ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ForkJoinPool.java
Revision: 1.66
Committed: Thu Nov 5 16:22:39 2015 UTC (8 years, 6 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.65: +1 -1 lines
Log Message:
fix javac [rawtypes] warning

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package jsr166e;
8
9 import java.lang.Thread.UncaughtExceptionHandler;
10 import java.util.ArrayList;
11 import java.util.Arrays;
12 import java.util.Collection;
13 import java.util.Collections;
14 import java.util.List;
15 import java.util.concurrent.AbstractExecutorService;
16 import java.util.concurrent.Callable;
17 import java.util.concurrent.ExecutorService;
18 import java.util.concurrent.Future;
19 import java.util.concurrent.RejectedExecutionException;
20 import java.util.concurrent.RunnableFuture;
21 import java.util.concurrent.TimeUnit;
22
23 /**
24 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
25 * A {@code ForkJoinPool} provides the entry point for submissions
26 * from non-{@code ForkJoinTask} clients, as well as management and
27 * monitoring operations.
28 *
29 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
30 * ExecutorService} mainly by virtue of employing
31 * <em>work-stealing</em>: all threads in the pool attempt to find and
32 * execute tasks submitted to the pool and/or created by other active
33 * tasks (eventually blocking waiting for work if none exist). This
34 * enables efficient processing when most tasks spawn other subtasks
35 * (as do most {@code ForkJoinTask}s), as well as when many small
36 * tasks are submitted to the pool from external clients. Especially
37 * when setting <em>asyncMode</em> to true in constructors, {@code
38 * ForkJoinPool}s may also be appropriate for use with event-style
39 * tasks that are never joined.
40 *
41 * <p>A static {@link #commonPool()} is available and appropriate for
42 * most applications. The common pool is used by any ForkJoinTask that
43 * is not explicitly submitted to a specified pool. Using the common
44 * pool normally reduces resource usage (its threads are slowly
45 * reclaimed during periods of non-use, and reinstated upon subsequent
46 * use).
47 *
48 * <p>For applications that require separate or custom pools, a {@code
49 * ForkJoinPool} may be constructed with a given target parallelism
50 * level; by default, equal to the number of available processors. The
51 * pool attempts to maintain enough active (or available) threads by
52 * dynamically adding, suspending, or resuming internal worker
53 * threads, even if some tasks are stalled waiting to join others.
54 * However, no such adjustments are guaranteed in the face of blocked
55 * I/O or other unmanaged synchronization. The nested {@link
56 * ManagedBlocker} interface enables extension of the kinds of
57 * synchronization accommodated.
58 *
59 * <p>In addition to execution and lifecycle control methods, this
60 * class provides status check methods (for example
61 * {@link #getStealCount}) that are intended to aid in developing,
62 * tuning, and monitoring fork/join applications. Also, method
63 * {@link #toString} returns indications of pool state in a
64 * convenient form for informal monitoring.
65 *
66 * <p>As is the case with other ExecutorServices, there are three
67 * main task execution methods summarized in the following table.
68 * These are designed to be used primarily by clients not already
69 * engaged in fork/join computations in the current pool. The main
70 * forms of these methods accept instances of {@code ForkJoinTask},
71 * but overloaded forms also allow mixed execution of plain {@code
72 * Runnable}- or {@code Callable}- based activities as well. However,
73 * tasks that are already executing in a pool should normally instead
74 * use the within-computation forms listed in the table unless using
75 * async event-style tasks that are not usually joined, in which case
76 * there is little difference among choice of methods.
77 *
78 * <table BORDER CELLPADDING=3 CELLSPACING=1>
79 * <caption>Summary of task execution methods</caption>
80 * <tr>
81 * <td></td>
82 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
83 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
84 * </tr>
85 * <tr>
86 * <td> <b>Arrange async execution</b></td>
87 * <td> {@link #execute(ForkJoinTask)}</td>
88 * <td> {@link ForkJoinTask#fork}</td>
89 * </tr>
90 * <tr>
91 * <td> <b>Await and obtain result</b></td>
92 * <td> {@link #invoke(ForkJoinTask)}</td>
93 * <td> {@link ForkJoinTask#invoke}</td>
94 * </tr>
95 * <tr>
96 * <td> <b>Arrange exec and obtain Future</b></td>
97 * <td> {@link #submit(ForkJoinTask)}</td>
98 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
99 * </tr>
100 * </table>
101 *
102 * <p>The common pool is by default constructed with default
103 * parameters, but these may be controlled by setting three
104 * {@linkplain System#getProperty system properties}:
105 * <ul>
106 * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
107 * - the parallelism level, a non-negative integer
108 * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
109 * - the class name of a {@link ForkJoinWorkerThreadFactory}
110 * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
111 * - the class name of a {@link UncaughtExceptionHandler}
112 * </ul>
113 * The system class loader is used to load these classes.
114 * Upon any error in establishing these settings, default parameters
115 * are used. It is possible to disable or limit the use of threads in
116 * the common pool by setting the parallelism property to zero, and/or
117 * using a factory that may return {@code null}.
118 *
119 * <p><b>Implementation notes</b>: This implementation restricts the
120 * maximum number of running threads to 32767. Attempts to create
121 * pools with greater than the maximum number result in
122 * {@code IllegalArgumentException}.
123 *
124 * <p>This implementation rejects submitted tasks (that is, by throwing
125 * {@link RejectedExecutionException}) only when the pool is shut down
126 * or internal resources have been exhausted.
127 *
128 * @since 1.7
129 * @author Doug Lea
130 */
131 public class ForkJoinPool extends AbstractExecutorService {
132
133 /*
134 * Implementation Overview
135 *
136 * This class and its nested classes provide the main
137 * functionality and control for a set of worker threads:
138 * Submissions from non-FJ threads enter into submission queues.
139 * Workers take these tasks and typically split them into subtasks
140 * that may be stolen by other workers. Preference rules give
141 * first priority to processing tasks from their own queues (LIFO
142 * or FIFO, depending on mode), then to randomized FIFO steals of
143 * tasks in other queues.
144 *
145 * WorkQueues
146 * ==========
147 *
148 * Most operations occur within work-stealing queues (in nested
149 * class WorkQueue). These are special forms of Deques that
150 * support only three of the four possible end-operations -- push,
151 * pop, and poll (aka steal), under the further constraints that
152 * push and pop are called only from the owning thread (or, as
153 * extended here, under a lock), while poll may be called from
154 * other threads. (If you are unfamiliar with them, you probably
155 * want to read Herlihy and Shavit's book "The Art of
156 * Multiprocessor programming", chapter 16 describing these in
157 * more detail before proceeding.) The main work-stealing queue
158 * design is roughly similar to those in the papers "Dynamic
159 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
160 * (http://research.sun.com/scalable/pubs/index.html) and
161 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
162 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
163 * See also "Correct and Efficient Work-Stealing for Weak Memory
164 * Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
165 * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
166 * analysis of memory ordering (atomic, volatile etc) issues. The
167 * main differences ultimately stem from GC requirements that we
168 * null out taken slots as soon as we can, to maintain as small a
169 * footprint as possible even in programs generating huge numbers
170 * of tasks. To accomplish this, we shift the CAS arbitrating pop
171 * vs poll (steal) from being on the indices ("base" and "top") to
172 * the slots themselves. So, both a successful pop and poll
173 * mainly entail a CAS of a slot from non-null to null. Because
174 * we rely on CASes of references, we do not need tag bits on base
175 * or top. They are simple ints as used in any circular
176 * array-based queue (see for example ArrayDeque). Updates to the
177 * indices must still be ordered in a way that guarantees that top
178 * == base means the queue is empty, but otherwise may err on the
179 * side of possibly making the queue appear nonempty when a push,
180 * pop, or poll have not fully committed. Note that this means
181 * that the poll operation, considered individually, is not
182 * wait-free. One thief cannot successfully continue until another
183 * in-progress one (or, if previously empty, a push) completes.
184 * However, in the aggregate, we ensure at least probabilistic
185 * non-blockingness. If an attempted steal fails, a thief always
186 * chooses a different random victim target to try next. So, in
187 * order for one thief to progress, it suffices for any
188 * in-progress poll or new push on any empty queue to
189 * complete. (This is why we normally use method pollAt and its
190 * variants that try once at the apparent base index, else
191 * consider alternative actions, rather than method poll.)
192 *
193 * This approach also enables support of a user mode in which local
194 * task processing is in FIFO, not LIFO order, simply by using
195 * poll rather than pop. This can be useful in message-passing
196 * frameworks in which tasks are never joined. However neither
197 * mode considers affinities, loads, cache localities, etc, so
198 * rarely provide the best possible performance on a given
199 * machine, but portably provide good throughput by averaging over
200 * these factors. (Further, even if we did try to use such
201 * information, we do not usually have a basis for exploiting it.
202 * For example, some sets of tasks profit from cache affinities,
203 * but others are harmed by cache pollution effects.)
204 *
205 * WorkQueues are also used in a similar way for tasks submitted
206 * to the pool. We cannot mix these tasks in the same queues used
207 * for work-stealing (this would contaminate lifo/fifo
208 * processing). Instead, we randomly associate submission queues
209 * with submitting threads, using a form of hashing. The
210 * Submitter probe value serves as a hash code for
211 * choosing existing queues, and may be randomly repositioned upon
212 * contention with other submitters. In essence, submitters act
213 * like workers except that they are restricted to executing local
214 * tasks that they submitted (or in the case of CountedCompleters,
215 * others with the same root task). However, because most
216 * shared/external queue operations are more expensive than
217 * internal, and because, at steady state, external submitters
218 * will compete for CPU with workers, ForkJoinTask.join and
219 * related methods disable them from repeatedly helping to process
220 * tasks if all workers are active. Insertion of tasks in shared
221 * mode requires a lock (mainly to protect in the case of
222 * resizing) but we use only a simple spinlock (using bits in
223 * field qlock), because submitters encountering a busy queue move
224 * on to try or create other queues -- they block only when
225 * creating and registering new queues.
226 *
227 * Management
228 * ==========
229 *
230 * The main throughput advantages of work-stealing stem from
231 * decentralized control -- workers mostly take tasks from
232 * themselves or each other. We cannot negate this in the
233 * implementation of other management responsibilities. The main
234 * tactic for avoiding bottlenecks is packing nearly all
235 * essentially atomic control state into two volatile variables
236 * that are by far most often read (not written) as status and
237 * consistency checks.
238 *
239 * Field "ctl" contains 64 bits holding all the information needed
240 * to atomically decide to add, inactivate, enqueue (on an event
241 * queue), dequeue, and/or re-activate workers. To enable this
242 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
243 * far in excess of normal operating range) to allow ids, counts,
244 * and their negations (used for thresholding) to fit into 16bit
245 * fields.
246 *
247 * Field "plock" is a form of sequence lock with a saturating
248 * shutdown bit (similarly for per-queue "qlocks"), mainly
249 * protecting updates to the workQueues array, as well as to
250 * enable shutdown. When used as a lock, it is normally only very
251 * briefly held, so is nearly always available after at most a
252 * brief spin, but we use a monitor-based backup strategy to
253 * block when needed.
254 *
255 * Recording WorkQueues. WorkQueues are recorded in the
256 * "workQueues" array that is created upon first use and expanded
257 * if necessary. Updates to the array while recording new workers
258 * and unrecording terminated ones are protected from each other
259 * by a lock but the array is otherwise concurrently readable, and
260 * accessed directly. To simplify index-based operations, the
261 * array size is always a power of two, and all readers must
262 * tolerate null slots. Worker queues are at odd indices. Shared
263 * (submission) queues are at even indices, up to a maximum of 64
264 * slots, to limit growth even if array needs to expand to add
265 * more workers. Grouping them together in this way simplifies and
266 * speeds up task scanning.
267 *
268 * All worker thread creation is on-demand, triggered by task
269 * submissions, replacement of terminated workers, and/or
270 * compensation for blocked workers. However, all other support
271 * code is set up to work with other policies. To ensure that we
272 * do not hold on to worker references that would prevent GC, ALL
273 * accesses to workQueues are via indices into the workQueues
274 * array (which is one source of some of the messy code
275 * constructions here). In essence, the workQueues array serves as
276 * a weak reference mechanism. Thus for example the wait queue
277 * field of ctl stores indices, not references. Access to the
278 * workQueues in associated methods (for example signalWork) must
279 * both index-check and null-check the IDs. All such accesses
280 * ignore bad IDs by returning out early from what they are doing,
281 * since this can only be associated with termination, in which
282 * case it is OK to give up. All uses of the workQueues array
283 * also check that it is non-null (even if previously
284 * non-null). This allows nulling during termination, which is
285 * currently not necessary, but remains an option for
286 * resource-revocation-based shutdown schemes. It also helps
287 * reduce JIT issuance of uncommon-trap code, which tends to
288 * unnecessarily complicate control flow in some methods.
289 *
290 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
291 * let workers spin indefinitely scanning for tasks when none can
292 * be found immediately, and we cannot start/resume workers unless
293 * there appear to be tasks available. On the other hand, we must
294 * quickly prod them into action when new tasks are submitted or
295 * generated. In many usages, ramp-up time to activate workers is
296 * the main limiting factor in overall performance (this is
297 * compounded at program start-up by JIT compilation and
298 * allocation). So we try to streamline this as much as possible.
299 * We park/unpark workers after placing in an event wait queue
300 * when they cannot find work. This "queue" is actually a simple
301 * Treiber stack, headed by the "id" field of ctl, plus a 15bit
302 * counter value (that reflects the number of times a worker has
303 * been inactivated) to avoid ABA effects (we need only as many
304 * version numbers as worker threads). Successors are held in
305 * field WorkQueue.nextWait. Queuing deals with several intrinsic
306 * races, mainly that a task-producing thread can miss seeing (and
307 * signalling) another thread that gave up looking for work but
308 * has not yet entered the wait queue. We solve this by requiring
309 * a full sweep of all workers (via repeated calls to method
310 * scan()) both before and after a newly waiting worker is added
311 * to the wait queue. Because enqueued workers may actually be
312 * rescanning rather than waiting, we set and clear the "parker"
313 * field of WorkQueues to reduce unnecessary calls to unpark.
314 * (This requires a secondary recheck to avoid missed signals.)
315 * Note the unusual conventions about Thread.interrupts
316 * surrounding parking and other blocking: Because interrupts are
317 * used solely to alert threads to check termination, which is
318 * checked anyway upon blocking, we clear status (using
319 * Thread.interrupted) before any call to park, so that park does
320 * not immediately return due to status being set via some other
321 * unrelated call to interrupt in user code.
322 *
323 * Signalling. We create or wake up workers only when there
324 * appears to be at least one task they might be able to find and
325 * execute. When a submission is added or another worker adds a
326 * task to a queue that has fewer than two tasks, they signal
327 * waiting workers (or trigger creation of new ones if fewer than
328 * the given parallelism level -- signalWork). These primary
329 * signals are buttressed by others whenever other threads remove
330 * a task from a queue and notice that there are other tasks there
331 * as well. So in general, pools will be over-signalled. On most
332 * platforms, signalling (unpark) overhead time is noticeably
333 * long, and the time between signalling a thread and it actually
334 * making progress can be very noticeably long, so it is worth
335 * offloading these delays from critical paths as much as
336 * possible. Additionally, workers spin-down gradually, by staying
337 * alive so long as they see the ctl state changing. Similar
338 * stability-sensing techniques are also used before blocking in
339 * awaitJoin and helpComplete.
340 *
341 * Trimming workers. To release resources after periods of lack of
342 * use, a worker starting to wait when the pool is quiescent will
343 * time out and terminate if the pool has remained quiescent for a
344 * given period -- a short period if there are more threads than
345 * parallelism, longer as the number of threads decreases. This
346 * will slowly propagate, eventually terminating all workers after
347 * periods of non-use.
348 *
349 * Shutdown and Termination. A call to shutdownNow atomically sets
350 * a plock bit and then (non-atomically) sets each worker's
351 * qlock status, cancels all unprocessed tasks, and wakes up
352 * all waiting workers. Detecting whether termination should
353 * commence after a non-abrupt shutdown() call requires more work
354 * and bookkeeping. We need consensus about quiescence (i.e., that
355 * there is no more work). The active count provides a primary
356 * indication but non-abrupt shutdown still requires a rechecking
357 * scan for any workers that are inactive but not queued.
358 *
359 * Joining Tasks
360 * =============
361 *
362 * Any of several actions may be taken when one worker is waiting
363 * to join a task stolen (or always held) by another. Because we
364 * are multiplexing many tasks on to a pool of workers, we can't
365 * just let them block (as in Thread.join). We also cannot just
366 * reassign the joiner's run-time stack with another and replace
367 * it later, which would be a form of "continuation", that even if
368 * possible is not necessarily a good idea since we sometimes need
369 * both an unblocked task and its continuation to progress.
370 * Instead we combine two tactics:
371 *
372 * Helping: Arranging for the joiner to execute some task that it
373 * would be running if the steal had not occurred.
374 *
375 * Compensating: Unless there are already enough live threads,
376 * method tryCompensate() may create or re-activate a spare
377 * thread to compensate for blocked joiners until they unblock.
378 *
379 * A third form (implemented in tryRemoveAndExec) amounts to
380 * helping a hypothetical compensator: If we can readily tell that
381 * a possible action of a compensator is to steal and execute the
382 * task being joined, the joining thread can do so directly,
383 * without the need for a compensation thread (although at the
384 * expense of larger run-time stacks, but the tradeoff is
385 * typically worthwhile).
386 *
387 * The ManagedBlocker extension API can't use helping so relies
388 * only on compensation in method awaitBlocker.
389 *
390 * The algorithm in tryHelpStealer entails a form of "linear"
391 * helping: Each worker records (in field currentSteal) the most
392 * recent task it stole from some other worker. Plus, it records
393 * (in field currentJoin) the task it is currently actively
394 * joining. Method tryHelpStealer uses these markers to try to
395 * find a worker to help (i.e., steal back a task from and execute
396 * it) that could hasten completion of the actively joined task.
397 * In essence, the joiner executes a task that would be on its own
398 * local deque had the to-be-joined task not been stolen. This may
399 * be seen as a conservative variant of the approach in Wagner &
400 * Calder "Leapfrogging: a portable technique for implementing
401 * efficient futures" SIGPLAN Notices, 1993
402 * (http://portal.acm.org/citation.cfm?id=155354). It differs in
403 * that: (1) We only maintain dependency links across workers upon
404 * steals, rather than use per-task bookkeeping. This sometimes
405 * requires a linear scan of workQueues array to locate stealers,
406 * but often doesn't because stealers leave hints (that may become
407 * stale/wrong) of where to locate them. It is only a hint
408 * because a worker might have had multiple steals and the hint
409 * records only one of them (usually the most current). Hinting
410 * isolates cost to when it is needed, rather than adding to
411 * per-task overhead. (2) It is "shallow", ignoring nesting and
412 * potentially cyclic mutual steals. (3) It is intentionally
413 * racy: field currentJoin is updated only while actively joining,
414 * which means that we miss links in the chain during long-lived
415 * tasks, GC stalls etc (which is OK since blocking in such cases
416 * is usually a good idea). (4) We bound the number of attempts
417 * to find work (see MAX_HELP) and fall back to suspending the
418 * worker and if necessary replacing it with another.
419 *
420 * Helping actions for CountedCompleters are much simpler: Method
421 * helpComplete can take and execute any task with the same root
422 * as the task being waited on. However, this still entails some
423 * traversal of completer chains, so is less efficient than using
424 * CountedCompleters without explicit joins.
425 *
426 * It is impossible to keep exactly the target parallelism number
427 * of threads running at any given time. Determining the
428 * existence of conservatively safe helping targets, the
429 * availability of already-created spares, and the apparent need
430 * to create new spares are all racy, so we rely on multiple
431 * retries of each. Compensation in the apparent absence of
432 * helping opportunities is challenging to control on JVMs, where
433 * GC and other activities can stall progress of tasks that in
434 * turn stall out many other dependent tasks, without us being
435 * able to determine whether they will ever require compensation.
436 * Even though work-stealing otherwise encounters little
437 * degradation in the presence of more threads than cores,
438 * aggressively adding new threads in such cases entails risk of
439 * unwanted positive feedback control loops in which more threads
440 * cause more dependent stalls (as well as delayed progress of
441 * unblocked threads to the point that we know they are available)
442 * leading to more situations requiring more threads, and so
443 * on. This aspect of control can be seen as an (analytically
444 * intractable) game with an opponent that may choose the worst
445 * (for us) active thread to stall at any time. We take several
446 * precautions to bound losses (and thus bound gains), mainly in
447 * methods tryCompensate and awaitJoin.
448 *
449 * Common Pool
450 * ===========
451 *
452 * The static common pool always exists after static
453 * initialization. Since it (or any other created pool) need
454 * never be used, we minimize initial construction overhead and
455 * footprint to the setup of about a dozen fields, with no nested
456 * allocation. Most bootstrapping occurs within method
457 * fullExternalPush during the first submission to the pool.
458 *
459 * When external threads submit to the common pool, they can
460 * perform subtask processing (see externalHelpJoin and related
461 * methods). This caller-helps policy makes it sensible to set
462 * common pool parallelism level to one (or more) less than the
463 * total number of available cores, or even zero for pure
464 * caller-runs. We do not need to record whether external
465 * submissions are to the common pool -- if not, externalHelpJoin
466 * returns quickly (at the most helping to signal some common pool
467 * workers). These submitters would otherwise be blocked waiting
468 * for completion, so the extra effort (with liberally sprinkled
469 * task status checks) in inapplicable cases amounts to an odd
470 * form of limited spin-wait before blocking in ForkJoinTask.join.
471 *
472 * Style notes
473 * ===========
474 *
475 * There is a lot of representation-level coupling among classes
476 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
477 * fields of WorkQueue maintain data structures managed by
478 * ForkJoinPool, so are directly accessed. There is little point
479 * trying to reduce this, since any associated future changes in
480 * representations will need to be accompanied by algorithmic
481 * changes anyway. Several methods intrinsically sprawl because
482 * they must accumulate sets of consistent reads of volatiles held
483 * in local variables. Methods signalWork() and scan() are the
484 * main bottlenecks, so are especially heavily
485 * micro-optimized/mangled. There are lots of inline assignments
486 * (of form "while ((local = field) != 0)") which are usually the
487 * simplest way to ensure the required read orderings (which are
488 * sometimes critical). This leads to a "C"-like style of listing
489 * declarations of these locals at the heads of methods or blocks.
490 * There are several occurrences of the unusual "do {} while
491 * (!cas...)" which is the simplest way to force an update of a
492 * CAS'ed variable. There are also other coding oddities (including
493 * several unnecessary-looking hoisted null checks) that help
494 * some methods perform reasonably even when interpreted (not
495 * compiled).
496 *
497 * The order of declarations in this file is:
498 * (1) Static utility functions
499 * (2) Nested (static) classes
500 * (3) Static fields
501 * (4) Fields, along with constants used when unpacking some of them
502 * (5) Internal control methods
503 * (6) Callbacks and other support for ForkJoinTask methods
504 * (7) Exported methods
505 * (8) Static block initializing statics in minimally dependent order
506 */
507
508 // Static utilities
509
510 /**
511 * If there is a security manager, makes sure caller has
512 * permission to modify threads.
513 */
514 private static void checkPermission() {
515 SecurityManager security = System.getSecurityManager();
516 if (security != null)
517 security.checkPermission(modifyThreadPermission);
518 }
519
520 // Nested classes
521
522 /**
523 * Factory for creating new {@link ForkJoinWorkerThread}s.
524 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
525 * for {@code ForkJoinWorkerThread} subclasses that extend base
526 * functionality or initialize threads with different contexts.
527 */
528 public static interface ForkJoinWorkerThreadFactory {
529 /**
530 * Returns a new worker thread operating in the given pool.
531 *
532 * @param pool the pool this thread works in
533 * @return the new worker thread
534 * @throws NullPointerException if the pool is null
535 */
536 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
537 }
538
539 /**
540 * Default ForkJoinWorkerThreadFactory implementation; creates a
541 * new ForkJoinWorkerThread.
542 */
543 static final class DefaultForkJoinWorkerThreadFactory
544 implements ForkJoinWorkerThreadFactory {
545 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
546 return new ForkJoinWorkerThread(pool);
547 }
548 }
549
550 /**
551 * Class for artificial tasks that are used to replace the target
552 * of local joins if they are removed from an interior queue slot
553 * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
554 * actually do anything beyond having a unique identity.
555 */
556 static final class EmptyTask extends ForkJoinTask<Void> {
557 private static final long serialVersionUID = -7721805057305804111L;
558 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
559 public final Void getRawResult() { return null; }
560 public final void setRawResult(Void x) {}
561 public final boolean exec() { return true; }
562 }
563
564 /**
565 * Queues supporting work-stealing as well as external task
566 * submission. See above for main rationale and algorithms.
567 * Implementation relies heavily on "Unsafe" intrinsics
568 * and selective use of "volatile":
569 *
570 * Field "base" is the index (mod array.length) of the least valid
571 * queue slot, which is always the next position to steal (poll)
572 * from if nonempty. Reads and writes require volatile orderings
573 * but not CAS, because updates are only performed after slot
574 * CASes.
575 *
576 * Field "top" is the index (mod array.length) of the next queue
577 * slot to push to or pop from. It is written only by owner thread
578 * for push, or under lock for external/shared push, and accessed
579 * by other threads only after reading (volatile) base. Both top
580 * and base are allowed to wrap around on overflow, but (top -
581 * base) (or more commonly -(base - top) to force volatile read of
582 * base before top) still estimates size. The lock ("qlock") is
583 * forced to -1 on termination, causing all further lock attempts
584 * to fail. (Note: we don't need CAS for termination state because
585 * upon pool shutdown, all shared-queues will stop being used
586 * anyway.) Nearly all lock bodies are set up so that exceptions
587 * within lock bodies are "impossible" (modulo JVM errors that
588 * would cause failure anyway.)
589 *
590 * The array slots are read and written using the emulation of
591 * volatiles/atomics provided by Unsafe. Insertions must in
592 * general use putOrderedObject as a form of releasing store to
593 * ensure that all writes to the task object are ordered before
594 * its publication in the queue. All removals entail a CAS to
595 * null. The array is always a power of two. To ensure safety of
596 * Unsafe array operations, all accesses perform explicit null
597 * checks and implicit bounds checks via power-of-two masking.
598 *
599 * In addition to basic queuing support, this class contains
600 * fields described elsewhere to control execution. It turns out
601 * to work better memory-layout-wise to include them in this class
602 * rather than a separate class.
603 *
604 * Performance on most platforms is very sensitive to placement of
605 * instances of both WorkQueues and their arrays -- we absolutely
606 * do not want multiple WorkQueue instances or multiple queue
607 * arrays sharing cache lines. (It would be best for queue objects
608 * and their arrays to share, but there is nothing available to
609 * help arrange that). The @Contended annotation alerts JVMs to
610 * try to keep instances apart.
611 */
612 static final class WorkQueue {
613 /**
614 * Capacity of work-stealing queue array upon initialization.
615 * Must be a power of two; at least 4, but should be larger to
616 * reduce or eliminate cacheline sharing among queues.
617 * Currently, it is much larger, as a partial workaround for
618 * the fact that JVMs often place arrays in locations that
619 * share GC bookkeeping (especially cardmarks) such that
620 * per-write accesses encounter serious memory contention.
621 */
622 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
623
624 /**
625 * Maximum size for queue arrays. Must be a power of two less
626 * than or equal to 1 << (31 - width of array entry) to ensure
627 * lack of wraparound of index calculations, but defined to a
628 * value a bit less than this to help users trap runaway
629 * programs before saturating systems.
630 */
631 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
632
633 // Heuristic padding to ameliorate unfortunate memory placements
634 volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
635
636 volatile int eventCount; // encoded inactivation count; < 0 if inactive
637 int nextWait; // encoded record of next event waiter
638 int nsteals; // number of steals
639 int hint; // steal index hint
640 short poolIndex; // index of this queue in pool
641 final short mode; // 0: lifo, > 0: fifo, < 0: shared
642 volatile int qlock; // 1: locked, -1: terminate; else 0
643 volatile int base; // index of next slot for poll
644 int top; // index of next slot for push
645 ForkJoinTask<?>[] array; // the elements (initially unallocated)
646 final ForkJoinPool pool; // the containing pool (may be null)
647 final ForkJoinWorkerThread owner; // owning thread or null if shared
648 volatile Thread parker; // == owner during call to park; else null
649 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
650 ForkJoinTask<?> currentSteal; // current non-local task being executed
651
652 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
653 volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
654
655 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
656 int seed) {
657 this.pool = pool;
658 this.owner = owner;
659 this.mode = (short)mode;
660 this.hint = seed; // store initial seed for runWorker
661 // Place indices in the center of array (that is not yet allocated)
662 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
663 }
664
665 /**
666 * Returns the approximate number of tasks in the queue.
667 */
668 final int queueSize() {
669 int n = base - top; // non-owner callers must read base first
670 return (n >= 0) ? 0 : -n; // ignore transient negative
671 }
672
673 /**
674 * Provides a more accurate estimate of whether this queue has
675 * any tasks than does queueSize, by checking whether a
676 * near-empty queue has at least one unclaimed task.
677 */
678 final boolean isEmpty() {
679 ForkJoinTask<?>[] a; int m, s;
680 int n = base - (s = top);
681 return (n >= 0 ||
682 (n == -1 &&
683 ((a = array) == null ||
684 (m = a.length - 1) < 0 ||
685 U.getObject
686 (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
687 }
688
689 /**
690 * Pushes a task. Call only by owner in unshared queues. (The
691 * shared-queue version is embedded in method externalPush.)
692 *
693 * @param task the task. Caller must ensure non-null.
694 * @throws RejectedExecutionException if array cannot be resized
695 */
696 final void push(ForkJoinTask<?> task) {
697 ForkJoinTask<?>[] a; ForkJoinPool p;
698 int s = top, n;
699 if ((a = array) != null) { // ignore if queue removed
700 int m = a.length - 1;
701 U.putOrderedObject(a, ((m & s) << ASHIFT) + ABASE, task);
702 if ((n = (top = s + 1) - base) <= 2)
703 (p = pool).signalWork(p.workQueues, this);
704 else if (n >= m)
705 growArray();
706 }
707 }
708
709 /**
710 * Initializes or doubles the capacity of array. Call either
711 * by owner or with lock held -- it is OK for base, but not
712 * top, to move while resizings are in progress.
713 */
714 final ForkJoinTask<?>[] growArray() {
715 ForkJoinTask<?>[] oldA = array;
716 int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
717 if (size > MAXIMUM_QUEUE_CAPACITY)
718 throw new RejectedExecutionException("Queue capacity exceeded");
719 int oldMask, t, b;
720 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
721 if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
722 (t = top) - (b = base) > 0) {
723 int mask = size - 1;
724 do {
725 ForkJoinTask<?> x;
726 int oldj = ((b & oldMask) << ASHIFT) + ABASE;
727 int j = ((b & mask) << ASHIFT) + ABASE;
728 x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
729 if (x != null &&
730 U.compareAndSwapObject(oldA, oldj, x, null))
731 U.putObjectVolatile(a, j, x);
732 } while (++b != t);
733 }
734 return a;
735 }
736
737 /**
738 * Takes next task, if one exists, in LIFO order. Call only
739 * by owner in unshared queues.
740 */
741 final ForkJoinTask<?> pop() {
742 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
743 if ((a = array) != null && (m = a.length - 1) >= 0) {
744 for (int s; (s = top - 1) - base >= 0;) {
745 long j = ((m & s) << ASHIFT) + ABASE;
746 if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
747 break;
748 if (U.compareAndSwapObject(a, j, t, null)) {
749 top = s;
750 return t;
751 }
752 }
753 }
754 return null;
755 }
756
757 /**
758 * Takes a task in FIFO order if b is base of queue and a task
759 * can be claimed without contention. Specialized versions
760 * appear in ForkJoinPool methods scan and tryHelpStealer.
761 */
762 final ForkJoinTask<?> pollAt(int b) {
763 ForkJoinTask<?> t; ForkJoinTask<?>[] a;
764 if ((a = array) != null) {
765 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
766 if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
767 base == b && U.compareAndSwapObject(a, j, t, null)) {
768 U.putOrderedInt(this, QBASE, b + 1);
769 return t;
770 }
771 }
772 return null;
773 }
774
775 /**
776 * Takes next task, if one exists, in FIFO order.
777 */
778 final ForkJoinTask<?> poll() {
779 ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
780 while ((b = base) - top < 0 && (a = array) != null) {
781 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
782 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
783 if (t != null) {
784 if (U.compareAndSwapObject(a, j, t, null)) {
785 U.putOrderedInt(this, QBASE, b + 1);
786 return t;
787 }
788 }
789 else if (base == b) {
790 if (b + 1 == top)
791 break;
792 Thread.yield(); // wait for lagging update (very rare)
793 }
794 }
795 return null;
796 }
797
798 /**
799 * Takes next task, if one exists, in order specified by mode.
800 */
801 final ForkJoinTask<?> nextLocalTask() {
802 return mode == 0 ? pop() : poll();
803 }
804
805 /**
806 * Returns next task, if one exists, in order specified by mode.
807 */
808 final ForkJoinTask<?> peek() {
809 ForkJoinTask<?>[] a = array; int m;
810 if (a == null || (m = a.length - 1) < 0)
811 return null;
812 int i = mode == 0 ? top - 1 : base;
813 int j = ((i & m) << ASHIFT) + ABASE;
814 return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
815 }
816
817 /**
818 * Pops the given task only if it is at the current top.
819 * (A shared version is available only via FJP.tryExternalUnpush)
820 */
821 final boolean tryUnpush(ForkJoinTask<?> t) {
822 ForkJoinTask<?>[] a; int s;
823 if ((a = array) != null && (s = top) != base &&
824 U.compareAndSwapObject
825 (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
826 top = s;
827 return true;
828 }
829 return false;
830 }
831
832 /**
833 * Removes and cancels all known tasks, ignoring any exceptions.
834 */
835 final void cancelAll() {
836 ForkJoinTask.cancelIgnoringExceptions(currentJoin);
837 ForkJoinTask.cancelIgnoringExceptions(currentSteal);
838 for (ForkJoinTask<?> t; (t = poll()) != null; )
839 ForkJoinTask.cancelIgnoringExceptions(t);
840 }
841
842 // Specialized execution methods
843
844 /**
845 * Polls and runs tasks until empty.
846 */
847 final void pollAndExecAll() {
848 for (ForkJoinTask<?> t; (t = poll()) != null;)
849 t.doExec();
850 }
851
852 /**
853 * Executes a top-level task and any local tasks remaining
854 * after execution.
855 */
856 final void runTask(ForkJoinTask<?> task) {
857 if ((currentSteal = task) != null) {
858 task.doExec();
859 ForkJoinTask<?>[] a = array;
860 int md = mode;
861 ++nsteals;
862 currentSteal = null;
863 if (md != 0)
864 pollAndExecAll();
865 else if (a != null) {
866 int s, m = a.length - 1;
867 while ((s = top - 1) - base >= 0) {
868 long i = ((m & s) << ASHIFT) + ABASE;
869 ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObject(a, i);
870 if (t == null)
871 break;
872 if (U.compareAndSwapObject(a, i, t, null)) {
873 top = s;
874 t.doExec();
875 }
876 }
877 }
878 }
879 }
880
881 /**
882 * If present, removes from queue and executes the given task,
883 * or any other cancelled task. Returns (true) on any CAS
884 * or consistency check failure so caller can retry.
885 *
886 * @return false if no progress can be made, else true
887 */
888 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
889 boolean stat;
890 ForkJoinTask<?>[] a; int m, s, b, n;
891 if (task != null && (a = array) != null && (m = a.length - 1) >= 0 &&
892 (n = (s = top) - (b = base)) > 0) {
893 boolean removed = false, empty = true;
894 stat = true;
895 for (ForkJoinTask<?> t;;) { // traverse from s to b
896 long j = ((--s & m) << ASHIFT) + ABASE;
897 t = (ForkJoinTask<?>)U.getObject(a, j);
898 if (t == null) // inconsistent length
899 break;
900 else if (t == task) {
901 if (s + 1 == top) { // pop
902 if (!U.compareAndSwapObject(a, j, task, null))
903 break;
904 top = s;
905 removed = true;
906 }
907 else if (base == b) // replace with proxy
908 removed = U.compareAndSwapObject(a, j, task,
909 new EmptyTask());
910 break;
911 }
912 else if (t.status >= 0)
913 empty = false;
914 else if (s + 1 == top) { // pop and throw away
915 if (U.compareAndSwapObject(a, j, t, null))
916 top = s;
917 break;
918 }
919 if (--n == 0) {
920 if (!empty && base == b)
921 stat = false;
922 break;
923 }
924 }
925 if (removed)
926 task.doExec();
927 }
928 else
929 stat = false;
930 return stat;
931 }
932
933 /**
934 * Tries to poll for and execute the given task or any other
935 * task in its CountedCompleter computation.
936 */
937 final boolean pollAndExecCC(CountedCompleter<?> root) {
938 ForkJoinTask<?>[] a; int b; Object o; CountedCompleter<?> t, r;
939 if ((b = base) - top < 0 && (a = array) != null) {
940 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
941 if ((o = U.getObjectVolatile(a, j)) == null)
942 return true; // retry
943 if (o instanceof CountedCompleter) {
944 for (t = (CountedCompleter<?>)o, r = t;;) {
945 if (r == root) {
946 if (base == b &&
947 U.compareAndSwapObject(a, j, t, null)) {
948 U.putOrderedInt(this, QBASE, b + 1);
949 t.doExec();
950 }
951 return true;
952 }
953 else if ((r = r.completer) == null)
954 break; // not part of root computation
955 }
956 }
957 }
958 return false;
959 }
960
961 /**
962 * Tries to pop and execute the given task or any other task
963 * in its CountedCompleter computation.
964 */
965 final boolean externalPopAndExecCC(CountedCompleter<?> root) {
966 ForkJoinTask<?>[] a; int s; Object o; CountedCompleter<?> t, r;
967 if (base - (s = top) < 0 && (a = array) != null) {
968 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
969 if ((o = U.getObject(a, j)) instanceof CountedCompleter) {
970 for (t = (CountedCompleter<?>)o, r = t;;) {
971 if (r == root) {
972 if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
973 if (top == s && array == a &&
974 U.compareAndSwapObject(a, j, t, null)) {
975 top = s - 1;
976 qlock = 0;
977 t.doExec();
978 }
979 else
980 qlock = 0;
981 }
982 return true;
983 }
984 else if ((r = r.completer) == null)
985 break;
986 }
987 }
988 }
989 return false;
990 }
991
992 /**
993 * Internal version
994 */
995 final boolean internalPopAndExecCC(CountedCompleter<?> root) {
996 ForkJoinTask<?>[] a; int s; Object o; CountedCompleter<?> t, r;
997 if (base - (s = top) < 0 && (a = array) != null) {
998 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
999 if ((o = U.getObject(a, j)) instanceof CountedCompleter) {
1000 for (t = (CountedCompleter<?>)o, r = t;;) {
1001 if (r == root) {
1002 if (U.compareAndSwapObject(a, j, t, null)) {
1003 top = s - 1;
1004 t.doExec();
1005 }
1006 return true;
1007 }
1008 else if ((r = r.completer) == null)
1009 break;
1010 }
1011 }
1012 }
1013 return false;
1014 }
1015
1016 /**
1017 * Returns true if owned and not known to be blocked.
1018 */
1019 final boolean isApparentlyUnblocked() {
1020 Thread wt; Thread.State s;
1021 return (eventCount >= 0 &&
1022 (wt = owner) != null &&
1023 (s = wt.getState()) != Thread.State.BLOCKED &&
1024 s != Thread.State.WAITING &&
1025 s != Thread.State.TIMED_WAITING);
1026 }
1027
1028 // Unsafe mechanics
1029 private static final sun.misc.Unsafe U;
1030 private static final long QBASE;
1031 private static final long QLOCK;
1032 private static final int ABASE;
1033 private static final int ASHIFT;
1034 static {
1035 try {
1036 U = getUnsafe();
1037 Class<?> k = WorkQueue.class;
1038 Class<?> ak = ForkJoinTask[].class;
1039 QBASE = U.objectFieldOffset
1040 (k.getDeclaredField("base"));
1041 QLOCK = U.objectFieldOffset
1042 (k.getDeclaredField("qlock"));
1043 ABASE = U.arrayBaseOffset(ak);
1044 int scale = U.arrayIndexScale(ak);
1045 if ((scale & (scale - 1)) != 0)
1046 throw new Error("data type scale not a power of two");
1047 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1048 } catch (Exception e) {
1049 throw new Error(e);
1050 }
1051 }
1052 }
1053
1054 // static fields (initialized in static initializer below)
1055
1056 /**
1057 * Per-thread submission bookkeeping. Shared across all pools
1058 * to reduce ThreadLocal pollution and because random motion
1059 * to avoid contention in one pool is likely to hold for others.
1060 * Lazily initialized on first submission (but null-checked
1061 * in other contexts to avoid unnecessary initialization).
1062 */
1063 static final ThreadLocal<Submitter> submitters;
1064
1065 /**
1066 * Creates a new ForkJoinWorkerThread. This factory is used unless
1067 * overridden in ForkJoinPool constructors.
1068 */
1069 public static final ForkJoinWorkerThreadFactory
1070 defaultForkJoinWorkerThreadFactory;
1071
1072 /**
1073 * Permission required for callers of methods that may start or
1074 * kill threads.
1075 */
1076 private static final RuntimePermission modifyThreadPermission;
1077
1078 /**
1079 * Common (static) pool. Non-null for public use unless a static
1080 * construction exception, but internal usages null-check on use
1081 * to paranoically avoid potential initialization circularities
1082 * as well as to simplify generated code.
1083 */
1084 static final ForkJoinPool common;
1085
1086 /**
1087 * Common pool parallelism. To allow simpler use and management
1088 * when common pool threads are disabled, we allow the underlying
1089 * common.parallelism field to be zero, but in that case still report
1090 * parallelism as 1 to reflect resulting caller-runs mechanics.
1091 */
1092 static final int commonParallelism;
1093
1094 /**
1095 * Sequence number for creating workerNamePrefix.
1096 */
1097 private static int poolNumberSequence;
1098
1099 /**
1100 * Returns the next sequence number. We don't expect this to
1101 * ever contend, so use simple builtin sync.
1102 */
1103 private static final synchronized int nextPoolId() {
1104 return ++poolNumberSequence;
1105 }
1106
1107 // static constants
1108
1109 /**
1110 * Initial timeout value (in nanoseconds) for the thread
1111 * triggering quiescence to park waiting for new work. On timeout,
1112 * the thread will instead try to shrink the number of
1113 * workers. The value should be large enough to avoid overly
1114 * aggressive shrinkage during most transient stalls (long GCs
1115 * etc).
1116 */
1117 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1118
1119 /**
1120 * Timeout value when there are more threads than parallelism level
1121 */
1122 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1123
1124 /**
1125 * Tolerance for idle timeouts, to cope with timer undershoots
1126 */
1127 private static final long TIMEOUT_SLOP = 2000000L;
1128
1129 /**
1130 * The maximum stolen->joining link depth allowed in method
1131 * tryHelpStealer. Must be a power of two. Depths for legitimate
1132 * chains are unbounded, but we use a fixed constant to avoid
1133 * (otherwise unchecked) cycles and to bound staleness of
1134 * traversal parameters at the expense of sometimes blocking when
1135 * we could be helping.
1136 */
1137 private static final int MAX_HELP = 64;
1138
1139 /**
1140 * Increment for seed generators. See class ThreadLocal for
1141 * explanation.
1142 */
1143 private static final int SEED_INCREMENT = 0x61c88647;
1144
1145 /*
1146 * Bits and masks for control variables
1147 *
1148 * Field ctl is a long packed with:
1149 * AC: Number of active running workers minus target parallelism (16 bits)
1150 * TC: Number of total workers minus target parallelism (16 bits)
1151 * ST: true if pool is terminating (1 bit)
1152 * EC: the wait count of top waiting thread (15 bits)
1153 * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1154 *
1155 * When convenient, we can extract the upper 32 bits of counts and
1156 * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1157 * (int)ctl. The ec field is never accessed alone, but always
1158 * together with id and st. The offsets of counts by the target
1159 * parallelism and the positionings of fields makes it possible to
1160 * perform the most common checks via sign tests of fields: When
1161 * ac is negative, there are not enough active workers, when tc is
1162 * negative, there are not enough total workers, and when e is
1163 * negative, the pool is terminating. To deal with these possibly
1164 * negative fields, we use casts in and out of "short" and/or
1165 * signed shifts to maintain signedness.
1166 *
1167 * When a thread is queued (inactivated), its eventCount field is
1168 * set negative, which is the only way to tell if a worker is
1169 * prevented from executing tasks, even though it must continue to
1170 * scan for them to avoid queuing races. Note however that
1171 * eventCount updates lag releases so usage requires care.
1172 *
1173 * Field plock is an int packed with:
1174 * SHUTDOWN: true if shutdown is enabled (1 bit)
1175 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1176 * SIGNAL: set when threads may be waiting on the lock (1 bit)
1177 *
1178 * The sequence number enables simple consistency checks:
1179 * Staleness of read-only operations on the workQueues array can
1180 * be checked by comparing plock before vs after the reads.
1181 */
1182
1183 // bit positions/shifts for fields
1184 private static final int AC_SHIFT = 48;
1185 private static final int TC_SHIFT = 32;
1186 private static final int ST_SHIFT = 31;
1187 private static final int EC_SHIFT = 16;
1188
1189 // bounds
1190 private static final int SMASK = 0xffff; // short bits
1191 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1192 private static final int EVENMASK = 0xfffe; // even short bits
1193 private static final int SQMASK = 0x007e; // max 64 (even) slots
1194 private static final int SHORT_SIGN = 1 << 15;
1195 private static final int INT_SIGN = 1 << 31;
1196
1197 // masks
1198 private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1199 private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1200 private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1201
1202 // units for incrementing and decrementing
1203 private static final long TC_UNIT = 1L << TC_SHIFT;
1204 private static final long AC_UNIT = 1L << AC_SHIFT;
1205
1206 // masks and units for dealing with u = (int)(ctl >>> 32)
1207 private static final int UAC_SHIFT = AC_SHIFT - 32;
1208 private static final int UTC_SHIFT = TC_SHIFT - 32;
1209 private static final int UAC_MASK = SMASK << UAC_SHIFT;
1210 private static final int UTC_MASK = SMASK << UTC_SHIFT;
1211 private static final int UAC_UNIT = 1 << UAC_SHIFT;
1212 private static final int UTC_UNIT = 1 << UTC_SHIFT;
1213
1214 // masks and units for dealing with e = (int)ctl
1215 private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1216 private static final int E_SEQ = 1 << EC_SHIFT;
1217
1218 // plock bits
1219 private static final int SHUTDOWN = 1 << 31;
1220 private static final int PL_LOCK = 2;
1221 private static final int PL_SIGNAL = 1;
1222 private static final int PL_SPINS = 1 << 8;
1223
1224 // access mode for WorkQueue
1225 static final int LIFO_QUEUE = 0;
1226 static final int FIFO_QUEUE = 1;
1227 static final int SHARED_QUEUE = -1;
1228
1229 // Heuristic padding to ameliorate unfortunate memory placements
1230 volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1231
1232 // Instance fields
1233 volatile long stealCount; // collects worker counts
1234 volatile long ctl; // main pool control
1235 volatile int plock; // shutdown status and seqLock
1236 volatile int indexSeed; // worker/submitter index seed
1237 final short parallelism; // parallelism level
1238 final short mode; // LIFO/FIFO
1239 WorkQueue[] workQueues; // main registry
1240 final ForkJoinWorkerThreadFactory factory;
1241 final UncaughtExceptionHandler ueh; // per-worker UEH
1242 final String workerNamePrefix; // to create worker name string
1243
1244 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1245 volatile Object pad18, pad19, pad1a, pad1b;
1246
1247 /**
1248 * Acquires the plock lock to protect worker array and related
1249 * updates. This method is called only if an initial CAS on plock
1250 * fails. This acts as a spinlock for normal cases, but falls back
1251 * to builtin monitor to block when (rarely) needed. This would be
1252 * a terrible idea for a highly contended lock, but works fine as
1253 * a more conservative alternative to a pure spinlock.
1254 */
1255 private int acquirePlock() {
1256 int spins = PL_SPINS, ps, nps;
1257 for (;;) {
1258 if (((ps = plock) & PL_LOCK) == 0 &&
1259 U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1260 return nps;
1261 else if (spins >= 0) {
1262 if (ThreadLocalRandom.current().nextInt() >= 0)
1263 --spins;
1264 }
1265 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1266 synchronized (this) {
1267 if ((plock & PL_SIGNAL) != 0) {
1268 try {
1269 wait();
1270 } catch (InterruptedException ie) {
1271 try {
1272 Thread.currentThread().interrupt();
1273 } catch (SecurityException ignore) {
1274 }
1275 }
1276 }
1277 else
1278 notifyAll();
1279 }
1280 }
1281 }
1282 }
1283
1284 /**
1285 * Unlocks and signals any thread waiting for plock. Called only
1286 * when CAS of seq value for unlock fails.
1287 */
1288 private void releasePlock(int ps) {
1289 plock = ps;
1290 synchronized (this) { notifyAll(); }
1291 }
1292
1293 /**
1294 * Tries to create and start one worker if fewer than target
1295 * parallelism level exist. Adjusts counts etc on failure.
1296 */
1297 private void tryAddWorker() {
1298 long c; int u, e;
1299 while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1300 (u & SHORT_SIGN) != 0 && (e = (int)c) >= 0) {
1301 long nc = ((long)(((u + UTC_UNIT) & UTC_MASK) |
1302 ((u + UAC_UNIT) & UAC_MASK)) << 32) | (long)e;
1303 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1304 ForkJoinWorkerThreadFactory fac;
1305 Throwable ex = null;
1306 ForkJoinWorkerThread wt = null;
1307 try {
1308 if ((fac = factory) != null &&
1309 (wt = fac.newThread(this)) != null) {
1310 wt.start();
1311 break;
1312 }
1313 } catch (Throwable rex) {
1314 ex = rex;
1315 }
1316 deregisterWorker(wt, ex);
1317 break;
1318 }
1319 }
1320 }
1321
1322 // Registering and deregistering workers
1323
1324 /**
1325 * Callback from ForkJoinWorkerThread to establish and record its
1326 * WorkQueue. To avoid scanning bias due to packing entries in
1327 * front of the workQueues array, we treat the array as a simple
1328 * power-of-two hash table using per-thread seed as hash,
1329 * expanding as needed.
1330 *
1331 * @param wt the worker thread
1332 * @return the worker's queue
1333 */
1334 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1335 UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1336 wt.setDaemon(true);
1337 if ((handler = ueh) != null)
1338 wt.setUncaughtExceptionHandler(handler);
1339 do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1340 s += SEED_INCREMENT) ||
1341 s == 0); // skip 0
1342 WorkQueue w = new WorkQueue(this, wt, mode, s);
1343 if (((ps = plock) & PL_LOCK) != 0 ||
1344 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1345 ps = acquirePlock();
1346 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1347 try {
1348 if ((ws = workQueues) != null) { // skip if shutting down
1349 int n = ws.length, m = n - 1;
1350 int r = (s << 1) | 1; // use odd-numbered indices
1351 if (ws[r &= m] != null) { // collision
1352 int probes = 0; // step by approx half size
1353 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1354 while (ws[r = (r + step) & m] != null) {
1355 if (++probes >= n) {
1356 workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1357 m = n - 1;
1358 probes = 0;
1359 }
1360 }
1361 }
1362 w.poolIndex = (short)r;
1363 w.eventCount = r; // volatile write orders
1364 ws[r] = w;
1365 }
1366 } finally {
1367 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1368 releasePlock(nps);
1369 }
1370 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex >>> 1)));
1371 return w;
1372 }
1373
1374 /**
1375 * Final callback from terminating worker, as well as upon failure
1376 * to construct or start a worker. Removes record of worker from
1377 * array, and adjusts counts. If pool is shutting down, tries to
1378 * complete termination.
1379 *
1380 * @param wt the worker thread, or null if construction failed
1381 * @param ex the exception causing failure, or null if none
1382 */
1383 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1384 WorkQueue w = null;
1385 if (wt != null && (w = wt.workQueue) != null) {
1386 int ps; long sc;
1387 w.qlock = -1; // ensure set
1388 do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1389 sc = stealCount,
1390 sc + w.nsteals));
1391 if (((ps = plock) & PL_LOCK) != 0 ||
1392 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1393 ps = acquirePlock();
1394 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1395 try {
1396 int idx = w.poolIndex;
1397 WorkQueue[] ws = workQueues;
1398 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1399 ws[idx] = null;
1400 } finally {
1401 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1402 releasePlock(nps);
1403 }
1404 }
1405
1406 long c; // adjust ctl counts
1407 do {} while (!U.compareAndSwapLong
1408 (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1409 ((c - TC_UNIT) & TC_MASK) |
1410 (c & ~(AC_MASK|TC_MASK)))));
1411
1412 if (!tryTerminate(false, false) && w != null && w.array != null) {
1413 w.cancelAll(); // cancel remaining tasks
1414 WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1415 while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1416 if (e > 0) { // activate or create replacement
1417 if ((ws = workQueues) == null ||
1418 (i = e & SMASK) >= ws.length ||
1419 (v = ws[i]) == null)
1420 break;
1421 long nc = (((long)(v.nextWait & E_MASK)) |
1422 ((long)(u + UAC_UNIT) << 32));
1423 if (v.eventCount != (e | INT_SIGN))
1424 break;
1425 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1426 v.eventCount = (e + E_SEQ) & E_MASK;
1427 if ((p = v.parker) != null)
1428 U.unpark(p);
1429 break;
1430 }
1431 }
1432 else {
1433 if ((short)u < 0)
1434 tryAddWorker();
1435 break;
1436 }
1437 }
1438 }
1439 if (ex == null) // help clean refs on way out
1440 ForkJoinTask.helpExpungeStaleExceptions();
1441 else // rethrow
1442 ForkJoinTask.rethrow(ex);
1443 }
1444
1445 // Submissions
1446
1447 /**
1448 * Per-thread records for threads that submit to pools. Currently
1449 * holds only pseudo-random seed / index that is used to choose
1450 * submission queues in method externalPush. In the future, this may
1451 * also incorporate a means to implement different task rejection
1452 * and resubmission policies.
1453 *
1454 * Seeds for submitters and workers/workQueues work in basically
1455 * the same way but are initialized and updated using slightly
1456 * different mechanics. Both are initialized using the same
1457 * approach as in class ThreadLocal, where successive values are
1458 * unlikely to collide with previous values. Seeds are then
1459 * randomly modified upon collisions using xorshifts, which
1460 * requires a non-zero seed.
1461 */
1462 static final class Submitter {
1463 int seed;
1464 Submitter(int s) { seed = s; }
1465 }
1466
1467 /**
1468 * Unless shutting down, adds the given task to a submission queue
1469 * at submitter's current queue index (modulo submission
1470 * range). Only the most common path is directly handled in this
1471 * method. All others are relayed to fullExternalPush.
1472 *
1473 * @param task the task. Caller must ensure non-null.
1474 */
1475 final void externalPush(ForkJoinTask<?> task) {
1476 Submitter z = submitters.get();
1477 WorkQueue q; int r, m, s, n, am; ForkJoinTask<?>[] a;
1478 int ps = plock;
1479 WorkQueue[] ws = workQueues;
1480 if (z != null && ps > 0 && ws != null && (m = (ws.length - 1)) >= 0 &&
1481 (q = ws[m & (r = z.seed) & SQMASK]) != null && r != 0 &&
1482 U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1483 if ((a = q.array) != null &&
1484 (am = a.length - 1) > (n = (s = q.top) - q.base)) {
1485 int j = ((am & s) << ASHIFT) + ABASE;
1486 U.putOrderedObject(a, j, task);
1487 q.top = s + 1; // push on to deque
1488 q.qlock = 0;
1489 if (n <= 1)
1490 signalWork(ws, q);
1491 return;
1492 }
1493 q.qlock = 0;
1494 }
1495 fullExternalPush(task);
1496 }
1497
1498 /**
1499 * Full version of externalPush. This method is called, among
1500 * other times, upon the first submission of the first task to the
1501 * pool, so must perform secondary initialization. It also
1502 * detects first submission by an external thread by looking up
1503 * its ThreadLocal, and creates a new shared queue if the one at
1504 * index if empty or contended. The plock lock body must be
1505 * exception-free (so no try/finally) so we optimistically
1506 * allocate new queues outside the lock and throw them away if
1507 * (very rarely) not needed.
1508 *
1509 * Secondary initialization occurs when plock is zero, to create
1510 * workQueue array and set plock to a valid value. This lock body
1511 * must also be exception-free. Because the plock seq value can
1512 * eventually wrap around zero, this method harmlessly fails to
1513 * reinitialize if workQueues exists, while still advancing plock.
1514 */
1515 private void fullExternalPush(ForkJoinTask<?> task) {
1516 int r = 0; // random index seed
1517 for (Submitter z = submitters.get();;) {
1518 WorkQueue[] ws; WorkQueue q; int ps, m, k;
1519 if (z == null) {
1520 if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1521 r += SEED_INCREMENT) && r != 0)
1522 submitters.set(z = new Submitter(r));
1523 }
1524 else if (r == 0) { // move to a different index
1525 r = z.seed;
1526 r ^= r << 13; // same xorshift as WorkQueues
1527 r ^= r >>> 17;
1528 z.seed = r ^= (r << 5);
1529 }
1530 if ((ps = plock) < 0)
1531 throw new RejectedExecutionException();
1532 else if (ps == 0 || (ws = workQueues) == null ||
1533 (m = ws.length - 1) < 0) { // initialize workQueues
1534 int p = parallelism; // find power of two table size
1535 int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1536 n |= n >>> 1;
1537 n |= n >>> 2;
1538 n |= n >>> 4;
1539 n |= n >>> 8;
1540 n |= n >>> 16;
1541 n = (n + 1) << 1;
1542 WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1543 new WorkQueue[n] : null);
1544 if (((ps = plock) & PL_LOCK) != 0 ||
1545 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1546 ps = acquirePlock();
1547 if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1548 workQueues = nws;
1549 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1550 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1551 releasePlock(nps);
1552 }
1553 else if ((q = ws[k = r & m & SQMASK]) != null) {
1554 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1555 ForkJoinTask<?>[] a = q.array;
1556 int s = q.top;
1557 boolean submitted = false;
1558 try { // locked version of push
1559 if ((a != null && a.length > s + 1 - q.base) ||
1560 (a = q.growArray()) != null) { // must presize
1561 int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1562 U.putOrderedObject(a, j, task);
1563 q.top = s + 1;
1564 submitted = true;
1565 }
1566 } finally {
1567 q.qlock = 0; // unlock
1568 }
1569 if (submitted) {
1570 signalWork(ws, q);
1571 return;
1572 }
1573 }
1574 r = 0; // move on failure
1575 }
1576 else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1577 q = new WorkQueue(this, null, SHARED_QUEUE, r);
1578 q.poolIndex = (short)k;
1579 if (((ps = plock) & PL_LOCK) != 0 ||
1580 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1581 ps = acquirePlock();
1582 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1583 ws[k] = q;
1584 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1585 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1586 releasePlock(nps);
1587 }
1588 else
1589 r = 0;
1590 }
1591 }
1592
1593 // Maintaining ctl counts
1594
1595 /**
1596 * Increments active count; mainly called upon return from blocking.
1597 */
1598 final void incrementActiveCount() {
1599 long c;
1600 do {} while (!U.compareAndSwapLong
1601 (this, CTL, c = ctl, ((c & ~AC_MASK) |
1602 ((c & AC_MASK) + AC_UNIT))));
1603 }
1604
1605 /**
1606 * Tries to create or activate a worker if too few are active.
1607 *
1608 * @param ws the worker array to use to find signallees
1609 * @param q if non-null, the queue holding tasks to be processed
1610 */
1611 final void signalWork(WorkQueue[] ws, WorkQueue q) {
1612 for (;;) {
1613 long c; int e, u, i; WorkQueue w; Thread p;
1614 if ((u = (int)((c = ctl) >>> 32)) >= 0)
1615 break;
1616 if ((e = (int)c) <= 0) {
1617 if ((short)u < 0)
1618 tryAddWorker();
1619 break;
1620 }
1621 if (ws == null || ws.length <= (i = e & SMASK) ||
1622 (w = ws[i]) == null)
1623 break;
1624 long nc = (((long)(w.nextWait & E_MASK)) |
1625 ((long)(u + UAC_UNIT)) << 32);
1626 int ne = (e + E_SEQ) & E_MASK;
1627 if (w.eventCount == (e | INT_SIGN) &&
1628 U.compareAndSwapLong(this, CTL, c, nc)) {
1629 w.eventCount = ne;
1630 if ((p = w.parker) != null)
1631 U.unpark(p);
1632 break;
1633 }
1634 if (q != null && q.base >= q.top)
1635 break;
1636 }
1637 }
1638
1639 // Scanning for tasks
1640
1641 /**
1642 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1643 */
1644 final void runWorker(WorkQueue w) {
1645 w.growArray(); // allocate queue
1646 for (int r = w.hint; scan(w, r) == 0; ) {
1647 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1648 }
1649 }
1650
1651 /**
1652 * Scans for and, if found, runs one task, else possibly
1653 * inactivates the worker. This method operates on single reads of
1654 * volatile state and is designed to be re-invoked continuously,
1655 * in part because it returns upon detecting inconsistencies,
1656 * contention, or state changes that indicate possible success on
1657 * re-invocation.
1658 *
1659 * The scan searches for tasks across queues starting at a random
1660 * index, checking each at least twice. The scan terminates upon
1661 * either finding a non-empty queue, or completing the sweep. If
1662 * the worker is not inactivated, it takes and runs a task from
1663 * this queue. Otherwise, if not activated, it tries to activate
1664 * itself or some other worker by signalling. On failure to find a
1665 * task, returns (for retry) if pool state may have changed during
1666 * an empty scan, or tries to inactivate if active, else possibly
1667 * blocks or terminates via method awaitWork.
1668 *
1669 * @param w the worker (via its WorkQueue)
1670 * @param r a random seed
1671 * @return worker qlock status if would have waited, else 0
1672 */
1673 private final int scan(WorkQueue w, int r) {
1674 WorkQueue[] ws; int m;
1675 long c = ctl; // for consistency check
1676 if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 && w != null) {
1677 for (int j = m + m + 1, ec = w.eventCount;;) {
1678 WorkQueue q; int b, e; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1679 if ((q = ws[(r - j) & m]) != null &&
1680 (b = q.base) - q.top < 0 && (a = q.array) != null) {
1681 long i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1682 if ((t = ((ForkJoinTask<?>)
1683 U.getObjectVolatile(a, i))) != null) {
1684 if (ec < 0)
1685 helpRelease(c, ws, w, q, b);
1686 else if (q.base == b &&
1687 U.compareAndSwapObject(a, i, t, null)) {
1688 U.putOrderedInt(q, QBASE, b + 1);
1689 if ((b + 1) - q.top < 0)
1690 signalWork(ws, q);
1691 w.runTask(t);
1692 }
1693 }
1694 break;
1695 }
1696 else if (--j < 0) {
1697 if ((ec | (e = (int)c)) < 0) // inactive or terminating
1698 return awaitWork(w, c, ec);
1699 else if (ctl == c) { // try to inactivate and enqueue
1700 long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1701 w.nextWait = e;
1702 w.eventCount = ec | INT_SIGN;
1703 if (!U.compareAndSwapLong(this, CTL, c, nc))
1704 w.eventCount = ec; // back out
1705 }
1706 break;
1707 }
1708 }
1709 }
1710 return 0;
1711 }
1712
1713 /**
1714 * A continuation of scan(), possibly blocking or terminating
1715 * worker w. Returns without blocking if pool state has apparently
1716 * changed since last invocation. Also, if inactivating w has
1717 * caused the pool to become quiescent, checks for pool
1718 * termination, and, so long as this is not the only worker, waits
1719 * for event for up to a given duration. On timeout, if ctl has
1720 * not changed, terminates the worker, which will in turn wake up
1721 * another worker to possibly repeat this process.
1722 *
1723 * @param w the calling worker
1724 * @param c the ctl value on entry to scan
1725 * @param ec the worker's eventCount on entry to scan
1726 */
1727 private final int awaitWork(WorkQueue w, long c, int ec) {
1728 int stat, ns; long parkTime, deadline;
1729 if ((stat = w.qlock) >= 0 && w.eventCount == ec && ctl == c &&
1730 !Thread.interrupted()) {
1731 int e = (int)c;
1732 int u = (int)(c >>> 32);
1733 int d = (u >> UAC_SHIFT) + parallelism; // active count
1734
1735 if (e < 0 || (d <= 0 && tryTerminate(false, false)))
1736 stat = w.qlock = -1; // pool is terminating
1737 else if ((ns = w.nsteals) != 0) { // collect steals and retry
1738 long sc;
1739 w.nsteals = 0;
1740 do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1741 sc = stealCount, sc + ns));
1742 }
1743 else {
1744 long pc = ((d > 0 || ec != (e | INT_SIGN)) ? 0L :
1745 ((long)(w.nextWait & E_MASK)) | // ctl to restore
1746 ((long)(u + UAC_UNIT)) << 32);
1747 if (pc != 0L) { // timed wait if last waiter
1748 int dc = -(short)(c >>> TC_SHIFT);
1749 parkTime = (dc < 0 ? FAST_IDLE_TIMEOUT:
1750 (dc + 1) * IDLE_TIMEOUT);
1751 deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1752 }
1753 else
1754 parkTime = deadline = 0L;
1755 if (w.eventCount == ec && ctl == c) {
1756 Thread wt = Thread.currentThread();
1757 U.putObject(wt, PARKBLOCKER, this);
1758 w.parker = wt; // emulate LockSupport.park
1759 if (w.eventCount == ec && ctl == c)
1760 U.park(false, parkTime); // must recheck before park
1761 w.parker = null;
1762 U.putObject(wt, PARKBLOCKER, null);
1763 if (parkTime != 0L && ctl == c &&
1764 deadline - System.nanoTime() <= 0L &&
1765 U.compareAndSwapLong(this, CTL, c, pc))
1766 stat = w.qlock = -1; // shrink pool
1767 }
1768 }
1769 }
1770 return stat;
1771 }
1772
1773 /**
1774 * Possibly releases (signals) a worker. Called only from scan()
1775 * when a worker with apparently inactive status finds a non-empty
1776 * queue. This requires revalidating all of the associated state
1777 * from caller.
1778 */
1779 private final void helpRelease(long c, WorkQueue[] ws, WorkQueue w,
1780 WorkQueue q, int b) {
1781 WorkQueue v; int e, i; Thread p;
1782 if (w != null && w.eventCount < 0 && (e = (int)c) > 0 &&
1783 ws != null && ws.length > (i = e & SMASK) &&
1784 (v = ws[i]) != null && ctl == c) {
1785 long nc = (((long)(v.nextWait & E_MASK)) |
1786 ((long)((int)(c >>> 32) + UAC_UNIT)) << 32);
1787 int ne = (e + E_SEQ) & E_MASK;
1788 if (q != null && q.base == b && w.eventCount < 0 &&
1789 v.eventCount == (e | INT_SIGN) &&
1790 U.compareAndSwapLong(this, CTL, c, nc)) {
1791 v.eventCount = ne;
1792 if ((p = v.parker) != null)
1793 U.unpark(p);
1794 }
1795 }
1796 }
1797
1798 /**
1799 * Tries to locate and execute tasks for a stealer of the given
1800 * task, or in turn one of its stealers, Traces currentSteal ->
1801 * currentJoin links looking for a thread working on a descendant
1802 * of the given task and with a non-empty queue to steal back and
1803 * execute tasks from. The first call to this method upon a
1804 * waiting join will often entail scanning/search, (which is OK
1805 * because the joiner has nothing better to do), but this method
1806 * leaves hints in workers to speed up subsequent calls. The
1807 * implementation is very branchy to cope with potential
1808 * inconsistencies or loops encountering chains that are stale,
1809 * unknown, or so long that they are likely cyclic.
1810 *
1811 * @param joiner the joining worker
1812 * @param task the task to join
1813 * @return 0 if no progress can be made, negative if task
1814 * known complete, else positive
1815 */
1816 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1817 int stat = 0, steps = 0; // bound to avoid cycles
1818 if (task != null && joiner != null &&
1819 joiner.base - joiner.top >= 0) { // hoist checks
1820 restart: for (;;) {
1821 ForkJoinTask<?> subtask = task; // current target
1822 for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1823 WorkQueue[] ws; int m, s, h;
1824 if ((s = task.status) < 0) {
1825 stat = s;
1826 break restart;
1827 }
1828 if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1829 break restart; // shutting down
1830 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1831 v.currentSteal != subtask) {
1832 for (int origin = h;;) { // find stealer
1833 if (((h = (h + 2) & m) & 15) == 1 &&
1834 (subtask.status < 0 || j.currentJoin != subtask))
1835 continue restart; // occasional staleness check
1836 if ((v = ws[h]) != null &&
1837 v.currentSteal == subtask) {
1838 j.hint = h; // save hint
1839 break;
1840 }
1841 if (h == origin)
1842 break restart; // cannot find stealer
1843 }
1844 }
1845 for (;;) { // help stealer or descend to its stealer
1846 ForkJoinTask<?>[] a; int b;
1847 if (subtask.status < 0) // surround probes with
1848 continue restart; // consistency checks
1849 if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1850 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1851 ForkJoinTask<?> t =
1852 (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1853 if (subtask.status < 0 || j.currentJoin != subtask ||
1854 v.currentSteal != subtask)
1855 continue restart; // stale
1856 stat = 1; // apparent progress
1857 if (v.base == b) {
1858 if (t == null)
1859 break restart;
1860 if (U.compareAndSwapObject(a, i, t, null)) {
1861 U.putOrderedInt(v, QBASE, b + 1);
1862 ForkJoinTask<?> ps = joiner.currentSteal;
1863 int jt = joiner.top;
1864 do {
1865 joiner.currentSteal = t;
1866 t.doExec(); // clear local tasks too
1867 } while (task.status >= 0 &&
1868 joiner.top != jt &&
1869 (t = joiner.pop()) != null);
1870 joiner.currentSteal = ps;
1871 break restart;
1872 }
1873 }
1874 }
1875 else { // empty -- try to descend
1876 ForkJoinTask<?> next = v.currentJoin;
1877 if (subtask.status < 0 || j.currentJoin != subtask ||
1878 v.currentSteal != subtask)
1879 continue restart; // stale
1880 else if (next == null || ++steps == MAX_HELP)
1881 break restart; // dead-end or maybe cyclic
1882 else {
1883 subtask = next;
1884 j = v;
1885 break;
1886 }
1887 }
1888 }
1889 }
1890 }
1891 }
1892 return stat;
1893 }
1894
1895 /**
1896 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1897 * and run tasks within the target's computation.
1898 *
1899 * @param task the task to join
1900 */
1901 private int helpComplete(WorkQueue joiner, CountedCompleter<?> task) {
1902 WorkQueue[] ws; int m;
1903 int s = 0;
1904 if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 &&
1905 joiner != null && task != null) {
1906 int j = joiner.poolIndex;
1907 int scans = m + m + 1;
1908 long c = 0L; // for stability check
1909 for (int k = scans; ; j += 2) {
1910 WorkQueue q;
1911 if ((s = task.status) < 0)
1912 break;
1913 else if (joiner.internalPopAndExecCC(task))
1914 k = scans;
1915 else if ((s = task.status) < 0)
1916 break;
1917 else if ((q = ws[j & m]) != null && q.pollAndExecCC(task))
1918 k = scans;
1919 else if (--k < 0) {
1920 if (c == (c = ctl))
1921 break;
1922 k = scans;
1923 }
1924 }
1925 }
1926 return s;
1927 }
1928
1929 /**
1930 * Tries to decrement active count (sometimes implicitly) and
1931 * possibly release or create a compensating worker in preparation
1932 * for blocking. Fails on contention or termination. Otherwise,
1933 * adds a new thread if no idle workers are available and pool
1934 * may become starved.
1935 *
1936 * @param c the assumed ctl value
1937 */
1938 final boolean tryCompensate(long c) {
1939 WorkQueue[] ws = workQueues;
1940 int pc = parallelism, e = (int)c, m, tc;
1941 if (ws != null && (m = ws.length - 1) >= 0 && e >= 0 && ctl == c) {
1942 WorkQueue w = ws[e & m];
1943 if (e != 0 && w != null) {
1944 Thread p;
1945 long nc = ((long)(w.nextWait & E_MASK) |
1946 (c & (AC_MASK|TC_MASK)));
1947 int ne = (e + E_SEQ) & E_MASK;
1948 if (w.eventCount == (e | INT_SIGN) &&
1949 U.compareAndSwapLong(this, CTL, c, nc)) {
1950 w.eventCount = ne;
1951 if ((p = w.parker) != null)
1952 U.unpark(p);
1953 return true; // replace with idle worker
1954 }
1955 }
1956 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1957 (int)(c >> AC_SHIFT) + pc > 1) {
1958 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1959 if (U.compareAndSwapLong(this, CTL, c, nc))
1960 return true; // no compensation
1961 }
1962 else if (tc + pc < MAX_CAP) {
1963 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1964 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1965 ForkJoinWorkerThreadFactory fac;
1966 Throwable ex = null;
1967 ForkJoinWorkerThread wt = null;
1968 try {
1969 if ((fac = factory) != null &&
1970 (wt = fac.newThread(this)) != null) {
1971 wt.start();
1972 return true;
1973 }
1974 } catch (Throwable rex) {
1975 ex = rex;
1976 }
1977 deregisterWorker(wt, ex); // clean up and return false
1978 }
1979 }
1980 }
1981 return false;
1982 }
1983
1984 /**
1985 * Helps and/or blocks until the given task is done.
1986 *
1987 * @param joiner the joining worker
1988 * @param task the task
1989 * @return task status on exit
1990 */
1991 final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1992 int s = 0;
1993 if (task != null && (s = task.status) >= 0 && joiner != null) {
1994 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1995 joiner.currentJoin = task;
1996 do {} while (joiner.tryRemoveAndExec(task) && // process local tasks
1997 (s = task.status) >= 0);
1998 if (s >= 0 && (task instanceof CountedCompleter))
1999 s = helpComplete(joiner, (CountedCompleter<?>)task);
2000 long cc = 0; // for stability checks
2001 while (s >= 0 && (s = task.status) >= 0) {
2002 if ((s = tryHelpStealer(joiner, task)) == 0 &&
2003 (s = task.status) >= 0) {
2004 if (!tryCompensate(cc))
2005 cc = ctl;
2006 else {
2007 if (task.trySetSignal() && (s = task.status) >= 0) {
2008 synchronized (task) {
2009 if (task.status >= 0) {
2010 try { // see ForkJoinTask
2011 task.wait(); // for explanation
2012 } catch (InterruptedException ie) {
2013 }
2014 }
2015 else
2016 task.notifyAll();
2017 }
2018 }
2019 long c; // reactivate
2020 do {} while (!U.compareAndSwapLong
2021 (this, CTL, c = ctl,
2022 ((c & ~AC_MASK) |
2023 ((c & AC_MASK) + AC_UNIT))));
2024 }
2025 }
2026 }
2027 joiner.currentJoin = prevJoin;
2028 }
2029 return s;
2030 }
2031
2032 /**
2033 * Stripped-down variant of awaitJoin used by timed joins. Tries
2034 * to help join only while there is continuous progress. (Caller
2035 * will then enter a timed wait.)
2036 *
2037 * @param joiner the joining worker
2038 * @param task the task
2039 */
2040 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2041 int s;
2042 if (joiner != null && task != null && (s = task.status) >= 0) {
2043 ForkJoinTask<?> prevJoin = joiner.currentJoin;
2044 joiner.currentJoin = task;
2045 do {} while (joiner.tryRemoveAndExec(task) && // process local tasks
2046 (s = task.status) >= 0);
2047 if (s >= 0) {
2048 if (task instanceof CountedCompleter)
2049 helpComplete(joiner, (CountedCompleter<?>)task);
2050 do {} while (task.status >= 0 &&
2051 tryHelpStealer(joiner, task) > 0);
2052 }
2053 joiner.currentJoin = prevJoin;
2054 }
2055 }
2056
2057 /**
2058 * Returns a (probably) non-empty steal queue, if one is found
2059 * during a scan, else null. This method must be retried by
2060 * caller if, by the time it tries to use the queue, it is empty.
2061 */
2062 private WorkQueue findNonEmptyStealQueue() {
2063 int r = ThreadLocalRandom.current().nextInt();
2064 for (;;) {
2065 int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2066 if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2067 for (int j = (m + 1) << 2; j >= 0; --j) {
2068 if ((q = ws[(((r - j) << 1) | 1) & m]) != null &&
2069 q.base - q.top < 0)
2070 return q;
2071 }
2072 }
2073 if (plock == ps)
2074 return null;
2075 }
2076 }
2077
2078 /**
2079 * Runs tasks until {@code isQuiescent()}. We piggyback on
2080 * active count ctl maintenance, but rather than blocking
2081 * when tasks cannot be found, we rescan until all others cannot
2082 * find tasks either.
2083 */
2084 final void helpQuiescePool(WorkQueue w) {
2085 ForkJoinTask<?> ps = w.currentSteal;
2086 for (boolean active = true;;) {
2087 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2088 while ((t = w.nextLocalTask()) != null)
2089 t.doExec();
2090 if ((q = findNonEmptyStealQueue()) != null) {
2091 if (!active) { // re-establish active count
2092 active = true;
2093 do {} while (!U.compareAndSwapLong
2094 (this, CTL, c = ctl,
2095 ((c & ~AC_MASK) |
2096 ((c & AC_MASK) + AC_UNIT))));
2097 }
2098 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2099 (w.currentSteal = t).doExec();
2100 w.currentSteal = ps;
2101 }
2102 }
2103 else if (active) { // decrement active count without queuing
2104 long nc = ((c = ctl) & ~AC_MASK) | ((c & AC_MASK) - AC_UNIT);
2105 if ((int)(nc >> AC_SHIFT) + parallelism == 0)
2106 break; // bypass decrement-then-increment
2107 if (U.compareAndSwapLong(this, CTL, c, nc))
2108 active = false;
2109 }
2110 else if ((int)((c = ctl) >> AC_SHIFT) + parallelism <= 0 &&
2111 U.compareAndSwapLong
2112 (this, CTL, c, ((c & ~AC_MASK) |
2113 ((c & AC_MASK) + AC_UNIT))))
2114 break;
2115 }
2116 }
2117
2118 /**
2119 * Gets and removes a local or stolen task for the given worker.
2120 *
2121 * @return a task, if available
2122 */
2123 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2124 for (ForkJoinTask<?> t;;) {
2125 WorkQueue q; int b;
2126 if ((t = w.nextLocalTask()) != null)
2127 return t;
2128 if ((q = findNonEmptyStealQueue()) == null)
2129 return null;
2130 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2131 return t;
2132 }
2133 }
2134
2135 /**
2136 * Returns a cheap heuristic guide for task partitioning when
2137 * programmers, frameworks, tools, or languages have little or no
2138 * idea about task granularity. In essence by offering this
2139 * method, we ask users only about tradeoffs in overhead vs
2140 * expected throughput and its variance, rather than how finely to
2141 * partition tasks.
2142 *
2143 * In a steady state strict (tree-structured) computation, each
2144 * thread makes available for stealing enough tasks for other
2145 * threads to remain active. Inductively, if all threads play by
2146 * the same rules, each thread should make available only a
2147 * constant number of tasks.
2148 *
2149 * The minimum useful constant is just 1. But using a value of 1
2150 * would require immediate replenishment upon each steal to
2151 * maintain enough tasks, which is infeasible. Further,
2152 * partitionings/granularities of offered tasks should minimize
2153 * steal rates, which in general means that threads nearer the top
2154 * of computation tree should generate more than those nearer the
2155 * bottom. In perfect steady state, each thread is at
2156 * approximately the same level of computation tree. However,
2157 * producing extra tasks amortizes the uncertainty of progress and
2158 * diffusion assumptions.
2159 *
2160 * So, users will want to use values larger (but not much larger)
2161 * than 1 to both smooth over transient shortages and hedge
2162 * against uneven progress; as traded off against the cost of
2163 * extra task overhead. We leave the user to pick a threshold
2164 * value to compare with the results of this call to guide
2165 * decisions, but recommend values such as 3.
2166 *
2167 * When all threads are active, it is on average OK to estimate
2168 * surplus strictly locally. In steady-state, if one thread is
2169 * maintaining say 2 surplus tasks, then so are others. So we can
2170 * just use estimated queue length. However, this strategy alone
2171 * leads to serious mis-estimates in some non-steady-state
2172 * conditions (ramp-up, ramp-down, other stalls). We can detect
2173 * many of these by further considering the number of "idle"
2174 * threads, that are known to have zero queued tasks, so
2175 * compensate by a factor of (#idle/#active) threads.
2176 *
2177 * Note: The approximation of #busy workers as #active workers is
2178 * not very good under current signalling scheme, and should be
2179 * improved.
2180 */
2181 static int getSurplusQueuedTaskCount() {
2182 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2183 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2184 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).parallelism;
2185 int n = (q = wt.workQueue).top - q.base;
2186 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2187 return n - (a > (p >>>= 1) ? 0 :
2188 a > (p >>>= 1) ? 1 :
2189 a > (p >>>= 1) ? 2 :
2190 a > (p >>>= 1) ? 4 :
2191 8);
2192 }
2193 return 0;
2194 }
2195
2196 // Termination
2197
2198 /**
2199 * Possibly initiates and/or completes termination. The caller
2200 * triggering termination runs three passes through workQueues:
2201 * (0) Setting termination status, followed by wakeups of queued
2202 * workers; (1) cancelling all tasks; (2) interrupting lagging
2203 * threads (likely in external tasks, but possibly also blocked in
2204 * joins). Each pass repeats previous steps because of potential
2205 * lagging thread creation.
2206 *
2207 * @param now if true, unconditionally terminate, else only
2208 * if no work and no active workers
2209 * @param enable if true, enable shutdown when next possible
2210 * @return true if now terminating or terminated
2211 */
2212 private boolean tryTerminate(boolean now, boolean enable) {
2213 int ps;
2214 if (this == common) // cannot shut down
2215 return false;
2216 if ((ps = plock) >= 0) { // enable by setting plock
2217 if (!enable)
2218 return false;
2219 if ((ps & PL_LOCK) != 0 ||
2220 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2221 ps = acquirePlock();
2222 int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2223 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2224 releasePlock(nps);
2225 }
2226 for (long c;;) {
2227 if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2228 if ((short)(c >>> TC_SHIFT) + parallelism <= 0) {
2229 synchronized (this) {
2230 notifyAll(); // signal when 0 workers
2231 }
2232 }
2233 return true;
2234 }
2235 if (!now) { // check if idle & no tasks
2236 WorkQueue[] ws; WorkQueue w;
2237 if ((int)(c >> AC_SHIFT) + parallelism > 0)
2238 return false;
2239 if ((ws = workQueues) != null) {
2240 for (int i = 0; i < ws.length; ++i) {
2241 if ((w = ws[i]) != null &&
2242 (!w.isEmpty() ||
2243 ((i & 1) != 0 && w.eventCount >= 0))) {
2244 signalWork(ws, w);
2245 return false;
2246 }
2247 }
2248 }
2249 }
2250 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2251 for (int pass = 0; pass < 3; ++pass) {
2252 WorkQueue[] ws; WorkQueue w; Thread wt;
2253 if ((ws = workQueues) != null) {
2254 int n = ws.length;
2255 for (int i = 0; i < n; ++i) {
2256 if ((w = ws[i]) != null) {
2257 w.qlock = -1;
2258 if (pass > 0) {
2259 w.cancelAll();
2260 if (pass > 1 && (wt = w.owner) != null) {
2261 if (!wt.isInterrupted()) {
2262 try {
2263 wt.interrupt();
2264 } catch (Throwable ignore) {
2265 }
2266 }
2267 U.unpark(wt);
2268 }
2269 }
2270 }
2271 }
2272 // Wake up workers parked on event queue
2273 int i, e; long cc; Thread p;
2274 while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2275 (i = e & SMASK) < n && i >= 0 &&
2276 (w = ws[i]) != null) {
2277 long nc = ((long)(w.nextWait & E_MASK) |
2278 ((cc + AC_UNIT) & AC_MASK) |
2279 (cc & (TC_MASK|STOP_BIT)));
2280 if (w.eventCount == (e | INT_SIGN) &&
2281 U.compareAndSwapLong(this, CTL, cc, nc)) {
2282 w.eventCount = (e + E_SEQ) & E_MASK;
2283 w.qlock = -1;
2284 if ((p = w.parker) != null)
2285 U.unpark(p);
2286 }
2287 }
2288 }
2289 }
2290 }
2291 }
2292 }
2293
2294 // external operations on common pool
2295
2296 /**
2297 * Returns common pool queue for a thread that has submitted at
2298 * least one task.
2299 */
2300 static WorkQueue commonSubmitterQueue() {
2301 Submitter z; ForkJoinPool p; WorkQueue[] ws; int m, r;
2302 return ((z = submitters.get()) != null &&
2303 (p = common) != null &&
2304 (ws = p.workQueues) != null &&
2305 (m = ws.length - 1) >= 0) ?
2306 ws[m & z.seed & SQMASK] : null;
2307 }
2308
2309 /**
2310 * Tries to pop the given task from submitter's queue in common pool.
2311 */
2312 final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2313 WorkQueue joiner; ForkJoinTask<?>[] a; int m, s;
2314 Submitter z = submitters.get();
2315 WorkQueue[] ws = workQueues;
2316 boolean popped = false;
2317 if (z != null && ws != null && (m = ws.length - 1) >= 0 &&
2318 (joiner = ws[z.seed & m & SQMASK]) != null &&
2319 joiner.base != (s = joiner.top) &&
2320 (a = joiner.array) != null) {
2321 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2322 if (U.getObject(a, j) == task &&
2323 U.compareAndSwapInt(joiner, QLOCK, 0, 1)) {
2324 if (joiner.top == s && joiner.array == a &&
2325 U.compareAndSwapObject(a, j, task, null)) {
2326 joiner.top = s - 1;
2327 popped = true;
2328 }
2329 joiner.qlock = 0;
2330 }
2331 }
2332 return popped;
2333 }
2334
2335 final int externalHelpComplete(CountedCompleter<?> task) {
2336 WorkQueue joiner; int m, j;
2337 Submitter z = submitters.get();
2338 WorkQueue[] ws = workQueues;
2339 int s = 0;
2340 if (z != null && ws != null && (m = ws.length - 1) >= 0 &&
2341 (joiner = ws[(j = z.seed) & m & SQMASK]) != null && task != null) {
2342 int scans = m + m + 1;
2343 long c = 0L; // for stability check
2344 j |= 1; // poll odd queues
2345 for (int k = scans; ; j += 2) {
2346 WorkQueue q;
2347 if ((s = task.status) < 0)
2348 break;
2349 else if (joiner.externalPopAndExecCC(task))
2350 k = scans;
2351 else if ((s = task.status) < 0)
2352 break;
2353 else if ((q = ws[j & m]) != null && q.pollAndExecCC(task))
2354 k = scans;
2355 else if (--k < 0) {
2356 if (c == (c = ctl))
2357 break;
2358 k = scans;
2359 }
2360 }
2361 }
2362 return s;
2363 }
2364
2365 // Exported methods
2366
2367 // Constructors
2368
2369 /**
2370 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2371 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2372 * #defaultForkJoinWorkerThreadFactory default thread factory},
2373 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2374 *
2375 * @throws SecurityException if a security manager exists and
2376 * the caller is not permitted to modify threads
2377 * because it does not hold {@link
2378 * java.lang.RuntimePermission}{@code ("modifyThread")}
2379 */
2380 public ForkJoinPool() {
2381 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2382 defaultForkJoinWorkerThreadFactory, null, false);
2383 }
2384
2385 /**
2386 * Creates a {@code ForkJoinPool} with the indicated parallelism
2387 * level, the {@linkplain
2388 * #defaultForkJoinWorkerThreadFactory default thread factory},
2389 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2390 *
2391 * @param parallelism the parallelism level
2392 * @throws IllegalArgumentException if parallelism less than or
2393 * equal to zero, or greater than implementation limit
2394 * @throws SecurityException if a security manager exists and
2395 * the caller is not permitted to modify threads
2396 * because it does not hold {@link
2397 * java.lang.RuntimePermission}{@code ("modifyThread")}
2398 */
2399 public ForkJoinPool(int parallelism) {
2400 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2401 }
2402
2403 /**
2404 * Creates a {@code ForkJoinPool} with the given parameters.
2405 *
2406 * @param parallelism the parallelism level. For default value,
2407 * use {@link java.lang.Runtime#availableProcessors}.
2408 * @param factory the factory for creating new threads. For default value,
2409 * use {@link #defaultForkJoinWorkerThreadFactory}.
2410 * @param handler the handler for internal worker threads that
2411 * terminate due to unrecoverable errors encountered while executing
2412 * tasks. For default value, use {@code null}.
2413 * @param asyncMode if true,
2414 * establishes local first-in-first-out scheduling mode for forked
2415 * tasks that are never joined. This mode may be more appropriate
2416 * than default locally stack-based mode in applications in which
2417 * worker threads only process event-style asynchronous tasks.
2418 * For default value, use {@code false}.
2419 * @throws IllegalArgumentException if parallelism less than or
2420 * equal to zero, or greater than implementation limit
2421 * @throws NullPointerException if the factory is null
2422 * @throws SecurityException if a security manager exists and
2423 * the caller is not permitted to modify threads
2424 * because it does not hold {@link
2425 * java.lang.RuntimePermission}{@code ("modifyThread")}
2426 */
2427 public ForkJoinPool(int parallelism,
2428 ForkJoinWorkerThreadFactory factory,
2429 UncaughtExceptionHandler handler,
2430 boolean asyncMode) {
2431 this(checkParallelism(parallelism),
2432 checkFactory(factory),
2433 handler,
2434 (asyncMode ? FIFO_QUEUE : LIFO_QUEUE),
2435 "ForkJoinPool-" + nextPoolId() + "-worker-");
2436 checkPermission();
2437 }
2438
2439 private static int checkParallelism(int parallelism) {
2440 if (parallelism <= 0 || parallelism > MAX_CAP)
2441 throw new IllegalArgumentException();
2442 return parallelism;
2443 }
2444
2445 private static ForkJoinWorkerThreadFactory checkFactory
2446 (ForkJoinWorkerThreadFactory factory) {
2447 if (factory == null)
2448 throw new NullPointerException();
2449 return factory;
2450 }
2451
2452 /**
2453 * Creates a {@code ForkJoinPool} with the given parameters, without
2454 * any security checks or parameter validation. Invoked directly by
2455 * makeCommonPool.
2456 */
2457 private ForkJoinPool(int parallelism,
2458 ForkJoinWorkerThreadFactory factory,
2459 UncaughtExceptionHandler handler,
2460 int mode,
2461 String workerNamePrefix) {
2462 this.workerNamePrefix = workerNamePrefix;
2463 this.factory = factory;
2464 this.ueh = handler;
2465 this.mode = (short)mode;
2466 this.parallelism = (short)parallelism;
2467 long np = (long)(-parallelism); // offset ctl counts
2468 this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2469 }
2470
2471 /**
2472 * Returns the common pool instance. This pool is statically
2473 * constructed; its run state is unaffected by attempts to {@link
2474 * #shutdown} or {@link #shutdownNow}. However this pool and any
2475 * ongoing processing are automatically terminated upon program
2476 * {@link System#exit}. Any program that relies on asynchronous
2477 * task processing to complete before program termination should
2478 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2479 * before exit.
2480 *
2481 * @return the common pool instance
2482 * @since 1.8
2483 */
2484 public static ForkJoinPool commonPool() {
2485 // assert common != null : "static init error";
2486 return common;
2487 }
2488
2489 // Execution methods
2490
2491 /**
2492 * Performs the given task, returning its result upon completion.
2493 * If the computation encounters an unchecked Exception or Error,
2494 * it is rethrown as the outcome of this invocation. Rethrown
2495 * exceptions behave in the same way as regular exceptions, but,
2496 * when possible, contain stack traces (as displayed for example
2497 * using {@code ex.printStackTrace()}) of both the current thread
2498 * as well as the thread actually encountering the exception;
2499 * minimally only the latter.
2500 *
2501 * @param task the task
2502 * @param <T> the type of the task's result
2503 * @return the task's result
2504 * @throws NullPointerException if the task is null
2505 * @throws RejectedExecutionException if the task cannot be
2506 * scheduled for execution
2507 */
2508 public <T> T invoke(ForkJoinTask<T> task) {
2509 if (task == null)
2510 throw new NullPointerException();
2511 externalPush(task);
2512 return task.join();
2513 }
2514
2515 /**
2516 * Arranges for (asynchronous) execution of the given task.
2517 *
2518 * @param task the task
2519 * @throws NullPointerException if the task is null
2520 * @throws RejectedExecutionException if the task cannot be
2521 * scheduled for execution
2522 */
2523 public void execute(ForkJoinTask<?> task) {
2524 if (task == null)
2525 throw new NullPointerException();
2526 externalPush(task);
2527 }
2528
2529 // AbstractExecutorService methods
2530
2531 /**
2532 * @throws NullPointerException if the task is null
2533 * @throws RejectedExecutionException if the task cannot be
2534 * scheduled for execution
2535 */
2536 public void execute(Runnable task) {
2537 if (task == null)
2538 throw new NullPointerException();
2539 ForkJoinTask<?> job;
2540 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2541 job = (ForkJoinTask<?>) task;
2542 else
2543 job = new ForkJoinTask.RunnableExecuteAction(task);
2544 externalPush(job);
2545 }
2546
2547 /**
2548 * Submits a ForkJoinTask for execution.
2549 *
2550 * @param task the task to submit
2551 * @param <T> the type of the task's result
2552 * @return the task
2553 * @throws NullPointerException if the task is null
2554 * @throws RejectedExecutionException if the task cannot be
2555 * scheduled for execution
2556 */
2557 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2558 if (task == null)
2559 throw new NullPointerException();
2560 externalPush(task);
2561 return task;
2562 }
2563
2564 /**
2565 * @throws NullPointerException if the task is null
2566 * @throws RejectedExecutionException if the task cannot be
2567 * scheduled for execution
2568 */
2569 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2570 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2571 externalPush(job);
2572 return job;
2573 }
2574
2575 /**
2576 * @throws NullPointerException if the task is null
2577 * @throws RejectedExecutionException if the task cannot be
2578 * scheduled for execution
2579 */
2580 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2581 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2582 externalPush(job);
2583 return job;
2584 }
2585
2586 /**
2587 * @throws NullPointerException if the task is null
2588 * @throws RejectedExecutionException if the task cannot be
2589 * scheduled for execution
2590 */
2591 public ForkJoinTask<?> submit(Runnable task) {
2592 if (task == null)
2593 throw new NullPointerException();
2594 ForkJoinTask<?> job;
2595 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2596 job = (ForkJoinTask<?>) task;
2597 else
2598 job = new ForkJoinTask.AdaptedRunnableAction(task);
2599 externalPush(job);
2600 return job;
2601 }
2602
2603 /**
2604 * @throws NullPointerException {@inheritDoc}
2605 * @throws RejectedExecutionException {@inheritDoc}
2606 */
2607 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2608 // In previous versions of this class, this method constructed
2609 // a task to run ForkJoinTask.invokeAll, but now external
2610 // invocation of multiple tasks is at least as efficient.
2611 ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2612
2613 boolean done = false;
2614 try {
2615 for (Callable<T> t : tasks) {
2616 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2617 futures.add(f);
2618 externalPush(f);
2619 }
2620 for (int i = 0, size = futures.size(); i < size; i++)
2621 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2622 done = true;
2623 return futures;
2624 } finally {
2625 if (!done)
2626 for (int i = 0, size = futures.size(); i < size; i++)
2627 futures.get(i).cancel(false);
2628 }
2629 }
2630
2631 /**
2632 * Returns the factory used for constructing new workers.
2633 *
2634 * @return the factory used for constructing new workers
2635 */
2636 public ForkJoinWorkerThreadFactory getFactory() {
2637 return factory;
2638 }
2639
2640 /**
2641 * Returns the handler for internal worker threads that terminate
2642 * due to unrecoverable errors encountered while executing tasks.
2643 *
2644 * @return the handler, or {@code null} if none
2645 */
2646 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2647 return ueh;
2648 }
2649
2650 /**
2651 * Returns the targeted parallelism level of this pool.
2652 *
2653 * @return the targeted parallelism level of this pool
2654 */
2655 public int getParallelism() {
2656 int par;
2657 return ((par = parallelism) > 0) ? par : 1;
2658 }
2659
2660 /**
2661 * Returns the targeted parallelism level of the common pool.
2662 *
2663 * @return the targeted parallelism level of the common pool
2664 * @since 1.8
2665 */
2666 public static int getCommonPoolParallelism() {
2667 return commonParallelism;
2668 }
2669
2670 /**
2671 * Returns the number of worker threads that have started but not
2672 * yet terminated. The result returned by this method may differ
2673 * from {@link #getParallelism} when threads are created to
2674 * maintain parallelism when others are cooperatively blocked.
2675 *
2676 * @return the number of worker threads
2677 */
2678 public int getPoolSize() {
2679 return parallelism + (short)(ctl >>> TC_SHIFT);
2680 }
2681
2682 /**
2683 * Returns {@code true} if this pool uses local first-in-first-out
2684 * scheduling mode for forked tasks that are never joined.
2685 *
2686 * @return {@code true} if this pool uses async mode
2687 */
2688 public boolean getAsyncMode() {
2689 return mode == FIFO_QUEUE;
2690 }
2691
2692 /**
2693 * Returns an estimate of the number of worker threads that are
2694 * not blocked waiting to join tasks or for other managed
2695 * synchronization. This method may overestimate the
2696 * number of running threads.
2697 *
2698 * @return the number of worker threads
2699 */
2700 public int getRunningThreadCount() {
2701 int rc = 0;
2702 WorkQueue[] ws; WorkQueue w;
2703 if ((ws = workQueues) != null) {
2704 for (int i = 1; i < ws.length; i += 2) {
2705 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2706 ++rc;
2707 }
2708 }
2709 return rc;
2710 }
2711
2712 /**
2713 * Returns an estimate of the number of threads that are currently
2714 * stealing or executing tasks. This method may overestimate the
2715 * number of active threads.
2716 *
2717 * @return the number of active threads
2718 */
2719 public int getActiveThreadCount() {
2720 int r = parallelism + (int)(ctl >> AC_SHIFT);
2721 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2722 }
2723
2724 /**
2725 * Returns {@code true} if all worker threads are currently idle.
2726 * An idle worker is one that cannot obtain a task to execute
2727 * because none are available to steal from other threads, and
2728 * there are no pending submissions to the pool. This method is
2729 * conservative; it might not return {@code true} immediately upon
2730 * idleness of all threads, but will eventually become true if
2731 * threads remain inactive.
2732 *
2733 * @return {@code true} if all threads are currently idle
2734 */
2735 public boolean isQuiescent() {
2736 return parallelism + (int)(ctl >> AC_SHIFT) <= 0;
2737 }
2738
2739 /**
2740 * Returns an estimate of the total number of tasks stolen from
2741 * one thread's work queue by another. The reported value
2742 * underestimates the actual total number of steals when the pool
2743 * is not quiescent. This value may be useful for monitoring and
2744 * tuning fork/join programs: in general, steal counts should be
2745 * high enough to keep threads busy, but low enough to avoid
2746 * overhead and contention across threads.
2747 *
2748 * @return the number of steals
2749 */
2750 public long getStealCount() {
2751 long count = stealCount;
2752 WorkQueue[] ws; WorkQueue w;
2753 if ((ws = workQueues) != null) {
2754 for (int i = 1; i < ws.length; i += 2) {
2755 if ((w = ws[i]) != null)
2756 count += w.nsteals;
2757 }
2758 }
2759 return count;
2760 }
2761
2762 /**
2763 * Returns an estimate of the total number of tasks currently held
2764 * in queues by worker threads (but not including tasks submitted
2765 * to the pool that have not begun executing). This value is only
2766 * an approximation, obtained by iterating across all threads in
2767 * the pool. This method may be useful for tuning task
2768 * granularities.
2769 *
2770 * @return the number of queued tasks
2771 */
2772 public long getQueuedTaskCount() {
2773 long count = 0;
2774 WorkQueue[] ws; WorkQueue w;
2775 if ((ws = workQueues) != null) {
2776 for (int i = 1; i < ws.length; i += 2) {
2777 if ((w = ws[i]) != null)
2778 count += w.queueSize();
2779 }
2780 }
2781 return count;
2782 }
2783
2784 /**
2785 * Returns an estimate of the number of tasks submitted to this
2786 * pool that have not yet begun executing. This method may take
2787 * time proportional to the number of submissions.
2788 *
2789 * @return the number of queued submissions
2790 */
2791 public int getQueuedSubmissionCount() {
2792 int count = 0;
2793 WorkQueue[] ws; WorkQueue w;
2794 if ((ws = workQueues) != null) {
2795 for (int i = 0; i < ws.length; i += 2) {
2796 if ((w = ws[i]) != null)
2797 count += w.queueSize();
2798 }
2799 }
2800 return count;
2801 }
2802
2803 /**
2804 * Returns {@code true} if there are any tasks submitted to this
2805 * pool that have not yet begun executing.
2806 *
2807 * @return {@code true} if there are any queued submissions
2808 */
2809 public boolean hasQueuedSubmissions() {
2810 WorkQueue[] ws; WorkQueue w;
2811 if ((ws = workQueues) != null) {
2812 for (int i = 0; i < ws.length; i += 2) {
2813 if ((w = ws[i]) != null && !w.isEmpty())
2814 return true;
2815 }
2816 }
2817 return false;
2818 }
2819
2820 /**
2821 * Removes and returns the next unexecuted submission if one is
2822 * available. This method may be useful in extensions to this
2823 * class that re-assign work in systems with multiple pools.
2824 *
2825 * @return the next submission, or {@code null} if none
2826 */
2827 protected ForkJoinTask<?> pollSubmission() {
2828 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2829 if ((ws = workQueues) != null) {
2830 for (int i = 0; i < ws.length; i += 2) {
2831 if ((w = ws[i]) != null && (t = w.poll()) != null)
2832 return t;
2833 }
2834 }
2835 return null;
2836 }
2837
2838 /**
2839 * Removes all available unexecuted submitted and forked tasks
2840 * from scheduling queues and adds them to the given collection,
2841 * without altering their execution status. These may include
2842 * artificially generated or wrapped tasks. This method is
2843 * designed to be invoked only when the pool is known to be
2844 * quiescent. Invocations at other times may not remove all
2845 * tasks. A failure encountered while attempting to add elements
2846 * to collection {@code c} may result in elements being in
2847 * neither, either or both collections when the associated
2848 * exception is thrown. The behavior of this operation is
2849 * undefined if the specified collection is modified while the
2850 * operation is in progress.
2851 *
2852 * @param c the collection to transfer elements into
2853 * @return the number of elements transferred
2854 */
2855 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2856 int count = 0;
2857 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2858 if ((ws = workQueues) != null) {
2859 for (int i = 0; i < ws.length; ++i) {
2860 if ((w = ws[i]) != null) {
2861 while ((t = w.poll()) != null) {
2862 c.add(t);
2863 ++count;
2864 }
2865 }
2866 }
2867 }
2868 return count;
2869 }
2870
2871 /**
2872 * Returns a string identifying this pool, as well as its state,
2873 * including indications of run state, parallelism level, and
2874 * worker and task counts.
2875 *
2876 * @return a string identifying this pool, as well as its state
2877 */
2878 public String toString() {
2879 // Use a single pass through workQueues to collect counts
2880 long qt = 0L, qs = 0L; int rc = 0;
2881 long st = stealCount;
2882 long c = ctl;
2883 WorkQueue[] ws; WorkQueue w;
2884 if ((ws = workQueues) != null) {
2885 for (int i = 0; i < ws.length; ++i) {
2886 if ((w = ws[i]) != null) {
2887 int size = w.queueSize();
2888 if ((i & 1) == 0)
2889 qs += size;
2890 else {
2891 qt += size;
2892 st += w.nsteals;
2893 if (w.isApparentlyUnblocked())
2894 ++rc;
2895 }
2896 }
2897 }
2898 }
2899 int pc = parallelism;
2900 int tc = pc + (short)(c >>> TC_SHIFT);
2901 int ac = pc + (int)(c >> AC_SHIFT);
2902 if (ac < 0) // ignore transient negative
2903 ac = 0;
2904 String level;
2905 if ((c & STOP_BIT) != 0)
2906 level = (tc == 0) ? "Terminated" : "Terminating";
2907 else
2908 level = plock < 0 ? "Shutting down" : "Running";
2909 return super.toString() +
2910 "[" + level +
2911 ", parallelism = " + pc +
2912 ", size = " + tc +
2913 ", active = " + ac +
2914 ", running = " + rc +
2915 ", steals = " + st +
2916 ", tasks = " + qt +
2917 ", submissions = " + qs +
2918 "]";
2919 }
2920
2921 /**
2922 * Possibly initiates an orderly shutdown in which previously
2923 * submitted tasks are executed, but no new tasks will be
2924 * accepted. Invocation has no effect on execution state if this
2925 * is the {@link #commonPool()}, and no additional effect if
2926 * already shut down. Tasks that are in the process of being
2927 * submitted concurrently during the course of this method may or
2928 * may not be rejected.
2929 *
2930 * @throws SecurityException if a security manager exists and
2931 * the caller is not permitted to modify threads
2932 * because it does not hold {@link
2933 * java.lang.RuntimePermission}{@code ("modifyThread")}
2934 */
2935 public void shutdown() {
2936 checkPermission();
2937 tryTerminate(false, true);
2938 }
2939
2940 /**
2941 * Possibly attempts to cancel and/or stop all tasks, and reject
2942 * all subsequently submitted tasks. Invocation has no effect on
2943 * execution state if this is the {@link #commonPool()}, and no
2944 * additional effect if already shut down. Otherwise, tasks that
2945 * are in the process of being submitted or executed concurrently
2946 * during the course of this method may or may not be
2947 * rejected. This method cancels both existing and unexecuted
2948 * tasks, in order to permit termination in the presence of task
2949 * dependencies. So the method always returns an empty list
2950 * (unlike the case for some other Executors).
2951 *
2952 * @return an empty list
2953 * @throws SecurityException if a security manager exists and
2954 * the caller is not permitted to modify threads
2955 * because it does not hold {@link
2956 * java.lang.RuntimePermission}{@code ("modifyThread")}
2957 */
2958 public List<Runnable> shutdownNow() {
2959 checkPermission();
2960 tryTerminate(true, true);
2961 return Collections.emptyList();
2962 }
2963
2964 /**
2965 * Returns {@code true} if all tasks have completed following shut down.
2966 *
2967 * @return {@code true} if all tasks have completed following shut down
2968 */
2969 public boolean isTerminated() {
2970 long c = ctl;
2971 return ((c & STOP_BIT) != 0L &&
2972 (short)(c >>> TC_SHIFT) + parallelism <= 0);
2973 }
2974
2975 /**
2976 * Returns {@code true} if the process of termination has
2977 * commenced but not yet completed. This method may be useful for
2978 * debugging. A return of {@code true} reported a sufficient
2979 * period after shutdown may indicate that submitted tasks have
2980 * ignored or suppressed interruption, or are waiting for I/O,
2981 * causing this executor not to properly terminate. (See the
2982 * advisory notes for class {@link ForkJoinTask} stating that
2983 * tasks should not normally entail blocking operations. But if
2984 * they do, they must abort them on interrupt.)
2985 *
2986 * @return {@code true} if terminating but not yet terminated
2987 */
2988 public boolean isTerminating() {
2989 long c = ctl;
2990 return ((c & STOP_BIT) != 0L &&
2991 (short)(c >>> TC_SHIFT) + parallelism > 0);
2992 }
2993
2994 /**
2995 * Returns {@code true} if this pool has been shut down.
2996 *
2997 * @return {@code true} if this pool has been shut down
2998 */
2999 public boolean isShutdown() {
3000 return plock < 0;
3001 }
3002
3003 /**
3004 * Blocks until all tasks have completed execution after a
3005 * shutdown request, or the timeout occurs, or the current thread
3006 * is interrupted, whichever happens first. Because the {@link
3007 * #commonPool()} never terminates until program shutdown, when
3008 * applied to the common pool, this method is equivalent to {@link
3009 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3010 *
3011 * @param timeout the maximum time to wait
3012 * @param unit the time unit of the timeout argument
3013 * @return {@code true} if this executor terminated and
3014 * {@code false} if the timeout elapsed before termination
3015 * @throws InterruptedException if interrupted while waiting
3016 */
3017 public boolean awaitTermination(long timeout, TimeUnit unit)
3018 throws InterruptedException {
3019 if (Thread.interrupted())
3020 throw new InterruptedException();
3021 if (this == common) {
3022 awaitQuiescence(timeout, unit);
3023 return false;
3024 }
3025 long nanos = unit.toNanos(timeout);
3026 if (isTerminated())
3027 return true;
3028 if (nanos <= 0L)
3029 return false;
3030 long deadline = System.nanoTime() + nanos;
3031 synchronized (this) {
3032 for (;;) {
3033 if (isTerminated())
3034 return true;
3035 if (nanos <= 0L)
3036 return false;
3037 long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3038 wait(millis > 0L ? millis : 1L);
3039 nanos = deadline - System.nanoTime();
3040 }
3041 }
3042 }
3043
3044 /**
3045 * If called by a ForkJoinTask operating in this pool, equivalent
3046 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3047 * waits and/or attempts to assist performing tasks until this
3048 * pool {@link #isQuiescent} or the indicated timeout elapses.
3049 *
3050 * @param timeout the maximum time to wait
3051 * @param unit the time unit of the timeout argument
3052 * @return {@code true} if quiescent; {@code false} if the
3053 * timeout elapsed.
3054 */
3055 public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3056 long nanos = unit.toNanos(timeout);
3057 ForkJoinWorkerThread wt;
3058 Thread thread = Thread.currentThread();
3059 if ((thread instanceof ForkJoinWorkerThread) &&
3060 (wt = (ForkJoinWorkerThread)thread).pool == this) {
3061 helpQuiescePool(wt.workQueue);
3062 return true;
3063 }
3064 long startTime = System.nanoTime();
3065 WorkQueue[] ws;
3066 int r = 0, m;
3067 boolean found = true;
3068 while (!isQuiescent() && (ws = workQueues) != null &&
3069 (m = ws.length - 1) >= 0) {
3070 if (!found) {
3071 if ((System.nanoTime() - startTime) > nanos)
3072 return false;
3073 Thread.yield(); // cannot block
3074 }
3075 found = false;
3076 for (int j = (m + 1) << 2; j >= 0; --j) {
3077 ForkJoinTask<?> t; WorkQueue q; int b;
3078 if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3079 found = true;
3080 if ((t = q.pollAt(b)) != null)
3081 t.doExec();
3082 break;
3083 }
3084 }
3085 }
3086 return true;
3087 }
3088
3089 /**
3090 * Waits and/or attempts to assist performing tasks indefinitely
3091 * until the {@link #commonPool()} {@link #isQuiescent}.
3092 */
3093 static void quiesceCommonPool() {
3094 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3095 }
3096
3097 /**
3098 * Interface for extending managed parallelism for tasks running
3099 * in {@link ForkJoinPool}s.
3100 *
3101 * <p>A {@code ManagedBlocker} provides two methods. Method
3102 * {@code isReleasable} must return {@code true} if blocking is
3103 * not necessary. Method {@code block} blocks the current thread
3104 * if necessary (perhaps internally invoking {@code isReleasable}
3105 * before actually blocking). These actions are performed by any
3106 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3107 * The unusual methods in this API accommodate synchronizers that
3108 * may, but don't usually, block for long periods. Similarly, they
3109 * allow more efficient internal handling of cases in which
3110 * additional workers may be, but usually are not, needed to
3111 * ensure sufficient parallelism. Toward this end,
3112 * implementations of method {@code isReleasable} must be amenable
3113 * to repeated invocation.
3114 *
3115 * <p>For example, here is a ManagedBlocker based on a
3116 * ReentrantLock:
3117 * <pre> {@code
3118 * class ManagedLocker implements ManagedBlocker {
3119 * final ReentrantLock lock;
3120 * boolean hasLock = false;
3121 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3122 * public boolean block() {
3123 * if (!hasLock)
3124 * lock.lock();
3125 * return true;
3126 * }
3127 * public boolean isReleasable() {
3128 * return hasLock || (hasLock = lock.tryLock());
3129 * }
3130 * }}</pre>
3131 *
3132 * <p>Here is a class that possibly blocks waiting for an
3133 * item on a given queue:
3134 * <pre> {@code
3135 * class QueueTaker<E> implements ManagedBlocker {
3136 * final BlockingQueue<E> queue;
3137 * volatile E item = null;
3138 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3139 * public boolean block() throws InterruptedException {
3140 * if (item == null)
3141 * item = queue.take();
3142 * return true;
3143 * }
3144 * public boolean isReleasable() {
3145 * return item != null || (item = queue.poll()) != null;
3146 * }
3147 * public E getItem() { // call after pool.managedBlock completes
3148 * return item;
3149 * }
3150 * }}</pre>
3151 */
3152 public static interface ManagedBlocker {
3153 /**
3154 * Possibly blocks the current thread, for example waiting for
3155 * a lock or condition.
3156 *
3157 * @return {@code true} if no additional blocking is necessary
3158 * (i.e., if isReleasable would return true)
3159 * @throws InterruptedException if interrupted while waiting
3160 * (the method is not required to do so, but is allowed to)
3161 */
3162 boolean block() throws InterruptedException;
3163
3164 /**
3165 * Returns {@code true} if blocking is unnecessary.
3166 * @return {@code true} if blocking is unnecessary
3167 */
3168 boolean isReleasable();
3169 }
3170
3171 /**
3172 * Blocks in accord with the given blocker. If the current thread
3173 * is a {@link ForkJoinWorkerThread}, this method possibly
3174 * arranges for a spare thread to be activated if necessary to
3175 * ensure sufficient parallelism while the current thread is blocked.
3176 *
3177 * <p>If the caller is not a {@link ForkJoinTask}, this method is
3178 * behaviorally equivalent to
3179 * <pre> {@code
3180 * while (!blocker.isReleasable())
3181 * if (blocker.block())
3182 * return;
3183 * }</pre>
3184 *
3185 * If the caller is a {@code ForkJoinTask}, then the pool may
3186 * first be expanded to ensure parallelism, and later adjusted.
3187 *
3188 * @param blocker the blocker
3189 * @throws InterruptedException if blocker.block did so
3190 */
3191 public static void managedBlock(ManagedBlocker blocker)
3192 throws InterruptedException {
3193 Thread t = Thread.currentThread();
3194 if (t instanceof ForkJoinWorkerThread) {
3195 ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3196 while (!blocker.isReleasable()) {
3197 if (p.tryCompensate(p.ctl)) {
3198 try {
3199 do {} while (!blocker.isReleasable() &&
3200 !blocker.block());
3201 } finally {
3202 p.incrementActiveCount();
3203 }
3204 break;
3205 }
3206 }
3207 }
3208 else {
3209 do {} while (!blocker.isReleasable() &&
3210 !blocker.block());
3211 }
3212 }
3213
3214 // AbstractExecutorService overrides. These rely on undocumented
3215 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3216 // implement RunnableFuture.
3217
3218 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3219 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3220 }
3221
3222 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3223 return new ForkJoinTask.AdaptedCallable<T>(callable);
3224 }
3225
3226 // Unsafe mechanics
3227 private static final sun.misc.Unsafe U;
3228 private static final long CTL;
3229 private static final long PARKBLOCKER;
3230 private static final int ABASE;
3231 private static final int ASHIFT;
3232 private static final long STEALCOUNT;
3233 private static final long PLOCK;
3234 private static final long INDEXSEED;
3235 private static final long QBASE;
3236 private static final long QLOCK;
3237
3238 static {
3239 // initialize field offsets for CAS etc
3240 try {
3241 U = getUnsafe();
3242 Class<?> k = ForkJoinPool.class;
3243 CTL = U.objectFieldOffset
3244 (k.getDeclaredField("ctl"));
3245 STEALCOUNT = U.objectFieldOffset
3246 (k.getDeclaredField("stealCount"));
3247 PLOCK = U.objectFieldOffset
3248 (k.getDeclaredField("plock"));
3249 INDEXSEED = U.objectFieldOffset
3250 (k.getDeclaredField("indexSeed"));
3251 Class<?> tk = Thread.class;
3252 PARKBLOCKER = U.objectFieldOffset
3253 (tk.getDeclaredField("parkBlocker"));
3254 Class<?> wk = WorkQueue.class;
3255 QBASE = U.objectFieldOffset
3256 (wk.getDeclaredField("base"));
3257 QLOCK = U.objectFieldOffset
3258 (wk.getDeclaredField("qlock"));
3259 Class<?> ak = ForkJoinTask[].class;
3260 ABASE = U.arrayBaseOffset(ak);
3261 int scale = U.arrayIndexScale(ak);
3262 if ((scale & (scale - 1)) != 0)
3263 throw new Error("data type scale not a power of two");
3264 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3265 } catch (Exception e) {
3266 throw new Error(e);
3267 }
3268
3269 submitters = new ThreadLocal<Submitter>();
3270 defaultForkJoinWorkerThreadFactory =
3271 new DefaultForkJoinWorkerThreadFactory();
3272 modifyThreadPermission = new RuntimePermission("modifyThread");
3273
3274 common = java.security.AccessController.doPrivileged
3275 (new java.security.PrivilegedAction<ForkJoinPool>() {
3276 public ForkJoinPool run() { return makeCommonPool(); }});
3277 int par = common.parallelism; // report 1 even if threads disabled
3278 commonParallelism = par > 0 ? par : 1;
3279 }
3280
3281 /**
3282 * Creates and returns the common pool, respecting user settings
3283 * specified via system properties.
3284 */
3285 private static ForkJoinPool makeCommonPool() {
3286 int parallelism = -1;
3287 ForkJoinWorkerThreadFactory factory
3288 = defaultForkJoinWorkerThreadFactory;
3289 UncaughtExceptionHandler handler = null;
3290 try { // ignore exceptions in accessing/parsing properties
3291 String pp = System.getProperty
3292 ("java.util.concurrent.ForkJoinPool.common.parallelism");
3293 String fp = System.getProperty
3294 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3295 String hp = System.getProperty
3296 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3297 if (pp != null)
3298 parallelism = Integer.parseInt(pp);
3299 if (fp != null)
3300 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3301 getSystemClassLoader().loadClass(fp).newInstance());
3302 if (hp != null)
3303 handler = ((UncaughtExceptionHandler)ClassLoader.
3304 getSystemClassLoader().loadClass(hp).newInstance());
3305 } catch (Exception ignore) {
3306 }
3307
3308 if (parallelism < 0 && // default 1 less than #cores
3309 (parallelism = Runtime.getRuntime().availableProcessors() - 1) < 0)
3310 parallelism = 0;
3311 if (parallelism > MAX_CAP)
3312 parallelism = MAX_CAP;
3313 return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3314 "ForkJoinPool.commonPool-worker-");
3315 }
3316
3317 /**
3318 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
3319 * Replace with a simple call to Unsafe.getUnsafe when integrating
3320 * into a jdk.
3321 *
3322 * @return a sun.misc.Unsafe
3323 */
3324 private static sun.misc.Unsafe getUnsafe() {
3325 try {
3326 return sun.misc.Unsafe.getUnsafe();
3327 } catch (SecurityException tryReflectionInstead) {}
3328 try {
3329 return java.security.AccessController.doPrivileged
3330 (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
3331 public sun.misc.Unsafe run() throws Exception {
3332 Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
3333 for (java.lang.reflect.Field f : k.getDeclaredFields()) {
3334 f.setAccessible(true);
3335 Object x = f.get(null);
3336 if (k.isInstance(x))
3337 return k.cast(x);
3338 }
3339 throw new NoSuchFieldError("the Unsafe");
3340 }});
3341 } catch (java.security.PrivilegedActionException e) {
3342 throw new RuntimeException("Could not initialize intrinsics",
3343 e.getCause());
3344 }
3345 }
3346 }