ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ForkJoinPool.java
Revision: 1.29
Committed: Fri Dec 14 16:33:42 2012 UTC (11 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.28: +1 -1 lines
Log Message:
whitespace

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package jsr166e;
8
9 import java.util.ArrayList;
10 import java.util.Arrays;
11 import java.util.Collection;
12 import java.util.Collections;
13 import java.util.List;
14 import java.util.concurrent.AbstractExecutorService;
15 import java.util.concurrent.Callable;
16 import java.util.concurrent.ExecutorService;
17 import java.util.concurrent.Future;
18 import java.util.concurrent.RejectedExecutionException;
19 import java.util.concurrent.RunnableFuture;
20 import java.util.concurrent.TimeUnit;
21
22 /**
23 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
24 * A {@code ForkJoinPool} provides the entry point for submissions
25 * from non-{@code ForkJoinTask} clients, as well as management and
26 * monitoring operations.
27 *
28 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29 * ExecutorService} mainly by virtue of employing
30 * <em>work-stealing</em>: all threads in the pool attempt to find and
31 * execute tasks submitted to the pool and/or created by other active
32 * tasks (eventually blocking waiting for work if none exist). This
33 * enables efficient processing when most tasks spawn other subtasks
34 * (as do most {@code ForkJoinTask}s), as well as when many small
35 * tasks are submitted to the pool from external clients. Especially
36 * when setting <em>asyncMode</em> to true in constructors, {@code
37 * ForkJoinPool}s may also be appropriate for use with event-style
38 * tasks that are never joined.
39 *
40 * <p>A static {@link #commonPool()} is available and appropriate for
41 * most applications. The common pool is used by any ForkJoinTask that
42 * is not explicitly submitted to a specified pool. Using the common
43 * pool normally reduces resource usage (its threads are slowly
44 * reclaimed during periods of non-use, and reinstated upon subsequent
45 * use).
46 *
47 * <p>For applications that require separate or custom pools, a {@code
48 * ForkJoinPool} may be constructed with a given target parallelism
49 * level; by default, equal to the number of available processors. The
50 * pool attempts to maintain enough active (or available) threads by
51 * dynamically adding, suspending, or resuming internal worker
52 * threads, even if some tasks are stalled waiting to join
53 * others. However, no such adjustments are guaranteed in the face of
54 * blocked I/O or other unmanaged synchronization. The nested {@link
55 * ManagedBlocker} interface enables extension of the kinds of
56 * synchronization accommodated.
57 *
58 * <p>In addition to execution and lifecycle control methods, this
59 * class provides status check methods (for example
60 * {@link #getStealCount}) that are intended to aid in developing,
61 * tuning, and monitoring fork/join applications. Also, method
62 * {@link #toString} returns indications of pool state in a
63 * convenient form for informal monitoring.
64 *
65 * <p>As is the case with other ExecutorServices, there are three
66 * main task execution methods summarized in the following table.
67 * These are designed to be used primarily by clients not already
68 * engaged in fork/join computations in the current pool. The main
69 * forms of these methods accept instances of {@code ForkJoinTask},
70 * but overloaded forms also allow mixed execution of plain {@code
71 * Runnable}- or {@code Callable}- based activities as well. However,
72 * tasks that are already executing in a pool should normally instead
73 * use the within-computation forms listed in the table unless using
74 * async event-style tasks that are not usually joined, in which case
75 * there is little difference among choice of methods.
76 *
77 * <table BORDER CELLPADDING=3 CELLSPACING=1>
78 * <tr>
79 * <td></td>
80 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82 * </tr>
83 * <tr>
84 * <td> <b>Arrange async execution</td>
85 * <td> {@link #execute(ForkJoinTask)}</td>
86 * <td> {@link ForkJoinTask#fork}</td>
87 * </tr>
88 * <tr>
89 * <td> <b>Await and obtain result</td>
90 * <td> {@link #invoke(ForkJoinTask)}</td>
91 * <td> {@link ForkJoinTask#invoke}</td>
92 * </tr>
93 * <tr>
94 * <td> <b>Arrange exec and obtain Future</td>
95 * <td> {@link #submit(ForkJoinTask)}</td>
96 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97 * </tr>
98 * </table>
99 *
100 * <p>The common pool is by default constructed with default
101 * parameters, but these may be controlled by setting three {@link
102 * System#getProperty system properties} with prefix {@code
103 * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104 * an integer greater than zero, {@code threadFactory} -- the class
105 * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106 * exceptionHandler} -- the class name of a {@link
107 * java.lang.Thread.UncaughtExceptionHandler
108 * Thread.UncaughtExceptionHandler}. Upon any error in establishing
109 * these settings, default parameters are used.
110 *
111 * <p><b>Implementation notes</b>: This implementation restricts the
112 * maximum number of running threads to 32767. Attempts to create
113 * pools with greater than the maximum number result in
114 * {@code IllegalArgumentException}.
115 *
116 * <p>This implementation rejects submitted tasks (that is, by throwing
117 * {@link RejectedExecutionException}) only when the pool is shut down
118 * or internal resources have been exhausted.
119 *
120 * @since 1.7
121 * @author Doug Lea
122 */
123 public class ForkJoinPool extends AbstractExecutorService {
124
125 /*
126 * Implementation Overview
127 *
128 * This class and its nested classes provide the main
129 * functionality and control for a set of worker threads:
130 * Submissions from non-FJ threads enter into submission queues.
131 * Workers take these tasks and typically split them into subtasks
132 * that may be stolen by other workers. Preference rules give
133 * first priority to processing tasks from their own queues (LIFO
134 * or FIFO, depending on mode), then to randomized FIFO steals of
135 * tasks in other queues.
136 *
137 * WorkQueues
138 * ==========
139 *
140 * Most operations occur within work-stealing queues (in nested
141 * class WorkQueue). These are special forms of Deques that
142 * support only three of the four possible end-operations -- push,
143 * pop, and poll (aka steal), under the further constraints that
144 * push and pop are called only from the owning thread (or, as
145 * extended here, under a lock), while poll may be called from
146 * other threads. (If you are unfamiliar with them, you probably
147 * want to read Herlihy and Shavit's book "The Art of
148 * Multiprocessor programming", chapter 16 describing these in
149 * more detail before proceeding.) The main work-stealing queue
150 * design is roughly similar to those in the papers "Dynamic
151 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
152 * (http://research.sun.com/scalable/pubs/index.html) and
153 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
154 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
155 * The main differences ultimately stem from GC requirements that
156 * we null out taken slots as soon as we can, to maintain as small
157 * a footprint as possible even in programs generating huge
158 * numbers of tasks. To accomplish this, we shift the CAS
159 * arbitrating pop vs poll (steal) from being on the indices
160 * ("base" and "top") to the slots themselves. So, both a
161 * successful pop and poll mainly entail a CAS of a slot from
162 * non-null to null. Because we rely on CASes of references, we
163 * do not need tag bits on base or top. They are simple ints as
164 * used in any circular array-based queue (see for example
165 * ArrayDeque). Updates to the indices must still be ordered in a
166 * way that guarantees that top == base means the queue is empty,
167 * but otherwise may err on the side of possibly making the queue
168 * appear nonempty when a push, pop, or poll have not fully
169 * committed. Note that this means that the poll operation,
170 * considered individually, is not wait-free. One thief cannot
171 * successfully continue until another in-progress one (or, if
172 * previously empty, a push) completes. However, in the
173 * aggregate, we ensure at least probabilistic non-blockingness.
174 * If an attempted steal fails, a thief always chooses a different
175 * random victim target to try next. So, in order for one thief to
176 * progress, it suffices for any in-progress poll or new push on
177 * any empty queue to complete. (This is why we normally use
178 * method pollAt and its variants that try once at the apparent
179 * base index, else consider alternative actions, rather than
180 * method poll.)
181 *
182 * This approach also enables support of a user mode in which local
183 * task processing is in FIFO, not LIFO order, simply by using
184 * poll rather than pop. This can be useful in message-passing
185 * frameworks in which tasks are never joined. However neither
186 * mode considers affinities, loads, cache localities, etc, so
187 * rarely provide the best possible performance on a given
188 * machine, but portably provide good throughput by averaging over
189 * these factors. (Further, even if we did try to use such
190 * information, we do not usually have a basis for exploiting it.
191 * For example, some sets of tasks profit from cache affinities,
192 * but others are harmed by cache pollution effects.)
193 *
194 * WorkQueues are also used in a similar way for tasks submitted
195 * to the pool. We cannot mix these tasks in the same queues used
196 * for work-stealing (this would contaminate lifo/fifo
197 * processing). Instead, we randomly associate submission queues
198 * with submitting threads, using a form of hashing. The
199 * ThreadLocal Submitter class contains a value initially used as
200 * a hash code for choosing existing queues, but may be randomly
201 * repositioned upon contention with other submitters. In
202 * essence, submitters act like workers except that they are
203 * restricted to executing local tasks that they submitted (or in
204 * the case of CountedCompleters, others with the same root task).
205 * However, because most shared/external queue operations are more
206 * expensive than internal, and because, at steady state, external
207 * submitters will compete for CPU with workers, ForkJoinTask.join
208 * and related methods disable them from repeatedly helping to
209 * process tasks if all workers are active. Insertion of tasks in
210 * shared mode requires a lock (mainly to protect in the case of
211 * resizing) but we use only a simple spinlock (using bits in
212 * field qlock), because submitters encountering a busy queue move
213 * on to try or create other queues -- they block only when
214 * creating and registering new queues.
215 *
216 * Management
217 * ==========
218 *
219 * The main throughput advantages of work-stealing stem from
220 * decentralized control -- workers mostly take tasks from
221 * themselves or each other. We cannot negate this in the
222 * implementation of other management responsibilities. The main
223 * tactic for avoiding bottlenecks is packing nearly all
224 * essentially atomic control state into two volatile variables
225 * that are by far most often read (not written) as status and
226 * consistency checks.
227 *
228 * Field "ctl" contains 64 bits holding all the information needed
229 * to atomically decide to add, inactivate, enqueue (on an event
230 * queue), dequeue, and/or re-activate workers. To enable this
231 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
232 * far in excess of normal operating range) to allow ids, counts,
233 * and their negations (used for thresholding) to fit into 16bit
234 * fields.
235 *
236 * Field "plock" is a form of sequence lock with a saturating
237 * shutdown bit (similarly for per-queue "qlocks"), mainly
238 * protecting updates to the workQueues array, as well as to
239 * enable shutdown. When used as a lock, it is normally only very
240 * briefly held, so is nearly always available after at most a
241 * brief spin, but we use a monitor-based backup strategy to
242 * block when needed.
243 *
244 * Recording WorkQueues. WorkQueues are recorded in the
245 * "workQueues" array that is created upon first use and expanded
246 * if necessary. Updates to the array while recording new workers
247 * and unrecording terminated ones are protected from each other
248 * by a lock but the array is otherwise concurrently readable, and
249 * accessed directly. To simplify index-based operations, the
250 * array size is always a power of two, and all readers must
251 * tolerate null slots. Worker queues are at odd indices. Shared
252 * (submission) queues are at even indices, up to a maximum of 64
253 * slots, to limit growth even if array needs to expand to add
254 * more workers. Grouping them together in this way simplifies and
255 * speeds up task scanning.
256 *
257 * All worker thread creation is on-demand, triggered by task
258 * submissions, replacement of terminated workers, and/or
259 * compensation for blocked workers. However, all other support
260 * code is set up to work with other policies. To ensure that we
261 * do not hold on to worker references that would prevent GC, ALL
262 * accesses to workQueues are via indices into the workQueues
263 * array (which is one source of some of the messy code
264 * constructions here). In essence, the workQueues array serves as
265 * a weak reference mechanism. Thus for example the wait queue
266 * field of ctl stores indices, not references. Access to the
267 * workQueues in associated methods (for example signalWork) must
268 * both index-check and null-check the IDs. All such accesses
269 * ignore bad IDs by returning out early from what they are doing,
270 * since this can only be associated with termination, in which
271 * case it is OK to give up. All uses of the workQueues array
272 * also check that it is non-null (even if previously
273 * non-null). This allows nulling during termination, which is
274 * currently not necessary, but remains an option for
275 * resource-revocation-based shutdown schemes. It also helps
276 * reduce JIT issuance of uncommon-trap code, which tends to
277 * unnecessarily complicate control flow in some methods.
278 *
279 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
280 * let workers spin indefinitely scanning for tasks when none can
281 * be found immediately, and we cannot start/resume workers unless
282 * there appear to be tasks available. On the other hand, we must
283 * quickly prod them into action when new tasks are submitted or
284 * generated. In many usages, ramp-up time to activate workers is
285 * the main limiting factor in overall performance (this is
286 * compounded at program start-up by JIT compilation and
287 * allocation). So we try to streamline this as much as possible.
288 * We park/unpark workers after placing in an event wait queue
289 * when they cannot find work. This "queue" is actually a simple
290 * Treiber stack, headed by the "id" field of ctl, plus a 15bit
291 * counter value (that reflects the number of times a worker has
292 * been inactivated) to avoid ABA effects (we need only as many
293 * version numbers as worker threads). Successors are held in
294 * field WorkQueue.nextWait. Queuing deals with several intrinsic
295 * races, mainly that a task-producing thread can miss seeing (and
296 * signalling) another thread that gave up looking for work but
297 * has not yet entered the wait queue. We solve this by requiring
298 * a full sweep of all workers (via repeated calls to method
299 * scan()) both before and after a newly waiting worker is added
300 * to the wait queue. During a rescan, the worker might release
301 * some other queued worker rather than itself, which has the same
302 * net effect. Because enqueued workers may actually be rescanning
303 * rather than waiting, we set and clear the "parker" field of
304 * WorkQueues to reduce unnecessary calls to unpark. (This
305 * requires a secondary recheck to avoid missed signals.) Note
306 * the unusual conventions about Thread.interrupts surrounding
307 * parking and other blocking: Because interrupts are used solely
308 * to alert threads to check termination, which is checked anyway
309 * upon blocking, we clear status (using Thread.interrupted)
310 * before any call to park, so that park does not immediately
311 * return due to status being set via some other unrelated call to
312 * interrupt in user code.
313 *
314 * Signalling. We create or wake up workers only when there
315 * appears to be at least one task they might be able to find and
316 * execute. However, many other threads may notice the same task
317 * and each signal to wake up a thread that might take it. So in
318 * general, pools will be over-signalled. When a submission is
319 * added or another worker adds a task to a queue that has fewer
320 * than two tasks, they signal waiting workers (or trigger
321 * creation of new ones if fewer than the given parallelism level
322 * -- signalWork), and may leave a hint to the unparked worker to
323 * help signal others upon wakeup). These primary signals are
324 * buttressed by others (see method helpSignal) whenever other
325 * threads scan for work or do not have a task to process. On
326 * most platforms, signalling (unpark) overhead time is noticeably
327 * long, and the time between signalling a thread and it actually
328 * making progress can be very noticeably long, so it is worth
329 * offloading these delays from critical paths as much as
330 * possible.
331 *
332 * Trimming workers. To release resources after periods of lack of
333 * use, a worker starting to wait when the pool is quiescent will
334 * time out and terminate if the pool has remained quiescent for a
335 * given period -- a short period if there are more threads than
336 * parallelism, longer as the number of threads decreases. This
337 * will slowly propagate, eventually terminating all workers after
338 * periods of non-use.
339 *
340 * Shutdown and Termination. A call to shutdownNow atomically sets
341 * a plock bit and then (non-atomically) sets each worker's
342 * qlock status, cancels all unprocessed tasks, and wakes up
343 * all waiting workers. Detecting whether termination should
344 * commence after a non-abrupt shutdown() call requires more work
345 * and bookkeeping. We need consensus about quiescence (i.e., that
346 * there is no more work). The active count provides a primary
347 * indication but non-abrupt shutdown still requires a rechecking
348 * scan for any workers that are inactive but not queued.
349 *
350 * Joining Tasks
351 * =============
352 *
353 * Any of several actions may be taken when one worker is waiting
354 * to join a task stolen (or always held) by another. Because we
355 * are multiplexing many tasks on to a pool of workers, we can't
356 * just let them block (as in Thread.join). We also cannot just
357 * reassign the joiner's run-time stack with another and replace
358 * it later, which would be a form of "continuation", that even if
359 * possible is not necessarily a good idea since we sometimes need
360 * both an unblocked task and its continuation to progress.
361 * Instead we combine two tactics:
362 *
363 * Helping: Arranging for the joiner to execute some task that it
364 * would be running if the steal had not occurred.
365 *
366 * Compensating: Unless there are already enough live threads,
367 * method tryCompensate() may create or re-activate a spare
368 * thread to compensate for blocked joiners until they unblock.
369 *
370 * A third form (implemented in tryRemoveAndExec) amounts to
371 * helping a hypothetical compensator: If we can readily tell that
372 * a possible action of a compensator is to steal and execute the
373 * task being joined, the joining thread can do so directly,
374 * without the need for a compensation thread (although at the
375 * expense of larger run-time stacks, but the tradeoff is
376 * typically worthwhile).
377 *
378 * The ManagedBlocker extension API can't use helping so relies
379 * only on compensation in method awaitBlocker.
380 *
381 * The algorithm in tryHelpStealer entails a form of "linear"
382 * helping: Each worker records (in field currentSteal) the most
383 * recent task it stole from some other worker. Plus, it records
384 * (in field currentJoin) the task it is currently actively
385 * joining. Method tryHelpStealer uses these markers to try to
386 * find a worker to help (i.e., steal back a task from and execute
387 * it) that could hasten completion of the actively joined task.
388 * In essence, the joiner executes a task that would be on its own
389 * local deque had the to-be-joined task not been stolen. This may
390 * be seen as a conservative variant of the approach in Wagner &
391 * Calder "Leapfrogging: a portable technique for implementing
392 * efficient futures" SIGPLAN Notices, 1993
393 * (http://portal.acm.org/citation.cfm?id=155354). It differs in
394 * that: (1) We only maintain dependency links across workers upon
395 * steals, rather than use per-task bookkeeping. This sometimes
396 * requires a linear scan of workQueues array to locate stealers,
397 * but often doesn't because stealers leave hints (that may become
398 * stale/wrong) of where to locate them. It is only a hint
399 * because a worker might have had multiple steals and the hint
400 * records only one of them (usually the most current). Hinting
401 * isolates cost to when it is needed, rather than adding to
402 * per-task overhead. (2) It is "shallow", ignoring nesting and
403 * potentially cyclic mutual steals. (3) It is intentionally
404 * racy: field currentJoin is updated only while actively joining,
405 * which means that we miss links in the chain during long-lived
406 * tasks, GC stalls etc (which is OK since blocking in such cases
407 * is usually a good idea). (4) We bound the number of attempts
408 * to find work (see MAX_HELP) and fall back to suspending the
409 * worker and if necessary replacing it with another.
410 *
411 * Helping actions for CountedCompleters are much simpler: Method
412 * helpComplete can take and execute any task with the same root
413 * as the task being waited on. However, this still entails some
414 * traversal of completer chains, so is less efficient than using
415 * CountedCompleters without explicit joins.
416 *
417 * It is impossible to keep exactly the target parallelism number
418 * of threads running at any given time. Determining the
419 * existence of conservatively safe helping targets, the
420 * availability of already-created spares, and the apparent need
421 * to create new spares are all racy, so we rely on multiple
422 * retries of each. Compensation in the apparent absence of
423 * helping opportunities is challenging to control on JVMs, where
424 * GC and other activities can stall progress of tasks that in
425 * turn stall out many other dependent tasks, without us being
426 * able to determine whether they will ever require compensation.
427 * Even though work-stealing otherwise encounters little
428 * degradation in the presence of more threads than cores,
429 * aggressively adding new threads in such cases entails risk of
430 * unwanted positive feedback control loops in which more threads
431 * cause more dependent stalls (as well as delayed progress of
432 * unblocked threads to the point that we know they are available)
433 * leading to more situations requiring more threads, and so
434 * on. This aspect of control can be seen as an (analytically
435 * intractable) game with an opponent that may choose the worst
436 * (for us) active thread to stall at any time. We take several
437 * precautions to bound losses (and thus bound gains), mainly in
438 * methods tryCompensate and awaitJoin.
439 *
440 * Common Pool
441 * ===========
442 *
443 * The static commonPool always exists after static
444 * initialization. Since it (or any other created pool) need
445 * never be used, we minimize initial construction overhead and
446 * footprint to the setup of about a dozen fields, with no nested
447 * allocation. Most bootstrapping occurs within method
448 * fullExternalPush during the first submission to the pool.
449 *
450 * When external threads submit to the common pool, they can
451 * perform some subtask processing (see externalHelpJoin and
452 * related methods). We do not need to record whether these
453 * submissions are to the common pool -- if not, externalHelpJoin
454 * returns quickly (at the most helping to signal some common pool
455 * workers). These submitters would otherwise be blocked waiting
456 * for completion, so the extra effort (with liberally sprinkled
457 * task status checks) in inapplicable cases amounts to an odd
458 * form of limited spin-wait before blocking in ForkJoinTask.join.
459 *
460 * Style notes
461 * ===========
462 *
463 * There is a lot of representation-level coupling among classes
464 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
465 * fields of WorkQueue maintain data structures managed by
466 * ForkJoinPool, so are directly accessed. There is little point
467 * trying to reduce this, since any associated future changes in
468 * representations will need to be accompanied by algorithmic
469 * changes anyway. Several methods intrinsically sprawl because
470 * they must accumulate sets of consistent reads of volatiles held
471 * in local variables. Methods signalWork() and scan() are the
472 * main bottlenecks, so are especially heavily
473 * micro-optimized/mangled. There are lots of inline assignments
474 * (of form "while ((local = field) != 0)") which are usually the
475 * simplest way to ensure the required read orderings (which are
476 * sometimes critical). This leads to a "C"-like style of listing
477 * declarations of these locals at the heads of methods or blocks.
478 * There are several occurrences of the unusual "do {} while
479 * (!cas...)" which is the simplest way to force an update of a
480 * CAS'ed variable. There are also other coding oddities (including
481 * several unnecessary-looking hoisted null checks) that help
482 * some methods perform reasonably even when interpreted (not
483 * compiled).
484 *
485 * The order of declarations in this file is:
486 * (1) Static utility functions
487 * (2) Nested (static) classes
488 * (3) Static fields
489 * (4) Fields, along with constants used when unpacking some of them
490 * (5) Internal control methods
491 * (6) Callbacks and other support for ForkJoinTask methods
492 * (7) Exported methods
493 * (8) Static block initializing statics in minimally dependent order
494 */
495
496 // Static utilities
497
498 /**
499 * If there is a security manager, makes sure caller has
500 * permission to modify threads.
501 */
502 private static void checkPermission() {
503 SecurityManager security = System.getSecurityManager();
504 if (security != null)
505 security.checkPermission(modifyThreadPermission);
506 }
507
508 // Nested classes
509
510 /**
511 * Factory for creating new {@link ForkJoinWorkerThread}s.
512 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
513 * for {@code ForkJoinWorkerThread} subclasses that extend base
514 * functionality or initialize threads with different contexts.
515 */
516 public static interface ForkJoinWorkerThreadFactory {
517 /**
518 * Returns a new worker thread operating in the given pool.
519 *
520 * @param pool the pool this thread works in
521 * @throws NullPointerException if the pool is null
522 */
523 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
524 }
525
526 /**
527 * Default ForkJoinWorkerThreadFactory implementation; creates a
528 * new ForkJoinWorkerThread.
529 */
530 static final class DefaultForkJoinWorkerThreadFactory
531 implements ForkJoinWorkerThreadFactory {
532 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
533 return new ForkJoinWorkerThread(pool);
534 }
535 }
536
537 /**
538 * Per-thread records for threads that submit to pools. Currently
539 * holds only pseudo-random seed / index that is used to choose
540 * submission queues in method externalPush. In the future, this may
541 * also incorporate a means to implement different task rejection
542 * and resubmission policies.
543 *
544 * Seeds for submitters and workers/workQueues work in basically
545 * the same way but are initialized and updated using slightly
546 * different mechanics. Both are initialized using the same
547 * approach as in class ThreadLocal, where successive values are
548 * unlikely to collide with previous values. Seeds are then
549 * randomly modified upon collisions using xorshifts, which
550 * requires a non-zero seed.
551 */
552 static final class Submitter {
553 int seed;
554 Submitter(int s) { seed = s; }
555 }
556
557 /**
558 * Class for artificial tasks that are used to replace the target
559 * of local joins if they are removed from an interior queue slot
560 * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
561 * actually do anything beyond having a unique identity.
562 */
563 static final class EmptyTask extends ForkJoinTask<Void> {
564 private static final long serialVersionUID = -7721805057305804111L;
565 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
566 public final Void getRawResult() { return null; }
567 public final void setRawResult(Void x) {}
568 public final boolean exec() { return true; }
569 }
570
571 /**
572 * Queues supporting work-stealing as well as external task
573 * submission. See above for main rationale and algorithms.
574 * Implementation relies heavily on "Unsafe" intrinsics
575 * and selective use of "volatile":
576 *
577 * Field "base" is the index (mod array.length) of the least valid
578 * queue slot, which is always the next position to steal (poll)
579 * from if nonempty. Reads and writes require volatile orderings
580 * but not CAS, because updates are only performed after slot
581 * CASes.
582 *
583 * Field "top" is the index (mod array.length) of the next queue
584 * slot to push to or pop from. It is written only by owner thread
585 * for push, or under lock for external/shared push, and accessed
586 * by other threads only after reading (volatile) base. Both top
587 * and base are allowed to wrap around on overflow, but (top -
588 * base) (or more commonly -(base - top) to force volatile read of
589 * base before top) still estimates size. The lock ("qlock") is
590 * forced to -1 on termination, causing all further lock attempts
591 * to fail. (Note: we don't need CAS for termination state because
592 * upon pool shutdown, all shared-queues will stop being used
593 * anyway.) Nearly all lock bodies are set up so that exceptions
594 * within lock bodies are "impossible" (modulo JVM errors that
595 * would cause failure anyway.)
596 *
597 * The array slots are read and written using the emulation of
598 * volatiles/atomics provided by Unsafe. Insertions must in
599 * general use putOrderedObject as a form of releasing store to
600 * ensure that all writes to the task object are ordered before
601 * its publication in the queue. All removals entail a CAS to
602 * null. The array is always a power of two. To ensure safety of
603 * Unsafe array operations, all accesses perform explicit null
604 * checks and implicit bounds checks via power-of-two masking.
605 *
606 * In addition to basic queuing support, this class contains
607 * fields described elsewhere to control execution. It turns out
608 * to work better memory-layout-wise to include them in this class
609 * rather than a separate class.
610 *
611 * Performance on most platforms is very sensitive to placement of
612 * instances of both WorkQueues and their arrays -- we absolutely
613 * do not want multiple WorkQueue instances or multiple queue
614 * arrays sharing cache lines. (It would be best for queue objects
615 * and their arrays to share, but there is nothing available to
616 * help arrange that). Unfortunately, because they are recorded
617 * in a common array, WorkQueue instances are often moved to be
618 * adjacent by garbage collectors. To reduce impact, we use field
619 * padding that works OK on common platforms; this effectively
620 * trades off slightly slower average field access for the sake of
621 * avoiding really bad worst-case access. (Until better JVM
622 * support is in place, this padding is dependent on transient
623 * properties of JVM field layout rules.) We also take care in
624 * allocating, sizing and resizing the array. Non-shared queue
625 * arrays are initialized by workers before use. Others are
626 * allocated on first use.
627 */
628 static final class WorkQueue {
629 /**
630 * Capacity of work-stealing queue array upon initialization.
631 * Must be a power of two; at least 4, but should be larger to
632 * reduce or eliminate cacheline sharing among queues.
633 * Currently, it is much larger, as a partial workaround for
634 * the fact that JVMs often place arrays in locations that
635 * share GC bookkeeping (especially cardmarks) such that
636 * per-write accesses encounter serious memory contention.
637 */
638 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
639
640 /**
641 * Maximum size for queue arrays. Must be a power of two less
642 * than or equal to 1 << (31 - width of array entry) to ensure
643 * lack of wraparound of index calculations, but defined to a
644 * value a bit less than this to help users trap runaway
645 * programs before saturating systems.
646 */
647 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
648
649 // Heuristic padding to ameliorate unfortunate memory placements
650 volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
651
652 int seed; // for random scanning; initialize nonzero
653 volatile int eventCount; // encoded inactivation count; < 0 if inactive
654 int nextWait; // encoded record of next event waiter
655 int hint; // steal or signal hint (index)
656 int poolIndex; // index of this queue in pool (or 0)
657 final int mode; // 0: lifo, > 0: fifo, < 0: shared
658 int nsteals; // number of steals
659 volatile int qlock; // 1: locked, -1: terminate; else 0
660 volatile int base; // index of next slot for poll
661 int top; // index of next slot for push
662 ForkJoinTask<?>[] array; // the elements (initially unallocated)
663 final ForkJoinPool pool; // the containing pool (may be null)
664 final ForkJoinWorkerThread owner; // owning thread or null if shared
665 volatile Thread parker; // == owner during call to park; else null
666 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
667 ForkJoinTask<?> currentSteal; // current non-local task being executed
668
669 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
670 volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
671
672 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
673 int seed) {
674 this.pool = pool;
675 this.owner = owner;
676 this.mode = mode;
677 this.seed = seed;
678 // Place indices in the center of array (that is not yet allocated)
679 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
680 }
681
682 /**
683 * Returns the approximate number of tasks in the queue.
684 */
685 final int queueSize() {
686 int n = base - top; // non-owner callers must read base first
687 return (n >= 0) ? 0 : -n; // ignore transient negative
688 }
689
690 /**
691 * Provides a more accurate estimate of whether this queue has
692 * any tasks than does queueSize, by checking whether a
693 * near-empty queue has at least one unclaimed task.
694 */
695 final boolean isEmpty() {
696 ForkJoinTask<?>[] a; int m, s;
697 int n = base - (s = top);
698 return (n >= 0 ||
699 (n == -1 &&
700 ((a = array) == null ||
701 (m = a.length - 1) < 0 ||
702 U.getObject
703 (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
704 }
705
706 /**
707 * Pushes a task. Call only by owner in unshared queues. (The
708 * shared-queue version is embedded in method externalPush.)
709 *
710 * @param task the task. Caller must ensure non-null.
711 * @throw RejectedExecutionException if array cannot be resized
712 */
713 final void push(ForkJoinTask<?> task) {
714 ForkJoinTask<?>[] a; ForkJoinPool p;
715 int s = top, m, n;
716 if ((a = array) != null) { // ignore if queue removed
717 int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
718 U.putOrderedObject(a, j, task);
719 if ((n = (top = s + 1) - base) <= 2) {
720 if ((p = pool) != null)
721 p.signalWork(this);
722 }
723 else if (n >= m)
724 growArray();
725 }
726 }
727
728 /**
729 * Initializes or doubles the capacity of array. Call either
730 * by owner or with lock held -- it is OK for base, but not
731 * top, to move while resizings are in progress.
732 */
733 final ForkJoinTask<?>[] growArray() {
734 ForkJoinTask<?>[] oldA = array;
735 int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
736 if (size > MAXIMUM_QUEUE_CAPACITY)
737 throw new RejectedExecutionException("Queue capacity exceeded");
738 int oldMask, t, b;
739 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
740 if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
741 (t = top) - (b = base) > 0) {
742 int mask = size - 1;
743 do {
744 ForkJoinTask<?> x;
745 int oldj = ((b & oldMask) << ASHIFT) + ABASE;
746 int j = ((b & mask) << ASHIFT) + ABASE;
747 x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
748 if (x != null &&
749 U.compareAndSwapObject(oldA, oldj, x, null))
750 U.putObjectVolatile(a, j, x);
751 } while (++b != t);
752 }
753 return a;
754 }
755
756 /**
757 * Takes next task, if one exists, in LIFO order. Call only
758 * by owner in unshared queues.
759 */
760 final ForkJoinTask<?> pop() {
761 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
762 if ((a = array) != null && (m = a.length - 1) >= 0) {
763 for (int s; (s = top - 1) - base >= 0;) {
764 long j = ((m & s) << ASHIFT) + ABASE;
765 if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
766 break;
767 if (U.compareAndSwapObject(a, j, t, null)) {
768 top = s;
769 return t;
770 }
771 }
772 }
773 return null;
774 }
775
776 /**
777 * Takes a task in FIFO order if b is base of queue and a task
778 * can be claimed without contention. Specialized versions
779 * appear in ForkJoinPool methods scan and tryHelpStealer.
780 */
781 final ForkJoinTask<?> pollAt(int b) {
782 ForkJoinTask<?> t; ForkJoinTask<?>[] a;
783 if ((a = array) != null) {
784 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
785 if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
786 base == b &&
787 U.compareAndSwapObject(a, j, t, null)) {
788 base = b + 1;
789 return t;
790 }
791 }
792 return null;
793 }
794
795 /**
796 * Takes next task, if one exists, in FIFO order.
797 */
798 final ForkJoinTask<?> poll() {
799 ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
800 while ((b = base) - top < 0 && (a = array) != null) {
801 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
802 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
803 if (t != null) {
804 if (base == b &&
805 U.compareAndSwapObject(a, j, t, null)) {
806 base = b + 1;
807 return t;
808 }
809 }
810 else if (base == b) {
811 if (b + 1 == top)
812 break;
813 Thread.yield(); // wait for lagging update (very rare)
814 }
815 }
816 return null;
817 }
818
819 /**
820 * Takes next task, if one exists, in order specified by mode.
821 */
822 final ForkJoinTask<?> nextLocalTask() {
823 return mode == 0 ? pop() : poll();
824 }
825
826 /**
827 * Returns next task, if one exists, in order specified by mode.
828 */
829 final ForkJoinTask<?> peek() {
830 ForkJoinTask<?>[] a = array; int m;
831 if (a == null || (m = a.length - 1) < 0)
832 return null;
833 int i = mode == 0 ? top - 1 : base;
834 int j = ((i & m) << ASHIFT) + ABASE;
835 return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
836 }
837
838 /**
839 * Pops the given task only if it is at the current top.
840 * (A shared version is available only via FJP.tryExternalUnpush)
841 */
842 final boolean tryUnpush(ForkJoinTask<?> t) {
843 ForkJoinTask<?>[] a; int s;
844 if ((a = array) != null && (s = top) != base &&
845 U.compareAndSwapObject
846 (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
847 top = s;
848 return true;
849 }
850 return false;
851 }
852
853 /**
854 * Removes and cancels all known tasks, ignoring any exceptions.
855 */
856 final void cancelAll() {
857 ForkJoinTask.cancelIgnoringExceptions(currentJoin);
858 ForkJoinTask.cancelIgnoringExceptions(currentSteal);
859 for (ForkJoinTask<?> t; (t = poll()) != null; )
860 ForkJoinTask.cancelIgnoringExceptions(t);
861 }
862
863 /**
864 * Computes next value for random probes. Scans don't require
865 * a very high quality generator, but also not a crummy one.
866 * Marsaglia xor-shift is cheap and works well enough. Note:
867 * This is manually inlined in its usages in ForkJoinPool to
868 * avoid writes inside busy scan loops.
869 */
870 final int nextSeed() {
871 int r = seed;
872 r ^= r << 13;
873 r ^= r >>> 17;
874 return seed = r ^= r << 5;
875 }
876
877 // Specialized execution methods
878
879 /**
880 * Pops and runs tasks until empty.
881 */
882 private void popAndExecAll() {
883 // A bit faster than repeated pop calls
884 ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
885 while ((a = array) != null && (m = a.length - 1) >= 0 &&
886 (s = top - 1) - base >= 0 &&
887 (t = ((ForkJoinTask<?>)
888 U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
889 != null) {
890 if (U.compareAndSwapObject(a, j, t, null)) {
891 top = s;
892 t.doExec();
893 }
894 }
895 }
896
897 /**
898 * Polls and runs tasks until empty.
899 */
900 private void pollAndExecAll() {
901 for (ForkJoinTask<?> t; (t = poll()) != null;)
902 t.doExec();
903 }
904
905 /**
906 * If present, removes from queue and executes the given task,
907 * or any other cancelled task. Returns (true) on any CAS
908 * or consistency check failure so caller can retry.
909 *
910 * @return false if no progress can be made, else true;
911 */
912 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
913 boolean stat = true, removed = false, empty = true;
914 ForkJoinTask<?>[] a; int m, s, b, n;
915 if ((a = array) != null && (m = a.length - 1) >= 0 &&
916 (n = (s = top) - (b = base)) > 0) {
917 for (ForkJoinTask<?> t;;) { // traverse from s to b
918 int j = ((--s & m) << ASHIFT) + ABASE;
919 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
920 if (t == null) // inconsistent length
921 break;
922 else if (t == task) {
923 if (s + 1 == top) { // pop
924 if (!U.compareAndSwapObject(a, j, task, null))
925 break;
926 top = s;
927 removed = true;
928 }
929 else if (base == b) // replace with proxy
930 removed = U.compareAndSwapObject(a, j, task,
931 new EmptyTask());
932 break;
933 }
934 else if (t.status >= 0)
935 empty = false;
936 else if (s + 1 == top) { // pop and throw away
937 if (U.compareAndSwapObject(a, j, t, null))
938 top = s;
939 break;
940 }
941 if (--n == 0) {
942 if (!empty && base == b)
943 stat = false;
944 break;
945 }
946 }
947 }
948 if (removed)
949 task.doExec();
950 return stat;
951 }
952
953 /**
954 * Polls for and executes the given task or any other task in
955 * its CountedCompleter computation
956 */
957 final boolean pollAndExecCC(ForkJoinTask<?> root) {
958 ForkJoinTask<?>[] a; int b; Object o;
959 outer: while ((b = base) - top < 0 && (a = array) != null) {
960 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
961 if ((o = U.getObject(a, j)) == null ||
962 !(o instanceof CountedCompleter))
963 break;
964 for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
965 if (r == root) {
966 if (base == b &&
967 U.compareAndSwapObject(a, j, t, null)) {
968 base = b + 1;
969 t.doExec();
970 return true;
971 }
972 else
973 break; // restart
974 }
975 if ((r = r.completer) == null)
976 break outer; // not part of root computation
977 }
978 }
979 return false;
980 }
981
982 /**
983 * Executes a top-level task and any local tasks remaining
984 * after execution.
985 */
986 final void runTask(ForkJoinTask<?> t) {
987 if (t != null) {
988 (currentSteal = t).doExec();
989 currentSteal = null;
990 if (base - top < 0) { // process remaining local tasks
991 if (mode == 0)
992 popAndExecAll();
993 else
994 pollAndExecAll();
995 }
996 ++nsteals;
997 hint = -1;
998 }
999 }
1000
1001 /**
1002 * Executes a non-top-level (stolen) task.
1003 */
1004 final void runSubtask(ForkJoinTask<?> t) {
1005 if (t != null) {
1006 ForkJoinTask<?> ps = currentSteal;
1007 (currentSteal = t).doExec();
1008 currentSteal = ps;
1009 }
1010 }
1011
1012 /**
1013 * Returns true if owned and not known to be blocked.
1014 */
1015 final boolean isApparentlyUnblocked() {
1016 Thread wt; Thread.State s;
1017 return (eventCount >= 0 &&
1018 (wt = owner) != null &&
1019 (s = wt.getState()) != Thread.State.BLOCKED &&
1020 s != Thread.State.WAITING &&
1021 s != Thread.State.TIMED_WAITING);
1022 }
1023
1024 /**
1025 * If this owned and is not already interrupted, try to
1026 * interrupt and/or unpark, ignoring exceptions.
1027 */
1028 final void interruptOwner() {
1029 Thread wt, p;
1030 if ((wt = owner) != null && !wt.isInterrupted()) {
1031 try {
1032 wt.interrupt();
1033 } catch (SecurityException ignore) {
1034 }
1035 }
1036 if ((p = parker) != null)
1037 U.unpark(p);
1038 }
1039
1040 // Unsafe mechanics
1041 private static final sun.misc.Unsafe U;
1042 private static final long QLOCK;
1043 private static final int ABASE;
1044 private static final int ASHIFT;
1045 static {
1046 int s;
1047 try {
1048 U = getUnsafe();
1049 Class<?> k = WorkQueue.class;
1050 Class<?> ak = ForkJoinTask[].class;
1051 QLOCK = U.objectFieldOffset
1052 (k.getDeclaredField("qlock"));
1053 ABASE = U.arrayBaseOffset(ak);
1054 s = U.arrayIndexScale(ak);
1055 } catch (Exception e) {
1056 throw new Error(e);
1057 }
1058 if ((s & (s-1)) != 0)
1059 throw new Error("data type scale not a power of two");
1060 ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1061 }
1062 }
1063
1064 // static fields (initialized in static initializer below)
1065
1066 /**
1067 * Creates a new ForkJoinWorkerThread. This factory is used unless
1068 * overridden in ForkJoinPool constructors.
1069 */
1070 public static final ForkJoinWorkerThreadFactory
1071 defaultForkJoinWorkerThreadFactory;
1072
1073 /**
1074 * Per-thread submission bookkeeping. Shared across all pools
1075 * to reduce ThreadLocal pollution and because random motion
1076 * to avoid contention in one pool is likely to hold for others.
1077 * Lazily initialized on first submission (but null-checked
1078 * in other contexts to avoid unnecessary initialization).
1079 */
1080 static final ThreadLocal<Submitter> submitters;
1081
1082 /**
1083 * Permission required for callers of methods that may start or
1084 * kill threads.
1085 */
1086 private static final RuntimePermission modifyThreadPermission;
1087
1088 /**
1089 * Common (static) pool. Non-null for public use unless a static
1090 * construction exception, but internal usages null-check on use
1091 * to paranoically avoid potential initialization circularities
1092 * as well as to simplify generated code.
1093 */
1094 static final ForkJoinPool commonPool;
1095
1096 /**
1097 * Common pool parallelism. Must equal commonPool.parallelism.
1098 */
1099 static final int commonPoolParallelism;
1100
1101 /**
1102 * Sequence number for creating workerNamePrefix.
1103 */
1104 private static int poolNumberSequence;
1105
1106 /**
1107 * Return the next sequence number. We don't expect this to
1108 * ever contend so use simple builtin sync.
1109 */
1110 private static final synchronized int nextPoolId() {
1111 return ++poolNumberSequence;
1112 }
1113
1114 // static constants
1115
1116 /**
1117 * Initial timeout value (in nanoseconds) for the thread
1118 * triggering quiescence to park waiting for new work. On timeout,
1119 * the thread will instead try to shrink the number of
1120 * workers. The value should be large enough to avoid overly
1121 * aggressive shrinkage during most transient stalls (long GCs
1122 * etc).
1123 */
1124 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1125
1126 /**
1127 * Timeout value when there are more threads than parallelism level
1128 */
1129 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1130
1131 /**
1132 * Tolerance for idle timeouts, to cope with timer undershoots
1133 */
1134 private static final long TIMEOUT_SLOP = 2000000L; // 20ms
1135
1136 /**
1137 * The maximum stolen->joining link depth allowed in method
1138 * tryHelpStealer. Must be a power of two. Depths for legitimate
1139 * chains are unbounded, but we use a fixed constant to avoid
1140 * (otherwise unchecked) cycles and to bound staleness of
1141 * traversal parameters at the expense of sometimes blocking when
1142 * we could be helping.
1143 */
1144 private static final int MAX_HELP = 64;
1145
1146 /**
1147 * Increment for seed generators. See class ThreadLocal for
1148 * explanation.
1149 */
1150 private static final int SEED_INCREMENT = 0x61c88647;
1151
1152 /**
1153 * Bits and masks for control variables
1154 *
1155 * Field ctl is a long packed with:
1156 * AC: Number of active running workers minus target parallelism (16 bits)
1157 * TC: Number of total workers minus target parallelism (16 bits)
1158 * ST: true if pool is terminating (1 bit)
1159 * EC: the wait count of top waiting thread (15 bits)
1160 * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1161 *
1162 * When convenient, we can extract the upper 32 bits of counts and
1163 * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1164 * (int)ctl. The ec field is never accessed alone, but always
1165 * together with id and st. The offsets of counts by the target
1166 * parallelism and the positionings of fields makes it possible to
1167 * perform the most common checks via sign tests of fields: When
1168 * ac is negative, there are not enough active workers, when tc is
1169 * negative, there are not enough total workers, and when e is
1170 * negative, the pool is terminating. To deal with these possibly
1171 * negative fields, we use casts in and out of "short" and/or
1172 * signed shifts to maintain signedness.
1173 *
1174 * When a thread is queued (inactivated), its eventCount field is
1175 * set negative, which is the only way to tell if a worker is
1176 * prevented from executing tasks, even though it must continue to
1177 * scan for them to avoid queuing races. Note however that
1178 * eventCount updates lag releases so usage requires care.
1179 *
1180 * Field plock is an int packed with:
1181 * SHUTDOWN: true if shutdown is enabled (1 bit)
1182 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1183 * SIGNAL: set when threads may be waiting on the lock (1 bit)
1184 *
1185 * The sequence number enables simple consistency checks:
1186 * Staleness of read-only operations on the workQueues array can
1187 * be checked by comparing plock before vs after the reads.
1188 */
1189
1190 // bit positions/shifts for fields
1191 private static final int AC_SHIFT = 48;
1192 private static final int TC_SHIFT = 32;
1193 private static final int ST_SHIFT = 31;
1194 private static final int EC_SHIFT = 16;
1195
1196 // bounds
1197 private static final int SMASK = 0xffff; // short bits
1198 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1199 private static final int EVENMASK = 0xfffe; // even short bits
1200 private static final int SQMASK = 0x007e; // max 64 (even) slots
1201 private static final int SHORT_SIGN = 1 << 15;
1202 private static final int INT_SIGN = 1 << 31;
1203
1204 // masks
1205 private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1206 private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1207 private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1208
1209 // units for incrementing and decrementing
1210 private static final long TC_UNIT = 1L << TC_SHIFT;
1211 private static final long AC_UNIT = 1L << AC_SHIFT;
1212
1213 // masks and units for dealing with u = (int)(ctl >>> 32)
1214 private static final int UAC_SHIFT = AC_SHIFT - 32;
1215 private static final int UTC_SHIFT = TC_SHIFT - 32;
1216 private static final int UAC_MASK = SMASK << UAC_SHIFT;
1217 private static final int UTC_MASK = SMASK << UTC_SHIFT;
1218 private static final int UAC_UNIT = 1 << UAC_SHIFT;
1219 private static final int UTC_UNIT = 1 << UTC_SHIFT;
1220
1221 // masks and units for dealing with e = (int)ctl
1222 private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1223 private static final int E_SEQ = 1 << EC_SHIFT;
1224
1225 // plock bits
1226 private static final int SHUTDOWN = 1 << 31;
1227 private static final int PL_LOCK = 2;
1228 private static final int PL_SIGNAL = 1;
1229 private static final int PL_SPINS = 1 << 8;
1230
1231 // access mode for WorkQueue
1232 static final int LIFO_QUEUE = 0;
1233 static final int FIFO_QUEUE = 1;
1234 static final int SHARED_QUEUE = -1;
1235
1236 // bounds for #steps in scan loop -- must be power 2 minus 1
1237 private static final int MIN_SCAN = 0x1ff; // cover estimation slop
1238 private static final int MAX_SCAN = 0x1ffff; // 4 * max workers
1239
1240 // Instance fields
1241
1242 /*
1243 * Field layout of this class tends to matter more than one would
1244 * like. Runtime layout order is only loosely related to
1245 * declaration order and may differ across JVMs, but the following
1246 * empirically works OK on current JVMs.
1247 */
1248
1249 // Heuristic padding to ameliorate unfortunate memory placements
1250 volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1251
1252 volatile long stealCount; // collects worker counts
1253 volatile long ctl; // main pool control
1254 volatile int plock; // shutdown status and seqLock
1255 volatile int indexSeed; // worker/submitter index seed
1256 final int config; // mode and parallelism level
1257 WorkQueue[] workQueues; // main registry
1258 final ForkJoinWorkerThreadFactory factory;
1259 final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1260 final String workerNamePrefix; // to create worker name string
1261
1262 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1263 volatile Object pad18, pad19, pad1a, pad1b;
1264
1265 /*
1266 * Acquires the plock lock to protect worker array and related
1267 * updates. This method is called only if an initial CAS on plock
1268 * fails. This acts as a spinLock for normal cases, but falls back
1269 * to builtin monitor to block when (rarely) needed. This would be
1270 * a terrible idea for a highly contended lock, but works fine as
1271 * a more conservative alternative to a pure spinlock. See
1272 * internal ConcurrentHashMap documentation for further
1273 * explanation of nearly the same construction.
1274 */
1275 private int acquirePlock() {
1276 int spins = PL_SPINS, r = 0, ps, nps;
1277 for (;;) {
1278 if (((ps = plock) & PL_LOCK) == 0 &&
1279 U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1280 return nps;
1281 else if (r == 0) { // randomize spins if possible
1282 Thread t = Thread.currentThread(); WorkQueue w; Submitter z;
1283 if ((t instanceof ForkJoinWorkerThread) &&
1284 (w = ((ForkJoinWorkerThread)t).workQueue) != null)
1285 r = w.seed;
1286 else if ((z = submitters.get()) != null)
1287 r = z.seed;
1288 else
1289 r = 1;
1290 }
1291 else if (spins >= 0) {
1292 r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1293 if (r >= 0)
1294 --spins;
1295 }
1296 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1297 synchronized (this) {
1298 if ((plock & PL_SIGNAL) != 0) {
1299 try {
1300 wait();
1301 } catch (InterruptedException ie) {
1302 try {
1303 Thread.currentThread().interrupt();
1304 } catch (SecurityException ignore) {
1305 }
1306 }
1307 }
1308 else
1309 notifyAll();
1310 }
1311 }
1312 }
1313 }
1314
1315 /**
1316 * Unlocks and signals any thread waiting for plock. Called only
1317 * when CAS of seq value for unlock fails.
1318 */
1319 private void releasePlock(int ps) {
1320 plock = ps;
1321 synchronized (this) { notifyAll(); }
1322 }
1323
1324 /**
1325 * Performs secondary initialization, called when plock is zero.
1326 * Creates workQueue array and sets plock to a valid value. The
1327 * lock body must be exception-free (so no try/finally) so we
1328 * optimistically allocate new array outside the lock and throw
1329 * away if (very rarely) not needed. (A similar tactic is used in
1330 * fullExternalPush.) Because the plock seq value can eventually
1331 * wrap around zero, this method harmlessly fails to reinitialize
1332 * if workQueues exists, while still advancing plock.
1333 *
1334 * Additionally tries to create the first worker.
1335 */
1336 private void initWorkers() {
1337 WorkQueue[] ws, nws; int ps;
1338 int p = config & SMASK; // find power of two table size
1339 int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1340 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
1341 n = (n + 1) << 1;
1342 if ((ws = workQueues) == null || ws.length == 0)
1343 nws = new WorkQueue[n];
1344 else
1345 nws = null;
1346 if (((ps = plock) & PL_LOCK) != 0 ||
1347 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1348 ps = acquirePlock();
1349 if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1350 workQueues = nws;
1351 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1352 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1353 releasePlock(nps);
1354 tryAddWorker();
1355 }
1356
1357 /**
1358 * Tries to create and start one worker if fewer than target
1359 * parallelism level exist. Adjusts counts etc on failure.
1360 */
1361 private void tryAddWorker() {
1362 long c; int u;
1363 while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1364 (u & SHORT_SIGN) != 0 && (int)c == 0) {
1365 long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1366 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1367 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1368 ForkJoinWorkerThreadFactory fac;
1369 Throwable ex = null;
1370 ForkJoinWorkerThread wt = null;
1371 try {
1372 if ((fac = factory) != null &&
1373 (wt = fac.newThread(this)) != null) {
1374 wt.start();
1375 break;
1376 }
1377 } catch (Throwable e) {
1378 ex = e;
1379 }
1380 deregisterWorker(wt, ex);
1381 break;
1382 }
1383 }
1384 }
1385
1386 // Registering and deregistering workers
1387
1388 /**
1389 * Callback from ForkJoinWorkerThread to establish and record its
1390 * WorkQueue. To avoid scanning bias due to packing entries in
1391 * front of the workQueues array, we treat the array as a simple
1392 * power-of-two hash table using per-thread seed as hash,
1393 * expanding as needed.
1394 *
1395 * @param wt the worker thread
1396 * @return the worker's queue
1397 */
1398 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1399 Thread.UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1400 wt.setDaemon(true);
1401 if ((handler = ueh) != null)
1402 wt.setUncaughtExceptionHandler(handler);
1403 do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1404 s += SEED_INCREMENT) ||
1405 s == 0); // skip 0
1406 WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1407 if (((ps = plock) & PL_LOCK) != 0 ||
1408 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1409 ps = acquirePlock();
1410 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1411 try {
1412 if ((ws = workQueues) != null) { // skip if shutting down
1413 int n = ws.length, m = n - 1;
1414 int r = (s << 1) | 1; // use odd-numbered indices
1415 if (ws[r &= m] != null) { // collision
1416 int probes = 0; // step by approx half size
1417 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1418 while (ws[r = (r + step) & m] != null) {
1419 if (++probes >= n) {
1420 workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1421 m = n - 1;
1422 probes = 0;
1423 }
1424 }
1425 }
1426 w.eventCount = w.poolIndex = r; // volatile write orders
1427 ws[r] = w;
1428 }
1429 } finally {
1430 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1431 releasePlock(nps);
1432 }
1433 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1434 return w;
1435 }
1436
1437 /**
1438 * Final callback from terminating worker, as well as upon failure
1439 * to construct or start a worker. Removes record of worker from
1440 * array, and adjusts counts. If pool is shutting down, tries to
1441 * complete termination.
1442 *
1443 * @param wt the worker thread or null if construction failed
1444 * @param ex the exception causing failure, or null if none
1445 */
1446 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1447 WorkQueue w = null;
1448 if (wt != null && (w = wt.workQueue) != null) {
1449 int ps;
1450 w.qlock = -1; // ensure set
1451 long ns = w.nsteals, sc; // collect steal count
1452 do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1453 sc = stealCount, sc + ns));
1454 if (((ps = plock) & PL_LOCK) != 0 ||
1455 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1456 ps = acquirePlock();
1457 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1458 try {
1459 int idx = w.poolIndex;
1460 WorkQueue[] ws = workQueues;
1461 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1462 ws[idx] = null;
1463 } finally {
1464 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1465 releasePlock(nps);
1466 }
1467 }
1468
1469 long c; // adjust ctl counts
1470 do {} while (!U.compareAndSwapLong
1471 (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1472 ((c - TC_UNIT) & TC_MASK) |
1473 (c & ~(AC_MASK|TC_MASK)))));
1474
1475 if (!tryTerminate(false, false) && w != null && w.array != null) {
1476 w.cancelAll(); // cancel remaining tasks
1477 int e, u, i, n; WorkQueue[] ws; WorkQueue v; Thread p;
1478 while ((u = (int)((c = ctl) >>> 32)) < 0) {
1479 if ((e = (int)c) > 0) { // activate or create replacement
1480 if ((ws = workQueues) != null &&
1481 ws.length > (i = e & SMASK) &&
1482 (v = ws[i]) != null && v.eventCount == (e | INT_SIGN)) {
1483 long nc = (((long)(v.nextWait & E_MASK)) |
1484 ((long)(u + UAC_UNIT) << 32));
1485 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1486 v.eventCount = (e + E_SEQ) & E_MASK;
1487 if ((p = v.parker) != null)
1488 U.unpark(p);
1489 break;
1490 }
1491 }
1492 else
1493 break;
1494 }
1495 else {
1496 if ((short)u < 0)
1497 tryAddWorker();
1498 break;
1499 }
1500 }
1501 }
1502 if (ex == null) // help clean refs on way out
1503 ForkJoinTask.helpExpungeStaleExceptions();
1504 else // rethrow
1505 ForkJoinTask.rethrow(ex);
1506 }
1507
1508 // Submissions
1509
1510 /**
1511 * Unless shutting down, adds the given task to a submission queue
1512 * at submitter's current queue index (modulo submission
1513 * range). Only the most common path is directly handled in this
1514 * method. All others are relayed to fullExternalPush.
1515 *
1516 * @param task the task. Caller must ensure non-null.
1517 */
1518 final void externalPush(ForkJoinTask<?> task) {
1519 WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1520 if ((z = submitters.get()) != null && plock > 0 &&
1521 (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1522 (q = ws[m & z.seed & SQMASK]) != null &&
1523 U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1524 int b = q.base, s = q.top, n, an;
1525 if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1526 int j = (((an - 1) & s) << ASHIFT) + ABASE;
1527 U.putOrderedObject(a, j, task);
1528 q.top = s + 1; // push on to deque
1529 q.qlock = 0;
1530 if (n <= 2)
1531 signalWork(q);
1532 return;
1533 }
1534 q.qlock = 0;
1535 }
1536 fullExternalPush(task);
1537 }
1538
1539 /**
1540 * Full version of externalPush. This method is called, among
1541 * other times, upon the first submission of the first task to the
1542 * pool, so must perform secondary initialization (via
1543 * initWorkers). It also detects first submission by an external
1544 * thread by looking up its ThreadLocal, and creates a new shared
1545 * queue if the one at index if empty or contended. The plock lock
1546 * body must be exception-free (so no try/finally) so we
1547 * optimistically allocate new queues outside the lock and throw
1548 * them away if (very rarely) not needed.
1549 */
1550 private void fullExternalPush(ForkJoinTask<?> task) {
1551 int r = 0; // random index seed
1552 for (Submitter z = submitters.get();;) {
1553 WorkQueue[] ws; WorkQueue q; int ps, m, k;
1554 if (z == null) {
1555 if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1556 r += SEED_INCREMENT) && r != 0)
1557 submitters.set(z = new Submitter(r));
1558 }
1559 else if (r == 0) { // move to a different index
1560 r = z.seed;
1561 r ^= r << 13; // same xorshift as WorkQueues
1562 r ^= r >>> 17;
1563 z.seed = r ^ (r << 5);
1564 }
1565 else if ((ps = plock) < 0)
1566 throw new RejectedExecutionException();
1567 else if (ps == 0 || (ws = workQueues) == null ||
1568 (m = ws.length - 1) < 0)
1569 initWorkers();
1570 else if ((q = ws[k = r & m & SQMASK]) != null) {
1571 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1572 ForkJoinTask<?>[] a = q.array;
1573 int s = q.top;
1574 boolean submitted = false;
1575 try { // locked version of push
1576 if ((a != null && a.length > s + 1 - q.base) ||
1577 (a = q.growArray()) != null) { // must presize
1578 int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1579 U.putOrderedObject(a, j, task);
1580 q.top = s + 1;
1581 submitted = true;
1582 }
1583 } finally {
1584 q.qlock = 0; // unlock
1585 }
1586 if (submitted) {
1587 signalWork(q);
1588 return;
1589 }
1590 }
1591 r = 0; // move on failure
1592 }
1593 else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1594 q = new WorkQueue(this, null, SHARED_QUEUE, r);
1595 if (((ps = plock) & PL_LOCK) != 0 ||
1596 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1597 ps = acquirePlock();
1598 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1599 ws[k] = q;
1600 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1601 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1602 releasePlock(nps);
1603 }
1604 else
1605 r = 0; // try elsewhere while lock held
1606 }
1607 }
1608
1609 // Maintaining ctl counts
1610
1611 /**
1612 * Increments active count; mainly called upon return from blocking.
1613 */
1614 final void incrementActiveCount() {
1615 long c;
1616 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1617 }
1618
1619 /**
1620 * Tries to create or activate a worker if too few are active.
1621 *
1622 * @param q the (non-null) queue holding tasks to be signalled
1623 */
1624 final void signalWork(WorkQueue q) {
1625 int hint = q.poolIndex;
1626 long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1627 while ((u = (int)((c = ctl) >>> 32)) < 0) {
1628 if ((e = (int)c) > 0) {
1629 if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1630 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1631 long nc = (((long)(w.nextWait & E_MASK)) |
1632 ((long)(u + UAC_UNIT) << 32));
1633 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1634 w.hint = hint;
1635 w.eventCount = (e + E_SEQ) & E_MASK;
1636 if ((p = w.parker) != null)
1637 U.unpark(p);
1638 break;
1639 }
1640 if (q.top - q.base <= 0)
1641 break;
1642 }
1643 else
1644 break;
1645 }
1646 else {
1647 if ((short)u < 0)
1648 tryAddWorker();
1649 break;
1650 }
1651 }
1652 }
1653
1654 // Scanning for tasks
1655
1656 /**
1657 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1658 */
1659 final void runWorker(WorkQueue w) {
1660 w.growArray(); // allocate queue
1661 do { w.runTask(scan(w)); } while (w.qlock >= 0);
1662 }
1663
1664 /**
1665 * Scans for and, if found, returns one task, else possibly
1666 * inactivates the worker. This method operates on single reads of
1667 * volatile state and is designed to be re-invoked continuously,
1668 * in part because it returns upon detecting inconsistencies,
1669 * contention, or state changes that indicate possible success on
1670 * re-invocation.
1671 *
1672 * The scan searches for tasks across queues (starting at a random
1673 * index, and relying on registerWorker to irregularly scatter
1674 * them within array to avoid bias), checking each at least twice.
1675 * The scan terminates upon either finding a non-empty queue, or
1676 * completing the sweep. If the worker is not inactivated, it
1677 * takes and returns a task from this queue. Otherwise, if not
1678 * activated, it signals workers (that may include itself) and
1679 * returns so caller can retry. Also returns for true if the
1680 * worker array may have changed during an empty scan. On failure
1681 * to find a task, we take one of the following actions, after
1682 * which the caller will retry calling this method unless
1683 * terminated.
1684 *
1685 * * If pool is terminating, terminate the worker.
1686 *
1687 * * If not already enqueued, try to inactivate and enqueue the
1688 * worker on wait queue. Or, if inactivating has caused the pool
1689 * to be quiescent, relay to idleAwaitWork to check for
1690 * termination and possibly shrink pool.
1691 *
1692 * * If already enqueued and none of the above apply, possibly
1693 * (with 1/2 probability) park awaiting signal, else lingering to
1694 * help scan and signal.
1695 *
1696 * @param w the worker (via its WorkQueue)
1697 * @return a task or null if none found
1698 */
1699 private final ForkJoinTask<?> scan(WorkQueue w) {
1700 WorkQueue[] ws; int m;
1701 int ps = plock; // read plock before ws
1702 if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1703 int ec = w.eventCount; // ec is negative if inactive
1704 int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1705 int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1706 do {
1707 WorkQueue q; ForkJoinTask<?>[] a; int b;
1708 if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1709 (a = q.array) != null) { // probably nonempty
1710 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1711 ForkJoinTask<?> t = (ForkJoinTask<?>)
1712 U.getObjectVolatile(a, i);
1713 if (q.base == b && ec >= 0 && t != null &&
1714 U.compareAndSwapObject(a, i, t, null)) {
1715 if ((q.base = b + 1) - q.top < 0)
1716 signalWork(q);
1717 return t; // taken
1718 }
1719 else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1720 w.hint = (r + j) & m; // help signal below
1721 break; // cannot take
1722 }
1723 }
1724 } while (--j >= 0);
1725
1726 long c, sc; int e, ns, h;
1727 if ((h = w.hint) < 0) {
1728 if ((ns = w.nsteals) != 0) {
1729 if (U.compareAndSwapLong(this, STEALCOUNT,
1730 sc = stealCount, sc + ns))
1731 w.nsteals = 0; // collect steals
1732 }
1733 else if (plock != ps) // consistency check
1734 ; // skip
1735 else if ((e = (int)(c = ctl)) < 0)
1736 w.qlock = -1; // pool is terminating
1737 else if (ec >= 0) { // try to enqueue/inactivate
1738 long nc = ((long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK)));
1739 w.nextWait = e; // link and mark inactive
1740 w.eventCount = ec | INT_SIGN;
1741 if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1742 w.eventCount = ec; // unmark on CAS failure
1743 else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1744 idleAwaitWork(w, nc, c);
1745 }
1746 else if (w.eventCount < 0) { // block
1747 Thread wt = Thread.currentThread();
1748 Thread.interrupted(); // clear status
1749 U.putObject(wt, PARKBLOCKER, this);
1750 w.parker = wt; // emulate LockSupport.park
1751 if (w.eventCount < 0) // recheck
1752 U.park(false, 0L);
1753 w.parker = null;
1754 U.putObject(wt, PARKBLOCKER, null);
1755 }
1756 }
1757 if (h >= 0 || w.hint >= 0) // signal others before retry
1758 helpSignalHint(w);
1759 }
1760 return null;
1761 }
1762
1763 /**
1764 * If inactivating worker w has caused the pool to become
1765 * quiescent, checks for pool termination, and, so long as this is
1766 * not the only worker, waits for event for up to a given
1767 * duration. On timeout, if ctl has not changed, terminates the
1768 * worker, which will in turn wake up another worker to possibly
1769 * repeat this process.
1770 *
1771 * @param w the calling worker
1772 * @param currentCtl the ctl value triggering possible quiescence
1773 * @param prevCtl the ctl value to restore if thread is terminated
1774 */
1775 private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1776 if (w != null && w.eventCount < 0 &&
1777 !tryTerminate(false, false) && (int)prevCtl != 0) {
1778 int dc = -(short)(currentCtl >>> TC_SHIFT);
1779 long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1780 long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1781 Thread wt = Thread.currentThread();
1782 while (ctl == currentCtl) {
1783 Thread.interrupted(); // timed variant of version in scan()
1784 U.putObject(wt, PARKBLOCKER, this);
1785 w.parker = wt;
1786 if (ctl == currentCtl)
1787 U.park(false, parkTime);
1788 w.parker = null;
1789 U.putObject(wt, PARKBLOCKER, null);
1790 if (ctl != currentCtl)
1791 break;
1792 if (deadline - System.nanoTime() <= 0L &&
1793 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1794 w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1795 w.qlock = -1; // shrink
1796 break;
1797 }
1798 }
1799 }
1800 }
1801
1802 /**
1803 * Scans through queues looking for work while joining a task; if
1804 * any present, signals. May return early if more signalling is
1805 * detectably unneeded.
1806 *
1807 * @param task return early if done
1808 * @param origin an index to start scan
1809 */
1810 private void helpSignal(ForkJoinTask<?> task, int origin) {
1811 WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1812 if (task != null && task.status >= 0 &&
1813 (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1814 (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1815 outer: for (int k = origin, j = m; j >= 0; --j) {
1816 WorkQueue q = ws[k++ & m];
1817 for (int n = m;;) { // limit to at most m signals
1818 if (task.status < 0)
1819 break outer;
1820 if (q == null ||
1821 ((s = -q.base + q.top) <= n && (n = s) <= 0))
1822 break;
1823 if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1824 (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1825 (w = ws[i]) == null)
1826 break outer;
1827 long nc = (((long)(w.nextWait & E_MASK)) |
1828 ((long)(u + UAC_UNIT) << 32));
1829 if (w.eventCount == (e | INT_SIGN) &&
1830 U.compareAndSwapLong(this, CTL, c, nc)) {
1831 w.eventCount = (e + E_SEQ) & E_MASK;
1832 if ((p = w.parker) != null)
1833 U.unpark(p);
1834 if (--n <= 0)
1835 break;
1836 }
1837 }
1838 }
1839 }
1840 }
1841
1842 /**
1843 * Signals other workers if tasks are present in hinted queue.
1844 *
1845 * @param caller the worker with the hint
1846 */
1847 private void helpSignalHint(WorkQueue caller) {
1848 WorkQueue[] ws; WorkQueue q, w; Thread p; long c; int h, m, u, e, i, s;
1849 if (caller != null && (h = caller.hint) >= 0) {
1850 caller.hint = -1;
1851 if ((u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1852 (ws = workQueues) != null && (m = ws.length - 1) >= 0 &&
1853 (q = ws[h & m]) != null) {
1854 for (int n = 2;;) { // limit to at most 2 signals
1855 int idleCount = (caller.eventCount < 0) ? 0 : -1;
1856 if (((s = idleCount - q.base + q.top) <= n &&
1857 (n = s) <= 0) ||
1858 (u = (int)((c = ctl) >>> 32)) >= 0 ||
1859 (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1860 (w = ws[i]) == null)
1861 break;
1862 long nc = (((long)(w.nextWait & E_MASK)) |
1863 ((long)(u + UAC_UNIT) << 32));
1864 if (w.eventCount == (e | INT_SIGN) &&
1865 U.compareAndSwapLong(this, CTL, c, nc)) {
1866 w.hint = h;
1867 w.eventCount = (e + E_SEQ) & E_MASK;
1868 if ((p = w.parker) != null)
1869 U.unpark(p);
1870 if (--n <= 0)
1871 break;
1872 }
1873 }
1874 }
1875 }
1876 }
1877
1878 /**
1879 * Tries to locate and execute tasks for a stealer of the given
1880 * task, or in turn one of its stealers, Traces currentSteal ->
1881 * currentJoin links looking for a thread working on a descendant
1882 * of the given task and with a non-empty queue to steal back and
1883 * execute tasks from. The first call to this method upon a
1884 * waiting join will often entail scanning/search, (which is OK
1885 * because the joiner has nothing better to do), but this method
1886 * leaves hints in workers to speed up subsequent calls. The
1887 * implementation is very branchy to cope with potential
1888 * inconsistencies or loops encountering chains that are stale,
1889 * unknown, or so long that they are likely cyclic.
1890 *
1891 * @param joiner the joining worker
1892 * @param task the task to join
1893 * @return 0 if no progress can be made, negative if task
1894 * known complete, else positive
1895 */
1896 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1897 int stat = 0, steps = 0; // bound to avoid cycles
1898 if (joiner != null && task != null) { // hoist null checks
1899 restart: for (;;) {
1900 ForkJoinTask<?> subtask = task; // current target
1901 for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1902 WorkQueue[] ws; int m, s, h;
1903 if ((s = task.status) < 0) {
1904 stat = s;
1905 break restart;
1906 }
1907 if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1908 break restart; // shutting down
1909 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1910 v.currentSteal != subtask) {
1911 for (int origin = h;;) { // find stealer
1912 if (((h = (h + 2) & m) & 15) == 1 &&
1913 (subtask.status < 0 || j.currentJoin != subtask))
1914 continue restart; // occasional staleness check
1915 if ((v = ws[h]) != null &&
1916 v.currentSteal == subtask) {
1917 j.hint = h; // save hint
1918 break;
1919 }
1920 if (h == origin)
1921 break restart; // cannot find stealer
1922 }
1923 }
1924 for (;;) { // help stealer or descend to its stealer
1925 ForkJoinTask[] a; int b;
1926 if (subtask.status < 0) // surround probes with
1927 continue restart; // consistency checks
1928 if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1929 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1930 ForkJoinTask<?> t =
1931 (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1932 if (subtask.status < 0 || j.currentJoin != subtask ||
1933 v.currentSteal != subtask)
1934 continue restart; // stale
1935 stat = 1; // apparent progress
1936 if (t != null && v.base == b &&
1937 U.compareAndSwapObject(a, i, t, null)) {
1938 v.base = b + 1; // help stealer
1939 joiner.runSubtask(t);
1940 }
1941 else if (v.base == b && ++steps == MAX_HELP)
1942 break restart; // v apparently stalled
1943 }
1944 else { // empty -- try to descend
1945 ForkJoinTask<?> next = v.currentJoin;
1946 if (subtask.status < 0 || j.currentJoin != subtask ||
1947 v.currentSteal != subtask)
1948 continue restart; // stale
1949 else if (next == null || ++steps == MAX_HELP)
1950 break restart; // dead-end or maybe cyclic
1951 else {
1952 subtask = next;
1953 j = v;
1954 break;
1955 }
1956 }
1957 }
1958 }
1959 }
1960 }
1961 return stat;
1962 }
1963
1964 /**
1965 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1966 * and run tasks within the target's computation.
1967 *
1968 * @param task the task to join
1969 * @param mode if shared, exit upon completing any task
1970 * if all workers are active
1971 *
1972 */
1973 private int helpComplete(ForkJoinTask<?> task, int mode) {
1974 WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1975 if (task != null && (ws = workQueues) != null &&
1976 (m = ws.length - 1) >= 0) {
1977 for (int j = 1, origin = j;;) {
1978 if ((s = task.status) < 0)
1979 return s;
1980 if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1981 origin = j;
1982 if (mode == SHARED_QUEUE &&
1983 ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1984 break;
1985 }
1986 else if ((j = (j + 2) & m) == origin)
1987 break;
1988 }
1989 }
1990 return 0;
1991 }
1992
1993 /**
1994 * Tries to decrement active count (sometimes implicitly) and
1995 * possibly release or create a compensating worker in preparation
1996 * for blocking. Fails on contention or termination. Otherwise,
1997 * adds a new thread if no idle workers are available and pool
1998 * may become starved.
1999 */
2000 final boolean tryCompensate() {
2001 int pc = config & SMASK, e, i, tc; long c;
2002 WorkQueue[] ws; WorkQueue w; Thread p;
2003 if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
2004 if (e != 0 && (i = e & SMASK) < ws.length &&
2005 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
2006 long nc = ((long)(w.nextWait & E_MASK) |
2007 (c & (AC_MASK|TC_MASK)));
2008 if (U.compareAndSwapLong(this, CTL, c, nc)) {
2009 w.eventCount = (e + E_SEQ) & E_MASK;
2010 if ((p = w.parker) != null)
2011 U.unpark(p);
2012 return true; // replace with idle worker
2013 }
2014 }
2015 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
2016 (int)(c >> AC_SHIFT) + pc > 1) {
2017 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
2018 if (U.compareAndSwapLong(this, CTL, c, nc))
2019 return true; // no compensation
2020 }
2021 else if (tc + pc < MAX_CAP) {
2022 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
2023 if (U.compareAndSwapLong(this, CTL, c, nc)) {
2024 ForkJoinWorkerThreadFactory fac;
2025 Throwable ex = null;
2026 ForkJoinWorkerThread wt = null;
2027 try {
2028 if ((fac = factory) != null &&
2029 (wt = fac.newThread(this)) != null) {
2030 wt.start();
2031 return true;
2032 }
2033 } catch (Throwable rex) {
2034 ex = rex;
2035 }
2036 deregisterWorker(wt, ex); // clean up and return false
2037 }
2038 }
2039 }
2040 return false;
2041 }
2042
2043 /**
2044 * Helps and/or blocks until the given task is done.
2045 *
2046 * @param joiner the joining worker
2047 * @param task the task
2048 * @return task status on exit
2049 */
2050 final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
2051 int s = 0;
2052 if (joiner != null && task != null && (s = task.status) >= 0) {
2053 ForkJoinTask<?> prevJoin = joiner.currentJoin;
2054 joiner.currentJoin = task;
2055 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2056 joiner.tryRemoveAndExec(task)); // process local tasks
2057 if (s >= 0 && (s = task.status) >= 0) {
2058 helpSignal(task, joiner.poolIndex);
2059 if ((s = task.status) >= 0 &&
2060 (task instanceof CountedCompleter))
2061 s = helpComplete(task, LIFO_QUEUE);
2062 }
2063 while (s >= 0 && (s = task.status) >= 0) {
2064 if ((!joiner.isEmpty() || // try helping
2065 (s = tryHelpStealer(joiner, task)) == 0) &&
2066 (s = task.status) >= 0) {
2067 helpSignal(task, joiner.poolIndex);
2068 if ((s = task.status) >= 0 && tryCompensate()) {
2069 if (task.trySetSignal() && (s = task.status) >= 0) {
2070 synchronized (task) {
2071 if (task.status >= 0) {
2072 try { // see ForkJoinTask
2073 task.wait(); // for explanation
2074 } catch (InterruptedException ie) {
2075 }
2076 }
2077 else
2078 task.notifyAll();
2079 }
2080 }
2081 long c; // re-activate
2082 do {} while (!U.compareAndSwapLong
2083 (this, CTL, c = ctl, c + AC_UNIT));
2084 }
2085 }
2086 }
2087 joiner.currentJoin = prevJoin;
2088 }
2089 return s;
2090 }
2091
2092 /**
2093 * Stripped-down variant of awaitJoin used by timed joins. Tries
2094 * to help join only while there is continuous progress. (Caller
2095 * will then enter a timed wait.)
2096 *
2097 * @param joiner the joining worker
2098 * @param task the task
2099 */
2100 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2101 int s;
2102 if (joiner != null && task != null && (s = task.status) >= 0) {
2103 ForkJoinTask<?> prevJoin = joiner.currentJoin;
2104 joiner.currentJoin = task;
2105 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2106 joiner.tryRemoveAndExec(task));
2107 if (s >= 0 && (s = task.status) >= 0) {
2108 helpSignal(task, joiner.poolIndex);
2109 if ((s = task.status) >= 0 &&
2110 (task instanceof CountedCompleter))
2111 s = helpComplete(task, LIFO_QUEUE);
2112 }
2113 if (s >= 0 && joiner.isEmpty()) {
2114 do {} while (task.status >= 0 &&
2115 tryHelpStealer(joiner, task) > 0);
2116 }
2117 joiner.currentJoin = prevJoin;
2118 }
2119 }
2120
2121 /**
2122 * Returns a (probably) non-empty steal queue, if one is found
2123 * during a random, then cyclic scan, else null. This method must
2124 * be retried by caller if, by the time it tries to use the queue,
2125 * it is empty.
2126 * @param r a (random) seed for scanning
2127 */
2128 private WorkQueue findNonEmptyStealQueue(int r) {
2129 for (WorkQueue[] ws;;) {
2130 int ps = plock, m, n;
2131 if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2132 return null;
2133 for (int j = (m + 1) << 2; ;) {
2134 WorkQueue q = ws[(((r + j) << 1) | 1) & m];
2135 if (q != null && (n = q.base - q.top) < 0) {
2136 if (n < -1)
2137 signalWork(q);
2138 return q;
2139 }
2140 else if (--j < 0) {
2141 if (plock == ps)
2142 return null;
2143 break;
2144 }
2145 }
2146 }
2147 }
2148
2149 /**
2150 * Runs tasks until {@code isQuiescent()}. We piggyback on
2151 * active count ctl maintenance, but rather than blocking
2152 * when tasks cannot be found, we rescan until all others cannot
2153 * find tasks either.
2154 */
2155 final void helpQuiescePool(WorkQueue w) {
2156 for (boolean active = true;;) {
2157 ForkJoinTask<?> localTask; // exhaust local queue
2158 while ((localTask = w.nextLocalTask()) != null)
2159 localTask.doExec();
2160 // Similar to loop in scan(), but ignoring submissions
2161 WorkQueue q = findNonEmptyStealQueue(w.nextSeed());
2162 if (q != null) {
2163 ForkJoinTask<?> t; int b;
2164 if (!active) { // re-establish active count
2165 long c;
2166 active = true;
2167 do {} while (!U.compareAndSwapLong
2168 (this, CTL, c = ctl, c + AC_UNIT));
2169 }
2170 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2171 w.runSubtask(t);
2172 }
2173 else {
2174 long c;
2175 if (active) { // decrement active count without queuing
2176 active = false;
2177 do {} while (!U.compareAndSwapLong
2178 (this, CTL, c = ctl, c -= AC_UNIT));
2179 }
2180 else
2181 c = ctl; // re-increment on exit
2182 if ((int)(c >> AC_SHIFT) + (config & SMASK) == 0) {
2183 do {} while (!U.compareAndSwapLong
2184 (this, CTL, c = ctl, c + AC_UNIT));
2185 break;
2186 }
2187 }
2188 }
2189 }
2190
2191 /**
2192 * Gets and removes a local or stolen task for the given worker.
2193 *
2194 * @return a task, if available
2195 */
2196 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2197 for (ForkJoinTask<?> t;;) {
2198 WorkQueue q; int b;
2199 if ((t = w.nextLocalTask()) != null)
2200 return t;
2201 if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2202 return null;
2203 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2204 return t;
2205 }
2206 }
2207
2208 /**
2209 * Returns a cheap heuristic guide for task partitioning when
2210 * programmers, frameworks, tools, or languages have little or no
2211 * idea about task granularity. In essence by offering this
2212 * method, we ask users only about tradeoffs in overhead vs
2213 * expected throughput and its variance, rather than how finely to
2214 * partition tasks.
2215 *
2216 * In a steady state strict (tree-structured) computation, each
2217 * thread makes available for stealing enough tasks for other
2218 * threads to remain active. Inductively, if all threads play by
2219 * the same rules, each thread should make available only a
2220 * constant number of tasks.
2221 *
2222 * The minimum useful constant is just 1. But using a value of 1
2223 * would require immediate replenishment upon each steal to
2224 * maintain enough tasks, which is infeasible. Further,
2225 * partitionings/granularities of offered tasks should minimize
2226 * steal rates, which in general means that threads nearer the top
2227 * of computation tree should generate more than those nearer the
2228 * bottom. In perfect steady state, each thread is at
2229 * approximately the same level of computation tree. However,
2230 * producing extra tasks amortizes the uncertainty of progress and
2231 * diffusion assumptions.
2232 *
2233 * So, users will want to use values larger, but not much larger
2234 * than 1 to both smooth over transient shortages and hedge
2235 * against uneven progress; as traded off against the cost of
2236 * extra task overhead. We leave the user to pick a threshold
2237 * value to compare with the results of this call to guide
2238 * decisions, but recommend values such as 3.
2239 *
2240 * When all threads are active, it is on average OK to estimate
2241 * surplus strictly locally. In steady-state, if one thread is
2242 * maintaining say 2 surplus tasks, then so are others. So we can
2243 * just use estimated queue length. However, this strategy alone
2244 * leads to serious mis-estimates in some non-steady-state
2245 * conditions (ramp-up, ramp-down, other stalls). We can detect
2246 * many of these by further considering the number of "idle"
2247 * threads, that are known to have zero queued tasks, so
2248 * compensate by a factor of (#idle/#active) threads.
2249 *
2250 * Note: The approximation of #busy workers as #active workers is
2251 * not very good under current signalling scheme, and should be
2252 * improved.
2253 */
2254 static int getSurplusQueuedTaskCount() {
2255 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2256 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2257 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2258 int n = (q = wt.workQueue).top - q.base;
2259 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2260 return n - (a > (p >>>= 1) ? 0 :
2261 a > (p >>>= 1) ? 1 :
2262 a > (p >>>= 1) ? 2 :
2263 a > (p >>>= 1) ? 4 :
2264 8);
2265 }
2266 return 0;
2267 }
2268
2269 // Termination
2270
2271 /**
2272 * Possibly initiates and/or completes termination. The caller
2273 * triggering termination runs three passes through workQueues:
2274 * (0) Setting termination status, followed by wakeups of queued
2275 * workers; (1) cancelling all tasks; (2) interrupting lagging
2276 * threads (likely in external tasks, but possibly also blocked in
2277 * joins). Each pass repeats previous steps because of potential
2278 * lagging thread creation.
2279 *
2280 * @param now if true, unconditionally terminate, else only
2281 * if no work and no active workers
2282 * @param enable if true, enable shutdown when next possible
2283 * @return true if now terminating or terminated
2284 */
2285 private boolean tryTerminate(boolean now, boolean enable) {
2286 if (this == commonPool) // cannot shut down
2287 return false;
2288 for (long c;;) {
2289 if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2290 if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2291 synchronized (this) {
2292 notifyAll(); // signal when 0 workers
2293 }
2294 }
2295 return true;
2296 }
2297 if (plock >= 0) { // not yet enabled
2298 int ps;
2299 if (!enable)
2300 return false;
2301 if (((ps = plock) & PL_LOCK) != 0 ||
2302 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2303 ps = acquirePlock();
2304 int nps = SHUTDOWN;
2305 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2306 releasePlock(nps);
2307 }
2308 if (!now) { // check if idle & no tasks
2309 if ((int)(c >> AC_SHIFT) != -(config & SMASK) ||
2310 hasQueuedSubmissions())
2311 return false;
2312 // Check for unqueued inactive workers. One pass suffices.
2313 WorkQueue[] ws = workQueues; WorkQueue w;
2314 if (ws != null) {
2315 for (int i = 1; i < ws.length; i += 2) {
2316 if ((w = ws[i]) != null && w.eventCount >= 0)
2317 return false;
2318 }
2319 }
2320 }
2321 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2322 for (int pass = 0; pass < 3; ++pass) {
2323 WorkQueue[] ws = workQueues;
2324 if (ws != null) {
2325 WorkQueue w;
2326 int n = ws.length;
2327 for (int i = 0; i < n; ++i) {
2328 if ((w = ws[i]) != null) {
2329 w.qlock = -1;
2330 if (pass > 0) {
2331 w.cancelAll();
2332 if (pass > 1)
2333 w.interruptOwner();
2334 }
2335 }
2336 }
2337 // Wake up workers parked on event queue
2338 int i, e; long cc; Thread p;
2339 while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2340 (i = e & SMASK) < n &&
2341 (w = ws[i]) != null) {
2342 long nc = ((long)(w.nextWait & E_MASK) |
2343 ((cc + AC_UNIT) & AC_MASK) |
2344 (cc & (TC_MASK|STOP_BIT)));
2345 if (w.eventCount == (e | INT_SIGN) &&
2346 U.compareAndSwapLong(this, CTL, cc, nc)) {
2347 w.eventCount = (e + E_SEQ) & E_MASK;
2348 w.qlock = -1;
2349 if ((p = w.parker) != null)
2350 U.unpark(p);
2351 }
2352 }
2353 }
2354 }
2355 }
2356 }
2357 }
2358
2359 // external operations on common pool
2360
2361 /**
2362 * Returns common pool queue for a thread that has submitted at
2363 * least one task.
2364 */
2365 static WorkQueue commonSubmitterQueue() {
2366 ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2367 return ((z = submitters.get()) != null &&
2368 (p = commonPool) != null &&
2369 (ws = p.workQueues) != null &&
2370 (m = ws.length - 1) >= 0) ?
2371 ws[m & z.seed & SQMASK] : null;
2372 }
2373
2374 /**
2375 * Tries to pop the given task from submitter's queue in common pool.
2376 */
2377 static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2378 ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2379 ForkJoinTask<?>[] a; int m, s;
2380 if (t != null &&
2381 (z = submitters.get()) != null &&
2382 (p = commonPool) != null &&
2383 (ws = p.workQueues) != null &&
2384 (m = ws.length - 1) >= 0 &&
2385 (q = ws[m & z.seed & SQMASK]) != null &&
2386 (s = q.top) != q.base &&
2387 (a = q.array) != null) {
2388 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2389 if (U.getObject(a, j) == t &&
2390 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2391 if (q.array == a && q.top == s && // recheck
2392 U.compareAndSwapObject(a, j, t, null)) {
2393 q.top = s - 1;
2394 q.qlock = 0;
2395 return true;
2396 }
2397 q.qlock = 0;
2398 }
2399 }
2400 return false;
2401 }
2402
2403 /**
2404 * Tries to pop and run local tasks within the same computation
2405 * as the given root. On failure, tries to help complete from
2406 * other queues via helpComplete.
2407 */
2408 private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2409 ForkJoinTask<?>[] a; int m;
2410 if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2411 root != null && root.status >= 0) {
2412 for (;;) {
2413 int s, u; Object o; CountedCompleter<?> task = null;
2414 if ((s = q.top) - q.base > 0) {
2415 long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2416 if ((o = U.getObject(a, j)) != null &&
2417 (o instanceof CountedCompleter)) {
2418 CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2419 do {
2420 if (r == root) {
2421 if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2422 if (q.array == a && q.top == s &&
2423 U.compareAndSwapObject(a, j, t, null)) {
2424 q.top = s - 1;
2425 task = t;
2426 }
2427 q.qlock = 0;
2428 }
2429 break;
2430 }
2431 } while ((r = r.completer) != null);
2432 }
2433 }
2434 if (task != null)
2435 task.doExec();
2436 if (root.status < 0 ||
2437 (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2438 break;
2439 if (task == null) {
2440 helpSignal(root, q.poolIndex);
2441 if (root.status >= 0)
2442 helpComplete(root, SHARED_QUEUE);
2443 break;
2444 }
2445 }
2446 }
2447 }
2448
2449 /**
2450 * Tries to help execute or signal availability of the given task
2451 * from submitter's queue in common pool.
2452 */
2453 static void externalHelpJoin(ForkJoinTask<?> t) {
2454 // Some hard-to-avoid overlap with tryExternalUnpush
2455 ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2456 ForkJoinTask<?>[] a; int m, s, n;
2457 if (t != null &&
2458 (z = submitters.get()) != null &&
2459 (p = commonPool) != null &&
2460 (ws = p.workQueues) != null &&
2461 (m = ws.length - 1) >= 0 &&
2462 (q = ws[m & z.seed & SQMASK]) != null &&
2463 (a = q.array) != null) {
2464 int am = a.length - 1;
2465 if ((s = q.top) != q.base) {
2466 long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2467 if (U.getObject(a, j) == t &&
2468 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2469 if (q.array == a && q.top == s &&
2470 U.compareAndSwapObject(a, j, t, null)) {
2471 q.top = s - 1;
2472 q.qlock = 0;
2473 t.doExec();
2474 }
2475 else
2476 q.qlock = 0;
2477 }
2478 }
2479 if (t.status >= 0) {
2480 if (t instanceof CountedCompleter)
2481 p.externalHelpComplete(q, t);
2482 else
2483 p.helpSignal(t, q.poolIndex);
2484 }
2485 }
2486 }
2487
2488 /**
2489 * Restricted version of helpQuiescePool for external callers
2490 */
2491 static void externalHelpQuiescePool() {
2492 ForkJoinPool p; ForkJoinTask<?> t; WorkQueue q; int b;
2493 if ((p = commonPool) != null &&
2494 (q = p.findNonEmptyStealQueue(1)) != null &&
2495 (b = q.base) - q.top < 0 &&
2496 (t = q.pollAt(b)) != null)
2497 t.doExec();
2498 }
2499
2500 // Exported methods
2501
2502 // Constructors
2503
2504 /**
2505 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2506 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2507 * #defaultForkJoinWorkerThreadFactory default thread factory},
2508 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2509 *
2510 * @throws SecurityException if a security manager exists and
2511 * the caller is not permitted to modify threads
2512 * because it does not hold {@link
2513 * java.lang.RuntimePermission}{@code ("modifyThread")}
2514 */
2515 public ForkJoinPool() {
2516 this(Runtime.getRuntime().availableProcessors(),
2517 defaultForkJoinWorkerThreadFactory, null, false);
2518 }
2519
2520 /**
2521 * Creates a {@code ForkJoinPool} with the indicated parallelism
2522 * level, the {@linkplain
2523 * #defaultForkJoinWorkerThreadFactory default thread factory},
2524 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2525 *
2526 * @param parallelism the parallelism level
2527 * @throws IllegalArgumentException if parallelism less than or
2528 * equal to zero, or greater than implementation limit
2529 * @throws SecurityException if a security manager exists and
2530 * the caller is not permitted to modify threads
2531 * because it does not hold {@link
2532 * java.lang.RuntimePermission}{@code ("modifyThread")}
2533 */
2534 public ForkJoinPool(int parallelism) {
2535 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2536 }
2537
2538 /**
2539 * Creates a {@code ForkJoinPool} with the given parameters.
2540 *
2541 * @param parallelism the parallelism level. For default value,
2542 * use {@link java.lang.Runtime#availableProcessors}.
2543 * @param factory the factory for creating new threads. For default value,
2544 * use {@link #defaultForkJoinWorkerThreadFactory}.
2545 * @param handler the handler for internal worker threads that
2546 * terminate due to unrecoverable errors encountered while executing
2547 * tasks. For default value, use {@code null}.
2548 * @param asyncMode if true,
2549 * establishes local first-in-first-out scheduling mode for forked
2550 * tasks that are never joined. This mode may be more appropriate
2551 * than default locally stack-based mode in applications in which
2552 * worker threads only process event-style asynchronous tasks.
2553 * For default value, use {@code false}.
2554 * @throws IllegalArgumentException if parallelism less than or
2555 * equal to zero, or greater than implementation limit
2556 * @throws NullPointerException if the factory is null
2557 * @throws SecurityException if a security manager exists and
2558 * the caller is not permitted to modify threads
2559 * because it does not hold {@link
2560 * java.lang.RuntimePermission}{@code ("modifyThread")}
2561 */
2562 public ForkJoinPool(int parallelism,
2563 ForkJoinWorkerThreadFactory factory,
2564 Thread.UncaughtExceptionHandler handler,
2565 boolean asyncMode) {
2566 checkPermission();
2567 if (factory == null)
2568 throw new NullPointerException();
2569 if (parallelism <= 0 || parallelism > MAX_CAP)
2570 throw new IllegalArgumentException();
2571 this.factory = factory;
2572 this.ueh = handler;
2573 this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2574 long np = (long)(-parallelism); // offset ctl counts
2575 this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2576 int pn = nextPoolId();
2577 StringBuilder sb = new StringBuilder("ForkJoinPool-");
2578 sb.append(Integer.toString(pn));
2579 sb.append("-worker-");
2580 this.workerNamePrefix = sb.toString();
2581 }
2582
2583 /**
2584 * Constructor for common pool, suitable only for static initialization.
2585 * Basically the same as above, but uses smallest possible initial footprint.
2586 */
2587 ForkJoinPool(int parallelism, long ctl,
2588 ForkJoinWorkerThreadFactory factory,
2589 Thread.UncaughtExceptionHandler handler) {
2590 this.config = parallelism;
2591 this.ctl = ctl;
2592 this.factory = factory;
2593 this.ueh = handler;
2594 this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2595 }
2596
2597 /**
2598 * Returns the common pool instance.
2599 *
2600 * @return the common pool instance
2601 */
2602 public static ForkJoinPool commonPool() {
2603 // assert commonPool != null : "static init error";
2604 return commonPool;
2605 }
2606
2607 // Execution methods
2608
2609 /**
2610 * Performs the given task, returning its result upon completion.
2611 * If the computation encounters an unchecked Exception or Error,
2612 * it is rethrown as the outcome of this invocation. Rethrown
2613 * exceptions behave in the same way as regular exceptions, but,
2614 * when possible, contain stack traces (as displayed for example
2615 * using {@code ex.printStackTrace()}) of both the current thread
2616 * as well as the thread actually encountering the exception;
2617 * minimally only the latter.
2618 *
2619 * @param task the task
2620 * @return the task's result
2621 * @throws NullPointerException if the task is null
2622 * @throws RejectedExecutionException if the task cannot be
2623 * scheduled for execution
2624 */
2625 public <T> T invoke(ForkJoinTask<T> task) {
2626 if (task == null)
2627 throw new NullPointerException();
2628 externalPush(task);
2629 return task.join();
2630 }
2631
2632 /**
2633 * Arranges for (asynchronous) execution of the given task.
2634 *
2635 * @param task the task
2636 * @throws NullPointerException if the task is null
2637 * @throws RejectedExecutionException if the task cannot be
2638 * scheduled for execution
2639 */
2640 public void execute(ForkJoinTask<?> task) {
2641 if (task == null)
2642 throw new NullPointerException();
2643 externalPush(task);
2644 }
2645
2646 // AbstractExecutorService methods
2647
2648 /**
2649 * @throws NullPointerException if the task is null
2650 * @throws RejectedExecutionException if the task cannot be
2651 * scheduled for execution
2652 */
2653 public void execute(Runnable task) {
2654 if (task == null)
2655 throw new NullPointerException();
2656 ForkJoinTask<?> job;
2657 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2658 job = (ForkJoinTask<?>) task;
2659 else
2660 job = new ForkJoinTask.AdaptedRunnableAction(task);
2661 externalPush(job);
2662 }
2663
2664 /**
2665 * Submits a ForkJoinTask for execution.
2666 *
2667 * @param task the task to submit
2668 * @return the task
2669 * @throws NullPointerException if the task is null
2670 * @throws RejectedExecutionException if the task cannot be
2671 * scheduled for execution
2672 */
2673 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2674 if (task == null)
2675 throw new NullPointerException();
2676 externalPush(task);
2677 return task;
2678 }
2679
2680 /**
2681 * @throws NullPointerException if the task is null
2682 * @throws RejectedExecutionException if the task cannot be
2683 * scheduled for execution
2684 */
2685 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2686 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2687 externalPush(job);
2688 return job;
2689 }
2690
2691 /**
2692 * @throws NullPointerException if the task is null
2693 * @throws RejectedExecutionException if the task cannot be
2694 * scheduled for execution
2695 */
2696 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2697 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2698 externalPush(job);
2699 return job;
2700 }
2701
2702 /**
2703 * @throws NullPointerException if the task is null
2704 * @throws RejectedExecutionException if the task cannot be
2705 * scheduled for execution
2706 */
2707 public ForkJoinTask<?> submit(Runnable task) {
2708 if (task == null)
2709 throw new NullPointerException();
2710 ForkJoinTask<?> job;
2711 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2712 job = (ForkJoinTask<?>) task;
2713 else
2714 job = new ForkJoinTask.AdaptedRunnableAction(task);
2715 externalPush(job);
2716 return job;
2717 }
2718
2719 /**
2720 * @throws NullPointerException {@inheritDoc}
2721 * @throws RejectedExecutionException {@inheritDoc}
2722 */
2723 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2724 // In previous versions of this class, this method constructed
2725 // a task to run ForkJoinTask.invokeAll, but now external
2726 // invocation of multiple tasks is at least as efficient.
2727 List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2728 // Workaround needed because method wasn't declared with
2729 // wildcards in return type but should have been.
2730 @SuppressWarnings({"unchecked", "rawtypes"})
2731 List<Future<T>> futures = (List<Future<T>>) (List) fs;
2732
2733 boolean done = false;
2734 try {
2735 for (Callable<T> t : tasks) {
2736 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2737 externalPush(f);
2738 fs.add(f);
2739 }
2740 for (ForkJoinTask<T> f : fs)
2741 f.quietlyJoin();
2742 done = true;
2743 return futures;
2744 } finally {
2745 if (!done)
2746 for (ForkJoinTask<T> f : fs)
2747 f.cancel(false);
2748 }
2749 }
2750
2751 /**
2752 * Returns the factory used for constructing new workers.
2753 *
2754 * @return the factory used for constructing new workers
2755 */
2756 public ForkJoinWorkerThreadFactory getFactory() {
2757 return factory;
2758 }
2759
2760 /**
2761 * Returns the handler for internal worker threads that terminate
2762 * due to unrecoverable errors encountered while executing tasks.
2763 *
2764 * @return the handler, or {@code null} if none
2765 */
2766 public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2767 return ueh;
2768 }
2769
2770 /**
2771 * Returns the targeted parallelism level of this pool.
2772 *
2773 * @return the targeted parallelism level of this pool
2774 */
2775 public int getParallelism() {
2776 return config & SMASK;
2777 }
2778
2779 /**
2780 * Returns the targeted parallelism level of the common pool.
2781 *
2782 * @return the targeted parallelism level of the common pool
2783 */
2784 public static int getCommonPoolParallelism() {
2785 return commonPoolParallelism;
2786 }
2787
2788 /**
2789 * Returns the number of worker threads that have started but not
2790 * yet terminated. The result returned by this method may differ
2791 * from {@link #getParallelism} when threads are created to
2792 * maintain parallelism when others are cooperatively blocked.
2793 *
2794 * @return the number of worker threads
2795 */
2796 public int getPoolSize() {
2797 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2798 }
2799
2800 /**
2801 * Returns {@code true} if this pool uses local first-in-first-out
2802 * scheduling mode for forked tasks that are never joined.
2803 *
2804 * @return {@code true} if this pool uses async mode
2805 */
2806 public boolean getAsyncMode() {
2807 return (config >>> 16) == FIFO_QUEUE;
2808 }
2809
2810 /**
2811 * Returns an estimate of the number of worker threads that are
2812 * not blocked waiting to join tasks or for other managed
2813 * synchronization. This method may overestimate the
2814 * number of running threads.
2815 *
2816 * @return the number of worker threads
2817 */
2818 public int getRunningThreadCount() {
2819 int rc = 0;
2820 WorkQueue[] ws; WorkQueue w;
2821 if ((ws = workQueues) != null) {
2822 for (int i = 1; i < ws.length; i += 2) {
2823 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2824 ++rc;
2825 }
2826 }
2827 return rc;
2828 }
2829
2830 /**
2831 * Returns an estimate of the number of threads that are currently
2832 * stealing or executing tasks. This method may overestimate the
2833 * number of active threads.
2834 *
2835 * @return the number of active threads
2836 */
2837 public int getActiveThreadCount() {
2838 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2839 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2840 }
2841
2842 /**
2843 * Returns {@code true} if all worker threads are currently idle.
2844 * An idle worker is one that cannot obtain a task to execute
2845 * because none are available to steal from other threads, and
2846 * there are no pending submissions to the pool. This method is
2847 * conservative; it might not return {@code true} immediately upon
2848 * idleness of all threads, but will eventually become true if
2849 * threads remain inactive.
2850 *
2851 * @return {@code true} if all threads are currently idle
2852 */
2853 public boolean isQuiescent() {
2854 return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2855 }
2856
2857 /**
2858 * Returns an estimate of the total number of tasks stolen from
2859 * one thread's work queue by another. The reported value
2860 * underestimates the actual total number of steals when the pool
2861 * is not quiescent. This value may be useful for monitoring and
2862 * tuning fork/join programs: in general, steal counts should be
2863 * high enough to keep threads busy, but low enough to avoid
2864 * overhead and contention across threads.
2865 *
2866 * @return the number of steals
2867 */
2868 public long getStealCount() {
2869 long count = stealCount;
2870 WorkQueue[] ws; WorkQueue w;
2871 if ((ws = workQueues) != null) {
2872 for (int i = 1; i < ws.length; i += 2) {
2873 if ((w = ws[i]) != null)
2874 count += w.nsteals;
2875 }
2876 }
2877 return count;
2878 }
2879
2880 /**
2881 * Returns an estimate of the total number of tasks currently held
2882 * in queues by worker threads (but not including tasks submitted
2883 * to the pool that have not begun executing). This value is only
2884 * an approximation, obtained by iterating across all threads in
2885 * the pool. This method may be useful for tuning task
2886 * granularities.
2887 *
2888 * @return the number of queued tasks
2889 */
2890 public long getQueuedTaskCount() {
2891 long count = 0;
2892 WorkQueue[] ws; WorkQueue w;
2893 if ((ws = workQueues) != null) {
2894 for (int i = 1; i < ws.length; i += 2) {
2895 if ((w = ws[i]) != null)
2896 count += w.queueSize();
2897 }
2898 }
2899 return count;
2900 }
2901
2902 /**
2903 * Returns an estimate of the number of tasks submitted to this
2904 * pool that have not yet begun executing. This method may take
2905 * time proportional to the number of submissions.
2906 *
2907 * @return the number of queued submissions
2908 */
2909 public int getQueuedSubmissionCount() {
2910 int count = 0;
2911 WorkQueue[] ws; WorkQueue w;
2912 if ((ws = workQueues) != null) {
2913 for (int i = 0; i < ws.length; i += 2) {
2914 if ((w = ws[i]) != null)
2915 count += w.queueSize();
2916 }
2917 }
2918 return count;
2919 }
2920
2921 /**
2922 * Returns {@code true} if there are any tasks submitted to this
2923 * pool that have not yet begun executing.
2924 *
2925 * @return {@code true} if there are any queued submissions
2926 */
2927 public boolean hasQueuedSubmissions() {
2928 WorkQueue[] ws; WorkQueue w;
2929 if ((ws = workQueues) != null) {
2930 for (int i = 0; i < ws.length; i += 2) {
2931 if ((w = ws[i]) != null && !w.isEmpty())
2932 return true;
2933 }
2934 }
2935 return false;
2936 }
2937
2938 /**
2939 * Removes and returns the next unexecuted submission if one is
2940 * available. This method may be useful in extensions to this
2941 * class that re-assign work in systems with multiple pools.
2942 *
2943 * @return the next submission, or {@code null} if none
2944 */
2945 protected ForkJoinTask<?> pollSubmission() {
2946 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2947 if ((ws = workQueues) != null) {
2948 for (int i = 0; i < ws.length; i += 2) {
2949 if ((w = ws[i]) != null && (t = w.poll()) != null)
2950 return t;
2951 }
2952 }
2953 return null;
2954 }
2955
2956 /**
2957 * Removes all available unexecuted submitted and forked tasks
2958 * from scheduling queues and adds them to the given collection,
2959 * without altering their execution status. These may include
2960 * artificially generated or wrapped tasks. This method is
2961 * designed to be invoked only when the pool is known to be
2962 * quiescent. Invocations at other times may not remove all
2963 * tasks. A failure encountered while attempting to add elements
2964 * to collection {@code c} may result in elements being in
2965 * neither, either or both collections when the associated
2966 * exception is thrown. The behavior of this operation is
2967 * undefined if the specified collection is modified while the
2968 * operation is in progress.
2969 *
2970 * @param c the collection to transfer elements into
2971 * @return the number of elements transferred
2972 */
2973 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2974 int count = 0;
2975 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2976 if ((ws = workQueues) != null) {
2977 for (int i = 0; i < ws.length; ++i) {
2978 if ((w = ws[i]) != null) {
2979 while ((t = w.poll()) != null) {
2980 c.add(t);
2981 ++count;
2982 }
2983 }
2984 }
2985 }
2986 return count;
2987 }
2988
2989 /**
2990 * Returns a string identifying this pool, as well as its state,
2991 * including indications of run state, parallelism level, and
2992 * worker and task counts.
2993 *
2994 * @return a string identifying this pool, as well as its state
2995 */
2996 public String toString() {
2997 // Use a single pass through workQueues to collect counts
2998 long qt = 0L, qs = 0L; int rc = 0;
2999 long st = stealCount;
3000 long c = ctl;
3001 WorkQueue[] ws; WorkQueue w;
3002 if ((ws = workQueues) != null) {
3003 for (int i = 0; i < ws.length; ++i) {
3004 if ((w = ws[i]) != null) {
3005 int size = w.queueSize();
3006 if ((i & 1) == 0)
3007 qs += size;
3008 else {
3009 qt += size;
3010 st += w.nsteals;
3011 if (w.isApparentlyUnblocked())
3012 ++rc;
3013 }
3014 }
3015 }
3016 }
3017 int pc = (config & SMASK);
3018 int tc = pc + (short)(c >>> TC_SHIFT);
3019 int ac = pc + (int)(c >> AC_SHIFT);
3020 if (ac < 0) // ignore transient negative
3021 ac = 0;
3022 String level;
3023 if ((c & STOP_BIT) != 0)
3024 level = (tc == 0) ? "Terminated" : "Terminating";
3025 else
3026 level = plock < 0 ? "Shutting down" : "Running";
3027 return super.toString() +
3028 "[" + level +
3029 ", parallelism = " + pc +
3030 ", size = " + tc +
3031 ", active = " + ac +
3032 ", running = " + rc +
3033 ", steals = " + st +
3034 ", tasks = " + qt +
3035 ", submissions = " + qs +
3036 "]";
3037 }
3038
3039 /**
3040 * Possibly initiates an orderly shutdown in which previously
3041 * submitted tasks are executed, but no new tasks will be
3042 * accepted. Invocation has no effect on execution state if this
3043 * is the {@link #commonPool}, and no additional effect if
3044 * already shut down. Tasks that are in the process of being
3045 * submitted concurrently during the course of this method may or
3046 * may not be rejected.
3047 *
3048 * @throws SecurityException if a security manager exists and
3049 * the caller is not permitted to modify threads
3050 * because it does not hold {@link
3051 * java.lang.RuntimePermission}{@code ("modifyThread")}
3052 */
3053 public void shutdown() {
3054 checkPermission();
3055 tryTerminate(false, true);
3056 }
3057
3058 /**
3059 * Possibly attempts to cancel and/or stop all tasks, and reject
3060 * all subsequently submitted tasks. Invocation has no effect on
3061 * execution state if this is the {@link #commonPool}, and no
3062 * additional effect if already shut down. Otherwise, tasks that
3063 * are in the process of being submitted or executed concurrently
3064 * during the course of this method may or may not be
3065 * rejected. This method cancels both existing and unexecuted
3066 * tasks, in order to permit termination in the presence of task
3067 * dependencies. So the method always returns an empty list
3068 * (unlike the case for some other Executors).
3069 *
3070 * @return an empty list
3071 * @throws SecurityException if a security manager exists and
3072 * the caller is not permitted to modify threads
3073 * because it does not hold {@link
3074 * java.lang.RuntimePermission}{@code ("modifyThread")}
3075 */
3076 public List<Runnable> shutdownNow() {
3077 checkPermission();
3078 tryTerminate(true, true);
3079 return Collections.emptyList();
3080 }
3081
3082 /**
3083 * Returns {@code true} if all tasks have completed following shut down.
3084 *
3085 * @return {@code true} if all tasks have completed following shut down
3086 */
3087 public boolean isTerminated() {
3088 long c = ctl;
3089 return ((c & STOP_BIT) != 0L &&
3090 (short)(c >>> TC_SHIFT) == -(config & SMASK));
3091 }
3092
3093 /**
3094 * Returns {@code true} if the process of termination has
3095 * commenced but not yet completed. This method may be useful for
3096 * debugging. A return of {@code true} reported a sufficient
3097 * period after shutdown may indicate that submitted tasks have
3098 * ignored or suppressed interruption, or are waiting for I/O,
3099 * causing this executor not to properly terminate. (See the
3100 * advisory notes for class {@link ForkJoinTask} stating that
3101 * tasks should not normally entail blocking operations. But if
3102 * they do, they must abort them on interrupt.)
3103 *
3104 * @return {@code true} if terminating but not yet terminated
3105 */
3106 public boolean isTerminating() {
3107 long c = ctl;
3108 return ((c & STOP_BIT) != 0L &&
3109 (short)(c >>> TC_SHIFT) != -(config & SMASK));
3110 }
3111
3112 /**
3113 * Returns {@code true} if this pool has been shut down.
3114 *
3115 * @return {@code true} if this pool has been shut down
3116 */
3117 public boolean isShutdown() {
3118 return plock < 0;
3119 }
3120
3121 /**
3122 * Blocks until all tasks have completed execution after a
3123 * shutdown request, or the timeout occurs, or the current thread
3124 * is interrupted, whichever happens first. Note that the {@link
3125 * #commonPool()} never terminates until program shutdown so
3126 * this method will always time out.
3127 *
3128 * @param timeout the maximum time to wait
3129 * @param unit the time unit of the timeout argument
3130 * @return {@code true} if this executor terminated and
3131 * {@code false} if the timeout elapsed before termination
3132 * @throws InterruptedException if interrupted while waiting
3133 */
3134 public boolean awaitTermination(long timeout, TimeUnit unit)
3135 throws InterruptedException {
3136 long nanos = unit.toNanos(timeout);
3137 if (isTerminated())
3138 return true;
3139 long startTime = System.nanoTime();
3140 boolean terminated = false;
3141 synchronized (this) {
3142 for (long waitTime = nanos, millis = 0L;;) {
3143 if (terminated = isTerminated() ||
3144 waitTime <= 0L ||
3145 (millis = unit.toMillis(waitTime)) <= 0L)
3146 break;
3147 wait(millis);
3148 waitTime = nanos - (System.nanoTime() - startTime);
3149 }
3150 }
3151 return terminated;
3152 }
3153
3154 /**
3155 * Interface for extending managed parallelism for tasks running
3156 * in {@link ForkJoinPool}s.
3157 *
3158 * <p>A {@code ManagedBlocker} provides two methods. Method
3159 * {@code isReleasable} must return {@code true} if blocking is
3160 * not necessary. Method {@code block} blocks the current thread
3161 * if necessary (perhaps internally invoking {@code isReleasable}
3162 * before actually blocking). These actions are performed by any
3163 * thread invoking {@link ForkJoinPool#managedBlock}. The
3164 * unusual methods in this API accommodate synchronizers that may,
3165 * but don't usually, block for long periods. Similarly, they
3166 * allow more efficient internal handling of cases in which
3167 * additional workers may be, but usually are not, needed to
3168 * ensure sufficient parallelism. Toward this end,
3169 * implementations of method {@code isReleasable} must be amenable
3170 * to repeated invocation.
3171 *
3172 * <p>For example, here is a ManagedBlocker based on a
3173 * ReentrantLock:
3174 * <pre> {@code
3175 * class ManagedLocker implements ManagedBlocker {
3176 * final ReentrantLock lock;
3177 * boolean hasLock = false;
3178 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3179 * public boolean block() {
3180 * if (!hasLock)
3181 * lock.lock();
3182 * return true;
3183 * }
3184 * public boolean isReleasable() {
3185 * return hasLock || (hasLock = lock.tryLock());
3186 * }
3187 * }}</pre>
3188 *
3189 * <p>Here is a class that possibly blocks waiting for an
3190 * item on a given queue:
3191 * <pre> {@code
3192 * class QueueTaker<E> implements ManagedBlocker {
3193 * final BlockingQueue<E> queue;
3194 * volatile E item = null;
3195 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3196 * public boolean block() throws InterruptedException {
3197 * if (item == null)
3198 * item = queue.take();
3199 * return true;
3200 * }
3201 * public boolean isReleasable() {
3202 * return item != null || (item = queue.poll()) != null;
3203 * }
3204 * public E getItem() { // call after pool.managedBlock completes
3205 * return item;
3206 * }
3207 * }}</pre>
3208 */
3209 public static interface ManagedBlocker {
3210 /**
3211 * Possibly blocks the current thread, for example waiting for
3212 * a lock or condition.
3213 *
3214 * @return {@code true} if no additional blocking is necessary
3215 * (i.e., if isReleasable would return true)
3216 * @throws InterruptedException if interrupted while waiting
3217 * (the method is not required to do so, but is allowed to)
3218 */
3219 boolean block() throws InterruptedException;
3220
3221 /**
3222 * Returns {@code true} if blocking is unnecessary.
3223 */
3224 boolean isReleasable();
3225 }
3226
3227 /**
3228 * Blocks in accord with the given blocker. If the current thread
3229 * is a {@link ForkJoinWorkerThread}, this method possibly
3230 * arranges for a spare thread to be activated if necessary to
3231 * ensure sufficient parallelism while the current thread is blocked.
3232 *
3233 * <p>If the caller is not a {@link ForkJoinTask}, this method is
3234 * behaviorally equivalent to
3235 * <pre> {@code
3236 * while (!blocker.isReleasable())
3237 * if (blocker.block())
3238 * return;
3239 * }</pre>
3240 *
3241 * If the caller is a {@code ForkJoinTask}, then the pool may
3242 * first be expanded to ensure parallelism, and later adjusted.
3243 *
3244 * @param blocker the blocker
3245 * @throws InterruptedException if blocker.block did so
3246 */
3247 public static void managedBlock(ManagedBlocker blocker)
3248 throws InterruptedException {
3249 Thread t = Thread.currentThread();
3250 if (t instanceof ForkJoinWorkerThread) {
3251 ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3252 while (!blocker.isReleasable()) { // variant of helpSignal
3253 WorkQueue[] ws; WorkQueue q; int m, u;
3254 if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3255 for (int i = 0; i <= m; ++i) {
3256 if (blocker.isReleasable())
3257 return;
3258 if ((q = ws[i]) != null && q.base - q.top < 0) {
3259 p.signalWork(q);
3260 if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3261 (u >> UAC_SHIFT) >= 0)
3262 break;
3263 }
3264 }
3265 }
3266 if (p.tryCompensate()) {
3267 try {
3268 do {} while (!blocker.isReleasable() &&
3269 !blocker.block());
3270 } finally {
3271 p.incrementActiveCount();
3272 }
3273 break;
3274 }
3275 }
3276 }
3277 else {
3278 do {} while (!blocker.isReleasable() &&
3279 !blocker.block());
3280 }
3281 }
3282
3283 // AbstractExecutorService overrides. These rely on undocumented
3284 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3285 // implement RunnableFuture.
3286
3287 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3288 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3289 }
3290
3291 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3292 return new ForkJoinTask.AdaptedCallable<T>(callable);
3293 }
3294
3295 // Unsafe mechanics
3296 private static final sun.misc.Unsafe U;
3297 private static final long CTL;
3298 private static final long PARKBLOCKER;
3299 private static final int ABASE;
3300 private static final int ASHIFT;
3301 private static final long STEALCOUNT;
3302 private static final long PLOCK;
3303 private static final long INDEXSEED;
3304 private static final long QLOCK;
3305
3306 static {
3307 int s; // initialize field offsets for CAS etc
3308 try {
3309 U = getUnsafe();
3310 Class<?> k = ForkJoinPool.class;
3311 CTL = U.objectFieldOffset
3312 (k.getDeclaredField("ctl"));
3313 STEALCOUNT = U.objectFieldOffset
3314 (k.getDeclaredField("stealCount"));
3315 PLOCK = U.objectFieldOffset
3316 (k.getDeclaredField("plock"));
3317 INDEXSEED = U.objectFieldOffset
3318 (k.getDeclaredField("indexSeed"));
3319 Class<?> tk = Thread.class;
3320 PARKBLOCKER = U.objectFieldOffset
3321 (tk.getDeclaredField("parkBlocker"));
3322 Class<?> wk = WorkQueue.class;
3323 QLOCK = U.objectFieldOffset
3324 (wk.getDeclaredField("qlock"));
3325 Class<?> ak = ForkJoinTask[].class;
3326 ABASE = U.arrayBaseOffset(ak);
3327 s = U.arrayIndexScale(ak);
3328 ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3329 } catch (Exception e) {
3330 throw new Error(e);
3331 }
3332 if ((s & (s-1)) != 0)
3333 throw new Error("data type scale not a power of two");
3334
3335 submitters = new ThreadLocal<Submitter>();
3336 ForkJoinWorkerThreadFactory fac = defaultForkJoinWorkerThreadFactory =
3337 new DefaultForkJoinWorkerThreadFactory();
3338 modifyThreadPermission = new RuntimePermission("modifyThread");
3339
3340 /*
3341 * Establish common pool parameters. For extra caution,
3342 * computations to set up common pool state are here; the
3343 * constructor just assigns these values to fields.
3344 */
3345
3346 int par = 0;
3347 Thread.UncaughtExceptionHandler handler = null;
3348 try { // TBD: limit or report ignored exceptions?
3349 String pp = System.getProperty
3350 ("java.util.concurrent.ForkJoinPool.common.parallelism");
3351 String hp = System.getProperty
3352 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3353 String fp = System.getProperty
3354 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3355 if (fp != null)
3356 fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3357 getSystemClassLoader().loadClass(fp).newInstance());
3358 if (hp != null)
3359 handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3360 getSystemClassLoader().loadClass(hp).newInstance());
3361 if (pp != null)
3362 par = Integer.parseInt(pp);
3363 } catch (Exception ignore) {
3364 }
3365
3366 if (par <= 0)
3367 par = Runtime.getRuntime().availableProcessors();
3368 if (par > MAX_CAP)
3369 par = MAX_CAP;
3370 commonPoolParallelism = par;
3371 long np = (long)(-par); // precompute initial ctl value
3372 long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3373
3374 commonPool = new ForkJoinPool(par, ct, fac, handler);
3375 }
3376
3377 /**
3378 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
3379 * Replace with a simple call to Unsafe.getUnsafe when integrating
3380 * into a jdk.
3381 *
3382 * @return a sun.misc.Unsafe
3383 */
3384 private static sun.misc.Unsafe getUnsafe() {
3385 try {
3386 return sun.misc.Unsafe.getUnsafe();
3387 } catch (SecurityException se) {
3388 try {
3389 return java.security.AccessController.doPrivileged
3390 (new java.security
3391 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
3392 public sun.misc.Unsafe run() throws Exception {
3393 java.lang.reflect.Field f = sun.misc
3394 .Unsafe.class.getDeclaredField("theUnsafe");
3395 f.setAccessible(true);
3396 return (sun.misc.Unsafe) f.get(null);
3397 }});
3398 } catch (java.security.PrivilegedActionException e) {
3399 throw new RuntimeException("Could not initialize intrinsics",
3400 e.getCause());
3401 }
3402 }
3403 }
3404
3405 }