ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.178
Committed: Mon Feb 11 15:39:55 2013 UTC (11 years, 3 months ago) by jsr166
Branch: MAIN
Changes since 1.177: +1 -1 lines
Log Message:
fix javadoc buglet: error: end tag missing: </ul>

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8 import java.util.concurrent.ForkJoinPool;
9 import java.util.concurrent.CountedCompleter;
10 import java.util.function.*;
11 import java.util.Spliterator;
12 import java.util.stream.Stream;
13 import java.util.stream.Streams;
14
15 import java.util.Comparator;
16 import java.util.Arrays;
17 import java.util.Map;
18 import java.util.Set;
19 import java.util.Collection;
20 import java.util.AbstractMap;
21 import java.util.AbstractSet;
22 import java.util.AbstractCollection;
23 import java.util.Hashtable;
24 import java.util.HashMap;
25 import java.util.Iterator;
26 import java.util.Enumeration;
27 import java.util.ConcurrentModificationException;
28 import java.util.NoSuchElementException;
29 import java.util.concurrent.ConcurrentMap;
30 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
31 import java.util.concurrent.atomic.AtomicInteger;
32 import java.util.concurrent.atomic.AtomicReference;
33 import java.io.Serializable;
34
35 /**
36 * A hash table supporting full concurrency of retrievals and
37 * high expected concurrency for updates. This class obeys the
38 * same functional specification as {@link java.util.Hashtable}, and
39 * includes versions of methods corresponding to each method of
40 * {@code Hashtable}. However, even though all operations are
41 * thread-safe, retrieval operations do <em>not</em> entail locking,
42 * and there is <em>not</em> any support for locking the entire table
43 * in a way that prevents all access. This class is fully
44 * interoperable with {@code Hashtable} in programs that rely on its
45 * thread safety but not on its synchronization details.
46 *
47 * <p>Retrieval operations (including {@code get}) generally do not
48 * block, so may overlap with update operations (including {@code put}
49 * and {@code remove}). Retrievals reflect the results of the most
50 * recently <em>completed</em> update operations holding upon their
51 * onset. (More formally, an update operation for a given key bears a
52 * <em>happens-before</em> relation with any (non-null) retrieval for
53 * that key reporting the updated value.) For aggregate operations
54 * such as {@code putAll} and {@code clear}, concurrent retrievals may
55 * reflect insertion or removal of only some entries. Similarly,
56 * Iterators and Enumerations return elements reflecting the state of
57 * the hash table at some point at or since the creation of the
58 * iterator/enumeration. They do <em>not</em> throw {@link
59 * ConcurrentModificationException}. However, iterators are designed
60 * to be used by only one thread at a time. Bear in mind that the
61 * results of aggregate status methods including {@code size}, {@code
62 * isEmpty}, and {@code containsValue} are typically useful only when
63 * a map is not undergoing concurrent updates in other threads.
64 * Otherwise the results of these methods reflect transient states
65 * that may be adequate for monitoring or estimation purposes, but not
66 * for program control.
67 *
68 * <p>The table is dynamically expanded when there are too many
69 * collisions (i.e., keys that have distinct hash codes but fall into
70 * the same slot modulo the table size), with the expected average
71 * effect of maintaining roughly two bins per mapping (corresponding
72 * to a 0.75 load factor threshold for resizing). There may be much
73 * variance around this average as mappings are added and removed, but
74 * overall, this maintains a commonly accepted time/space tradeoff for
75 * hash tables. However, resizing this or any other kind of hash
76 * table may be a relatively slow operation. When possible, it is a
77 * good idea to provide a size estimate as an optional {@code
78 * initialCapacity} constructor argument. An additional optional
79 * {@code loadFactor} constructor argument provides a further means of
80 * customizing initial table capacity by specifying the table density
81 * to be used in calculating the amount of space to allocate for the
82 * given number of elements. Also, for compatibility with previous
83 * versions of this class, constructors may optionally specify an
84 * expected {@code concurrencyLevel} as an additional hint for
85 * internal sizing. Note that using many keys with exactly the same
86 * {@code hashCode()} is a sure way to slow down performance of any
87 * hash table.
88 *
89 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
90 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
91 * (using {@link #keySet(Object)} when only keys are of interest, and the
92 * mapped values are (perhaps transiently) not used or all take the
93 * same mapping value.
94 *
95 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
96 * form of histogram or multiset) by using {@link
97 * java.util.concurrent.atomic.LongAdder} values and initializing via
98 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
99 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
100 * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
101 *
102 * <p>This class and its views and iterators implement all of the
103 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
104 * interfaces.
105 *
106 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
107 * does <em>not</em> allow {@code null} to be used as a key or value.
108 *
109 * <p>ConcurrentHashMaps support sequential and parallel operations
110 * bulk operations. (Parallel forms use the {@link
111 * ForkJoinPool#commonPool()}). Tasks that may be used in other
112 * contexts are available in class {@link ForkJoinTasks}. These
113 * operations are designed to be safely, and often sensibly, applied
114 * even with maps that are being concurrently updated by other
115 * threads; for example, when computing a snapshot summary of the
116 * values in a shared registry. There are three kinds of operation,
117 * each with four forms, accepting functions with Keys, Values,
118 * Entries, and (Key, Value) arguments and/or return values. Because
119 * the elements of a ConcurrentHashMap are not ordered in any
120 * particular way, and may be processed in different orders in
121 * different parallel executions, the correctness of supplied
122 * functions should not depend on any ordering, or on any other
123 * objects or values that may transiently change while computation is
124 * in progress; and except for forEach actions, should ideally be
125 * side-effect-free.
126 *
127 * <ul>
128 * <li> forEach: Perform a given action on each element.
129 * A variant form applies a given transformation on each element
130 * before performing the action.</li>
131 *
132 * <li> search: Return the first available non-null result of
133 * applying a given function on each element; skipping further
134 * search when a result is found.</li>
135 *
136 * <li> reduce: Accumulate each element. The supplied reduction
137 * function cannot rely on ordering (more formally, it should be
138 * both associative and commutative). There are five variants:
139 *
140 * <ul>
141 *
142 * <li> Plain reductions. (There is not a form of this method for
143 * (key, value) function arguments since there is no corresponding
144 * return type.)</li>
145 *
146 * <li> Mapped reductions that accumulate the results of a given
147 * function applied to each element.</li>
148 *
149 * <li> Reductions to scalar doubles, longs, and ints, using a
150 * given basis value.</li>
151 *
152 * </ul>
153 * </li>
154 * </ul>
155 *
156 * <p>The concurrency properties of bulk operations follow
157 * from those of ConcurrentHashMap: Any non-null result returned
158 * from {@code get(key)} and related access methods bears a
159 * happens-before relation with the associated insertion or
160 * update. The result of any bulk operation reflects the
161 * composition of these per-element relations (but is not
162 * necessarily atomic with respect to the map as a whole unless it
163 * is somehow known to be quiescent). Conversely, because keys
164 * and values in the map are never null, null serves as a reliable
165 * atomic indicator of the current lack of any result. To
166 * maintain this property, null serves as an implicit basis for
167 * all non-scalar reduction operations. For the double, long, and
168 * int versions, the basis should be one that, when combined with
169 * any other value, returns that other value (more formally, it
170 * should be the identity element for the reduction). Most common
171 * reductions have these properties; for example, computing a sum
172 * with basis 0 or a minimum with basis MAX_VALUE.
173 *
174 * <p>Search and transformation functions provided as arguments
175 * should similarly return null to indicate the lack of any result
176 * (in which case it is not used). In the case of mapped
177 * reductions, this also enables transformations to serve as
178 * filters, returning null (or, in the case of primitive
179 * specializations, the identity basis) if the element should not
180 * be combined. You can create compound transformations and
181 * filterings by composing them yourself under this "null means
182 * there is nothing there now" rule before using them in search or
183 * reduce operations.
184 *
185 * <p>Methods accepting and/or returning Entry arguments maintain
186 * key-value associations. They may be useful for example when
187 * finding the key for the greatest value. Note that "plain" Entry
188 * arguments can be supplied using {@code new
189 * AbstractMap.SimpleEntry(k,v)}.
190 *
191 * <p>Bulk operations may complete abruptly, throwing an
192 * exception encountered in the application of a supplied
193 * function. Bear in mind when handling such exceptions that other
194 * concurrently executing functions could also have thrown
195 * exceptions, or would have done so if the first exception had
196 * not occurred.
197 *
198 * <p>Speedups for parallel compared to sequential forms are common
199 * but not guaranteed. Parallel operations involving brief functions
200 * on small maps may execute more slowly than sequential forms if the
201 * underlying work to parallelize the computation is more expensive
202 * than the computation itself. Similarly, parallelization may not
203 * lead to much actual parallelism if all processors are busy
204 * performing unrelated tasks.
205 *
206 * <p>All arguments to all task methods must be non-null.
207 *
208 * <p>This class is a member of the
209 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
210 * Java Collections Framework</a>.
211 *
212 * @since 1.5
213 * @author Doug Lea
214 * @param <K> the type of keys maintained by this map
215 * @param <V> the type of mapped values
216 */
217 public class ConcurrentHashMap<K, V>
218 implements ConcurrentMap<K, V>, Serializable {
219 private static final long serialVersionUID = 7249069246763182397L;
220
221 /*
222 * Overview:
223 *
224 * The primary design goal of this hash table is to maintain
225 * concurrent readability (typically method get(), but also
226 * iterators and related methods) while minimizing update
227 * contention. Secondary goals are to keep space consumption about
228 * the same or better than java.util.HashMap, and to support high
229 * initial insertion rates on an empty table by many threads.
230 *
231 * Each key-value mapping is held in a Node. Because Node key
232 * fields can contain special values, they are defined using plain
233 * Object types (not type "K"). This leads to a lot of explicit
234 * casting (and many explicit warning suppressions to tell
235 * compilers not to complain about it). It also allows some of the
236 * public methods to be factored into a smaller number of internal
237 * methods (although sadly not so for the five variants of
238 * put-related operations). The validation-based approach
239 * explained below leads to a lot of code sprawl because
240 * retry-control precludes factoring into smaller methods.
241 *
242 * The table is lazily initialized to a power-of-two size upon the
243 * first insertion. Each bin in the table normally contains a
244 * list of Nodes (most often, the list has only zero or one Node).
245 * Table accesses require volatile/atomic reads, writes, and
246 * CASes. Because there is no other way to arrange this without
247 * adding further indirections, we use intrinsics
248 * (sun.misc.Unsafe) operations. The lists of nodes within bins
249 * are always accurately traversable under volatile reads, so long
250 * as lookups check hash code and non-nullness of value before
251 * checking key equality.
252 *
253 * We use the top (sign) bit of Node hash fields for control
254 * purposes -- it is available anyway because of addressing
255 * constraints. Nodes with negative hash fields are forwarding
256 * nodes to either TreeBins or resized tables. The lower 31 bits
257 * of each normal Node's hash field contain a transformation of
258 * the key's hash code.
259 *
260 * Insertion (via put or its variants) of the first node in an
261 * empty bin is performed by just CASing it to the bin. This is
262 * by far the most common case for put operations under most
263 * key/hash distributions. Other update operations (insert,
264 * delete, and replace) require locks. We do not want to waste
265 * the space required to associate a distinct lock object with
266 * each bin, so instead use the first node of a bin list itself as
267 * a lock. Locking support for these locks relies on builtin
268 * "synchronized" monitors.
269 *
270 * Using the first node of a list as a lock does not by itself
271 * suffice though: When a node is locked, any update must first
272 * validate that it is still the first node after locking it, and
273 * retry if not. Because new nodes are always appended to lists,
274 * once a node is first in a bin, it remains first until deleted
275 * or the bin becomes invalidated (upon resizing). However,
276 * operations that only conditionally update may inspect nodes
277 * until the point of update. This is a converse of sorts to the
278 * lazy locking technique described by Herlihy & Shavit.
279 *
280 * The main disadvantage of per-bin locks is that other update
281 * operations on other nodes in a bin list protected by the same
282 * lock can stall, for example when user equals() or mapping
283 * functions take a long time. However, statistically, under
284 * random hash codes, this is not a common problem. Ideally, the
285 * frequency of nodes in bins follows a Poisson distribution
286 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
287 * parameter of about 0.5 on average, given the resizing threshold
288 * of 0.75, although with a large variance because of resizing
289 * granularity. Ignoring variance, the expected occurrences of
290 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
291 * first values are:
292 *
293 * 0: 0.60653066
294 * 1: 0.30326533
295 * 2: 0.07581633
296 * 3: 0.01263606
297 * 4: 0.00157952
298 * 5: 0.00015795
299 * 6: 0.00001316
300 * 7: 0.00000094
301 * 8: 0.00000006
302 * more: less than 1 in ten million
303 *
304 * Lock contention probability for two threads accessing distinct
305 * elements is roughly 1 / (8 * #elements) under random hashes.
306 *
307 * Actual hash code distributions encountered in practice
308 * sometimes deviate significantly from uniform randomness. This
309 * includes the case when N > (1<<30), so some keys MUST collide.
310 * Similarly for dumb or hostile usages in which multiple keys are
311 * designed to have identical hash codes. Also, although we guard
312 * against the worst effects of this (see method spread), sets of
313 * hashes may differ only in bits that do not impact their bin
314 * index for a given power-of-two mask. So we use a secondary
315 * strategy that applies when the number of nodes in a bin exceeds
316 * a threshold, and at least one of the keys implements
317 * Comparable. These TreeBins use a balanced tree to hold nodes
318 * (a specialized form of red-black trees), bounding search time
319 * to O(log N). Each search step in a TreeBin is around twice as
320 * slow as in a regular list, but given that N cannot exceed
321 * (1<<64) (before running out of addresses) this bounds search
322 * steps, lock hold times, etc, to reasonable constants (roughly
323 * 100 nodes inspected per operation worst case) so long as keys
324 * are Comparable (which is very common -- String, Long, etc).
325 * TreeBin nodes (TreeNodes) also maintain the same "next"
326 * traversal pointers as regular nodes, so can be traversed in
327 * iterators in the same way.
328 *
329 * The table is resized when occupancy exceeds a percentage
330 * threshold (nominally, 0.75, but see below). Any thread
331 * noticing an overfull bin may assist in resizing after the
332 * initiating thread allocates and sets up the replacement
333 * array. However, rather than stalling, these other threads may
334 * proceed with insertions etc. The use of TreeBins shields us
335 * from the worst case effects of overfilling while resizes are in
336 * progress. Resizing proceeds by transferring bins, one by one,
337 * from the table to the next table. To enable concurrency, the
338 * next table must be (incrementally) prefilled with place-holders
339 * serving as reverse forwarders to the old table. Because we are
340 * using power-of-two expansion, the elements from each bin must
341 * either stay at same index, or move with a power of two
342 * offset. We eliminate unnecessary node creation by catching
343 * cases where old nodes can be reused because their next fields
344 * won't change. On average, only about one-sixth of them need
345 * cloning when a table doubles. The nodes they replace will be
346 * garbage collectable as soon as they are no longer referenced by
347 * any reader thread that may be in the midst of concurrently
348 * traversing table. Upon transfer, the old table bin contains
349 * only a special forwarding node (with hash field "MOVED") that
350 * contains the next table as its key. On encountering a
351 * forwarding node, access and update operations restart, using
352 * the new table.
353 *
354 * Each bin transfer requires its bin lock, which can stall
355 * waiting for locks while resizing. However, because other
356 * threads can join in and help resize rather than contend for
357 * locks, average aggregate waits become shorter as resizing
358 * progresses. The transfer operation must also ensure that all
359 * accessible bins in both the old and new table are usable by any
360 * traversal. This is arranged by proceeding from the last bin
361 * (table.length - 1) up towards the first. Upon seeing a
362 * forwarding node, traversals (see class Traverser) arrange to
363 * move to the new table without revisiting nodes. However, to
364 * ensure that no intervening nodes are skipped, bin splitting can
365 * only begin after the associated reverse-forwarders are in
366 * place.
367 *
368 * The traversal scheme also applies to partial traversals of
369 * ranges of bins (via an alternate Traverser constructor)
370 * to support partitioned aggregate operations. Also, read-only
371 * operations give up if ever forwarded to a null table, which
372 * provides support for shutdown-style clearing, which is also not
373 * currently implemented.
374 *
375 * Lazy table initialization minimizes footprint until first use,
376 * and also avoids resizings when the first operation is from a
377 * putAll, constructor with map argument, or deserialization.
378 * These cases attempt to override the initial capacity settings,
379 * but harmlessly fail to take effect in cases of races.
380 *
381 * The element count is maintained using a specialization of
382 * LongAdder. We need to incorporate a specialization rather than
383 * just use a LongAdder in order to access implicit
384 * contention-sensing that leads to creation of multiple
385 * Cells. The counter mechanics avoid contention on
386 * updates but can encounter cache thrashing if read too
387 * frequently during concurrent access. To avoid reading so often,
388 * resizing under contention is attempted only upon adding to a
389 * bin already holding two or more nodes. Under uniform hash
390 * distributions, the probability of this occurring at threshold
391 * is around 13%, meaning that only about 1 in 8 puts check
392 * threshold (and after resizing, many fewer do so). The bulk
393 * putAll operation further reduces contention by only committing
394 * count updates upon these size checks.
395 *
396 * Maintaining API and serialization compatibility with previous
397 * versions of this class introduces several oddities. Mainly: We
398 * leave untouched but unused constructor arguments refering to
399 * concurrencyLevel. We accept a loadFactor constructor argument,
400 * but apply it only to initial table capacity (which is the only
401 * time that we can guarantee to honor it.) We also declare an
402 * unused "Segment" class that is instantiated in minimal form
403 * only when serializing.
404 */
405
406 /* ---------------- Constants -------------- */
407
408 /**
409 * The largest possible table capacity. This value must be
410 * exactly 1<<30 to stay within Java array allocation and indexing
411 * bounds for power of two table sizes, and is further required
412 * because the top two bits of 32bit hash fields are used for
413 * control purposes.
414 */
415 private static final int MAXIMUM_CAPACITY = 1 << 30;
416
417 /**
418 * The default initial table capacity. Must be a power of 2
419 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
420 */
421 private static final int DEFAULT_CAPACITY = 16;
422
423 /**
424 * The largest possible (non-power of two) array size.
425 * Needed by toArray and related methods.
426 */
427 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
428
429 /**
430 * The default concurrency level for this table. Unused but
431 * defined for compatibility with previous versions of this class.
432 */
433 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
434
435 /**
436 * The load factor for this table. Overrides of this value in
437 * constructors affect only the initial table capacity. The
438 * actual floating point value isn't normally used -- it is
439 * simpler to use expressions such as {@code n - (n >>> 2)} for
440 * the associated resizing threshold.
441 */
442 private static final float LOAD_FACTOR = 0.75f;
443
444 /**
445 * The bin count threshold for using a tree rather than list for a
446 * bin. The value reflects the approximate break-even point for
447 * using tree-based operations.
448 */
449 private static final int TREE_THRESHOLD = 8;
450
451 /**
452 * Minimum number of rebinnings per transfer step. Ranges are
453 * subdivided to allow multiple resizer threads. This value
454 * serves as a lower bound to avoid resizers encountering
455 * excessive memory contention. The value should be at least
456 * DEFAULT_CAPACITY.
457 */
458 private static final int MIN_TRANSFER_STRIDE = 16;
459
460 /*
461 * Encodings for Node hash fields. See above for explanation.
462 */
463 static final int MOVED = 0x80000000; // hash field for forwarding nodes
464 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
465
466 /** Number of CPUS, to place bounds on some sizings */
467 static final int NCPU = Runtime.getRuntime().availableProcessors();
468
469 /* ---------------- Counters -------------- */
470
471 // Adapted from LongAdder and Striped64.
472 // See their internal docs for explanation.
473
474 // A padded cell for distributing counts
475 static final class Cell {
476 volatile long p0, p1, p2, p3, p4, p5, p6;
477 volatile long value;
478 volatile long q0, q1, q2, q3, q4, q5, q6;
479 Cell(long x) { value = x; }
480 }
481
482 /* ---------------- Fields -------------- */
483
484 /**
485 * The array of bins. Lazily initialized upon first insertion.
486 * Size is always a power of two. Accessed directly by iterators.
487 */
488 transient volatile Node<V>[] table;
489
490 /**
491 * The next table to use; non-null only while resizing.
492 */
493 private transient volatile Node<V>[] nextTable;
494
495 /**
496 * Base counter value, used mainly when there is no contention,
497 * but also as a fallback during table initialization
498 * races. Updated via CAS.
499 */
500 private transient volatile long baseCount;
501
502 /**
503 * Table initialization and resizing control. When negative, the
504 * table is being initialized or resized: -1 for initialization,
505 * else -(1 + the number of active resizing threads). Otherwise,
506 * when table is null, holds the initial table size to use upon
507 * creation, or 0 for default. After initialization, holds the
508 * next element count value upon which to resize the table.
509 */
510 private transient volatile int sizeCtl;
511
512 /**
513 * The next table index (plus one) to split while resizing.
514 */
515 private transient volatile int transferIndex;
516
517 /**
518 * The least available table index to split while resizing.
519 */
520 private transient volatile int transferOrigin;
521
522 /**
523 * Spinlock (locked via CAS) used when resizing and/or creating Cells.
524 */
525 private transient volatile int cellsBusy;
526
527 /**
528 * Table of counter cells. When non-null, size is a power of 2.
529 */
530 private transient volatile Cell[] counterCells;
531
532 // views
533 private transient KeySetView<K,V> keySet;
534 private transient ValuesView<K,V> values;
535 private transient EntrySetView<K,V> entrySet;
536
537 /** For serialization compatibility. Null unless serialized; see below */
538 private Segment<K,V>[] segments;
539
540 /* ---------------- Table element access -------------- */
541
542 /*
543 * Volatile access methods are used for table elements as well as
544 * elements of in-progress next table while resizing. Uses are
545 * null checked by callers, and implicitly bounds-checked, relying
546 * on the invariants that tab arrays have non-zero size, and all
547 * indices are masked with (tab.length - 1) which is never
548 * negative and always less than length. Note that, to be correct
549 * wrt arbitrary concurrency errors by users, bounds checks must
550 * operate on local variables, which accounts for some odd-looking
551 * inline assignments below.
552 */
553
554 @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
555 (Node<V>[] tab, int i) { // used by Traverser
556 return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
557 }
558
559 private static final <V> boolean casTabAt
560 (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
561 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
562 }
563
564 private static final <V> void setTabAt
565 (Node<V>[] tab, int i, Node<V> v) {
566 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
567 }
568
569 /* ---------------- Nodes -------------- */
570
571 /**
572 * Key-value entry. Note that this is never exported out as a
573 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
574 * field of MOVED are special, and do not contain user keys or
575 * values. Otherwise, keys are never null, and null val fields
576 * indicate that a node is in the process of being deleted or
577 * created. For purposes of read-only access, a key may be read
578 * before a val, but can only be used after checking val to be
579 * non-null.
580 */
581 static class Node<V> {
582 final int hash;
583 final Object key;
584 volatile V val;
585 volatile Node<V> next;
586
587 Node(int hash, Object key, V val, Node<V> next) {
588 this.hash = hash;
589 this.key = key;
590 this.val = val;
591 this.next = next;
592 }
593 }
594
595 /* ---------------- TreeBins -------------- */
596
597 /**
598 * Nodes for use in TreeBins
599 */
600 static final class TreeNode<V> extends Node<V> {
601 TreeNode<V> parent; // red-black tree links
602 TreeNode<V> left;
603 TreeNode<V> right;
604 TreeNode<V> prev; // needed to unlink next upon deletion
605 boolean red;
606
607 TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
608 super(hash, key, val, next);
609 this.parent = parent;
610 }
611 }
612
613 /**
614 * A specialized form of red-black tree for use in bins
615 * whose size exceeds a threshold.
616 *
617 * TreeBins use a special form of comparison for search and
618 * related operations (which is the main reason we cannot use
619 * existing collections such as TreeMaps). TreeBins contain
620 * Comparable elements, but may contain others, as well as
621 * elements that are Comparable but not necessarily Comparable<T>
622 * for the same T, so we cannot invoke compareTo among them. To
623 * handle this, the tree is ordered primarily by hash value, then
624 * by getClass().getName() order, and then by Comparator order
625 * among elements of the same class. On lookup at a node, if
626 * elements are not comparable or compare as 0, both left and
627 * right children may need to be searched in the case of tied hash
628 * values. (This corresponds to the full list search that would be
629 * necessary if all elements were non-Comparable and had tied
630 * hashes.) The red-black balancing code is updated from
631 * pre-jdk-collections
632 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
633 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
634 * Algorithms" (CLR).
635 *
636 * TreeBins also maintain a separate locking discipline than
637 * regular bins. Because they are forwarded via special MOVED
638 * nodes at bin heads (which can never change once established),
639 * we cannot use those nodes as locks. Instead, TreeBin
640 * extends AbstractQueuedSynchronizer to support a simple form of
641 * read-write lock. For update operations and table validation,
642 * the exclusive form of lock behaves in the same way as bin-head
643 * locks. However, lookups use shared read-lock mechanics to allow
644 * multiple readers in the absence of writers. Additionally,
645 * these lookups do not ever block: While the lock is not
646 * available, they proceed along the slow traversal path (via
647 * next-pointers) until the lock becomes available or the list is
648 * exhausted, whichever comes first. (These cases are not fast,
649 * but maximize aggregate expected throughput.) The AQS mechanics
650 * for doing this are straightforward. The lock state is held as
651 * AQS getState(). Read counts are negative; the write count (1)
652 * is positive. There are no signalling preferences among readers
653 * and writers. Since we don't need to export full Lock API, we
654 * just override the minimal AQS methods and use them directly.
655 */
656 static final class TreeBin<V> extends AbstractQueuedSynchronizer {
657 private static final long serialVersionUID = 2249069246763182397L;
658 transient TreeNode<V> root; // root of tree
659 transient TreeNode<V> first; // head of next-pointer list
660
661 /* AQS overrides */
662 public final boolean isHeldExclusively() { return getState() > 0; }
663 public final boolean tryAcquire(int ignore) {
664 if (compareAndSetState(0, 1)) {
665 setExclusiveOwnerThread(Thread.currentThread());
666 return true;
667 }
668 return false;
669 }
670 public final boolean tryRelease(int ignore) {
671 setExclusiveOwnerThread(null);
672 setState(0);
673 return true;
674 }
675 public final int tryAcquireShared(int ignore) {
676 for (int c;;) {
677 if ((c = getState()) > 0)
678 return -1;
679 if (compareAndSetState(c, c -1))
680 return 1;
681 }
682 }
683 public final boolean tryReleaseShared(int ignore) {
684 int c;
685 do {} while (!compareAndSetState(c = getState(), c + 1));
686 return c == -1;
687 }
688
689 /** From CLR */
690 private void rotateLeft(TreeNode<V> p) {
691 if (p != null) {
692 TreeNode<V> r = p.right, pp, rl;
693 if ((rl = p.right = r.left) != null)
694 rl.parent = p;
695 if ((pp = r.parent = p.parent) == null)
696 root = r;
697 else if (pp.left == p)
698 pp.left = r;
699 else
700 pp.right = r;
701 r.left = p;
702 p.parent = r;
703 }
704 }
705
706 /** From CLR */
707 private void rotateRight(TreeNode<V> p) {
708 if (p != null) {
709 TreeNode<V> l = p.left, pp, lr;
710 if ((lr = p.left = l.right) != null)
711 lr.parent = p;
712 if ((pp = l.parent = p.parent) == null)
713 root = l;
714 else if (pp.right == p)
715 pp.right = l;
716 else
717 pp.left = l;
718 l.right = p;
719 p.parent = l;
720 }
721 }
722
723 /**
724 * Returns the TreeNode (or null if not found) for the given key
725 * starting at given root.
726 */
727 @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
728 (int h, Object k, TreeNode<V> p) {
729 Class<?> c = k.getClass();
730 while (p != null) {
731 int dir, ph; Object pk; Class<?> pc;
732 if ((ph = p.hash) == h) {
733 if ((pk = p.key) == k || k.equals(pk))
734 return p;
735 if (c != (pc = pk.getClass()) ||
736 !(k instanceof Comparable) ||
737 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
738 if ((dir = (c == pc) ? 0 :
739 c.getName().compareTo(pc.getName())) == 0) {
740 TreeNode<V> r = null, pl, pr; // check both sides
741 if ((pr = p.right) != null && h >= pr.hash &&
742 (r = getTreeNode(h, k, pr)) != null)
743 return r;
744 else if ((pl = p.left) != null && h <= pl.hash)
745 dir = -1;
746 else // nothing there
747 return null;
748 }
749 }
750 }
751 else
752 dir = (h < ph) ? -1 : 1;
753 p = (dir > 0) ? p.right : p.left;
754 }
755 return null;
756 }
757
758 /**
759 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
760 * read-lock to call getTreeNode, but during failure to get
761 * lock, searches along next links.
762 */
763 final V getValue(int h, Object k) {
764 Node<V> r = null;
765 int c = getState(); // Must read lock state first
766 for (Node<V> e = first; e != null; e = e.next) {
767 if (c <= 0 && compareAndSetState(c, c - 1)) {
768 try {
769 r = getTreeNode(h, k, root);
770 } finally {
771 releaseShared(0);
772 }
773 break;
774 }
775 else if (e.hash == h && k.equals(e.key)) {
776 r = e;
777 break;
778 }
779 else
780 c = getState();
781 }
782 return r == null ? null : r.val;
783 }
784
785 /**
786 * Finds or adds a node.
787 * @return null if added
788 */
789 @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
790 (int h, Object k, V v) {
791 Class<?> c = k.getClass();
792 TreeNode<V> pp = root, p = null;
793 int dir = 0;
794 while (pp != null) { // find existing node or leaf to insert at
795 int ph; Object pk; Class<?> pc;
796 p = pp;
797 if ((ph = p.hash) == h) {
798 if ((pk = p.key) == k || k.equals(pk))
799 return p;
800 if (c != (pc = pk.getClass()) ||
801 !(k instanceof Comparable) ||
802 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
803 TreeNode<V> s = null, r = null, pr;
804 if ((dir = (c == pc) ? 0 :
805 c.getName().compareTo(pc.getName())) == 0) {
806 if ((pr = p.right) != null && h >= pr.hash &&
807 (r = getTreeNode(h, k, pr)) != null)
808 return r;
809 else // continue left
810 dir = -1;
811 }
812 else if ((pr = p.right) != null && h >= pr.hash)
813 s = pr;
814 if (s != null && (r = getTreeNode(h, k, s)) != null)
815 return r;
816 }
817 }
818 else
819 dir = (h < ph) ? -1 : 1;
820 pp = (dir > 0) ? p.right : p.left;
821 }
822
823 TreeNode<V> f = first;
824 TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
825 if (p == null)
826 root = x;
827 else { // attach and rebalance; adapted from CLR
828 TreeNode<V> xp, xpp;
829 if (f != null)
830 f.prev = x;
831 if (dir <= 0)
832 p.left = x;
833 else
834 p.right = x;
835 x.red = true;
836 while (x != null && (xp = x.parent) != null && xp.red &&
837 (xpp = xp.parent) != null) {
838 TreeNode<V> xppl = xpp.left;
839 if (xp == xppl) {
840 TreeNode<V> y = xpp.right;
841 if (y != null && y.red) {
842 y.red = false;
843 xp.red = false;
844 xpp.red = true;
845 x = xpp;
846 }
847 else {
848 if (x == xp.right) {
849 rotateLeft(x = xp);
850 xpp = (xp = x.parent) == null ? null : xp.parent;
851 }
852 if (xp != null) {
853 xp.red = false;
854 if (xpp != null) {
855 xpp.red = true;
856 rotateRight(xpp);
857 }
858 }
859 }
860 }
861 else {
862 TreeNode<V> y = xppl;
863 if (y != null && y.red) {
864 y.red = false;
865 xp.red = false;
866 xpp.red = true;
867 x = xpp;
868 }
869 else {
870 if (x == xp.left) {
871 rotateRight(x = xp);
872 xpp = (xp = x.parent) == null ? null : xp.parent;
873 }
874 if (xp != null) {
875 xp.red = false;
876 if (xpp != null) {
877 xpp.red = true;
878 rotateLeft(xpp);
879 }
880 }
881 }
882 }
883 }
884 TreeNode<V> r = root;
885 if (r != null && r.red)
886 r.red = false;
887 }
888 return null;
889 }
890
891 /**
892 * Removes the given node, that must be present before this
893 * call. This is messier than typical red-black deletion code
894 * because we cannot swap the contents of an interior node
895 * with a leaf successor that is pinned by "next" pointers
896 * that are accessible independently of lock. So instead we
897 * swap the tree linkages.
898 */
899 final void deleteTreeNode(TreeNode<V> p) {
900 TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
901 TreeNode<V> pred = p.prev;
902 if (pred == null)
903 first = next;
904 else
905 pred.next = next;
906 if (next != null)
907 next.prev = pred;
908 TreeNode<V> replacement;
909 TreeNode<V> pl = p.left;
910 TreeNode<V> pr = p.right;
911 if (pl != null && pr != null) {
912 TreeNode<V> s = pr, sl;
913 while ((sl = s.left) != null) // find successor
914 s = sl;
915 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
916 TreeNode<V> sr = s.right;
917 TreeNode<V> pp = p.parent;
918 if (s == pr) { // p was s's direct parent
919 p.parent = s;
920 s.right = p;
921 }
922 else {
923 TreeNode<V> sp = s.parent;
924 if ((p.parent = sp) != null) {
925 if (s == sp.left)
926 sp.left = p;
927 else
928 sp.right = p;
929 }
930 if ((s.right = pr) != null)
931 pr.parent = s;
932 }
933 p.left = null;
934 if ((p.right = sr) != null)
935 sr.parent = p;
936 if ((s.left = pl) != null)
937 pl.parent = s;
938 if ((s.parent = pp) == null)
939 root = s;
940 else if (p == pp.left)
941 pp.left = s;
942 else
943 pp.right = s;
944 replacement = sr;
945 }
946 else
947 replacement = (pl != null) ? pl : pr;
948 TreeNode<V> pp = p.parent;
949 if (replacement == null) {
950 if (pp == null) {
951 root = null;
952 return;
953 }
954 replacement = p;
955 }
956 else {
957 replacement.parent = pp;
958 if (pp == null)
959 root = replacement;
960 else if (p == pp.left)
961 pp.left = replacement;
962 else
963 pp.right = replacement;
964 p.left = p.right = p.parent = null;
965 }
966 if (!p.red) { // rebalance, from CLR
967 TreeNode<V> x = replacement;
968 while (x != null) {
969 TreeNode<V> xp, xpl;
970 if (x.red || (xp = x.parent) == null) {
971 x.red = false;
972 break;
973 }
974 if (x == (xpl = xp.left)) {
975 TreeNode<V> sib = xp.right;
976 if (sib != null && sib.red) {
977 sib.red = false;
978 xp.red = true;
979 rotateLeft(xp);
980 sib = (xp = x.parent) == null ? null : xp.right;
981 }
982 if (sib == null)
983 x = xp;
984 else {
985 TreeNode<V> sl = sib.left, sr = sib.right;
986 if ((sr == null || !sr.red) &&
987 (sl == null || !sl.red)) {
988 sib.red = true;
989 x = xp;
990 }
991 else {
992 if (sr == null || !sr.red) {
993 if (sl != null)
994 sl.red = false;
995 sib.red = true;
996 rotateRight(sib);
997 sib = (xp = x.parent) == null ?
998 null : xp.right;
999 }
1000 if (sib != null) {
1001 sib.red = (xp == null) ? false : xp.red;
1002 if ((sr = sib.right) != null)
1003 sr.red = false;
1004 }
1005 if (xp != null) {
1006 xp.red = false;
1007 rotateLeft(xp);
1008 }
1009 x = root;
1010 }
1011 }
1012 }
1013 else { // symmetric
1014 TreeNode<V> sib = xpl;
1015 if (sib != null && sib.red) {
1016 sib.red = false;
1017 xp.red = true;
1018 rotateRight(xp);
1019 sib = (xp = x.parent) == null ? null : xp.left;
1020 }
1021 if (sib == null)
1022 x = xp;
1023 else {
1024 TreeNode<V> sl = sib.left, sr = sib.right;
1025 if ((sl == null || !sl.red) &&
1026 (sr == null || !sr.red)) {
1027 sib.red = true;
1028 x = xp;
1029 }
1030 else {
1031 if (sl == null || !sl.red) {
1032 if (sr != null)
1033 sr.red = false;
1034 sib.red = true;
1035 rotateLeft(sib);
1036 sib = (xp = x.parent) == null ?
1037 null : xp.left;
1038 }
1039 if (sib != null) {
1040 sib.red = (xp == null) ? false : xp.red;
1041 if ((sl = sib.left) != null)
1042 sl.red = false;
1043 }
1044 if (xp != null) {
1045 xp.red = false;
1046 rotateRight(xp);
1047 }
1048 x = root;
1049 }
1050 }
1051 }
1052 }
1053 }
1054 if (p == replacement && (pp = p.parent) != null) {
1055 if (p == pp.left) // detach pointers
1056 pp.left = null;
1057 else if (p == pp.right)
1058 pp.right = null;
1059 p.parent = null;
1060 }
1061 }
1062 }
1063
1064 /* ---------------- Collision reduction methods -------------- */
1065
1066 /**
1067 * Spreads higher bits to lower, and also forces top bit to 0.
1068 * Because the table uses power-of-two masking, sets of hashes
1069 * that vary only in bits above the current mask will always
1070 * collide. (Among known examples are sets of Float keys holding
1071 * consecutive whole numbers in small tables.) To counter this,
1072 * we apply a transform that spreads the impact of higher bits
1073 * downward. There is a tradeoff between speed, utility, and
1074 * quality of bit-spreading. Because many common sets of hashes
1075 * are already reasonably distributed across bits (so don't benefit
1076 * from spreading), and because we use trees to handle large sets
1077 * of collisions in bins, we don't need excessively high quality.
1078 */
1079 private static final int spread(int h) {
1080 h ^= (h >>> 18) ^ (h >>> 12);
1081 return (h ^ (h >>> 10)) & HASH_BITS;
1082 }
1083
1084 /**
1085 * Replaces a list bin with a tree bin if key is comparable. Call
1086 * only when locked.
1087 */
1088 private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1089 if (key instanceof Comparable) {
1090 TreeBin<V> t = new TreeBin<V>();
1091 for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1092 t.putTreeNode(e.hash, e.key, e.val);
1093 setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1094 }
1095 }
1096
1097 /* ---------------- Internal access and update methods -------------- */
1098
1099 /** Implementation for get and containsKey */
1100 @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1101 int h = spread(k.hashCode());
1102 retry: for (Node<V>[] tab = table; tab != null;) {
1103 Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1104 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1105 if ((eh = e.hash) < 0) {
1106 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1107 return ((TreeBin<V>)ek).getValue(h, k);
1108 else { // restart with new table
1109 tab = (Node<V>[])ek;
1110 continue retry;
1111 }
1112 }
1113 else if (eh == h && (ev = e.val) != null &&
1114 ((ek = e.key) == k || k.equals(ek)))
1115 return ev;
1116 }
1117 break;
1118 }
1119 return null;
1120 }
1121
1122 /**
1123 * Implementation for the four public remove/replace methods:
1124 * Replaces node value with v, conditional upon match of cv if
1125 * non-null. If resulting value is null, delete.
1126 */
1127 @SuppressWarnings("unchecked") private final V internalReplace
1128 (Object k, V v, Object cv) {
1129 int h = spread(k.hashCode());
1130 V oldVal = null;
1131 for (Node<V>[] tab = table;;) {
1132 Node<V> f; int i, fh; Object fk;
1133 if (tab == null ||
1134 (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1135 break;
1136 else if ((fh = f.hash) < 0) {
1137 if ((fk = f.key) instanceof TreeBin) {
1138 TreeBin<V> t = (TreeBin<V>)fk;
1139 boolean validated = false;
1140 boolean deleted = false;
1141 t.acquire(0);
1142 try {
1143 if (tabAt(tab, i) == f) {
1144 validated = true;
1145 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1146 if (p != null) {
1147 V pv = p.val;
1148 if (cv == null || cv == pv || cv.equals(pv)) {
1149 oldVal = pv;
1150 if ((p.val = v) == null) {
1151 deleted = true;
1152 t.deleteTreeNode(p);
1153 }
1154 }
1155 }
1156 }
1157 } finally {
1158 t.release(0);
1159 }
1160 if (validated) {
1161 if (deleted)
1162 addCount(-1L, -1);
1163 break;
1164 }
1165 }
1166 else
1167 tab = (Node<V>[])fk;
1168 }
1169 else if (fh != h && f.next == null) // precheck
1170 break; // rules out possible existence
1171 else {
1172 boolean validated = false;
1173 boolean deleted = false;
1174 synchronized (f) {
1175 if (tabAt(tab, i) == f) {
1176 validated = true;
1177 for (Node<V> e = f, pred = null;;) {
1178 Object ek; V ev;
1179 if (e.hash == h &&
1180 ((ev = e.val) != null) &&
1181 ((ek = e.key) == k || k.equals(ek))) {
1182 if (cv == null || cv == ev || cv.equals(ev)) {
1183 oldVal = ev;
1184 if ((e.val = v) == null) {
1185 deleted = true;
1186 Node<V> en = e.next;
1187 if (pred != null)
1188 pred.next = en;
1189 else
1190 setTabAt(tab, i, en);
1191 }
1192 }
1193 break;
1194 }
1195 pred = e;
1196 if ((e = e.next) == null)
1197 break;
1198 }
1199 }
1200 }
1201 if (validated) {
1202 if (deleted)
1203 addCount(-1L, -1);
1204 break;
1205 }
1206 }
1207 }
1208 return oldVal;
1209 }
1210
1211 /*
1212 * Internal versions of insertion methods
1213 * All have the same basic structure as the first (internalPut):
1214 * 1. If table uninitialized, create
1215 * 2. If bin empty, try to CAS new node
1216 * 3. If bin stale, use new table
1217 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1218 * 5. Lock and validate; if valid, scan and add or update
1219 *
1220 * The putAll method differs mainly in attempting to pre-allocate
1221 * enough table space, and also more lazily performs count updates
1222 * and checks.
1223 *
1224 * Most of the function-accepting methods can't be factored nicely
1225 * because they require different functional forms, so instead
1226 * sprawl out similar mechanics.
1227 */
1228
1229 /** Implementation for put and putIfAbsent */
1230 @SuppressWarnings("unchecked") private final V internalPut
1231 (K k, V v, boolean onlyIfAbsent) {
1232 if (k == null || v == null) throw new NullPointerException();
1233 int h = spread(k.hashCode());
1234 int len = 0;
1235 for (Node<V>[] tab = table;;) {
1236 int i, fh; Node<V> f; Object fk; V fv;
1237 if (tab == null)
1238 tab = initTable();
1239 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1240 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1241 break; // no lock when adding to empty bin
1242 }
1243 else if ((fh = f.hash) < 0) {
1244 if ((fk = f.key) instanceof TreeBin) {
1245 TreeBin<V> t = (TreeBin<V>)fk;
1246 V oldVal = null;
1247 t.acquire(0);
1248 try {
1249 if (tabAt(tab, i) == f) {
1250 len = 2;
1251 TreeNode<V> p = t.putTreeNode(h, k, v);
1252 if (p != null) {
1253 oldVal = p.val;
1254 if (!onlyIfAbsent)
1255 p.val = v;
1256 }
1257 }
1258 } finally {
1259 t.release(0);
1260 }
1261 if (len != 0) {
1262 if (oldVal != null)
1263 return oldVal;
1264 break;
1265 }
1266 }
1267 else
1268 tab = (Node<V>[])fk;
1269 }
1270 else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1271 ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1272 return fv;
1273 else {
1274 V oldVal = null;
1275 synchronized (f) {
1276 if (tabAt(tab, i) == f) {
1277 len = 1;
1278 for (Node<V> e = f;; ++len) {
1279 Object ek; V ev;
1280 if (e.hash == h &&
1281 (ev = e.val) != null &&
1282 ((ek = e.key) == k || k.equals(ek))) {
1283 oldVal = ev;
1284 if (!onlyIfAbsent)
1285 e.val = v;
1286 break;
1287 }
1288 Node<V> last = e;
1289 if ((e = e.next) == null) {
1290 last.next = new Node<V>(h, k, v, null);
1291 if (len >= TREE_THRESHOLD)
1292 replaceWithTreeBin(tab, i, k);
1293 break;
1294 }
1295 }
1296 }
1297 }
1298 if (len != 0) {
1299 if (oldVal != null)
1300 return oldVal;
1301 break;
1302 }
1303 }
1304 }
1305 addCount(1L, len);
1306 return null;
1307 }
1308
1309 /** Implementation for computeIfAbsent */
1310 @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1311 (K k, Function<? super K, ? extends V> mf) {
1312 if (k == null || mf == null)
1313 throw new NullPointerException();
1314 int h = spread(k.hashCode());
1315 V val = null;
1316 int len = 0;
1317 for (Node<V>[] tab = table;;) {
1318 Node<V> f; int i; Object fk;
1319 if (tab == null)
1320 tab = initTable();
1321 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1322 Node<V> node = new Node<V>(h, k, null, null);
1323 synchronized (node) {
1324 if (casTabAt(tab, i, null, node)) {
1325 len = 1;
1326 try {
1327 if ((val = mf.apply(k)) != null)
1328 node.val = val;
1329 } finally {
1330 if (val == null)
1331 setTabAt(tab, i, null);
1332 }
1333 }
1334 }
1335 if (len != 0)
1336 break;
1337 }
1338 else if (f.hash < 0) {
1339 if ((fk = f.key) instanceof TreeBin) {
1340 TreeBin<V> t = (TreeBin<V>)fk;
1341 boolean added = false;
1342 t.acquire(0);
1343 try {
1344 if (tabAt(tab, i) == f) {
1345 len = 1;
1346 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1347 if (p != null)
1348 val = p.val;
1349 else if ((val = mf.apply(k)) != null) {
1350 added = true;
1351 len = 2;
1352 t.putTreeNode(h, k, val);
1353 }
1354 }
1355 } finally {
1356 t.release(0);
1357 }
1358 if (len != 0) {
1359 if (!added)
1360 return val;
1361 break;
1362 }
1363 }
1364 else
1365 tab = (Node<V>[])fk;
1366 }
1367 else {
1368 for (Node<V> e = f; e != null; e = e.next) { // prescan
1369 Object ek; V ev;
1370 if (e.hash == h && (ev = e.val) != null &&
1371 ((ek = e.key) == k || k.equals(ek)))
1372 return ev;
1373 }
1374 boolean added = false;
1375 synchronized (f) {
1376 if (tabAt(tab, i) == f) {
1377 len = 1;
1378 for (Node<V> e = f;; ++len) {
1379 Object ek; V ev;
1380 if (e.hash == h &&
1381 (ev = e.val) != null &&
1382 ((ek = e.key) == k || k.equals(ek))) {
1383 val = ev;
1384 break;
1385 }
1386 Node<V> last = e;
1387 if ((e = e.next) == null) {
1388 if ((val = mf.apply(k)) != null) {
1389 added = true;
1390 last.next = new Node<V>(h, k, val, null);
1391 if (len >= TREE_THRESHOLD)
1392 replaceWithTreeBin(tab, i, k);
1393 }
1394 break;
1395 }
1396 }
1397 }
1398 }
1399 if (len != 0) {
1400 if (!added)
1401 return val;
1402 break;
1403 }
1404 }
1405 }
1406 if (val != null)
1407 addCount(1L, len);
1408 return val;
1409 }
1410
1411 /** Implementation for compute */
1412 @SuppressWarnings("unchecked") private final V internalCompute
1413 (K k, boolean onlyIfPresent,
1414 BiFunction<? super K, ? super V, ? extends V> mf) {
1415 if (k == null || mf == null)
1416 throw new NullPointerException();
1417 int h = spread(k.hashCode());
1418 V val = null;
1419 int delta = 0;
1420 int len = 0;
1421 for (Node<V>[] tab = table;;) {
1422 Node<V> f; int i, fh; Object fk;
1423 if (tab == null)
1424 tab = initTable();
1425 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1426 if (onlyIfPresent)
1427 break;
1428 Node<V> node = new Node<V>(h, k, null, null);
1429 synchronized (node) {
1430 if (casTabAt(tab, i, null, node)) {
1431 try {
1432 len = 1;
1433 if ((val = mf.apply(k, null)) != null) {
1434 node.val = val;
1435 delta = 1;
1436 }
1437 } finally {
1438 if (delta == 0)
1439 setTabAt(tab, i, null);
1440 }
1441 }
1442 }
1443 if (len != 0)
1444 break;
1445 }
1446 else if ((fh = f.hash) < 0) {
1447 if ((fk = f.key) instanceof TreeBin) {
1448 TreeBin<V> t = (TreeBin<V>)fk;
1449 t.acquire(0);
1450 try {
1451 if (tabAt(tab, i) == f) {
1452 len = 1;
1453 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1454 if (p == null && onlyIfPresent)
1455 break;
1456 V pv = (p == null) ? null : p.val;
1457 if ((val = mf.apply(k, pv)) != null) {
1458 if (p != null)
1459 p.val = val;
1460 else {
1461 len = 2;
1462 delta = 1;
1463 t.putTreeNode(h, k, val);
1464 }
1465 }
1466 else if (p != null) {
1467 delta = -1;
1468 t.deleteTreeNode(p);
1469 }
1470 }
1471 } finally {
1472 t.release(0);
1473 }
1474 if (len != 0)
1475 break;
1476 }
1477 else
1478 tab = (Node<V>[])fk;
1479 }
1480 else {
1481 synchronized (f) {
1482 if (tabAt(tab, i) == f) {
1483 len = 1;
1484 for (Node<V> e = f, pred = null;; ++len) {
1485 Object ek; V ev;
1486 if (e.hash == h &&
1487 (ev = e.val) != null &&
1488 ((ek = e.key) == k || k.equals(ek))) {
1489 val = mf.apply(k, ev);
1490 if (val != null)
1491 e.val = val;
1492 else {
1493 delta = -1;
1494 Node<V> en = e.next;
1495 if (pred != null)
1496 pred.next = en;
1497 else
1498 setTabAt(tab, i, en);
1499 }
1500 break;
1501 }
1502 pred = e;
1503 if ((e = e.next) == null) {
1504 if (!onlyIfPresent &&
1505 (val = mf.apply(k, null)) != null) {
1506 pred.next = new Node<V>(h, k, val, null);
1507 delta = 1;
1508 if (len >= TREE_THRESHOLD)
1509 replaceWithTreeBin(tab, i, k);
1510 }
1511 break;
1512 }
1513 }
1514 }
1515 }
1516 if (len != 0)
1517 break;
1518 }
1519 }
1520 if (delta != 0)
1521 addCount((long)delta, len);
1522 return val;
1523 }
1524
1525 /** Implementation for merge */
1526 @SuppressWarnings("unchecked") private final V internalMerge
1527 (K k, V v, BiFunction<? super V, ? super V, ? extends V> mf) {
1528 if (k == null || v == null || mf == null)
1529 throw new NullPointerException();
1530 int h = spread(k.hashCode());
1531 V val = null;
1532 int delta = 0;
1533 int len = 0;
1534 for (Node<V>[] tab = table;;) {
1535 int i; Node<V> f; Object fk; V fv;
1536 if (tab == null)
1537 tab = initTable();
1538 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1539 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1540 delta = 1;
1541 val = v;
1542 break;
1543 }
1544 }
1545 else if (f.hash < 0) {
1546 if ((fk = f.key) instanceof TreeBin) {
1547 TreeBin<V> t = (TreeBin<V>)fk;
1548 t.acquire(0);
1549 try {
1550 if (tabAt(tab, i) == f) {
1551 len = 1;
1552 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1553 val = (p == null) ? v : mf.apply(p.val, v);
1554 if (val != null) {
1555 if (p != null)
1556 p.val = val;
1557 else {
1558 len = 2;
1559 delta = 1;
1560 t.putTreeNode(h, k, val);
1561 }
1562 }
1563 else if (p != null) {
1564 delta = -1;
1565 t.deleteTreeNode(p);
1566 }
1567 }
1568 } finally {
1569 t.release(0);
1570 }
1571 if (len != 0)
1572 break;
1573 }
1574 else
1575 tab = (Node<V>[])fk;
1576 }
1577 else {
1578 synchronized (f) {
1579 if (tabAt(tab, i) == f) {
1580 len = 1;
1581 for (Node<V> e = f, pred = null;; ++len) {
1582 Object ek; V ev;
1583 if (e.hash == h &&
1584 (ev = e.val) != null &&
1585 ((ek = e.key) == k || k.equals(ek))) {
1586 val = mf.apply(ev, v);
1587 if (val != null)
1588 e.val = val;
1589 else {
1590 delta = -1;
1591 Node<V> en = e.next;
1592 if (pred != null)
1593 pred.next = en;
1594 else
1595 setTabAt(tab, i, en);
1596 }
1597 break;
1598 }
1599 pred = e;
1600 if ((e = e.next) == null) {
1601 val = v;
1602 pred.next = new Node<V>(h, k, val, null);
1603 delta = 1;
1604 if (len >= TREE_THRESHOLD)
1605 replaceWithTreeBin(tab, i, k);
1606 break;
1607 }
1608 }
1609 }
1610 }
1611 if (len != 0)
1612 break;
1613 }
1614 }
1615 if (delta != 0)
1616 addCount((long)delta, len);
1617 return val;
1618 }
1619
1620 /** Implementation for putAll */
1621 @SuppressWarnings("unchecked") private final void internalPutAll
1622 (Map<? extends K, ? extends V> m) {
1623 tryPresize(m.size());
1624 long delta = 0L; // number of uncommitted additions
1625 boolean npe = false; // to throw exception on exit for nulls
1626 try { // to clean up counts on other exceptions
1627 for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1628 Object k; V v;
1629 if (entry == null || (k = entry.getKey()) == null ||
1630 (v = entry.getValue()) == null) {
1631 npe = true;
1632 break;
1633 }
1634 int h = spread(k.hashCode());
1635 for (Node<V>[] tab = table;;) {
1636 int i; Node<V> f; int fh; Object fk;
1637 if (tab == null)
1638 tab = initTable();
1639 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1640 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1641 ++delta;
1642 break;
1643 }
1644 }
1645 else if ((fh = f.hash) < 0) {
1646 if ((fk = f.key) instanceof TreeBin) {
1647 TreeBin<V> t = (TreeBin<V>)fk;
1648 boolean validated = false;
1649 t.acquire(0);
1650 try {
1651 if (tabAt(tab, i) == f) {
1652 validated = true;
1653 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1654 if (p != null)
1655 p.val = v;
1656 else {
1657 t.putTreeNode(h, k, v);
1658 ++delta;
1659 }
1660 }
1661 } finally {
1662 t.release(0);
1663 }
1664 if (validated)
1665 break;
1666 }
1667 else
1668 tab = (Node<V>[])fk;
1669 }
1670 else {
1671 int len = 0;
1672 synchronized (f) {
1673 if (tabAt(tab, i) == f) {
1674 len = 1;
1675 for (Node<V> e = f;; ++len) {
1676 Object ek; V ev;
1677 if (e.hash == h &&
1678 (ev = e.val) != null &&
1679 ((ek = e.key) == k || k.equals(ek))) {
1680 e.val = v;
1681 break;
1682 }
1683 Node<V> last = e;
1684 if ((e = e.next) == null) {
1685 ++delta;
1686 last.next = new Node<V>(h, k, v, null);
1687 if (len >= TREE_THRESHOLD)
1688 replaceWithTreeBin(tab, i, k);
1689 break;
1690 }
1691 }
1692 }
1693 }
1694 if (len != 0) {
1695 if (len > 1) {
1696 addCount(delta, len);
1697 delta = 0L;
1698 }
1699 break;
1700 }
1701 }
1702 }
1703 }
1704 } finally {
1705 if (delta != 0L)
1706 addCount(delta, 2);
1707 }
1708 if (npe)
1709 throw new NullPointerException();
1710 }
1711
1712 /**
1713 * Implementation for clear. Steps through each bin, removing all
1714 * nodes.
1715 */
1716 @SuppressWarnings("unchecked") private final void internalClear() {
1717 long delta = 0L; // negative number of deletions
1718 int i = 0;
1719 Node<V>[] tab = table;
1720 while (tab != null && i < tab.length) {
1721 Node<V> f = tabAt(tab, i);
1722 if (f == null)
1723 ++i;
1724 else if (f.hash < 0) {
1725 Object fk;
1726 if ((fk = f.key) instanceof TreeBin) {
1727 TreeBin<V> t = (TreeBin<V>)fk;
1728 t.acquire(0);
1729 try {
1730 if (tabAt(tab, i) == f) {
1731 for (Node<V> p = t.first; p != null; p = p.next) {
1732 if (p.val != null) { // (currently always true)
1733 p.val = null;
1734 --delta;
1735 }
1736 }
1737 t.first = null;
1738 t.root = null;
1739 ++i;
1740 }
1741 } finally {
1742 t.release(0);
1743 }
1744 }
1745 else
1746 tab = (Node<V>[])fk;
1747 }
1748 else {
1749 synchronized (f) {
1750 if (tabAt(tab, i) == f) {
1751 for (Node<V> e = f; e != null; e = e.next) {
1752 if (e.val != null) { // (currently always true)
1753 e.val = null;
1754 --delta;
1755 }
1756 }
1757 setTabAt(tab, i, null);
1758 ++i;
1759 }
1760 }
1761 }
1762 }
1763 if (delta != 0L)
1764 addCount(delta, -1);
1765 }
1766
1767 /* ---------------- Table Initialization and Resizing -------------- */
1768
1769 /**
1770 * Returns a power of two table size for the given desired capacity.
1771 * See Hackers Delight, sec 3.2
1772 */
1773 private static final int tableSizeFor(int c) {
1774 int n = c - 1;
1775 n |= n >>> 1;
1776 n |= n >>> 2;
1777 n |= n >>> 4;
1778 n |= n >>> 8;
1779 n |= n >>> 16;
1780 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1781 }
1782
1783 /**
1784 * Initializes table, using the size recorded in sizeCtl.
1785 */
1786 @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1787 Node<V>[] tab; int sc;
1788 while ((tab = table) == null) {
1789 if ((sc = sizeCtl) < 0)
1790 Thread.yield(); // lost initialization race; just spin
1791 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1792 try {
1793 if ((tab = table) == null) {
1794 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1795 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1796 table = tab = (Node<V>[])tb;
1797 sc = n - (n >>> 2);
1798 }
1799 } finally {
1800 sizeCtl = sc;
1801 }
1802 break;
1803 }
1804 }
1805 return tab;
1806 }
1807
1808 /**
1809 * Adds to count, and if table is too small and not already
1810 * resizing, initiates transfer. If already resizing, helps
1811 * perform transfer if work is available. Rechecks occupancy
1812 * after a transfer to see if another resize is already needed
1813 * because resizings are lagging additions.
1814 *
1815 * @param x the count to add
1816 * @param check if <0, don't check resize, if <= 1 only check if uncontended
1817 */
1818 private final void addCount(long x, int check) {
1819 Cell[] as; long b, s;
1820 if ((as = counterCells) != null ||
1821 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1822 Cell a; long v; int m;
1823 boolean uncontended = true;
1824 if (as == null || (m = as.length - 1) < 0 ||
1825 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
1826 !(uncontended =
1827 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1828 fullAddCount(x, uncontended);
1829 return;
1830 }
1831 if (check <= 1)
1832 return;
1833 s = sumCount();
1834 }
1835 if (check >= 0) {
1836 Node<V>[] tab, nt; int sc;
1837 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1838 tab.length < MAXIMUM_CAPACITY) {
1839 if (sc < 0) {
1840 if (sc == -1 || transferIndex <= transferOrigin ||
1841 (nt = nextTable) == null)
1842 break;
1843 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1844 transfer(tab, nt);
1845 }
1846 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1847 transfer(tab, null);
1848 s = sumCount();
1849 }
1850 }
1851 }
1852
1853 /**
1854 * Tries to presize table to accommodate the given number of elements.
1855 *
1856 * @param size number of elements (doesn't need to be perfectly accurate)
1857 */
1858 @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1859 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1860 tableSizeFor(size + (size >>> 1) + 1);
1861 int sc;
1862 while ((sc = sizeCtl) >= 0) {
1863 Node<V>[] tab = table; int n;
1864 if (tab == null || (n = tab.length) == 0) {
1865 n = (sc > c) ? sc : c;
1866 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1867 try {
1868 if (table == tab) {
1869 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1870 table = (Node<V>[])tb;
1871 sc = n - (n >>> 2);
1872 }
1873 } finally {
1874 sizeCtl = sc;
1875 }
1876 }
1877 }
1878 else if (c <= sc || n >= MAXIMUM_CAPACITY)
1879 break;
1880 else if (tab == table &&
1881 U.compareAndSwapInt(this, SIZECTL, sc, -2))
1882 transfer(tab, null);
1883 }
1884 }
1885
1886 /**
1887 * Moves and/or copies the nodes in each bin to new table. See
1888 * above for explanation.
1889 */
1890 @SuppressWarnings("unchecked") private final void transfer
1891 (Node<V>[] tab, Node<V>[] nextTab) {
1892 int n = tab.length, stride;
1893 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1894 stride = MIN_TRANSFER_STRIDE; // subdivide range
1895 if (nextTab == null) { // initiating
1896 try {
1897 @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1898 nextTab = (Node<V>[])tb;
1899 } catch (Throwable ex) { // try to cope with OOME
1900 sizeCtl = Integer.MAX_VALUE;
1901 return;
1902 }
1903 nextTable = nextTab;
1904 transferOrigin = n;
1905 transferIndex = n;
1906 Node<V> rev = new Node<V>(MOVED, tab, null, null);
1907 for (int k = n; k > 0;) { // progressively reveal ready slots
1908 int nextk = (k > stride) ? k - stride : 0;
1909 for (int m = nextk; m < k; ++m)
1910 nextTab[m] = rev;
1911 for (int m = n + nextk; m < n + k; ++m)
1912 nextTab[m] = rev;
1913 U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1914 }
1915 }
1916 int nextn = nextTab.length;
1917 Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
1918 boolean advance = true;
1919 for (int i = 0, bound = 0;;) {
1920 int nextIndex, nextBound; Node<V> f; Object fk;
1921 while (advance) {
1922 if (--i >= bound)
1923 advance = false;
1924 else if ((nextIndex = transferIndex) <= transferOrigin) {
1925 i = -1;
1926 advance = false;
1927 }
1928 else if (U.compareAndSwapInt
1929 (this, TRANSFERINDEX, nextIndex,
1930 nextBound = (nextIndex > stride ?
1931 nextIndex - stride : 0))) {
1932 bound = nextBound;
1933 i = nextIndex - 1;
1934 advance = false;
1935 }
1936 }
1937 if (i < 0 || i >= n || i + n >= nextn) {
1938 for (int sc;;) {
1939 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
1940 if (sc == -1) {
1941 nextTable = null;
1942 table = nextTab;
1943 sizeCtl = (n << 1) - (n >>> 1);
1944 }
1945 return;
1946 }
1947 }
1948 }
1949 else if ((f = tabAt(tab, i)) == null) {
1950 if (casTabAt(tab, i, null, fwd)) {
1951 setTabAt(nextTab, i, null);
1952 setTabAt(nextTab, i + n, null);
1953 advance = true;
1954 }
1955 }
1956 else if (f.hash >= 0) {
1957 synchronized (f) {
1958 if (tabAt(tab, i) == f) {
1959 int runBit = f.hash & n;
1960 Node<V> lastRun = f, lo = null, hi = null;
1961 for (Node<V> p = f.next; p != null; p = p.next) {
1962 int b = p.hash & n;
1963 if (b != runBit) {
1964 runBit = b;
1965 lastRun = p;
1966 }
1967 }
1968 if (runBit == 0)
1969 lo = lastRun;
1970 else
1971 hi = lastRun;
1972 for (Node<V> p = f; p != lastRun; p = p.next) {
1973 int ph = p.hash;
1974 Object pk = p.key; V pv = p.val;
1975 if ((ph & n) == 0)
1976 lo = new Node<V>(ph, pk, pv, lo);
1977 else
1978 hi = new Node<V>(ph, pk, pv, hi);
1979 }
1980 setTabAt(nextTab, i, lo);
1981 setTabAt(nextTab, i + n, hi);
1982 setTabAt(tab, i, fwd);
1983 advance = true;
1984 }
1985 }
1986 }
1987 else if ((fk = f.key) instanceof TreeBin) {
1988 TreeBin<V> t = (TreeBin<V>)fk;
1989 t.acquire(0);
1990 try {
1991 if (tabAt(tab, i) == f) {
1992 TreeBin<V> lt = new TreeBin<V>();
1993 TreeBin<V> ht = new TreeBin<V>();
1994 int lc = 0, hc = 0;
1995 for (Node<V> e = t.first; e != null; e = e.next) {
1996 int h = e.hash;
1997 Object k = e.key; V v = e.val;
1998 if ((h & n) == 0) {
1999 ++lc;
2000 lt.putTreeNode(h, k, v);
2001 }
2002 else {
2003 ++hc;
2004 ht.putTreeNode(h, k, v);
2005 }
2006 }
2007 Node<V> ln, hn; // throw away trees if too small
2008 if (lc < TREE_THRESHOLD) {
2009 ln = null;
2010 for (Node<V> p = lt.first; p != null; p = p.next)
2011 ln = new Node<V>(p.hash, p.key, p.val, ln);
2012 }
2013 else
2014 ln = new Node<V>(MOVED, lt, null, null);
2015 setTabAt(nextTab, i, ln);
2016 if (hc < TREE_THRESHOLD) {
2017 hn = null;
2018 for (Node<V> p = ht.first; p != null; p = p.next)
2019 hn = new Node<V>(p.hash, p.key, p.val, hn);
2020 }
2021 else
2022 hn = new Node<V>(MOVED, ht, null, null);
2023 setTabAt(nextTab, i + n, hn);
2024 setTabAt(tab, i, fwd);
2025 advance = true;
2026 }
2027 } finally {
2028 t.release(0);
2029 }
2030 }
2031 else
2032 advance = true; // already processed
2033 }
2034 }
2035
2036 /* ---------------- Counter support -------------- */
2037
2038 final long sumCount() {
2039 Cell[] as = counterCells; Cell a;
2040 long sum = baseCount;
2041 if (as != null) {
2042 for (int i = 0; i < as.length; ++i) {
2043 if ((a = as[i]) != null)
2044 sum += a.value;
2045 }
2046 }
2047 return sum;
2048 }
2049
2050 // See LongAdder version for explanation
2051 private final void fullAddCount(long x, boolean wasUncontended) {
2052 int h;
2053 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2054 ThreadLocalRandom.localInit(); // force initialization
2055 h = ThreadLocalRandom.getProbe();
2056 wasUncontended = true;
2057 }
2058 boolean collide = false; // True if last slot nonempty
2059 for (;;) {
2060 Cell[] as; Cell a; int n; long v;
2061 if ((as = counterCells) != null && (n = as.length) > 0) {
2062 if ((a = as[(n - 1) & h]) == null) {
2063 if (cellsBusy == 0) { // Try to attach new Cell
2064 Cell r = new Cell(x); // Optimistic create
2065 if (cellsBusy == 0 &&
2066 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2067 boolean created = false;
2068 try { // Recheck under lock
2069 Cell[] rs; int m, j;
2070 if ((rs = counterCells) != null &&
2071 (m = rs.length) > 0 &&
2072 rs[j = (m - 1) & h] == null) {
2073 rs[j] = r;
2074 created = true;
2075 }
2076 } finally {
2077 cellsBusy = 0;
2078 }
2079 if (created)
2080 break;
2081 continue; // Slot is now non-empty
2082 }
2083 }
2084 collide = false;
2085 }
2086 else if (!wasUncontended) // CAS already known to fail
2087 wasUncontended = true; // Continue after rehash
2088 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2089 break;
2090 else if (counterCells != as || n >= NCPU)
2091 collide = false; // At max size or stale
2092 else if (!collide)
2093 collide = true;
2094 else if (cellsBusy == 0 &&
2095 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2096 try {
2097 if (counterCells == as) {// Expand table unless stale
2098 Cell[] rs = new Cell[n << 1];
2099 for (int i = 0; i < n; ++i)
2100 rs[i] = as[i];
2101 counterCells = rs;
2102 }
2103 } finally {
2104 cellsBusy = 0;
2105 }
2106 collide = false;
2107 continue; // Retry with expanded table
2108 }
2109 h = ThreadLocalRandom.advanceProbe(h);
2110 }
2111 else if (cellsBusy == 0 && counterCells == as &&
2112 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2113 boolean init = false;
2114 try { // Initialize table
2115 if (counterCells == as) {
2116 Cell[] rs = new Cell[2];
2117 rs[h & 1] = new Cell(x);
2118 counterCells = rs;
2119 init = true;
2120 }
2121 } finally {
2122 cellsBusy = 0;
2123 }
2124 if (init)
2125 break;
2126 }
2127 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2128 break; // Fall back on using base
2129 }
2130 }
2131
2132 /* ----------------Table Traversal -------------- */
2133
2134 /**
2135 * Encapsulates traversal for methods such as containsValue; also
2136 * serves as a base class for other iterators and bulk tasks.
2137 *
2138 * At each step, the iterator snapshots the key ("nextKey") and
2139 * value ("nextVal") of a valid node (i.e., one that, at point of
2140 * snapshot, has a non-null user value). Because val fields can
2141 * change (including to null, indicating deletion), field nextVal
2142 * might not be accurate at point of use, but still maintains the
2143 * weak consistency property of holding a value that was once
2144 * valid. To support iterator.remove, the nextKey field is not
2145 * updated (nulled out) when the iterator cannot advance.
2146 *
2147 * Internal traversals directly access these fields, as in:
2148 * {@code while (it.advance() != null) { process(it.nextKey); }}
2149 *
2150 * Exported iterators must track whether the iterator has advanced
2151 * (in hasNext vs next) (by setting/checking/nulling field
2152 * nextVal), and then extract key, value, or key-value pairs as
2153 * return values of next().
2154 *
2155 * The iterator visits once each still-valid node that was
2156 * reachable upon iterator construction. It might miss some that
2157 * were added to a bin after the bin was visited, which is OK wrt
2158 * consistency guarantees. Maintaining this property in the face
2159 * of possible ongoing resizes requires a fair amount of
2160 * bookkeeping state that is difficult to optimize away amidst
2161 * volatile accesses. Even so, traversal maintains reasonable
2162 * throughput.
2163 *
2164 * Normally, iteration proceeds bin-by-bin traversing lists.
2165 * However, if the table has been resized, then all future steps
2166 * must traverse both the bin at the current index as well as at
2167 * (index + baseSize); and so on for further resizings. To
2168 * paranoically cope with potential sharing by users of iterators
2169 * across threads, iteration terminates if a bounds checks fails
2170 * for a table read.
2171 *
2172 * This class supports both Spliterator-based traversal and
2173 * CountedCompleter-based bulk tasks. The same "batch" field is
2174 * used, but in slightly different ways, in the two cases. For
2175 * Spliterators, it is a saturating (at Integer.MAX_VALUE)
2176 * estimate of element coverage. For CHM tasks, it is a pre-scaled
2177 * size that halves down to zero for leaf tasks, that is only
2178 * computed upon execution of the task. (Tasks can be submitted to
2179 * any pool, of any size, so we don't know scale factors until
2180 * running.)
2181 *
2182 * This class extends CountedCompleter to streamline parallel
2183 * iteration in bulk operations. This adds only a few fields of
2184 * space overhead, which is small enough in cases where it is not
2185 * needed to not worry about it. Because CountedCompleter is
2186 * Serializable, but iterators need not be, we need to add warning
2187 * suppressions.
2188 */
2189 @SuppressWarnings("serial") static class Traverser<K,V,R>
2190 extends CountedCompleter<R> {
2191 final ConcurrentHashMap<K, V> map;
2192 Node<V> next; // the next entry to use
2193 K nextKey; // cached key field of next
2194 V nextVal; // cached val field of next
2195 Node<V>[] tab; // current table; updated if resized
2196 int index; // index of bin to use next
2197 int baseIndex; // current index of initial table
2198 int baseLimit; // index bound for initial table
2199 int baseSize; // initial table size
2200 int batch; // split control
2201 /** Creates iterator for all entries in the table. */
2202 Traverser(ConcurrentHashMap<K, V> map) {
2203 this.map = map;
2204 Node<V>[] t;
2205 if ((t = tab = map.table) != null)
2206 baseLimit = baseSize = t.length;
2207 }
2208
2209 /** Task constructor */
2210 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2211 super(it);
2212 this.map = map;
2213 this.batch = batch; // -1 if unknown
2214 if (it == null) {
2215 Node<V>[] t;
2216 if ((t = tab = map.table) != null)
2217 baseLimit = baseSize = t.length;
2218 }
2219 else { // split parent
2220 this.tab = it.tab;
2221 this.baseSize = it.baseSize;
2222 int hi = this.baseLimit = it.baseLimit;
2223 it.baseLimit = this.index = this.baseIndex =
2224 (hi + it.baseIndex + 1) >>> 1;
2225 }
2226 }
2227
2228 /** Spliterator constructor */
2229 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it) {
2230 super(it);
2231 this.map = map;
2232 if (it == null) {
2233 Node<V>[] t;
2234 if ((t = tab = map.table) != null)
2235 baseLimit = baseSize = t.length;
2236 long n = map.sumCount();
2237 batch = ((n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2238 (int)n);
2239 }
2240 else {
2241 this.tab = it.tab;
2242 this.baseSize = it.baseSize;
2243 int hi = this.baseLimit = it.baseLimit;
2244 it.baseLimit = this.index = this.baseIndex =
2245 (hi + it.baseIndex + 1) >>> 1;
2246 this.batch = it.batch >>>= 1;
2247 }
2248 }
2249
2250 /**
2251 * Advances next; returns nextVal or null if terminated.
2252 * See above for explanation.
2253 */
2254 @SuppressWarnings("unchecked") final V advance() {
2255 Node<V> e = next;
2256 V ev = null;
2257 outer: do {
2258 if (e != null) // advance past used/skipped node
2259 e = e.next;
2260 while (e == null) { // get to next non-null bin
2261 ConcurrentHashMap<K, V> m;
2262 Node<V>[] t; int b, i, n; Object ek; // must use locals
2263 if ((t = tab) != null)
2264 n = t.length;
2265 else if ((m = map) != null && (t = tab = m.table) != null)
2266 n = baseLimit = baseSize = t.length;
2267 else
2268 break outer;
2269 if ((b = baseIndex) >= baseLimit ||
2270 (i = index) < 0 || i >= n)
2271 break outer;
2272 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2273 if ((ek = e.key) instanceof TreeBin)
2274 e = ((TreeBin<V>)ek).first;
2275 else {
2276 tab = (Node<V>[])ek;
2277 continue; // restarts due to null val
2278 }
2279 } // visit upper slots if present
2280 index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2281 }
2282 nextKey = (K)e.key;
2283 } while ((ev = e.val) == null); // skip deleted or special nodes
2284 next = e;
2285 return nextVal = ev;
2286 }
2287
2288 public final void remove() {
2289 K k = nextKey;
2290 if (k == null && (advance() == null || (k = nextKey) == null))
2291 throw new IllegalStateException();
2292 map.internalReplace(k, null, null);
2293 }
2294
2295 public final boolean hasNext() {
2296 return nextVal != null || advance() != null;
2297 }
2298
2299 public final boolean hasMoreElements() { return hasNext(); }
2300
2301 public void compute() { } // default no-op CountedCompleter body
2302
2303 /**
2304 * Returns a batch value > 0 if this task should (and must) be
2305 * split, if so, adding to pending count, and in any case
2306 * updating batch value. The initial batch value is approx
2307 * exp2 of the number of times (minus one) to split task by
2308 * two before executing leaf action. This value is faster to
2309 * compute and more convenient to use as a guide to splitting
2310 * than is the depth, since it is used while dividing by two
2311 * anyway.
2312 */
2313 final int preSplit() {
2314 int b; ForkJoinPool pool;
2315 if ((b = batch) < 0) { // force initialization
2316 int sp = (((pool = getPool()) == null) ?
2317 ForkJoinPool.getCommonPoolParallelism() :
2318 pool.getParallelism()) << 3; // slack of 8
2319 long n = map.sumCount();
2320 b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2321 }
2322 b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2323 if ((batch = b) > 0)
2324 addToPendingCount(1);
2325 return b;
2326 }
2327
2328 // spliterator support
2329
2330 public boolean hasExactSize() {
2331 return false;
2332 }
2333
2334 public boolean hasExactSplits() {
2335 return false;
2336 }
2337
2338 public long estimateSize() {
2339 return batch;
2340 }
2341 }
2342
2343 /* ---------------- Public operations -------------- */
2344
2345 /**
2346 * Creates a new, empty map with the default initial table size (16).
2347 */
2348 public ConcurrentHashMap() {
2349 }
2350
2351 /**
2352 * Creates a new, empty map with an initial table size
2353 * accommodating the specified number of elements without the need
2354 * to dynamically resize.
2355 *
2356 * @param initialCapacity The implementation performs internal
2357 * sizing to accommodate this many elements.
2358 * @throws IllegalArgumentException if the initial capacity of
2359 * elements is negative
2360 */
2361 public ConcurrentHashMap(int initialCapacity) {
2362 if (initialCapacity < 0)
2363 throw new IllegalArgumentException();
2364 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2365 MAXIMUM_CAPACITY :
2366 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2367 this.sizeCtl = cap;
2368 }
2369
2370 /**
2371 * Creates a new map with the same mappings as the given map.
2372 *
2373 * @param m the map
2374 */
2375 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2376 this.sizeCtl = DEFAULT_CAPACITY;
2377 internalPutAll(m);
2378 }
2379
2380 /**
2381 * Creates a new, empty map with an initial table size based on
2382 * the given number of elements ({@code initialCapacity}) and
2383 * initial table density ({@code loadFactor}).
2384 *
2385 * @param initialCapacity the initial capacity. The implementation
2386 * performs internal sizing to accommodate this many elements,
2387 * given the specified load factor.
2388 * @param loadFactor the load factor (table density) for
2389 * establishing the initial table size
2390 * @throws IllegalArgumentException if the initial capacity of
2391 * elements is negative or the load factor is nonpositive
2392 *
2393 * @since 1.6
2394 */
2395 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2396 this(initialCapacity, loadFactor, 1);
2397 }
2398
2399 /**
2400 * Creates a new, empty map with an initial table size based on
2401 * the given number of elements ({@code initialCapacity}), table
2402 * density ({@code loadFactor}), and number of concurrently
2403 * updating threads ({@code concurrencyLevel}).
2404 *
2405 * @param initialCapacity the initial capacity. The implementation
2406 * performs internal sizing to accommodate this many elements,
2407 * given the specified load factor.
2408 * @param loadFactor the load factor (table density) for
2409 * establishing the initial table size
2410 * @param concurrencyLevel the estimated number of concurrently
2411 * updating threads. The implementation may use this value as
2412 * a sizing hint.
2413 * @throws IllegalArgumentException if the initial capacity is
2414 * negative or the load factor or concurrencyLevel are
2415 * nonpositive
2416 */
2417 public ConcurrentHashMap(int initialCapacity,
2418 float loadFactor, int concurrencyLevel) {
2419 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2420 throw new IllegalArgumentException();
2421 if (initialCapacity < concurrencyLevel) // Use at least as many bins
2422 initialCapacity = concurrencyLevel; // as estimated threads
2423 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2424 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2425 MAXIMUM_CAPACITY : tableSizeFor((int)size);
2426 this.sizeCtl = cap;
2427 }
2428
2429 /**
2430 * Creates a new {@link Set} backed by a ConcurrentHashMap
2431 * from the given type to {@code Boolean.TRUE}.
2432 *
2433 * @return the new set
2434 */
2435 public static <K> KeySetView<K,Boolean> newKeySet() {
2436 return new KeySetView<K,Boolean>(new ConcurrentHashMap<K,Boolean>(),
2437 Boolean.TRUE);
2438 }
2439
2440 /**
2441 * Creates a new {@link Set} backed by a ConcurrentHashMap
2442 * from the given type to {@code Boolean.TRUE}.
2443 *
2444 * @param initialCapacity The implementation performs internal
2445 * sizing to accommodate this many elements.
2446 * @throws IllegalArgumentException if the initial capacity of
2447 * elements is negative
2448 * @return the new set
2449 */
2450 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2451 return new KeySetView<K,Boolean>
2452 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2453 }
2454
2455 /**
2456 * {@inheritDoc}
2457 */
2458 public boolean isEmpty() {
2459 return sumCount() <= 0L; // ignore transient negative values
2460 }
2461
2462 /**
2463 * {@inheritDoc}
2464 */
2465 public int size() {
2466 long n = sumCount();
2467 return ((n < 0L) ? 0 :
2468 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2469 (int)n);
2470 }
2471
2472 /**
2473 * Returns the number of mappings. This method should be used
2474 * instead of {@link #size} because a ConcurrentHashMap may
2475 * contain more mappings than can be represented as an int. The
2476 * value returned is an estimate; the actual count may differ if
2477 * there are concurrent insertions or removals.
2478 *
2479 * @return the number of mappings
2480 */
2481 public long mappingCount() {
2482 long n = sumCount();
2483 return (n < 0L) ? 0L : n; // ignore transient negative values
2484 }
2485
2486 /**
2487 * Returns the value to which the specified key is mapped,
2488 * or {@code null} if this map contains no mapping for the key.
2489 *
2490 * <p>More formally, if this map contains a mapping from a key
2491 * {@code k} to a value {@code v} such that {@code key.equals(k)},
2492 * then this method returns {@code v}; otherwise it returns
2493 * {@code null}. (There can be at most one such mapping.)
2494 *
2495 * @throws NullPointerException if the specified key is null
2496 */
2497 public V get(Object key) {
2498 return internalGet(key);
2499 }
2500
2501 /**
2502 * Returns the value to which the specified key is mapped,
2503 * or the given defaultValue if this map contains no mapping for the key.
2504 *
2505 * @param key the key
2506 * @param defaultValue the value to return if this map contains
2507 * no mapping for the given key
2508 * @return the mapping for the key, if present; else the defaultValue
2509 * @throws NullPointerException if the specified key is null
2510 */
2511 public V getValueOrDefault(Object key, V defaultValue) {
2512 V v;
2513 return (v = internalGet(key)) == null ? defaultValue : v;
2514 }
2515
2516 /**
2517 * Tests if the specified object is a key in this table.
2518 *
2519 * @param key possible key
2520 * @return {@code true} if and only if the specified object
2521 * is a key in this table, as determined by the
2522 * {@code equals} method; {@code false} otherwise
2523 * @throws NullPointerException if the specified key is null
2524 */
2525 public boolean containsKey(Object key) {
2526 return internalGet(key) != null;
2527 }
2528
2529 /**
2530 * Returns {@code true} if this map maps one or more keys to the
2531 * specified value. Note: This method may require a full traversal
2532 * of the map, and is much slower than method {@code containsKey}.
2533 *
2534 * @param value value whose presence in this map is to be tested
2535 * @return {@code true} if this map maps one or more keys to the
2536 * specified value
2537 * @throws NullPointerException if the specified value is null
2538 */
2539 public boolean containsValue(Object value) {
2540 if (value == null)
2541 throw new NullPointerException();
2542 V v;
2543 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2544 while ((v = it.advance()) != null) {
2545 if (v == value || value.equals(v))
2546 return true;
2547 }
2548 return false;
2549 }
2550
2551 /**
2552 * Legacy method testing if some key maps into the specified value
2553 * in this table. This method is identical in functionality to
2554 * {@link #containsValue(Object)}, and exists solely to ensure
2555 * full compatibility with class {@link java.util.Hashtable},
2556 * which supported this method prior to introduction of the
2557 * Java Collections framework.
2558 *
2559 * @param value a value to search for
2560 * @return {@code true} if and only if some key maps to the
2561 * {@code value} argument in this table as
2562 * determined by the {@code equals} method;
2563 * {@code false} otherwise
2564 * @throws NullPointerException if the specified value is null
2565 */
2566 @Deprecated public boolean contains(Object value) {
2567 return containsValue(value);
2568 }
2569
2570 /**
2571 * Maps the specified key to the specified value in this table.
2572 * Neither the key nor the value can be null.
2573 *
2574 * <p>The value can be retrieved by calling the {@code get} method
2575 * with a key that is equal to the original key.
2576 *
2577 * @param key key with which the specified value is to be associated
2578 * @param value value to be associated with the specified key
2579 * @return the previous value associated with {@code key}, or
2580 * {@code null} if there was no mapping for {@code key}
2581 * @throws NullPointerException if the specified key or value is null
2582 */
2583 public V put(K key, V value) {
2584 return internalPut(key, value, false);
2585 }
2586
2587 /**
2588 * {@inheritDoc}
2589 *
2590 * @return the previous value associated with the specified key,
2591 * or {@code null} if there was no mapping for the key
2592 * @throws NullPointerException if the specified key or value is null
2593 */
2594 public V putIfAbsent(K key, V value) {
2595 return internalPut(key, value, true);
2596 }
2597
2598 /**
2599 * Copies all of the mappings from the specified map to this one.
2600 * These mappings replace any mappings that this map had for any of the
2601 * keys currently in the specified map.
2602 *
2603 * @param m mappings to be stored in this map
2604 */
2605 public void putAll(Map<? extends K, ? extends V> m) {
2606 internalPutAll(m);
2607 }
2608
2609 /**
2610 * If the specified key is not already associated with a value (or
2611 * is mapped to {@code null}), attempts to compute its value using
2612 * the given mapping function and enters it into this map unless
2613 * {@code null}. The entire method invocation is performed
2614 * atomically, so the function is applied at most once per key.
2615 * Some attempted update operations on this map by other threads
2616 * may be blocked while computation is in progress, so the
2617 * computation should be short and simple, and must not attempt to
2618 * update any other mappings of this Map.
2619 *
2620 * @param key key with which the specified value is to be associated
2621 * @param mappingFunction the function to compute a value
2622 * @return the current (existing or computed) value associated with
2623 * the specified key, or null if the computed value is null
2624 * @throws NullPointerException if the specified key or mappingFunction
2625 * is null
2626 * @throws IllegalStateException if the computation detectably
2627 * attempts a recursive update to this map that would
2628 * otherwise never complete
2629 * @throws RuntimeException or Error if the mappingFunction does so,
2630 * in which case the mapping is left unestablished
2631 */
2632 public V computeIfAbsent
2633 (K key, Function<? super K, ? extends V> mappingFunction) {
2634 return internalComputeIfAbsent(key, mappingFunction);
2635 }
2636
2637 /**
2638 * If the value for the specified key is present and non-null,
2639 * attempts to compute a new mapping given the key and its current
2640 * mapped value. The entire method invocation is performed
2641 * atomically. Some attempted update operations on this map by
2642 * other threads may be blocked while computation is in progress,
2643 * so the computation should be short and simple, and must not
2644 * attempt to update any other mappings of this Map.
2645 *
2646 * @param key key with which the specified value is to be associated
2647 * @param remappingFunction the function to compute a value
2648 * @return the new value associated with the specified key, or null if none
2649 * @throws NullPointerException if the specified key or remappingFunction
2650 * is null
2651 * @throws IllegalStateException if the computation detectably
2652 * attempts a recursive update to this map that would
2653 * otherwise never complete
2654 * @throws RuntimeException or Error if the remappingFunction does so,
2655 * in which case the mapping is unchanged
2656 */
2657 public V computeIfPresent
2658 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2659 return internalCompute(key, true, remappingFunction);
2660 }
2661
2662 /**
2663 * Attempts to compute a mapping for the specified key and its
2664 * current mapped value (or {@code null} if there is no current
2665 * mapping). The entire method invocation is performed atomically.
2666 * Some attempted update operations on this map by other threads
2667 * may be blocked while computation is in progress, so the
2668 * computation should be short and simple, and must not attempt to
2669 * update any other mappings of this Map.
2670 *
2671 * @param key key with which the specified value is to be associated
2672 * @param remappingFunction the function to compute a value
2673 * @return the new value associated with the specified key, or null if none
2674 * @throws NullPointerException if the specified key or remappingFunction
2675 * is null
2676 * @throws IllegalStateException if the computation detectably
2677 * attempts a recursive update to this map that would
2678 * otherwise never complete
2679 * @throws RuntimeException or Error if the remappingFunction does so,
2680 * in which case the mapping is unchanged
2681 */
2682 public V compute
2683 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2684 return internalCompute(key, false, remappingFunction);
2685 }
2686
2687 /**
2688 * If the specified key is not already associated with a
2689 * (non-null) value, associates it with the given value.
2690 * Otherwise, replaces the value with the results of the given
2691 * remapping function, or removes if {@code null}. The entire
2692 * method invocation is performed atomically. Some attempted
2693 * update operations on this map by other threads may be blocked
2694 * while computation is in progress, so the computation should be
2695 * short and simple, and must not attempt to update any other
2696 * mappings of this Map.
2697 *
2698 * @param key key with which the specified value is to be associated
2699 * @param value the value to use if absent
2700 * @param remappingFunction the function to recompute a value if present
2701 * @return the new value associated with the specified key, or null if none
2702 * @throws NullPointerException if the specified key or the
2703 * remappingFunction is null
2704 * @throws RuntimeException or Error if the remappingFunction does so,
2705 * in which case the mapping is unchanged
2706 */
2707 public V merge
2708 (K key, V value,
2709 BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2710 return internalMerge(key, value, remappingFunction);
2711 }
2712
2713 /**
2714 * Removes the key (and its corresponding value) from this map.
2715 * This method does nothing if the key is not in the map.
2716 *
2717 * @param key the key that needs to be removed
2718 * @return the previous value associated with {@code key}, or
2719 * {@code null} if there was no mapping for {@code key}
2720 * @throws NullPointerException if the specified key is null
2721 */
2722 public V remove(Object key) {
2723 return internalReplace(key, null, null);
2724 }
2725
2726 /**
2727 * {@inheritDoc}
2728 *
2729 * @throws NullPointerException if the specified key is null
2730 */
2731 public boolean remove(Object key, Object value) {
2732 if (key == null)
2733 throw new NullPointerException();
2734 return value != null && internalReplace(key, null, value) != null;
2735 }
2736
2737 /**
2738 * {@inheritDoc}
2739 *
2740 * @throws NullPointerException if any of the arguments are null
2741 */
2742 public boolean replace(K key, V oldValue, V newValue) {
2743 if (key == null || oldValue == null || newValue == null)
2744 throw new NullPointerException();
2745 return internalReplace(key, newValue, oldValue) != null;
2746 }
2747
2748 /**
2749 * {@inheritDoc}
2750 *
2751 * @return the previous value associated with the specified key,
2752 * or {@code null} if there was no mapping for the key
2753 * @throws NullPointerException if the specified key or value is null
2754 */
2755 public V replace(K key, V value) {
2756 if (key == null || value == null)
2757 throw new NullPointerException();
2758 return internalReplace(key, value, null);
2759 }
2760
2761 /**
2762 * Removes all of the mappings from this map.
2763 */
2764 public void clear() {
2765 internalClear();
2766 }
2767
2768 /**
2769 * Returns a {@link Set} view of the keys contained in this map.
2770 * The set is backed by the map, so changes to the map are
2771 * reflected in the set, and vice-versa.
2772 *
2773 * @return the set view
2774 */
2775 public KeySetView<K,V> keySet() {
2776 KeySetView<K,V> ks = keySet;
2777 return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2778 }
2779
2780 /**
2781 * Returns a {@link Set} view of the keys in this map, using the
2782 * given common mapped value for any additions (i.e., {@link
2783 * Collection#add} and {@link Collection#addAll(Collection)}).
2784 * This is of course only appropriate if it is acceptable to use
2785 * the same value for all additions from this view.
2786 *
2787 * @param mappedValue the mapped value to use for any additions
2788 * @return the set view
2789 * @throws NullPointerException if the mappedValue is null
2790 */
2791 public KeySetView<K,V> keySet(V mappedValue) {
2792 if (mappedValue == null)
2793 throw new NullPointerException();
2794 return new KeySetView<K,V>(this, mappedValue);
2795 }
2796
2797 /**
2798 * Returns a {@link Collection} view of the values contained in this map.
2799 * The collection is backed by the map, so changes to the map are
2800 * reflected in the collection, and vice-versa.
2801 */
2802 public ValuesView<K,V> values() {
2803 ValuesView<K,V> vs = values;
2804 return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2805 }
2806
2807 /**
2808 * Returns a {@link Set} view of the mappings contained in this map.
2809 * The set is backed by the map, so changes to the map are
2810 * reflected in the set, and vice-versa. The set supports element
2811 * removal, which removes the corresponding mapping from the map,
2812 * via the {@code Iterator.remove}, {@code Set.remove},
2813 * {@code removeAll}, {@code retainAll}, and {@code clear}
2814 * operations. It does not support the {@code add} or
2815 * {@code addAll} operations.
2816 *
2817 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2818 * that will never throw {@link ConcurrentModificationException},
2819 * and guarantees to traverse elements as they existed upon
2820 * construction of the iterator, and may (but is not guaranteed to)
2821 * reflect any modifications subsequent to construction.
2822 */
2823 public Set<Map.Entry<K,V>> entrySet() {
2824 EntrySetView<K,V> es = entrySet;
2825 return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2826 }
2827
2828 /**
2829 * Returns an enumeration of the keys in this table.
2830 *
2831 * @return an enumeration of the keys in this table
2832 * @see #keySet()
2833 */
2834 public Enumeration<K> keys() {
2835 return new KeyIterator<K,V>(this);
2836 }
2837
2838 /**
2839 * Returns an enumeration of the values in this table.
2840 *
2841 * @return an enumeration of the values in this table
2842 * @see #values()
2843 */
2844 public Enumeration<V> elements() {
2845 return new ValueIterator<K,V>(this);
2846 }
2847
2848 /**
2849 * Returns the hash code value for this {@link Map}, i.e.,
2850 * the sum of, for each key-value pair in the map,
2851 * {@code key.hashCode() ^ value.hashCode()}.
2852 *
2853 * @return the hash code value for this map
2854 */
2855 public int hashCode() {
2856 int h = 0;
2857 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2858 V v;
2859 while ((v = it.advance()) != null) {
2860 h += it.nextKey.hashCode() ^ v.hashCode();
2861 }
2862 return h;
2863 }
2864
2865 /**
2866 * Returns a string representation of this map. The string
2867 * representation consists of a list of key-value mappings (in no
2868 * particular order) enclosed in braces ("{@code {}}"). Adjacent
2869 * mappings are separated by the characters {@code ", "} (comma
2870 * and space). Each key-value mapping is rendered as the key
2871 * followed by an equals sign ("{@code =}") followed by the
2872 * associated value.
2873 *
2874 * @return a string representation of this map
2875 */
2876 public String toString() {
2877 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2878 StringBuilder sb = new StringBuilder();
2879 sb.append('{');
2880 V v;
2881 if ((v = it.advance()) != null) {
2882 for (;;) {
2883 K k = it.nextKey;
2884 sb.append(k == this ? "(this Map)" : k);
2885 sb.append('=');
2886 sb.append(v == this ? "(this Map)" : v);
2887 if ((v = it.advance()) == null)
2888 break;
2889 sb.append(',').append(' ');
2890 }
2891 }
2892 return sb.append('}').toString();
2893 }
2894
2895 /**
2896 * Compares the specified object with this map for equality.
2897 * Returns {@code true} if the given object is a map with the same
2898 * mappings as this map. This operation may return misleading
2899 * results if either map is concurrently modified during execution
2900 * of this method.
2901 *
2902 * @param o object to be compared for equality with this map
2903 * @return {@code true} if the specified object is equal to this map
2904 */
2905 public boolean equals(Object o) {
2906 if (o != this) {
2907 if (!(o instanceof Map))
2908 return false;
2909 Map<?,?> m = (Map<?,?>) o;
2910 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2911 V val;
2912 while ((val = it.advance()) != null) {
2913 Object v = m.get(it.nextKey);
2914 if (v == null || (v != val && !v.equals(val)))
2915 return false;
2916 }
2917 for (Map.Entry<?,?> e : m.entrySet()) {
2918 Object mk, mv, v;
2919 if ((mk = e.getKey()) == null ||
2920 (mv = e.getValue()) == null ||
2921 (v = internalGet(mk)) == null ||
2922 (mv != v && !mv.equals(v)))
2923 return false;
2924 }
2925 }
2926 return true;
2927 }
2928
2929 /* ----------------Iterators -------------- */
2930
2931 @SuppressWarnings("serial") static final class KeyIterator<K,V>
2932 extends Traverser<K,V,Object>
2933 implements Spliterator<K>, Iterator<K>, Enumeration<K> {
2934 KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
2935 KeyIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2936 super(map, it);
2937 }
2938 public KeyIterator<K,V> trySplit() {
2939 if (tab != null && baseIndex == baseLimit)
2940 return null;
2941 return new KeyIterator<K,V>(map, this);
2942 }
2943 public final K next() {
2944 if (nextVal == null && advance() == null)
2945 throw new NoSuchElementException();
2946 K k = nextKey;
2947 nextVal = null;
2948 return k;
2949 }
2950
2951 public final K nextElement() { return next(); }
2952
2953 public Iterator<K> iterator() { return this; }
2954
2955 public void forEach(Consumer<? super K> action) {
2956 if (action == null) throw new NullPointerException();
2957 while (advance() != null)
2958 action.accept(nextKey);
2959 }
2960
2961 public boolean tryAdvance(Consumer<? super K> block) {
2962 if (block == null) throw new NullPointerException();
2963 if (advance() == null)
2964 return false;
2965 block.accept(nextKey);
2966 return true;
2967 }
2968 }
2969
2970 @SuppressWarnings("serial") static final class ValueIterator<K,V>
2971 extends Traverser<K,V,Object>
2972 implements Spliterator<V>, Iterator<V>, Enumeration<V> {
2973 ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
2974 ValueIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2975 super(map, it);
2976 }
2977 public ValueIterator<K,V> trySplit() {
2978 if (tab != null && baseIndex == baseLimit)
2979 return null;
2980 return new ValueIterator<K,V>(map, this);
2981 }
2982
2983 public final V next() {
2984 V v;
2985 if ((v = nextVal) == null && (v = advance()) == null)
2986 throw new NoSuchElementException();
2987 nextVal = null;
2988 return v;
2989 }
2990
2991 public final V nextElement() { return next(); }
2992
2993 public Iterator<V> iterator() { return this; }
2994
2995 public void forEach(Consumer<? super V> action) {
2996 if (action == null) throw new NullPointerException();
2997 V v;
2998 while ((v = advance()) != null)
2999 action.accept(v);
3000 }
3001
3002 public boolean tryAdvance(Consumer<? super V> block) {
3003 V v;
3004 if (block == null) throw new NullPointerException();
3005 if ((v = advance()) == null)
3006 return false;
3007 block.accept(v);
3008 return true;
3009 }
3010
3011 }
3012
3013 @SuppressWarnings("serial") static final class EntryIterator<K,V>
3014 extends Traverser<K,V,Object>
3015 implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3016 EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3017 EntryIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3018 super(map, it);
3019 }
3020 public EntryIterator<K,V> trySplit() {
3021 if (tab != null && baseIndex == baseLimit)
3022 return null;
3023 return new EntryIterator<K,V>(map, this);
3024 }
3025
3026 public final Map.Entry<K,V> next() {
3027 V v;
3028 if ((v = nextVal) == null && (v = advance()) == null)
3029 throw new NoSuchElementException();
3030 K k = nextKey;
3031 nextVal = null;
3032 return new MapEntry<K,V>(k, v, map);
3033 }
3034
3035 public Iterator<Map.Entry<K,V>> iterator() { return this; }
3036
3037 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
3038 if (action == null) throw new NullPointerException();
3039 V v;
3040 while ((v = advance()) != null)
3041 action.accept(entryFor(nextKey, v));
3042 }
3043
3044 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> block) {
3045 V v;
3046 if (block == null) throw new NullPointerException();
3047 if ((v = advance()) == null)
3048 return false;
3049 block.accept(entryFor(nextKey, v));
3050 return true;
3051 }
3052
3053 }
3054
3055 /**
3056 * Exported Entry for iterators
3057 */
3058 static final class MapEntry<K,V> implements Map.Entry<K, V> {
3059 final K key; // non-null
3060 V val; // non-null
3061 final ConcurrentHashMap<K, V> map;
3062 MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
3063 this.key = key;
3064 this.val = val;
3065 this.map = map;
3066 }
3067 public final K getKey() { return key; }
3068 public final V getValue() { return val; }
3069 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3070 public final String toString(){ return key + "=" + val; }
3071
3072 public final boolean equals(Object o) {
3073 Object k, v; Map.Entry<?,?> e;
3074 return ((o instanceof Map.Entry) &&
3075 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3076 (v = e.getValue()) != null &&
3077 (k == key || k.equals(key)) &&
3078 (v == val || v.equals(val)));
3079 }
3080
3081 /**
3082 * Sets our entry's value and writes through to the map. The
3083 * value to return is somewhat arbitrary here. Since we do not
3084 * necessarily track asynchronous changes, the most recent
3085 * "previous" value could be different from what we return (or
3086 * could even have been removed in which case the put will
3087 * re-establish). We do not and cannot guarantee more.
3088 */
3089 public final V setValue(V value) {
3090 if (value == null) throw new NullPointerException();
3091 V v = val;
3092 val = value;
3093 map.put(key, value);
3094 return v;
3095 }
3096 }
3097
3098 /**
3099 * Returns exportable snapshot entry for the given key and value
3100 * when write-through can't or shouldn't be used.
3101 */
3102 static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3103 return new AbstractMap.SimpleEntry<K,V>(k, v);
3104 }
3105
3106 /* ---------------- Serialization Support -------------- */
3107
3108 /**
3109 * Stripped-down version of helper class used in previous version,
3110 * declared for the sake of serialization compatibility
3111 */
3112 static class Segment<K,V> implements Serializable {
3113 private static final long serialVersionUID = 2249069246763182397L;
3114 final float loadFactor;
3115 Segment(float lf) { this.loadFactor = lf; }
3116 }
3117
3118 /**
3119 * Saves the state of the {@code ConcurrentHashMap} instance to a
3120 * stream (i.e., serializes it).
3121 * @param s the stream
3122 * @serialData
3123 * the key (Object) and value (Object)
3124 * for each key-value mapping, followed by a null pair.
3125 * The key-value mappings are emitted in no particular order.
3126 */
3127 @SuppressWarnings("unchecked") private void writeObject
3128 (java.io.ObjectOutputStream s)
3129 throws java.io.IOException {
3130 if (segments == null) { // for serialization compatibility
3131 segments = (Segment<K,V>[])
3132 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3133 for (int i = 0; i < segments.length; ++i)
3134 segments[i] = new Segment<K,V>(LOAD_FACTOR);
3135 }
3136 s.defaultWriteObject();
3137 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3138 V v;
3139 while ((v = it.advance()) != null) {
3140 s.writeObject(it.nextKey);
3141 s.writeObject(v);
3142 }
3143 s.writeObject(null);
3144 s.writeObject(null);
3145 segments = null; // throw away
3146 }
3147
3148 /**
3149 * Reconstitutes the instance from a stream (that is, deserializes it).
3150 * @param s the stream
3151 */
3152 @SuppressWarnings("unchecked") private void readObject
3153 (java.io.ObjectInputStream s)
3154 throws java.io.IOException, ClassNotFoundException {
3155 s.defaultReadObject();
3156 this.segments = null; // unneeded
3157
3158 // Create all nodes, then place in table once size is known
3159 long size = 0L;
3160 Node<V> p = null;
3161 for (;;) {
3162 K k = (K) s.readObject();
3163 V v = (V) s.readObject();
3164 if (k != null && v != null) {
3165 int h = spread(k.hashCode());
3166 p = new Node<V>(h, k, v, p);
3167 ++size;
3168 }
3169 else
3170 break;
3171 }
3172 if (p != null) {
3173 boolean init = false;
3174 int n;
3175 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3176 n = MAXIMUM_CAPACITY;
3177 else {
3178 int sz = (int)size;
3179 n = tableSizeFor(sz + (sz >>> 1) + 1);
3180 }
3181 int sc = sizeCtl;
3182 boolean collide = false;
3183 if (n > sc &&
3184 U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3185 try {
3186 if (table == null) {
3187 init = true;
3188 @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3189 Node<V>[] tab = (Node<V>[])rt;
3190 int mask = n - 1;
3191 while (p != null) {
3192 int j = p.hash & mask;
3193 Node<V> next = p.next;
3194 Node<V> q = p.next = tabAt(tab, j);
3195 setTabAt(tab, j, p);
3196 if (!collide && q != null && q.hash == p.hash)
3197 collide = true;
3198 p = next;
3199 }
3200 table = tab;
3201 addCount(size, -1);
3202 sc = n - (n >>> 2);
3203 }
3204 } finally {
3205 sizeCtl = sc;
3206 }
3207 if (collide) { // rescan and convert to TreeBins
3208 Node<V>[] tab = table;
3209 for (int i = 0; i < tab.length; ++i) {
3210 int c = 0;
3211 for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3212 if (++c > TREE_THRESHOLD &&
3213 (e.key instanceof Comparable)) {
3214 replaceWithTreeBin(tab, i, e.key);
3215 break;
3216 }
3217 }
3218 }
3219 }
3220 }
3221 if (!init) { // Can only happen if unsafely published.
3222 while (p != null) {
3223 internalPut((K)p.key, p.val, false);
3224 p = p.next;
3225 }
3226 }
3227 }
3228 }
3229
3230 // -------------------------------------------------------
3231
3232 // Sequential bulk operations
3233
3234 /**
3235 * Performs the given action for each (key, value).
3236 *
3237 * @param action the action
3238 */
3239 public void forEachSequentially
3240 (BiConsumer<? super K, ? super V> action) {
3241 if (action == null) throw new NullPointerException();
3242 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3243 V v;
3244 while ((v = it.advance()) != null)
3245 action.accept(it.nextKey, v);
3246 }
3247
3248 /**
3249 * Performs the given action for each non-null transformation
3250 * of each (key, value).
3251 *
3252 * @param transformer a function returning the transformation
3253 * for an element, or null if there is no transformation (in
3254 * which case the action is not applied)
3255 * @param action the action
3256 */
3257 public <U> void forEachSequentially
3258 (BiFunction<? super K, ? super V, ? extends U> transformer,
3259 Consumer<? super U> action) {
3260 if (transformer == null || action == null)
3261 throw new NullPointerException();
3262 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3263 V v; U u;
3264 while ((v = it.advance()) != null) {
3265 if ((u = transformer.apply(it.nextKey, v)) != null)
3266 action.accept(u);
3267 }
3268 }
3269
3270 /**
3271 * Returns a non-null result from applying the given search
3272 * function on each (key, value), or null if none.
3273 *
3274 * @param searchFunction a function returning a non-null
3275 * result on success, else null
3276 * @return a non-null result from applying the given search
3277 * function on each (key, value), or null if none
3278 */
3279 public <U> U searchSequentially
3280 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3281 if (searchFunction == null) throw new NullPointerException();
3282 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3283 V v; U u;
3284 while ((v = it.advance()) != null) {
3285 if ((u = searchFunction.apply(it.nextKey, v)) != null)
3286 return u;
3287 }
3288 return null;
3289 }
3290
3291 /**
3292 * Returns the result of accumulating the given transformation
3293 * of all (key, value) pairs using the given reducer to
3294 * combine values, or null if none.
3295 *
3296 * @param transformer a function returning the transformation
3297 * for an element, or null if there is no transformation (in
3298 * which case it is not combined)
3299 * @param reducer a commutative associative combining function
3300 * @return the result of accumulating the given transformation
3301 * of all (key, value) pairs
3302 */
3303 public <U> U reduceSequentially
3304 (BiFunction<? super K, ? super V, ? extends U> transformer,
3305 BiFunction<? super U, ? super U, ? extends U> reducer) {
3306 if (transformer == null || reducer == null)
3307 throw new NullPointerException();
3308 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3309 U r = null, u; V v;
3310 while ((v = it.advance()) != null) {
3311 if ((u = transformer.apply(it.nextKey, v)) != null)
3312 r = (r == null) ? u : reducer.apply(r, u);
3313 }
3314 return r;
3315 }
3316
3317 /**
3318 * Returns the result of accumulating the given transformation
3319 * of all (key, value) pairs using the given reducer to
3320 * combine values, and the given basis as an identity value.
3321 *
3322 * @param transformer a function returning the transformation
3323 * for an element
3324 * @param basis the identity (initial default value) for the reduction
3325 * @param reducer a commutative associative combining function
3326 * @return the result of accumulating the given transformation
3327 * of all (key, value) pairs
3328 */
3329 public double reduceToDoubleSequentially
3330 (ToDoubleBiFunction<? super K, ? super V> transformer,
3331 double basis,
3332 DoubleBinaryOperator reducer) {
3333 if (transformer == null || reducer == null)
3334 throw new NullPointerException();
3335 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3336 double r = basis; V v;
3337 while ((v = it.advance()) != null)
3338 r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey, v));
3339 return r;
3340 }
3341
3342 /**
3343 * Returns the result of accumulating the given transformation
3344 * of all (key, value) pairs using the given reducer to
3345 * combine values, and the given basis as an identity value.
3346 *
3347 * @param transformer a function returning the transformation
3348 * for an element
3349 * @param basis the identity (initial default value) for the reduction
3350 * @param reducer a commutative associative combining function
3351 * @return the result of accumulating the given transformation
3352 * of all (key, value) pairs
3353 */
3354 public long reduceToLongSequentially
3355 (ToLongBiFunction<? super K, ? super V> transformer,
3356 long basis,
3357 LongBinaryOperator reducer) {
3358 if (transformer == null || reducer == null)
3359 throw new NullPointerException();
3360 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3361 long r = basis; V v;
3362 while ((v = it.advance()) != null)
3363 r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey, v));
3364 return r;
3365 }
3366
3367 /**
3368 * Returns the result of accumulating the given transformation
3369 * of all (key, value) pairs using the given reducer to
3370 * combine values, and the given basis as an identity value.
3371 *
3372 * @param transformer a function returning the transformation
3373 * for an element
3374 * @param basis the identity (initial default value) for the reduction
3375 * @param reducer a commutative associative combining function
3376 * @return the result of accumulating the given transformation
3377 * of all (key, value) pairs
3378 */
3379 public int reduceToIntSequentially
3380 (ToIntBiFunction<? super K, ? super V> transformer,
3381 int basis,
3382 IntBinaryOperator reducer) {
3383 if (transformer == null || reducer == null)
3384 throw new NullPointerException();
3385 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3386 int r = basis; V v;
3387 while ((v = it.advance()) != null)
3388 r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey, v));
3389 return r;
3390 }
3391
3392 /**
3393 * Performs the given action for each key.
3394 *
3395 * @param action the action
3396 */
3397 public void forEachKeySequentially
3398 (Consumer<? super K> action) {
3399 if (action == null) throw new NullPointerException();
3400 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3401 while (it.advance() != null)
3402 action.accept(it.nextKey);
3403 }
3404
3405 /**
3406 * Performs the given action for each non-null transformation
3407 * of each key.
3408 *
3409 * @param transformer a function returning the transformation
3410 * for an element, or null if there is no transformation (in
3411 * which case the action is not applied)
3412 * @param action the action
3413 */
3414 public <U> void forEachKeySequentially
3415 (Function<? super K, ? extends U> transformer,
3416 Consumer<? super U> action) {
3417 if (transformer == null || action == null)
3418 throw new NullPointerException();
3419 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3420 U u;
3421 while (it.advance() != null) {
3422 if ((u = transformer.apply(it.nextKey)) != null)
3423 action.accept(u);
3424 }
3425 ForkJoinTasks.forEachKey
3426 (this, transformer, action).invoke();
3427 }
3428
3429 /**
3430 * Returns a non-null result from applying the given search
3431 * function on each key, or null if none.
3432 *
3433 * @param searchFunction a function returning a non-null
3434 * result on success, else null
3435 * @return a non-null result from applying the given search
3436 * function on each key, or null if none
3437 */
3438 public <U> U searchKeysSequentially
3439 (Function<? super K, ? extends U> searchFunction) {
3440 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3441 U u;
3442 while (it.advance() != null) {
3443 if ((u = searchFunction.apply(it.nextKey)) != null)
3444 return u;
3445 }
3446 return null;
3447 }
3448
3449 /**
3450 * Returns the result of accumulating all keys using the given
3451 * reducer to combine values, or null if none.
3452 *
3453 * @param reducer a commutative associative combining function
3454 * @return the result of accumulating all keys using the given
3455 * reducer to combine values, or null if none
3456 */
3457 public K reduceKeysSequentially
3458 (BiFunction<? super K, ? super K, ? extends K> reducer) {
3459 if (reducer == null) throw new NullPointerException();
3460 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3461 K r = null;
3462 while (it.advance() != null) {
3463 K u = it.nextKey;
3464 r = (r == null) ? u : reducer.apply(r, u);
3465 }
3466 return r;
3467 }
3468
3469 /**
3470 * Returns the result of accumulating the given transformation
3471 * of all keys using the given reducer to combine values, or
3472 * null if none.
3473 *
3474 * @param transformer a function returning the transformation
3475 * for an element, or null if there is no transformation (in
3476 * which case it is not combined)
3477 * @param reducer a commutative associative combining function
3478 * @return the result of accumulating the given transformation
3479 * of all keys
3480 */
3481 public <U> U reduceKeysSequentially
3482 (Function<? super K, ? extends U> transformer,
3483 BiFunction<? super U, ? super U, ? extends U> reducer) {
3484 if (transformer == null || reducer == null)
3485 throw new NullPointerException();
3486 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3487 U r = null, u;
3488 while (it.advance() != null) {
3489 if ((u = transformer.apply(it.nextKey)) != null)
3490 r = (r == null) ? u : reducer.apply(r, u);
3491 }
3492 return r;
3493 }
3494
3495 /**
3496 * Returns the result of accumulating the given transformation
3497 * of all keys using the given reducer to combine values, and
3498 * the given basis as an identity value.
3499 *
3500 * @param transformer a function returning the transformation
3501 * for an element
3502 * @param basis the identity (initial default value) for the reduction
3503 * @param reducer a commutative associative combining function
3504 * @return the result of accumulating the given transformation
3505 * of all keys
3506 */
3507 public double reduceKeysToDoubleSequentially
3508 (ToDoubleFunction<? super K> transformer,
3509 double basis,
3510 DoubleBinaryOperator reducer) {
3511 if (transformer == null || reducer == null)
3512 throw new NullPointerException();
3513 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3514 double r = basis;
3515 while (it.advance() != null)
3516 r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey));
3517 return r;
3518 }
3519
3520 /**
3521 * Returns the result of accumulating the given transformation
3522 * of all keys using the given reducer to combine values, and
3523 * the given basis as an identity value.
3524 *
3525 * @param transformer a function returning the transformation
3526 * for an element
3527 * @param basis the identity (initial default value) for the reduction
3528 * @param reducer a commutative associative combining function
3529 * @return the result of accumulating the given transformation
3530 * of all keys
3531 */
3532 public long reduceKeysToLongSequentially
3533 (ToLongFunction<? super K> transformer,
3534 long basis,
3535 LongBinaryOperator reducer) {
3536 if (transformer == null || reducer == null)
3537 throw new NullPointerException();
3538 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3539 long r = basis;
3540 while (it.advance() != null)
3541 r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey));
3542 return r;
3543 }
3544
3545 /**
3546 * Returns the result of accumulating the given transformation
3547 * of all keys using the given reducer to combine values, and
3548 * the given basis as an identity value.
3549 *
3550 * @param transformer a function returning the transformation
3551 * for an element
3552 * @param basis the identity (initial default value) for the reduction
3553 * @param reducer a commutative associative combining function
3554 * @return the result of accumulating the given transformation
3555 * of all keys
3556 */
3557 public int reduceKeysToIntSequentially
3558 (ToIntFunction<? super K> transformer,
3559 int basis,
3560 IntBinaryOperator reducer) {
3561 if (transformer == null || reducer == null)
3562 throw new NullPointerException();
3563 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3564 int r = basis;
3565 while (it.advance() != null)
3566 r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey));
3567 return r;
3568 }
3569
3570 /**
3571 * Performs the given action for each value.
3572 *
3573 * @param action the action
3574 */
3575 public void forEachValueSequentially(Consumer<? super V> action) {
3576 if (action == null) throw new NullPointerException();
3577 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3578 V v;
3579 while ((v = it.advance()) != null)
3580 action.accept(v);
3581 }
3582
3583 /**
3584 * Performs the given action for each non-null transformation
3585 * of each value.
3586 *
3587 * @param transformer a function returning the transformation
3588 * for an element, or null if there is no transformation (in
3589 * which case the action is not applied)
3590 */
3591 public <U> void forEachValueSequentially
3592 (Function<? super V, ? extends U> transformer,
3593 Consumer<? super U> action) {
3594 if (transformer == null || action == null)
3595 throw new NullPointerException();
3596 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3597 V v; U u;
3598 while ((v = it.advance()) != null) {
3599 if ((u = transformer.apply(v)) != null)
3600 action.accept(u);
3601 }
3602 }
3603
3604 /**
3605 * Returns a non-null result from applying the given search
3606 * function on each value, or null if none.
3607 *
3608 * @param searchFunction a function returning a non-null
3609 * result on success, else null
3610 * @return a non-null result from applying the given search
3611 * function on each value, or null if none
3612 */
3613 public <U> U searchValuesSequentially
3614 (Function<? super V, ? extends U> searchFunction) {
3615 if (searchFunction == null) throw new NullPointerException();
3616 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3617 V v; U u;
3618 while ((v = it.advance()) != null) {
3619 if ((u = searchFunction.apply(v)) != null)
3620 return u;
3621 }
3622 return null;
3623 }
3624
3625 /**
3626 * Returns the result of accumulating all values using the
3627 * given reducer to combine values, or null if none.
3628 *
3629 * @param reducer a commutative associative combining function
3630 * @return the result of accumulating all values
3631 */
3632 public V reduceValuesSequentially
3633 (BiFunction<? super V, ? super V, ? extends V> reducer) {
3634 if (reducer == null) throw new NullPointerException();
3635 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3636 V r = null; V v;
3637 while ((v = it.advance()) != null)
3638 r = (r == null) ? v : reducer.apply(r, v);
3639 return r;
3640 }
3641
3642 /**
3643 * Returns the result of accumulating the given transformation
3644 * of all values using the given reducer to combine values, or
3645 * null if none.
3646 *
3647 * @param transformer a function returning the transformation
3648 * for an element, or null if there is no transformation (in
3649 * which case it is not combined)
3650 * @param reducer a commutative associative combining function
3651 * @return the result of accumulating the given transformation
3652 * of all values
3653 */
3654 public <U> U reduceValuesSequentially
3655 (Function<? super V, ? extends U> transformer,
3656 BiFunction<? super U, ? super U, ? extends U> reducer) {
3657 if (transformer == null || reducer == null)
3658 throw new NullPointerException();
3659 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3660 U r = null, u; V v;
3661 while ((v = it.advance()) != null) {
3662 if ((u = transformer.apply(v)) != null)
3663 r = (r == null) ? u : reducer.apply(r, u);
3664 }
3665 return r;
3666 }
3667
3668 /**
3669 * Returns the result of accumulating the given transformation
3670 * of all values using the given reducer to combine values,
3671 * and the given basis as an identity value.
3672 *
3673 * @param transformer a function returning the transformation
3674 * for an element
3675 * @param basis the identity (initial default value) for the reduction
3676 * @param reducer a commutative associative combining function
3677 * @return the result of accumulating the given transformation
3678 * of all values
3679 */
3680 public double reduceValuesToDoubleSequentially
3681 (ToDoubleFunction<? super V> transformer,
3682 double basis,
3683 DoubleBinaryOperator reducer) {
3684 if (transformer == null || reducer == null)
3685 throw new NullPointerException();
3686 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3687 double r = basis; V v;
3688 while ((v = it.advance()) != null)
3689 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
3690 return r;
3691 }
3692
3693 /**
3694 * Returns the result of accumulating the given transformation
3695 * of all values using the given reducer to combine values,
3696 * and the given basis as an identity value.
3697 *
3698 * @param transformer a function returning the transformation
3699 * for an element
3700 * @param basis the identity (initial default value) for the reduction
3701 * @param reducer a commutative associative combining function
3702 * @return the result of accumulating the given transformation
3703 * of all values
3704 */
3705 public long reduceValuesToLongSequentially
3706 (ToLongFunction<? super V> transformer,
3707 long basis,
3708 LongBinaryOperator reducer) {
3709 if (transformer == null || reducer == null)
3710 throw new NullPointerException();
3711 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3712 long r = basis; V v;
3713 while ((v = it.advance()) != null)
3714 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
3715 return r;
3716 }
3717
3718 /**
3719 * Returns the result of accumulating the given transformation
3720 * of all values using the given reducer to combine values,
3721 * and the given basis as an identity value.
3722 *
3723 * @param transformer a function returning the transformation
3724 * for an element
3725 * @param basis the identity (initial default value) for the reduction
3726 * @param reducer a commutative associative combining function
3727 * @return the result of accumulating the given transformation
3728 * of all values
3729 */
3730 public int reduceValuesToIntSequentially
3731 (ToIntFunction<? super V> transformer,
3732 int basis,
3733 IntBinaryOperator reducer) {
3734 if (transformer == null || reducer == null)
3735 throw new NullPointerException();
3736 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3737 int r = basis; V v;
3738 while ((v = it.advance()) != null)
3739 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
3740 return r;
3741 }
3742
3743 /**
3744 * Performs the given action for each entry.
3745 *
3746 * @param action the action
3747 */
3748 public void forEachEntrySequentially
3749 (Consumer<? super Map.Entry<K,V>> action) {
3750 if (action == null) throw new NullPointerException();
3751 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3752 V v;
3753 while ((v = it.advance()) != null)
3754 action.accept(entryFor(it.nextKey, v));
3755 }
3756
3757 /**
3758 * Performs the given action for each non-null transformation
3759 * of each entry.
3760 *
3761 * @param transformer a function returning the transformation
3762 * for an element, or null if there is no transformation (in
3763 * which case the action is not applied)
3764 * @param action the action
3765 */
3766 public <U> void forEachEntrySequentially
3767 (Function<Map.Entry<K,V>, ? extends U> transformer,
3768 Consumer<? super U> action) {
3769 if (transformer == null || action == null)
3770 throw new NullPointerException();
3771 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3772 V v; U u;
3773 while ((v = it.advance()) != null) {
3774 if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3775 action.accept(u);
3776 }
3777 }
3778
3779 /**
3780 * Returns a non-null result from applying the given search
3781 * function on each entry, or null if none.
3782 *
3783 * @param searchFunction a function returning a non-null
3784 * result on success, else null
3785 * @return a non-null result from applying the given search
3786 * function on each entry, or null if none
3787 */
3788 public <U> U searchEntriesSequentially
3789 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3790 if (searchFunction == null) throw new NullPointerException();
3791 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3792 V v; U u;
3793 while ((v = it.advance()) != null) {
3794 if ((u = searchFunction.apply(entryFor(it.nextKey, v))) != null)
3795 return u;
3796 }
3797 return null;
3798 }
3799
3800 /**
3801 * Returns the result of accumulating all entries using the
3802 * given reducer to combine values, or null if none.
3803 *
3804 * @param reducer a commutative associative combining function
3805 * @return the result of accumulating all entries
3806 */
3807 public Map.Entry<K,V> reduceEntriesSequentially
3808 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3809 if (reducer == null) throw new NullPointerException();
3810 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3811 Map.Entry<K,V> r = null; V v;
3812 while ((v = it.advance()) != null) {
3813 Map.Entry<K,V> u = entryFor(it.nextKey, v);
3814 r = (r == null) ? u : reducer.apply(r, u);
3815 }
3816 return r;
3817 }
3818
3819 /**
3820 * Returns the result of accumulating the given transformation
3821 * of all entries using the given reducer to combine values,
3822 * or null if none.
3823 *
3824 * @param transformer a function returning the transformation
3825 * for an element, or null if there is no transformation (in
3826 * which case it is not combined)
3827 * @param reducer a commutative associative combining function
3828 * @return the result of accumulating the given transformation
3829 * of all entries
3830 */
3831 public <U> U reduceEntriesSequentially
3832 (Function<Map.Entry<K,V>, ? extends U> transformer,
3833 BiFunction<? super U, ? super U, ? extends U> reducer) {
3834 if (transformer == null || reducer == null)
3835 throw new NullPointerException();
3836 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3837 U r = null, u; V v;
3838 while ((v = it.advance()) != null) {
3839 if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3840 r = (r == null) ? u : reducer.apply(r, u);
3841 }
3842 return r;
3843 }
3844
3845 /**
3846 * Returns the result of accumulating the given transformation
3847 * of all entries using the given reducer to combine values,
3848 * and the given basis as an identity value.
3849 *
3850 * @param transformer a function returning the transformation
3851 * for an element
3852 * @param basis the identity (initial default value) for the reduction
3853 * @param reducer a commutative associative combining function
3854 * @return the result of accumulating the given transformation
3855 * of all entries
3856 */
3857 public double reduceEntriesToDoubleSequentially
3858 (ToDoubleFunction<Map.Entry<K,V>> transformer,
3859 double basis,
3860 DoubleBinaryOperator reducer) {
3861 if (transformer == null || reducer == null)
3862 throw new NullPointerException();
3863 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3864 double r = basis; V v;
3865 while ((v = it.advance()) != null)
3866 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(it.nextKey, v)));
3867 return r;
3868 }
3869
3870 /**
3871 * Returns the result of accumulating the given transformation
3872 * of all entries using the given reducer to combine values,
3873 * and the given basis as an identity value.
3874 *
3875 * @param transformer a function returning the transformation
3876 * for an element
3877 * @param basis the identity (initial default value) for the reduction
3878 * @param reducer a commutative associative combining function
3879 * @return the result of accumulating the given transformation
3880 * of all entries
3881 */
3882 public long reduceEntriesToLongSequentially
3883 (ToLongFunction<Map.Entry<K,V>> transformer,
3884 long basis,
3885 LongBinaryOperator reducer) {
3886 if (transformer == null || reducer == null)
3887 throw new NullPointerException();
3888 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3889 long r = basis; V v;
3890 while ((v = it.advance()) != null)
3891 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(it.nextKey, v)));
3892 return r;
3893 }
3894
3895 /**
3896 * Returns the result of accumulating the given transformation
3897 * of all entries using the given reducer to combine values,
3898 * and the given basis as an identity value.
3899 *
3900 * @param transformer a function returning the transformation
3901 * for an element
3902 * @param basis the identity (initial default value) for the reduction
3903 * @param reducer a commutative associative combining function
3904 * @return the result of accumulating the given transformation
3905 * of all entries
3906 */
3907 public int reduceEntriesToIntSequentially
3908 (ToIntFunction<Map.Entry<K,V>> transformer,
3909 int basis,
3910 IntBinaryOperator reducer) {
3911 if (transformer == null || reducer == null)
3912 throw new NullPointerException();
3913 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3914 int r = basis; V v;
3915 while ((v = it.advance()) != null)
3916 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(it.nextKey, v)));
3917 return r;
3918 }
3919
3920 // Parallel bulk operations
3921
3922 /**
3923 * Performs the given action for each (key, value).
3924 *
3925 * @param action the action
3926 */
3927 public void forEachInParallel(BiConsumer<? super K,? super V> action) {
3928 ForkJoinTasks.forEach
3929 (this, action).invoke();
3930 }
3931
3932 /**
3933 * Performs the given action for each non-null transformation
3934 * of each (key, value).
3935 *
3936 * @param transformer a function returning the transformation
3937 * for an element, or null if there is no transformation (in
3938 * which case the action is not applied)
3939 * @param action the action
3940 */
3941 public <U> void forEachInParallel
3942 (BiFunction<? super K, ? super V, ? extends U> transformer,
3943 Consumer<? super U> action) {
3944 ForkJoinTasks.forEach
3945 (this, transformer, action).invoke();
3946 }
3947
3948 /**
3949 * Returns a non-null result from applying the given search
3950 * function on each (key, value), or null if none. Upon
3951 * success, further element processing is suppressed and the
3952 * results of any other parallel invocations of the search
3953 * function are ignored.
3954 *
3955 * @param searchFunction a function returning a non-null
3956 * result on success, else null
3957 * @return a non-null result from applying the given search
3958 * function on each (key, value), or null if none
3959 */
3960 public <U> U searchInParallel
3961 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3962 return ForkJoinTasks.search
3963 (this, searchFunction).invoke();
3964 }
3965
3966 /**
3967 * Returns the result of accumulating the given transformation
3968 * of all (key, value) pairs using the given reducer to
3969 * combine values, or null if none.
3970 *
3971 * @param transformer a function returning the transformation
3972 * for an element, or null if there is no transformation (in
3973 * which case it is not combined)
3974 * @param reducer a commutative associative combining function
3975 * @return the result of accumulating the given transformation
3976 * of all (key, value) pairs
3977 */
3978 public <U> U reduceInParallel
3979 (BiFunction<? super K, ? super V, ? extends U> transformer,
3980 BiFunction<? super U, ? super U, ? extends U> reducer) {
3981 return ForkJoinTasks.reduce
3982 (this, transformer, reducer).invoke();
3983 }
3984
3985 /**
3986 * Returns the result of accumulating the given transformation
3987 * of all (key, value) pairs using the given reducer to
3988 * combine values, and the given basis as an identity value.
3989 *
3990 * @param transformer a function returning the transformation
3991 * for an element
3992 * @param basis the identity (initial default value) for the reduction
3993 * @param reducer a commutative associative combining function
3994 * @return the result of accumulating the given transformation
3995 * of all (key, value) pairs
3996 */
3997 public double reduceToDoubleInParallel
3998 (ToDoubleBiFunction<? super K, ? super V> transformer,
3999 double basis,
4000 DoubleBinaryOperator reducer) {
4001 return ForkJoinTasks.reduceToDouble
4002 (this, transformer, basis, reducer).invoke();
4003 }
4004
4005 /**
4006 * Returns the result of accumulating the given transformation
4007 * of all (key, value) pairs using the given reducer to
4008 * combine values, and the given basis as an identity value.
4009 *
4010 * @param transformer a function returning the transformation
4011 * for an element
4012 * @param basis the identity (initial default value) for the reduction
4013 * @param reducer a commutative associative combining function
4014 * @return the result of accumulating the given transformation
4015 * of all (key, value) pairs
4016 */
4017 public long reduceToLongInParallel
4018 (ToLongBiFunction<? super K, ? super V> transformer,
4019 long basis,
4020 LongBinaryOperator reducer) {
4021 return ForkJoinTasks.reduceToLong
4022 (this, transformer, basis, reducer).invoke();
4023 }
4024
4025 /**
4026 * Returns the result of accumulating the given transformation
4027 * of all (key, value) pairs using the given reducer to
4028 * combine values, and the given basis as an identity value.
4029 *
4030 * @param transformer a function returning the transformation
4031 * for an element
4032 * @param basis the identity (initial default value) for the reduction
4033 * @param reducer a commutative associative combining function
4034 * @return the result of accumulating the given transformation
4035 * of all (key, value) pairs
4036 */
4037 public int reduceToIntInParallel
4038 (ToIntBiFunction<? super K, ? super V> transformer,
4039 int basis,
4040 IntBinaryOperator reducer) {
4041 return ForkJoinTasks.reduceToInt
4042 (this, transformer, basis, reducer).invoke();
4043 }
4044
4045 /**
4046 * Performs the given action for each key.
4047 *
4048 * @param action the action
4049 */
4050 public void forEachKeyInParallel(Consumer<? super K> action) {
4051 ForkJoinTasks.forEachKey
4052 (this, action).invoke();
4053 }
4054
4055 /**
4056 * Performs the given action for each non-null transformation
4057 * of each key.
4058 *
4059 * @param transformer a function returning the transformation
4060 * for an element, or null if there is no transformation (in
4061 * which case the action is not applied)
4062 * @param action the action
4063 */
4064 public <U> void forEachKeyInParallel
4065 (Function<? super K, ? extends U> transformer,
4066 Consumer<? super U> action) {
4067 ForkJoinTasks.forEachKey
4068 (this, transformer, action).invoke();
4069 }
4070
4071 /**
4072 * Returns a non-null result from applying the given search
4073 * function on each key, or null if none. Upon success,
4074 * further element processing is suppressed and the results of
4075 * any other parallel invocations of the search function are
4076 * ignored.
4077 *
4078 * @param searchFunction a function returning a non-null
4079 * result on success, else null
4080 * @return a non-null result from applying the given search
4081 * function on each key, or null if none
4082 */
4083 public <U> U searchKeysInParallel
4084 (Function<? super K, ? extends U> searchFunction) {
4085 return ForkJoinTasks.searchKeys
4086 (this, searchFunction).invoke();
4087 }
4088
4089 /**
4090 * Returns the result of accumulating all keys using the given
4091 * reducer to combine values, or null if none.
4092 *
4093 * @param reducer a commutative associative combining function
4094 * @return the result of accumulating all keys using the given
4095 * reducer to combine values, or null if none
4096 */
4097 public K reduceKeysInParallel
4098 (BiFunction<? super K, ? super K, ? extends K> reducer) {
4099 return ForkJoinTasks.reduceKeys
4100 (this, reducer).invoke();
4101 }
4102
4103 /**
4104 * Returns the result of accumulating the given transformation
4105 * of all keys using the given reducer to combine values, or
4106 * null if none.
4107 *
4108 * @param transformer a function returning the transformation
4109 * for an element, or null if there is no transformation (in
4110 * which case it is not combined)
4111 * @param reducer a commutative associative combining function
4112 * @return the result of accumulating the given transformation
4113 * of all keys
4114 */
4115 public <U> U reduceKeysInParallel
4116 (Function<? super K, ? extends U> transformer,
4117 BiFunction<? super U, ? super U, ? extends U> reducer) {
4118 return ForkJoinTasks.reduceKeys
4119 (this, transformer, reducer).invoke();
4120 }
4121
4122 /**
4123 * Returns the result of accumulating the given transformation
4124 * of all keys using the given reducer to combine values, and
4125 * the given basis as an identity value.
4126 *
4127 * @param transformer a function returning the transformation
4128 * for an element
4129 * @param basis the identity (initial default value) for the reduction
4130 * @param reducer a commutative associative combining function
4131 * @return the result of accumulating the given transformation
4132 * of all keys
4133 */
4134 public double reduceKeysToDoubleInParallel
4135 (ToDoubleFunction<? super K> transformer,
4136 double basis,
4137 DoubleBinaryOperator reducer) {
4138 return ForkJoinTasks.reduceKeysToDouble
4139 (this, transformer, basis, reducer).invoke();
4140 }
4141
4142 /**
4143 * Returns the result of accumulating the given transformation
4144 * of all keys using the given reducer to combine values, and
4145 * the given basis as an identity value.
4146 *
4147 * @param transformer a function returning the transformation
4148 * for an element
4149 * @param basis the identity (initial default value) for the reduction
4150 * @param reducer a commutative associative combining function
4151 * @return the result of accumulating the given transformation
4152 * of all keys
4153 */
4154 public long reduceKeysToLongInParallel
4155 (ToLongFunction<? super K> transformer,
4156 long basis,
4157 LongBinaryOperator reducer) {
4158 return ForkJoinTasks.reduceKeysToLong
4159 (this, transformer, basis, reducer).invoke();
4160 }
4161
4162 /**
4163 * Returns the result of accumulating the given transformation
4164 * of all keys using the given reducer to combine values, and
4165 * the given basis as an identity value.
4166 *
4167 * @param transformer a function returning the transformation
4168 * for an element
4169 * @param basis the identity (initial default value) for the reduction
4170 * @param reducer a commutative associative combining function
4171 * @return the result of accumulating the given transformation
4172 * of all keys
4173 */
4174 public int reduceKeysToIntInParallel
4175 (ToIntFunction<? super K> transformer,
4176 int basis,
4177 IntBinaryOperator reducer) {
4178 return ForkJoinTasks.reduceKeysToInt
4179 (this, transformer, basis, reducer).invoke();
4180 }
4181
4182 /**
4183 * Performs the given action for each value.
4184 *
4185 * @param action the action
4186 */
4187 public void forEachValueInParallel(Consumer<? super V> action) {
4188 ForkJoinTasks.forEachValue
4189 (this, action).invoke();
4190 }
4191
4192 /**
4193 * Performs the given action for each non-null transformation
4194 * of each value.
4195 *
4196 * @param transformer a function returning the transformation
4197 * for an element, or null if there is no transformation (in
4198 * which case the action is not applied)
4199 */
4200 public <U> void forEachValueInParallel
4201 (Function<? super V, ? extends U> transformer,
4202 Consumer<? super U> action) {
4203 ForkJoinTasks.forEachValue
4204 (this, transformer, action).invoke();
4205 }
4206
4207 /**
4208 * Returns a non-null result from applying the given search
4209 * function on each value, or null if none. Upon success,
4210 * further element processing is suppressed and the results of
4211 * any other parallel invocations of the search function are
4212 * ignored.
4213 *
4214 * @param searchFunction a function returning a non-null
4215 * result on success, else null
4216 * @return a non-null result from applying the given search
4217 * function on each value, or null if none
4218 */
4219 public <U> U searchValuesInParallel
4220 (Function<? super V, ? extends U> searchFunction) {
4221 return ForkJoinTasks.searchValues
4222 (this, searchFunction).invoke();
4223 }
4224
4225 /**
4226 * Returns the result of accumulating all values using the
4227 * given reducer to combine values, or null if none.
4228 *
4229 * @param reducer a commutative associative combining function
4230 * @return the result of accumulating all values
4231 */
4232 public V reduceValuesInParallel
4233 (BiFunction<? super V, ? super V, ? extends V> reducer) {
4234 return ForkJoinTasks.reduceValues
4235 (this, reducer).invoke();
4236 }
4237
4238 /**
4239 * Returns the result of accumulating the given transformation
4240 * of all values using the given reducer to combine values, or
4241 * null if none.
4242 *
4243 * @param transformer a function returning the transformation
4244 * for an element, or null if there is no transformation (in
4245 * which case it is not combined)
4246 * @param reducer a commutative associative combining function
4247 * @return the result of accumulating the given transformation
4248 * of all values
4249 */
4250 public <U> U reduceValuesInParallel
4251 (Function<? super V, ? extends U> transformer,
4252 BiFunction<? super U, ? super U, ? extends U> reducer) {
4253 return ForkJoinTasks.reduceValues
4254 (this, transformer, reducer).invoke();
4255 }
4256
4257 /**
4258 * Returns the result of accumulating the given transformation
4259 * of all values using the given reducer to combine values,
4260 * and the given basis as an identity value.
4261 *
4262 * @param transformer a function returning the transformation
4263 * for an element
4264 * @param basis the identity (initial default value) for the reduction
4265 * @param reducer a commutative associative combining function
4266 * @return the result of accumulating the given transformation
4267 * of all values
4268 */
4269 public double reduceValuesToDoubleInParallel
4270 (ToDoubleFunction<? super V> transformer,
4271 double basis,
4272 DoubleBinaryOperator reducer) {
4273 return ForkJoinTasks.reduceValuesToDouble
4274 (this, transformer, basis, reducer).invoke();
4275 }
4276
4277 /**
4278 * Returns the result of accumulating the given transformation
4279 * of all values using the given reducer to combine values,
4280 * and the given basis as an identity value.
4281 *
4282 * @param transformer a function returning the transformation
4283 * for an element
4284 * @param basis the identity (initial default value) for the reduction
4285 * @param reducer a commutative associative combining function
4286 * @return the result of accumulating the given transformation
4287 * of all values
4288 */
4289 public long reduceValuesToLongInParallel
4290 (ToLongFunction<? super V> transformer,
4291 long basis,
4292 LongBinaryOperator reducer) {
4293 return ForkJoinTasks.reduceValuesToLong
4294 (this, transformer, basis, reducer).invoke();
4295 }
4296
4297 /**
4298 * Returns the result of accumulating the given transformation
4299 * of all values using the given reducer to combine values,
4300 * and the given basis as an identity value.
4301 *
4302 * @param transformer a function returning the transformation
4303 * for an element
4304 * @param basis the identity (initial default value) for the reduction
4305 * @param reducer a commutative associative combining function
4306 * @return the result of accumulating the given transformation
4307 * of all values
4308 */
4309 public int reduceValuesToIntInParallel
4310 (ToIntFunction<? super V> transformer,
4311 int basis,
4312 IntBinaryOperator reducer) {
4313 return ForkJoinTasks.reduceValuesToInt
4314 (this, transformer, basis, reducer).invoke();
4315 }
4316
4317 /**
4318 * Performs the given action for each entry.
4319 *
4320 * @param action the action
4321 */
4322 public void forEachEntryInParallel(Consumer<? super Map.Entry<K,V>> action) {
4323 ForkJoinTasks.forEachEntry
4324 (this, action).invoke();
4325 }
4326
4327 /**
4328 * Performs the given action for each non-null transformation
4329 * of each entry.
4330 *
4331 * @param transformer a function returning the transformation
4332 * for an element, or null if there is no transformation (in
4333 * which case the action is not applied)
4334 * @param action the action
4335 */
4336 public <U> void forEachEntryInParallel
4337 (Function<Map.Entry<K,V>, ? extends U> transformer,
4338 Consumer<? super U> action) {
4339 ForkJoinTasks.forEachEntry
4340 (this, transformer, action).invoke();
4341 }
4342
4343 /**
4344 * Returns a non-null result from applying the given search
4345 * function on each entry, or null if none. Upon success,
4346 * further element processing is suppressed and the results of
4347 * any other parallel invocations of the search function are
4348 * ignored.
4349 *
4350 * @param searchFunction a function returning a non-null
4351 * result on success, else null
4352 * @return a non-null result from applying the given search
4353 * function on each entry, or null if none
4354 */
4355 public <U> U searchEntriesInParallel
4356 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4357 return ForkJoinTasks.searchEntries
4358 (this, searchFunction).invoke();
4359 }
4360
4361 /**
4362 * Returns the result of accumulating all entries using the
4363 * given reducer to combine values, or null if none.
4364 *
4365 * @param reducer a commutative associative combining function
4366 * @return the result of accumulating all entries
4367 */
4368 public Map.Entry<K,V> reduceEntriesInParallel
4369 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4370 return ForkJoinTasks.reduceEntries
4371 (this, reducer).invoke();
4372 }
4373
4374 /**
4375 * Returns the result of accumulating the given transformation
4376 * of all entries using the given reducer to combine values,
4377 * or null if none.
4378 *
4379 * @param transformer a function returning the transformation
4380 * for an element, or null if there is no transformation (in
4381 * which case it is not combined)
4382 * @param reducer a commutative associative combining function
4383 * @return the result of accumulating the given transformation
4384 * of all entries
4385 */
4386 public <U> U reduceEntriesInParallel
4387 (Function<Map.Entry<K,V>, ? extends U> transformer,
4388 BiFunction<? super U, ? super U, ? extends U> reducer) {
4389 return ForkJoinTasks.reduceEntries
4390 (this, transformer, reducer).invoke();
4391 }
4392
4393 /**
4394 * Returns the result of accumulating the given transformation
4395 * of all entries using the given reducer to combine values,
4396 * and the given basis as an identity value.
4397 *
4398 * @param transformer a function returning the transformation
4399 * for an element
4400 * @param basis the identity (initial default value) for the reduction
4401 * @param reducer a commutative associative combining function
4402 * @return the result of accumulating the given transformation
4403 * of all entries
4404 */
4405 public double reduceEntriesToDoubleInParallel
4406 (ToDoubleFunction<Map.Entry<K,V>> transformer,
4407 double basis,
4408 DoubleBinaryOperator reducer) {
4409 return ForkJoinTasks.reduceEntriesToDouble
4410 (this, transformer, basis, reducer).invoke();
4411 }
4412
4413 /**
4414 * Returns the result of accumulating the given transformation
4415 * of all entries using the given reducer to combine values,
4416 * and the given basis as an identity value.
4417 *
4418 * @param transformer a function returning the transformation
4419 * for an element
4420 * @param basis the identity (initial default value) for the reduction
4421 * @param reducer a commutative associative combining function
4422 * @return the result of accumulating the given transformation
4423 * of all entries
4424 */
4425 public long reduceEntriesToLongInParallel
4426 (ToLongFunction<Map.Entry<K,V>> transformer,
4427 long basis,
4428 LongBinaryOperator reducer) {
4429 return ForkJoinTasks.reduceEntriesToLong
4430 (this, transformer, basis, reducer).invoke();
4431 }
4432
4433 /**
4434 * Returns the result of accumulating the given transformation
4435 * of all entries using the given reducer to combine values,
4436 * and the given basis as an identity value.
4437 *
4438 * @param transformer a function returning the transformation
4439 * for an element
4440 * @param basis the identity (initial default value) for the reduction
4441 * @param reducer a commutative associative combining function
4442 * @return the result of accumulating the given transformation
4443 * of all entries
4444 */
4445 public int reduceEntriesToIntInParallel
4446 (ToIntFunction<Map.Entry<K,V>> transformer,
4447 int basis,
4448 IntBinaryOperator reducer) {
4449 return ForkJoinTasks.reduceEntriesToInt
4450 (this, transformer, basis, reducer).invoke();
4451 }
4452
4453
4454 /* ----------------Views -------------- */
4455
4456 /**
4457 * Base class for views.
4458 */
4459 abstract static class CHMView<K, V> implements java.io.Serializable {
4460 private static final long serialVersionUID = 7249069246763182397L;
4461 final ConcurrentHashMap<K, V> map;
4462 CHMView(ConcurrentHashMap<K, V> map) { this.map = map; }
4463
4464 /**
4465 * Returns the map backing this view.
4466 *
4467 * @return the map backing this view
4468 */
4469 public ConcurrentHashMap<K,V> getMap() { return map; }
4470
4471 public final int size() { return map.size(); }
4472 public final boolean isEmpty() { return map.isEmpty(); }
4473 public final void clear() { map.clear(); }
4474
4475 // implementations below rely on concrete classes supplying these
4476 public abstract Iterator<?> iterator();
4477 public abstract boolean contains(Object o);
4478 public abstract boolean remove(Object o);
4479
4480 private static final String oomeMsg = "Required array size too large";
4481
4482 public final Object[] toArray() {
4483 long sz = map.mappingCount();
4484 if (sz > (long)(MAX_ARRAY_SIZE))
4485 throw new OutOfMemoryError(oomeMsg);
4486 int n = (int)sz;
4487 Object[] r = new Object[n];
4488 int i = 0;
4489 Iterator<?> it = iterator();
4490 while (it.hasNext()) {
4491 if (i == n) {
4492 if (n >= MAX_ARRAY_SIZE)
4493 throw new OutOfMemoryError(oomeMsg);
4494 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4495 n = MAX_ARRAY_SIZE;
4496 else
4497 n += (n >>> 1) + 1;
4498 r = Arrays.copyOf(r, n);
4499 }
4500 r[i++] = it.next();
4501 }
4502 return (i == n) ? r : Arrays.copyOf(r, i);
4503 }
4504
4505 @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4506 long sz = map.mappingCount();
4507 if (sz > (long)(MAX_ARRAY_SIZE))
4508 throw new OutOfMemoryError(oomeMsg);
4509 int m = (int)sz;
4510 T[] r = (a.length >= m) ? a :
4511 (T[])java.lang.reflect.Array
4512 .newInstance(a.getClass().getComponentType(), m);
4513 int n = r.length;
4514 int i = 0;
4515 Iterator<?> it = iterator();
4516 while (it.hasNext()) {
4517 if (i == n) {
4518 if (n >= MAX_ARRAY_SIZE)
4519 throw new OutOfMemoryError(oomeMsg);
4520 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4521 n = MAX_ARRAY_SIZE;
4522 else
4523 n += (n >>> 1) + 1;
4524 r = Arrays.copyOf(r, n);
4525 }
4526 r[i++] = (T)it.next();
4527 }
4528 if (a == r && i < n) {
4529 r[i] = null; // null-terminate
4530 return r;
4531 }
4532 return (i == n) ? r : Arrays.copyOf(r, i);
4533 }
4534
4535 public final int hashCode() {
4536 int h = 0;
4537 for (Iterator<?> it = iterator(); it.hasNext();)
4538 h += it.next().hashCode();
4539 return h;
4540 }
4541
4542 public final String toString() {
4543 StringBuilder sb = new StringBuilder();
4544 sb.append('[');
4545 Iterator<?> it = iterator();
4546 if (it.hasNext()) {
4547 for (;;) {
4548 Object e = it.next();
4549 sb.append(e == this ? "(this Collection)" : e);
4550 if (!it.hasNext())
4551 break;
4552 sb.append(',').append(' ');
4553 }
4554 }
4555 return sb.append(']').toString();
4556 }
4557
4558 public final boolean containsAll(Collection<?> c) {
4559 if (c != this) {
4560 for (Iterator<?> it = c.iterator(); it.hasNext();) {
4561 Object e = it.next();
4562 if (e == null || !contains(e))
4563 return false;
4564 }
4565 }
4566 return true;
4567 }
4568
4569 public final boolean removeAll(Collection<?> c) {
4570 boolean modified = false;
4571 for (Iterator<?> it = iterator(); it.hasNext();) {
4572 if (c.contains(it.next())) {
4573 it.remove();
4574 modified = true;
4575 }
4576 }
4577 return modified;
4578 }
4579
4580 public final boolean retainAll(Collection<?> c) {
4581 boolean modified = false;
4582 for (Iterator<?> it = iterator(); it.hasNext();) {
4583 if (!c.contains(it.next())) {
4584 it.remove();
4585 modified = true;
4586 }
4587 }
4588 return modified;
4589 }
4590
4591 }
4592
4593 /**
4594 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4595 * which additions may optionally be enabled by mapping to a
4596 * common value. This class cannot be directly instantiated. See
4597 * {@link #keySet()}, {@link #keySet(Object)}, {@link #newKeySet()},
4598 * {@link #newKeySet(int)}.
4599 */
4600 public static class KeySetView<K,V> extends CHMView<K,V>
4601 implements Set<K>, java.io.Serializable {
4602 private static final long serialVersionUID = 7249069246763182397L;
4603 private final V value;
4604 KeySetView(ConcurrentHashMap<K, V> map, V value) { // non-public
4605 super(map);
4606 this.value = value;
4607 }
4608
4609 /**
4610 * Returns the default mapped value for additions,
4611 * or {@code null} if additions are not supported.
4612 *
4613 * @return the default mapped value for additions, or {@code null}
4614 * if not supported
4615 */
4616 public V getMappedValue() { return value; }
4617
4618 // implement Set API
4619
4620 public boolean contains(Object o) { return map.containsKey(o); }
4621 public boolean remove(Object o) { return map.remove(o) != null; }
4622
4623 /**
4624 * Returns a "weakly consistent" iterator that will never
4625 * throw {@link ConcurrentModificationException}, and
4626 * guarantees to traverse elements as they existed upon
4627 * construction of the iterator, and may (but is not
4628 * guaranteed to) reflect any modifications subsequent to
4629 * construction.
4630 *
4631 * @return an iterator over the keys of this map
4632 */
4633 public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4634 public boolean add(K e) {
4635 V v;
4636 if ((v = value) == null)
4637 throw new UnsupportedOperationException();
4638 if (e == null)
4639 throw new NullPointerException();
4640 return map.internalPut(e, v, true) == null;
4641 }
4642 public boolean addAll(Collection<? extends K> c) {
4643 boolean added = false;
4644 V v;
4645 if ((v = value) == null)
4646 throw new UnsupportedOperationException();
4647 for (K e : c) {
4648 if (e == null)
4649 throw new NullPointerException();
4650 if (map.internalPut(e, v, true) == null)
4651 added = true;
4652 }
4653 return added;
4654 }
4655 public boolean equals(Object o) {
4656 Set<?> c;
4657 return ((o instanceof Set) &&
4658 ((c = (Set<?>)o) == this ||
4659 (containsAll(c) && c.containsAll(this))));
4660 }
4661
4662 public Stream<K> stream() {
4663 return Streams.stream(() -> new KeyIterator<K,V>(map), 0);
4664 }
4665 public Stream<K> parallelStream() {
4666 return Streams.parallelStream(() -> new KeyIterator<K,V>(map, null),
4667 0);
4668 }
4669 }
4670
4671 /**
4672 * A view of a ConcurrentHashMap as a {@link Collection} of
4673 * values, in which additions are disabled. This class cannot be
4674 * directly instantiated. See {@link #values},
4675 *
4676 * <p>The view's {@code iterator} is a "weakly consistent" iterator
4677 * that will never throw {@link ConcurrentModificationException},
4678 * and guarantees to traverse elements as they existed upon
4679 * construction of the iterator, and may (but is not guaranteed to)
4680 * reflect any modifications subsequent to construction.
4681 */
4682 public static final class ValuesView<K,V> extends CHMView<K,V>
4683 implements Collection<V> {
4684 private static final long serialVersionUID = 2249069246763182397L;
4685 ValuesView(ConcurrentHashMap<K, V> map) { super(map); }
4686 public final boolean contains(Object o) { return map.containsValue(o); }
4687 public final boolean remove(Object o) {
4688 if (o != null) {
4689 Iterator<V> it = new ValueIterator<K,V>(map);
4690 while (it.hasNext()) {
4691 if (o.equals(it.next())) {
4692 it.remove();
4693 return true;
4694 }
4695 }
4696 }
4697 return false;
4698 }
4699
4700 /**
4701 * Returns a "weakly consistent" iterator that will never
4702 * throw {@link ConcurrentModificationException}, and
4703 * guarantees to traverse elements as they existed upon
4704 * construction of the iterator, and may (but is not
4705 * guaranteed to) reflect any modifications subsequent to
4706 * construction.
4707 *
4708 * @return an iterator over the values of this map
4709 */
4710 public final Iterator<V> iterator() {
4711 return new ValueIterator<K,V>(map);
4712 }
4713 public final boolean add(V e) {
4714 throw new UnsupportedOperationException();
4715 }
4716 public final boolean addAll(Collection<? extends V> c) {
4717 throw new UnsupportedOperationException();
4718 }
4719
4720 public Stream<V> stream() {
4721 return Streams.stream(() -> new ValueIterator<K,V>(map), 0);
4722 }
4723
4724 public Stream<V> parallelStream() {
4725 return Streams.parallelStream(() -> new ValueIterator<K,V>(map, null),
4726 0);
4727 }
4728
4729 }
4730
4731 /**
4732 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4733 * entries. This class cannot be directly instantiated. See
4734 * {@link #entrySet}.
4735 */
4736 public static final class EntrySetView<K,V> extends CHMView<K,V>
4737 implements Set<Map.Entry<K,V>> {
4738 private static final long serialVersionUID = 2249069246763182397L;
4739 EntrySetView(ConcurrentHashMap<K, V> map) { super(map); }
4740 public final boolean contains(Object o) {
4741 Object k, v, r; Map.Entry<?,?> e;
4742 return ((o instanceof Map.Entry) &&
4743 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4744 (r = map.get(k)) != null &&
4745 (v = e.getValue()) != null &&
4746 (v == r || v.equals(r)));
4747 }
4748 public final boolean remove(Object o) {
4749 Object k, v; Map.Entry<?,?> e;
4750 return ((o instanceof Map.Entry) &&
4751 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4752 (v = e.getValue()) != null &&
4753 map.remove(k, v));
4754 }
4755
4756 /**
4757 * Returns a "weakly consistent" iterator that will never
4758 * throw {@link ConcurrentModificationException}, and
4759 * guarantees to traverse elements as they existed upon
4760 * construction of the iterator, and may (but is not
4761 * guaranteed to) reflect any modifications subsequent to
4762 * construction.
4763 *
4764 * @return an iterator over the entries of this map
4765 */
4766 public final Iterator<Map.Entry<K,V>> iterator() {
4767 return new EntryIterator<K,V>(map);
4768 }
4769
4770 public final boolean add(Entry<K,V> e) {
4771 K key = e.getKey();
4772 V value = e.getValue();
4773 if (key == null || value == null)
4774 throw new NullPointerException();
4775 return map.internalPut(key, value, false) == null;
4776 }
4777 public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4778 boolean added = false;
4779 for (Entry<K,V> e : c) {
4780 if (add(e))
4781 added = true;
4782 }
4783 return added;
4784 }
4785 public boolean equals(Object o) {
4786 Set<?> c;
4787 return ((o instanceof Set) &&
4788 ((c = (Set<?>)o) == this ||
4789 (containsAll(c) && c.containsAll(this))));
4790 }
4791
4792 public Stream<Map.Entry<K,V>> stream() {
4793 return Streams.stream(() -> new EntryIterator<K,V>(map), 0);
4794 }
4795
4796 public Stream<Map.Entry<K,V>> parallelStream() {
4797 return Streams.parallelStream(() -> new EntryIterator<K,V>(map, null),
4798 0);
4799 }
4800 }
4801
4802 // ---------------------------------------------------------------------
4803
4804 /**
4805 * Predefined tasks for performing bulk parallel operations on
4806 * ConcurrentHashMaps. These tasks follow the forms and rules used
4807 * for bulk operations. Each method has the same name, but returns
4808 * a task rather than invoking it. These methods may be useful in
4809 * custom applications such as submitting a task without waiting
4810 * for completion, using a custom pool, or combining with other
4811 * tasks.
4812 */
4813 public static class ForkJoinTasks {
4814 private ForkJoinTasks() {}
4815
4816 /**
4817 * Returns a task that when invoked, performs the given
4818 * action for each (key, value)
4819 *
4820 * @param map the map
4821 * @param action the action
4822 * @return the task
4823 */
4824 public static <K,V> ForkJoinTask<Void> forEach
4825 (ConcurrentHashMap<K,V> map,
4826 BiConsumer<? super K, ? super V> action) {
4827 if (action == null) throw new NullPointerException();
4828 return new ForEachMappingTask<K,V>(map, null, -1, action);
4829 }
4830
4831 /**
4832 * Returns a task that when invoked, performs the given
4833 * action for each non-null transformation of each (key, value)
4834 *
4835 * @param map the map
4836 * @param transformer a function returning the transformation
4837 * for an element, or null if there is no transformation (in
4838 * which case the action is not applied)
4839 * @param action the action
4840 * @return the task
4841 */
4842 public static <K,V,U> ForkJoinTask<Void> forEach
4843 (ConcurrentHashMap<K,V> map,
4844 BiFunction<? super K, ? super V, ? extends U> transformer,
4845 Consumer<? super U> action) {
4846 if (transformer == null || action == null)
4847 throw new NullPointerException();
4848 return new ForEachTransformedMappingTask<K,V,U>
4849 (map, null, -1, transformer, action);
4850 }
4851
4852 /**
4853 * Returns a task that when invoked, returns a non-null result
4854 * from applying the given search function on each (key,
4855 * value), or null if none. Upon success, further element
4856 * processing is suppressed and the results of any other
4857 * parallel invocations of the search function are ignored.
4858 *
4859 * @param map the map
4860 * @param searchFunction a function returning a non-null
4861 * result on success, else null
4862 * @return the task
4863 */
4864 public static <K,V,U> ForkJoinTask<U> search
4865 (ConcurrentHashMap<K,V> map,
4866 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4867 if (searchFunction == null) throw new NullPointerException();
4868 return new SearchMappingsTask<K,V,U>
4869 (map, null, -1, searchFunction,
4870 new AtomicReference<U>());
4871 }
4872
4873 /**
4874 * Returns a task that when invoked, returns the result of
4875 * accumulating the given transformation of all (key, value) pairs
4876 * using the given reducer to combine values, or null if none.
4877 *
4878 * @param map the map
4879 * @param transformer a function returning the transformation
4880 * for an element, or null if there is no transformation (in
4881 * which case it is not combined)
4882 * @param reducer a commutative associative combining function
4883 * @return the task
4884 */
4885 public static <K,V,U> ForkJoinTask<U> reduce
4886 (ConcurrentHashMap<K,V> map,
4887 BiFunction<? super K, ? super V, ? extends U> transformer,
4888 BiFunction<? super U, ? super U, ? extends U> reducer) {
4889 if (transformer == null || reducer == null)
4890 throw new NullPointerException();
4891 return new MapReduceMappingsTask<K,V,U>
4892 (map, null, -1, null, transformer, reducer);
4893 }
4894
4895 /**
4896 * Returns a task that when invoked, returns the result of
4897 * accumulating the given transformation of all (key, value) pairs
4898 * using the given reducer to combine values, and the given
4899 * basis as an identity value.
4900 *
4901 * @param map the map
4902 * @param transformer a function returning the transformation
4903 * for an element
4904 * @param basis the identity (initial default value) for the reduction
4905 * @param reducer a commutative associative combining function
4906 * @return the task
4907 */
4908 public static <K,V> ForkJoinTask<Double> reduceToDouble
4909 (ConcurrentHashMap<K,V> map,
4910 ToDoubleBiFunction<? super K, ? super V> transformer,
4911 double basis,
4912 DoubleBinaryOperator reducer) {
4913 if (transformer == null || reducer == null)
4914 throw new NullPointerException();
4915 return new MapReduceMappingsToDoubleTask<K,V>
4916 (map, null, -1, null, transformer, basis, reducer);
4917 }
4918
4919 /**
4920 * Returns a task that when invoked, returns the result of
4921 * accumulating the given transformation of all (key, value) pairs
4922 * using the given reducer to combine values, and the given
4923 * basis as an identity value.
4924 *
4925 * @param map the map
4926 * @param transformer a function returning the transformation
4927 * for an element
4928 * @param basis the identity (initial default value) for the reduction
4929 * @param reducer a commutative associative combining function
4930 * @return the task
4931 */
4932 public static <K,V> ForkJoinTask<Long> reduceToLong
4933 (ConcurrentHashMap<K,V> map,
4934 ToLongBiFunction<? super K, ? super V> transformer,
4935 long basis,
4936 LongBinaryOperator reducer) {
4937 if (transformer == null || reducer == null)
4938 throw new NullPointerException();
4939 return new MapReduceMappingsToLongTask<K,V>
4940 (map, null, -1, null, transformer, basis, reducer);
4941 }
4942
4943 /**
4944 * Returns a task that when invoked, returns the result of
4945 * accumulating the given transformation of all (key, value) pairs
4946 * using the given reducer to combine values, and the given
4947 * basis as an identity value.
4948 *
4949 * @param transformer a function returning the transformation
4950 * for an element
4951 * @param basis the identity (initial default value) for the reduction
4952 * @param reducer a commutative associative combining function
4953 * @return the task
4954 */
4955 public static <K,V> ForkJoinTask<Integer> reduceToInt
4956 (ConcurrentHashMap<K,V> map,
4957 ToIntBiFunction<? super K, ? super V> transformer,
4958 int basis,
4959 IntBinaryOperator reducer) {
4960 if (transformer == null || reducer == null)
4961 throw new NullPointerException();
4962 return new MapReduceMappingsToIntTask<K,V>
4963 (map, null, -1, null, transformer, basis, reducer);
4964 }
4965
4966 /**
4967 * Returns a task that when invoked, performs the given action
4968 * for each key.
4969 *
4970 * @param map the map
4971 * @param action the action
4972 * @return the task
4973 */
4974 public static <K,V> ForkJoinTask<Void> forEachKey
4975 (ConcurrentHashMap<K,V> map,
4976 Consumer<? super K> action) {
4977 if (action == null) throw new NullPointerException();
4978 return new ForEachKeyTask<K,V>(map, null, -1, action);
4979 }
4980
4981 /**
4982 * Returns a task that when invoked, performs the given action
4983 * for each non-null transformation of each key.
4984 *
4985 * @param map the map
4986 * @param transformer a function returning the transformation
4987 * for an element, or null if there is no transformation (in
4988 * which case the action is not applied)
4989 * @param action the action
4990 * @return the task
4991 */
4992 public static <K,V,U> ForkJoinTask<Void> forEachKey
4993 (ConcurrentHashMap<K,V> map,
4994 Function<? super K, ? extends U> transformer,
4995 Consumer<? super U> action) {
4996 if (transformer == null || action == null)
4997 throw new NullPointerException();
4998 return new ForEachTransformedKeyTask<K,V,U>
4999 (map, null, -1, transformer, action);
5000 }
5001
5002 /**
5003 * Returns a task that when invoked, returns a non-null result
5004 * from applying the given search function on each key, or
5005 * null if none. Upon success, further element processing is
5006 * suppressed and the results of any other parallel
5007 * invocations of the search function are ignored.
5008 *
5009 * @param map the map
5010 * @param searchFunction a function returning a non-null
5011 * result on success, else null
5012 * @return the task
5013 */
5014 public static <K,V,U> ForkJoinTask<U> searchKeys
5015 (ConcurrentHashMap<K,V> map,
5016 Function<? super K, ? extends U> searchFunction) {
5017 if (searchFunction == null) throw new NullPointerException();
5018 return new SearchKeysTask<K,V,U>
5019 (map, null, -1, searchFunction,
5020 new AtomicReference<U>());
5021 }
5022
5023 /**
5024 * Returns a task that when invoked, returns the result of
5025 * accumulating all keys using the given reducer to combine
5026 * values, or null if none.
5027 *
5028 * @param map the map
5029 * @param reducer a commutative associative combining function
5030 * @return the task
5031 */
5032 public static <K,V> ForkJoinTask<K> reduceKeys
5033 (ConcurrentHashMap<K,V> map,
5034 BiFunction<? super K, ? super K, ? extends K> reducer) {
5035 if (reducer == null) throw new NullPointerException();
5036 return new ReduceKeysTask<K,V>
5037 (map, null, -1, null, reducer);
5038 }
5039
5040 /**
5041 * Returns a task that when invoked, returns the result of
5042 * accumulating the given transformation of all keys using the given
5043 * reducer to combine values, or null if none.
5044 *
5045 * @param map the map
5046 * @param transformer a function returning the transformation
5047 * for an element, or null if there is no transformation (in
5048 * which case it is not combined)
5049 * @param reducer a commutative associative combining function
5050 * @return the task
5051 */
5052 public static <K,V,U> ForkJoinTask<U> reduceKeys
5053 (ConcurrentHashMap<K,V> map,
5054 Function<? super K, ? extends U> transformer,
5055 BiFunction<? super U, ? super U, ? extends U> reducer) {
5056 if (transformer == null || reducer == null)
5057 throw new NullPointerException();
5058 return new MapReduceKeysTask<K,V,U>
5059 (map, null, -1, null, transformer, reducer);
5060 }
5061
5062 /**
5063 * Returns a task that when invoked, returns the result of
5064 * accumulating the given transformation of all keys using the given
5065 * reducer to combine values, and the given basis as an
5066 * identity value.
5067 *
5068 * @param map the map
5069 * @param transformer a function returning the transformation
5070 * for an element
5071 * @param basis the identity (initial default value) for the reduction
5072 * @param reducer a commutative associative combining function
5073 * @return the task
5074 */
5075 public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5076 (ConcurrentHashMap<K,V> map,
5077 ToDoubleFunction<? super K> transformer,
5078 double basis,
5079 DoubleBinaryOperator reducer) {
5080 if (transformer == null || reducer == null)
5081 throw new NullPointerException();
5082 return new MapReduceKeysToDoubleTask<K,V>
5083 (map, null, -1, null, transformer, basis, reducer);
5084 }
5085
5086 /**
5087 * Returns a task that when invoked, returns the result of
5088 * accumulating the given transformation of all keys using the given
5089 * reducer to combine values, and the given basis as an
5090 * identity value.
5091 *
5092 * @param map the map
5093 * @param transformer a function returning the transformation
5094 * for an element
5095 * @param basis the identity (initial default value) for the reduction
5096 * @param reducer a commutative associative combining function
5097 * @return the task
5098 */
5099 public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5100 (ConcurrentHashMap<K,V> map,
5101 ToLongFunction<? super K> transformer,
5102 long basis,
5103 LongBinaryOperator reducer) {
5104 if (transformer == null || reducer == null)
5105 throw new NullPointerException();
5106 return new MapReduceKeysToLongTask<K,V>
5107 (map, null, -1, null, transformer, basis, reducer);
5108 }
5109
5110 /**
5111 * Returns a task that when invoked, returns the result of
5112 * accumulating the given transformation of all keys using the given
5113 * reducer to combine values, and the given basis as an
5114 * identity value.
5115 *
5116 * @param map the map
5117 * @param transformer a function returning the transformation
5118 * for an element
5119 * @param basis the identity (initial default value) for the reduction
5120 * @param reducer a commutative associative combining function
5121 * @return the task
5122 */
5123 public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5124 (ConcurrentHashMap<K,V> map,
5125 ToIntFunction<? super K> transformer,
5126 int basis,
5127 IntBinaryOperator reducer) {
5128 if (transformer == null || reducer == null)
5129 throw new NullPointerException();
5130 return new MapReduceKeysToIntTask<K,V>
5131 (map, null, -1, null, transformer, basis, reducer);
5132 }
5133
5134 /**
5135 * Returns a task that when invoked, performs the given action
5136 * for each value.
5137 *
5138 * @param map the map
5139 * @param action the action
5140 * @return the task
5141 */
5142 public static <K,V> ForkJoinTask<Void> forEachValue
5143 (ConcurrentHashMap<K,V> map,
5144 Consumer<? super V> action) {
5145 if (action == null) throw new NullPointerException();
5146 return new ForEachValueTask<K,V>(map, null, -1, action);
5147 }
5148
5149 /**
5150 * Returns a task that when invoked, performs the given action
5151 * for each non-null transformation of each value.
5152 *
5153 * @param map the map
5154 * @param transformer a function returning the transformation
5155 * for an element, or null if there is no transformation (in
5156 * which case the action is not applied)
5157 * @param action the action
5158 * @return the task
5159 */
5160 public static <K,V,U> ForkJoinTask<Void> forEachValue
5161 (ConcurrentHashMap<K,V> map,
5162 Function<? super V, ? extends U> transformer,
5163 Consumer<? super U> action) {
5164 if (transformer == null || action == null)
5165 throw new NullPointerException();
5166 return new ForEachTransformedValueTask<K,V,U>
5167 (map, null, -1, transformer, action);
5168 }
5169
5170 /**
5171 * Returns a task that when invoked, returns a non-null result
5172 * from applying the given search function on each value, or
5173 * null if none. Upon success, further element processing is
5174 * suppressed and the results of any other parallel
5175 * invocations of the search function are ignored.
5176 *
5177 * @param map the map
5178 * @param searchFunction a function returning a non-null
5179 * result on success, else null
5180 * @return the task
5181 */
5182 public static <K,V,U> ForkJoinTask<U> searchValues
5183 (ConcurrentHashMap<K,V> map,
5184 Function<? super V, ? extends U> searchFunction) {
5185 if (searchFunction == null) throw new NullPointerException();
5186 return new SearchValuesTask<K,V,U>
5187 (map, null, -1, searchFunction,
5188 new AtomicReference<U>());
5189 }
5190
5191 /**
5192 * Returns a task that when invoked, returns the result of
5193 * accumulating all values using the given reducer to combine
5194 * values, or null if none.
5195 *
5196 * @param map the map
5197 * @param reducer a commutative associative combining function
5198 * @return the task
5199 */
5200 public static <K,V> ForkJoinTask<V> reduceValues
5201 (ConcurrentHashMap<K,V> map,
5202 BiFunction<? super V, ? super V, ? extends V> reducer) {
5203 if (reducer == null) throw new NullPointerException();
5204 return new ReduceValuesTask<K,V>
5205 (map, null, -1, null, reducer);
5206 }
5207
5208 /**
5209 * Returns a task that when invoked, returns the result of
5210 * accumulating the given transformation of all values using the
5211 * given reducer to combine values, or null if none.
5212 *
5213 * @param map the map
5214 * @param transformer a function returning the transformation
5215 * for an element, or null if there is no transformation (in
5216 * which case it is not combined)
5217 * @param reducer a commutative associative combining function
5218 * @return the task
5219 */
5220 public static <K,V,U> ForkJoinTask<U> reduceValues
5221 (ConcurrentHashMap<K,V> map,
5222 Function<? super V, ? extends U> transformer,
5223 BiFunction<? super U, ? super U, ? extends U> reducer) {
5224 if (transformer == null || reducer == null)
5225 throw new NullPointerException();
5226 return new MapReduceValuesTask<K,V,U>
5227 (map, null, -1, null, transformer, reducer);
5228 }
5229
5230 /**
5231 * Returns a task that when invoked, returns the result of
5232 * accumulating the given transformation of all values using the
5233 * given reducer to combine values, and the given basis as an
5234 * identity value.
5235 *
5236 * @param map the map
5237 * @param transformer a function returning the transformation
5238 * for an element
5239 * @param basis the identity (initial default value) for the reduction
5240 * @param reducer a commutative associative combining function
5241 * @return the task
5242 */
5243 public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5244 (ConcurrentHashMap<K,V> map,
5245 ToDoubleFunction<? super V> transformer,
5246 double basis,
5247 DoubleBinaryOperator reducer) {
5248 if (transformer == null || reducer == null)
5249 throw new NullPointerException();
5250 return new MapReduceValuesToDoubleTask<K,V>
5251 (map, null, -1, null, transformer, basis, reducer);
5252 }
5253
5254 /**
5255 * Returns a task that when invoked, returns the result of
5256 * accumulating the given transformation of all values using the
5257 * given reducer to combine values, and the given basis as an
5258 * identity value.
5259 *
5260 * @param map the map
5261 * @param transformer a function returning the transformation
5262 * for an element
5263 * @param basis the identity (initial default value) for the reduction
5264 * @param reducer a commutative associative combining function
5265 * @return the task
5266 */
5267 public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5268 (ConcurrentHashMap<K,V> map,
5269 ToLongFunction<? super V> transformer,
5270 long basis,
5271 LongBinaryOperator reducer) {
5272 if (transformer == null || reducer == null)
5273 throw new NullPointerException();
5274 return new MapReduceValuesToLongTask<K,V>
5275 (map, null, -1, null, transformer, basis, reducer);
5276 }
5277
5278 /**
5279 * Returns a task that when invoked, returns the result of
5280 * accumulating the given transformation of all values using the
5281 * given reducer to combine values, and the given basis as an
5282 * identity value.
5283 *
5284 * @param map the map
5285 * @param transformer a function returning the transformation
5286 * for an element
5287 * @param basis the identity (initial default value) for the reduction
5288 * @param reducer a commutative associative combining function
5289 * @return the task
5290 */
5291 public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5292 (ConcurrentHashMap<K,V> map,
5293 ToIntFunction<? super V> transformer,
5294 int basis,
5295 IntBinaryOperator reducer) {
5296 if (transformer == null || reducer == null)
5297 throw new NullPointerException();
5298 return new MapReduceValuesToIntTask<K,V>
5299 (map, null, -1, null, transformer, basis, reducer);
5300 }
5301
5302 /**
5303 * Returns a task that when invoked, perform the given action
5304 * for each entry.
5305 *
5306 * @param map the map
5307 * @param action the action
5308 * @return the task
5309 */
5310 public static <K,V> ForkJoinTask<Void> forEachEntry
5311 (ConcurrentHashMap<K,V> map,
5312 Consumer<? super Map.Entry<K,V>> action) {
5313 if (action == null) throw new NullPointerException();
5314 return new ForEachEntryTask<K,V>(map, null, -1, action);
5315 }
5316
5317 /**
5318 * Returns a task that when invoked, perform the given action
5319 * for each non-null transformation of each entry.
5320 *
5321 * @param map the map
5322 * @param transformer a function returning the transformation
5323 * for an element, or null if there is no transformation (in
5324 * which case the action is not applied)
5325 * @param action the action
5326 * @return the task
5327 */
5328 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5329 (ConcurrentHashMap<K,V> map,
5330 Function<Map.Entry<K,V>, ? extends U> transformer,
5331 Consumer<? super U> action) {
5332 if (transformer == null || action == null)
5333 throw new NullPointerException();
5334 return new ForEachTransformedEntryTask<K,V,U>
5335 (map, null, -1, transformer, action);
5336 }
5337
5338 /**
5339 * Returns a task that when invoked, returns a non-null result
5340 * from applying the given search function on each entry, or
5341 * null if none. Upon success, further element processing is
5342 * suppressed and the results of any other parallel
5343 * invocations of the search function are ignored.
5344 *
5345 * @param map the map
5346 * @param searchFunction a function returning a non-null
5347 * result on success, else null
5348 * @return the task
5349 */
5350 public static <K,V,U> ForkJoinTask<U> searchEntries
5351 (ConcurrentHashMap<K,V> map,
5352 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
5353 if (searchFunction == null) throw new NullPointerException();
5354 return new SearchEntriesTask<K,V,U>
5355 (map, null, -1, searchFunction,
5356 new AtomicReference<U>());
5357 }
5358
5359 /**
5360 * Returns a task that when invoked, returns the result of
5361 * accumulating all entries using the given reducer to combine
5362 * values, or null if none.
5363 *
5364 * @param map the map
5365 * @param reducer a commutative associative combining function
5366 * @return the task
5367 */
5368 public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5369 (ConcurrentHashMap<K,V> map,
5370 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5371 if (reducer == null) throw new NullPointerException();
5372 return new ReduceEntriesTask<K,V>
5373 (map, null, -1, null, reducer);
5374 }
5375
5376 /**
5377 * Returns a task that when invoked, returns the result of
5378 * accumulating the given transformation of all entries using the
5379 * given reducer to combine values, or null if none.
5380 *
5381 * @param map the map
5382 * @param transformer a function returning the transformation
5383 * for an element, or null if there is no transformation (in
5384 * which case it is not combined)
5385 * @param reducer a commutative associative combining function
5386 * @return the task
5387 */
5388 public static <K,V,U> ForkJoinTask<U> reduceEntries
5389 (ConcurrentHashMap<K,V> map,
5390 Function<Map.Entry<K,V>, ? extends U> transformer,
5391 BiFunction<? super U, ? super U, ? extends U> reducer) {
5392 if (transformer == null || reducer == null)
5393 throw new NullPointerException();
5394 return new MapReduceEntriesTask<K,V,U>
5395 (map, null, -1, null, transformer, reducer);
5396 }
5397
5398 /**
5399 * Returns a task that when invoked, returns the result of
5400 * accumulating the given transformation of all entries using the
5401 * given reducer to combine values, and the given basis as an
5402 * identity value.
5403 *
5404 * @param map the map
5405 * @param transformer a function returning the transformation
5406 * for an element
5407 * @param basis the identity (initial default value) for the reduction
5408 * @param reducer a commutative associative combining function
5409 * @return the task
5410 */
5411 public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5412 (ConcurrentHashMap<K,V> map,
5413 ToDoubleFunction<Map.Entry<K,V>> transformer,
5414 double basis,
5415 DoubleBinaryOperator reducer) {
5416 if (transformer == null || reducer == null)
5417 throw new NullPointerException();
5418 return new MapReduceEntriesToDoubleTask<K,V>
5419 (map, null, -1, null, transformer, basis, reducer);
5420 }
5421
5422 /**
5423 * Returns a task that when invoked, returns the result of
5424 * accumulating the given transformation of all entries using the
5425 * given reducer to combine values, and the given basis as an
5426 * identity value.
5427 *
5428 * @param map the map
5429 * @param transformer a function returning the transformation
5430 * for an element
5431 * @param basis the identity (initial default value) for the reduction
5432 * @param reducer a commutative associative combining function
5433 * @return the task
5434 */
5435 public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5436 (ConcurrentHashMap<K,V> map,
5437 ToLongFunction<Map.Entry<K,V>> transformer,
5438 long basis,
5439 LongBinaryOperator reducer) {
5440 if (transformer == null || reducer == null)
5441 throw new NullPointerException();
5442 return new MapReduceEntriesToLongTask<K,V>
5443 (map, null, -1, null, transformer, basis, reducer);
5444 }
5445
5446 /**
5447 * Returns a task that when invoked, returns the result of
5448 * accumulating the given transformation of all entries using the
5449 * given reducer to combine values, and the given basis as an
5450 * identity value.
5451 *
5452 * @param map the map
5453 * @param transformer a function returning the transformation
5454 * for an element
5455 * @param basis the identity (initial default value) for the reduction
5456 * @param reducer a commutative associative combining function
5457 * @return the task
5458 */
5459 public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5460 (ConcurrentHashMap<K,V> map,
5461 ToIntFunction<Map.Entry<K,V>> transformer,
5462 int basis,
5463 IntBinaryOperator reducer) {
5464 if (transformer == null || reducer == null)
5465 throw new NullPointerException();
5466 return new MapReduceEntriesToIntTask<K,V>
5467 (map, null, -1, null, transformer, basis, reducer);
5468 }
5469 }
5470
5471 // -------------------------------------------------------
5472
5473 /*
5474 * Task classes. Coded in a regular but ugly format/style to
5475 * simplify checks that each variant differs in the right way from
5476 * others. The null screenings exist because compilers cannot tell
5477 * that we've already null-checked task arguments, so we force
5478 * simplest hoisted bypass to help avoid convoluted traps.
5479 */
5480
5481 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5482 extends Traverser<K,V,Void> {
5483 final Consumer<? super K> action;
5484 ForEachKeyTask
5485 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5486 Consumer<? super K> action) {
5487 super(m, p, b);
5488 this.action = action;
5489 }
5490 public final void compute() {
5491 final Consumer<? super K> action;
5492 if ((action = this.action) != null) {
5493 for (int b; (b = preSplit()) > 0;)
5494 new ForEachKeyTask<K,V>(map, this, b, action).fork();
5495 while (advance() != null)
5496 action.accept(nextKey);
5497 propagateCompletion();
5498 }
5499 }
5500 }
5501
5502 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5503 extends Traverser<K,V,Void> {
5504 final Consumer<? super V> action;
5505 ForEachValueTask
5506 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5507 Consumer<? super V> action) {
5508 super(m, p, b);
5509 this.action = action;
5510 }
5511 public final void compute() {
5512 final Consumer<? super V> action;
5513 if ((action = this.action) != null) {
5514 for (int b; (b = preSplit()) > 0;)
5515 new ForEachValueTask<K,V>(map, this, b, action).fork();
5516 V v;
5517 while ((v = advance()) != null)
5518 action.accept(v);
5519 propagateCompletion();
5520 }
5521 }
5522 }
5523
5524 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5525 extends Traverser<K,V,Void> {
5526 final Consumer<? super Entry<K,V>> action;
5527 ForEachEntryTask
5528 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5529 Consumer<? super Entry<K,V>> action) {
5530 super(m, p, b);
5531 this.action = action;
5532 }
5533 public final void compute() {
5534 final Consumer<? super Entry<K,V>> action;
5535 if ((action = this.action) != null) {
5536 for (int b; (b = preSplit()) > 0;)
5537 new ForEachEntryTask<K,V>(map, this, b, action).fork();
5538 V v;
5539 while ((v = advance()) != null)
5540 action.accept(entryFor(nextKey, v));
5541 propagateCompletion();
5542 }
5543 }
5544 }
5545
5546 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5547 extends Traverser<K,V,Void> {
5548 final BiConsumer<? super K, ? super V> action;
5549 ForEachMappingTask
5550 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5551 BiConsumer<? super K,? super V> action) {
5552 super(m, p, b);
5553 this.action = action;
5554 }
5555 public final void compute() {
5556 final BiConsumer<? super K, ? super V> action;
5557 if ((action = this.action) != null) {
5558 for (int b; (b = preSplit()) > 0;)
5559 new ForEachMappingTask<K,V>(map, this, b, action).fork();
5560 V v;
5561 while ((v = advance()) != null)
5562 action.accept(nextKey, v);
5563 propagateCompletion();
5564 }
5565 }
5566 }
5567
5568 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5569 extends Traverser<K,V,Void> {
5570 final Function<? super K, ? extends U> transformer;
5571 final Consumer<? super U> action;
5572 ForEachTransformedKeyTask
5573 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5574 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5575 super(m, p, b);
5576 this.transformer = transformer; this.action = action;
5577 }
5578 public final void compute() {
5579 final Function<? super K, ? extends U> transformer;
5580 final Consumer<? super U> action;
5581 if ((transformer = this.transformer) != null &&
5582 (action = this.action) != null) {
5583 for (int b; (b = preSplit()) > 0;)
5584 new ForEachTransformedKeyTask<K,V,U>
5585 (map, this, b, transformer, action).fork();
5586 U u;
5587 while (advance() != null) {
5588 if ((u = transformer.apply(nextKey)) != null)
5589 action.accept(u);
5590 }
5591 propagateCompletion();
5592 }
5593 }
5594 }
5595
5596 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5597 extends Traverser<K,V,Void> {
5598 final Function<? super V, ? extends U> transformer;
5599 final Consumer<? super U> action;
5600 ForEachTransformedValueTask
5601 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5602 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5603 super(m, p, b);
5604 this.transformer = transformer; this.action = action;
5605 }
5606 public final void compute() {
5607 final Function<? super V, ? extends U> transformer;
5608 final Consumer<? super U> action;
5609 if ((transformer = this.transformer) != null &&
5610 (action = this.action) != null) {
5611 for (int b; (b = preSplit()) > 0;)
5612 new ForEachTransformedValueTask<K,V,U>
5613 (map, this, b, transformer, action).fork();
5614 V v; U u;
5615 while ((v = advance()) != null) {
5616 if ((u = transformer.apply(v)) != null)
5617 action.accept(u);
5618 }
5619 propagateCompletion();
5620 }
5621 }
5622 }
5623
5624 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5625 extends Traverser<K,V,Void> {
5626 final Function<Map.Entry<K,V>, ? extends U> transformer;
5627 final Consumer<? super U> action;
5628 ForEachTransformedEntryTask
5629 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5630 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5631 super(m, p, b);
5632 this.transformer = transformer; this.action = action;
5633 }
5634 public final void compute() {
5635 final Function<Map.Entry<K,V>, ? extends U> transformer;
5636 final Consumer<? super U> action;
5637 if ((transformer = this.transformer) != null &&
5638 (action = this.action) != null) {
5639 for (int b; (b = preSplit()) > 0;)
5640 new ForEachTransformedEntryTask<K,V,U>
5641 (map, this, b, transformer, action).fork();
5642 V v; U u;
5643 while ((v = advance()) != null) {
5644 if ((u = transformer.apply(entryFor(nextKey,
5645 v))) != null)
5646 action.accept(u);
5647 }
5648 propagateCompletion();
5649 }
5650 }
5651 }
5652
5653 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5654 extends Traverser<K,V,Void> {
5655 final BiFunction<? super K, ? super V, ? extends U> transformer;
5656 final Consumer<? super U> action;
5657 ForEachTransformedMappingTask
5658 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5659 BiFunction<? super K, ? super V, ? extends U> transformer,
5660 Consumer<? super U> action) {
5661 super(m, p, b);
5662 this.transformer = transformer; this.action = action;
5663 }
5664 public final void compute() {
5665 final BiFunction<? super K, ? super V, ? extends U> transformer;
5666 final Consumer<? super U> action;
5667 if ((transformer = this.transformer) != null &&
5668 (action = this.action) != null) {
5669 for (int b; (b = preSplit()) > 0;)
5670 new ForEachTransformedMappingTask<K,V,U>
5671 (map, this, b, transformer, action).fork();
5672 V v; U u;
5673 while ((v = advance()) != null) {
5674 if ((u = transformer.apply(nextKey, v)) != null)
5675 action.accept(u);
5676 }
5677 propagateCompletion();
5678 }
5679 }
5680 }
5681
5682 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5683 extends Traverser<K,V,U> {
5684 final Function<? super K, ? extends U> searchFunction;
5685 final AtomicReference<U> result;
5686 SearchKeysTask
5687 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5688 Function<? super K, ? extends U> searchFunction,
5689 AtomicReference<U> result) {
5690 super(m, p, b);
5691 this.searchFunction = searchFunction; this.result = result;
5692 }
5693 public final U getRawResult() { return result.get(); }
5694 public final void compute() {
5695 final Function<? super K, ? extends U> searchFunction;
5696 final AtomicReference<U> result;
5697 if ((searchFunction = this.searchFunction) != null &&
5698 (result = this.result) != null) {
5699 for (int b;;) {
5700 if (result.get() != null)
5701 return;
5702 if ((b = preSplit()) <= 0)
5703 break;
5704 new SearchKeysTask<K,V,U>
5705 (map, this, b, searchFunction, result).fork();
5706 }
5707 while (result.get() == null) {
5708 U u;
5709 if (advance() == null) {
5710 propagateCompletion();
5711 break;
5712 }
5713 if ((u = searchFunction.apply(nextKey)) != null) {
5714 if (result.compareAndSet(null, u))
5715 quietlyCompleteRoot();
5716 break;
5717 }
5718 }
5719 }
5720 }
5721 }
5722
5723 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5724 extends Traverser<K,V,U> {
5725 final Function<? super V, ? extends U> searchFunction;
5726 final AtomicReference<U> result;
5727 SearchValuesTask
5728 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5729 Function<? super V, ? extends U> searchFunction,
5730 AtomicReference<U> result) {
5731 super(m, p, b);
5732 this.searchFunction = searchFunction; this.result = result;
5733 }
5734 public final U getRawResult() { return result.get(); }
5735 public final void compute() {
5736 final Function<? super V, ? extends U> searchFunction;
5737 final AtomicReference<U> result;
5738 if ((searchFunction = this.searchFunction) != null &&
5739 (result = this.result) != null) {
5740 for (int b;;) {
5741 if (result.get() != null)
5742 return;
5743 if ((b = preSplit()) <= 0)
5744 break;
5745 new SearchValuesTask<K,V,U>
5746 (map, this, b, searchFunction, result).fork();
5747 }
5748 while (result.get() == null) {
5749 V v; U u;
5750 if ((v = advance()) == null) {
5751 propagateCompletion();
5752 break;
5753 }
5754 if ((u = searchFunction.apply(v)) != null) {
5755 if (result.compareAndSet(null, u))
5756 quietlyCompleteRoot();
5757 break;
5758 }
5759 }
5760 }
5761 }
5762 }
5763
5764 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5765 extends Traverser<K,V,U> {
5766 final Function<Entry<K,V>, ? extends U> searchFunction;
5767 final AtomicReference<U> result;
5768 SearchEntriesTask
5769 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5770 Function<Entry<K,V>, ? extends U> searchFunction,
5771 AtomicReference<U> result) {
5772 super(m, p, b);
5773 this.searchFunction = searchFunction; this.result = result;
5774 }
5775 public final U getRawResult() { return result.get(); }
5776 public final void compute() {
5777 final Function<Entry<K,V>, ? extends U> searchFunction;
5778 final AtomicReference<U> result;
5779 if ((searchFunction = this.searchFunction) != null &&
5780 (result = this.result) != null) {
5781 for (int b;;) {
5782 if (result.get() != null)
5783 return;
5784 if ((b = preSplit()) <= 0)
5785 break;
5786 new SearchEntriesTask<K,V,U>
5787 (map, this, b, searchFunction, result).fork();
5788 }
5789 while (result.get() == null) {
5790 V v; U u;
5791 if ((v = advance()) == null) {
5792 propagateCompletion();
5793 break;
5794 }
5795 if ((u = searchFunction.apply(entryFor(nextKey,
5796 v))) != null) {
5797 if (result.compareAndSet(null, u))
5798 quietlyCompleteRoot();
5799 return;
5800 }
5801 }
5802 }
5803 }
5804 }
5805
5806 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5807 extends Traverser<K,V,U> {
5808 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5809 final AtomicReference<U> result;
5810 SearchMappingsTask
5811 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5812 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5813 AtomicReference<U> result) {
5814 super(m, p, b);
5815 this.searchFunction = searchFunction; this.result = result;
5816 }
5817 public final U getRawResult() { return result.get(); }
5818 public final void compute() {
5819 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5820 final AtomicReference<U> result;
5821 if ((searchFunction = this.searchFunction) != null &&
5822 (result = this.result) != null) {
5823 for (int b;;) {
5824 if (result.get() != null)
5825 return;
5826 if ((b = preSplit()) <= 0)
5827 break;
5828 new SearchMappingsTask<K,V,U>
5829 (map, this, b, searchFunction, result).fork();
5830 }
5831 while (result.get() == null) {
5832 V v; U u;
5833 if ((v = advance()) == null) {
5834 propagateCompletion();
5835 break;
5836 }
5837 if ((u = searchFunction.apply(nextKey, v)) != null) {
5838 if (result.compareAndSet(null, u))
5839 quietlyCompleteRoot();
5840 break;
5841 }
5842 }
5843 }
5844 }
5845 }
5846
5847 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5848 extends Traverser<K,V,K> {
5849 final BiFunction<? super K, ? super K, ? extends K> reducer;
5850 K result;
5851 ReduceKeysTask<K,V> rights, nextRight;
5852 ReduceKeysTask
5853 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5854 ReduceKeysTask<K,V> nextRight,
5855 BiFunction<? super K, ? super K, ? extends K> reducer) {
5856 super(m, p, b); this.nextRight = nextRight;
5857 this.reducer = reducer;
5858 }
5859 public final K getRawResult() { return result; }
5860 @SuppressWarnings("unchecked") public final void compute() {
5861 final BiFunction<? super K, ? super K, ? extends K> reducer;
5862 if ((reducer = this.reducer) != null) {
5863 for (int b; (b = preSplit()) > 0;)
5864 (rights = new ReduceKeysTask<K,V>
5865 (map, this, b, rights, reducer)).fork();
5866 K r = null;
5867 while (advance() != null) {
5868 K u = nextKey;
5869 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5870 }
5871 result = r;
5872 CountedCompleter<?> c;
5873 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5874 ReduceKeysTask<K,V>
5875 t = (ReduceKeysTask<K,V>)c,
5876 s = t.rights;
5877 while (s != null) {
5878 K tr, sr;
5879 if ((sr = s.result) != null)
5880 t.result = (((tr = t.result) == null) ? sr :
5881 reducer.apply(tr, sr));
5882 s = t.rights = s.nextRight;
5883 }
5884 }
5885 }
5886 }
5887 }
5888
5889 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5890 extends Traverser<K,V,V> {
5891 final BiFunction<? super V, ? super V, ? extends V> reducer;
5892 V result;
5893 ReduceValuesTask<K,V> rights, nextRight;
5894 ReduceValuesTask
5895 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5896 ReduceValuesTask<K,V> nextRight,
5897 BiFunction<? super V, ? super V, ? extends V> reducer) {
5898 super(m, p, b); this.nextRight = nextRight;
5899 this.reducer = reducer;
5900 }
5901 public final V getRawResult() { return result; }
5902 @SuppressWarnings("unchecked") public final void compute() {
5903 final BiFunction<? super V, ? super V, ? extends V> reducer;
5904 if ((reducer = this.reducer) != null) {
5905 for (int b; (b = preSplit()) > 0;)
5906 (rights = new ReduceValuesTask<K,V>
5907 (map, this, b, rights, reducer)).fork();
5908 V r = null, v;
5909 while ((v = advance()) != null)
5910 r = (r == null) ? v : reducer.apply(r, v);
5911 result = r;
5912 CountedCompleter<?> c;
5913 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5914 ReduceValuesTask<K,V>
5915 t = (ReduceValuesTask<K,V>)c,
5916 s = t.rights;
5917 while (s != null) {
5918 V tr, sr;
5919 if ((sr = s.result) != null)
5920 t.result = (((tr = t.result) == null) ? sr :
5921 reducer.apply(tr, sr));
5922 s = t.rights = s.nextRight;
5923 }
5924 }
5925 }
5926 }
5927 }
5928
5929 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5930 extends Traverser<K,V,Map.Entry<K,V>> {
5931 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5932 Map.Entry<K,V> result;
5933 ReduceEntriesTask<K,V> rights, nextRight;
5934 ReduceEntriesTask
5935 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5936 ReduceEntriesTask<K,V> nextRight,
5937 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5938 super(m, p, b); this.nextRight = nextRight;
5939 this.reducer = reducer;
5940 }
5941 public final Map.Entry<K,V> getRawResult() { return result; }
5942 @SuppressWarnings("unchecked") public final void compute() {
5943 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5944 if ((reducer = this.reducer) != null) {
5945 for (int b; (b = preSplit()) > 0;)
5946 (rights = new ReduceEntriesTask<K,V>
5947 (map, this, b, rights, reducer)).fork();
5948 Map.Entry<K,V> r = null;
5949 V v;
5950 while ((v = advance()) != null) {
5951 Map.Entry<K,V> u = entryFor(nextKey, v);
5952 r = (r == null) ? u : reducer.apply(r, u);
5953 }
5954 result = r;
5955 CountedCompleter<?> c;
5956 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5957 ReduceEntriesTask<K,V>
5958 t = (ReduceEntriesTask<K,V>)c,
5959 s = t.rights;
5960 while (s != null) {
5961 Map.Entry<K,V> tr, sr;
5962 if ((sr = s.result) != null)
5963 t.result = (((tr = t.result) == null) ? sr :
5964 reducer.apply(tr, sr));
5965 s = t.rights = s.nextRight;
5966 }
5967 }
5968 }
5969 }
5970 }
5971
5972 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5973 extends Traverser<K,V,U> {
5974 final Function<? super K, ? extends U> transformer;
5975 final BiFunction<? super U, ? super U, ? extends U> reducer;
5976 U result;
5977 MapReduceKeysTask<K,V,U> rights, nextRight;
5978 MapReduceKeysTask
5979 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5980 MapReduceKeysTask<K,V,U> nextRight,
5981 Function<? super K, ? extends U> transformer,
5982 BiFunction<? super U, ? super U, ? extends U> reducer) {
5983 super(m, p, b); this.nextRight = nextRight;
5984 this.transformer = transformer;
5985 this.reducer = reducer;
5986 }
5987 public final U getRawResult() { return result; }
5988 @SuppressWarnings("unchecked") public final void compute() {
5989 final Function<? super K, ? extends U> transformer;
5990 final BiFunction<? super U, ? super U, ? extends U> reducer;
5991 if ((transformer = this.transformer) != null &&
5992 (reducer = this.reducer) != null) {
5993 for (int b; (b = preSplit()) > 0;)
5994 (rights = new MapReduceKeysTask<K,V,U>
5995 (map, this, b, rights, transformer, reducer)).fork();
5996 U r = null, u;
5997 while (advance() != null) {
5998 if ((u = transformer.apply(nextKey)) != null)
5999 r = (r == null) ? u : reducer.apply(r, u);
6000 }
6001 result = r;
6002 CountedCompleter<?> c;
6003 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6004 MapReduceKeysTask<K,V,U>
6005 t = (MapReduceKeysTask<K,V,U>)c,
6006 s = t.rights;
6007 while (s != null) {
6008 U tr, sr;
6009 if ((sr = s.result) != null)
6010 t.result = (((tr = t.result) == null) ? sr :
6011 reducer.apply(tr, sr));
6012 s = t.rights = s.nextRight;
6013 }
6014 }
6015 }
6016 }
6017 }
6018
6019 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6020 extends Traverser<K,V,U> {
6021 final Function<? super V, ? extends U> transformer;
6022 final BiFunction<? super U, ? super U, ? extends U> reducer;
6023 U result;
6024 MapReduceValuesTask<K,V,U> rights, nextRight;
6025 MapReduceValuesTask
6026 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6027 MapReduceValuesTask<K,V,U> nextRight,
6028 Function<? super V, ? extends U> transformer,
6029 BiFunction<? super U, ? super U, ? extends U> reducer) {
6030 super(m, p, b); this.nextRight = nextRight;
6031 this.transformer = transformer;
6032 this.reducer = reducer;
6033 }
6034 public final U getRawResult() { return result; }
6035 @SuppressWarnings("unchecked") public final void compute() {
6036 final Function<? super V, ? extends U> transformer;
6037 final BiFunction<? super U, ? super U, ? extends U> reducer;
6038 if ((transformer = this.transformer) != null &&
6039 (reducer = this.reducer) != null) {
6040 for (int b; (b = preSplit()) > 0;)
6041 (rights = new MapReduceValuesTask<K,V,U>
6042 (map, this, b, rights, transformer, reducer)).fork();
6043 U r = null, u;
6044 V v;
6045 while ((v = advance()) != null) {
6046 if ((u = transformer.apply(v)) != null)
6047 r = (r == null) ? u : reducer.apply(r, u);
6048 }
6049 result = r;
6050 CountedCompleter<?> c;
6051 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6052 MapReduceValuesTask<K,V,U>
6053 t = (MapReduceValuesTask<K,V,U>)c,
6054 s = t.rights;
6055 while (s != null) {
6056 U tr, sr;
6057 if ((sr = s.result) != null)
6058 t.result = (((tr = t.result) == null) ? sr :
6059 reducer.apply(tr, sr));
6060 s = t.rights = s.nextRight;
6061 }
6062 }
6063 }
6064 }
6065 }
6066
6067 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6068 extends Traverser<K,V,U> {
6069 final Function<Map.Entry<K,V>, ? extends U> transformer;
6070 final BiFunction<? super U, ? super U, ? extends U> reducer;
6071 U result;
6072 MapReduceEntriesTask<K,V,U> rights, nextRight;
6073 MapReduceEntriesTask
6074 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6075 MapReduceEntriesTask<K,V,U> nextRight,
6076 Function<Map.Entry<K,V>, ? extends U> transformer,
6077 BiFunction<? super U, ? super U, ? extends U> reducer) {
6078 super(m, p, b); this.nextRight = nextRight;
6079 this.transformer = transformer;
6080 this.reducer = reducer;
6081 }
6082 public final U getRawResult() { return result; }
6083 @SuppressWarnings("unchecked") public final void compute() {
6084 final Function<Map.Entry<K,V>, ? extends U> transformer;
6085 final BiFunction<? super U, ? super U, ? extends U> reducer;
6086 if ((transformer = this.transformer) != null &&
6087 (reducer = this.reducer) != null) {
6088 for (int b; (b = preSplit()) > 0;)
6089 (rights = new MapReduceEntriesTask<K,V,U>
6090 (map, this, b, rights, transformer, reducer)).fork();
6091 U r = null, u;
6092 V v;
6093 while ((v = advance()) != null) {
6094 if ((u = transformer.apply(entryFor(nextKey,
6095 v))) != null)
6096 r = (r == null) ? u : reducer.apply(r, u);
6097 }
6098 result = r;
6099 CountedCompleter<?> c;
6100 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6101 MapReduceEntriesTask<K,V,U>
6102 t = (MapReduceEntriesTask<K,V,U>)c,
6103 s = t.rights;
6104 while (s != null) {
6105 U tr, sr;
6106 if ((sr = s.result) != null)
6107 t.result = (((tr = t.result) == null) ? sr :
6108 reducer.apply(tr, sr));
6109 s = t.rights = s.nextRight;
6110 }
6111 }
6112 }
6113 }
6114 }
6115
6116 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6117 extends Traverser<K,V,U> {
6118 final BiFunction<? super K, ? super V, ? extends U> transformer;
6119 final BiFunction<? super U, ? super U, ? extends U> reducer;
6120 U result;
6121 MapReduceMappingsTask<K,V,U> rights, nextRight;
6122 MapReduceMappingsTask
6123 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6124 MapReduceMappingsTask<K,V,U> nextRight,
6125 BiFunction<? super K, ? super V, ? extends U> transformer,
6126 BiFunction<? super U, ? super U, ? extends U> reducer) {
6127 super(m, p, b); this.nextRight = nextRight;
6128 this.transformer = transformer;
6129 this.reducer = reducer;
6130 }
6131 public final U getRawResult() { return result; }
6132 @SuppressWarnings("unchecked") public final void compute() {
6133 final BiFunction<? super K, ? super V, ? extends U> transformer;
6134 final BiFunction<? super U, ? super U, ? extends U> reducer;
6135 if ((transformer = this.transformer) != null &&
6136 (reducer = this.reducer) != null) {
6137 for (int b; (b = preSplit()) > 0;)
6138 (rights = new MapReduceMappingsTask<K,V,U>
6139 (map, this, b, rights, transformer, reducer)).fork();
6140 U r = null, u;
6141 V v;
6142 while ((v = advance()) != null) {
6143 if ((u = transformer.apply(nextKey, v)) != null)
6144 r = (r == null) ? u : reducer.apply(r, u);
6145 }
6146 result = r;
6147 CountedCompleter<?> c;
6148 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6149 MapReduceMappingsTask<K,V,U>
6150 t = (MapReduceMappingsTask<K,V,U>)c,
6151 s = t.rights;
6152 while (s != null) {
6153 U tr, sr;
6154 if ((sr = s.result) != null)
6155 t.result = (((tr = t.result) == null) ? sr :
6156 reducer.apply(tr, sr));
6157 s = t.rights = s.nextRight;
6158 }
6159 }
6160 }
6161 }
6162 }
6163
6164 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6165 extends Traverser<K,V,Double> {
6166 final ToDoubleFunction<? super K> transformer;
6167 final DoubleBinaryOperator reducer;
6168 final double basis;
6169 double result;
6170 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6171 MapReduceKeysToDoubleTask
6172 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6173 MapReduceKeysToDoubleTask<K,V> nextRight,
6174 ToDoubleFunction<? super K> transformer,
6175 double basis,
6176 DoubleBinaryOperator reducer) {
6177 super(m, p, b); this.nextRight = nextRight;
6178 this.transformer = transformer;
6179 this.basis = basis; this.reducer = reducer;
6180 }
6181 public final Double getRawResult() { return result; }
6182 @SuppressWarnings("unchecked") public final void compute() {
6183 final ToDoubleFunction<? super K> transformer;
6184 final DoubleBinaryOperator reducer;
6185 if ((transformer = this.transformer) != null &&
6186 (reducer = this.reducer) != null) {
6187 double r = this.basis;
6188 for (int b; (b = preSplit()) > 0;)
6189 (rights = new MapReduceKeysToDoubleTask<K,V>
6190 (map, this, b, rights, transformer, r, reducer)).fork();
6191 while (advance() != null)
6192 r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey));
6193 result = r;
6194 CountedCompleter<?> c;
6195 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6196 MapReduceKeysToDoubleTask<K,V>
6197 t = (MapReduceKeysToDoubleTask<K,V>)c,
6198 s = t.rights;
6199 while (s != null) {
6200 t.result = reducer.applyAsDouble(t.result, s.result);
6201 s = t.rights = s.nextRight;
6202 }
6203 }
6204 }
6205 }
6206 }
6207
6208 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6209 extends Traverser<K,V,Double> {
6210 final ToDoubleFunction<? super V> transformer;
6211 final DoubleBinaryOperator reducer;
6212 final double basis;
6213 double result;
6214 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6215 MapReduceValuesToDoubleTask
6216 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6217 MapReduceValuesToDoubleTask<K,V> nextRight,
6218 ToDoubleFunction<? super V> transformer,
6219 double basis,
6220 DoubleBinaryOperator reducer) {
6221 super(m, p, b); this.nextRight = nextRight;
6222 this.transformer = transformer;
6223 this.basis = basis; this.reducer = reducer;
6224 }
6225 public final Double getRawResult() { return result; }
6226 @SuppressWarnings("unchecked") public final void compute() {
6227 final ToDoubleFunction<? super V> transformer;
6228 final DoubleBinaryOperator reducer;
6229 if ((transformer = this.transformer) != null &&
6230 (reducer = this.reducer) != null) {
6231 double r = this.basis;
6232 for (int b; (b = preSplit()) > 0;)
6233 (rights = new MapReduceValuesToDoubleTask<K,V>
6234 (map, this, b, rights, transformer, r, reducer)).fork();
6235 V v;
6236 while ((v = advance()) != null)
6237 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
6238 result = r;
6239 CountedCompleter<?> c;
6240 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6241 MapReduceValuesToDoubleTask<K,V>
6242 t = (MapReduceValuesToDoubleTask<K,V>)c,
6243 s = t.rights;
6244 while (s != null) {
6245 t.result = reducer.applyAsDouble(t.result, s.result);
6246 s = t.rights = s.nextRight;
6247 }
6248 }
6249 }
6250 }
6251 }
6252
6253 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6254 extends Traverser<K,V,Double> {
6255 final ToDoubleFunction<Map.Entry<K,V>> transformer;
6256 final DoubleBinaryOperator reducer;
6257 final double basis;
6258 double result;
6259 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6260 MapReduceEntriesToDoubleTask
6261 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6262 MapReduceEntriesToDoubleTask<K,V> nextRight,
6263 ToDoubleFunction<Map.Entry<K,V>> transformer,
6264 double basis,
6265 DoubleBinaryOperator reducer) {
6266 super(m, p, b); this.nextRight = nextRight;
6267 this.transformer = transformer;
6268 this.basis = basis; this.reducer = reducer;
6269 }
6270 public final Double getRawResult() { return result; }
6271 @SuppressWarnings("unchecked") public final void compute() {
6272 final ToDoubleFunction<Map.Entry<K,V>> transformer;
6273 final DoubleBinaryOperator reducer;
6274 if ((transformer = this.transformer) != null &&
6275 (reducer = this.reducer) != null) {
6276 double r = this.basis;
6277 for (int b; (b = preSplit()) > 0;)
6278 (rights = new MapReduceEntriesToDoubleTask<K,V>
6279 (map, this, b, rights, transformer, r, reducer)).fork();
6280 V v;
6281 while ((v = advance()) != null)
6282 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(nextKey,
6283 v)));
6284 result = r;
6285 CountedCompleter<?> c;
6286 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6287 MapReduceEntriesToDoubleTask<K,V>
6288 t = (MapReduceEntriesToDoubleTask<K,V>)c,
6289 s = t.rights;
6290 while (s != null) {
6291 t.result = reducer.applyAsDouble(t.result, s.result);
6292 s = t.rights = s.nextRight;
6293 }
6294 }
6295 }
6296 }
6297 }
6298
6299 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6300 extends Traverser<K,V,Double> {
6301 final ToDoubleBiFunction<? super K, ? super V> transformer;
6302 final DoubleBinaryOperator reducer;
6303 final double basis;
6304 double result;
6305 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6306 MapReduceMappingsToDoubleTask
6307 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6308 MapReduceMappingsToDoubleTask<K,V> nextRight,
6309 ToDoubleBiFunction<? super K, ? super V> transformer,
6310 double basis,
6311 DoubleBinaryOperator reducer) {
6312 super(m, p, b); this.nextRight = nextRight;
6313 this.transformer = transformer;
6314 this.basis = basis; this.reducer = reducer;
6315 }
6316 public final Double getRawResult() { return result; }
6317 @SuppressWarnings("unchecked") public final void compute() {
6318 final ToDoubleBiFunction<? super K, ? super V> transformer;
6319 final DoubleBinaryOperator reducer;
6320 if ((transformer = this.transformer) != null &&
6321 (reducer = this.reducer) != null) {
6322 double r = this.basis;
6323 for (int b; (b = preSplit()) > 0;)
6324 (rights = new MapReduceMappingsToDoubleTask<K,V>
6325 (map, this, b, rights, transformer, r, reducer)).fork();
6326 V v;
6327 while ((v = advance()) != null)
6328 r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey, v));
6329 result = r;
6330 CountedCompleter<?> c;
6331 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6332 MapReduceMappingsToDoubleTask<K,V>
6333 t = (MapReduceMappingsToDoubleTask<K,V>)c,
6334 s = t.rights;
6335 while (s != null) {
6336 t.result = reducer.applyAsDouble(t.result, s.result);
6337 s = t.rights = s.nextRight;
6338 }
6339 }
6340 }
6341 }
6342 }
6343
6344 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6345 extends Traverser<K,V,Long> {
6346 final ToLongFunction<? super K> transformer;
6347 final LongBinaryOperator reducer;
6348 final long basis;
6349 long result;
6350 MapReduceKeysToLongTask<K,V> rights, nextRight;
6351 MapReduceKeysToLongTask
6352 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6353 MapReduceKeysToLongTask<K,V> nextRight,
6354 ToLongFunction<? super K> transformer,
6355 long basis,
6356 LongBinaryOperator reducer) {
6357 super(m, p, b); this.nextRight = nextRight;
6358 this.transformer = transformer;
6359 this.basis = basis; this.reducer = reducer;
6360 }
6361 public final Long getRawResult() { return result; }
6362 @SuppressWarnings("unchecked") public final void compute() {
6363 final ToLongFunction<? super K> transformer;
6364 final LongBinaryOperator reducer;
6365 if ((transformer = this.transformer) != null &&
6366 (reducer = this.reducer) != null) {
6367 long r = this.basis;
6368 for (int b; (b = preSplit()) > 0;)
6369 (rights = new MapReduceKeysToLongTask<K,V>
6370 (map, this, b, rights, transformer, r, reducer)).fork();
6371 while (advance() != null)
6372 r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey));
6373 result = r;
6374 CountedCompleter<?> c;
6375 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6376 MapReduceKeysToLongTask<K,V>
6377 t = (MapReduceKeysToLongTask<K,V>)c,
6378 s = t.rights;
6379 while (s != null) {
6380 t.result = reducer.applyAsLong(t.result, s.result);
6381 s = t.rights = s.nextRight;
6382 }
6383 }
6384 }
6385 }
6386 }
6387
6388 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6389 extends Traverser<K,V,Long> {
6390 final ToLongFunction<? super V> transformer;
6391 final LongBinaryOperator reducer;
6392 final long basis;
6393 long result;
6394 MapReduceValuesToLongTask<K,V> rights, nextRight;
6395 MapReduceValuesToLongTask
6396 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6397 MapReduceValuesToLongTask<K,V> nextRight,
6398 ToLongFunction<? super V> transformer,
6399 long basis,
6400 LongBinaryOperator reducer) {
6401 super(m, p, b); this.nextRight = nextRight;
6402 this.transformer = transformer;
6403 this.basis = basis; this.reducer = reducer;
6404 }
6405 public final Long getRawResult() { return result; }
6406 @SuppressWarnings("unchecked") public final void compute() {
6407 final ToLongFunction<? super V> transformer;
6408 final LongBinaryOperator reducer;
6409 if ((transformer = this.transformer) != null &&
6410 (reducer = this.reducer) != null) {
6411 long r = this.basis;
6412 for (int b; (b = preSplit()) > 0;)
6413 (rights = new MapReduceValuesToLongTask<K,V>
6414 (map, this, b, rights, transformer, r, reducer)).fork();
6415 V v;
6416 while ((v = advance()) != null)
6417 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
6418 result = r;
6419 CountedCompleter<?> c;
6420 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6421 MapReduceValuesToLongTask<K,V>
6422 t = (MapReduceValuesToLongTask<K,V>)c,
6423 s = t.rights;
6424 while (s != null) {
6425 t.result = reducer.applyAsLong(t.result, s.result);
6426 s = t.rights = s.nextRight;
6427 }
6428 }
6429 }
6430 }
6431 }
6432
6433 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6434 extends Traverser<K,V,Long> {
6435 final ToLongFunction<Map.Entry<K,V>> transformer;
6436 final LongBinaryOperator reducer;
6437 final long basis;
6438 long result;
6439 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6440 MapReduceEntriesToLongTask
6441 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6442 MapReduceEntriesToLongTask<K,V> nextRight,
6443 ToLongFunction<Map.Entry<K,V>> transformer,
6444 long basis,
6445 LongBinaryOperator reducer) {
6446 super(m, p, b); this.nextRight = nextRight;
6447 this.transformer = transformer;
6448 this.basis = basis; this.reducer = reducer;
6449 }
6450 public final Long getRawResult() { return result; }
6451 @SuppressWarnings("unchecked") public final void compute() {
6452 final ToLongFunction<Map.Entry<K,V>> transformer;
6453 final LongBinaryOperator reducer;
6454 if ((transformer = this.transformer) != null &&
6455 (reducer = this.reducer) != null) {
6456 long r = this.basis;
6457 for (int b; (b = preSplit()) > 0;)
6458 (rights = new MapReduceEntriesToLongTask<K,V>
6459 (map, this, b, rights, transformer, r, reducer)).fork();
6460 V v;
6461 while ((v = advance()) != null)
6462 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(nextKey, v)));
6463 result = r;
6464 CountedCompleter<?> c;
6465 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6466 MapReduceEntriesToLongTask<K,V>
6467 t = (MapReduceEntriesToLongTask<K,V>)c,
6468 s = t.rights;
6469 while (s != null) {
6470 t.result = reducer.applyAsLong(t.result, s.result);
6471 s = t.rights = s.nextRight;
6472 }
6473 }
6474 }
6475 }
6476 }
6477
6478 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6479 extends Traverser<K,V,Long> {
6480 final ToLongBiFunction<? super K, ? super V> transformer;
6481 final LongBinaryOperator reducer;
6482 final long basis;
6483 long result;
6484 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6485 MapReduceMappingsToLongTask
6486 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6487 MapReduceMappingsToLongTask<K,V> nextRight,
6488 ToLongBiFunction<? super K, ? super V> transformer,
6489 long basis,
6490 LongBinaryOperator reducer) {
6491 super(m, p, b); this.nextRight = nextRight;
6492 this.transformer = transformer;
6493 this.basis = basis; this.reducer = reducer;
6494 }
6495 public final Long getRawResult() { return result; }
6496 @SuppressWarnings("unchecked") public final void compute() {
6497 final ToLongBiFunction<? super K, ? super V> transformer;
6498 final LongBinaryOperator reducer;
6499 if ((transformer = this.transformer) != null &&
6500 (reducer = this.reducer) != null) {
6501 long r = this.basis;
6502 for (int b; (b = preSplit()) > 0;)
6503 (rights = new MapReduceMappingsToLongTask<K,V>
6504 (map, this, b, rights, transformer, r, reducer)).fork();
6505 V v;
6506 while ((v = advance()) != null)
6507 r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey, v));
6508 result = r;
6509 CountedCompleter<?> c;
6510 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6511 MapReduceMappingsToLongTask<K,V>
6512 t = (MapReduceMappingsToLongTask<K,V>)c,
6513 s = t.rights;
6514 while (s != null) {
6515 t.result = reducer.applyAsLong(t.result, s.result);
6516 s = t.rights = s.nextRight;
6517 }
6518 }
6519 }
6520 }
6521 }
6522
6523 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6524 extends Traverser<K,V,Integer> {
6525 final ToIntFunction<? super K> transformer;
6526 final IntBinaryOperator reducer;
6527 final int basis;
6528 int result;
6529 MapReduceKeysToIntTask<K,V> rights, nextRight;
6530 MapReduceKeysToIntTask
6531 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6532 MapReduceKeysToIntTask<K,V> nextRight,
6533 ToIntFunction<? super K> transformer,
6534 int basis,
6535 IntBinaryOperator reducer) {
6536 super(m, p, b); this.nextRight = nextRight;
6537 this.transformer = transformer;
6538 this.basis = basis; this.reducer = reducer;
6539 }
6540 public final Integer getRawResult() { return result; }
6541 @SuppressWarnings("unchecked") public final void compute() {
6542 final ToIntFunction<? super K> transformer;
6543 final IntBinaryOperator reducer;
6544 if ((transformer = this.transformer) != null &&
6545 (reducer = this.reducer) != null) {
6546 int r = this.basis;
6547 for (int b; (b = preSplit()) > 0;)
6548 (rights = new MapReduceKeysToIntTask<K,V>
6549 (map, this, b, rights, transformer, r, reducer)).fork();
6550 while (advance() != null)
6551 r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey));
6552 result = r;
6553 CountedCompleter<?> c;
6554 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6555 MapReduceKeysToIntTask<K,V>
6556 t = (MapReduceKeysToIntTask<K,V>)c,
6557 s = t.rights;
6558 while (s != null) {
6559 t.result = reducer.applyAsInt(t.result, s.result);
6560 s = t.rights = s.nextRight;
6561 }
6562 }
6563 }
6564 }
6565 }
6566
6567 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6568 extends Traverser<K,V,Integer> {
6569 final ToIntFunction<? super V> transformer;
6570 final IntBinaryOperator reducer;
6571 final int basis;
6572 int result;
6573 MapReduceValuesToIntTask<K,V> rights, nextRight;
6574 MapReduceValuesToIntTask
6575 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6576 MapReduceValuesToIntTask<K,V> nextRight,
6577 ToIntFunction<? super V> transformer,
6578 int basis,
6579 IntBinaryOperator reducer) {
6580 super(m, p, b); this.nextRight = nextRight;
6581 this.transformer = transformer;
6582 this.basis = basis; this.reducer = reducer;
6583 }
6584 public final Integer getRawResult() { return result; }
6585 @SuppressWarnings("unchecked") public final void compute() {
6586 final ToIntFunction<? super V> transformer;
6587 final IntBinaryOperator reducer;
6588 if ((transformer = this.transformer) != null &&
6589 (reducer = this.reducer) != null) {
6590 int r = this.basis;
6591 for (int b; (b = preSplit()) > 0;)
6592 (rights = new MapReduceValuesToIntTask<K,V>
6593 (map, this, b, rights, transformer, r, reducer)).fork();
6594 V v;
6595 while ((v = advance()) != null)
6596 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
6597 result = r;
6598 CountedCompleter<?> c;
6599 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6600 MapReduceValuesToIntTask<K,V>
6601 t = (MapReduceValuesToIntTask<K,V>)c,
6602 s = t.rights;
6603 while (s != null) {
6604 t.result = reducer.applyAsInt(t.result, s.result);
6605 s = t.rights = s.nextRight;
6606 }
6607 }
6608 }
6609 }
6610 }
6611
6612 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6613 extends Traverser<K,V,Integer> {
6614 final ToIntFunction<Map.Entry<K,V>> transformer;
6615 final IntBinaryOperator reducer;
6616 final int basis;
6617 int result;
6618 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6619 MapReduceEntriesToIntTask
6620 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6621 MapReduceEntriesToIntTask<K,V> nextRight,
6622 ToIntFunction<Map.Entry<K,V>> transformer,
6623 int basis,
6624 IntBinaryOperator reducer) {
6625 super(m, p, b); this.nextRight = nextRight;
6626 this.transformer = transformer;
6627 this.basis = basis; this.reducer = reducer;
6628 }
6629 public final Integer getRawResult() { return result; }
6630 @SuppressWarnings("unchecked") public final void compute() {
6631 final ToIntFunction<Map.Entry<K,V>> transformer;
6632 final IntBinaryOperator reducer;
6633 if ((transformer = this.transformer) != null &&
6634 (reducer = this.reducer) != null) {
6635 int r = this.basis;
6636 for (int b; (b = preSplit()) > 0;)
6637 (rights = new MapReduceEntriesToIntTask<K,V>
6638 (map, this, b, rights, transformer, r, reducer)).fork();
6639 V v;
6640 while ((v = advance()) != null)
6641 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(nextKey,
6642 v)));
6643 result = r;
6644 CountedCompleter<?> c;
6645 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6646 MapReduceEntriesToIntTask<K,V>
6647 t = (MapReduceEntriesToIntTask<K,V>)c,
6648 s = t.rights;
6649 while (s != null) {
6650 t.result = reducer.applyAsInt(t.result, s.result);
6651 s = t.rights = s.nextRight;
6652 }
6653 }
6654 }
6655 }
6656 }
6657
6658 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6659 extends Traverser<K,V,Integer> {
6660 final ToIntBiFunction<? super K, ? super V> transformer;
6661 final IntBinaryOperator reducer;
6662 final int basis;
6663 int result;
6664 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6665 MapReduceMappingsToIntTask
6666 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6667 MapReduceMappingsToIntTask<K,V> nextRight,
6668 ToIntBiFunction<? super K, ? super V> transformer,
6669 int basis,
6670 IntBinaryOperator reducer) {
6671 super(m, p, b); this.nextRight = nextRight;
6672 this.transformer = transformer;
6673 this.basis = basis; this.reducer = reducer;
6674 }
6675 public final Integer getRawResult() { return result; }
6676 @SuppressWarnings("unchecked") public final void compute() {
6677 final ToIntBiFunction<? super K, ? super V> transformer;
6678 final IntBinaryOperator reducer;
6679 if ((transformer = this.transformer) != null &&
6680 (reducer = this.reducer) != null) {
6681 int r = this.basis;
6682 for (int b; (b = preSplit()) > 0;)
6683 (rights = new MapReduceMappingsToIntTask<K,V>
6684 (map, this, b, rights, transformer, r, reducer)).fork();
6685 V v;
6686 while ((v = advance()) != null)
6687 r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey, v));
6688 result = r;
6689 CountedCompleter<?> c;
6690 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6691 MapReduceMappingsToIntTask<K,V>
6692 t = (MapReduceMappingsToIntTask<K,V>)c,
6693 s = t.rights;
6694 while (s != null) {
6695 t.result = reducer.applyAsInt(t.result, s.result);
6696 s = t.rights = s.nextRight;
6697 }
6698 }
6699 }
6700 }
6701 }
6702
6703 // Unsafe mechanics
6704 private static final sun.misc.Unsafe U;
6705 private static final long SIZECTL;
6706 private static final long TRANSFERINDEX;
6707 private static final long TRANSFERORIGIN;
6708 private static final long BASECOUNT;
6709 private static final long CELLSBUSY;
6710 private static final long CELLVALUE;
6711 private static final long ABASE;
6712 private static final int ASHIFT;
6713
6714 static {
6715 try {
6716 U = sun.misc.Unsafe.getUnsafe();
6717 Class<?> k = ConcurrentHashMap.class;
6718 SIZECTL = U.objectFieldOffset
6719 (k.getDeclaredField("sizeCtl"));
6720 TRANSFERINDEX = U.objectFieldOffset
6721 (k.getDeclaredField("transferIndex"));
6722 TRANSFERORIGIN = U.objectFieldOffset
6723 (k.getDeclaredField("transferOrigin"));
6724 BASECOUNT = U.objectFieldOffset
6725 (k.getDeclaredField("baseCount"));
6726 CELLSBUSY = U.objectFieldOffset
6727 (k.getDeclaredField("cellsBusy"));
6728 Class<?> ck = Cell.class;
6729 CELLVALUE = U.objectFieldOffset
6730 (ck.getDeclaredField("value"));
6731 Class<?> sc = Node[].class;
6732 ABASE = U.arrayBaseOffset(sc);
6733 int scale = U.arrayIndexScale(sc);
6734 if ((scale & (scale - 1)) != 0)
6735 throw new Error("data type scale not a power of two");
6736 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6737 } catch (Exception e) {
6738 throw new Error(e);
6739 }
6740 }
6741
6742 }