolSize core pool size}
1656     * @see #getMaximumPoolSize
1657     */
1658     public void setMaximumPoolSize(int maximumPoolSize) {
1659     if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)
1660     throw new IllegalArgumentException();
1661     this.maximumPoolSize = maximumPoolSize;
1662     if (workerCountOf(ctl.get()) > maximumPoolSize)
1663     interruptIdleWorkers();
1664     }
1665    
1666     /**
1667     * Returns the maximum allowed number of threads.
1668     *
1669     * @return the maximum allowed number of threads
1670     * @see #setMaximumPoolSize
1671     */
1672     public int getMaximumPoolSize() {
1673     return maximumPoolSize;
1674     }
1675    
1676     /**
1677     * Sets the thread keep-alive time, which is the amount of time
1678     * that threads may remain idle before being terminated.
1679     * Threads that wait this amount of time without processing a
1680     * task will be terminated if there are more than the core
1681     * number of threads currently in the pool, or if this pool
1682     * {@linkplain #allowsCoreThreadTimeOut() allows core thread timeout}.
1683     * This overrides any value set in the constructor.
1684     *
1685     * @param time the time to wait. A time value of zero will cause
1686     * excess threads to terminate immediately after executing tasks.
1687     * @param unit the time unit of the {@code time} argument
1688     * @throws IllegalArgumentException if {@code time} less than zero or
1689     * if {@code time} is zero and {@code allowsCoreThreadTimeOut}
1690     * @see #getKeepAliveTime(TimeUnit)
1691     */
1692     public void setKeepAliveTime(long time, TimeUnit unit) {
1693     if (time < 0)
1694     throw new IllegalArgumentException();
1695     if (time == 0 && allowsCoreThreadTimeOut())
1696     throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
1697     long keepAliveTime = unit.toNanos(time);
1698     long delta = keepAliveTime - this.keepAliveTime;
1699     this.keepAliveTime = keepAliveTime;
1700     if (delta < 0)
1701     interruptIdleWorkers();
1702     }
1703    
1704     /**
1705     * Returns the thread keep-alive time, which is the amount of time
1706     * that threads may remain idle before being terminated.
1707     * Threads that wait this amount of time without processing a
1708     * task will be terminated if there are more than the core
1709     * number of threads currently in the pool, or if this pool
1710     * {@linkplain #allowsCoreThreadTimeOut() allows core thread timeout}.
1711     *
1712     * @param unit the desired time unit of the result
1713     * @return the time limit
1714     * @see #setKeepAliveTime(long, TimeUnit)
1715     */
1716     public long getKeepAliveTime(TimeUnit unit) {
1717     return unit.convert(keepAliveTime, TimeUnit.NANOSECONDS);
1718     }
1719    
1720     /* User-level queue utilities */
1721    
1722     /**
1723     * Returns the task queue used by this executor. Access to the
1724     * task queue is intended primarily for debugging and monitoring.
1725     * This queue may be in active use. Retrieving the task queue
1726     * does not prevent queued tasks from executing.
1727     *
1728     * @return the task queue
1729     */
1730     public BlockingQueue<Runnable> getQueue() {
1731     return workQueue;
1732     }
1733    
1734     /**
1735     * Removes this task from the executor's internal queue if it is
1736     * present, thus causing it not to be run if it has not already
1737     * started.
1738     *
1739     * <p>This method may be useful as one part of a cancellation
1740     * scheme. It may fail to remove tasks that have been converted
1741     * into other forms before being placed on the internal queue.
1742     * For example, a task entered using {@code submit} might be
1743     * converted into a form that maintains {@code Future} status.
1744     * However, in such cases, method {@link #purge} may be used to
1745     * remove those Futures that have been cancelled.
1746     *
1747     * @param task the task to remove
1748     * @return {@code true} if the task was removed
1749     */
1750     public boolean remove(Runnable task) {
1751     boolean removed = workQueue.remove(task);
1752     tryTerminate(); // In case SHUTDOWN and now empty
1753     return removed;
1754     }
1755    
1756     /**
1757     * Tries to remove from the work queue all {@link Future}
1758     * tasks that have been cancelled. This method can be useful as a
1759     * storage reclamation operation, that has no other impact on
1760     * functionality. Cancelled tasks are never executed, but may
1761     * accumulate in work queues until worker threads can actively
1762     * remove them. Invoking this method instead tries to remove them now.
1763     * However, this method may fail to remove tasks in
1764     * the presence of interference by other threads.
1765     */
1766     public void purge() {
1767     final BlockingQueue<Runnable> q = workQueue;
1768     try {
1769     Iterator<Runnable> it = q.iterator();
1770     while (it.hasNext()) {
1771     Runnable r = it.next();
1772     if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1773     it.remove();
1774     }
1775     } catch (ConcurrentModificationException fallThrough) {
1776     // Take slow path if we encounter interference during traversal.
1777     // Make copy for traversal and call remove for cancelled entries.
1778     // The slow path is more likely to be O(N*N).
1779     for (Object r : q.toArray())
1780     if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
1781     q.remove(r);
1782     }
1783    
1784     tryTerminate(); // In case SHUTDOWN and now empty
1785     }
1786    
1787     /* Statistics */
1788    
1789     /**
1790     * Returns the current number of threads in the pool.
1791     *
1792     * @return the number of threads
1793     */
1794     public int getPoolSize() {
1795     final ReentrantLock mainLock = this.mainLock;
1796     mainLock.lock();
1797     try {
1798     // Remove rare and surprising possibility of
1799     // isTerminated() && getPoolSize() > 0
1800     return runStateAtLeast(ctl.get(), TIDYING) ? 0
1801     : workers.size();
1802     } finally {
1803     mainLock.unlock();
1804     }
1805     }
1806    
1807     /**
1808     * Returns the approximate number of threads that are actively
1809     * executing tasks.
1810     *
1811     * @return the number of threads
1812     */
1813     public int getActiveCount() {
1814     final ReentrantLock mainLock = this.mainLock;
1815     mainLock.lock();
1816     try {
1817     int n = 0;
1818     for (Worker w : workers)
1819     if (w.isLocked())
1820     ++n;
1821     return n;
1822     } finally {
1823     mainLock.unlock();
1824     }
1825     }
1826    
1827     /**
1828     * Returns the largest number of threads that have ever
1829     * simultaneously been in the pool.
1830     *
1831     * @return the number of threads
1832     */
1833     public int getLargestPoolSize() {
1834     final ReentrantLock mainLock = this.mainLock;
1835     mainLock.lock();
1836     try {
1837     return largestPoolSize;
1838     } finally {
1839     mainLock.unlock();
1840     }
1841     }
1842    
1843     /**
1844     * Returns the approximate total number of tasks that have ever been
1845     * scheduled for execution. Because the states of tasks and
1846     * threads may change dynamically during computation, the returned
1847     * value is only an approximation.
1848     *
1849     * @return the number of tasks
1850     */
1851     public long getTaskCount() {
1852     final ReentrantLock mainLock = this.mainLock;
1853     mainLock.lock();
1854     try {
1855     long n = completedTaskCount;
1856     for (Worker w : workers) {
1857     n += w.completedTasks;
1858     if (w.isLocked())
1859     ++n;
1860     }
1861     return n + workQueue.size();
1862     } finally {
1863     mainLock.unlock();
1864     }
1865     }
1866    
1867     /**
1868     * Returns the approximate total number of tasks that have
1869     * completed execution. Because the states of tasks and threads
1870     * may change dynamically during computation, the returned value
1871     * is only an approximation, but one that does not ever decrease
1872     * across successive calls.
1873     *
1874     * @return the number of tasks
1875     */
1876     public long getCompletedTaskCount() {
1877     final ReentrantLock mainLock = this.mainLock;
1878     mainLock.lock();
1879     try {
1880     long n = completedTaskCount;
1881     for (Worker w : workers)
1882     n += w.completedTasks;
1883     return n;
1884     } finally {
1885     mainLock.unlock();
1886     }
1887     }
1888    
1889     /**
1890     * Returns a string identifying this pool, as well as its state,
1891     * including indications of run state and estimated worker and
1892     * task counts.
1893     *
1894     * @return a string identifying this pool, as well as its state
1895     */
1896     public String toString() {
1897     long ncompleted;
1898     int nworkers, nactive;
1899     final ReentrantLock mainLock = this.mainLock;
1900     mainLock.lock();
1901     try {
1902     ncompleted = completedTaskCount;
1903     nactive = 0;
1904     nworkers = workers.size();
1905     for (Worker w : workers) {
1906     ncompleted += w.completedTasks;
1907     if (w.isLocked())
1908     ++nactive;
1909     }
1910     } finally {
1911     mainLock.unlock();
1912     }
1913     int c = ctl.get();
1914     String runState =
1915     runStateLessThan(c, SHUTDOWN) ? "Running" :
1916     runStateAtLeast(c, TERMINATED) ? "Terminated" :
1917     "Shutting down";
1918     return super.toString() +
1919     "[" + runState +
1920     ", pool size = " + nworkers +
1921     ", active threads = " + nactive +
1922     ", queued tasks = " + workQueue.size() +
1923     ", completed tasks = " + ncompleted +
1924     "]";
1925     }
1926    
1927     /* Extension hooks */
1928    
1929     /**
1930     * Method invoked prior to executing the given Runnable in the
1931     * given thread. This method is invoked by thread {@code t} that
1932     * will execute task {@code r}, and may be used to re-initialize
1933     * ThreadLocals, or to perform logging.
1934     *
1935     * <p>This implementation does nothing, but may be customized in
1936     * subclasses. Note: To properly nest multiple overridings, subclasses
1937     * should generally invoke {@code super.beforeExecute} at the end of
1938     * this method.
1939     *
1940     * @param t the thread that will run task {@code r}
1941     * @param r the task that will be executed
1942     */
1943     protected void beforeExecute(Thread t, Runnable r) { }
1944    
1945     /**
1946     * Method invoked upon completion of execution of the given Runnable.
1947     * This method is invoked by the thread that executed the task. If
1948     * non-null, the Throwable is the uncaught {@code RuntimeException}
1949     * or {@code Error} that caused execution to terminate abruptly.
1950     *
1951     * <p>This implementation does nothing, but may be customized in
1952     * subclasses. Note: To properly nest multiple overridings, subclasses
1953     * should generally invoke {@code super.afterExecute} at the
1954     * beginning of this method.
1955     *
1956     * <p><b>Note:</b> When actions are enclosed in tasks (such as
1957     * {@link FutureTask}) either explicitly or via methods such as
1958     * {@code submit}, these task objects catch and maintain
1959     * computational exceptions, and so they do not cause abrupt
1960     * termination, and the internal exceptions are <em>not</em>
1961     * passed to this method. If you would like to trap both kinds of
1962     * failures in this method, you can further probe for such cases,
1963     * as in this sample subclass that prints either the direct cause
1964     * or the underlying exception if a task has been aborted:
1965     *
1966     * <pre> {@code
1967     * class ExtendedExecutor extends ThreadPoolExecutor {
1968     * // ...
1969     * protected void afterExecute(Runnable r, Throwable t) {
1970     * super.afterExecute(r, t);
1971     * if (t == null
1972     * && r instanceof Future<?>
1973     * && ((Future<?>)r).isDone()) {
1974     * try {
1975     * Object result = ((Future<?>) r).get();
1976     * } catch (CancellationException ce) {
1977     * t = ce;
1978     * } catch (ExecutionException ee) {
1979     * t = ee.getCause();
1980     * } catch (InterruptedException ie) {
1981     * // ignore/reset
1982     * Thread.currentThread().interrupt();
1983     * }
1984     * }
1985     * if (t != null)
1986     * System.out.println(t);
1987     * }
1988     * }}</pre>
1989     *
1990     * @param r the runnable that has completed
1991     * @param t the exception that caused termination, or null if
1992     * execution completed normally
1993     */
1994     protected void afterExecute(Runnable r, Throwable t) { }
1995    
1996     /**
1997     * Method invoked when the Executor has terminated. Default
1998     * implementation does nothing. Note: To properly nest multiple
1999     * overridings, subclasses should generally invoke
2000     * {@code super.terminated} within this method.
2001     */
2002     protected void terminated() { }
2003    
2004     /* Predefined RejectedExecutionHandlers */
2005    
2006     /**
2007     * A handler for rejected tasks that runs the rejected task
2008     * directly in the calling thread of the {@code execute} method,
2009     * unless the executor has been shut down, in which case the task
2010     * is discarded.
2011     */
2012     public static class CallerRunsPolicy implements RejectedExecutionHandler {
2013     /**
2014     * Creates a {@code CallerRunsPolicy}.
2015     */
2016     public CallerRunsPolicy() { }
2017    
2018     /**
2019     * Executes task r in the caller's thread, unless the executor
2020     * has been shut down, in which case the task is discarded.
2021     *
2022     * @param r the runnable task requested to be executed
2023     * @param e the executor attempting to execute this task
2024     */
2025     public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2026     if (!e.isShutdown()) {
2027     r.run();
2028     }
2029     }
2030     }
2031    
2032     /**
2033     * A handler for rejected tasks that throws a
2034 jsr166 1.2 * {@link RejectedExecutionException}.
2035     *
2036     * This is the default handler for {@link ThreadPoolExecutor} and
2037     * {@link ScheduledThreadPoolExecutor}.
2038 jsr166 1.1 */
2039     public static class AbortPolicy implements RejectedExecutionHandler {
2040     /**
2041     * Creates an {@code AbortPolicy}.
2042     */
2043     public AbortPolicy() { }
2044    
2045     /**
2046     * Always throws RejectedExecutionException.
2047     *
2048     * @param r the runnable task requested to be executed
2049     * @param e the executor attempting to execute this task
2050     * @throws RejectedExecutionException always
2051     */
2052     public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2053     throw new RejectedExecutionException("Task " + r.toString() +
2054     " rejected from " +
2055     e.toString());
2056     }
2057     }
2058    
2059     /**
2060     * A handler for rejected tasks that silently discards the
2061     * rejected task.
2062     */
2063     public static class DiscardPolicy implements RejectedExecutionHandler {
2064     /**
2065     * Creates a {@code DiscardPolicy}.
2066     */
2067     public DiscardPolicy() { }
2068    
2069     /**
2070     * Does nothing, which has the effect of discarding task r.
2071     *
2072     * @param r the runnable task requested to be executed
2073     * @param e the executor attempting to execute this task
2074     */
2075     public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2076     }
2077     }
2078    
2079     /**
2080     * A handler for rejected tasks that discards the oldest unhandled
2081     * request and then retries {@code execute}, unless the executor
2082     * is shut down, in which case the task is discarded.
2083     */
2084     public static class DiscardOldestPolicy implements RejectedExecutionHandler {
2085     /**
2086     * Creates a {@code DiscardOldestPolicy} for the given executor.
2087     */
2088     public DiscardOldestPolicy() { }
2089    
2090     /**
2091     * Obtains and ignores the next task that the executor
2092     * would otherwise execute, if one is immediately available,
2093     * and then retries execution of task r, unless the executor
2094     * is shut down, in which case task r is instead discarded.
2095     *
2096     * @param r the runnable task requested to be executed
2097     * @param e the executor attempting to execute this task
2098     */
2099     public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
2100     if (!e.isShutdown()) {
2101     e.getQueue().poll();
2102     e.execute(r);
2103     }
2104     }
2105     }
2106     }