ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.18
Committed: Sun Aug 24 23:32:25 2003 UTC (20 years, 9 months ago) by dl
Branch: MAIN
Changes since 1.17: +6 -5 lines
Log Message:
Kill ScheduledExecutor Date methods; Documentation clarifications

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain. Use, modify, and
4 * redistribute this code in any way without acknowledgement.
5 */
6
7 package java.util.concurrent;
8 import java.util.concurrent.locks.*;
9 import java.util.*;
10 import java.io.Serializable;
11 import java.io.IOException;
12 import java.io.ObjectInputStream;
13 import java.io.ObjectOutputStream;
14
15 /**
16 * A hash table supporting full concurrency of retrievals and
17 * adjustable expected concurrency for updates. This class obeys the
18 * same functional specification as
19 * <tt>java.util.Hashtable</tt>. However, even though all operations
20 * are thread-safe, retrieval operations do <em>not</em> entail
21 * locking, and there is <em>not</em> any support for locking the
22 * entire table in a way that prevents all access. This class is
23 * fully interoperable with Hashtable in programs that rely on its
24 * thread safety but not on its synchronization details.
25 *
26 * <p> Retrieval operations (including <tt>get</tt>) ordinarily
27 * overlap with update operations (including <tt>put</tt> and
28 * <tt>remove</tt>). Retrievals reflect the results of the most
29 * recently <em>completed</em> update operations holding upon their
30 * onset. For aggregate operations such as <tt>putAll</tt> and
31 * <tt>clear</tt>, concurrent retrievals may reflect insertion or
32 * removal of only some entries. Similarly, Iterators and
33 * Enumerations return elements reflecting the state of the hash table
34 * at some point at or since the creation of the iterator/enumeration.
35 * They do <em>not</em> throw ConcurrentModificationException.
36 * However, Iterators are designed to be used by only one thread at a
37 * time.
38 *
39 * <p> The allowed concurrency among update operations is controlled
40 * by the optional <tt>segments</tt> constructor argument (default
41 * 16). The table is divided into this many independent parts, each of
42 * which can be updated concurrently. Because placement in hash tables
43 * is essentially random, the actual concurrency will vary. As a rough
44 * rule of thumb, you should choose at least as many segments as you
45 * expect concurrent threads. However, using more segments than you
46 * need can waste space and time. Using a value of 1 for
47 * <tt>segments</tt> results in a table that is concurrently readable
48 * but can only be updated by one thread at a time.
49 *
50 * <p> Like Hashtable but unlike java.util.HashMap, this class does
51 * NOT allow <tt>null</tt> to be used as a key or value.
52 *
53 * @since 1.5
54 * @author Doug Lea
55 */
56 public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
57 implements ConcurrentMap<K, V>, Cloneable, Serializable {
58
59 /*
60 * The basic strategy is to subdivide the table among Segments,
61 * each of which itself is a concurrently readable hash table.
62 */
63
64 /* ---------------- Constants -------------- */
65
66 /**
67 * The default initial number of table slots for this table (16).
68 * Used when not otherwise specified in constructor.
69 */
70 private static int DEFAULT_INITIAL_CAPACITY = 16;
71
72 /**
73 * The maximum capacity, used if a higher value is implicitly
74 * specified by either of the constructors with arguments. MUST
75 * be a power of two <= 1<<30.
76 */
77 static final int MAXIMUM_CAPACITY = 1 << 30;
78
79 /**
80 * The default load factor for this table. Used when not
81 * otherwise specified in constructor.
82 */
83 static final float DEFAULT_LOAD_FACTOR = 0.75f;
84
85 /**
86 * The default number of concurrency control segments.
87 **/
88 private static final int DEFAULT_SEGMENTS = 16;
89
90 /* ---------------- Fields -------------- */
91
92 /**
93 * Mask value for indexing into segments. The upper bits of a
94 * key's hash code are used to choose the segment.
95 **/
96 private final int segmentMask;
97
98 /**
99 * Shift value for indexing within segments.
100 **/
101 private final int segmentShift;
102
103 /**
104 * The segments, each of which is a specialized hash table
105 */
106 private final Segment[] segments;
107
108 private transient Set<K> keySet;
109 private transient Set<Map.Entry<K,V>> entrySet;
110 private transient Collection<V> values;
111
112 /* ---------------- Small Utilities -------------- */
113
114 /**
115 * Return a hash code for non-null Object x.
116 * Uses the same hash code spreader as most other j.u hash tables.
117 * @param x the object serving as a key
118 * @return the hash code
119 */
120 private static int hash(Object x) {
121 int h = x.hashCode();
122 h += ~(h << 9);
123 h ^= (h >>> 14);
124 h += (h << 4);
125 h ^= (h >>> 10);
126 return h;
127 }
128
129 /**
130 * Return the segment that should be used for key with given hash
131 */
132 private Segment<K,V> segmentFor(int hash) {
133 return (Segment<K,V>) segments[(hash >>> segmentShift) & segmentMask];
134 }
135
136 /* ---------------- Inner Classes -------------- */
137
138 /**
139 * Segments are specialized versions of hash tables. This
140 * subclasses from ReentrantLock opportunistically, just to
141 * simplify some locking and avoid separate construction.
142 **/
143 private static final class Segment<K,V> extends ReentrantLock implements Serializable {
144 /*
145 * Segments maintain a table of entry lists that are ALWAYS
146 * kept in a consistent state, so can be read without locking.
147 * Next fields of nodes are immutable (final). All list
148 * additions are performed at the front of each bin. This
149 * makes it easy to check changes, and also fast to traverse.
150 * When nodes would otherwise be changed, new nodes are
151 * created to replace them. This works well for hash tables
152 * since the bin lists tend to be short. (The average length
153 * is less than two for the default load factor threshold.)
154 *
155 * Read operations can thus proceed without locking, but rely
156 * on a memory barrier to ensure that completed write
157 * operations performed by other threads are
158 * noticed. Conveniently, the "count" field, tracking the
159 * number of elements, can also serve as the volatile variable
160 * providing proper read/write barriers. This is convenient
161 * because this field needs to be read in many read operations
162 * anyway. The use of volatiles for this purpose is only
163 * guaranteed to work in accord with reuirements in
164 * multithreaded environments when run on JVMs conforming to
165 * the clarified JSR133 memory model specification. This true
166 * for hotspot as of release 1.4.
167 *
168 * Implementors note. The basic rules for all this are:
169 *
170 * - All unsynchronized read operations must first read the
171 * "count" field, and should not look at table entries if
172 * it is 0.
173 *
174 * - All synchronized write operations should write to
175 * the "count" field after updating. The operations must not
176 * take any action that could even momentarily cause
177 * a concurrent read operation to see inconsistent
178 * data. This is made easier by the nature of the read
179 * operations in Map. For example, no operation
180 * can reveal that the table has grown but the threshold
181 * has not yet been updated, so there are no atomicity
182 * requirements for this with respect to reads.
183 *
184 * As a guide, all critical volatile reads and writes are marked
185 * in code comments.
186 */
187
188 /**
189 * The number of elements in this segment's region.
190 **/
191 transient volatile int count;
192
193 /**
194 * The table is rehashed when its size exceeds this threshold.
195 * (The value of this field is always (int)(capacity *
196 * loadFactor).)
197 */
198 private transient int threshold;
199
200 /**
201 * The per-segment table
202 */
203 transient HashEntry[] table;
204
205 /**
206 * The load factor for the hash table. Even though this value
207 * is same for all segments, it is replicated to avoid needing
208 * links to outer object.
209 * @serial
210 */
211 private final float loadFactor;
212
213 Segment(int initialCapacity, float lf) {
214 loadFactor = lf;
215 setTable(new HashEntry[initialCapacity]);
216 }
217
218 /**
219 * Set table to new HashEntry array.
220 * Call only while holding lock or in constructor.
221 **/
222 private void setTable(HashEntry[] newTable) {
223 table = newTable;
224 threshold = (int)(newTable.length * loadFactor);
225 count = count; // write-volatile
226 }
227
228 /* Specialized implementations of map methods */
229
230 V get(K key, int hash) {
231 if (count != 0) { // read-volatile
232 HashEntry[] tab = table;
233 int index = hash & (tab.length - 1);
234 HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
235 while (e != null) {
236 if (e.hash == hash && key.equals(e.key))
237 return e.value;
238 e = e.next;
239 }
240 }
241 return null;
242 }
243
244 boolean containsKey(Object key, int hash) {
245 if (count != 0) { // read-volatile
246 HashEntry[] tab = table;
247 int index = hash & (tab.length - 1);
248 HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
249 while (e != null) {
250 if (e.hash == hash && key.equals(e.key))
251 return true;
252 e = e.next;
253 }
254 }
255 return false;
256 }
257
258 boolean containsValue(Object value) {
259 if (count != 0) { // read-volatile
260 HashEntry[] tab = table;
261 int len = tab.length;
262 for (int i = 0 ; i < len; i++)
263 for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i] ; e != null ; e = e.next)
264 if (value.equals(e.value))
265 return true;
266 }
267 return false;
268 }
269
270 V put(K key, int hash, V value, boolean onlyIfAbsent) {
271 lock();
272 try {
273 int c = count;
274 HashEntry[] tab = table;
275 int index = hash & (tab.length - 1);
276 HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
277
278 for (HashEntry<K,V> e = first; e != null; e = (HashEntry<K,V>) e.next) {
279 if (e.hash == hash && key.equals(e.key)) {
280 V oldValue = e.value;
281 if (!onlyIfAbsent)
282 e.value = value;
283 count = c; // write-volatile
284 return oldValue;
285 }
286 }
287
288 tab[index] = new HashEntry<K,V>(hash, key, value, first);
289 ++c;
290 count = c; // write-volatile
291 if (c > threshold)
292 setTable(rehash(tab));
293 return null;
294 } finally {
295 unlock();
296 }
297 }
298
299 private HashEntry[] rehash(HashEntry[] oldTable) {
300 int oldCapacity = oldTable.length;
301 if (oldCapacity >= MAXIMUM_CAPACITY)
302 return oldTable;
303
304 /*
305 * Reclassify nodes in each list to new Map. Because we are
306 * using power-of-two expansion, the elements from each bin
307 * must either stay at same index, or move with a power of two
308 * offset. We eliminate unnecessary node creation by catching
309 * cases where old nodes can be reused because their next
310 * fields won't change. Statistically, at the default
311 * threshhold, only about one-sixth of them need cloning when
312 * a table doubles. The nodes they replace will be garbage
313 * collectable as soon as they are no longer referenced by any
314 * reader thread that may be in the midst of traversing table
315 * right now.
316 */
317
318 HashEntry[] newTable = new HashEntry[oldCapacity << 1];
319 int sizeMask = newTable.length - 1;
320 for (int i = 0; i < oldCapacity ; i++) {
321 // We need to guarantee that any existing reads of old Map can
322 // proceed. So we cannot yet null out each bin.
323 HashEntry<K,V> e = (HashEntry<K,V>)oldTable[i];
324
325 if (e != null) {
326 HashEntry<K,V> next = e.next;
327 int idx = e.hash & sizeMask;
328
329 // Single node on list
330 if (next == null)
331 newTable[idx] = e;
332
333 else {
334 // Reuse trailing consecutive sequence at same slot
335 HashEntry<K,V> lastRun = e;
336 int lastIdx = idx;
337 for (HashEntry<K,V> last = next;
338 last != null;
339 last = last.next) {
340 int k = last.hash & sizeMask;
341 if (k != lastIdx) {
342 lastIdx = k;
343 lastRun = last;
344 }
345 }
346 newTable[lastIdx] = lastRun;
347
348 // Clone all remaining nodes
349 for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
350 int k = p.hash & sizeMask;
351 newTable[k] = new HashEntry<K,V>(p.hash,
352 p.key,
353 p.value,
354 (HashEntry<K,V>) newTable[k]);
355 }
356 }
357 }
358 }
359 return newTable;
360 }
361
362 /**
363 * Remove; match on key only if value null, else match both.
364 */
365 V remove(Object key, int hash, Object value) {
366 lock();
367 try {
368 int c = count;
369 HashEntry[] tab = table;
370 int index = hash & (tab.length - 1);
371 HashEntry<K,V> first = (HashEntry<K,V>)tab[index];
372
373 HashEntry<K,V> e = first;
374 for (;;) {
375 if (e == null)
376 return null;
377 if (e.hash == hash && key.equals(e.key))
378 break;
379 e = e.next;
380 }
381
382 V oldValue = e.value;
383 if (value != null && !value.equals(oldValue))
384 return null;
385
386 // All entries following removed node can stay in list, but
387 // all preceeding ones need to be cloned.
388 HashEntry<K,V> newFirst = e.next;
389 for (HashEntry<K,V> p = first; p != e; p = p.next)
390 newFirst = new HashEntry<K,V>(p.hash, p.key,
391 p.value, newFirst);
392 tab[index] = newFirst;
393 count = c-1; // write-volatile
394 return oldValue;
395 } finally {
396 unlock();
397 }
398 }
399
400 void clear() {
401 lock();
402 try {
403 HashEntry[] tab = table;
404 for (int i = 0; i < tab.length ; i++)
405 tab[i] = null;
406 count = 0; // write-volatile
407 } finally {
408 unlock();
409 }
410 }
411 }
412
413 /**
414 * ConcurrentReaderHashMap list entry.
415 */
416 private static class HashEntry<K,V> implements Entry<K,V> {
417 private final K key;
418 private V value;
419 private final int hash;
420 private final HashEntry<K,V> next;
421
422 HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
423 this.value = value;
424 this.hash = hash;
425 this.key = key;
426 this.next = next;
427 }
428
429 public K getKey() {
430 return key;
431 }
432
433 public V getValue() {
434 return value;
435 }
436
437 public V setValue(V newValue) {
438 // We aren't required to, and don't provide any
439 // visibility barriers for setting value.
440 if (newValue == null)
441 throw new NullPointerException();
442 V oldValue = this.value;
443 this.value = newValue;
444 return oldValue;
445 }
446
447 public boolean equals(Object o) {
448 if (!(o instanceof Entry))
449 return false;
450 Entry<K,V> e = (Entry<K,V>)o;
451 return (key.equals(e.getKey()) && value.equals(e.getValue()));
452 }
453
454 public int hashCode() {
455 return key.hashCode() ^ value.hashCode();
456 }
457
458 public String toString() {
459 return key + "=" + value;
460 }
461 }
462
463
464 /* ---------------- Public operations -------------- */
465
466 /**
467 * Constructs a new, empty map with the specified initial
468 * capacity and the specified load factor.
469 *
470 * @param initialCapacity the initial capacity. The actual
471 * initial capacity is rounded up to the nearest power of two.
472 * @param loadFactor the load factor threshold, used to control resizing.
473 * @param segments the number of concurrently accessible segments. the
474 * actual number of segments is rounded to the next power of two.
475 * @throws IllegalArgumentException if the initial capacity is
476 * negative or the load factor or number of segments are
477 * nonpositive.
478 */
479 public ConcurrentHashMap(int initialCapacity,
480 float loadFactor, int segments) {
481 if (!(loadFactor > 0) || initialCapacity < 0 || segments <= 0)
482 throw new IllegalArgumentException();
483
484 // Find power-of-two sizes best matching arguments
485 int sshift = 0;
486 int ssize = 1;
487 while (ssize < segments) {
488 ++sshift;
489 ssize <<= 1;
490 }
491 segmentShift = 32 - sshift;
492 segmentMask = ssize - 1;
493 this.segments = new Segment[ssize];
494
495 if (initialCapacity > MAXIMUM_CAPACITY)
496 initialCapacity = MAXIMUM_CAPACITY;
497 int c = initialCapacity / ssize;
498 if (c * ssize < initialCapacity)
499 ++c;
500 int cap = 1;
501 while (cap < c)
502 cap <<= 1;
503
504 for (int i = 0; i < this.segments.length; ++i)
505 this.segments[i] = new Segment<K,V>(cap, loadFactor);
506 }
507
508 /**
509 * Constructs a new, empty map with the specified initial
510 * capacity, and with default load factor and segments.
511 *
512 * @param initialCapacity the initial capacity of the
513 * ConcurrentHashMap.
514 * @throws IllegalArgumentException if the initial capacity of
515 * elements is negative.
516 */
517 public ConcurrentHashMap(int initialCapacity) {
518 this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
519 }
520
521 /**
522 * Constructs a new, empty map with a default initial capacity,
523 * load factor, and number of segments.
524 */
525 public ConcurrentHashMap() {
526 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
527 }
528
529 /**
530 * Constructs a new map with the same mappings as the given map. The
531 * map is created with a capacity of twice the number of mappings in
532 * the given map or 11 (whichever is greater), and a default load factor.
533 */
534 public <A extends K, B extends V> ConcurrentHashMap(Map<A,B> t) {
535 this(Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1,
536 11),
537 DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
538 putAll(t);
539 }
540
541 // inherit Map javadoc
542 public int size() {
543 int c = 0;
544 for (int i = 0; i < segments.length; ++i)
545 c += segments[i].count;
546 return c;
547 }
548
549 // inherit Map javadoc
550 public boolean isEmpty() {
551 for (int i = 0; i < segments.length; ++i)
552 if (segments[i].count != 0)
553 return false;
554 return true;
555 }
556
557 /**
558 * Returns the value to which the specified key is mapped in this table.
559 *
560 * @param key a key in the table.
561 * @return the value to which the key is mapped in this table;
562 * <code>null</code> if the key is not mapped to any value in
563 * this table.
564 * @throws NullPointerException if the key is
565 * <code>null</code>.
566 * @see #put(Object, Object)
567 */
568 public V get(Object key) {
569 int hash = hash(key); // throws NullPointerException if key null
570 return segmentFor(hash).get((K) key, hash);
571 }
572
573 /**
574 * Tests if the specified object is a key in this table.
575 *
576 * @param key possible key.
577 * @return <code>true</code> if and only if the specified object
578 * is a key in this table, as determined by the
579 * <tt>equals</tt> method; <code>false</code> otherwise.
580 * @throws NullPointerException if the key is
581 * <code>null</code>.
582 * @see #contains(Object)
583 */
584 public boolean containsKey(Object key) {
585 int hash = hash(key); // throws NullPointerException if key null
586 return segmentFor(hash).containsKey(key, hash);
587 }
588
589 /**
590 * Returns <tt>true</tt> if this map maps one or more keys to the
591 * specified value. Note: This method requires a full internal
592 * traversal of the hash table, and so is much slower than
593 * method <tt>containsKey</tt>.
594 *
595 * @param value value whose presence in this map is to be tested.
596 * @return <tt>true</tt> if this map maps one or more keys to the
597 * specified value.
598 * @throws NullPointerException if the value is <code>null</code>.
599 */
600 public boolean containsValue(Object value) {
601 if (value == null)
602 throw new NullPointerException();
603
604 for (int i = 0; i < segments.length; ++i) {
605 if (segments[i].containsValue(value))
606 return true;
607 }
608 return false;
609 }
610 /**
611 * Legacy method testing if some key maps into the specified value
612 * in this table. This operation is more expensive than the
613 * <code>containsKey</code> method.
614 *
615 * <p> Note that this method is identical in functionality to
616 * <tt>containsValue</tt>, This method esists solely to ensure
617 * plug-in compatibility with class {@link java.util.Hashtable},
618 * which supported this method prior to introduction of the
619 * collections framework.
620
621 * @param value a value to search for.
622 * @return <code>true</code> if and only if some key maps to the
623 * <code>value</code> argument in this table as
624 * determined by the <tt>equals</tt> method;
625 * <code>false</code> otherwise.
626 * @throws NullPointerException if the value is <code>null</code>.
627 * @see #containsKey(Object)
628 * @see #containsValue(Object)
629 * @see Map
630 */
631 public boolean contains(Object value) {
632 return containsValue(value);
633 }
634
635 /**
636 * Maps the specified <code>key</code> to the specified
637 * <code>value</code> in this table. Neither the key nor the
638 * value can be <code>null</code>. <p>
639 *
640 * The value can be retrieved by calling the <code>get</code> method
641 * with a key that is equal to the original key.
642 *
643 * @param key the table key.
644 * @param value the value.
645 * @return the previous value of the specified key in this table,
646 * or <code>null</code> if it did not have one.
647 * @throws NullPointerException if the key or value is
648 * <code>null</code>.
649 * @see Object#equals(Object)
650 * @see #get(Object)
651 */
652 public V put(K key, V value) {
653 if (value == null)
654 throw new NullPointerException();
655 int hash = hash(key);
656 return segmentFor(hash).put(key, hash, value, false);
657 }
658
659 /**
660 * If the specified key is not already associated
661 * with a value, associate it with the given value.
662 * This is equivalent to
663 * <pre>
664 * if (!map.containsKey(key))
665 * return map.put(key, value);
666 * else
667 * return map.get(key);
668 * </pre>
669 * Except that the action is performed atomically.
670 * @param key key with which the specified value is to be associated.
671 * @param value value to be associated with the specified key.
672 * @return previous value associated with specified key, or <tt>null</tt>
673 * if there was no mapping for key. A <tt>null</tt> return can
674 * also indicate that the map previously associated <tt>null</tt>
675 * with the specified key, if the implementation supports
676 * <tt>null</tt> values.
677 *
678 * @throws UnsupportedOperationException if the <tt>put</tt> operation is
679 * not supported by this map.
680 * @throws ClassCastException if the class of the specified key or value
681 * prevents it from being stored in this map.
682 * @throws NullPointerException if the specified key or value is
683 * <tt>null</tt>.
684 *
685 **/
686 public V putIfAbsent(K key, V value) {
687 if (value == null)
688 throw new NullPointerException();
689 int hash = hash(key);
690 return segmentFor(hash).put(key, hash, value, true);
691 }
692
693
694 /**
695 * Copies all of the mappings from the specified map to this one.
696 *
697 * These mappings replace any mappings that this map had for any of the
698 * keys currently in the specified Map.
699 *
700 * @param t Mappings to be stored in this map.
701 */
702 public void putAll(Map<? extends K, ? extends V> t) {
703 Iterator<Map.Entry<? extends K, ? extends V>> it = t.entrySet().iterator();
704 while (it.hasNext()) {
705 Entry<? extends K, ? extends V> e = it.next();
706 put(e.getKey(), e.getValue());
707 }
708 }
709
710 /**
711 * Removes the key (and its corresponding value) from this
712 * table. This method does nothing if the key is not in the table.
713 *
714 * @param key the key that needs to be removed.
715 * @return the value to which the key had been mapped in this table,
716 * or <code>null</code> if the key did not have a mapping.
717 * @throws NullPointerException if the key is
718 * <code>null</code>.
719 */
720 public V remove(Object key) {
721 int hash = hash(key);
722 return segmentFor(hash).remove(key, hash, null);
723 }
724
725 /**
726 * Remove entry for key only if currently mapped to given value.
727 * Acts as
728 * <pre>
729 * if (map.get(key).equals(value)) {
730 * map.remove(key);
731 * return true;
732 * } else return false;
733 * </pre>
734 * except that the action is performed atomically.
735 * @param key key with which the specified value is associated.
736 * @param value value associated with the specified key.
737 * @return true if the value was removed
738 * @throws NullPointerException if the specified key is
739 * <tt>null</tt>.
740 */
741 public boolean remove(Object key, Object value) {
742 int hash = hash(key);
743 return segmentFor(hash).remove(key, hash, value) != null;
744 }
745
746 /**
747 * Removes all mappings from this map.
748 */
749 public void clear() {
750 for (int i = 0; i < segments.length; ++i)
751 segments[i].clear();
752 }
753
754
755 /**
756 * Returns a shallow copy of this
757 * <tt>ConcurrentHashMap</tt> instance: the keys and
758 * values themselves are not cloned.
759 *
760 * @return a shallow copy of this map.
761 */
762 public Object clone() {
763 // We cannot call super.clone, since it would share final
764 // segments array, and there's no way to reassign finals.
765
766 float lf = segments[0].loadFactor;
767 int segs = segments.length;
768 int cap = (int)(size() / lf);
769 if (cap < segs) cap = segs;
770 ConcurrentHashMap<K,V> t = new ConcurrentHashMap<K,V>(cap, lf, segs);
771 t.putAll(this);
772 return t;
773 }
774
775 /**
776 * Returns a set view of the keys contained in this map. The set is
777 * backed by the map, so changes to the map are reflected in the set, and
778 * vice-versa. The set supports element removal, which removes the
779 * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
780 * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
781 * <tt>clear</tt> operations. It does not support the <tt>add</tt> or
782 * <tt>addAll</tt> operations.
783 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
784 * will never throw {@link java.util.ConcurrentModificationException},
785 * and guarantees to traverse elements as they existed upon
786 * construction of the iterator, and may (but is not guaranteed to)
787 * reflect any modifications subsequent to construction.
788 *
789 * @return a set view of the keys contained in this map.
790 */
791 public Set<K> keySet() {
792 Set<K> ks = keySet;
793 return (ks != null) ? ks : (keySet = new KeySet());
794 }
795
796
797 /**
798 * Returns a collection view of the values contained in this map. The
799 * collection is backed by the map, so changes to the map are reflected in
800 * the collection, and vice-versa. The collection supports element
801 * removal, which removes the corresponding mapping from this map, via the
802 * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
803 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
804 * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
805 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
806 * will never throw {@link java.util.ConcurrentModificationException},
807 * and guarantees to traverse elements as they existed upon
808 * construction of the iterator, and may (but is not guaranteed to)
809 * reflect any modifications subsequent to construction.
810 *
811 * @return a collection view of the values contained in this map.
812 */
813 public Collection<V> values() {
814 Collection<V> vs = values;
815 return (vs != null) ? vs : (values = new Values());
816 }
817
818
819 /**
820 * Returns a collection view of the mappings contained in this map. Each
821 * element in the returned collection is a <tt>Map.Entry</tt>. The
822 * collection is backed by the map, so changes to the map are reflected in
823 * the collection, and vice-versa. The collection supports element
824 * removal, which removes the corresponding mapping from the map, via the
825 * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
826 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
827 * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
828 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
829 * will never throw {@link java.util.ConcurrentModificationException},
830 * and guarantees to traverse elements as they existed upon
831 * construction of the iterator, and may (but is not guaranteed to)
832 * reflect any modifications subsequent to construction.
833 *
834 * @return a collection view of the mappings contained in this map.
835 */
836 public Set<Map.Entry<K,V>> entrySet() {
837 Set<Map.Entry<K,V>> es = entrySet;
838 return (es != null) ? es : (entrySet = new EntrySet());
839 }
840
841
842 /**
843 * Returns an enumeration of the keys in this table.
844 *
845 * @return an enumeration of the keys in this table.
846 * @see Enumeration
847 * @see #elements()
848 * @see #keySet()
849 * @see Map
850 */
851 public Enumeration<K> keys() {
852 return new KeyIterator();
853 }
854
855 /**
856 * Returns an enumeration of the values in this table.
857 * Use the Enumeration methods on the returned object to fetch the elements
858 * sequentially.
859 *
860 * @return an enumeration of the values in this table.
861 * @see java.util.Enumeration
862 * @see #keys()
863 * @see #values()
864 * @see Map
865 */
866 public Enumeration<V> elements() {
867 return new ValueIterator();
868 }
869
870 /* ---------------- Iterator Support -------------- */
871
872 private abstract class HashIterator {
873 private int nextSegmentIndex;
874 private int nextTableIndex;
875 private HashEntry[] currentTable;
876 private HashEntry<K, V> nextEntry;
877 private HashEntry<K, V> lastReturned;
878
879 private HashIterator() {
880 nextSegmentIndex = segments.length - 1;
881 nextTableIndex = -1;
882 advance();
883 }
884
885 public boolean hasMoreElements() { return hasNext(); }
886
887 private void advance() {
888 if (nextEntry != null && (nextEntry = nextEntry.next) != null)
889 return;
890
891 while (nextTableIndex >= 0) {
892 if ( (nextEntry = (HashEntry<K,V>)currentTable[nextTableIndex--]) != null)
893 return;
894 }
895
896 while (nextSegmentIndex >= 0) {
897 Segment<K,V> seg = (Segment<K,V>)segments[nextSegmentIndex--];
898 if (seg.count != 0) {
899 currentTable = seg.table;
900 for (int j = currentTable.length - 1; j >= 0; --j) {
901 if ( (nextEntry = (HashEntry<K,V>)currentTable[j]) != null) {
902 nextTableIndex = j - 1;
903 return;
904 }
905 }
906 }
907 }
908 }
909
910 public boolean hasNext() { return nextEntry != null; }
911
912 HashEntry<K,V> nextEntry() {
913 if (nextEntry == null)
914 throw new NoSuchElementException();
915 lastReturned = nextEntry;
916 advance();
917 return lastReturned;
918 }
919
920 public void remove() {
921 if (lastReturned == null)
922 throw new IllegalStateException();
923 ConcurrentHashMap.this.remove(lastReturned.key);
924 lastReturned = null;
925 }
926 }
927
928 private class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
929 public K next() { return super.nextEntry().key; }
930 public K nextElement() { return super.nextEntry().key; }
931 }
932
933 private class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
934 public V next() { return super.nextEntry().value; }
935 public V nextElement() { return super.nextEntry().value; }
936 }
937
938 private class EntryIterator extends HashIterator implements Iterator<Entry<K,V>> {
939 public Map.Entry<K,V> next() { return super.nextEntry(); }
940 }
941
942 private class KeySet extends AbstractSet<K> {
943 public Iterator<K> iterator() {
944 return new KeyIterator();
945 }
946 public int size() {
947 return ConcurrentHashMap.this.size();
948 }
949 public boolean contains(Object o) {
950 return ConcurrentHashMap.this.containsKey(o);
951 }
952 public boolean remove(Object o) {
953 return ConcurrentHashMap.this.remove(o) != null;
954 }
955 public void clear() {
956 ConcurrentHashMap.this.clear();
957 }
958 }
959
960 private class Values extends AbstractCollection<V> {
961 public Iterator<V> iterator() {
962 return new ValueIterator();
963 }
964 public int size() {
965 return ConcurrentHashMap.this.size();
966 }
967 public boolean contains(Object o) {
968 return ConcurrentHashMap.this.containsValue(o);
969 }
970 public void clear() {
971 ConcurrentHashMap.this.clear();
972 }
973 }
974
975 private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
976 public Iterator<Map.Entry<K,V>> iterator() {
977 return new EntryIterator();
978 }
979 public boolean contains(Object o) {
980 if (!(o instanceof Map.Entry))
981 return false;
982 Map.Entry<K,V> e = (Map.Entry<K,V>)o;
983 V v = ConcurrentHashMap.this.get(e.getKey());
984 return v != null && v.equals(e.getValue());
985 }
986 public boolean remove(Object o) {
987 if (!(o instanceof Map.Entry))
988 return false;
989 Map.Entry<K,V> e = (Map.Entry<K,V>)o;
990 return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
991 }
992 public int size() {
993 return ConcurrentHashMap.this.size();
994 }
995 public void clear() {
996 ConcurrentHashMap.this.clear();
997 }
998 }
999
1000 /* ---------------- Serialization Support -------------- */
1001
1002 /**
1003 * Save the state of the <tt>ConcurrentHashMap</tt>
1004 * instance to a stream (i.e.,
1005 * serialize it).
1006 * @param s the stream
1007 * @serialData
1008 * the key (Object) and value (Object)
1009 * for each key-value mapping, followed by a null pair.
1010 * The key-value mappings are emitted in no particular order.
1011 */
1012 private void writeObject(java.io.ObjectOutputStream s) throws IOException {
1013 s.defaultWriteObject();
1014
1015 for (int k = 0; k < segments.length; ++k) {
1016 Segment<K,V> seg = (Segment<K,V>)segments[k];
1017 seg.lock();
1018 try {
1019 HashEntry[] tab = seg.table;
1020 for (int i = 0; i < tab.length; ++i) {
1021 for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i]; e != null; e = e.next) {
1022 s.writeObject(e.key);
1023 s.writeObject(e.value);
1024 }
1025 }
1026 } finally {
1027 seg.unlock();
1028 }
1029 }
1030 s.writeObject(null);
1031 s.writeObject(null);
1032 }
1033
1034 /**
1035 * Reconstitute the <tt>ConcurrentHashMap</tt>
1036 * instance from a stream (i.e.,
1037 * deserialize it).
1038 * @param s the stream
1039 */
1040 private void readObject(java.io.ObjectInputStream s)
1041 throws IOException, ClassNotFoundException {
1042 s.defaultReadObject();
1043
1044 // Initialize each segment to be minimally sized, and let grow.
1045 for (int i = 0; i < segments.length; ++i) {
1046 segments[i].setTable(new HashEntry[1]);
1047 }
1048
1049 // Read the keys and values, and put the mappings in the table
1050 for (;;) {
1051 K key = (K) s.readObject();
1052 V value = (V) s.readObject();
1053 if (key == null)
1054 break;
1055 put(key, value);
1056 }
1057 }
1058 }
1059