ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166e/ForkJoinPool.java (file contents):
Revision 1.5 by jsr166, Sun Oct 21 04:14:31 2012 UTC vs.
Revision 1.65 by jsr166, Sat Sep 12 19:16:45 2015 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166e;
8 +
9 + import java.lang.Thread.UncaughtExceptionHandler;
10   import java.util.ArrayList;
11   import java.util.Arrays;
12   import java.util.Collection;
13   import java.util.Collections;
14   import java.util.List;
13 import java.util.Random;
15   import java.util.concurrent.AbstractExecutorService;
16   import java.util.concurrent.Callable;
17   import java.util.concurrent.ExecutorService;
# Line 18 | Line 19 | import java.util.concurrent.Future;
19   import java.util.concurrent.RejectedExecutionException;
20   import java.util.concurrent.RunnableFuture;
21   import java.util.concurrent.TimeUnit;
21 import java.util.concurrent.atomic.AtomicInteger;
22 import java.util.concurrent.atomic.AtomicLong;
23 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
24 import java.util.concurrent.locks.Condition;
22  
23   /**
24   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
# Line 41 | Line 38 | import java.util.concurrent.locks.Condit
38   * ForkJoinPool}s may also be appropriate for use with event-style
39   * tasks that are never joined.
40   *
41 < * <p>A {@code ForkJoinPool} is constructed with a given target
42 < * parallelism level; by default, equal to the number of available
43 < * processors. The pool attempts to maintain enough active (or
44 < * available) threads by dynamically adding, suspending, or resuming
45 < * internal worker threads, even if some tasks are stalled waiting to
46 < * join others. However, no such adjustments are guaranteed in the
47 < * face of blocked IO or other unmanaged synchronization. The nested
48 < * {@link ManagedBlocker} interface enables extension of the kinds of
41 > * <p>A static {@link #commonPool()} is available and appropriate for
42 > * most applications. The common pool is used by any ForkJoinTask that
43 > * is not explicitly submitted to a specified pool. Using the common
44 > * pool normally reduces resource usage (its threads are slowly
45 > * reclaimed during periods of non-use, and reinstated upon subsequent
46 > * use).
47 > *
48 > * <p>For applications that require separate or custom pools, a {@code
49 > * ForkJoinPool} may be constructed with a given target parallelism
50 > * level; by default, equal to the number of available processors. The
51 > * pool attempts to maintain enough active (or available) threads by
52 > * dynamically adding, suspending, or resuming internal worker
53 > * threads, even if some tasks are stalled waiting to join others.
54 > * However, no such adjustments are guaranteed in the face of blocked
55 > * I/O or other unmanaged synchronization. The nested {@link
56 > * ManagedBlocker} interface enables extension of the kinds of
57   * synchronization accommodated.
58   *
59   * <p>In addition to execution and lifecycle control methods, this
# Line 58 | Line 63 | import java.util.concurrent.locks.Condit
63   * {@link #toString} returns indications of pool state in a
64   * convenient form for informal monitoring.
65   *
66 < * <p> As is the case with other ExecutorServices, there are three
66 > * <p>As is the case with other ExecutorServices, there are three
67   * main task execution methods summarized in the following table.
68   * These are designed to be used primarily by clients not already
69   * engaged in fork/join computations in the current pool.  The main
# Line 71 | Line 76 | import java.util.concurrent.locks.Condit
76   * there is little difference among choice of methods.
77   *
78   * <table BORDER CELLPADDING=3 CELLSPACING=1>
79 + * <caption>Summary of task execution methods</caption>
80   *  <tr>
81   *    <td></td>
82   *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
83   *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
84   *  </tr>
85   *  <tr>
86 < *    <td> <b>Arrange async execution</td>
86 > *    <td> <b>Arrange async execution</b></td>
87   *    <td> {@link #execute(ForkJoinTask)}</td>
88   *    <td> {@link ForkJoinTask#fork}</td>
89   *  </tr>
90   *  <tr>
91 < *    <td> <b>Await and obtain result</td>
91 > *    <td> <b>Await and obtain result</b></td>
92   *    <td> {@link #invoke(ForkJoinTask)}</td>
93   *    <td> {@link ForkJoinTask#invoke}</td>
94   *  </tr>
95   *  <tr>
96 < *    <td> <b>Arrange exec and obtain Future</td>
96 > *    <td> <b>Arrange exec and obtain Future</b></td>
97   *    <td> {@link #submit(ForkJoinTask)}</td>
98   *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
99   *  </tr>
100   * </table>
101   *
102 < * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
103 < * used for all parallel task execution in a program or subsystem.
104 < * Otherwise, use would not usually outweigh the construction and
105 < * bookkeeping overhead of creating a large set of threads. For
106 < * example, a common pool could be used for the {@code SortTasks}
107 < * illustrated in {@link RecursiveAction}. Because {@code
108 < * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
109 < * daemon} mode, there is typically no need to explicitly {@link
110 < * #shutdown} such a pool upon program exit.
111 < *
112 < *  <pre> {@code
113 < * static final ForkJoinPool mainPool = new ForkJoinPool();
114 < * ...
115 < * public void sort(long[] array) {
116 < *   mainPool.invoke(new SortTask(array, 0, array.length));
117 < * }}</pre>
102 > * <p>The common pool is by default constructed with default
103 > * parameters, but these may be controlled by setting three
104 > * {@linkplain System#getProperty system properties}:
105 > * <ul>
106 > * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
107 > * - the parallelism level, a non-negative integer
108 > * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
109 > * - the class name of a {@link ForkJoinWorkerThreadFactory}
110 > * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
111 > * - the class name of a {@link UncaughtExceptionHandler}
112 > * </ul>
113 > * The system class loader is used to load these classes.
114 > * Upon any error in establishing these settings, default parameters
115 > * are used. It is possible to disable or limit the use of threads in
116 > * the common pool by setting the parallelism property to zero, and/or
117 > * using a factory that may return {@code null}.
118   *
119   * <p><b>Implementation notes</b>: This implementation restricts the
120   * maximum number of running threads to 32767. Attempts to create
# Line 154 | Line 160 | public class ForkJoinPool extends Abstra
160       * (http://research.sun.com/scalable/pubs/index.html) and
161       * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
162       * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
163 <     * The main differences ultimately stem from GC requirements that
164 <     * we null out taken slots as soon as we can, to maintain as small
165 <     * a footprint as possible even in programs generating huge
166 <     * numbers of tasks. To accomplish this, we shift the CAS
167 <     * arbitrating pop vs poll (steal) from being on the indices
168 <     * ("base" and "top") to the slots themselves.  So, both a
169 <     * successful pop and poll mainly entail a CAS of a slot from
170 <     * non-null to null.  Because we rely on CASes of references, we
171 <     * do not need tag bits on base or top.  They are simple ints as
172 <     * used in any circular array-based queue (see for example
173 <     * ArrayDeque).  Updates to the indices must still be ordered in a
174 <     * way that guarantees that top == base means the queue is empty,
175 <     * but otherwise may err on the side of possibly making the queue
176 <     * appear nonempty when a push, pop, or poll have not fully
177 <     * committed. Note that this means that the poll operation,
178 <     * considered individually, is not wait-free. One thief cannot
179 <     * successfully continue until another in-progress one (or, if
180 <     * previously empty, a push) completes.  However, in the
181 <     * aggregate, we ensure at least probabilistic non-blockingness.
182 <     * If an attempted steal fails, a thief always chooses a different
183 <     * random victim target to try next. So, in order for one thief to
184 <     * progress, it suffices for any in-progress poll or new push on
185 <     * any empty queue to complete. (This is why we normally use
186 <     * method pollAt and its variants that try once at the apparent
187 <     * base index, else consider alternative actions, rather than
188 <     * method poll.)
163 >     * See also "Correct and Efficient Work-Stealing for Weak Memory
164 >     * Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
165 >     * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
166 >     * analysis of memory ordering (atomic, volatile etc) issues.  The
167 >     * main differences ultimately stem from GC requirements that we
168 >     * null out taken slots as soon as we can, to maintain as small a
169 >     * footprint as possible even in programs generating huge numbers
170 >     * of tasks. To accomplish this, we shift the CAS arbitrating pop
171 >     * vs poll (steal) from being on the indices ("base" and "top") to
172 >     * the slots themselves.  So, both a successful pop and poll
173 >     * mainly entail a CAS of a slot from non-null to null.  Because
174 >     * we rely on CASes of references, we do not need tag bits on base
175 >     * or top.  They are simple ints as used in any circular
176 >     * array-based queue (see for example ArrayDeque).  Updates to the
177 >     * indices must still be ordered in a way that guarantees that top
178 >     * == base means the queue is empty, but otherwise may err on the
179 >     * side of possibly making the queue appear nonempty when a push,
180 >     * pop, or poll have not fully committed. Note that this means
181 >     * that the poll operation, considered individually, is not
182 >     * wait-free. One thief cannot successfully continue until another
183 >     * in-progress one (or, if previously empty, a push) completes.
184 >     * However, in the aggregate, we ensure at least probabilistic
185 >     * non-blockingness.  If an attempted steal fails, a thief always
186 >     * chooses a different random victim target to try next. So, in
187 >     * order for one thief to progress, it suffices for any
188 >     * in-progress poll or new push on any empty queue to
189 >     * complete. (This is why we normally use method pollAt and its
190 >     * variants that try once at the apparent base index, else
191 >     * consider alternative actions, rather than method poll.)
192       *
193       * This approach also enables support of a user mode in which local
194       * task processing is in FIFO, not LIFO order, simply by using
# Line 196 | Line 205 | public class ForkJoinPool extends Abstra
205       * WorkQueues are also used in a similar way for tasks submitted
206       * to the pool. We cannot mix these tasks in the same queues used
207       * for work-stealing (this would contaminate lifo/fifo
208 <     * processing). Instead, we loosely associate submission queues
208 >     * processing). Instead, we randomly associate submission queues
209       * with submitting threads, using a form of hashing.  The
210 <     * ThreadLocal Submitter class contains a value initially used as
211 <     * a hash code for choosing existing queues, but may be randomly
212 <     * repositioned upon contention with other submitters.  In
213 <     * essence, submitters act like workers except that they never
214 <     * take tasks, and they are multiplexed on to a finite number of
215 <     * shared work queues. However, classes are set up so that future
216 <     * extensions could allow submitters to optionally help perform
217 <     * tasks as well. Insertion of tasks in shared mode requires a
218 <     * lock (mainly to protect in the case of resizing) but we use
219 <     * only a simple spinlock (using bits in field runState), because
220 <     * submitters encountering a busy queue move on to try or create
221 <     * other queues -- they block only when creating and registering
222 <     * new queues.
210 >     * Submitter probe value serves as a hash code for
211 >     * choosing existing queues, and may be randomly repositioned upon
212 >     * contention with other submitters.  In essence, submitters act
213 >     * like workers except that they are restricted to executing local
214 >     * tasks that they submitted (or in the case of CountedCompleters,
215 >     * others with the same root task).  However, because most
216 >     * shared/external queue operations are more expensive than
217 >     * internal, and because, at steady state, external submitters
218 >     * will compete for CPU with workers, ForkJoinTask.join and
219 >     * related methods disable them from repeatedly helping to process
220 >     * tasks if all workers are active.  Insertion of tasks in shared
221 >     * mode requires a lock (mainly to protect in the case of
222 >     * resizing) but we use only a simple spinlock (using bits in
223 >     * field qlock), because submitters encountering a busy queue move
224 >     * on to try or create other queues -- they block only when
225 >     * creating and registering new queues.
226       *
227       * Management
228       * ==========
# Line 232 | Line 244 | public class ForkJoinPool extends Abstra
244       * and their negations (used for thresholding) to fit into 16bit
245       * fields.
246       *
247 <     * Field "runState" contains 32 bits needed to register and
248 <     * deregister WorkQueues, as well as to enable shutdown. It is
249 <     * only modified under a lock (normally briefly held, but
250 <     * occasionally protecting allocations and resizings) but even
251 <     * when locked remains available to check consistency.
247 >     * Field "plock" is a form of sequence lock with a saturating
248 >     * shutdown bit (similarly for per-queue "qlocks"), mainly
249 >     * protecting updates to the workQueues array, as well as to
250 >     * enable shutdown.  When used as a lock, it is normally only very
251 >     * briefly held, so is nearly always available after at most a
252 >     * brief spin, but we use a monitor-based backup strategy to
253 >     * block when needed.
254       *
255       * Recording WorkQueues.  WorkQueues are recorded in the
256 <     * "workQueues" array that is created upon pool construction and
257 <     * expanded if necessary.  Updates to the array while recording
258 <     * new workers and unrecording terminated ones are protected from
259 <     * each other by a lock but the array is otherwise concurrently
260 <     * readable, and accessed directly.  To simplify index-based
261 <     * operations, the array size is always a power of two, and all
262 <     * readers must tolerate null slots. Shared (submission) queues
263 <     * are at even indices, worker queues at odd indices. Grouping
264 <     * them together in this way simplifies and speeds up task
265 <     * scanning.
256 >     * "workQueues" array that is created upon first use and expanded
257 >     * if necessary.  Updates to the array while recording new workers
258 >     * and unrecording terminated ones are protected from each other
259 >     * by a lock but the array is otherwise concurrently readable, and
260 >     * accessed directly.  To simplify index-based operations, the
261 >     * array size is always a power of two, and all readers must
262 >     * tolerate null slots. Worker queues are at odd indices. Shared
263 >     * (submission) queues are at even indices, up to a maximum of 64
264 >     * slots, to limit growth even if array needs to expand to add
265 >     * more workers. Grouping them together in this way simplifies and
266 >     * speeds up task scanning.
267       *
268       * All worker thread creation is on-demand, triggered by task
269       * submissions, replacement of terminated workers, and/or
# Line 293 | Line 308 | public class ForkJoinPool extends Abstra
308       * has not yet entered the wait queue. We solve this by requiring
309       * a full sweep of all workers (via repeated calls to method
310       * scan()) both before and after a newly waiting worker is added
311 <     * to the wait queue. During a rescan, the worker might release
312 <     * some other queued worker rather than itself, which has the same
313 <     * net effect. Because enqueued workers may actually be rescanning
314 <     * rather than waiting, we set and clear the "parker" field of
315 <     * WorkQueues to reduce unnecessary calls to unpark.  (This
316 <     * requires a secondary recheck to avoid missed signals.)  Note
317 <     * the unusual conventions about Thread.interrupts surrounding
318 <     * parking and other blocking: Because interrupts are used solely
319 <     * to alert threads to check termination, which is checked anyway
320 <     * upon blocking, we clear status (using Thread.interrupted)
321 <     * before any call to park, so that park does not immediately
307 <     * return due to status being set via some other unrelated call to
308 <     * interrupt in user code.
311 >     * to the wait queue.  Because enqueued workers may actually be
312 >     * rescanning rather than waiting, we set and clear the "parker"
313 >     * field of WorkQueues to reduce unnecessary calls to unpark.
314 >     * (This requires a secondary recheck to avoid missed signals.)
315 >     * Note the unusual conventions about Thread.interrupts
316 >     * surrounding parking and other blocking: Because interrupts are
317 >     * used solely to alert threads to check termination, which is
318 >     * checked anyway upon blocking, we clear status (using
319 >     * Thread.interrupted) before any call to park, so that park does
320 >     * not immediately return due to status being set via some other
321 >     * unrelated call to interrupt in user code.
322       *
323       * Signalling.  We create or wake up workers only when there
324       * appears to be at least one task they might be able to find and
325       * execute.  When a submission is added or another worker adds a
326 <     * task to a queue that previously had fewer than two tasks, they
327 <     * signal waiting workers (or trigger creation of new ones if
328 <     * fewer than the given parallelism level -- see signalWork).
329 <     * These primary signals are buttressed by signals during rescans;
330 <     * together these cover the signals needed in cases when more
331 <     * tasks are pushed but untaken, and improve performance compared
332 <     * to having one thread wake up all workers.
326 >     * task to a queue that has fewer than two tasks, they signal
327 >     * waiting workers (or trigger creation of new ones if fewer than
328 >     * the given parallelism level -- signalWork).  These primary
329 >     * signals are buttressed by others whenever other threads remove
330 >     * a task from a queue and notice that there are other tasks there
331 >     * as well.  So in general, pools will be over-signalled. On most
332 >     * platforms, signalling (unpark) overhead time is noticeably
333 >     * long, and the time between signalling a thread and it actually
334 >     * making progress can be very noticeably long, so it is worth
335 >     * offloading these delays from critical paths as much as
336 >     * possible. Additionally, workers spin-down gradually, by staying
337 >     * alive so long as they see the ctl state changing.  Similar
338 >     * stability-sensing techniques are also used before blocking in
339 >     * awaitJoin and helpComplete.
340       *
341       * Trimming workers. To release resources after periods of lack of
342       * use, a worker starting to wait when the pool is quiescent will
343 <     * time out and terminate if the pool has remained quiescent for
344 <     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
345 <     * terminating all workers after long periods of non-use.
343 >     * time out and terminate if the pool has remained quiescent for a
344 >     * given period -- a short period if there are more threads than
345 >     * parallelism, longer as the number of threads decreases. This
346 >     * will slowly propagate, eventually terminating all workers after
347 >     * periods of non-use.
348       *
349       * Shutdown and Termination. A call to shutdownNow atomically sets
350 <     * a runState bit and then (non-atomically) sets each worker's
351 <     * runState status, cancels all unprocessed tasks, and wakes up
350 >     * a plock bit and then (non-atomically) sets each worker's
351 >     * qlock status, cancels all unprocessed tasks, and wakes up
352       * all waiting workers.  Detecting whether termination should
353       * commence after a non-abrupt shutdown() call requires more work
354       * and bookkeeping. We need consensus about quiescence (i.e., that
# Line 354 | Line 376 | public class ForkJoinPool extends Abstra
376       *      method tryCompensate() may create or re-activate a spare
377       *      thread to compensate for blocked joiners until they unblock.
378       *
379 <     * A third form (implemented in tryRemoveAndExec and
380 <     * tryPollForAndExec) amounts to helping a hypothetical
381 <     * compensator: If we can readily tell that a possible action of a
382 <     * compensator is to steal and execute the task being joined, the
383 <     * joining thread can do so directly, without the need for a
384 <     * compensation thread (although at the expense of larger run-time
385 <     * stacks, but the tradeoff is typically worthwhile).
379 >     * A third form (implemented in tryRemoveAndExec) amounts to
380 >     * helping a hypothetical compensator: If we can readily tell that
381 >     * a possible action of a compensator is to steal and execute the
382 >     * task being joined, the joining thread can do so directly,
383 >     * without the need for a compensation thread (although at the
384 >     * expense of larger run-time stacks, but the tradeoff is
385 >     * typically worthwhile).
386       *
387       * The ManagedBlocker extension API can't use helping so relies
388       * only on compensation in method awaitBlocker.
# Line 382 | Line 404 | public class ForkJoinPool extends Abstra
404       * steals, rather than use per-task bookkeeping.  This sometimes
405       * requires a linear scan of workQueues array to locate stealers,
406       * but often doesn't because stealers leave hints (that may become
407 <     * stale/wrong) of where to locate them.  A stealHint is only a
408 <     * hint because a worker might have had multiple steals and the
409 <     * hint records only one of them (usually the most current).
410 <     * Hinting isolates cost to when it is needed, rather than adding
411 <     * to per-task overhead.  (2) It is "shallow", ignoring nesting
412 <     * and potentially cyclic mutual steals.  (3) It is intentionally
407 >     * stale/wrong) of where to locate them.  It is only a hint
408 >     * because a worker might have had multiple steals and the hint
409 >     * records only one of them (usually the most current).  Hinting
410 >     * isolates cost to when it is needed, rather than adding to
411 >     * per-task overhead.  (2) It is "shallow", ignoring nesting and
412 >     * potentially cyclic mutual steals.  (3) It is intentionally
413       * racy: field currentJoin is updated only while actively joining,
414       * which means that we miss links in the chain during long-lived
415       * tasks, GC stalls etc (which is OK since blocking in such cases
# Line 395 | Line 417 | public class ForkJoinPool extends Abstra
417       * to find work (see MAX_HELP) and fall back to suspending the
418       * worker and if necessary replacing it with another.
419       *
420 +     * Helping actions for CountedCompleters are much simpler: Method
421 +     * helpComplete can take and execute any task with the same root
422 +     * as the task being waited on. However, this still entails some
423 +     * traversal of completer chains, so is less efficient than using
424 +     * CountedCompleters without explicit joins.
425 +     *
426       * It is impossible to keep exactly the target parallelism number
427       * of threads running at any given time.  Determining the
428       * existence of conservatively safe helping targets, the
# Line 416 | Line 444 | public class ForkJoinPool extends Abstra
444       * intractable) game with an opponent that may choose the worst
445       * (for us) active thread to stall at any time.  We take several
446       * precautions to bound losses (and thus bound gains), mainly in
447 <     * methods tryCompensate and awaitJoin: (1) We only try
448 <     * compensation after attempting enough helping steps (measured
449 <     * via counting and timing) that we have already consumed the
450 <     * estimated cost of creating and activating a new thread.  (2) We
451 <     * allow up to 50% of threads to be blocked before initially
452 <     * adding any others, and unless completely saturated, check that
453 <     * some work is available for a new worker before adding. Also, we
454 <     * create up to only 50% more threads until entering a mode that
455 <     * only adds a thread if all others are possibly blocked.  All
456 <     * together, this means that we might be half as fast to react,
457 <     * and create half as many threads as possible in the ideal case,
458 <     * but present vastly fewer anomalies in all other cases compared
459 <     * to both more aggressive and more conservative alternatives.
460 <     *
461 <     * Style notes: There is a lot of representation-level coupling
462 <     * among classes ForkJoinPool, ForkJoinWorkerThread, and
463 <     * ForkJoinTask.  The fields of WorkQueue maintain data structures
464 <     * managed by ForkJoinPool, so are directly accessed.  There is
465 <     * little point trying to reduce this, since any associated future
466 <     * changes in representations will need to be accompanied by
467 <     * algorithmic changes anyway. Several methods intrinsically
468 <     * sprawl because they must accumulate sets of consistent reads of
469 <     * volatiles held in local variables.  Methods signalWork() and
470 <     * scan() are the main bottlenecks, so are especially heavily
447 >     * methods tryCompensate and awaitJoin.
448 >     *
449 >     * Common Pool
450 >     * ===========
451 >     *
452 >     * The static common pool always exists after static
453 >     * initialization.  Since it (or any other created pool) need
454 >     * never be used, we minimize initial construction overhead and
455 >     * footprint to the setup of about a dozen fields, with no nested
456 >     * allocation. Most bootstrapping occurs within method
457 >     * fullExternalPush during the first submission to the pool.
458 >     *
459 >     * When external threads submit to the common pool, they can
460 >     * perform subtask processing (see externalHelpJoin and related
461 >     * methods).  This caller-helps policy makes it sensible to set
462 >     * common pool parallelism level to one (or more) less than the
463 >     * total number of available cores, or even zero for pure
464 >     * caller-runs.  We do not need to record whether external
465 >     * submissions are to the common pool -- if not, externalHelpJoin
466 >     * returns quickly (at the most helping to signal some common pool
467 >     * workers). These submitters would otherwise be blocked waiting
468 >     * for completion, so the extra effort (with liberally sprinkled
469 >     * task status checks) in inapplicable cases amounts to an odd
470 >     * form of limited spin-wait before blocking in ForkJoinTask.join.
471 >     *
472 >     * Style notes
473 >     * ===========
474 >     *
475 >     * There is a lot of representation-level coupling among classes
476 >     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
477 >     * fields of WorkQueue maintain data structures managed by
478 >     * ForkJoinPool, so are directly accessed.  There is little point
479 >     * trying to reduce this, since any associated future changes in
480 >     * representations will need to be accompanied by algorithmic
481 >     * changes anyway. Several methods intrinsically sprawl because
482 >     * they must accumulate sets of consistent reads of volatiles held
483 >     * in local variables.  Methods signalWork() and scan() are the
484 >     * main bottlenecks, so are especially heavily
485       * micro-optimized/mangled.  There are lots of inline assignments
486       * (of form "while ((local = field) != 0)") which are usually the
487       * simplest way to ensure the required read orderings (which are
# Line 447 | Line 489 | public class ForkJoinPool extends Abstra
489       * declarations of these locals at the heads of methods or blocks.
490       * There are several occurrences of the unusual "do {} while
491       * (!cas...)"  which is the simplest way to force an update of a
492 <     * CAS'ed variable. There are also other coding oddities that help
492 >     * CAS'ed variable. There are also other coding oddities (including
493 >     * several unnecessary-looking hoisted null checks) that help
494       * some methods perform reasonably even when interpreted (not
495       * compiled).
496       *
# Line 487 | Line 530 | public class ForkJoinPool extends Abstra
530           * Returns a new worker thread operating in the given pool.
531           *
532           * @param pool the pool this thread works in
533 +         * @return the new worker thread
534           * @throws NullPointerException if the pool is null
535           */
536          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
# Line 496 | Line 540 | public class ForkJoinPool extends Abstra
540       * Default ForkJoinWorkerThreadFactory implementation; creates a
541       * new ForkJoinWorkerThread.
542       */
543 <    static class DefaultForkJoinWorkerThreadFactory
543 >    static final class DefaultForkJoinWorkerThreadFactory
544          implements ForkJoinWorkerThreadFactory {
545 <        public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
545 >        public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
546              return new ForkJoinWorkerThread(pool);
547          }
548      }
549  
550      /**
507     * A simple non-reentrant lock used for exclusion when managing
508     * queues and workers. We use a custom lock so that we can readily
509     * probe lock state in constructions that check among alternative
510     * actions. The lock is normally only very briefly held, and
511     * sometimes treated as a spinlock, but other usages block to
512     * reduce overall contention in those cases where locked code
513     * bodies perform allocation/resizing.
514     */
515    static final class Mutex extends AbstractQueuedSynchronizer {
516        public final boolean tryAcquire(int ignore) {
517            return compareAndSetState(0, 1);
518        }
519        public final boolean tryRelease(int ignore) {
520            setState(0);
521            return true;
522        }
523        public final void lock() { acquire(0); }
524        public final void unlock() { release(0); }
525        public final boolean isHeldExclusively() { return getState() == 1; }
526        public final Condition newCondition() { return new ConditionObject(); }
527    }
528
529    /**
551       * Class for artificial tasks that are used to replace the target
552       * of local joins if they are removed from an interior queue slot
553       * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
554       * actually do anything beyond having a unique identity.
555       */
556      static final class EmptyTask extends ForkJoinTask<Void> {
557 +        private static final long serialVersionUID = -7721805057305804111L;
558          EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
559          public final Void getRawResult() { return null; }
560          public final void setRawResult(Void x) {}
# Line 553 | Line 575 | public class ForkJoinPool extends Abstra
575       *
576       * Field "top" is the index (mod array.length) of the next queue
577       * slot to push to or pop from. It is written only by owner thread
578 <     * for push, or under lock for trySharedPush, and accessed by
579 <     * other threads only after reading (volatile) base.  Both top and
580 <     * base are allowed to wrap around on overflow, but (top - base)
581 <     * (or more commonly -(base - top) to force volatile read of base
582 <     * before top) still estimates size.
578 >     * for push, or under lock for external/shared push, and accessed
579 >     * by other threads only after reading (volatile) base.  Both top
580 >     * and base are allowed to wrap around on overflow, but (top -
581 >     * base) (or more commonly -(base - top) to force volatile read of
582 >     * base before top) still estimates size. The lock ("qlock") is
583 >     * forced to -1 on termination, causing all further lock attempts
584 >     * to fail. (Note: we don't need CAS for termination state because
585 >     * upon pool shutdown, all shared-queues will stop being used
586 >     * anyway.)  Nearly all lock bodies are set up so that exceptions
587 >     * within lock bodies are "impossible" (modulo JVM errors that
588 >     * would cause failure anyway.)
589       *
590       * The array slots are read and written using the emulation of
591       * volatiles/atomics provided by Unsafe. Insertions must in
592       * general use putOrderedObject as a form of releasing store to
593       * ensure that all writes to the task object are ordered before
594 <     * its publication in the queue. (Although we can avoid one case
595 <     * of this when locked in trySharedPush.) All removals entail a
596 <     * CAS to null.  The array is always a power of two. To ensure
597 <     * safety of Unsafe array operations, all accesses perform
570 <     * explicit null checks and implicit bounds checks via
571 <     * power-of-two masking.
594 >     * its publication in the queue.  All removals entail a CAS to
595 >     * null.  The array is always a power of two. To ensure safety of
596 >     * Unsafe array operations, all accesses perform explicit null
597 >     * checks and implicit bounds checks via power-of-two masking.
598       *
599       * In addition to basic queuing support, this class contains
600       * fields described elsewhere to control execution. It turns out
601 <     * to work better memory-layout-wise to include them in this
602 <     * class rather than a separate class.
601 >     * to work better memory-layout-wise to include them in this class
602 >     * rather than a separate class.
603       *
604       * Performance on most platforms is very sensitive to placement of
605       * instances of both WorkQueues and their arrays -- we absolutely
606       * do not want multiple WorkQueue instances or multiple queue
607       * arrays sharing cache lines. (It would be best for queue objects
608       * and their arrays to share, but there is nothing available to
609 <     * help arrange that).  Unfortunately, because they are recorded
610 <     * in a common array, WorkQueue instances are often moved to be
585 <     * adjacent by garbage collectors. To reduce impact, we use field
586 <     * padding that works OK on common platforms; this effectively
587 <     * trades off slightly slower average field access for the sake of
588 <     * avoiding really bad worst-case access. (Until better JVM
589 <     * support is in place, this padding is dependent on transient
590 <     * properties of JVM field layout rules.)  We also take care in
591 <     * allocating, sizing and resizing the array. Non-shared queue
592 <     * arrays are initialized (via method growArray) by workers before
593 <     * use. Others are allocated on first use.
609 >     * help arrange that). The @Contended annotation alerts JVMs to
610 >     * try to keep instances apart.
611       */
612      static final class WorkQueue {
613          /**
# Line 613 | Line 630 | public class ForkJoinPool extends Abstra
630           */
631          static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
632  
633 <        volatile long totalSteals; // cumulative number of steals
634 <        int seed;                  // for random scanning; initialize nonzero
633 >        // Heuristic padding to ameliorate unfortunate memory placements
634 >        volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
635 >
636          volatile int eventCount;   // encoded inactivation count; < 0 if inactive
637          int nextWait;              // encoded record of next event waiter
638 <        int rescans;               // remaining scans until block
639 <        int nsteals;               // top-level task executions since last idle
640 <        final int mode;            // lifo, fifo, or shared
641 <        int poolIndex;             // index of this queue in pool (or 0)
642 <        int stealHint;             // index of most recent known stealer
625 <        volatile int runState;     // 1: locked, -1: terminate; else 0
638 >        int nsteals;               // number of steals
639 >        int hint;                  // steal index hint
640 >        short poolIndex;           // index of this queue in pool
641 >        final short mode;          // 0: lifo, > 0: fifo, < 0: shared
642 >        volatile int qlock;        // 1: locked, -1: terminate; else 0
643          volatile int base;         // index of next slot for poll
644          int top;                   // index of next slot for push
645          ForkJoinTask<?>[] array;   // the elements (initially unallocated)
# Line 631 | Line 648 | public class ForkJoinPool extends Abstra
648          volatile Thread parker;    // == owner during call to park; else null
649          volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
650          ForkJoinTask<?> currentSteal; // current non-local task being executed
634        // Heuristic padding to ameliorate unfortunate memory placements
635        Object p00, p01, p02, p03, p04, p05, p06, p07;
636        Object p08, p09, p0a, p0b, p0c, p0d, p0e;
651  
652 <        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
653 <            this.mode = mode;
652 >        volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
653 >        volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
654 >
655 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
656 >                  int seed) {
657              this.pool = pool;
658              this.owner = owner;
659 +            this.mode = (short)mode;
660 +            this.hint = seed; // store initial seed for runWorker
661              // Place indices in the center of array (that is not yet allocated)
662              base = top = INITIAL_QUEUE_CAPACITY >>> 1;
663          }
# Line 663 | Line 682 | public class ForkJoinPool extends Abstra
682                      (n == -1 &&
683                       ((a = array) == null ||
684                        (m = a.length - 1) < 0 ||
685 <                      U.getObjectVolatile
686 <                      (a, ((m & (s - 1)) << ASHIFT) + ABASE) == null)));
685 >                      U.getObject
686 >                      (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
687          }
688  
689          /**
690 <         * Pushes a task. Call only by owner in unshared queues.
690 >         * Pushes a task. Call only by owner in unshared queues.  (The
691 >         * shared-queue version is embedded in method externalPush.)
692           *
693           * @param task the task. Caller must ensure non-null.
694 <         * @throw RejectedExecutionException if array cannot be resized
694 >         * @throws RejectedExecutionException if array cannot be resized
695           */
696          final void push(ForkJoinTask<?> task) {
697              ForkJoinTask<?>[] a; ForkJoinPool p;
698 <            int s = top, m, n;
698 >            int s = top, n;
699              if ((a = array) != null) {    // ignore if queue removed
700 <                U.putOrderedObject
701 <                    (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
702 <                if ((n = (top = s + 1) - base) <= 2) {
703 <                    if ((p = pool) != null)
684 <                        p.signalWork();
685 <                }
700 >                int m = a.length - 1;
701 >                U.putOrderedObject(a, ((m & s) << ASHIFT) + ABASE, task);
702 >                if ((n = (top = s + 1) - base) <= 2)
703 >                    (p = pool).signalWork(p.workQueues, this);
704                  else if (n >= m)
705 <                    growArray(true);
705 >                    growArray();
706              }
707          }
708  
709          /**
710 <         * Pushes a task if lock is free and array is either big
711 <         * enough or can be resized to be big enough.
712 <         *
695 <         * @param task the task. Caller must ensure non-null.
696 <         * @return true if submitted
710 >         * Initializes or doubles the capacity of array. Call either
711 >         * by owner or with lock held -- it is OK for base, but not
712 >         * top, to move while resizings are in progress.
713           */
714 <        final boolean trySharedPush(ForkJoinTask<?> task) {
715 <            boolean submitted = false;
716 <            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
717 <                ForkJoinTask<?>[] a = array;
718 <                int s = top;
719 <                try {
720 <                    if ((a != null && a.length > s + 1 - base) ||
721 <                        (a = growArray(false)) != null) { // must presize
722 <                        int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
723 <                        U.putObject(a, (long)j, task);    // don't need "ordered"
724 <                        top = s + 1;
725 <                        submitted = true;
726 <                    }
727 <                } finally {
728 <                    runState = 0;                         // unlock
729 <                }
714 >        final ForkJoinTask<?>[] growArray() {
715 >            ForkJoinTask<?>[] oldA = array;
716 >            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
717 >            if (size > MAXIMUM_QUEUE_CAPACITY)
718 >                throw new RejectedExecutionException("Queue capacity exceeded");
719 >            int oldMask, t, b;
720 >            ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
721 >            if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
722 >                (t = top) - (b = base) > 0) {
723 >                int mask = size - 1;
724 >                do {
725 >                    ForkJoinTask<?> x;
726 >                    int oldj = ((b & oldMask) << ASHIFT) + ABASE;
727 >                    int j    = ((b &    mask) << ASHIFT) + ABASE;
728 >                    x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
729 >                    if (x != null &&
730 >                        U.compareAndSwapObject(oldA, oldj, x, null))
731 >                        U.putObjectVolatile(a, j, x);
732 >                } while (++b != t);
733              }
734 <            return submitted;
734 >            return a;
735          }
736  
737          /**
738           * Takes next task, if one exists, in LIFO order.  Call only
739 <         * by owner in unshared queues. (We do not have a shared
721 <         * version of this method because it is never needed.)
739 >         * by owner in unshared queues.
740           */
741          final ForkJoinTask<?> pop() {
742              ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
# Line 746 | Line 764 | public class ForkJoinPool extends Abstra
764              if ((a = array) != null) {
765                  int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
766                  if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
767 <                    base == b &&
768 <                    U.compareAndSwapObject(a, j, t, null)) {
751 <                    base = b + 1;
767 >                    base == b && U.compareAndSwapObject(a, j, t, null)) {
768 >                    U.putOrderedInt(this, QBASE, b + 1);
769                      return t;
770                  }
771              }
# Line 764 | Line 781 | public class ForkJoinPool extends Abstra
781                  int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
782                  t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
783                  if (t != null) {
784 <                    if (base == b &&
785 <                        U.compareAndSwapObject(a, j, t, null)) {
769 <                        base = b + 1;
784 >                    if (U.compareAndSwapObject(a, j, t, null)) {
785 >                        U.putOrderedInt(this, QBASE, b + 1);
786                          return t;
787                      }
788                  }
789                  else if (base == b) {
790                      if (b + 1 == top)
791                          break;
792 <                    Thread.yield(); // wait for lagging update
792 >                    Thread.yield(); // wait for lagging update (very rare)
793                  }
794              }
795              return null;
# Line 800 | Line 816 | public class ForkJoinPool extends Abstra
816  
817          /**
818           * Pops the given task only if it is at the current top.
819 +         * (A shared version is available only via FJP.tryExternalUnpush)
820           */
821          final boolean tryUnpush(ForkJoinTask<?> t) {
822              ForkJoinTask<?>[] a; int s;
# Line 813 | Line 830 | public class ForkJoinPool extends Abstra
830          }
831  
832          /**
816         * Polls the given task only if it is at the current base.
817         */
818        final boolean pollFor(ForkJoinTask<?> task) {
819            ForkJoinTask<?>[] a; int b;
820            if ((b = base) - top < 0 && (a = array) != null) {
821                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
822                if (U.getObjectVolatile(a, j) == task && base == b &&
823                    U.compareAndSwapObject(a, j, task, null)) {
824                    base = b + 1;
825                    return true;
826                }
827            }
828            return false;
829        }
830
831        /**
832         * Initializes or doubles the capacity of array. Call either
833         * by owner or with lock held -- it is OK for base, but not
834         * top, to move while resizings are in progress.
835         *
836         * @param rejectOnFailure if true, throw exception if capacity
837         * exceeded (relayed ultimately to user); else return null.
838         */
839        final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
840            ForkJoinTask<?>[] oldA = array;
841            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
842            if (size <= MAXIMUM_QUEUE_CAPACITY) {
843                int oldMask, t, b;
844                ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
845                if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
846                    (t = top) - (b = base) > 0) {
847                    int mask = size - 1;
848                    do {
849                        ForkJoinTask<?> x;
850                        int oldj = ((b & oldMask) << ASHIFT) + ABASE;
851                        int j    = ((b &    mask) << ASHIFT) + ABASE;
852                        x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
853                        if (x != null &&
854                            U.compareAndSwapObject(oldA, oldj, x, null))
855                            U.putObjectVolatile(a, j, x);
856                    } while (++b != t);
857                }
858                return a;
859            }
860            else if (!rejectOnFailure)
861                return null;
862            else
863                throw new RejectedExecutionException("Queue capacity exceeded");
864        }
865
866        /**
833           * Removes and cancels all known tasks, ignoring any exceptions.
834           */
835          final void cancelAll() {
# Line 873 | Line 839 | public class ForkJoinPool extends Abstra
839                  ForkJoinTask.cancelIgnoringExceptions(t);
840          }
841  
842 <        /**
877 <         * Computes next value for random probes.  Scans don't require
878 <         * a very high quality generator, but also not a crummy one.
879 <         * Marsaglia xor-shift is cheap and works well enough.  Note:
880 <         * This is manually inlined in its usages in ForkJoinPool to
881 <         * avoid writes inside busy scan loops.
882 <         */
883 <        final int nextSeed() {
884 <            int r = seed;
885 <            r ^= r << 13;
886 <            r ^= r >>> 17;
887 <            return seed = r ^= r << 5;
888 <        }
889 <
890 <        // Execution methods
891 <
892 <        /**
893 <         * Pops and runs tasks until empty.
894 <         */
895 <        private void popAndExecAll() {
896 <            // A bit faster than repeated pop calls
897 <            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
898 <            while ((a = array) != null && (m = a.length - 1) >= 0 &&
899 <                   (s = top - 1) - base >= 0 &&
900 <                   (t = ((ForkJoinTask<?>)
901 <                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
902 <                   != null) {
903 <                if (U.compareAndSwapObject(a, j, t, null)) {
904 <                    top = s;
905 <                    t.doExec();
906 <                }
907 <            }
908 <        }
842 >        // Specialized execution methods
843  
844          /**
845           * Polls and runs tasks until empty.
846           */
847 <        private void pollAndExecAll() {
847 >        final void pollAndExecAll() {
848              for (ForkJoinTask<?> t; (t = poll()) != null;)
849                  t.doExec();
850          }
851  
852          /**
853 <         * If present, removes from queue and executes the given task, or
854 <         * any other cancelled task. Returns (true) immediately on any CAS
853 >         * Executes a top-level task and any local tasks remaining
854 >         * after execution.
855 >         */
856 >        final void runTask(ForkJoinTask<?> task) {
857 >            if ((currentSteal = task) != null) {
858 >                task.doExec();
859 >                ForkJoinTask<?>[] a = array;
860 >                int md = mode;
861 >                ++nsteals;
862 >                currentSteal = null;
863 >                if (md != 0)
864 >                    pollAndExecAll();
865 >                else if (a != null) {
866 >                    int s, m = a.length - 1;
867 >                    while ((s = top - 1) - base >= 0) {
868 >                        long i = ((m & s) << ASHIFT) + ABASE;
869 >                        ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObject(a, i);
870 >                        if (t == null)
871 >                            break;
872 >                        if (U.compareAndSwapObject(a, i, t, null)) {
873 >                            top = s;
874 >                            t.doExec();
875 >                        }
876 >                    }
877 >                }
878 >            }
879 >        }
880 >
881 >        /**
882 >         * If present, removes from queue and executes the given task,
883 >         * or any other cancelled task. Returns (true) on any CAS
884           * or consistency check failure so caller can retry.
885           *
886 <         * @return 0 if no progress can be made, else positive
924 <         * (this unusual convention simplifies use with tryHelpStealer.)
886 >         * @return false if no progress can be made, else true
887           */
888 <        final int tryRemoveAndExec(ForkJoinTask<?> task) {
889 <            int stat = 1;
928 <            boolean removed = false, empty = true;
888 >        final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
889 >            boolean stat;
890              ForkJoinTask<?>[] a; int m, s, b, n;
891 <            if ((a = array) != null && (m = a.length - 1) >= 0 &&
891 >            if (task != null && (a = array) != null && (m = a.length - 1) >= 0 &&
892                  (n = (s = top) - (b = base)) > 0) {
893 +                boolean removed = false, empty = true;
894 +                stat = true;
895                  for (ForkJoinTask<?> t;;) {           // traverse from s to b
896 <                    int j = ((--s & m) << ASHIFT) + ABASE;
897 <                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
896 >                    long j = ((--s & m) << ASHIFT) + ABASE;
897 >                    t = (ForkJoinTask<?>)U.getObject(a, j);
898                      if (t == null)                    // inconsistent length
899                          break;
900                      else if (t == task) {
# Line 955 | Line 918 | public class ForkJoinPool extends Abstra
918                      }
919                      if (--n == 0) {
920                          if (!empty && base == b)
921 <                            stat = 0;
921 >                            stat = false;
922                          break;
923                      }
924                  }
925 +                if (removed)
926 +                    task.doExec();
927              }
928 <            if (removed)
929 <                task.doExec();
928 >            else
929 >                stat = false;
930              return stat;
931          }
932  
933          /**
934 <         * Executes a top-level task and any local tasks remaining
935 <         * after execution.
934 >         * Tries to poll for and execute the given task or any other
935 >         * task in its CountedCompleter computation.
936           */
937 <        final void runTask(ForkJoinTask<?> t) {
938 <            if (t != null) {
939 <                currentSteal = t;
940 <                t.doExec();
941 <                if (top != base) {       // process remaining local tasks
942 <                    if (mode == 0)
943 <                        popAndExecAll();
944 <                    else
945 <                        pollAndExecAll();
937 >        final boolean pollAndExecCC(CountedCompleter<?> root) {
938 >            ForkJoinTask<?>[] a; int b; Object o; CountedCompleter<?> t, r;
939 >            if ((b = base) - top < 0 && (a = array) != null) {
940 >                long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
941 >                if ((o = U.getObjectVolatile(a, j)) == null)
942 >                    return true; // retry
943 >                if (o instanceof CountedCompleter) {
944 >                    for (t = (CountedCompleter<?>)o, r = t;;) {
945 >                        if (r == root) {
946 >                            if (base == b &&
947 >                                U.compareAndSwapObject(a, j, t, null)) {
948 >                                U.putOrderedInt(this, QBASE, b + 1);
949 >                                t.doExec();
950 >                            }
951 >                            return true;
952 >                        }
953 >                        else if ((r = r.completer) == null)
954 >                            break; // not part of root computation
955 >                    }
956                  }
982                ++nsteals;
983                currentSteal = null;
957              }
958 +            return false;
959          }
960  
961          /**
962 <         * Executes a non-top-level (stolen) task.
962 >         * Tries to pop and execute the given task or any other task
963 >         * in its CountedCompleter computation.
964           */
965 <        final void runSubtask(ForkJoinTask<?> t) {
966 <            if (t != null) {
967 <                ForkJoinTask<?> ps = currentSteal;
968 <                currentSteal = t;
969 <                t.doExec();
970 <                currentSteal = ps;
965 >        final boolean externalPopAndExecCC(CountedCompleter<?> root) {
966 >            ForkJoinTask<?>[] a; int s; Object o; CountedCompleter<?> t, r;
967 >            if (base - (s = top) < 0 && (a = array) != null) {
968 >                long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
969 >                if ((o = U.getObject(a, j)) instanceof CountedCompleter) {
970 >                    for (t = (CountedCompleter<?>)o, r = t;;) {
971 >                        if (r == root) {
972 >                            if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
973 >                                if (top == s && array == a &&
974 >                                    U.compareAndSwapObject(a, j, t, null)) {
975 >                                    top = s - 1;
976 >                                    qlock = 0;
977 >                                    t.doExec();
978 >                                }
979 >                                else
980 >                                    qlock = 0;
981 >                            }
982 >                            return true;
983 >                        }
984 >                        else if ((r = r.completer) == null)
985 >                            break;
986 >                    }
987 >                }
988              }
989 +            return false;
990 +        }
991 +
992 +        /**
993 +         * Internal version
994 +         */
995 +        final boolean internalPopAndExecCC(CountedCompleter<?> root) {
996 +            ForkJoinTask<?>[] a; int s; Object o; CountedCompleter<?> t, r;
997 +            if (base - (s = top) < 0 && (a = array) != null) {
998 +                long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
999 +                if ((o = U.getObject(a, j)) instanceof CountedCompleter) {
1000 +                    for (t = (CountedCompleter<?>)o, r = t;;) {
1001 +                        if (r == root) {
1002 +                            if (U.compareAndSwapObject(a, j, t, null)) {
1003 +                                top = s - 1;
1004 +                                t.doExec();
1005 +                            }
1006 +                            return true;
1007 +                        }
1008 +                        else if ((r = r.completer) == null)
1009 +                            break;
1010 +                    }
1011 +                }
1012 +            }
1013 +            return false;
1014          }
1015  
1016          /**
# Line 1008 | Line 1025 | public class ForkJoinPool extends Abstra
1025                      s != Thread.State.TIMED_WAITING);
1026          }
1027  
1011        /**
1012         * If this owned and is not already interrupted, try to
1013         * interrupt and/or unpark, ignoring exceptions.
1014         */
1015        final void interruptOwner() {
1016            Thread wt, p;
1017            if ((wt = owner) != null && !wt.isInterrupted()) {
1018                try {
1019                    wt.interrupt();
1020                } catch (SecurityException ignore) {
1021                }
1022            }
1023            if ((p = parker) != null)
1024                U.unpark(p);
1025        }
1026
1028          // Unsafe mechanics
1029          private static final sun.misc.Unsafe U;
1030 <        private static final long RUNSTATE;
1030 >        private static final long QBASE;
1031 >        private static final long QLOCK;
1032          private static final int ABASE;
1033          private static final int ASHIFT;
1034          static {
1033            int s;
1035              try {
1036                  U = getUnsafe();
1037                  Class<?> k = WorkQueue.class;
1038                  Class<?> ak = ForkJoinTask[].class;
1039 <                RUNSTATE = U.objectFieldOffset
1040 <                    (k.getDeclaredField("runState"));
1039 >                QBASE = U.objectFieldOffset
1040 >                    (k.getDeclaredField("base"));
1041 >                QLOCK = U.objectFieldOffset
1042 >                    (k.getDeclaredField("qlock"));
1043                  ABASE = U.arrayBaseOffset(ak);
1044 <                s = U.arrayIndexScale(ak);
1044 >                int scale = U.arrayIndexScale(ak);
1045 >                if ((scale & (scale - 1)) != 0)
1046 >                    throw new Error("data type scale not a power of two");
1047 >                ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1048              } catch (Exception e) {
1049                  throw new Error(e);
1050              }
1045            if ((s & (s-1)) != 0)
1046                throw new Error("data type scale not a power of two");
1047            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1051          }
1052      }
1053  
1054 +    // static fields (initialized in static initializer below)
1055 +
1056      /**
1057 <     * Per-thread records for threads that submit to pools. Currently
1058 <     * holds only pseudo-random seed / index that is used to choose
1059 <     * submission queues in method doSubmit. In the future, this may
1060 <     * also incorporate a means to implement different task rejection
1061 <     * and resubmission policies.
1057 <     *
1058 <     * Seeds for submitters and workers/workQueues work in basically
1059 <     * the same way but are initialized and updated using slightly
1060 <     * different mechanics. Both are initialized using the same
1061 <     * approach as in class ThreadLocal, where successive values are
1062 <     * unlikely to collide with previous values. This is done during
1063 <     * registration for workers, but requires a separate AtomicInteger
1064 <     * for submitters. Seeds are then randomly modified upon
1065 <     * collisions using xorshifts, which requires a non-zero seed.
1057 >     * Per-thread submission bookkeeping. Shared across all pools
1058 >     * to reduce ThreadLocal pollution and because random motion
1059 >     * to avoid contention in one pool is likely to hold for others.
1060 >     * Lazily initialized on first submission (but null-checked
1061 >     * in other contexts to avoid unnecessary initialization).
1062       */
1063 <    static final class Submitter {
1068 <        int seed;
1069 <        Submitter() {
1070 <            int s = nextSubmitterSeed.getAndAdd(SEED_INCREMENT);
1071 <            seed = (s == 0) ? 1 : s; // ensure non-zero
1072 <        }
1073 <    }
1074 <
1075 <    /** ThreadLocal class for Submitters */
1076 <    static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1077 <        public Submitter initialValue() { return new Submitter(); }
1078 <    }
1079 <
1080 <    // static fields (initialized in static initializer below)
1063 >    static final ThreadLocal<Submitter> submitters;
1064  
1065      /**
1066       * Creates a new ForkJoinWorkerThread. This factory is used unless
# Line 1087 | Line 1070 | public class ForkJoinPool extends Abstra
1070          defaultForkJoinWorkerThreadFactory;
1071  
1072      /**
1073 <     * Generator for assigning sequence numbers as pool names.
1073 >     * Permission required for callers of methods that may start or
1074 >     * kill threads.
1075       */
1076 <    private static final AtomicInteger poolNumberGenerator;
1076 >    private static final RuntimePermission modifyThreadPermission;
1077  
1078      /**
1079 <     * Generator for initial hashes/seeds for submitters. Accessed by
1080 <     * Submitter class constructor.
1079 >     * Common (static) pool. Non-null for public use unless a static
1080 >     * construction exception, but internal usages null-check on use
1081 >     * to paranoically avoid potential initialization circularities
1082 >     * as well as to simplify generated code.
1083       */
1084 <    static final AtomicInteger nextSubmitterSeed;
1084 >    static final ForkJoinPool common;
1085  
1086      /**
1087 <     * Permission required for callers of methods that may start or
1088 <     * kill threads.
1087 >     * Common pool parallelism. To allow simpler use and management
1088 >     * when common pool threads are disabled, we allow the underlying
1089 >     * common.parallelism field to be zero, but in that case still report
1090 >     * parallelism as 1 to reflect resulting caller-runs mechanics.
1091       */
1092 <    private static final RuntimePermission modifyThreadPermission;
1092 >    static final int commonParallelism;
1093  
1094      /**
1095 <     * Per-thread submission bookkeeping. Shared across all pools
1108 <     * to reduce ThreadLocal pollution and because random motion
1109 <     * to avoid contention in one pool is likely to hold for others.
1095 >     * Sequence number for creating workerNamePrefix.
1096       */
1097 <    private static final ThreadSubmitter submitters;
1097 >    private static int poolNumberSequence;
1098 >
1099 >    /**
1100 >     * Returns the next sequence number. We don't expect this to
1101 >     * ever contend, so use simple builtin sync.
1102 >     */
1103 >    private static final synchronized int nextPoolId() {
1104 >        return ++poolNumberSequence;
1105 >    }
1106  
1107      // static constants
1108  
1109      /**
1110 <     * The wakeup interval (in nanoseconds) for a worker waiting for a
1111 <     * task when the pool is quiescent to instead try to shrink the
1112 <     * number of workers.  The exact value does not matter too
1113 <     * much. It must be short enough to release resources during
1114 <     * sustained periods of idleness, but not so short that threads
1115 <     * are continually re-created.
1110 >     * Initial timeout value (in nanoseconds) for the thread
1111 >     * triggering quiescence to park waiting for new work. On timeout,
1112 >     * the thread will instead try to shrink the number of
1113 >     * workers. The value should be large enough to avoid overly
1114 >     * aggressive shrinkage during most transient stalls (long GCs
1115 >     * etc).
1116       */
1117 <    private static final long SHRINK_RATE =
1124 <        4L * 1000L * 1000L * 1000L; // 4 seconds
1117 >    private static final long IDLE_TIMEOUT      = 2000L * 1000L * 1000L; // 2sec
1118  
1119      /**
1120 <     * The timeout value for attempted shrinkage, includes
1128 <     * some slop to cope with system timer imprecision.
1120 >     * Timeout value when there are more threads than parallelism level
1121       */
1122 <    private static final long SHRINK_TIMEOUT = SHRINK_RATE - (SHRINK_RATE / 10);
1122 >    private static final long FAST_IDLE_TIMEOUT =  200L * 1000L * 1000L;
1123 >
1124 >    /**
1125 >     * Tolerance for idle timeouts, to cope with timer undershoots
1126 >     */
1127 >    private static final long TIMEOUT_SLOP = 2000000L;
1128  
1129      /**
1130       * The maximum stolen->joining link depth allowed in method
1131 <     * tryHelpStealer.  Must be a power of two. This value also
1135 <     * controls the maximum number of times to try to help join a task
1136 <     * without any apparent progress or change in pool state before
1137 <     * giving up and blocking (see awaitJoin).  Depths for legitimate
1131 >     * tryHelpStealer.  Must be a power of two.  Depths for legitimate
1132       * chains are unbounded, but we use a fixed constant to avoid
1133       * (otherwise unchecked) cycles and to bound staleness of
1134       * traversal parameters at the expense of sometimes blocking when
# Line 1143 | Line 1137 | public class ForkJoinPool extends Abstra
1137      private static final int MAX_HELP = 64;
1138  
1139      /**
1146     * Secondary time-based bound (in nanosecs) for helping attempts
1147     * before trying compensated blocking in awaitJoin. Used in
1148     * conjunction with MAX_HELP to reduce variance due to different
1149     * polling rates associated with different helping options. The
1150     * value should roughly approximate the time required to create
1151     * and/or activate a worker thread.
1152     */
1153    private static final long COMPENSATION_DELAY = 1L << 18; // ~0.25 millisec
1154
1155    /**
1140       * Increment for seed generators. See class ThreadLocal for
1141       * explanation.
1142       */
1143      private static final int SEED_INCREMENT = 0x61c88647;
1144  
1145 <    /**
1145 >    /*
1146       * Bits and masks for control variables
1147       *
1148       * Field ctl is a long packed with:
# Line 1186 | Line 1170 | public class ForkJoinPool extends Abstra
1170       * scan for them to avoid queuing races. Note however that
1171       * eventCount updates lag releases so usage requires care.
1172       *
1173 <     * Field runState is an int packed with:
1173 >     * Field plock is an int packed with:
1174       * SHUTDOWN: true if shutdown is enabled (1 bit)
1175 <     * SEQ:  a sequence number updated upon (de)registering workers (30 bits)
1176 <     * INIT: set true after workQueues array construction (1 bit)
1175 >     * SEQ:  a sequence lock, with PL_LOCK bit set if locked (30 bits)
1176 >     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1177       *
1178       * The sequence number enables simple consistency checks:
1179       * Staleness of read-only operations on the workQueues array can
1180 <     * be checked by comparing runState before vs after the reads.
1180 >     * be checked by comparing plock before vs after the reads.
1181       */
1182  
1183      // bit positions/shifts for fields
# Line 1205 | Line 1189 | public class ForkJoinPool extends Abstra
1189      // bounds
1190      private static final int  SMASK      = 0xffff;  // short bits
1191      private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1192 <    private static final int  SQMASK     = 0xfffe;  // even short bits
1192 >    private static final int  EVENMASK   = 0xfffe;  // even short bits
1193 >    private static final int  SQMASK     = 0x007e;  // max 64 (even) slots
1194      private static final int  SHORT_SIGN = 1 << 15;
1195      private static final int  INT_SIGN   = 1 << 31;
1196  
# Line 1230 | Line 1215 | public class ForkJoinPool extends Abstra
1215      private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1216      private static final int E_SEQ       = 1 << EC_SHIFT;
1217  
1218 <    // runState bits
1218 >    // plock bits
1219      private static final int SHUTDOWN    = 1 << 31;
1220 +    private static final int PL_LOCK     = 2;
1221 +    private static final int PL_SIGNAL   = 1;
1222 +    private static final int PL_SPINS    = 1 << 8;
1223  
1224      // access mode for WorkQueue
1225      static final int LIFO_QUEUE          =  0;
1226      static final int FIFO_QUEUE          =  1;
1227      static final int SHARED_QUEUE        = -1;
1228  
1229 <    // Instance fields
1230 <
1243 <    /*
1244 <     * Field layout order in this class tends to matter more than one
1245 <     * would like. Runtime layout order is only loosely related to
1246 <     * declaration order and may differ across JVMs, but the following
1247 <     * empirically works OK on current JVMs.
1248 <     */
1229 >    // Heuristic padding to ameliorate unfortunate memory placements
1230 >    volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1231  
1232 +    // Instance fields
1233 +    volatile long stealCount;                  // collects worker counts
1234      volatile long ctl;                         // main pool control
1235 <    final int parallelism;                     // parallelism level
1236 <    final int localMode;                       // per-worker scheduling mode
1237 <    final int submitMask;                      // submit queue index bound
1238 <    int nextSeed;                              // for initializing worker seeds
1255 <    volatile int runState;                     // shutdown status and seq
1235 >    volatile int plock;                        // shutdown status and seqLock
1236 >    volatile int indexSeed;                    // worker/submitter index seed
1237 >    final short parallelism;                   // parallelism level
1238 >    final short mode;                          // LIFO/FIFO
1239      WorkQueue[] workQueues;                    // main registry
1240 <    final Mutex lock;                          // for registration
1241 <    final Condition termination;               // for awaitTermination
1259 <    final ForkJoinWorkerThreadFactory factory; // factory for new workers
1260 <    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1261 <    final AtomicLong stealCount;               // collect counts when terminated
1262 <    final AtomicInteger nextWorkerNumber;      // to create worker name string
1240 >    final ForkJoinWorkerThreadFactory factory;
1241 >    final UncaughtExceptionHandler ueh;        // per-worker UEH
1242      final String workerNamePrefix;             // to create worker name string
1243  
1244 <    //  Creating, registering, and deregistering workers
1244 >    volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1245 >    volatile Object pad18, pad19, pad1a, pad1b;
1246  
1247      /**
1248 <     * Tries to create and start a worker
1249 <     */
1250 <    private void addWorker() {
1251 <        Throwable ex = null;
1252 <        ForkJoinWorkerThread wt = null;
1253 <        try {
1254 <            if ((wt = factory.newThread(this)) != null) {
1255 <                wt.start();
1256 <                return;
1248 >     * Acquires the plock lock to protect worker array and related
1249 >     * updates. This method is called only if an initial CAS on plock
1250 >     * fails. This acts as a spinlock for normal cases, but falls back
1251 >     * to builtin monitor to block when (rarely) needed. This would be
1252 >     * a terrible idea for a highly contended lock, but works fine as
1253 >     * a more conservative alternative to a pure spinlock.
1254 >     */
1255 >    private int acquirePlock() {
1256 >        int spins = PL_SPINS, ps, nps;
1257 >        for (;;) {
1258 >            if (((ps = plock) & PL_LOCK) == 0 &&
1259 >                U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1260 >                return nps;
1261 >            else if (spins >= 0) {
1262 >                if (ThreadLocalRandom.current().nextInt() >= 0)
1263 >                    --spins;
1264 >            }
1265 >            else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1266 >                synchronized (this) {
1267 >                    if ((plock & PL_SIGNAL) != 0) {
1268 >                        try {
1269 >                            wait();
1270 >                        } catch (InterruptedException ie) {
1271 >                            try {
1272 >                                Thread.currentThread().interrupt();
1273 >                            } catch (SecurityException ignore) {
1274 >                            }
1275 >                        }
1276 >                    }
1277 >                    else
1278 >                        notifyAll();
1279 >                }
1280              }
1278        } catch (Throwable e) {
1279            ex = e;
1281          }
1281        deregisterWorker(wt, ex); // adjust counts etc on failure
1282      }
1283  
1284      /**
1285 <     * Callback from ForkJoinWorkerThread constructor to assign a
1286 <     * public name. This must be separate from registerWorker because
1287 <     * it is called during the "super" constructor call in
1288 <     * ForkJoinWorkerThread.
1285 >     * Unlocks and signals any thread waiting for plock. Called only
1286 >     * when CAS of seq value for unlock fails.
1287       */
1288 <    final String nextWorkerName() {
1289 <        return workerNamePrefix.concat
1290 <            (Integer.toString(nextWorkerNumber.addAndGet(1)));
1288 >    private void releasePlock(int ps) {
1289 >        plock = ps;
1290 >        synchronized (this) { notifyAll(); }
1291      }
1292  
1293      /**
1294 <     * Callback from ForkJoinWorkerThread constructor to establish its
1295 <     * poolIndex and record its WorkQueue. To avoid scanning bias due
1298 <     * to packing entries in front of the workQueues array, we treat
1299 <     * the array as a simple power-of-two hash table using per-thread
1300 <     * seed as hash, expanding as needed.
1301 <     *
1302 <     * @param w the worker's queue
1294 >     * Tries to create and start one worker if fewer than target
1295 >     * parallelism level exist. Adjusts counts etc on failure.
1296       */
1297 +    private void tryAddWorker() {
1298 +        long c; int u, e;
1299 +        while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1300 +               (u & SHORT_SIGN) != 0 && (e = (int)c) >= 0) {
1301 +            long nc = ((long)(((u + UTC_UNIT) & UTC_MASK) |
1302 +                              ((u + UAC_UNIT) & UAC_MASK)) << 32) | (long)e;
1303 +            if (U.compareAndSwapLong(this, CTL, c, nc)) {
1304 +                ForkJoinWorkerThreadFactory fac;
1305 +                Throwable ex = null;
1306 +                ForkJoinWorkerThread wt = null;
1307 +                try {
1308 +                    if ((fac = factory) != null &&
1309 +                        (wt = fac.newThread(this)) != null) {
1310 +                        wt.start();
1311 +                        break;
1312 +                    }
1313 +                } catch (Throwable rex) {
1314 +                    ex = rex;
1315 +                }
1316 +                deregisterWorker(wt, ex);
1317 +                break;
1318 +            }
1319 +        }
1320 +    }
1321 +
1322 +    //  Registering and deregistering workers
1323  
1324 <    final void registerWorker(WorkQueue w) {
1325 <        Mutex lock = this.lock;
1326 <        lock.lock();
1324 >    /**
1325 >     * Callback from ForkJoinWorkerThread to establish and record its
1326 >     * WorkQueue. To avoid scanning bias due to packing entries in
1327 >     * front of the workQueues array, we treat the array as a simple
1328 >     * power-of-two hash table using per-thread seed as hash,
1329 >     * expanding as needed.
1330 >     *
1331 >     * @param wt the worker thread
1332 >     * @return the worker's queue
1333 >     */
1334 >    final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1335 >        UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1336 >        wt.setDaemon(true);
1337 >        if ((handler = ueh) != null)
1338 >            wt.setUncaughtExceptionHandler(handler);
1339 >        do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1340 >                                          s += SEED_INCREMENT) ||
1341 >                     s == 0); // skip 0
1342 >        WorkQueue w = new WorkQueue(this, wt, mode, s);
1343 >        if (((ps = plock) & PL_LOCK) != 0 ||
1344 >            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1345 >            ps = acquirePlock();
1346 >        int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1347          try {
1348 <            WorkQueue[] ws = workQueues;
1349 <            if (w != null && ws != null) {          // skip on shutdown/failure
1350 <                int rs, n = ws.length, m = n - 1;
1351 <                int s = nextSeed += SEED_INCREMENT; // rarely-colliding sequence
1352 <                w.seed = (s == 0) ? 1 : s;          // ensure non-zero seed
1353 <                int r = (s << 1) | 1;               // use odd-numbered indices
1315 <                if (ws[r &= m] != null) {           // collision
1316 <                    int probes = 0;                 // step by approx half size
1317 <                    int step = (n <= 4) ? 2 : ((n >>> 1) & SQMASK) + 2;
1348 >            if ((ws = workQueues) != null) {    // skip if shutting down
1349 >                int n = ws.length, m = n - 1;
1350 >                int r = (s << 1) | 1;           // use odd-numbered indices
1351 >                if (ws[r &= m] != null) {       // collision
1352 >                    int probes = 0;             // step by approx half size
1353 >                    int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1354                      while (ws[r = (r + step) & m] != null) {
1355                          if (++probes >= n) {
1356                              workQueues = ws = Arrays.copyOf(ws, n <<= 1);
# Line 1323 | Line 1359 | public class ForkJoinPool extends Abstra
1359                          }
1360                      }
1361                  }
1362 <                w.eventCount = w.poolIndex = r;     // establish before recording
1363 <                ws[r] = w;                          // also update seq
1364 <                runState = ((rs = runState) & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN);
1362 >                w.poolIndex = (short)r;
1363 >                w.eventCount = r; // volatile write orders
1364 >                ws[r] = w;
1365              }
1366          } finally {
1367 <            lock.unlock();
1367 >            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1368 >                releasePlock(nps);
1369          }
1370 +        wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex >>> 1)));
1371 +        return w;
1372      }
1373  
1374      /**
1375       * Final callback from terminating worker, as well as upon failure
1376 <     * to construct or start a worker in addWorker.  Removes record of
1377 <     * worker from array, and adjusts counts. If pool is shutting
1378 <     * down, tries to complete termination.
1376 >     * to construct or start a worker.  Removes record of worker from
1377 >     * array, and adjusts counts. If pool is shutting down, tries to
1378 >     * complete termination.
1379       *
1380 <     * @param wt the worker thread or null if addWorker failed
1380 >     * @param wt the worker thread, or null if construction failed
1381       * @param ex the exception causing failure, or null if none
1382       */
1383      final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1345        Mutex lock = this.lock;
1384          WorkQueue w = null;
1385          if (wt != null && (w = wt.workQueue) != null) {
1386 <            w.runState = -1;                // ensure runState is set
1387 <            stealCount.getAndAdd(w.totalSteals + w.nsteals);
1388 <            int idx = w.poolIndex;
1389 <            lock.lock();
1390 <            try {                           // remove record from array
1386 >            int ps; long sc;
1387 >            w.qlock = -1;                // ensure set
1388 >            do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1389 >                                               sc = stealCount,
1390 >                                               sc + w.nsteals));
1391 >            if (((ps = plock) & PL_LOCK) != 0 ||
1392 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1393 >                ps = acquirePlock();
1394 >            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1395 >            try {
1396 >                int idx = w.poolIndex;
1397                  WorkQueue[] ws = workQueues;
1398                  if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1399                      ws[idx] = null;
1400              } finally {
1401 <                lock.unlock();
1401 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1402 >                    releasePlock(nps);
1403              }
1404          }
1405  
1406 <        long c;                             // adjust ctl counts
1406 >        long c;                          // adjust ctl counts
1407          do {} while (!U.compareAndSwapLong
1408                       (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1409                                             ((c - TC_UNIT) & TC_MASK) |
1410                                             (c & ~(AC_MASK|TC_MASK)))));
1411  
1412 <        if (!tryTerminate(false, false) && w != null) {
1413 <            w.cancelAll();                  // cancel remaining tasks
1414 <            if (w.array != null)            // suppress signal if never ran
1415 <                signalWork();               // wake up or create replacement
1416 <            if (ex == null)                 // help clean refs on way out
1417 <                ForkJoinTask.helpExpungeStaleExceptions();
1412 >        if (!tryTerminate(false, false) && w != null && w.array != null) {
1413 >            w.cancelAll();               // cancel remaining tasks
1414 >            WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1415 >            while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1416 >                if (e > 0) {             // activate or create replacement
1417 >                    if ((ws = workQueues) == null ||
1418 >                        (i = e & SMASK) >= ws.length ||
1419 >                        (v = ws[i]) == null)
1420 >                        break;
1421 >                    long nc = (((long)(v.nextWait & E_MASK)) |
1422 >                               ((long)(u + UAC_UNIT) << 32));
1423 >                    if (v.eventCount != (e | INT_SIGN))
1424 >                        break;
1425 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1426 >                        v.eventCount = (e + E_SEQ) & E_MASK;
1427 >                        if ((p = v.parker) != null)
1428 >                            U.unpark(p);
1429 >                        break;
1430 >                    }
1431 >                }
1432 >                else {
1433 >                    if ((short)u < 0)
1434 >                        tryAddWorker();
1435 >                    break;
1436 >                }
1437 >            }
1438          }
1439 <
1440 <        if (ex != null)                     // rethrow
1441 <            U.throwException(ex);
1439 >        if (ex == null)                     // help clean refs on way out
1440 >            ForkJoinTask.helpExpungeStaleExceptions();
1441 >        else                                // rethrow
1442 >            ForkJoinTask.rethrow(ex);
1443      }
1444  
1379
1445      // Submissions
1446  
1447      /**
1448 +     * Per-thread records for threads that submit to pools. Currently
1449 +     * holds only pseudo-random seed / index that is used to choose
1450 +     * submission queues in method externalPush. In the future, this may
1451 +     * also incorporate a means to implement different task rejection
1452 +     * and resubmission policies.
1453 +     *
1454 +     * Seeds for submitters and workers/workQueues work in basically
1455 +     * the same way but are initialized and updated using slightly
1456 +     * different mechanics. Both are initialized using the same
1457 +     * approach as in class ThreadLocal, where successive values are
1458 +     * unlikely to collide with previous values. Seeds are then
1459 +     * randomly modified upon collisions using xorshifts, which
1460 +     * requires a non-zero seed.
1461 +     */
1462 +    static final class Submitter {
1463 +        int seed;
1464 +        Submitter(int s) { seed = s; }
1465 +    }
1466 +
1467 +    /**
1468       * Unless shutting down, adds the given task to a submission queue
1469       * at submitter's current queue index (modulo submission
1470 <     * range). If no queue exists at the index, one is created.  If
1471 <     * the queue is busy, another index is randomly chosen. The
1387 <     * submitMask bounds the effective number of queues to the
1388 <     * (nearest power of two for) parallelism level.
1470 >     * range). Only the most common path is directly handled in this
1471 >     * method. All others are relayed to fullExternalPush.
1472       *
1473       * @param task the task. Caller must ensure non-null.
1474       */
1475 <    private void doSubmit(ForkJoinTask<?> task) {
1476 <        Submitter s = submitters.get();
1477 <        for (int r = s.seed, m = submitMask;;) {
1478 <            WorkQueue[] ws; WorkQueue q;
1479 <            int k = r & m & SQMASK;          // use only even indices
1480 <            if (runState < 0 || (ws = workQueues) == null || ws.length <= k)
1481 <                throw new RejectedExecutionException(); // shutting down
1482 <            else if ((q = ws[k]) == null) {  // create new queue
1483 <                WorkQueue nq = new WorkQueue(this, null, SHARED_QUEUE);
1484 <                Mutex lock = this.lock;      // construct outside lock
1485 <                lock.lock();
1486 <                try {                        // recheck under lock
1487 <                    int rs = runState;       // to update seq
1488 <                    if (ws == workQueues && ws[k] == null) {
1489 <                        ws[k] = nq;
1490 <                        runState = ((rs & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN));
1408 <                    }
1409 <                } finally {
1410 <                    lock.unlock();
1411 <                }
1412 <            }
1413 <            else if (q.trySharedPush(task)) {
1414 <                signalWork();
1475 >    final void externalPush(ForkJoinTask<?> task) {
1476 >        Submitter z = submitters.get();
1477 >        WorkQueue q; int r, m, s, n, am; ForkJoinTask<?>[] a;
1478 >        int ps = plock;
1479 >        WorkQueue[] ws = workQueues;
1480 >        if (z != null && ps > 0 && ws != null && (m = (ws.length - 1)) >= 0 &&
1481 >            (q = ws[m & (r = z.seed) & SQMASK]) != null && r != 0 &&
1482 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1483 >            if ((a = q.array) != null &&
1484 >                (am = a.length - 1) > (n = (s = q.top) - q.base)) {
1485 >                int j = ((am & s) << ASHIFT) + ABASE;
1486 >                U.putOrderedObject(a, j, task);
1487 >                q.top = s + 1;                     // push on to deque
1488 >                q.qlock = 0;
1489 >                if (n <= 1)
1490 >                    signalWork(ws, q);
1491                  return;
1492              }
1493 <            else if (m > 1) {                // move to a different index
1494 <                r ^= r << 13;                // same xorshift as WorkQueues
1493 >            q.qlock = 0;
1494 >        }
1495 >        fullExternalPush(task);
1496 >    }
1497 >
1498 >    /**
1499 >     * Full version of externalPush. This method is called, among
1500 >     * other times, upon the first submission of the first task to the
1501 >     * pool, so must perform secondary initialization.  It also
1502 >     * detects first submission by an external thread by looking up
1503 >     * its ThreadLocal, and creates a new shared queue if the one at
1504 >     * index if empty or contended. The plock lock body must be
1505 >     * exception-free (so no try/finally) so we optimistically
1506 >     * allocate new queues outside the lock and throw them away if
1507 >     * (very rarely) not needed.
1508 >     *
1509 >     * Secondary initialization occurs when plock is zero, to create
1510 >     * workQueue array and set plock to a valid value.  This lock body
1511 >     * must also be exception-free. Because the plock seq value can
1512 >     * eventually wrap around zero, this method harmlessly fails to
1513 >     * reinitialize if workQueues exists, while still advancing plock.
1514 >     */
1515 >    private void fullExternalPush(ForkJoinTask<?> task) {
1516 >        int r = 0; // random index seed
1517 >        for (Submitter z = submitters.get();;) {
1518 >            WorkQueue[] ws; WorkQueue q; int ps, m, k;
1519 >            if (z == null) {
1520 >                if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1521 >                                        r += SEED_INCREMENT) && r != 0)
1522 >                    submitters.set(z = new Submitter(r));
1523 >            }
1524 >            else if (r == 0) {                  // move to a different index
1525 >                r = z.seed;
1526 >                r ^= r << 13;                   // same xorshift as WorkQueues
1527                  r ^= r >>> 17;
1528 <                s.seed = r ^= r << 5;
1528 >                z.seed = r ^= (r << 5);
1529 >            }
1530 >            if ((ps = plock) < 0)
1531 >                throw new RejectedExecutionException();
1532 >            else if (ps == 0 || (ws = workQueues) == null ||
1533 >                     (m = ws.length - 1) < 0) { // initialize workQueues
1534 >                int p = parallelism;            // find power of two table size
1535 >                int n = (p > 1) ? p - 1 : 1;    // ensure at least 2 slots
1536 >                n |= n >>> 1;
1537 >                n |= n >>> 2;
1538 >                n |= n >>> 4;
1539 >                n |= n >>> 8;
1540 >                n |= n >>> 16;
1541 >                n = (n + 1) << 1;
1542 >                WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1543 >                                   new WorkQueue[n] : null);
1544 >                if (((ps = plock) & PL_LOCK) != 0 ||
1545 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1546 >                    ps = acquirePlock();
1547 >                if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1548 >                    workQueues = nws;
1549 >                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1550 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1551 >                    releasePlock(nps);
1552 >            }
1553 >            else if ((q = ws[k = r & m & SQMASK]) != null) {
1554 >                if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1555 >                    ForkJoinTask<?>[] a = q.array;
1556 >                    int s = q.top;
1557 >                    boolean submitted = false;
1558 >                    try {                      // locked version of push
1559 >                        if ((a != null && a.length > s + 1 - q.base) ||
1560 >                            (a = q.growArray()) != null) {   // must presize
1561 >                            int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1562 >                            U.putOrderedObject(a, j, task);
1563 >                            q.top = s + 1;
1564 >                            submitted = true;
1565 >                        }
1566 >                    } finally {
1567 >                        q.qlock = 0;  // unlock
1568 >                    }
1569 >                    if (submitted) {
1570 >                        signalWork(ws, q);
1571 >                        return;
1572 >                    }
1573 >                }
1574 >                r = 0; // move on failure
1575 >            }
1576 >            else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1577 >                q = new WorkQueue(this, null, SHARED_QUEUE, r);
1578 >                q.poolIndex = (short)k;
1579 >                if (((ps = plock) & PL_LOCK) != 0 ||
1580 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1581 >                    ps = acquirePlock();
1582 >                if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1583 >                    ws[k] = q;
1584 >                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1585 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1586 >                    releasePlock(nps);
1587              }
1588              else
1589 <                Thread.yield();              // yield if no alternatives
1589 >                r = 0;
1590          }
1591      }
1592  
# Line 1431 | Line 1597 | public class ForkJoinPool extends Abstra
1597       */
1598      final void incrementActiveCount() {
1599          long c;
1600 <        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1600 >        do {} while (!U.compareAndSwapLong
1601 >                     (this, CTL, c = ctl, ((c & ~AC_MASK) |
1602 >                                           ((c & AC_MASK) + AC_UNIT))));
1603      }
1604  
1605      /**
1606 <     * Tries to activate or create a worker if too few are active.
1606 >     * Tries to create or activate a worker if too few are active.
1607 >     *
1608 >     * @param ws the worker array to use to find signallees
1609 >     * @param q if non-null, the queue holding tasks to be processed
1610       */
1611 <    final void signalWork() {
1612 <        long c; int u;
1613 <        while ((u = (int)((c = ctl) >>> 32)) < 0) {     // too few active
1614 <            WorkQueue[] ws = workQueues; int e, i; WorkQueue w; Thread p;
1615 <            if ((e = (int)c) > 0) {                     // at least one waiting
1616 <                if (ws != null && (i = e & SMASK) < ws.length &&
1617 <                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1618 <                    long nc = (((long)(w.nextWait & E_MASK)) |
1619 <                               ((long)(u + UAC_UNIT) << 32));
1449 <                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1450 <                        w.eventCount = (e + E_SEQ) & E_MASK;
1451 <                        if ((p = w.parker) != null)
1452 <                            U.unpark(p);                // activate and release
1453 <                        break;
1454 <                    }
1455 <                }
1456 <                else
1457 <                    break;
1611 >    final void signalWork(WorkQueue[] ws, WorkQueue q) {
1612 >        for (;;) {
1613 >            long c; int e, u, i; WorkQueue w; Thread p;
1614 >            if ((u = (int)((c = ctl) >>> 32)) >= 0)
1615 >                break;
1616 >            if ((e = (int)c) <= 0) {
1617 >                if ((short)u < 0)
1618 >                    tryAddWorker();
1619 >                break;
1620              }
1621 <            else if (e == 0 && (u & SHORT_SIGN) != 0) { // too few total
1622 <                long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1623 <                                 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1624 <                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1625 <                    addWorker();
1626 <                    break;
1627 <                }
1621 >            if (ws == null || ws.length <= (i = e & SMASK) ||
1622 >                (w = ws[i]) == null)
1623 >                break;
1624 >            long nc = (((long)(w.nextWait & E_MASK)) |
1625 >                       ((long)(u + UAC_UNIT)) << 32);
1626 >            int ne = (e + E_SEQ) & E_MASK;
1627 >            if (w.eventCount == (e | INT_SIGN) &&
1628 >                U.compareAndSwapLong(this, CTL, c, nc)) {
1629 >                w.eventCount = ne;
1630 >                if ((p = w.parker) != null)
1631 >                    U.unpark(p);
1632 >                break;
1633              }
1634 <            else
1634 >            if (q != null && q.base >= q.top)
1635                  break;
1636          }
1637      }
# Line 1475 | Line 1642 | public class ForkJoinPool extends Abstra
1642       * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1643       */
1644      final void runWorker(WorkQueue w) {
1645 <        w.growArray(false);         // initialize queue array in this thread
1646 <        do { w.runTask(scan(w)); } while (w.runState >= 0);
1645 >        w.growArray(); // allocate queue
1646 >        for (int r = w.hint; scan(w, r) == 0; ) {
1647 >            r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1648 >        }
1649      }
1650  
1651      /**
1652 <     * Scans for and, if found, returns one task, else possibly
1652 >     * Scans for and, if found, runs one task, else possibly
1653       * inactivates the worker. This method operates on single reads of
1654       * volatile state and is designed to be re-invoked continuously,
1655       * in part because it returns upon detecting inconsistencies,
1656       * contention, or state changes that indicate possible success on
1657       * re-invocation.
1658       *
1659 <     * The scan searches for tasks across a random permutation of
1660 <     * queues (starting at a random index and stepping by a random
1661 <     * relative prime, checking each at least once).  The scan
1662 <     * terminates upon either finding a non-empty queue, or completing
1663 <     * the sweep. If the worker is not inactivated, it takes and
1664 <     * returns a task from this queue.  On failure to find a task, we
1665 <     * take one of the following actions, after which the caller will
1666 <     * retry calling this method unless terminated.
1667 <     *
1499 <     * * If pool is terminating, terminate the worker.
1500 <     *
1501 <     * * If not a complete sweep, try to release a waiting worker.  If
1502 <     * the scan terminated because the worker is inactivated, then the
1503 <     * released worker will often be the calling worker, and it can
1504 <     * succeed obtaining a task on the next call. Or maybe it is
1505 <     * another worker, but with same net effect. Releasing in other
1506 <     * cases as well ensures that we have enough workers running.
1507 <     *
1508 <     * * If not already enqueued, try to inactivate and enqueue the
1509 <     * worker on wait queue. Or, if inactivating has caused the pool
1510 <     * to be quiescent, relay to idleAwaitWork to check for
1511 <     * termination and possibly shrink pool.
1512 <     *
1513 <     * * If already inactive, and the caller has run a task since the
1514 <     * last empty scan, return (to allow rescan) unless others are
1515 <     * also inactivated.  Field WorkQueue.rescans counts down on each
1516 <     * scan to ensure eventual inactivation and blocking.
1517 <     *
1518 <     * * If already enqueued and none of the above apply, park
1519 <     * awaiting signal,
1659 >     * The scan searches for tasks across queues starting at a random
1660 >     * index, checking each at least twice.  The scan terminates upon
1661 >     * either finding a non-empty queue, or completing the sweep. If
1662 >     * the worker is not inactivated, it takes and runs a task from
1663 >     * this queue. Otherwise, if not activated, it tries to activate
1664 >     * itself or some other worker by signalling. On failure to find a
1665 >     * task, returns (for retry) if pool state may have changed during
1666 >     * an empty scan, or tries to inactivate if active, else possibly
1667 >     * blocks or terminates via method awaitWork.
1668       *
1669       * @param w the worker (via its WorkQueue)
1670 <     * @return a task or null if none found
1670 >     * @param r a random seed
1671 >     * @return worker qlock status if would have waited, else 0
1672       */
1673 <    private final ForkJoinTask<?> scan(WorkQueue w) {
1674 <        WorkQueue[] ws;                       // first update random seed
1675 <        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1676 <        int rs = runState, m;                 // volatile read order matters
1677 <        if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1678 <            int ec = w.eventCount;            // ec is negative if inactive
1679 <            int step = (r >>> 16) | 1;        // relative prime
1680 <            for (int j = (m + 1) << 2; ; r += step) {
1681 <                WorkQueue q; ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b;
1682 <                if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1683 <                    (a = q.array) != null) {  // probably nonempty
1684 <                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1685 <                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1686 <                    if (q.base == b && ec >= 0 && t != null &&
1687 <                        U.compareAndSwapObject(a, i, t, null)) {
1688 <                        if (q.top - (q.base = b + 1) > 1)
1689 <                            signalWork();    // help pushes signal
1690 <                        return t;
1691 <                    }
1692 <                    else if (ec < 0 || j <= m) {
1544 <                        rs = 0;               // mark scan as imcomplete
1545 <                        break;                // caller can retry after release
1673 >    private final int scan(WorkQueue w, int r) {
1674 >        WorkQueue[] ws; int m;
1675 >        long c = ctl;                            // for consistency check
1676 >        if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 && w != null) {
1677 >            for (int j = m + m + 1, ec = w.eventCount;;) {
1678 >                WorkQueue q; int b, e; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1679 >                if ((q = ws[(r - j) & m]) != null &&
1680 >                    (b = q.base) - q.top < 0 && (a = q.array) != null) {
1681 >                    long i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1682 >                    if ((t = ((ForkJoinTask<?>)
1683 >                              U.getObjectVolatile(a, i))) != null) {
1684 >                        if (ec < 0)
1685 >                            helpRelease(c, ws, w, q, b);
1686 >                        else if (q.base == b &&
1687 >                                 U.compareAndSwapObject(a, i, t, null)) {
1688 >                            U.putOrderedInt(q, QBASE, b + 1);
1689 >                            if ((b + 1) - q.top < 0)
1690 >                                signalWork(ws, q);
1691 >                            w.runTask(t);
1692 >                        }
1693                      }
1547                }
1548                if (--j < 0)
1694                      break;
1695 <            }
1696 <
1697 <            long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1698 <            if (e < 0)                        // decode ctl on empty scan
1699 <                w.runState = -1;              // pool is terminating
1700 <            else if (rs == 0 || rs != runState) { // incomplete scan
1701 <                WorkQueue v; Thread p;        // try to release a waiter
1702 <                if (e > 0 && a < 0 && w.eventCount == ec &&
1703 <                    (v = ws[e & m]) != null && v.eventCount == (e | INT_SIGN)) {
1704 <                    long nc = ((long)(v.nextWait & E_MASK) |
1560 <                               ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
1561 <                    if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1562 <                        v.eventCount = (e + E_SEQ) & E_MASK;
1563 <                        if ((p = v.parker) != null)
1564 <                            U.unpark(p);
1695 >                }
1696 >                else if (--j < 0) {
1697 >                    if ((ec | (e = (int)c)) < 0) // inactive or terminating
1698 >                        return awaitWork(w, c, ec);
1699 >                    else if (ctl == c) {         // try to inactivate and enqueue
1700 >                        long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1701 >                        w.nextWait = e;
1702 >                        w.eventCount = ec | INT_SIGN;
1703 >                        if (!U.compareAndSwapLong(this, CTL, c, nc))
1704 >                            w.eventCount = ec;   // back out
1705                      }
1706 +                    break;
1707                  }
1708              }
1709 <            else if (ec >= 0) {               // try to enqueue/inactivate
1710 <                long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1711 <                w.nextWait = e;
1712 <                w.eventCount = ec | INT_SIGN; // mark as inactive
1713 <                if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1714 <                    w.eventCount = ec;        // unmark on CAS failure
1715 <                else {
1716 <                    if ((ns = w.nsteals) != 0) {
1717 <                        w.nsteals = 0;        // set rescans if ran task
1718 <                        w.rescans = (a > 0) ? 0 : a + parallelism;
1719 <                        w.totalSteals += ns;
1720 <                    }
1721 <                    if (a == 1 - parallelism) // quiescent
1722 <                        idleAwaitWork(w, nc, c);
1723 <                }
1709 >        }
1710 >        return 0;
1711 >    }
1712 >
1713 >    /**
1714 >     * A continuation of scan(), possibly blocking or terminating
1715 >     * worker w. Returns without blocking if pool state has apparently
1716 >     * changed since last invocation.  Also, if inactivating w has
1717 >     * caused the pool to become quiescent, checks for pool
1718 >     * termination, and, so long as this is not the only worker, waits
1719 >     * for event for up to a given duration.  On timeout, if ctl has
1720 >     * not changed, terminates the worker, which will in turn wake up
1721 >     * another worker to possibly repeat this process.
1722 >     *
1723 >     * @param w the calling worker
1724 >     * @param c the ctl value on entry to scan
1725 >     * @param ec the worker's eventCount on entry to scan
1726 >     */
1727 >    private final int awaitWork(WorkQueue w, long c, int ec) {
1728 >        int stat, ns; long parkTime, deadline;
1729 >        if ((stat = w.qlock) >= 0 && w.eventCount == ec && ctl == c &&
1730 >            !Thread.interrupted()) {
1731 >            int e = (int)c;
1732 >            int u = (int)(c >>> 32);
1733 >            int d = (u >> UAC_SHIFT) + parallelism; // active count
1734 >
1735 >            if (e < 0 || (d <= 0 && tryTerminate(false, false)))
1736 >                stat = w.qlock = -1;          // pool is terminating
1737 >            else if ((ns = w.nsteals) != 0) { // collect steals and retry
1738 >                long sc;
1739 >                w.nsteals = 0;
1740 >                do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1741 >                                                   sc = stealCount, sc + ns));
1742              }
1743 <            else if (w.eventCount < 0) {      // already queued
1744 <                if ((nr = w.rescans) > 0) {   // continue rescanning
1745 <                    int ac = a + parallelism;
1746 <                    if (((w.rescans = (ac < nr) ? ac : nr - 1) & 3) == 0)
1747 <                        Thread.yield();       // yield before block
1743 >            else {
1744 >                long pc = ((d > 0 || ec != (e | INT_SIGN)) ? 0L :
1745 >                           ((long)(w.nextWait & E_MASK)) | // ctl to restore
1746 >                           ((long)(u + UAC_UNIT)) << 32);
1747 >                if (pc != 0L) {               // timed wait if last waiter
1748 >                    int dc = -(short)(c >>> TC_SHIFT);
1749 >                    parkTime = (dc < 0 ? FAST_IDLE_TIMEOUT:
1750 >                                (dc + 1) * IDLE_TIMEOUT);
1751 >                    deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1752                  }
1753 <                else {
1754 <                    Thread.interrupted();     // clear status
1753 >                else
1754 >                    parkTime = deadline = 0L;
1755 >                if (w.eventCount == ec && ctl == c) {
1756                      Thread wt = Thread.currentThread();
1757                      U.putObject(wt, PARKBLOCKER, this);
1758                      w.parker = wt;            // emulate LockSupport.park
1759 <                    if (w.eventCount < 0)     // recheck
1760 <                        U.park(false, 0L);
1759 >                    if (w.eventCount == ec && ctl == c)
1760 >                        U.park(false, parkTime);  // must recheck before park
1761                      w.parker = null;
1762                      U.putObject(wt, PARKBLOCKER, null);
1763 +                    if (parkTime != 0L && ctl == c &&
1764 +                        deadline - System.nanoTime() <= 0L &&
1765 +                        U.compareAndSwapLong(this, CTL, c, pc))
1766 +                        stat = w.qlock = -1;  // shrink pool
1767                  }
1768              }
1769          }
1770 <        return null;
1770 >        return stat;
1771      }
1772  
1773      /**
1774 <     * If inactivating worker w has caused the pool to become
1775 <     * quiescent, checks for pool termination, and, so long as this is
1776 <     * not the only worker, waits for event for up to SHRINK_RATE
1777 <     * nanosecs.  On timeout, if ctl has not changed, terminates the
1778 <     * worker, which will in turn wake up another worker to possibly
1779 <     * repeat this process.
1780 <     *
1781 <     * @param w the calling worker
1782 <     * @param currentCtl the ctl value triggering possible quiescence
1783 <     * @param prevCtl the ctl value to restore if thread is terminated
1784 <     */
1785 <    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1786 <        if (w.eventCount < 0 && !tryTerminate(false, false) &&
1787 <            (int)prevCtl != 0 && !hasQueuedSubmissions() && ctl == currentCtl) {
1788 <            Thread wt = Thread.currentThread();
1789 <            Thread.yield();            // yield before block
1790 <            while (ctl == currentCtl) {
1791 <                long startTime = System.nanoTime();
1792 <                Thread.interrupted();  // timed variant of version in scan()
1793 <                U.putObject(wt, PARKBLOCKER, this);
1626 <                w.parker = wt;
1627 <                if (ctl == currentCtl)
1628 <                    U.park(false, SHRINK_RATE);
1629 <                w.parker = null;
1630 <                U.putObject(wt, PARKBLOCKER, null);
1631 <                if (ctl != currentCtl)
1632 <                    break;
1633 <                if (System.nanoTime() - startTime >= SHRINK_TIMEOUT &&
1634 <                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1635 <                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1636 <                    w.runState = -1;   // shrink
1637 <                    break;
1638 <                }
1774 >     * Possibly releases (signals) a worker. Called only from scan()
1775 >     * when a worker with apparently inactive status finds a non-empty
1776 >     * queue. This requires revalidating all of the associated state
1777 >     * from caller.
1778 >     */
1779 >    private final void helpRelease(long c, WorkQueue[] ws, WorkQueue w,
1780 >                                   WorkQueue q, int b) {
1781 >        WorkQueue v; int e, i; Thread p;
1782 >        if (w != null && w.eventCount < 0 && (e = (int)c) > 0 &&
1783 >            ws != null && ws.length > (i = e & SMASK) &&
1784 >            (v = ws[i]) != null && ctl == c) {
1785 >            long nc = (((long)(v.nextWait & E_MASK)) |
1786 >                       ((long)((int)(c >>> 32) + UAC_UNIT)) << 32);
1787 >            int ne = (e + E_SEQ) & E_MASK;
1788 >            if (q != null && q.base == b && w.eventCount < 0 &&
1789 >                v.eventCount == (e | INT_SIGN) &&
1790 >                U.compareAndSwapLong(this, CTL, c, nc)) {
1791 >                v.eventCount = ne;
1792 >                if ((p = v.parker) != null)
1793 >                    U.unpark(p);
1794              }
1795          }
1796      }
# Line 1660 | Line 1815 | public class ForkJoinPool extends Abstra
1815       */
1816      private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1817          int stat = 0, steps = 0;                    // bound to avoid cycles
1818 <        if (joiner != null && task != null) {       // hoist null checks
1818 >        if (task != null && joiner != null &&
1819 >            joiner.base - joiner.top >= 0) {        // hoist checks
1820              restart: for (;;) {
1821                  ForkJoinTask<?> subtask = task;     // current target
1822                  for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
# Line 1671 | Line 1827 | public class ForkJoinPool extends Abstra
1827                      }
1828                      if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1829                          break restart;              // shutting down
1830 <                    if ((v = ws[h = (j.stealHint | 1) & m]) == null ||
1830 >                    if ((v = ws[h = (j.hint | 1) & m]) == null ||
1831                          v.currentSteal != subtask) {
1832                          for (int origin = h;;) {    // find stealer
1833                              if (((h = (h + 2) & m) & 15) == 1 &&
# Line 1679 | Line 1835 | public class ForkJoinPool extends Abstra
1835                                  continue restart;   // occasional staleness check
1836                              if ((v = ws[h]) != null &&
1837                                  v.currentSteal == subtask) {
1838 <                                j.stealHint = h;    // save hint
1838 >                                j.hint = h;        // save hint
1839                                  break;
1840                              }
1841                              if (h == origin)
# Line 1687 | Line 1843 | public class ForkJoinPool extends Abstra
1843                          }
1844                      }
1845                      for (;;) { // help stealer or descend to its stealer
1846 <                        ForkJoinTask[] a;  int b;
1846 >                        ForkJoinTask[] a; int b;
1847                          if (subtask.status < 0)     // surround probes with
1848                              continue restart;       //   consistency checks
1849                          if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
# Line 1698 | Line 1854 | public class ForkJoinPool extends Abstra
1854                                  v.currentSteal != subtask)
1855                                  continue restart;   // stale
1856                              stat = 1;               // apparent progress
1857 <                            if (t != null && v.base == b &&
1858 <                                U.compareAndSwapObject(a, i, t, null)) {
1859 <                                v.base = b + 1;     // help stealer
1860 <                                joiner.runSubtask(t);
1857 >                            if (v.base == b) {
1858 >                                if (t == null)
1859 >                                    break restart;
1860 >                                if (U.compareAndSwapObject(a, i, t, null)) {
1861 >                                    U.putOrderedInt(v, QBASE, b + 1);
1862 >                                    ForkJoinTask<?> ps = joiner.currentSteal;
1863 >                                    int jt = joiner.top;
1864 >                                    do {
1865 >                                        joiner.currentSteal = t;
1866 >                                        t.doExec(); // clear local tasks too
1867 >                                    } while (task.status >= 0 &&
1868 >                                             joiner.top != jt &&
1869 >                                             (t = joiner.pop()) != null);
1870 >                                    joiner.currentSteal = ps;
1871 >                                    break restart;
1872 >                                }
1873                              }
1706                            else if (v.base == b && ++steps == MAX_HELP)
1707                                break restart;      // v apparently stalled
1874                          }
1875                          else {                      // empty -- try to descend
1876                              ForkJoinTask<?> next = v.currentJoin;
# Line 1727 | Line 1893 | public class ForkJoinPool extends Abstra
1893      }
1894  
1895      /**
1896 <     * If task is at base of some steal queue, steals and executes it.
1896 >     * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1897 >     * and run tasks within the target's computation.
1898       *
1899 <     * @param joiner the joining worker
1733 <     * @param task the task
1899 >     * @param task the task to join
1900       */
1901 <    private void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1902 <        WorkQueue[] ws;
1903 <        if ((ws = workQueues) != null) {
1904 <            for (int j = 1; j < ws.length && task.status >= 0; j += 2) {
1905 <                WorkQueue q = ws[j];
1906 <                if (q != null && q.pollFor(task)) {
1907 <                    joiner.runSubtask(task);
1901 >    private int helpComplete(WorkQueue joiner, CountedCompleter<?> task) {
1902 >        WorkQueue[] ws; int m;
1903 >        int s = 0;
1904 >        if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 &&
1905 >            joiner != null && task != null) {
1906 >            int j = joiner.poolIndex;
1907 >            int scans = m + m + 1;
1908 >            long c = 0L;              // for stability check
1909 >            for (int k = scans; ; j += 2) {
1910 >                WorkQueue q;
1911 >                if ((s = task.status) < 0)
1912 >                    break;
1913 >                else if (joiner.internalPopAndExecCC(task))
1914 >                    k = scans;
1915 >                else if ((s = task.status) < 0)
1916                      break;
1917 +                else if ((q = ws[j & m]) != null && q.pollAndExecCC(task))
1918 +                    k = scans;
1919 +                else if (--k < 0) {
1920 +                    if (c == (c = ctl))
1921 +                        break;
1922 +                    k = scans;
1923                  }
1924              }
1925          }
1926 +        return s;
1927      }
1928  
1929      /**
1930       * Tries to decrement active count (sometimes implicitly) and
1931       * possibly release or create a compensating worker in preparation
1932       * for blocking. Fails on contention or termination. Otherwise,
1933 <     * adds a new thread if no idle workers are available and either
1934 <     * pool would become completely starved or: (at least half
1935 <     * starved, and fewer than 50% spares exist, and there is at least
1936 <     * one task apparently available). Even though the availability
1756 <     * check requires a full scan, it is worthwhile in reducing false
1757 <     * alarms.
1758 <     *
1759 <     * @param task if non-null, a task being waited for
1760 <     * @param blocker if non-null, a blocker being waited for
1761 <     * @return true if the caller can block, else should recheck and retry
1933 >     * adds a new thread if no idle workers are available and pool
1934 >     * may become starved.
1935 >     *
1936 >     * @param c the assumed ctl value
1937       */
1938 <    final boolean tryCompensate(ForkJoinTask<?> task, ManagedBlocker blocker) {
1764 <        int pc = parallelism, e;
1765 <        long c = ctl;
1938 >    final boolean tryCompensate(long c) {
1939          WorkQueue[] ws = workQueues;
1940 <        if ((e = (int)c) >= 0 && ws != null) {
1941 <            int u, a, ac, hc;
1942 <            int tc = (short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) + pc;
1943 <            boolean replace = false;
1944 <            if ((a = u >> UAC_SHIFT) <= 0) {
1945 <                if ((ac = a + pc) <= 1)
1946 <                    replace = true;
1947 <                else if ((e > 0 || (task != null &&
1948 <                                    ac <= (hc = pc >>> 1) && tc < pc + hc))) {
1949 <                    WorkQueue w;
1950 <                    for (int j = 0; j < ws.length; ++j) {
1951 <                        if ((w = ws[j]) != null && !w.isEmpty()) {
1952 <                            replace = true;
1953 <                            break;   // in compensation range and tasks available
1954 <                        }
1955 <                    }
1956 <                }
1940 >        int pc = parallelism, e = (int)c, m, tc;
1941 >        if (ws != null && (m = ws.length - 1) >= 0 && e >= 0 && ctl == c) {
1942 >            WorkQueue w = ws[e & m];
1943 >            if (e != 0 && w != null) {
1944 >                Thread p;
1945 >                long nc = ((long)(w.nextWait & E_MASK) |
1946 >                           (c & (AC_MASK|TC_MASK)));
1947 >                int ne = (e + E_SEQ) & E_MASK;
1948 >                if (w.eventCount == (e | INT_SIGN) &&
1949 >                    U.compareAndSwapLong(this, CTL, c, nc)) {
1950 >                    w.eventCount = ne;
1951 >                    if ((p = w.parker) != null)
1952 >                        U.unpark(p);
1953 >                    return true;   // replace with idle worker
1954 >                }
1955 >            }
1956 >            else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1957 >                     (int)(c >> AC_SHIFT) + pc > 1) {
1958 >                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1959 >                if (U.compareAndSwapLong(this, CTL, c, nc))
1960 >                    return true;   // no compensation
1961              }
1962 <            if ((task == null || task.status >= 0) && // recheck need to block
1963 <                (blocker == null || !blocker.isReleasable()) && ctl == c) {
1964 <                if (!replace) {          // no compensation
1965 <                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1966 <                    if (U.compareAndSwapLong(this, CTL, c, nc))
1967 <                        return true;
1968 <                }
1969 <                else if (e != 0) {       // release an idle worker
1970 <                    WorkQueue w; Thread p; int i;
1971 <                    if ((i = e & SMASK) < ws.length && (w = ws[i]) != null) {
1795 <                        long nc = ((long)(w.nextWait & E_MASK) |
1796 <                                   (c & (AC_MASK|TC_MASK)));
1797 <                        if (w.eventCount == (e | INT_SIGN) &&
1798 <                            U.compareAndSwapLong(this, CTL, c, nc)) {
1799 <                            w.eventCount = (e + E_SEQ) & E_MASK;
1800 <                            if ((p = w.parker) != null)
1801 <                                U.unpark(p);
1962 >            else if (tc + pc < MAX_CAP) {
1963 >                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1964 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1965 >                    ForkJoinWorkerThreadFactory fac;
1966 >                    Throwable ex = null;
1967 >                    ForkJoinWorkerThread wt = null;
1968 >                    try {
1969 >                        if ((fac = factory) != null &&
1970 >                            (wt = fac.newThread(this)) != null) {
1971 >                            wt.start();
1972                              return true;
1973                          }
1974 +                    } catch (Throwable rex) {
1975 +                        ex = rex;
1976                      }
1977 <                }
1806 <                else if (tc < MAX_CAP) { // create replacement
1807 <                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1808 <                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1809 <                        addWorker();
1810 <                        return true;
1811 <                    }
1977 >                    deregisterWorker(wt, ex); // clean up and return false
1978                  }
1979              }
1980          }
# Line 1823 | Line 1989 | public class ForkJoinPool extends Abstra
1989       * @return task status on exit
1990       */
1991      final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1992 <        int s;
1993 <        if ((s = task.status) >= 0) {
1992 >        int s = 0;
1993 >        if (task != null && (s = task.status) >= 0 && joiner != null) {
1994              ForkJoinTask<?> prevJoin = joiner.currentJoin;
1995              joiner.currentJoin = task;
1996 <            long startTime = 0L;
1997 <            for (int k = 0;;) {
1998 <                if ((s = (joiner.isEmpty() ?           // try to help
1999 <                          tryHelpStealer(joiner, task) :
2000 <                          joiner.tryRemoveAndExec(task))) == 0 &&
1996 >            do {} while (joiner.tryRemoveAndExec(task) && // process local tasks
1997 >                         (s = task.status) >= 0);
1998 >            if (s >= 0 && (task instanceof CountedCompleter))
1999 >                s = helpComplete(joiner, (CountedCompleter<?>)task);
2000 >            long cc = 0;        // for stability checks
2001 >            while (s >= 0 && (s = task.status) >= 0) {
2002 >                if ((s = tryHelpStealer(joiner, task)) == 0 &&
2003                      (s = task.status) >= 0) {
2004 <                    if (k == 0) {
2005 <                        startTime = System.nanoTime();
2006 <                        tryPollForAndExec(joiner, task); // check uncommon case
2007 <                    }
1840 <                    else if ((k & (MAX_HELP - 1)) == 0 &&
1841 <                             System.nanoTime() - startTime >=
1842 <                             COMPENSATION_DELAY &&
1843 <                             tryCompensate(task, null)) {
1844 <                        if (task.trySetSignal()) {
2004 >                    if (!tryCompensate(cc))
2005 >                        cc = ctl;
2006 >                    else {
2007 >                        if (task.trySetSignal() && (s = task.status) >= 0) {
2008                              synchronized (task) {
2009                                  if (task.status >= 0) {
2010                                      try {                // see ForkJoinTask
# Line 1853 | Line 2016 | public class ForkJoinPool extends Abstra
2016                                      task.notifyAll();
2017                              }
2018                          }
2019 <                        long c;                          // re-activate
2019 >                        long c; // reactivate
2020                          do {} while (!U.compareAndSwapLong
2021 <                                     (this, CTL, c = ctl, c + AC_UNIT));
2021 >                                     (this, CTL, c = ctl,
2022 >                                      ((c & ~AC_MASK) |
2023 >                                       ((c & AC_MASK) + AC_UNIT))));
2024                      }
2025                  }
1861                if (s < 0 || (s = task.status) < 0) {
1862                    joiner.currentJoin = prevJoin;
1863                    break;
1864                }
1865                else if ((k++ & (MAX_HELP - 1)) == MAX_HELP >>> 1)
1866                    Thread.yield();                     // for politeness
2026              }
2027 +            joiner.currentJoin = prevJoin;
2028          }
2029          return s;
2030      }
# Line 1876 | Line 2036 | public class ForkJoinPool extends Abstra
2036       *
2037       * @param joiner the joining worker
2038       * @param task the task
1879     * @return task status on exit
2039       */
2040 <    final int helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2040 >    final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2041          int s;
2042 <        while ((s = task.status) >= 0 &&
2043 <               (joiner.isEmpty() ?
2044 <                tryHelpStealer(joiner, task) :
2045 <                joiner.tryRemoveAndExec(task)) != 0)
2046 <            ;
2047 <        return s;
2042 >        if (joiner != null && task != null && (s = task.status) >= 0) {
2043 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2044 >            joiner.currentJoin = task;
2045 >            do {} while (joiner.tryRemoveAndExec(task) && // process local tasks
2046 >                         (s = task.status) >= 0);
2047 >            if (s >= 0) {
2048 >                if (task instanceof CountedCompleter)
2049 >                    helpComplete(joiner, (CountedCompleter<?>)task);
2050 >                do {} while (task.status >= 0 &&
2051 >                             tryHelpStealer(joiner, task) > 0);
2052 >            }
2053 >            joiner.currentJoin = prevJoin;
2054 >        }
2055      }
2056  
2057      /**
2058       * Returns a (probably) non-empty steal queue, if one is found
2059 <     * during a random, then cyclic scan, else null.  This method must
2060 <     * be retried by caller if, by the time it tries to use the queue,
2061 <     * it is empty.
2062 <     */
2063 <    private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
2064 <        // Similar to loop in scan(), but ignoring submissions
2065 <        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
2066 <        int step = (r >>> 16) | 1;
2067 <        for (WorkQueue[] ws;;) {
2068 <            int rs = runState, m;
2069 <            if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2070 <                return null;
1905 <            for (int j = (m + 1) << 2; ; r += step) {
1906 <                WorkQueue q = ws[((r << 1) | 1) & m];
1907 <                if (q != null && !q.isEmpty())
1908 <                    return q;
1909 <                else if (--j < 0) {
1910 <                    if (runState == rs)
1911 <                        return null;
1912 <                    break;
2059 >     * during a scan, else null.  This method must be retried by
2060 >     * caller if, by the time it tries to use the queue, it is empty.
2061 >     */
2062 >    private WorkQueue findNonEmptyStealQueue() {
2063 >        int r = ThreadLocalRandom.current().nextInt();
2064 >        for (;;) {
2065 >            int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2066 >            if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2067 >                for (int j = (m + 1) << 2; j >= 0; --j) {
2068 >                    if ((q = ws[(((r - j) << 1) | 1) & m]) != null &&
2069 >                        q.base - q.top < 0)
2070 >                        return q;
2071                  }
2072              }
2073 +            if (plock == ps)
2074 +                return null;
2075          }
2076      }
2077  
1918
2078      /**
2079       * Runs tasks until {@code isQuiescent()}. We piggyback on
2080       * active count ctl maintenance, but rather than blocking
# Line 1923 | Line 2082 | public class ForkJoinPool extends Abstra
2082       * find tasks either.
2083       */
2084      final void helpQuiescePool(WorkQueue w) {
2085 +        ForkJoinTask<?> ps = w.currentSteal;
2086          for (boolean active = true;;) {
2087 <            ForkJoinTask<?> localTask; // exhaust local queue
2088 <            while ((localTask = w.nextLocalTask()) != null)
2089 <                localTask.doExec();
2090 <            WorkQueue q = findNonEmptyStealQueue(w);
1931 <            if (q != null) {
1932 <                ForkJoinTask<?> t; int b;
2087 >            long c; WorkQueue q; ForkJoinTask<?> t; int b;
2088 >            while ((t = w.nextLocalTask()) != null)
2089 >                t.doExec();
2090 >            if ((q = findNonEmptyStealQueue()) != null) {
2091                  if (!active) {      // re-establish active count
1934                    long c;
2092                      active = true;
2093                      do {} while (!U.compareAndSwapLong
2094 <                                 (this, CTL, c = ctl, c + AC_UNIT));
2094 >                                 (this, CTL, c = ctl,
2095 >                                  ((c & ~AC_MASK) |
2096 >                                   ((c & AC_MASK) + AC_UNIT))));
2097 >                }
2098 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2099 >                    (w.currentSteal = t).doExec();
2100 >                    w.currentSteal = ps;
2101                  }
1939                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
1940                    w.runSubtask(t);
2102              }
2103 <            else {
2104 <                long c;
2105 <                if (active) {       // decrement active count without queuing
2103 >            else if (active) {      // decrement active count without queuing
2104 >                long nc = ((c = ctl) & ~AC_MASK) | ((c & AC_MASK) - AC_UNIT);
2105 >                if ((int)(nc >> AC_SHIFT) + parallelism == 0)
2106 >                    break;          // bypass decrement-then-increment
2107 >                if (U.compareAndSwapLong(this, CTL, c, nc))
2108                      active = false;
1946                    do {} while (!U.compareAndSwapLong
1947                                 (this, CTL, c = ctl, c -= AC_UNIT));
1948                }
1949                else
1950                    c = ctl;        // re-increment on exit
1951                if ((int)(c >> AC_SHIFT) + parallelism == 0) {
1952                    do {} while (!U.compareAndSwapLong
1953                                 (this, CTL, c = ctl, c + AC_UNIT));
1954                    break;
1955                }
2109              }
2110 +            else if ((int)((c = ctl) >> AC_SHIFT) + parallelism <= 0 &&
2111 +                     U.compareAndSwapLong
2112 +                     (this, CTL, c, ((c & ~AC_MASK) |
2113 +                                     ((c & AC_MASK) + AC_UNIT))))
2114 +                break;
2115          }
2116      }
2117  
# Line 1967 | Line 2125 | public class ForkJoinPool extends Abstra
2125              WorkQueue q; int b;
2126              if ((t = w.nextLocalTask()) != null)
2127                  return t;
2128 <            if ((q = findNonEmptyStealQueue(w)) == null)
2128 >            if ((q = findNonEmptyStealQueue()) == null)
2129                  return null;
2130              if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2131                  return t;
# Line 1975 | Line 2133 | public class ForkJoinPool extends Abstra
2133      }
2134  
2135      /**
2136 <     * Returns the approximate (non-atomic) number of idle threads per
2137 <     * active thread to offset steal queue size for method
2138 <     * ForkJoinTask.getSurplusQueuedTaskCount().
2139 <     */
2140 <    final int idlePerActive() {
2141 <        // Approximate at powers of two for small values, saturate past 4
2142 <        int p = parallelism;
2143 <        int a = p + (int)(ctl >> AC_SHIFT);
2144 <        return (a > (p >>>= 1) ? 0 :
2145 <                a > (p >>>= 1) ? 1 :
2146 <                a > (p >>>= 1) ? 2 :
2147 <                a > (p >>>= 1) ? 4 :
2148 <                8);
2136 >     * Returns a cheap heuristic guide for task partitioning when
2137 >     * programmers, frameworks, tools, or languages have little or no
2138 >     * idea about task granularity.  In essence by offering this
2139 >     * method, we ask users only about tradeoffs in overhead vs
2140 >     * expected throughput and its variance, rather than how finely to
2141 >     * partition tasks.
2142 >     *
2143 >     * In a steady state strict (tree-structured) computation, each
2144 >     * thread makes available for stealing enough tasks for other
2145 >     * threads to remain active. Inductively, if all threads play by
2146 >     * the same rules, each thread should make available only a
2147 >     * constant number of tasks.
2148 >     *
2149 >     * The minimum useful constant is just 1. But using a value of 1
2150 >     * would require immediate replenishment upon each steal to
2151 >     * maintain enough tasks, which is infeasible.  Further,
2152 >     * partitionings/granularities of offered tasks should minimize
2153 >     * steal rates, which in general means that threads nearer the top
2154 >     * of computation tree should generate more than those nearer the
2155 >     * bottom. In perfect steady state, each thread is at
2156 >     * approximately the same level of computation tree. However,
2157 >     * producing extra tasks amortizes the uncertainty of progress and
2158 >     * diffusion assumptions.
2159 >     *
2160 >     * So, users will want to use values larger (but not much larger)
2161 >     * than 1 to both smooth over transient shortages and hedge
2162 >     * against uneven progress; as traded off against the cost of
2163 >     * extra task overhead. We leave the user to pick a threshold
2164 >     * value to compare with the results of this call to guide
2165 >     * decisions, but recommend values such as 3.
2166 >     *
2167 >     * When all threads are active, it is on average OK to estimate
2168 >     * surplus strictly locally. In steady-state, if one thread is
2169 >     * maintaining say 2 surplus tasks, then so are others. So we can
2170 >     * just use estimated queue length.  However, this strategy alone
2171 >     * leads to serious mis-estimates in some non-steady-state
2172 >     * conditions (ramp-up, ramp-down, other stalls). We can detect
2173 >     * many of these by further considering the number of "idle"
2174 >     * threads, that are known to have zero queued tasks, so
2175 >     * compensate by a factor of (#idle/#active) threads.
2176 >     *
2177 >     * Note: The approximation of #busy workers as #active workers is
2178 >     * not very good under current signalling scheme, and should be
2179 >     * improved.
2180 >     */
2181 >    static int getSurplusQueuedTaskCount() {
2182 >        Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2183 >        if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2184 >            int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).parallelism;
2185 >            int n = (q = wt.workQueue).top - q.base;
2186 >            int a = (int)(pool.ctl >> AC_SHIFT) + p;
2187 >            return n - (a > (p >>>= 1) ? 0 :
2188 >                        a > (p >>>= 1) ? 1 :
2189 >                        a > (p >>>= 1) ? 2 :
2190 >                        a > (p >>>= 1) ? 4 :
2191 >                        8);
2192 >        }
2193 >        return 0;
2194      }
2195  
2196      //  Termination
# Line 2007 | Line 2210 | public class ForkJoinPool extends Abstra
2210       * @return true if now terminating or terminated
2211       */
2212      private boolean tryTerminate(boolean now, boolean enable) {
2213 <        Mutex lock = this.lock;
2213 >        int ps;
2214 >        if (this == common)                        // cannot shut down
2215 >            return false;
2216 >        if ((ps = plock) >= 0) {                   // enable by setting plock
2217 >            if (!enable)
2218 >                return false;
2219 >            if ((ps & PL_LOCK) != 0 ||
2220 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2221 >                ps = acquirePlock();
2222 >            int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2223 >            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2224 >                releasePlock(nps);
2225 >        }
2226          for (long c;;) {
2227 <            if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
2228 <                if ((short)(c >>> TC_SHIFT) == -parallelism) {
2229 <                    lock.lock();                    // don't need try/finally
2230 <                    termination.signalAll();        // signal when 0 workers
2231 <                    lock.unlock();
2227 >            if (((c = ctl) & STOP_BIT) != 0) {     // already terminating
2228 >                if ((short)(c >>> TC_SHIFT) + parallelism <= 0) {
2229 >                    synchronized (this) {
2230 >                        notifyAll();               // signal when 0 workers
2231 >                    }
2232                  }
2233                  return true;
2234              }
2235 <            if (runState >= 0) {                    // not yet enabled
2236 <                if (!enable)
2237 <                    return false;
2023 <                lock.lock();
2024 <                runState |= SHUTDOWN;
2025 <                lock.unlock();
2026 <            }
2027 <            if (!now) {                             // check if idle & no tasks
2028 <                if ((int)(c >> AC_SHIFT) != -parallelism ||
2029 <                    hasQueuedSubmissions())
2235 >            if (!now) {                            // check if idle & no tasks
2236 >                WorkQueue[] ws; WorkQueue w;
2237 >                if ((int)(c >> AC_SHIFT) + parallelism > 0)
2238                      return false;
2239 <                // Check for unqueued inactive workers. One pass suffices.
2240 <                WorkQueue[] ws = workQueues; WorkQueue w;
2241 <                if (ws != null) {
2242 <                    for (int i = 1; i < ws.length; i += 2) {
2243 <                        if ((w = ws[i]) != null && w.eventCount >= 0)
2239 >                if ((ws = workQueues) != null) {
2240 >                    for (int i = 0; i < ws.length; ++i) {
2241 >                        if ((w = ws[i]) != null &&
2242 >                            (!w.isEmpty() ||
2243 >                             ((i & 1) != 0 && w.eventCount >= 0))) {
2244 >                            signalWork(ws, w);
2245                              return false;
2246 +                        }
2247                      }
2248                  }
2249              }
2250              if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2251                  for (int pass = 0; pass < 3; ++pass) {
2252 <                    WorkQueue[] ws = workQueues;
2253 <                    if (ws != null) {
2044 <                        WorkQueue w;
2252 >                    WorkQueue[] ws; WorkQueue w; Thread wt;
2253 >                    if ((ws = workQueues) != null) {
2254                          int n = ws.length;
2255                          for (int i = 0; i < n; ++i) {
2256                              if ((w = ws[i]) != null) {
2257 <                                w.runState = -1;
2257 >                                w.qlock = -1;
2258                                  if (pass > 0) {
2259                                      w.cancelAll();
2260 <                                    if (pass > 1)
2261 <                                        w.interruptOwner();
2260 >                                    if (pass > 1 && (wt = w.owner) != null) {
2261 >                                        if (!wt.isInterrupted()) {
2262 >                                            try {
2263 >                                                wt.interrupt();
2264 >                                            } catch (Throwable ignore) {
2265 >                                            }
2266 >                                        }
2267 >                                        U.unpark(wt);
2268 >                                    }
2269                                  }
2270                              }
2271                          }
2272                          // Wake up workers parked on event queue
2273                          int i, e; long cc; Thread p;
2274                          while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2275 <                               (i = e & SMASK) < n &&
2275 >                               (i = e & SMASK) < n && i >= 0 &&
2276                                 (w = ws[i]) != null) {
2277                              long nc = ((long)(w.nextWait & E_MASK) |
2278                                         ((cc + AC_UNIT) & AC_MASK) |
# Line 2064 | Line 2280 | public class ForkJoinPool extends Abstra
2280                              if (w.eventCount == (e | INT_SIGN) &&
2281                                  U.compareAndSwapLong(this, CTL, cc, nc)) {
2282                                  w.eventCount = (e + E_SEQ) & E_MASK;
2283 <                                w.runState = -1;
2283 >                                w.qlock = -1;
2284                                  if ((p = w.parker) != null)
2285                                      U.unpark(p);
2286                              }
# Line 2075 | Line 2291 | public class ForkJoinPool extends Abstra
2291          }
2292      }
2293  
2294 +    // external operations on common pool
2295 +
2296 +    /**
2297 +     * Returns common pool queue for a thread that has submitted at
2298 +     * least one task.
2299 +     */
2300 +    static WorkQueue commonSubmitterQueue() {
2301 +        Submitter z; ForkJoinPool p; WorkQueue[] ws; int m, r;
2302 +        return ((z = submitters.get()) != null &&
2303 +                (p = common) != null &&
2304 +                (ws = p.workQueues) != null &&
2305 +                (m = ws.length - 1) >= 0) ?
2306 +            ws[m & z.seed & SQMASK] : null;
2307 +    }
2308 +
2309 +    /**
2310 +     * Tries to pop the given task from submitter's queue in common pool.
2311 +     */
2312 +    final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2313 +        WorkQueue joiner; ForkJoinTask<?>[] a; int m, s;
2314 +        Submitter z = submitters.get();
2315 +        WorkQueue[] ws = workQueues;
2316 +        boolean popped = false;
2317 +        if (z != null && ws != null && (m = ws.length - 1) >= 0 &&
2318 +            (joiner = ws[z.seed & m & SQMASK]) != null &&
2319 +            joiner.base != (s = joiner.top) &&
2320 +            (a = joiner.array) != null) {
2321 +            long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2322 +            if (U.getObject(a, j) == task &&
2323 +                U.compareAndSwapInt(joiner, QLOCK, 0, 1)) {
2324 +                if (joiner.top == s && joiner.array == a &&
2325 +                    U.compareAndSwapObject(a, j, task, null)) {
2326 +                    joiner.top = s - 1;
2327 +                    popped = true;
2328 +                }
2329 +                joiner.qlock = 0;
2330 +            }
2331 +        }
2332 +        return popped;
2333 +    }
2334 +
2335 +    final int externalHelpComplete(CountedCompleter<?> task) {
2336 +        WorkQueue joiner; int m, j;
2337 +        Submitter z = submitters.get();
2338 +        WorkQueue[] ws = workQueues;
2339 +        int s = 0;
2340 +        if (z != null && ws != null && (m = ws.length - 1) >= 0 &&
2341 +            (joiner = ws[(j = z.seed) & m & SQMASK]) != null && task != null) {
2342 +            int scans = m + m + 1;
2343 +            long c = 0L;             // for stability check
2344 +            j |= 1;                  // poll odd queues
2345 +            for (int k = scans; ; j += 2) {
2346 +                WorkQueue q;
2347 +                if ((s = task.status) < 0)
2348 +                    break;
2349 +                else if (joiner.externalPopAndExecCC(task))
2350 +                    k = scans;
2351 +                else if ((s = task.status) < 0)
2352 +                    break;
2353 +                else if ((q = ws[j & m]) != null && q.pollAndExecCC(task))
2354 +                    k = scans;
2355 +                else if (--k < 0) {
2356 +                    if (c == (c = ctl))
2357 +                        break;
2358 +                    k = scans;
2359 +                }
2360 +            }
2361 +        }
2362 +        return s;
2363 +    }
2364 +
2365      // Exported methods
2366  
2367      // Constructors
# Line 2091 | Line 2378 | public class ForkJoinPool extends Abstra
2378       *         java.lang.RuntimePermission}{@code ("modifyThread")}
2379       */
2380      public ForkJoinPool() {
2381 <        this(Runtime.getRuntime().availableProcessors(),
2381 >        this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2382               defaultForkJoinWorkerThreadFactory, null, false);
2383      }
2384  
# Line 2139 | Line 2426 | public class ForkJoinPool extends Abstra
2426       */
2427      public ForkJoinPool(int parallelism,
2428                          ForkJoinWorkerThreadFactory factory,
2429 <                        Thread.UncaughtExceptionHandler handler,
2429 >                        UncaughtExceptionHandler handler,
2430                          boolean asyncMode) {
2431 +        this(checkParallelism(parallelism),
2432 +             checkFactory(factory),
2433 +             handler,
2434 +             (asyncMode ? FIFO_QUEUE : LIFO_QUEUE),
2435 +             "ForkJoinPool-" + nextPoolId() + "-worker-");
2436          checkPermission();
2437 <        if (factory == null)
2438 <            throw new NullPointerException();
2437 >    }
2438 >
2439 >    private static int checkParallelism(int parallelism) {
2440          if (parallelism <= 0 || parallelism > MAX_CAP)
2441              throw new IllegalArgumentException();
2442 <        this.parallelism = parallelism;
2442 >        return parallelism;
2443 >    }
2444 >
2445 >    private static ForkJoinWorkerThreadFactory checkFactory
2446 >        (ForkJoinWorkerThreadFactory factory) {
2447 >        if (factory == null)
2448 >            throw new NullPointerException();
2449 >        return factory;
2450 >    }
2451 >
2452 >    /**
2453 >     * Creates a {@code ForkJoinPool} with the given parameters, without
2454 >     * any security checks or parameter validation.  Invoked directly by
2455 >     * makeCommonPool.
2456 >     */
2457 >    private ForkJoinPool(int parallelism,
2458 >                         ForkJoinWorkerThreadFactory factory,
2459 >                         UncaughtExceptionHandler handler,
2460 >                         int mode,
2461 >                         String workerNamePrefix) {
2462 >        this.workerNamePrefix = workerNamePrefix;
2463          this.factory = factory;
2464          this.ueh = handler;
2465 <        this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
2465 >        this.mode = (short)mode;
2466 >        this.parallelism = (short)parallelism;
2467          long np = (long)(-parallelism); // offset ctl counts
2468          this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2469 <        // Use nearest power 2 for workQueues size. See Hackers Delight sec 3.2.
2470 <        int n = parallelism - 1;
2471 <        n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2472 <        int size = (n + 1) << 1;        // #slots = 2*#workers
2473 <        this.submitMask = size - 1;     // room for max # of submit queues
2474 <        this.workQueues = new WorkQueue[size];
2475 <        this.termination = (this.lock = new Mutex()).newCondition();
2476 <        this.stealCount = new AtomicLong();
2477 <        this.nextWorkerNumber = new AtomicInteger();
2478 <        int pn = poolNumberGenerator.incrementAndGet();
2479 <        StringBuilder sb = new StringBuilder("ForkJoinPool-");
2480 <        sb.append(Integer.toString(pn));
2481 <        sb.append("-worker-");
2482 <        this.workerNamePrefix = sb.toString();
2483 <        lock.lock();
2484 <        this.runState = 1;              // set init flag
2485 <        lock.unlock();
2469 >    }
2470 >
2471 >    /**
2472 >     * Returns the common pool instance. This pool is statically
2473 >     * constructed; its run state is unaffected by attempts to {@link
2474 >     * #shutdown} or {@link #shutdownNow}. However this pool and any
2475 >     * ongoing processing are automatically terminated upon program
2476 >     * {@link System#exit}.  Any program that relies on asynchronous
2477 >     * task processing to complete before program termination should
2478 >     * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2479 >     * before exit.
2480 >     *
2481 >     * @return the common pool instance
2482 >     * @since 1.8
2483 >     */
2484 >    public static ForkJoinPool commonPool() {
2485 >        // assert common != null : "static init error";
2486 >        return common;
2487      }
2488  
2489      // Execution methods
# Line 2184 | Line 2499 | public class ForkJoinPool extends Abstra
2499       * minimally only the latter.
2500       *
2501       * @param task the task
2502 +     * @param <T> the type of the task's result
2503       * @return the task's result
2504       * @throws NullPointerException if the task is null
2505       * @throws RejectedExecutionException if the task cannot be
# Line 2192 | Line 2508 | public class ForkJoinPool extends Abstra
2508      public <T> T invoke(ForkJoinTask<T> task) {
2509          if (task == null)
2510              throw new NullPointerException();
2511 <        doSubmit(task);
2511 >        externalPush(task);
2512          return task.join();
2513      }
2514  
# Line 2207 | Line 2523 | public class ForkJoinPool extends Abstra
2523      public void execute(ForkJoinTask<?> task) {
2524          if (task == null)
2525              throw new NullPointerException();
2526 <        doSubmit(task);
2526 >        externalPush(task);
2527      }
2528  
2529      // AbstractExecutorService methods
# Line 2224 | Line 2540 | public class ForkJoinPool extends Abstra
2540          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2541              job = (ForkJoinTask<?>) task;
2542          else
2543 <            job = new ForkJoinTask.AdaptedRunnableAction(task);
2544 <        doSubmit(job);
2543 >            job = new ForkJoinTask.RunnableExecuteAction(task);
2544 >        externalPush(job);
2545      }
2546  
2547      /**
2548       * Submits a ForkJoinTask for execution.
2549       *
2550       * @param task the task to submit
2551 +     * @param <T> the type of the task's result
2552       * @return the task
2553       * @throws NullPointerException if the task is null
2554       * @throws RejectedExecutionException if the task cannot be
# Line 2240 | Line 2557 | public class ForkJoinPool extends Abstra
2557      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2558          if (task == null)
2559              throw new NullPointerException();
2560 <        doSubmit(task);
2560 >        externalPush(task);
2561          return task;
2562      }
2563  
# Line 2251 | Line 2568 | public class ForkJoinPool extends Abstra
2568       */
2569      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2570          ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2571 <        doSubmit(job);
2571 >        externalPush(job);
2572          return job;
2573      }
2574  
# Line 2262 | Line 2579 | public class ForkJoinPool extends Abstra
2579       */
2580      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2581          ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2582 <        doSubmit(job);
2582 >        externalPush(job);
2583          return job;
2584      }
2585  
# Line 2279 | Line 2596 | public class ForkJoinPool extends Abstra
2596              job = (ForkJoinTask<?>) task;
2597          else
2598              job = new ForkJoinTask.AdaptedRunnableAction(task);
2599 <        doSubmit(job);
2599 >        externalPush(job);
2600          return job;
2601      }
2602  
# Line 2291 | Line 2608 | public class ForkJoinPool extends Abstra
2608          // In previous versions of this class, this method constructed
2609          // a task to run ForkJoinTask.invokeAll, but now external
2610          // invocation of multiple tasks is at least as efficient.
2611 <        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2295 <        // Workaround needed because method wasn't declared with
2296 <        // wildcards in return type but should have been.
2297 <        @SuppressWarnings({"unchecked", "rawtypes"})
2298 <            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2611 >        ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2612  
2613          boolean done = false;
2614          try {
2615              for (Callable<T> t : tasks) {
2616                  ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2617 <                doSubmit(f);
2618 <                fs.add(f);
2617 >                futures.add(f);
2618 >                externalPush(f);
2619              }
2620 <            for (ForkJoinTask<T> f : fs)
2621 <                f.quietlyJoin();
2620 >            for (int i = 0, size = futures.size(); i < size; i++)
2621 >                ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2622              done = true;
2623              return futures;
2624          } finally {
2625              if (!done)
2626 <                for (ForkJoinTask<T> f : fs)
2627 <                    f.cancel(false);
2626 >                for (int i = 0, size = futures.size(); i < size; i++)
2627 >                    futures.get(i).cancel(false);
2628          }
2629      }
2630  
# Line 2330 | Line 2643 | public class ForkJoinPool extends Abstra
2643       *
2644       * @return the handler, or {@code null} if none
2645       */
2646 <    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2646 >    public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2647          return ueh;
2648      }
2649  
# Line 2340 | Line 2653 | public class ForkJoinPool extends Abstra
2653       * @return the targeted parallelism level of this pool
2654       */
2655      public int getParallelism() {
2656 <        return parallelism;
2656 >        int par;
2657 >        return ((par = parallelism) > 0) ? par : 1;
2658 >    }
2659 >
2660 >    /**
2661 >     * Returns the targeted parallelism level of the common pool.
2662 >     *
2663 >     * @return the targeted parallelism level of the common pool
2664 >     * @since 1.8
2665 >     */
2666 >    public static int getCommonPoolParallelism() {
2667 >        return commonParallelism;
2668      }
2669  
2670      /**
# Line 2362 | Line 2686 | public class ForkJoinPool extends Abstra
2686       * @return {@code true} if this pool uses async mode
2687       */
2688      public boolean getAsyncMode() {
2689 <        return localMode != 0;
2689 >        return mode == FIFO_QUEUE;
2690      }
2691  
2692      /**
# Line 2409 | Line 2733 | public class ForkJoinPool extends Abstra
2733       * @return {@code true} if all threads are currently idle
2734       */
2735      public boolean isQuiescent() {
2736 <        return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2736 >        return parallelism + (int)(ctl >> AC_SHIFT) <= 0;
2737      }
2738  
2739      /**
# Line 2424 | Line 2748 | public class ForkJoinPool extends Abstra
2748       * @return the number of steals
2749       */
2750      public long getStealCount() {
2751 <        long count = stealCount.get();
2751 >        long count = stealCount;
2752          WorkQueue[] ws; WorkQueue w;
2753          if ((ws = workQueues) != null) {
2754              for (int i = 1; i < ws.length; i += 2) {
2755                  if ((w = ws[i]) != null)
2756 <                    count += w.totalSteals;
2756 >                    count += w.nsteals;
2757              }
2758          }
2759          return count;
# Line 2554 | Line 2878 | public class ForkJoinPool extends Abstra
2878      public String toString() {
2879          // Use a single pass through workQueues to collect counts
2880          long qt = 0L, qs = 0L; int rc = 0;
2881 <        long st = stealCount.get();
2881 >        long st = stealCount;
2882          long c = ctl;
2883          WorkQueue[] ws; WorkQueue w;
2884          if ((ws = workQueues) != null) {
# Line 2565 | Line 2889 | public class ForkJoinPool extends Abstra
2889                          qs += size;
2890                      else {
2891                          qt += size;
2892 <                        st += w.totalSteals;
2892 >                        st += w.nsteals;
2893                          if (w.isApparentlyUnblocked())
2894                              ++rc;
2895                      }
# Line 2581 | Line 2905 | public class ForkJoinPool extends Abstra
2905          if ((c & STOP_BIT) != 0)
2906              level = (tc == 0) ? "Terminated" : "Terminating";
2907          else
2908 <            level = runState < 0 ? "Shutting down" : "Running";
2908 >            level = plock < 0 ? "Shutting down" : "Running";
2909          return super.toString() +
2910              "[" + level +
2911              ", parallelism = " + pc +
# Line 2595 | Line 2919 | public class ForkJoinPool extends Abstra
2919      }
2920  
2921      /**
2922 <     * Initiates an orderly shutdown in which previously submitted
2923 <     * tasks are executed, but no new tasks will be accepted.
2924 <     * Invocation has no additional effect if already shut down.
2925 <     * Tasks that are in the process of being submitted concurrently
2926 <     * during the course of this method may or may not be rejected.
2922 >     * Possibly initiates an orderly shutdown in which previously
2923 >     * submitted tasks are executed, but no new tasks will be
2924 >     * accepted. Invocation has no effect on execution state if this
2925 >     * is the {@link #commonPool()}, and no additional effect if
2926 >     * already shut down.  Tasks that are in the process of being
2927 >     * submitted concurrently during the course of this method may or
2928 >     * may not be rejected.
2929       *
2930       * @throws SecurityException if a security manager exists and
2931       *         the caller is not permitted to modify threads
# Line 2612 | Line 2938 | public class ForkJoinPool extends Abstra
2938      }
2939  
2940      /**
2941 <     * Attempts to cancel and/or stop all tasks, and reject all
2942 <     * subsequently submitted tasks.  Tasks that are in the process of
2943 <     * being submitted or executed concurrently during the course of
2944 <     * this method may or may not be rejected. This method cancels
2945 <     * both existing and unexecuted tasks, in order to permit
2946 <     * termination in the presence of task dependencies. So the method
2947 <     * always returns an empty list (unlike the case for some other
2948 <     * Executors).
2941 >     * Possibly attempts to cancel and/or stop all tasks, and reject
2942 >     * all subsequently submitted tasks.  Invocation has no effect on
2943 >     * execution state if this is the {@link #commonPool()}, and no
2944 >     * additional effect if already shut down. Otherwise, tasks that
2945 >     * are in the process of being submitted or executed concurrently
2946 >     * during the course of this method may or may not be
2947 >     * rejected. This method cancels both existing and unexecuted
2948 >     * tasks, in order to permit termination in the presence of task
2949 >     * dependencies. So the method always returns an empty list
2950 >     * (unlike the case for some other Executors).
2951       *
2952       * @return an empty list
2953       * @throws SecurityException if a security manager exists and
# Line 2641 | Line 2969 | public class ForkJoinPool extends Abstra
2969      public boolean isTerminated() {
2970          long c = ctl;
2971          return ((c & STOP_BIT) != 0L &&
2972 <                (short)(c >>> TC_SHIFT) == -parallelism);
2972 >                (short)(c >>> TC_SHIFT) + parallelism <= 0);
2973      }
2974  
2975      /**
# Line 2649 | Line 2977 | public class ForkJoinPool extends Abstra
2977       * commenced but not yet completed.  This method may be useful for
2978       * debugging. A return of {@code true} reported a sufficient
2979       * period after shutdown may indicate that submitted tasks have
2980 <     * ignored or suppressed interruption, or are waiting for IO,
2980 >     * ignored or suppressed interruption, or are waiting for I/O,
2981       * causing this executor not to properly terminate. (See the
2982       * advisory notes for class {@link ForkJoinTask} stating that
2983       * tasks should not normally entail blocking operations.  But if
# Line 2660 | Line 2988 | public class ForkJoinPool extends Abstra
2988      public boolean isTerminating() {
2989          long c = ctl;
2990          return ((c & STOP_BIT) != 0L &&
2991 <                (short)(c >>> TC_SHIFT) != -parallelism);
2991 >                (short)(c >>> TC_SHIFT) + parallelism > 0);
2992      }
2993  
2994      /**
# Line 2669 | Line 2997 | public class ForkJoinPool extends Abstra
2997       * @return {@code true} if this pool has been shut down
2998       */
2999      public boolean isShutdown() {
3000 <        return runState < 0;
3000 >        return plock < 0;
3001      }
3002  
3003      /**
3004 <     * Blocks until all tasks have completed execution after a shutdown
3005 <     * request, or the timeout occurs, or the current thread is
3006 <     * interrupted, whichever happens first.
3004 >     * Blocks until all tasks have completed execution after a
3005 >     * shutdown request, or the timeout occurs, or the current thread
3006 >     * is interrupted, whichever happens first. Because the {@link
3007 >     * #commonPool()} never terminates until program shutdown, when
3008 >     * applied to the common pool, this method is equivalent to {@link
3009 >     * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3010       *
3011       * @param timeout the maximum time to wait
3012       * @param unit the time unit of the timeout argument
# Line 2685 | Line 3016 | public class ForkJoinPool extends Abstra
3016       */
3017      public boolean awaitTermination(long timeout, TimeUnit unit)
3018          throws InterruptedException {
3019 +        if (Thread.interrupted())
3020 +            throw new InterruptedException();
3021 +        if (this == common) {
3022 +            awaitQuiescence(timeout, unit);
3023 +            return false;
3024 +        }
3025          long nanos = unit.toNanos(timeout);
3026 <        final Mutex lock = this.lock;
3027 <        lock.lock();
3028 <        try {
3026 >        if (isTerminated())
3027 >            return true;
3028 >        if (nanos <= 0L)
3029 >            return false;
3030 >        long deadline = System.nanoTime() + nanos;
3031 >        synchronized (this) {
3032              for (;;) {
3033                  if (isTerminated())
3034                      return true;
3035 <                if (nanos <= 0)
3035 >                if (nanos <= 0L)
3036                      return false;
3037 <                nanos = termination.awaitNanos(nanos);
3037 >                long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3038 >                wait(millis > 0L ? millis : 1L);
3039 >                nanos = deadline - System.nanoTime();
3040              }
2699        } finally {
2700            lock.unlock();
3041          }
3042      }
3043  
3044      /**
3045 +     * If called by a ForkJoinTask operating in this pool, equivalent
3046 +     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3047 +     * waits and/or attempts to assist performing tasks until this
3048 +     * pool {@link #isQuiescent} or the indicated timeout elapses.
3049 +     *
3050 +     * @param timeout the maximum time to wait
3051 +     * @param unit the time unit of the timeout argument
3052 +     * @return {@code true} if quiescent; {@code false} if the
3053 +     * timeout elapsed.
3054 +     */
3055 +    public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3056 +        long nanos = unit.toNanos(timeout);
3057 +        ForkJoinWorkerThread wt;
3058 +        Thread thread = Thread.currentThread();
3059 +        if ((thread instanceof ForkJoinWorkerThread) &&
3060 +            (wt = (ForkJoinWorkerThread)thread).pool == this) {
3061 +            helpQuiescePool(wt.workQueue);
3062 +            return true;
3063 +        }
3064 +        long startTime = System.nanoTime();
3065 +        WorkQueue[] ws;
3066 +        int r = 0, m;
3067 +        boolean found = true;
3068 +        while (!isQuiescent() && (ws = workQueues) != null &&
3069 +               (m = ws.length - 1) >= 0) {
3070 +            if (!found) {
3071 +                if ((System.nanoTime() - startTime) > nanos)
3072 +                    return false;
3073 +                Thread.yield(); // cannot block
3074 +            }
3075 +            found = false;
3076 +            for (int j = (m + 1) << 2; j >= 0; --j) {
3077 +                ForkJoinTask<?> t; WorkQueue q; int b;
3078 +                if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3079 +                    found = true;
3080 +                    if ((t = q.pollAt(b)) != null)
3081 +                        t.doExec();
3082 +                    break;
3083 +                }
3084 +            }
3085 +        }
3086 +        return true;
3087 +    }
3088 +
3089 +    /**
3090 +     * Waits and/or attempts to assist performing tasks indefinitely
3091 +     * until the {@link #commonPool()} {@link #isQuiescent}.
3092 +     */
3093 +    static void quiesceCommonPool() {
3094 +        common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3095 +    }
3096 +
3097 +    /**
3098       * Interface for extending managed parallelism for tasks running
3099       * in {@link ForkJoinPool}s.
3100       *
# Line 2710 | Line 3103 | public class ForkJoinPool extends Abstra
3103       * not necessary. Method {@code block} blocks the current thread
3104       * if necessary (perhaps internally invoking {@code isReleasable}
3105       * before actually blocking). These actions are performed by any
3106 <     * thread invoking {@link ForkJoinPool#managedBlock}.  The
3107 <     * unusual methods in this API accommodate synchronizers that may,
3108 <     * but don't usually, block for long periods. Similarly, they
3106 >     * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3107 >     * The unusual methods in this API accommodate synchronizers that
3108 >     * may, but don't usually, block for long periods. Similarly, they
3109       * allow more efficient internal handling of cases in which
3110       * additional workers may be, but usually are not, needed to
3111       * ensure sufficient parallelism.  Toward this end,
# Line 2770 | Line 3163 | public class ForkJoinPool extends Abstra
3163  
3164          /**
3165           * Returns {@code true} if blocking is unnecessary.
3166 +         * @return {@code true} if blocking is unnecessary
3167           */
3168          boolean isReleasable();
3169      }
# Line 2797 | Line 3191 | public class ForkJoinPool extends Abstra
3191      public static void managedBlock(ManagedBlocker blocker)
3192          throws InterruptedException {
3193          Thread t = Thread.currentThread();
3194 <        ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
3195 <                          ((ForkJoinWorkerThread)t).pool : null);
3196 <        while (!blocker.isReleasable()) {
3197 <            if (p == null || p.tryCompensate(null, blocker)) {
3198 <                try {
3199 <                    do {} while (!blocker.isReleasable() && !blocker.block());
3200 <                } finally {
3201 <                    if (p != null)
3194 >        if (t instanceof ForkJoinWorkerThread) {
3195 >            ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3196 >            while (!blocker.isReleasable()) {
3197 >                if (p.tryCompensate(p.ctl)) {
3198 >                    try {
3199 >                        do {} while (!blocker.isReleasable() &&
3200 >                                     !blocker.block());
3201 >                    } finally {
3202                          p.incrementActiveCount();
3203 +                    }
3204 +                    break;
3205                  }
2810                break;
3206              }
3207          }
3208 +        else {
3209 +            do {} while (!blocker.isReleasable() &&
3210 +                         !blocker.block());
3211 +        }
3212      }
3213  
3214      // AbstractExecutorService overrides.  These rely on undocumented
# Line 2830 | Line 3229 | public class ForkJoinPool extends Abstra
3229      private static final long PARKBLOCKER;
3230      private static final int ABASE;
3231      private static final int ASHIFT;
3232 +    private static final long STEALCOUNT;
3233 +    private static final long PLOCK;
3234 +    private static final long INDEXSEED;
3235 +    private static final long QBASE;
3236 +    private static final long QLOCK;
3237  
3238      static {
3239 <        poolNumberGenerator = new AtomicInteger();
2836 <        nextSubmitterSeed = new AtomicInteger(0x55555555);
2837 <        modifyThreadPermission = new RuntimePermission("modifyThread");
2838 <        defaultForkJoinWorkerThreadFactory =
2839 <            new DefaultForkJoinWorkerThreadFactory();
2840 <        submitters = new ThreadSubmitter();
2841 <        int s;
3239 >        // initialize field offsets for CAS etc
3240          try {
3241              U = getUnsafe();
3242              Class<?> k = ForkJoinPool.class;
2845            Class<?> ak = ForkJoinTask[].class;
3243              CTL = U.objectFieldOffset
3244                  (k.getDeclaredField("ctl"));
3245 +            STEALCOUNT = U.objectFieldOffset
3246 +                (k.getDeclaredField("stealCount"));
3247 +            PLOCK = U.objectFieldOffset
3248 +                (k.getDeclaredField("plock"));
3249 +            INDEXSEED = U.objectFieldOffset
3250 +                (k.getDeclaredField("indexSeed"));
3251              Class<?> tk = Thread.class;
3252              PARKBLOCKER = U.objectFieldOffset
3253                  (tk.getDeclaredField("parkBlocker"));
3254 +            Class<?> wk = WorkQueue.class;
3255 +            QBASE = U.objectFieldOffset
3256 +                (wk.getDeclaredField("base"));
3257 +            QLOCK = U.objectFieldOffset
3258 +                (wk.getDeclaredField("qlock"));
3259 +            Class<?> ak = ForkJoinTask[].class;
3260              ABASE = U.arrayBaseOffset(ak);
3261 <            s = U.arrayIndexScale(ak);
3261 >            int scale = U.arrayIndexScale(ak);
3262 >            if ((scale & (scale - 1)) != 0)
3263 >                throw new Error("data type scale not a power of two");
3264 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3265          } catch (Exception e) {
3266              throw new Error(e);
3267          }
3268 <        if ((s & (s-1)) != 0)
3269 <            throw new Error("data type scale not a power of two");
3270 <        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3268 >
3269 >        submitters = new ThreadLocal<Submitter>();
3270 >        defaultForkJoinWorkerThreadFactory =
3271 >            new DefaultForkJoinWorkerThreadFactory();
3272 >        modifyThreadPermission = new RuntimePermission("modifyThread");
3273 >
3274 >        common = java.security.AccessController.doPrivileged
3275 >            (new java.security.PrivilegedAction<ForkJoinPool>() {
3276 >                public ForkJoinPool run() { return makeCommonPool(); }});
3277 >        int par = common.parallelism; // report 1 even if threads disabled
3278 >        commonParallelism = par > 0 ? par : 1;
3279 >    }
3280 >
3281 >    /**
3282 >     * Creates and returns the common pool, respecting user settings
3283 >     * specified via system properties.
3284 >     */
3285 >    private static ForkJoinPool makeCommonPool() {
3286 >        int parallelism = -1;
3287 >        ForkJoinWorkerThreadFactory factory
3288 >            = defaultForkJoinWorkerThreadFactory;
3289 >        UncaughtExceptionHandler handler = null;
3290 >        try {  // ignore exceptions in accessing/parsing properties
3291 >            String pp = System.getProperty
3292 >                ("java.util.concurrent.ForkJoinPool.common.parallelism");
3293 >            String fp = System.getProperty
3294 >                ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3295 >            String hp = System.getProperty
3296 >                ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3297 >            if (pp != null)
3298 >                parallelism = Integer.parseInt(pp);
3299 >            if (fp != null)
3300 >                factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3301 >                           getSystemClassLoader().loadClass(fp).newInstance());
3302 >            if (hp != null)
3303 >                handler = ((UncaughtExceptionHandler)ClassLoader.
3304 >                           getSystemClassLoader().loadClass(hp).newInstance());
3305 >        } catch (Exception ignore) {
3306 >        }
3307 >
3308 >        if (parallelism < 0 && // default 1 less than #cores
3309 >            (parallelism = Runtime.getRuntime().availableProcessors() - 1) < 0)
3310 >            parallelism = 0;
3311 >        if (parallelism > MAX_CAP)
3312 >            parallelism = MAX_CAP;
3313 >        return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3314 >                                "ForkJoinPool.commonPool-worker-");
3315      }
3316  
3317      /**
# Line 2868 | Line 3324 | public class ForkJoinPool extends Abstra
3324      private static sun.misc.Unsafe getUnsafe() {
3325          try {
3326              return sun.misc.Unsafe.getUnsafe();
3327 <        } catch (SecurityException se) {
3328 <            try {
3329 <                return java.security.AccessController.doPrivileged
3330 <                    (new java.security
3331 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
3332 <                        public sun.misc.Unsafe run() throws Exception {
3333 <                            java.lang.reflect.Field f = sun.misc
3334 <                                .Unsafe.class.getDeclaredField("theUnsafe");
3335 <                            f.setAccessible(true);
3336 <                            return (sun.misc.Unsafe) f.get(null);
3337 <                        }});
3338 <            } catch (java.security.PrivilegedActionException e) {
3339 <                throw new RuntimeException("Could not initialize intrinsics",
3340 <                                           e.getCause());
3341 <            }
3327 >        } catch (SecurityException tryReflectionInstead) {}
3328 >        try {
3329 >            return java.security.AccessController.doPrivileged
3330 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
3331 >                public sun.misc.Unsafe run() throws Exception {
3332 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
3333 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
3334 >                        f.setAccessible(true);
3335 >                        Object x = f.get(null);
3336 >                        if (k.isInstance(x))
3337 >                            return k.cast(x);
3338 >                    }
3339 >                    throw new NoSuchFieldError("the Unsafe");
3340 >                }});
3341 >        } catch (java.security.PrivilegedActionException e) {
3342 >            throw new RuntimeException("Could not initialize intrinsics",
3343 >                                       e.getCause());
3344          }
3345      }
2888
3346   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines