ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.185
Committed: Fri Feb 15 22:11:38 2013 UTC (11 years, 3 months ago) by jsr166
Branch: MAIN
Changes since 1.184: +5 -3 lines
Log Message:
javadoc readability

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8 import java.util.concurrent.ForkJoinPool;
9 import java.util.concurrent.CountedCompleter;
10 import java.util.function.*;
11 import java.util.Spliterator;
12 import java.util.stream.Stream;
13 import java.util.stream.Streams;
14
15 import java.util.Comparator;
16 import java.util.Arrays;
17 import java.util.Map;
18 import java.util.Set;
19 import java.util.Collection;
20 import java.util.AbstractMap;
21 import java.util.AbstractSet;
22 import java.util.AbstractCollection;
23 import java.util.Hashtable;
24 import java.util.HashMap;
25 import java.util.Iterator;
26 import java.util.Enumeration;
27 import java.util.ConcurrentModificationException;
28 import java.util.NoSuchElementException;
29 import java.util.concurrent.ConcurrentMap;
30 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
31 import java.util.concurrent.atomic.AtomicInteger;
32 import java.util.concurrent.atomic.AtomicReference;
33 import java.io.Serializable;
34
35 /**
36 * A hash table supporting full concurrency of retrievals and
37 * high expected concurrency for updates. This class obeys the
38 * same functional specification as {@link java.util.Hashtable}, and
39 * includes versions of methods corresponding to each method of
40 * {@code Hashtable}. However, even though all operations are
41 * thread-safe, retrieval operations do <em>not</em> entail locking,
42 * and there is <em>not</em> any support for locking the entire table
43 * in a way that prevents all access. This class is fully
44 * interoperable with {@code Hashtable} in programs that rely on its
45 * thread safety but not on its synchronization details.
46 *
47 * <p>Retrieval operations (including {@code get}) generally do not
48 * block, so may overlap with update operations (including {@code put}
49 * and {@code remove}). Retrievals reflect the results of the most
50 * recently <em>completed</em> update operations holding upon their
51 * onset. (More formally, an update operation for a given key bears a
52 * <em>happens-before</em> relation with any (non-null) retrieval for
53 * that key reporting the updated value.) For aggregate operations
54 * such as {@code putAll} and {@code clear}, concurrent retrievals may
55 * reflect insertion or removal of only some entries. Similarly,
56 * Iterators and Enumerations return elements reflecting the state of
57 * the hash table at some point at or since the creation of the
58 * iterator/enumeration. They do <em>not</em> throw {@link
59 * ConcurrentModificationException}. However, iterators are designed
60 * to be used by only one thread at a time. Bear in mind that the
61 * results of aggregate status methods including {@code size}, {@code
62 * isEmpty}, and {@code containsValue} are typically useful only when
63 * a map is not undergoing concurrent updates in other threads.
64 * Otherwise the results of these methods reflect transient states
65 * that may be adequate for monitoring or estimation purposes, but not
66 * for program control.
67 *
68 * <p>The table is dynamically expanded when there are too many
69 * collisions (i.e., keys that have distinct hash codes but fall into
70 * the same slot modulo the table size), with the expected average
71 * effect of maintaining roughly two bins per mapping (corresponding
72 * to a 0.75 load factor threshold for resizing). There may be much
73 * variance around this average as mappings are added and removed, but
74 * overall, this maintains a commonly accepted time/space tradeoff for
75 * hash tables. However, resizing this or any other kind of hash
76 * table may be a relatively slow operation. When possible, it is a
77 * good idea to provide a size estimate as an optional {@code
78 * initialCapacity} constructor argument. An additional optional
79 * {@code loadFactor} constructor argument provides a further means of
80 * customizing initial table capacity by specifying the table density
81 * to be used in calculating the amount of space to allocate for the
82 * given number of elements. Also, for compatibility with previous
83 * versions of this class, constructors may optionally specify an
84 * expected {@code concurrencyLevel} as an additional hint for
85 * internal sizing. Note that using many keys with exactly the same
86 * {@code hashCode()} is a sure way to slow down performance of any
87 * hash table.
88 *
89 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
90 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
91 * (using {@link #keySet(Object)} when only keys are of interest, and the
92 * mapped values are (perhaps transiently) not used or all take the
93 * same mapping value.
94 *
95 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
96 * form of histogram or multiset) by using {@link
97 * java.util.concurrent.atomic.LongAdder} values and initializing via
98 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
99 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
100 * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
101 *
102 * <p>This class and its views and iterators implement all of the
103 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
104 * interfaces.
105 *
106 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
107 * does <em>not</em> allow {@code null} to be used as a key or value.
108 *
109 * <p>ConcurrentHashMaps support sequential and parallel operations
110 * bulk operations. (Parallel forms use the {@link
111 * ForkJoinPool#commonPool()}). Tasks that may be used in other
112 * contexts are available in class {@link ForkJoinTasks}. These
113 * operations are designed to be safely, and often sensibly, applied
114 * even with maps that are being concurrently updated by other
115 * threads; for example, when computing a snapshot summary of the
116 * values in a shared registry. There are three kinds of operation,
117 * each with four forms, accepting functions with Keys, Values,
118 * Entries, and (Key, Value) arguments and/or return values. Because
119 * the elements of a ConcurrentHashMap are not ordered in any
120 * particular way, and may be processed in different orders in
121 * different parallel executions, the correctness of supplied
122 * functions should not depend on any ordering, or on any other
123 * objects or values that may transiently change while computation is
124 * in progress; and except for forEach actions, should ideally be
125 * side-effect-free.
126 *
127 * <ul>
128 * <li> forEach: Perform a given action on each element.
129 * A variant form applies a given transformation on each element
130 * before performing the action.</li>
131 *
132 * <li> search: Return the first available non-null result of
133 * applying a given function on each element; skipping further
134 * search when a result is found.</li>
135 *
136 * <li> reduce: Accumulate each element. The supplied reduction
137 * function cannot rely on ordering (more formally, it should be
138 * both associative and commutative). There are five variants:
139 *
140 * <ul>
141 *
142 * <li> Plain reductions. (There is not a form of this method for
143 * (key, value) function arguments since there is no corresponding
144 * return type.)</li>
145 *
146 * <li> Mapped reductions that accumulate the results of a given
147 * function applied to each element.</li>
148 *
149 * <li> Reductions to scalar doubles, longs, and ints, using a
150 * given basis value.</li>
151 *
152 * </ul>
153 * </li>
154 * </ul>
155 *
156 * <p>The concurrency properties of bulk operations follow
157 * from those of ConcurrentHashMap: Any non-null result returned
158 * from {@code get(key)} and related access methods bears a
159 * happens-before relation with the associated insertion or
160 * update. The result of any bulk operation reflects the
161 * composition of these per-element relations (but is not
162 * necessarily atomic with respect to the map as a whole unless it
163 * is somehow known to be quiescent). Conversely, because keys
164 * and values in the map are never null, null serves as a reliable
165 * atomic indicator of the current lack of any result. To
166 * maintain this property, null serves as an implicit basis for
167 * all non-scalar reduction operations. For the double, long, and
168 * int versions, the basis should be one that, when combined with
169 * any other value, returns that other value (more formally, it
170 * should be the identity element for the reduction). Most common
171 * reductions have these properties; for example, computing a sum
172 * with basis 0 or a minimum with basis MAX_VALUE.
173 *
174 * <p>Search and transformation functions provided as arguments
175 * should similarly return null to indicate the lack of any result
176 * (in which case it is not used). In the case of mapped
177 * reductions, this also enables transformations to serve as
178 * filters, returning null (or, in the case of primitive
179 * specializations, the identity basis) if the element should not
180 * be combined. You can create compound transformations and
181 * filterings by composing them yourself under this "null means
182 * there is nothing there now" rule before using them in search or
183 * reduce operations.
184 *
185 * <p>Methods accepting and/or returning Entry arguments maintain
186 * key-value associations. They may be useful for example when
187 * finding the key for the greatest value. Note that "plain" Entry
188 * arguments can be supplied using {@code new
189 * AbstractMap.SimpleEntry(k,v)}.
190 *
191 * <p>Bulk operations may complete abruptly, throwing an
192 * exception encountered in the application of a supplied
193 * function. Bear in mind when handling such exceptions that other
194 * concurrently executing functions could also have thrown
195 * exceptions, or would have done so if the first exception had
196 * not occurred.
197 *
198 * <p>Speedups for parallel compared to sequential forms are common
199 * but not guaranteed. Parallel operations involving brief functions
200 * on small maps may execute more slowly than sequential forms if the
201 * underlying work to parallelize the computation is more expensive
202 * than the computation itself. Similarly, parallelization may not
203 * lead to much actual parallelism if all processors are busy
204 * performing unrelated tasks.
205 *
206 * <p>All arguments to all task methods must be non-null.
207 *
208 * <p>This class is a member of the
209 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
210 * Java Collections Framework</a>.
211 *
212 * @since 1.5
213 * @author Doug Lea
214 * @param <K> the type of keys maintained by this map
215 * @param <V> the type of mapped values
216 */
217 public class ConcurrentHashMap<K, V>
218 implements ConcurrentMap<K, V>, Serializable {
219 private static final long serialVersionUID = 7249069246763182397L;
220
221 /*
222 * Overview:
223 *
224 * The primary design goal of this hash table is to maintain
225 * concurrent readability (typically method get(), but also
226 * iterators and related methods) while minimizing update
227 * contention. Secondary goals are to keep space consumption about
228 * the same or better than java.util.HashMap, and to support high
229 * initial insertion rates on an empty table by many threads.
230 *
231 * Each key-value mapping is held in a Node. Because Node key
232 * fields can contain special values, they are defined using plain
233 * Object types (not type "K"). This leads to a lot of explicit
234 * casting (and many explicit warning suppressions to tell
235 * compilers not to complain about it). It also allows some of the
236 * public methods to be factored into a smaller number of internal
237 * methods (although sadly not so for the five variants of
238 * put-related operations). The validation-based approach
239 * explained below leads to a lot of code sprawl because
240 * retry-control precludes factoring into smaller methods.
241 *
242 * The table is lazily initialized to a power-of-two size upon the
243 * first insertion. Each bin in the table normally contains a
244 * list of Nodes (most often, the list has only zero or one Node).
245 * Table accesses require volatile/atomic reads, writes, and
246 * CASes. Because there is no other way to arrange this without
247 * adding further indirections, we use intrinsics
248 * (sun.misc.Unsafe) operations. The lists of nodes within bins
249 * are always accurately traversable under volatile reads, so long
250 * as lookups check hash code and non-nullness of value before
251 * checking key equality.
252 *
253 * We use the top (sign) bit of Node hash fields for control
254 * purposes -- it is available anyway because of addressing
255 * constraints. Nodes with negative hash fields are forwarding
256 * nodes to either TreeBins or resized tables. The lower 31 bits
257 * of each normal Node's hash field contain a transformation of
258 * the key's hash code.
259 *
260 * Insertion (via put or its variants) of the first node in an
261 * empty bin is performed by just CASing it to the bin. This is
262 * by far the most common case for put operations under most
263 * key/hash distributions. Other update operations (insert,
264 * delete, and replace) require locks. We do not want to waste
265 * the space required to associate a distinct lock object with
266 * each bin, so instead use the first node of a bin list itself as
267 * a lock. Locking support for these locks relies on builtin
268 * "synchronized" monitors.
269 *
270 * Using the first node of a list as a lock does not by itself
271 * suffice though: When a node is locked, any update must first
272 * validate that it is still the first node after locking it, and
273 * retry if not. Because new nodes are always appended to lists,
274 * once a node is first in a bin, it remains first until deleted
275 * or the bin becomes invalidated (upon resizing). However,
276 * operations that only conditionally update may inspect nodes
277 * until the point of update. This is a converse of sorts to the
278 * lazy locking technique described by Herlihy & Shavit.
279 *
280 * The main disadvantage of per-bin locks is that other update
281 * operations on other nodes in a bin list protected by the same
282 * lock can stall, for example when user equals() or mapping
283 * functions take a long time. However, statistically, under
284 * random hash codes, this is not a common problem. Ideally, the
285 * frequency of nodes in bins follows a Poisson distribution
286 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
287 * parameter of about 0.5 on average, given the resizing threshold
288 * of 0.75, although with a large variance because of resizing
289 * granularity. Ignoring variance, the expected occurrences of
290 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
291 * first values are:
292 *
293 * 0: 0.60653066
294 * 1: 0.30326533
295 * 2: 0.07581633
296 * 3: 0.01263606
297 * 4: 0.00157952
298 * 5: 0.00015795
299 * 6: 0.00001316
300 * 7: 0.00000094
301 * 8: 0.00000006
302 * more: less than 1 in ten million
303 *
304 * Lock contention probability for two threads accessing distinct
305 * elements is roughly 1 / (8 * #elements) under random hashes.
306 *
307 * Actual hash code distributions encountered in practice
308 * sometimes deviate significantly from uniform randomness. This
309 * includes the case when N > (1<<30), so some keys MUST collide.
310 * Similarly for dumb or hostile usages in which multiple keys are
311 * designed to have identical hash codes. Also, although we guard
312 * against the worst effects of this (see method spread), sets of
313 * hashes may differ only in bits that do not impact their bin
314 * index for a given power-of-two mask. So we use a secondary
315 * strategy that applies when the number of nodes in a bin exceeds
316 * a threshold, and at least one of the keys implements
317 * Comparable. These TreeBins use a balanced tree to hold nodes
318 * (a specialized form of red-black trees), bounding search time
319 * to O(log N). Each search step in a TreeBin is around twice as
320 * slow as in a regular list, but given that N cannot exceed
321 * (1<<64) (before running out of addresses) this bounds search
322 * steps, lock hold times, etc, to reasonable constants (roughly
323 * 100 nodes inspected per operation worst case) so long as keys
324 * are Comparable (which is very common -- String, Long, etc).
325 * TreeBin nodes (TreeNodes) also maintain the same "next"
326 * traversal pointers as regular nodes, so can be traversed in
327 * iterators in the same way.
328 *
329 * The table is resized when occupancy exceeds a percentage
330 * threshold (nominally, 0.75, but see below). Any thread
331 * noticing an overfull bin may assist in resizing after the
332 * initiating thread allocates and sets up the replacement
333 * array. However, rather than stalling, these other threads may
334 * proceed with insertions etc. The use of TreeBins shields us
335 * from the worst case effects of overfilling while resizes are in
336 * progress. Resizing proceeds by transferring bins, one by one,
337 * from the table to the next table. To enable concurrency, the
338 * next table must be (incrementally) prefilled with place-holders
339 * serving as reverse forwarders to the old table. Because we are
340 * using power-of-two expansion, the elements from each bin must
341 * either stay at same index, or move with a power of two
342 * offset. We eliminate unnecessary node creation by catching
343 * cases where old nodes can be reused because their next fields
344 * won't change. On average, only about one-sixth of them need
345 * cloning when a table doubles. The nodes they replace will be
346 * garbage collectable as soon as they are no longer referenced by
347 * any reader thread that may be in the midst of concurrently
348 * traversing table. Upon transfer, the old table bin contains
349 * only a special forwarding node (with hash field "MOVED") that
350 * contains the next table as its key. On encountering a
351 * forwarding node, access and update operations restart, using
352 * the new table.
353 *
354 * Each bin transfer requires its bin lock, which can stall
355 * waiting for locks while resizing. However, because other
356 * threads can join in and help resize rather than contend for
357 * locks, average aggregate waits become shorter as resizing
358 * progresses. The transfer operation must also ensure that all
359 * accessible bins in both the old and new table are usable by any
360 * traversal. This is arranged by proceeding from the last bin
361 * (table.length - 1) up towards the first. Upon seeing a
362 * forwarding node, traversals (see class Traverser) arrange to
363 * move to the new table without revisiting nodes. However, to
364 * ensure that no intervening nodes are skipped, bin splitting can
365 * only begin after the associated reverse-forwarders are in
366 * place.
367 *
368 * The traversal scheme also applies to partial traversals of
369 * ranges of bins (via an alternate Traverser constructor)
370 * to support partitioned aggregate operations. Also, read-only
371 * operations give up if ever forwarded to a null table, which
372 * provides support for shutdown-style clearing, which is also not
373 * currently implemented.
374 *
375 * Lazy table initialization minimizes footprint until first use,
376 * and also avoids resizings when the first operation is from a
377 * putAll, constructor with map argument, or deserialization.
378 * These cases attempt to override the initial capacity settings,
379 * but harmlessly fail to take effect in cases of races.
380 *
381 * The element count is maintained using a specialization of
382 * LongAdder. We need to incorporate a specialization rather than
383 * just use a LongAdder in order to access implicit
384 * contention-sensing that leads to creation of multiple
385 * Cells. The counter mechanics avoid contention on
386 * updates but can encounter cache thrashing if read too
387 * frequently during concurrent access. To avoid reading so often,
388 * resizing under contention is attempted only upon adding to a
389 * bin already holding two or more nodes. Under uniform hash
390 * distributions, the probability of this occurring at threshold
391 * is around 13%, meaning that only about 1 in 8 puts check
392 * threshold (and after resizing, many fewer do so). The bulk
393 * putAll operation further reduces contention by only committing
394 * count updates upon these size checks.
395 *
396 * Maintaining API and serialization compatibility with previous
397 * versions of this class introduces several oddities. Mainly: We
398 * leave untouched but unused constructor arguments refering to
399 * concurrencyLevel. We accept a loadFactor constructor argument,
400 * but apply it only to initial table capacity (which is the only
401 * time that we can guarantee to honor it.) We also declare an
402 * unused "Segment" class that is instantiated in minimal form
403 * only when serializing.
404 */
405
406 /* ---------------- Constants -------------- */
407
408 /**
409 * The largest possible table capacity. This value must be
410 * exactly 1<<30 to stay within Java array allocation and indexing
411 * bounds for power of two table sizes, and is further required
412 * because the top two bits of 32bit hash fields are used for
413 * control purposes.
414 */
415 private static final int MAXIMUM_CAPACITY = 1 << 30;
416
417 /**
418 * The default initial table capacity. Must be a power of 2
419 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
420 */
421 private static final int DEFAULT_CAPACITY = 16;
422
423 /**
424 * The largest possible (non-power of two) array size.
425 * Needed by toArray and related methods.
426 */
427 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
428
429 /**
430 * The default concurrency level for this table. Unused but
431 * defined for compatibility with previous versions of this class.
432 */
433 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
434
435 /**
436 * The load factor for this table. Overrides of this value in
437 * constructors affect only the initial table capacity. The
438 * actual floating point value isn't normally used -- it is
439 * simpler to use expressions such as {@code n - (n >>> 2)} for
440 * the associated resizing threshold.
441 */
442 private static final float LOAD_FACTOR = 0.75f;
443
444 /**
445 * The bin count threshold for using a tree rather than list for a
446 * bin. The value reflects the approximate break-even point for
447 * using tree-based operations.
448 */
449 private static final int TREE_THRESHOLD = 8;
450
451 /**
452 * Minimum number of rebinnings per transfer step. Ranges are
453 * subdivided to allow multiple resizer threads. This value
454 * serves as a lower bound to avoid resizers encountering
455 * excessive memory contention. The value should be at least
456 * DEFAULT_CAPACITY.
457 */
458 private static final int MIN_TRANSFER_STRIDE = 16;
459
460 /*
461 * Encodings for Node hash fields. See above for explanation.
462 */
463 static final int MOVED = 0x80000000; // hash field for forwarding nodes
464 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
465
466 /** Number of CPUS, to place bounds on some sizings */
467 static final int NCPU = Runtime.getRuntime().availableProcessors();
468
469 /* ---------------- Counters -------------- */
470
471 // Adapted from LongAdder and Striped64.
472 // See their internal docs for explanation.
473
474 // A padded cell for distributing counts
475 static final class Cell {
476 volatile long p0, p1, p2, p3, p4, p5, p6;
477 volatile long value;
478 volatile long q0, q1, q2, q3, q4, q5, q6;
479 Cell(long x) { value = x; }
480 }
481
482 /* ---------------- Fields -------------- */
483
484 /**
485 * The array of bins. Lazily initialized upon first insertion.
486 * Size is always a power of two. Accessed directly by iterators.
487 */
488 transient volatile Node<V>[] table;
489
490 /**
491 * The next table to use; non-null only while resizing.
492 */
493 private transient volatile Node<V>[] nextTable;
494
495 /**
496 * Base counter value, used mainly when there is no contention,
497 * but also as a fallback during table initialization
498 * races. Updated via CAS.
499 */
500 private transient volatile long baseCount;
501
502 /**
503 * Table initialization and resizing control. When negative, the
504 * table is being initialized or resized: -1 for initialization,
505 * else -(1 + the number of active resizing threads). Otherwise,
506 * when table is null, holds the initial table size to use upon
507 * creation, or 0 for default. After initialization, holds the
508 * next element count value upon which to resize the table.
509 */
510 private transient volatile int sizeCtl;
511
512 /**
513 * The next table index (plus one) to split while resizing.
514 */
515 private transient volatile int transferIndex;
516
517 /**
518 * The least available table index to split while resizing.
519 */
520 private transient volatile int transferOrigin;
521
522 /**
523 * Spinlock (locked via CAS) used when resizing and/or creating Cells.
524 */
525 private transient volatile int cellsBusy;
526
527 /**
528 * Table of counter cells. When non-null, size is a power of 2.
529 */
530 private transient volatile Cell[] counterCells;
531
532 // views
533 private transient KeySetView<K,V> keySet;
534 private transient ValuesView<K,V> values;
535 private transient EntrySetView<K,V> entrySet;
536
537 /** For serialization compatibility. Null unless serialized; see below */
538 private Segment<K,V>[] segments;
539
540 /* ---------------- Table element access -------------- */
541
542 /*
543 * Volatile access methods are used for table elements as well as
544 * elements of in-progress next table while resizing. Uses are
545 * null checked by callers, and implicitly bounds-checked, relying
546 * on the invariants that tab arrays have non-zero size, and all
547 * indices are masked with (tab.length - 1) which is never
548 * negative and always less than length. Note that, to be correct
549 * wrt arbitrary concurrency errors by users, bounds checks must
550 * operate on local variables, which accounts for some odd-looking
551 * inline assignments below.
552 */
553
554 @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
555 (Node<V>[] tab, int i) { // used by Traverser
556 return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
557 }
558
559 private static final <V> boolean casTabAt
560 (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
561 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
562 }
563
564 private static final <V> void setTabAt
565 (Node<V>[] tab, int i, Node<V> v) {
566 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
567 }
568
569 /* ---------------- Nodes -------------- */
570
571 /**
572 * Key-value entry. Note that this is never exported out as a
573 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
574 * field of MOVED are special, and do not contain user keys or
575 * values. Otherwise, keys are never null, and null val fields
576 * indicate that a node is in the process of being deleted or
577 * created. For purposes of read-only access, a key may be read
578 * before a val, but can only be used after checking val to be
579 * non-null.
580 */
581 static class Node<V> {
582 final int hash;
583 final Object key;
584 volatile V val;
585 volatile Node<V> next;
586
587 Node(int hash, Object key, V val, Node<V> next) {
588 this.hash = hash;
589 this.key = key;
590 this.val = val;
591 this.next = next;
592 }
593 }
594
595 /* ---------------- TreeBins -------------- */
596
597 /**
598 * Nodes for use in TreeBins
599 */
600 static final class TreeNode<V> extends Node<V> {
601 TreeNode<V> parent; // red-black tree links
602 TreeNode<V> left;
603 TreeNode<V> right;
604 TreeNode<V> prev; // needed to unlink next upon deletion
605 boolean red;
606
607 TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
608 super(hash, key, val, next);
609 this.parent = parent;
610 }
611 }
612
613 /**
614 * A specialized form of red-black tree for use in bins
615 * whose size exceeds a threshold.
616 *
617 * TreeBins use a special form of comparison for search and
618 * related operations (which is the main reason we cannot use
619 * existing collections such as TreeMaps). TreeBins contain
620 * Comparable elements, but may contain others, as well as
621 * elements that are Comparable but not necessarily Comparable<T>
622 * for the same T, so we cannot invoke compareTo among them. To
623 * handle this, the tree is ordered primarily by hash value, then
624 * by getClass().getName() order, and then by Comparator order
625 * among elements of the same class. On lookup at a node, if
626 * elements are not comparable or compare as 0, both left and
627 * right children may need to be searched in the case of tied hash
628 * values. (This corresponds to the full list search that would be
629 * necessary if all elements were non-Comparable and had tied
630 * hashes.) The red-black balancing code is updated from
631 * pre-jdk-collections
632 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
633 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
634 * Algorithms" (CLR).
635 *
636 * TreeBins also maintain a separate locking discipline than
637 * regular bins. Because they are forwarded via special MOVED
638 * nodes at bin heads (which can never change once established),
639 * we cannot use those nodes as locks. Instead, TreeBin
640 * extends AbstractQueuedSynchronizer to support a simple form of
641 * read-write lock. For update operations and table validation,
642 * the exclusive form of lock behaves in the same way as bin-head
643 * locks. However, lookups use shared read-lock mechanics to allow
644 * multiple readers in the absence of writers. Additionally,
645 * these lookups do not ever block: While the lock is not
646 * available, they proceed along the slow traversal path (via
647 * next-pointers) until the lock becomes available or the list is
648 * exhausted, whichever comes first. (These cases are not fast,
649 * but maximize aggregate expected throughput.) The AQS mechanics
650 * for doing this are straightforward. The lock state is held as
651 * AQS getState(). Read counts are negative; the write count (1)
652 * is positive. There are no signalling preferences among readers
653 * and writers. Since we don't need to export full Lock API, we
654 * just override the minimal AQS methods and use them directly.
655 */
656 static final class TreeBin<V> extends AbstractQueuedSynchronizer {
657 private static final long serialVersionUID = 2249069246763182397L;
658 transient TreeNode<V> root; // root of tree
659 transient TreeNode<V> first; // head of next-pointer list
660
661 /* AQS overrides */
662 public final boolean isHeldExclusively() { return getState() > 0; }
663 public final boolean tryAcquire(int ignore) {
664 if (compareAndSetState(0, 1)) {
665 setExclusiveOwnerThread(Thread.currentThread());
666 return true;
667 }
668 return false;
669 }
670 public final boolean tryRelease(int ignore) {
671 setExclusiveOwnerThread(null);
672 setState(0);
673 return true;
674 }
675 public final int tryAcquireShared(int ignore) {
676 for (int c;;) {
677 if ((c = getState()) > 0)
678 return -1;
679 if (compareAndSetState(c, c -1))
680 return 1;
681 }
682 }
683 public final boolean tryReleaseShared(int ignore) {
684 int c;
685 do {} while (!compareAndSetState(c = getState(), c + 1));
686 return c == -1;
687 }
688
689 /** From CLR */
690 private void rotateLeft(TreeNode<V> p) {
691 if (p != null) {
692 TreeNode<V> r = p.right, pp, rl;
693 if ((rl = p.right = r.left) != null)
694 rl.parent = p;
695 if ((pp = r.parent = p.parent) == null)
696 root = r;
697 else if (pp.left == p)
698 pp.left = r;
699 else
700 pp.right = r;
701 r.left = p;
702 p.parent = r;
703 }
704 }
705
706 /** From CLR */
707 private void rotateRight(TreeNode<V> p) {
708 if (p != null) {
709 TreeNode<V> l = p.left, pp, lr;
710 if ((lr = p.left = l.right) != null)
711 lr.parent = p;
712 if ((pp = l.parent = p.parent) == null)
713 root = l;
714 else if (pp.right == p)
715 pp.right = l;
716 else
717 pp.left = l;
718 l.right = p;
719 p.parent = l;
720 }
721 }
722
723 /**
724 * Returns the TreeNode (or null if not found) for the given key
725 * starting at given root.
726 */
727 @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
728 (int h, Object k, TreeNode<V> p) {
729 Class<?> c = k.getClass();
730 while (p != null) {
731 int dir, ph; Object pk; Class<?> pc;
732 if ((ph = p.hash) == h) {
733 if ((pk = p.key) == k || k.equals(pk))
734 return p;
735 if (c != (pc = pk.getClass()) ||
736 !(k instanceof Comparable) ||
737 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
738 if ((dir = (c == pc) ? 0 :
739 c.getName().compareTo(pc.getName())) == 0) {
740 TreeNode<V> r = null, pl, pr; // check both sides
741 if ((pr = p.right) != null && h >= pr.hash &&
742 (r = getTreeNode(h, k, pr)) != null)
743 return r;
744 else if ((pl = p.left) != null && h <= pl.hash)
745 dir = -1;
746 else // nothing there
747 return null;
748 }
749 }
750 }
751 else
752 dir = (h < ph) ? -1 : 1;
753 p = (dir > 0) ? p.right : p.left;
754 }
755 return null;
756 }
757
758 /**
759 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
760 * read-lock to call getTreeNode, but during failure to get
761 * lock, searches along next links.
762 */
763 final V getValue(int h, Object k) {
764 Node<V> r = null;
765 int c = getState(); // Must read lock state first
766 for (Node<V> e = first; e != null; e = e.next) {
767 if (c <= 0 && compareAndSetState(c, c - 1)) {
768 try {
769 r = getTreeNode(h, k, root);
770 } finally {
771 releaseShared(0);
772 }
773 break;
774 }
775 else if (e.hash == h && k.equals(e.key)) {
776 r = e;
777 break;
778 }
779 else
780 c = getState();
781 }
782 return r == null ? null : r.val;
783 }
784
785 /**
786 * Finds or adds a node.
787 * @return null if added
788 */
789 @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
790 (int h, Object k, V v) {
791 Class<?> c = k.getClass();
792 TreeNode<V> pp = root, p = null;
793 int dir = 0;
794 while (pp != null) { // find existing node or leaf to insert at
795 int ph; Object pk; Class<?> pc;
796 p = pp;
797 if ((ph = p.hash) == h) {
798 if ((pk = p.key) == k || k.equals(pk))
799 return p;
800 if (c != (pc = pk.getClass()) ||
801 !(k instanceof Comparable) ||
802 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
803 TreeNode<V> s = null, r = null, pr;
804 if ((dir = (c == pc) ? 0 :
805 c.getName().compareTo(pc.getName())) == 0) {
806 if ((pr = p.right) != null && h >= pr.hash &&
807 (r = getTreeNode(h, k, pr)) != null)
808 return r;
809 else // continue left
810 dir = -1;
811 }
812 else if ((pr = p.right) != null && h >= pr.hash)
813 s = pr;
814 if (s != null && (r = getTreeNode(h, k, s)) != null)
815 return r;
816 }
817 }
818 else
819 dir = (h < ph) ? -1 : 1;
820 pp = (dir > 0) ? p.right : p.left;
821 }
822
823 TreeNode<V> f = first;
824 TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
825 if (p == null)
826 root = x;
827 else { // attach and rebalance; adapted from CLR
828 TreeNode<V> xp, xpp;
829 if (f != null)
830 f.prev = x;
831 if (dir <= 0)
832 p.left = x;
833 else
834 p.right = x;
835 x.red = true;
836 while (x != null && (xp = x.parent) != null && xp.red &&
837 (xpp = xp.parent) != null) {
838 TreeNode<V> xppl = xpp.left;
839 if (xp == xppl) {
840 TreeNode<V> y = xpp.right;
841 if (y != null && y.red) {
842 y.red = false;
843 xp.red = false;
844 xpp.red = true;
845 x = xpp;
846 }
847 else {
848 if (x == xp.right) {
849 rotateLeft(x = xp);
850 xpp = (xp = x.parent) == null ? null : xp.parent;
851 }
852 if (xp != null) {
853 xp.red = false;
854 if (xpp != null) {
855 xpp.red = true;
856 rotateRight(xpp);
857 }
858 }
859 }
860 }
861 else {
862 TreeNode<V> y = xppl;
863 if (y != null && y.red) {
864 y.red = false;
865 xp.red = false;
866 xpp.red = true;
867 x = xpp;
868 }
869 else {
870 if (x == xp.left) {
871 rotateRight(x = xp);
872 xpp = (xp = x.parent) == null ? null : xp.parent;
873 }
874 if (xp != null) {
875 xp.red = false;
876 if (xpp != null) {
877 xpp.red = true;
878 rotateLeft(xpp);
879 }
880 }
881 }
882 }
883 }
884 TreeNode<V> r = root;
885 if (r != null && r.red)
886 r.red = false;
887 }
888 return null;
889 }
890
891 /**
892 * Removes the given node, that must be present before this
893 * call. This is messier than typical red-black deletion code
894 * because we cannot swap the contents of an interior node
895 * with a leaf successor that is pinned by "next" pointers
896 * that are accessible independently of lock. So instead we
897 * swap the tree linkages.
898 */
899 final void deleteTreeNode(TreeNode<V> p) {
900 TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
901 TreeNode<V> pred = p.prev;
902 if (pred == null)
903 first = next;
904 else
905 pred.next = next;
906 if (next != null)
907 next.prev = pred;
908 TreeNode<V> replacement;
909 TreeNode<V> pl = p.left;
910 TreeNode<V> pr = p.right;
911 if (pl != null && pr != null) {
912 TreeNode<V> s = pr, sl;
913 while ((sl = s.left) != null) // find successor
914 s = sl;
915 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
916 TreeNode<V> sr = s.right;
917 TreeNode<V> pp = p.parent;
918 if (s == pr) { // p was s's direct parent
919 p.parent = s;
920 s.right = p;
921 }
922 else {
923 TreeNode<V> sp = s.parent;
924 if ((p.parent = sp) != null) {
925 if (s == sp.left)
926 sp.left = p;
927 else
928 sp.right = p;
929 }
930 if ((s.right = pr) != null)
931 pr.parent = s;
932 }
933 p.left = null;
934 if ((p.right = sr) != null)
935 sr.parent = p;
936 if ((s.left = pl) != null)
937 pl.parent = s;
938 if ((s.parent = pp) == null)
939 root = s;
940 else if (p == pp.left)
941 pp.left = s;
942 else
943 pp.right = s;
944 replacement = sr;
945 }
946 else
947 replacement = (pl != null) ? pl : pr;
948 TreeNode<V> pp = p.parent;
949 if (replacement == null) {
950 if (pp == null) {
951 root = null;
952 return;
953 }
954 replacement = p;
955 }
956 else {
957 replacement.parent = pp;
958 if (pp == null)
959 root = replacement;
960 else if (p == pp.left)
961 pp.left = replacement;
962 else
963 pp.right = replacement;
964 p.left = p.right = p.parent = null;
965 }
966 if (!p.red) { // rebalance, from CLR
967 TreeNode<V> x = replacement;
968 while (x != null) {
969 TreeNode<V> xp, xpl;
970 if (x.red || (xp = x.parent) == null) {
971 x.red = false;
972 break;
973 }
974 if (x == (xpl = xp.left)) {
975 TreeNode<V> sib = xp.right;
976 if (sib != null && sib.red) {
977 sib.red = false;
978 xp.red = true;
979 rotateLeft(xp);
980 sib = (xp = x.parent) == null ? null : xp.right;
981 }
982 if (sib == null)
983 x = xp;
984 else {
985 TreeNode<V> sl = sib.left, sr = sib.right;
986 if ((sr == null || !sr.red) &&
987 (sl == null || !sl.red)) {
988 sib.red = true;
989 x = xp;
990 }
991 else {
992 if (sr == null || !sr.red) {
993 if (sl != null)
994 sl.red = false;
995 sib.red = true;
996 rotateRight(sib);
997 sib = (xp = x.parent) == null ?
998 null : xp.right;
999 }
1000 if (sib != null) {
1001 sib.red = (xp == null) ? false : xp.red;
1002 if ((sr = sib.right) != null)
1003 sr.red = false;
1004 }
1005 if (xp != null) {
1006 xp.red = false;
1007 rotateLeft(xp);
1008 }
1009 x = root;
1010 }
1011 }
1012 }
1013 else { // symmetric
1014 TreeNode<V> sib = xpl;
1015 if (sib != null && sib.red) {
1016 sib.red = false;
1017 xp.red = true;
1018 rotateRight(xp);
1019 sib = (xp = x.parent) == null ? null : xp.left;
1020 }
1021 if (sib == null)
1022 x = xp;
1023 else {
1024 TreeNode<V> sl = sib.left, sr = sib.right;
1025 if ((sl == null || !sl.red) &&
1026 (sr == null || !sr.red)) {
1027 sib.red = true;
1028 x = xp;
1029 }
1030 else {
1031 if (sl == null || !sl.red) {
1032 if (sr != null)
1033 sr.red = false;
1034 sib.red = true;
1035 rotateLeft(sib);
1036 sib = (xp = x.parent) == null ?
1037 null : xp.left;
1038 }
1039 if (sib != null) {
1040 sib.red = (xp == null) ? false : xp.red;
1041 if ((sl = sib.left) != null)
1042 sl.red = false;
1043 }
1044 if (xp != null) {
1045 xp.red = false;
1046 rotateRight(xp);
1047 }
1048 x = root;
1049 }
1050 }
1051 }
1052 }
1053 }
1054 if (p == replacement && (pp = p.parent) != null) {
1055 if (p == pp.left) // detach pointers
1056 pp.left = null;
1057 else if (p == pp.right)
1058 pp.right = null;
1059 p.parent = null;
1060 }
1061 }
1062 }
1063
1064 /* ---------------- Collision reduction methods -------------- */
1065
1066 /**
1067 * Spreads higher bits to lower, and also forces top bit to 0.
1068 * Because the table uses power-of-two masking, sets of hashes
1069 * that vary only in bits above the current mask will always
1070 * collide. (Among known examples are sets of Float keys holding
1071 * consecutive whole numbers in small tables.) To counter this,
1072 * we apply a transform that spreads the impact of higher bits
1073 * downward. There is a tradeoff between speed, utility, and
1074 * quality of bit-spreading. Because many common sets of hashes
1075 * are already reasonably distributed across bits (so don't benefit
1076 * from spreading), and because we use trees to handle large sets
1077 * of collisions in bins, we don't need excessively high quality.
1078 */
1079 private static final int spread(int h) {
1080 h ^= (h >>> 18) ^ (h >>> 12);
1081 return (h ^ (h >>> 10)) & HASH_BITS;
1082 }
1083
1084 /**
1085 * Replaces a list bin with a tree bin if key is comparable. Call
1086 * only when locked.
1087 */
1088 private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1089 if (key instanceof Comparable) {
1090 TreeBin<V> t = new TreeBin<V>();
1091 for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1092 t.putTreeNode(e.hash, e.key, e.val);
1093 setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1094 }
1095 }
1096
1097 /* ---------------- Internal access and update methods -------------- */
1098
1099 /** Implementation for get and containsKey */
1100 @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1101 int h = spread(k.hashCode());
1102 retry: for (Node<V>[] tab = table; tab != null;) {
1103 Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1104 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1105 if ((eh = e.hash) < 0) {
1106 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1107 return ((TreeBin<V>)ek).getValue(h, k);
1108 else { // restart with new table
1109 tab = (Node<V>[])ek;
1110 continue retry;
1111 }
1112 }
1113 else if (eh == h && (ev = e.val) != null &&
1114 ((ek = e.key) == k || k.equals(ek)))
1115 return ev;
1116 }
1117 break;
1118 }
1119 return null;
1120 }
1121
1122 /**
1123 * Implementation for the four public remove/replace methods:
1124 * Replaces node value with v, conditional upon match of cv if
1125 * non-null. If resulting value is null, delete.
1126 */
1127 @SuppressWarnings("unchecked") private final V internalReplace
1128 (Object k, V v, Object cv) {
1129 int h = spread(k.hashCode());
1130 V oldVal = null;
1131 for (Node<V>[] tab = table;;) {
1132 Node<V> f; int i, fh; Object fk;
1133 if (tab == null ||
1134 (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1135 break;
1136 else if ((fh = f.hash) < 0) {
1137 if ((fk = f.key) instanceof TreeBin) {
1138 TreeBin<V> t = (TreeBin<V>)fk;
1139 boolean validated = false;
1140 boolean deleted = false;
1141 t.acquire(0);
1142 try {
1143 if (tabAt(tab, i) == f) {
1144 validated = true;
1145 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1146 if (p != null) {
1147 V pv = p.val;
1148 if (cv == null || cv == pv || cv.equals(pv)) {
1149 oldVal = pv;
1150 if ((p.val = v) == null) {
1151 deleted = true;
1152 t.deleteTreeNode(p);
1153 }
1154 }
1155 }
1156 }
1157 } finally {
1158 t.release(0);
1159 }
1160 if (validated) {
1161 if (deleted)
1162 addCount(-1L, -1);
1163 break;
1164 }
1165 }
1166 else
1167 tab = (Node<V>[])fk;
1168 }
1169 else if (fh != h && f.next == null) // precheck
1170 break; // rules out possible existence
1171 else {
1172 boolean validated = false;
1173 boolean deleted = false;
1174 synchronized (f) {
1175 if (tabAt(tab, i) == f) {
1176 validated = true;
1177 for (Node<V> e = f, pred = null;;) {
1178 Object ek; V ev;
1179 if (e.hash == h &&
1180 ((ev = e.val) != null) &&
1181 ((ek = e.key) == k || k.equals(ek))) {
1182 if (cv == null || cv == ev || cv.equals(ev)) {
1183 oldVal = ev;
1184 if ((e.val = v) == null) {
1185 deleted = true;
1186 Node<V> en = e.next;
1187 if (pred != null)
1188 pred.next = en;
1189 else
1190 setTabAt(tab, i, en);
1191 }
1192 }
1193 break;
1194 }
1195 pred = e;
1196 if ((e = e.next) == null)
1197 break;
1198 }
1199 }
1200 }
1201 if (validated) {
1202 if (deleted)
1203 addCount(-1L, -1);
1204 break;
1205 }
1206 }
1207 }
1208 return oldVal;
1209 }
1210
1211 /*
1212 * Internal versions of insertion methods
1213 * All have the same basic structure as the first (internalPut):
1214 * 1. If table uninitialized, create
1215 * 2. If bin empty, try to CAS new node
1216 * 3. If bin stale, use new table
1217 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1218 * 5. Lock and validate; if valid, scan and add or update
1219 *
1220 * The putAll method differs mainly in attempting to pre-allocate
1221 * enough table space, and also more lazily performs count updates
1222 * and checks.
1223 *
1224 * Most of the function-accepting methods can't be factored nicely
1225 * because they require different functional forms, so instead
1226 * sprawl out similar mechanics.
1227 */
1228
1229 /** Implementation for put and putIfAbsent */
1230 @SuppressWarnings("unchecked") private final V internalPut
1231 (K k, V v, boolean onlyIfAbsent) {
1232 if (k == null || v == null) throw new NullPointerException();
1233 int h = spread(k.hashCode());
1234 int len = 0;
1235 for (Node<V>[] tab = table;;) {
1236 int i, fh; Node<V> f; Object fk; V fv;
1237 if (tab == null)
1238 tab = initTable();
1239 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1240 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1241 break; // no lock when adding to empty bin
1242 }
1243 else if ((fh = f.hash) < 0) {
1244 if ((fk = f.key) instanceof TreeBin) {
1245 TreeBin<V> t = (TreeBin<V>)fk;
1246 V oldVal = null;
1247 t.acquire(0);
1248 try {
1249 if (tabAt(tab, i) == f) {
1250 len = 2;
1251 TreeNode<V> p = t.putTreeNode(h, k, v);
1252 if (p != null) {
1253 oldVal = p.val;
1254 if (!onlyIfAbsent)
1255 p.val = v;
1256 }
1257 }
1258 } finally {
1259 t.release(0);
1260 }
1261 if (len != 0) {
1262 if (oldVal != null)
1263 return oldVal;
1264 break;
1265 }
1266 }
1267 else
1268 tab = (Node<V>[])fk;
1269 }
1270 else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1271 ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1272 return fv;
1273 else {
1274 V oldVal = null;
1275 synchronized (f) {
1276 if (tabAt(tab, i) == f) {
1277 len = 1;
1278 for (Node<V> e = f;; ++len) {
1279 Object ek; V ev;
1280 if (e.hash == h &&
1281 (ev = e.val) != null &&
1282 ((ek = e.key) == k || k.equals(ek))) {
1283 oldVal = ev;
1284 if (!onlyIfAbsent)
1285 e.val = v;
1286 break;
1287 }
1288 Node<V> last = e;
1289 if ((e = e.next) == null) {
1290 last.next = new Node<V>(h, k, v, null);
1291 if (len >= TREE_THRESHOLD)
1292 replaceWithTreeBin(tab, i, k);
1293 break;
1294 }
1295 }
1296 }
1297 }
1298 if (len != 0) {
1299 if (oldVal != null)
1300 return oldVal;
1301 break;
1302 }
1303 }
1304 }
1305 addCount(1L, len);
1306 return null;
1307 }
1308
1309 /** Implementation for computeIfAbsent */
1310 @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1311 (K k, Function<? super K, ? extends V> mf) {
1312 if (k == null || mf == null)
1313 throw new NullPointerException();
1314 int h = spread(k.hashCode());
1315 V val = null;
1316 int len = 0;
1317 for (Node<V>[] tab = table;;) {
1318 Node<V> f; int i; Object fk;
1319 if (tab == null)
1320 tab = initTable();
1321 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1322 Node<V> node = new Node<V>(h, k, null, null);
1323 synchronized (node) {
1324 if (casTabAt(tab, i, null, node)) {
1325 len = 1;
1326 try {
1327 if ((val = mf.apply(k)) != null)
1328 node.val = val;
1329 } finally {
1330 if (val == null)
1331 setTabAt(tab, i, null);
1332 }
1333 }
1334 }
1335 if (len != 0)
1336 break;
1337 }
1338 else if (f.hash < 0) {
1339 if ((fk = f.key) instanceof TreeBin) {
1340 TreeBin<V> t = (TreeBin<V>)fk;
1341 boolean added = false;
1342 t.acquire(0);
1343 try {
1344 if (tabAt(tab, i) == f) {
1345 len = 1;
1346 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1347 if (p != null)
1348 val = p.val;
1349 else if ((val = mf.apply(k)) != null) {
1350 added = true;
1351 len = 2;
1352 t.putTreeNode(h, k, val);
1353 }
1354 }
1355 } finally {
1356 t.release(0);
1357 }
1358 if (len != 0) {
1359 if (!added)
1360 return val;
1361 break;
1362 }
1363 }
1364 else
1365 tab = (Node<V>[])fk;
1366 }
1367 else {
1368 for (Node<V> e = f; e != null; e = e.next) { // prescan
1369 Object ek; V ev;
1370 if (e.hash == h && (ev = e.val) != null &&
1371 ((ek = e.key) == k || k.equals(ek)))
1372 return ev;
1373 }
1374 boolean added = false;
1375 synchronized (f) {
1376 if (tabAt(tab, i) == f) {
1377 len = 1;
1378 for (Node<V> e = f;; ++len) {
1379 Object ek; V ev;
1380 if (e.hash == h &&
1381 (ev = e.val) != null &&
1382 ((ek = e.key) == k || k.equals(ek))) {
1383 val = ev;
1384 break;
1385 }
1386 Node<V> last = e;
1387 if ((e = e.next) == null) {
1388 if ((val = mf.apply(k)) != null) {
1389 added = true;
1390 last.next = new Node<V>(h, k, val, null);
1391 if (len >= TREE_THRESHOLD)
1392 replaceWithTreeBin(tab, i, k);
1393 }
1394 break;
1395 }
1396 }
1397 }
1398 }
1399 if (len != 0) {
1400 if (!added)
1401 return val;
1402 break;
1403 }
1404 }
1405 }
1406 if (val != null)
1407 addCount(1L, len);
1408 return val;
1409 }
1410
1411 /** Implementation for compute */
1412 @SuppressWarnings("unchecked") private final V internalCompute
1413 (K k, boolean onlyIfPresent,
1414 BiFunction<? super K, ? super V, ? extends V> mf) {
1415 if (k == null || mf == null)
1416 throw new NullPointerException();
1417 int h = spread(k.hashCode());
1418 V val = null;
1419 int delta = 0;
1420 int len = 0;
1421 for (Node<V>[] tab = table;;) {
1422 Node<V> f; int i, fh; Object fk;
1423 if (tab == null)
1424 tab = initTable();
1425 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1426 if (onlyIfPresent)
1427 break;
1428 Node<V> node = new Node<V>(h, k, null, null);
1429 synchronized (node) {
1430 if (casTabAt(tab, i, null, node)) {
1431 try {
1432 len = 1;
1433 if ((val = mf.apply(k, null)) != null) {
1434 node.val = val;
1435 delta = 1;
1436 }
1437 } finally {
1438 if (delta == 0)
1439 setTabAt(tab, i, null);
1440 }
1441 }
1442 }
1443 if (len != 0)
1444 break;
1445 }
1446 else if ((fh = f.hash) < 0) {
1447 if ((fk = f.key) instanceof TreeBin) {
1448 TreeBin<V> t = (TreeBin<V>)fk;
1449 t.acquire(0);
1450 try {
1451 if (tabAt(tab, i) == f) {
1452 len = 1;
1453 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1454 if (p == null && onlyIfPresent)
1455 break;
1456 V pv = (p == null) ? null : p.val;
1457 if ((val = mf.apply(k, pv)) != null) {
1458 if (p != null)
1459 p.val = val;
1460 else {
1461 len = 2;
1462 delta = 1;
1463 t.putTreeNode(h, k, val);
1464 }
1465 }
1466 else if (p != null) {
1467 delta = -1;
1468 t.deleteTreeNode(p);
1469 }
1470 }
1471 } finally {
1472 t.release(0);
1473 }
1474 if (len != 0)
1475 break;
1476 }
1477 else
1478 tab = (Node<V>[])fk;
1479 }
1480 else {
1481 synchronized (f) {
1482 if (tabAt(tab, i) == f) {
1483 len = 1;
1484 for (Node<V> e = f, pred = null;; ++len) {
1485 Object ek; V ev;
1486 if (e.hash == h &&
1487 (ev = e.val) != null &&
1488 ((ek = e.key) == k || k.equals(ek))) {
1489 val = mf.apply(k, ev);
1490 if (val != null)
1491 e.val = val;
1492 else {
1493 delta = -1;
1494 Node<V> en = e.next;
1495 if (pred != null)
1496 pred.next = en;
1497 else
1498 setTabAt(tab, i, en);
1499 }
1500 break;
1501 }
1502 pred = e;
1503 if ((e = e.next) == null) {
1504 if (!onlyIfPresent &&
1505 (val = mf.apply(k, null)) != null) {
1506 pred.next = new Node<V>(h, k, val, null);
1507 delta = 1;
1508 if (len >= TREE_THRESHOLD)
1509 replaceWithTreeBin(tab, i, k);
1510 }
1511 break;
1512 }
1513 }
1514 }
1515 }
1516 if (len != 0)
1517 break;
1518 }
1519 }
1520 if (delta != 0)
1521 addCount((long)delta, len);
1522 return val;
1523 }
1524
1525 /** Implementation for merge */
1526 @SuppressWarnings("unchecked") private final V internalMerge
1527 (K k, V v, BiFunction<? super V, ? super V, ? extends V> mf) {
1528 if (k == null || v == null || mf == null)
1529 throw new NullPointerException();
1530 int h = spread(k.hashCode());
1531 V val = null;
1532 int delta = 0;
1533 int len = 0;
1534 for (Node<V>[] tab = table;;) {
1535 int i; Node<V> f; Object fk; V fv;
1536 if (tab == null)
1537 tab = initTable();
1538 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1539 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1540 delta = 1;
1541 val = v;
1542 break;
1543 }
1544 }
1545 else if (f.hash < 0) {
1546 if ((fk = f.key) instanceof TreeBin) {
1547 TreeBin<V> t = (TreeBin<V>)fk;
1548 t.acquire(0);
1549 try {
1550 if (tabAt(tab, i) == f) {
1551 len = 1;
1552 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1553 val = (p == null) ? v : mf.apply(p.val, v);
1554 if (val != null) {
1555 if (p != null)
1556 p.val = val;
1557 else {
1558 len = 2;
1559 delta = 1;
1560 t.putTreeNode(h, k, val);
1561 }
1562 }
1563 else if (p != null) {
1564 delta = -1;
1565 t.deleteTreeNode(p);
1566 }
1567 }
1568 } finally {
1569 t.release(0);
1570 }
1571 if (len != 0)
1572 break;
1573 }
1574 else
1575 tab = (Node<V>[])fk;
1576 }
1577 else {
1578 synchronized (f) {
1579 if (tabAt(tab, i) == f) {
1580 len = 1;
1581 for (Node<V> e = f, pred = null;; ++len) {
1582 Object ek; V ev;
1583 if (e.hash == h &&
1584 (ev = e.val) != null &&
1585 ((ek = e.key) == k || k.equals(ek))) {
1586 val = mf.apply(ev, v);
1587 if (val != null)
1588 e.val = val;
1589 else {
1590 delta = -1;
1591 Node<V> en = e.next;
1592 if (pred != null)
1593 pred.next = en;
1594 else
1595 setTabAt(tab, i, en);
1596 }
1597 break;
1598 }
1599 pred = e;
1600 if ((e = e.next) == null) {
1601 val = v;
1602 pred.next = new Node<V>(h, k, val, null);
1603 delta = 1;
1604 if (len >= TREE_THRESHOLD)
1605 replaceWithTreeBin(tab, i, k);
1606 break;
1607 }
1608 }
1609 }
1610 }
1611 if (len != 0)
1612 break;
1613 }
1614 }
1615 if (delta != 0)
1616 addCount((long)delta, len);
1617 return val;
1618 }
1619
1620 /** Implementation for putAll */
1621 @SuppressWarnings("unchecked") private final void internalPutAll
1622 (Map<? extends K, ? extends V> m) {
1623 tryPresize(m.size());
1624 long delta = 0L; // number of uncommitted additions
1625 boolean npe = false; // to throw exception on exit for nulls
1626 try { // to clean up counts on other exceptions
1627 for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1628 Object k; V v;
1629 if (entry == null || (k = entry.getKey()) == null ||
1630 (v = entry.getValue()) == null) {
1631 npe = true;
1632 break;
1633 }
1634 int h = spread(k.hashCode());
1635 for (Node<V>[] tab = table;;) {
1636 int i; Node<V> f; int fh; Object fk;
1637 if (tab == null)
1638 tab = initTable();
1639 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1640 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1641 ++delta;
1642 break;
1643 }
1644 }
1645 else if ((fh = f.hash) < 0) {
1646 if ((fk = f.key) instanceof TreeBin) {
1647 TreeBin<V> t = (TreeBin<V>)fk;
1648 boolean validated = false;
1649 t.acquire(0);
1650 try {
1651 if (tabAt(tab, i) == f) {
1652 validated = true;
1653 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1654 if (p != null)
1655 p.val = v;
1656 else {
1657 t.putTreeNode(h, k, v);
1658 ++delta;
1659 }
1660 }
1661 } finally {
1662 t.release(0);
1663 }
1664 if (validated)
1665 break;
1666 }
1667 else
1668 tab = (Node<V>[])fk;
1669 }
1670 else {
1671 int len = 0;
1672 synchronized (f) {
1673 if (tabAt(tab, i) == f) {
1674 len = 1;
1675 for (Node<V> e = f;; ++len) {
1676 Object ek; V ev;
1677 if (e.hash == h &&
1678 (ev = e.val) != null &&
1679 ((ek = e.key) == k || k.equals(ek))) {
1680 e.val = v;
1681 break;
1682 }
1683 Node<V> last = e;
1684 if ((e = e.next) == null) {
1685 ++delta;
1686 last.next = new Node<V>(h, k, v, null);
1687 if (len >= TREE_THRESHOLD)
1688 replaceWithTreeBin(tab, i, k);
1689 break;
1690 }
1691 }
1692 }
1693 }
1694 if (len != 0) {
1695 if (len > 1) {
1696 addCount(delta, len);
1697 delta = 0L;
1698 }
1699 break;
1700 }
1701 }
1702 }
1703 }
1704 } finally {
1705 if (delta != 0L)
1706 addCount(delta, 2);
1707 }
1708 if (npe)
1709 throw new NullPointerException();
1710 }
1711
1712 /**
1713 * Implementation for clear. Steps through each bin, removing all
1714 * nodes.
1715 */
1716 @SuppressWarnings("unchecked") private final void internalClear() {
1717 long delta = 0L; // negative number of deletions
1718 int i = 0;
1719 Node<V>[] tab = table;
1720 while (tab != null && i < tab.length) {
1721 Node<V> f = tabAt(tab, i);
1722 if (f == null)
1723 ++i;
1724 else if (f.hash < 0) {
1725 Object fk;
1726 if ((fk = f.key) instanceof TreeBin) {
1727 TreeBin<V> t = (TreeBin<V>)fk;
1728 t.acquire(0);
1729 try {
1730 if (tabAt(tab, i) == f) {
1731 for (Node<V> p = t.first; p != null; p = p.next) {
1732 if (p.val != null) { // (currently always true)
1733 p.val = null;
1734 --delta;
1735 }
1736 }
1737 t.first = null;
1738 t.root = null;
1739 ++i;
1740 }
1741 } finally {
1742 t.release(0);
1743 }
1744 }
1745 else
1746 tab = (Node<V>[])fk;
1747 }
1748 else {
1749 synchronized (f) {
1750 if (tabAt(tab, i) == f) {
1751 for (Node<V> e = f; e != null; e = e.next) {
1752 if (e.val != null) { // (currently always true)
1753 e.val = null;
1754 --delta;
1755 }
1756 }
1757 setTabAt(tab, i, null);
1758 ++i;
1759 }
1760 }
1761 }
1762 }
1763 if (delta != 0L)
1764 addCount(delta, -1);
1765 }
1766
1767 /* ---------------- Table Initialization and Resizing -------------- */
1768
1769 /**
1770 * Returns a power of two table size for the given desired capacity.
1771 * See Hackers Delight, sec 3.2
1772 */
1773 private static final int tableSizeFor(int c) {
1774 int n = c - 1;
1775 n |= n >>> 1;
1776 n |= n >>> 2;
1777 n |= n >>> 4;
1778 n |= n >>> 8;
1779 n |= n >>> 16;
1780 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1781 }
1782
1783 /**
1784 * Initializes table, using the size recorded in sizeCtl.
1785 */
1786 @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1787 Node<V>[] tab; int sc;
1788 while ((tab = table) == null) {
1789 if ((sc = sizeCtl) < 0)
1790 Thread.yield(); // lost initialization race; just spin
1791 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1792 try {
1793 if ((tab = table) == null) {
1794 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1795 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1796 table = tab = (Node<V>[])tb;
1797 sc = n - (n >>> 2);
1798 }
1799 } finally {
1800 sizeCtl = sc;
1801 }
1802 break;
1803 }
1804 }
1805 return tab;
1806 }
1807
1808 /**
1809 * Adds to count, and if table is too small and not already
1810 * resizing, initiates transfer. If already resizing, helps
1811 * perform transfer if work is available. Rechecks occupancy
1812 * after a transfer to see if another resize is already needed
1813 * because resizings are lagging additions.
1814 *
1815 * @param x the count to add
1816 * @param check if <0, don't check resize, if <= 1 only check if uncontended
1817 */
1818 private final void addCount(long x, int check) {
1819 Cell[] as; long b, s;
1820 if ((as = counterCells) != null ||
1821 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1822 Cell a; long v; int m;
1823 boolean uncontended = true;
1824 if (as == null || (m = as.length - 1) < 0 ||
1825 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
1826 !(uncontended =
1827 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1828 fullAddCount(x, uncontended);
1829 return;
1830 }
1831 if (check <= 1)
1832 return;
1833 s = sumCount();
1834 }
1835 if (check >= 0) {
1836 Node<V>[] tab, nt; int sc;
1837 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1838 tab.length < MAXIMUM_CAPACITY) {
1839 if (sc < 0) {
1840 if (sc == -1 || transferIndex <= transferOrigin ||
1841 (nt = nextTable) == null)
1842 break;
1843 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1844 transfer(tab, nt);
1845 }
1846 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1847 transfer(tab, null);
1848 s = sumCount();
1849 }
1850 }
1851 }
1852
1853 /**
1854 * Tries to presize table to accommodate the given number of elements.
1855 *
1856 * @param size number of elements (doesn't need to be perfectly accurate)
1857 */
1858 @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1859 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1860 tableSizeFor(size + (size >>> 1) + 1);
1861 int sc;
1862 while ((sc = sizeCtl) >= 0) {
1863 Node<V>[] tab = table; int n;
1864 if (tab == null || (n = tab.length) == 0) {
1865 n = (sc > c) ? sc : c;
1866 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1867 try {
1868 if (table == tab) {
1869 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1870 table = (Node<V>[])tb;
1871 sc = n - (n >>> 2);
1872 }
1873 } finally {
1874 sizeCtl = sc;
1875 }
1876 }
1877 }
1878 else if (c <= sc || n >= MAXIMUM_CAPACITY)
1879 break;
1880 else if (tab == table &&
1881 U.compareAndSwapInt(this, SIZECTL, sc, -2))
1882 transfer(tab, null);
1883 }
1884 }
1885
1886 /**
1887 * Moves and/or copies the nodes in each bin to new table. See
1888 * above for explanation.
1889 */
1890 @SuppressWarnings("unchecked") private final void transfer
1891 (Node<V>[] tab, Node<V>[] nextTab) {
1892 int n = tab.length, stride;
1893 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1894 stride = MIN_TRANSFER_STRIDE; // subdivide range
1895 if (nextTab == null) { // initiating
1896 try {
1897 @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1898 nextTab = (Node<V>[])tb;
1899 } catch (Throwable ex) { // try to cope with OOME
1900 sizeCtl = Integer.MAX_VALUE;
1901 return;
1902 }
1903 nextTable = nextTab;
1904 transferOrigin = n;
1905 transferIndex = n;
1906 Node<V> rev = new Node<V>(MOVED, tab, null, null);
1907 for (int k = n; k > 0;) { // progressively reveal ready slots
1908 int nextk = (k > stride) ? k - stride : 0;
1909 for (int m = nextk; m < k; ++m)
1910 nextTab[m] = rev;
1911 for (int m = n + nextk; m < n + k; ++m)
1912 nextTab[m] = rev;
1913 U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1914 }
1915 }
1916 int nextn = nextTab.length;
1917 Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
1918 boolean advance = true;
1919 for (int i = 0, bound = 0;;) {
1920 int nextIndex, nextBound; Node<V> f; Object fk;
1921 while (advance) {
1922 if (--i >= bound)
1923 advance = false;
1924 else if ((nextIndex = transferIndex) <= transferOrigin) {
1925 i = -1;
1926 advance = false;
1927 }
1928 else if (U.compareAndSwapInt
1929 (this, TRANSFERINDEX, nextIndex,
1930 nextBound = (nextIndex > stride ?
1931 nextIndex - stride : 0))) {
1932 bound = nextBound;
1933 i = nextIndex - 1;
1934 advance = false;
1935 }
1936 }
1937 if (i < 0 || i >= n || i + n >= nextn) {
1938 for (int sc;;) {
1939 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
1940 if (sc == -1) {
1941 nextTable = null;
1942 table = nextTab;
1943 sizeCtl = (n << 1) - (n >>> 1);
1944 }
1945 return;
1946 }
1947 }
1948 }
1949 else if ((f = tabAt(tab, i)) == null) {
1950 if (casTabAt(tab, i, null, fwd)) {
1951 setTabAt(nextTab, i, null);
1952 setTabAt(nextTab, i + n, null);
1953 advance = true;
1954 }
1955 }
1956 else if (f.hash >= 0) {
1957 synchronized (f) {
1958 if (tabAt(tab, i) == f) {
1959 int runBit = f.hash & n;
1960 Node<V> lastRun = f, lo = null, hi = null;
1961 for (Node<V> p = f.next; p != null; p = p.next) {
1962 int b = p.hash & n;
1963 if (b != runBit) {
1964 runBit = b;
1965 lastRun = p;
1966 }
1967 }
1968 if (runBit == 0)
1969 lo = lastRun;
1970 else
1971 hi = lastRun;
1972 for (Node<V> p = f; p != lastRun; p = p.next) {
1973 int ph = p.hash;
1974 Object pk = p.key; V pv = p.val;
1975 if ((ph & n) == 0)
1976 lo = new Node<V>(ph, pk, pv, lo);
1977 else
1978 hi = new Node<V>(ph, pk, pv, hi);
1979 }
1980 setTabAt(nextTab, i, lo);
1981 setTabAt(nextTab, i + n, hi);
1982 setTabAt(tab, i, fwd);
1983 advance = true;
1984 }
1985 }
1986 }
1987 else if ((fk = f.key) instanceof TreeBin) {
1988 TreeBin<V> t = (TreeBin<V>)fk;
1989 t.acquire(0);
1990 try {
1991 if (tabAt(tab, i) == f) {
1992 TreeBin<V> lt = new TreeBin<V>();
1993 TreeBin<V> ht = new TreeBin<V>();
1994 int lc = 0, hc = 0;
1995 for (Node<V> e = t.first; e != null; e = e.next) {
1996 int h = e.hash;
1997 Object k = e.key; V v = e.val;
1998 if ((h & n) == 0) {
1999 ++lc;
2000 lt.putTreeNode(h, k, v);
2001 }
2002 else {
2003 ++hc;
2004 ht.putTreeNode(h, k, v);
2005 }
2006 }
2007 Node<V> ln, hn; // throw away trees if too small
2008 if (lc < TREE_THRESHOLD) {
2009 ln = null;
2010 for (Node<V> p = lt.first; p != null; p = p.next)
2011 ln = new Node<V>(p.hash, p.key, p.val, ln);
2012 }
2013 else
2014 ln = new Node<V>(MOVED, lt, null, null);
2015 setTabAt(nextTab, i, ln);
2016 if (hc < TREE_THRESHOLD) {
2017 hn = null;
2018 for (Node<V> p = ht.first; p != null; p = p.next)
2019 hn = new Node<V>(p.hash, p.key, p.val, hn);
2020 }
2021 else
2022 hn = new Node<V>(MOVED, ht, null, null);
2023 setTabAt(nextTab, i + n, hn);
2024 setTabAt(tab, i, fwd);
2025 advance = true;
2026 }
2027 } finally {
2028 t.release(0);
2029 }
2030 }
2031 else
2032 advance = true; // already processed
2033 }
2034 }
2035
2036 /* ---------------- Counter support -------------- */
2037
2038 final long sumCount() {
2039 Cell[] as = counterCells; Cell a;
2040 long sum = baseCount;
2041 if (as != null) {
2042 for (int i = 0; i < as.length; ++i) {
2043 if ((a = as[i]) != null)
2044 sum += a.value;
2045 }
2046 }
2047 return sum;
2048 }
2049
2050 // See LongAdder version for explanation
2051 private final void fullAddCount(long x, boolean wasUncontended) {
2052 int h;
2053 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2054 ThreadLocalRandom.localInit(); // force initialization
2055 h = ThreadLocalRandom.getProbe();
2056 wasUncontended = true;
2057 }
2058 boolean collide = false; // True if last slot nonempty
2059 for (;;) {
2060 Cell[] as; Cell a; int n; long v;
2061 if ((as = counterCells) != null && (n = as.length) > 0) {
2062 if ((a = as[(n - 1) & h]) == null) {
2063 if (cellsBusy == 0) { // Try to attach new Cell
2064 Cell r = new Cell(x); // Optimistic create
2065 if (cellsBusy == 0 &&
2066 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2067 boolean created = false;
2068 try { // Recheck under lock
2069 Cell[] rs; int m, j;
2070 if ((rs = counterCells) != null &&
2071 (m = rs.length) > 0 &&
2072 rs[j = (m - 1) & h] == null) {
2073 rs[j] = r;
2074 created = true;
2075 }
2076 } finally {
2077 cellsBusy = 0;
2078 }
2079 if (created)
2080 break;
2081 continue; // Slot is now non-empty
2082 }
2083 }
2084 collide = false;
2085 }
2086 else if (!wasUncontended) // CAS already known to fail
2087 wasUncontended = true; // Continue after rehash
2088 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2089 break;
2090 else if (counterCells != as || n >= NCPU)
2091 collide = false; // At max size or stale
2092 else if (!collide)
2093 collide = true;
2094 else if (cellsBusy == 0 &&
2095 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2096 try {
2097 if (counterCells == as) {// Expand table unless stale
2098 Cell[] rs = new Cell[n << 1];
2099 for (int i = 0; i < n; ++i)
2100 rs[i] = as[i];
2101 counterCells = rs;
2102 }
2103 } finally {
2104 cellsBusy = 0;
2105 }
2106 collide = false;
2107 continue; // Retry with expanded table
2108 }
2109 h = ThreadLocalRandom.advanceProbe(h);
2110 }
2111 else if (cellsBusy == 0 && counterCells == as &&
2112 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2113 boolean init = false;
2114 try { // Initialize table
2115 if (counterCells == as) {
2116 Cell[] rs = new Cell[2];
2117 rs[h & 1] = new Cell(x);
2118 counterCells = rs;
2119 init = true;
2120 }
2121 } finally {
2122 cellsBusy = 0;
2123 }
2124 if (init)
2125 break;
2126 }
2127 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2128 break; // Fall back on using base
2129 }
2130 }
2131
2132 /* ----------------Table Traversal -------------- */
2133
2134 /**
2135 * Encapsulates traversal for methods such as containsValue; also
2136 * serves as a base class for other iterators and bulk tasks.
2137 *
2138 * At each step, the iterator snapshots the key ("nextKey") and
2139 * value ("nextVal") of a valid node (i.e., one that, at point of
2140 * snapshot, has a non-null user value). Because val fields can
2141 * change (including to null, indicating deletion), field nextVal
2142 * might not be accurate at point of use, but still maintains the
2143 * weak consistency property of holding a value that was once
2144 * valid. To support iterator.remove, the nextKey field is not
2145 * updated (nulled out) when the iterator cannot advance.
2146 *
2147 * Internal traversals directly access these fields, as in:
2148 * {@code while (it.advance() != null) { process(it.nextKey); }}
2149 *
2150 * Exported iterators must track whether the iterator has advanced
2151 * (in hasNext vs next) (by setting/checking/nulling field
2152 * nextVal), and then extract key, value, or key-value pairs as
2153 * return values of next().
2154 *
2155 * The iterator visits once each still-valid node that was
2156 * reachable upon iterator construction. It might miss some that
2157 * were added to a bin after the bin was visited, which is OK wrt
2158 * consistency guarantees. Maintaining this property in the face
2159 * of possible ongoing resizes requires a fair amount of
2160 * bookkeeping state that is difficult to optimize away amidst
2161 * volatile accesses. Even so, traversal maintains reasonable
2162 * throughput.
2163 *
2164 * Normally, iteration proceeds bin-by-bin traversing lists.
2165 * However, if the table has been resized, then all future steps
2166 * must traverse both the bin at the current index as well as at
2167 * (index + baseSize); and so on for further resizings. To
2168 * paranoically cope with potential sharing by users of iterators
2169 * across threads, iteration terminates if a bounds checks fails
2170 * for a table read.
2171 *
2172 * This class supports both Spliterator-based traversal and
2173 * CountedCompleter-based bulk tasks. The same "batch" field is
2174 * used, but in slightly different ways, in the two cases. For
2175 * Spliterators, it is a saturating (at Integer.MAX_VALUE)
2176 * estimate of element coverage. For CHM tasks, it is a pre-scaled
2177 * size that halves down to zero for leaf tasks, that is only
2178 * computed upon execution of the task. (Tasks can be submitted to
2179 * any pool, of any size, so we don't know scale factors until
2180 * running.)
2181 *
2182 * This class extends CountedCompleter to streamline parallel
2183 * iteration in bulk operations. This adds only a few fields of
2184 * space overhead, which is small enough in cases where it is not
2185 * needed to not worry about it. Because CountedCompleter is
2186 * Serializable, but iterators need not be, we need to add warning
2187 * suppressions.
2188 */
2189 @SuppressWarnings("serial") static class Traverser<K,V,R>
2190 extends CountedCompleter<R> {
2191 final ConcurrentHashMap<K, V> map;
2192 Node<V> next; // the next entry to use
2193 K nextKey; // cached key field of next
2194 V nextVal; // cached val field of next
2195 Node<V>[] tab; // current table; updated if resized
2196 int index; // index of bin to use next
2197 int baseIndex; // current index of initial table
2198 int baseLimit; // index bound for initial table
2199 int baseSize; // initial table size
2200 int batch; // split control
2201 /** Creates iterator for all entries in the table. */
2202 Traverser(ConcurrentHashMap<K, V> map) {
2203 this.map = map;
2204 Node<V>[] t;
2205 if ((t = tab = map.table) != null)
2206 baseLimit = baseSize = t.length;
2207 }
2208
2209 /** Task constructor */
2210 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2211 super(it);
2212 this.map = map;
2213 this.batch = batch; // -1 if unknown
2214 if (it == null) {
2215 Node<V>[] t;
2216 if ((t = tab = map.table) != null)
2217 baseLimit = baseSize = t.length;
2218 }
2219 else { // split parent
2220 this.tab = it.tab;
2221 this.baseSize = it.baseSize;
2222 int hi = this.baseLimit = it.baseLimit;
2223 it.baseLimit = this.index = this.baseIndex =
2224 (hi + it.baseIndex + 1) >>> 1;
2225 }
2226 }
2227
2228 /** Spliterator constructor */
2229 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it) {
2230 super(it);
2231 this.map = map;
2232 if (it == null) {
2233 Node<V>[] t;
2234 if ((t = tab = map.table) != null)
2235 baseLimit = baseSize = t.length;
2236 long n = map.sumCount();
2237 batch = ((n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2238 (int)n);
2239 }
2240 else {
2241 this.tab = it.tab;
2242 this.baseSize = it.baseSize;
2243 int hi = this.baseLimit = it.baseLimit;
2244 it.baseLimit = this.index = this.baseIndex =
2245 (hi + it.baseIndex + 1) >>> 1;
2246 this.batch = it.batch >>>= 1;
2247 }
2248 }
2249
2250 /**
2251 * Advances next; returns nextVal or null if terminated.
2252 * See above for explanation.
2253 */
2254 @SuppressWarnings("unchecked") final V advance() {
2255 Node<V> e = next;
2256 V ev = null;
2257 outer: do {
2258 if (e != null) // advance past used/skipped node
2259 e = e.next;
2260 while (e == null) { // get to next non-null bin
2261 ConcurrentHashMap<K, V> m;
2262 Node<V>[] t; int b, i, n; Object ek; // must use locals
2263 if ((t = tab) != null)
2264 n = t.length;
2265 else if ((m = map) != null && (t = tab = m.table) != null)
2266 n = baseLimit = baseSize = t.length;
2267 else
2268 break outer;
2269 if ((b = baseIndex) >= baseLimit ||
2270 (i = index) < 0 || i >= n)
2271 break outer;
2272 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2273 if ((ek = e.key) instanceof TreeBin)
2274 e = ((TreeBin<V>)ek).first;
2275 else {
2276 tab = (Node<V>[])ek;
2277 continue; // restarts due to null val
2278 }
2279 } // visit upper slots if present
2280 index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2281 }
2282 nextKey = (K)e.key;
2283 } while ((ev = e.val) == null); // skip deleted or special nodes
2284 next = e;
2285 return nextVal = ev;
2286 }
2287
2288 public final void remove() {
2289 K k = nextKey;
2290 if (k == null && (advance() == null || (k = nextKey) == null))
2291 throw new IllegalStateException();
2292 map.internalReplace(k, null, null);
2293 }
2294
2295 public final boolean hasNext() {
2296 return nextVal != null || advance() != null;
2297 }
2298
2299 public final boolean hasMoreElements() { return hasNext(); }
2300
2301 public void compute() { } // default no-op CountedCompleter body
2302
2303 /**
2304 * Returns a batch value > 0 if this task should (and must) be
2305 * split, if so, adding to pending count, and in any case
2306 * updating batch value. The initial batch value is approx
2307 * exp2 of the number of times (minus one) to split task by
2308 * two before executing leaf action. This value is faster to
2309 * compute and more convenient to use as a guide to splitting
2310 * than is the depth, since it is used while dividing by two
2311 * anyway.
2312 */
2313 final int preSplit() {
2314 int b; ForkJoinPool pool;
2315 if ((b = batch) < 0) { // force initialization
2316 int sp = (((pool = getPool()) == null) ?
2317 ForkJoinPool.getCommonPoolParallelism() :
2318 pool.getParallelism()) << 3; // slack of 8
2319 long n = map.sumCount();
2320 b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2321 }
2322 b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2323 if ((batch = b) > 0)
2324 addToPendingCount(1);
2325 return b;
2326 }
2327
2328 // spliterator support
2329
2330 public boolean hasExactSize() {
2331 return false;
2332 }
2333
2334 public boolean hasExactSplits() {
2335 return false;
2336 }
2337
2338 public long estimateSize() {
2339 return batch;
2340 }
2341 }
2342
2343 /* ---------------- Public operations -------------- */
2344
2345 /**
2346 * Creates a new, empty map with the default initial table size (16).
2347 */
2348 public ConcurrentHashMap() {
2349 }
2350
2351 /**
2352 * Creates a new, empty map with an initial table size
2353 * accommodating the specified number of elements without the need
2354 * to dynamically resize.
2355 *
2356 * @param initialCapacity The implementation performs internal
2357 * sizing to accommodate this many elements.
2358 * @throws IllegalArgumentException if the initial capacity of
2359 * elements is negative
2360 */
2361 public ConcurrentHashMap(int initialCapacity) {
2362 if (initialCapacity < 0)
2363 throw new IllegalArgumentException();
2364 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2365 MAXIMUM_CAPACITY :
2366 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2367 this.sizeCtl = cap;
2368 }
2369
2370 /**
2371 * Creates a new map with the same mappings as the given map.
2372 *
2373 * @param m the map
2374 */
2375 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2376 this.sizeCtl = DEFAULT_CAPACITY;
2377 internalPutAll(m);
2378 }
2379
2380 /**
2381 * Creates a new, empty map with an initial table size based on
2382 * the given number of elements ({@code initialCapacity}) and
2383 * initial table density ({@code loadFactor}).
2384 *
2385 * @param initialCapacity the initial capacity. The implementation
2386 * performs internal sizing to accommodate this many elements,
2387 * given the specified load factor.
2388 * @param loadFactor the load factor (table density) for
2389 * establishing the initial table size
2390 * @throws IllegalArgumentException if the initial capacity of
2391 * elements is negative or the load factor is nonpositive
2392 *
2393 * @since 1.6
2394 */
2395 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2396 this(initialCapacity, loadFactor, 1);
2397 }
2398
2399 /**
2400 * Creates a new, empty map with an initial table size based on
2401 * the given number of elements ({@code initialCapacity}), table
2402 * density ({@code loadFactor}), and number of concurrently
2403 * updating threads ({@code concurrencyLevel}).
2404 *
2405 * @param initialCapacity the initial capacity. The implementation
2406 * performs internal sizing to accommodate this many elements,
2407 * given the specified load factor.
2408 * @param loadFactor the load factor (table density) for
2409 * establishing the initial table size
2410 * @param concurrencyLevel the estimated number of concurrently
2411 * updating threads. The implementation may use this value as
2412 * a sizing hint.
2413 * @throws IllegalArgumentException if the initial capacity is
2414 * negative or the load factor or concurrencyLevel are
2415 * nonpositive
2416 */
2417 public ConcurrentHashMap(int initialCapacity,
2418 float loadFactor, int concurrencyLevel) {
2419 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2420 throw new IllegalArgumentException();
2421 if (initialCapacity < concurrencyLevel) // Use at least as many bins
2422 initialCapacity = concurrencyLevel; // as estimated threads
2423 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2424 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2425 MAXIMUM_CAPACITY : tableSizeFor((int)size);
2426 this.sizeCtl = cap;
2427 }
2428
2429 /**
2430 * Creates a new {@link Set} backed by a ConcurrentHashMap
2431 * from the given type to {@code Boolean.TRUE}.
2432 *
2433 * @return the new set
2434 */
2435 public static <K> KeySetView<K,Boolean> newKeySet() {
2436 return new KeySetView<K,Boolean>
2437 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2438 }
2439
2440 /**
2441 * Creates a new {@link Set} backed by a ConcurrentHashMap
2442 * from the given type to {@code Boolean.TRUE}.
2443 *
2444 * @param initialCapacity The implementation performs internal
2445 * sizing to accommodate this many elements.
2446 * @throws IllegalArgumentException if the initial capacity of
2447 * elements is negative
2448 * @return the new set
2449 */
2450 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2451 return new KeySetView<K,Boolean>
2452 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2453 }
2454
2455 /**
2456 * {@inheritDoc}
2457 */
2458 public boolean isEmpty() {
2459 return sumCount() <= 0L; // ignore transient negative values
2460 }
2461
2462 /**
2463 * {@inheritDoc}
2464 */
2465 public int size() {
2466 long n = sumCount();
2467 return ((n < 0L) ? 0 :
2468 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2469 (int)n);
2470 }
2471
2472 /**
2473 * Returns the number of mappings. This method should be used
2474 * instead of {@link #size} because a ConcurrentHashMap may
2475 * contain more mappings than can be represented as an int. The
2476 * value returned is an estimate; the actual count may differ if
2477 * there are concurrent insertions or removals.
2478 *
2479 * @return the number of mappings
2480 */
2481 public long mappingCount() {
2482 long n = sumCount();
2483 return (n < 0L) ? 0L : n; // ignore transient negative values
2484 }
2485
2486 /**
2487 * Returns the value to which the specified key is mapped,
2488 * or {@code null} if this map contains no mapping for the key.
2489 *
2490 * <p>More formally, if this map contains a mapping from a key
2491 * {@code k} to a value {@code v} such that {@code key.equals(k)},
2492 * then this method returns {@code v}; otherwise it returns
2493 * {@code null}. (There can be at most one such mapping.)
2494 *
2495 * @throws NullPointerException if the specified key is null
2496 */
2497 public V get(Object key) {
2498 return internalGet(key);
2499 }
2500
2501 /**
2502 * Returns the value to which the specified key is mapped,
2503 * or the given defaultValue if this map contains no mapping for the key.
2504 *
2505 * @param key the key
2506 * @param defaultValue the value to return if this map contains
2507 * no mapping for the given key
2508 * @return the mapping for the key, if present; else the defaultValue
2509 * @throws NullPointerException if the specified key is null
2510 */
2511 public V getValueOrDefault(Object key, V defaultValue) {
2512 V v;
2513 return (v = internalGet(key)) == null ? defaultValue : v;
2514 }
2515
2516 /**
2517 * Tests if the specified object is a key in this table.
2518 *
2519 * @param key possible key
2520 * @return {@code true} if and only if the specified object
2521 * is a key in this table, as determined by the
2522 * {@code equals} method; {@code false} otherwise
2523 * @throws NullPointerException if the specified key is null
2524 */
2525 public boolean containsKey(Object key) {
2526 return internalGet(key) != null;
2527 }
2528
2529 /**
2530 * Returns {@code true} if this map maps one or more keys to the
2531 * specified value. Note: This method may require a full traversal
2532 * of the map, and is much slower than method {@code containsKey}.
2533 *
2534 * @param value value whose presence in this map is to be tested
2535 * @return {@code true} if this map maps one or more keys to the
2536 * specified value
2537 * @throws NullPointerException if the specified value is null
2538 */
2539 public boolean containsValue(Object value) {
2540 if (value == null)
2541 throw new NullPointerException();
2542 V v;
2543 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2544 while ((v = it.advance()) != null) {
2545 if (v == value || value.equals(v))
2546 return true;
2547 }
2548 return false;
2549 }
2550
2551 /**
2552 * Legacy method testing if some key maps into the specified value
2553 * in this table. This method is identical in functionality to
2554 * {@link #containsValue(Object)}, and exists solely to ensure
2555 * full compatibility with class {@link java.util.Hashtable},
2556 * which supported this method prior to introduction of the
2557 * Java Collections framework.
2558 *
2559 * @param value a value to search for
2560 * @return {@code true} if and only if some key maps to the
2561 * {@code value} argument in this table as
2562 * determined by the {@code equals} method;
2563 * {@code false} otherwise
2564 * @throws NullPointerException if the specified value is null
2565 */
2566 @Deprecated public boolean contains(Object value) {
2567 return containsValue(value);
2568 }
2569
2570 /**
2571 * Maps the specified key to the specified value in this table.
2572 * Neither the key nor the value can be null.
2573 *
2574 * <p>The value can be retrieved by calling the {@code get} method
2575 * with a key that is equal to the original key.
2576 *
2577 * @param key key with which the specified value is to be associated
2578 * @param value value to be associated with the specified key
2579 * @return the previous value associated with {@code key}, or
2580 * {@code null} if there was no mapping for {@code key}
2581 * @throws NullPointerException if the specified key or value is null
2582 */
2583 public V put(K key, V value) {
2584 return internalPut(key, value, false);
2585 }
2586
2587 /**
2588 * {@inheritDoc}
2589 *
2590 * @return the previous value associated with the specified key,
2591 * or {@code null} if there was no mapping for the key
2592 * @throws NullPointerException if the specified key or value is null
2593 */
2594 public V putIfAbsent(K key, V value) {
2595 return internalPut(key, value, true);
2596 }
2597
2598 /**
2599 * Copies all of the mappings from the specified map to this one.
2600 * These mappings replace any mappings that this map had for any of the
2601 * keys currently in the specified map.
2602 *
2603 * @param m mappings to be stored in this map
2604 */
2605 public void putAll(Map<? extends K, ? extends V> m) {
2606 internalPutAll(m);
2607 }
2608
2609 /**
2610 * If the specified key is not already associated with a value (or
2611 * is mapped to {@code null}), attempts to compute its value using
2612 * the given mapping function and enters it into this map unless
2613 * {@code null}. The entire method invocation is performed
2614 * atomically, so the function is applied at most once per key.
2615 * Some attempted update operations on this map by other threads
2616 * may be blocked while computation is in progress, so the
2617 * computation should be short and simple, and must not attempt to
2618 * update any other mappings of this Map.
2619 *
2620 * @param key key with which the specified value is to be associated
2621 * @param mappingFunction the function to compute a value
2622 * @return the current (existing or computed) value associated with
2623 * the specified key, or null if the computed value is null
2624 * @throws NullPointerException if the specified key or mappingFunction
2625 * is null
2626 * @throws IllegalStateException if the computation detectably
2627 * attempts a recursive update to this map that would
2628 * otherwise never complete
2629 * @throws RuntimeException or Error if the mappingFunction does so,
2630 * in which case the mapping is left unestablished
2631 */
2632 public V computeIfAbsent
2633 (K key, Function<? super K, ? extends V> mappingFunction) {
2634 return internalComputeIfAbsent(key, mappingFunction);
2635 }
2636
2637 /**
2638 * If the value for the specified key is present and non-null,
2639 * attempts to compute a new mapping given the key and its current
2640 * mapped value. The entire method invocation is performed
2641 * atomically. Some attempted update operations on this map by
2642 * other threads may be blocked while computation is in progress,
2643 * so the computation should be short and simple, and must not
2644 * attempt to update any other mappings of this Map.
2645 *
2646 * @param key key with which the specified value is to be associated
2647 * @param remappingFunction the function to compute a value
2648 * @return the new value associated with the specified key, or null if none
2649 * @throws NullPointerException if the specified key or remappingFunction
2650 * is null
2651 * @throws IllegalStateException if the computation detectably
2652 * attempts a recursive update to this map that would
2653 * otherwise never complete
2654 * @throws RuntimeException or Error if the remappingFunction does so,
2655 * in which case the mapping is unchanged
2656 */
2657 public V computeIfPresent
2658 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2659 return internalCompute(key, true, remappingFunction);
2660 }
2661
2662 /**
2663 * Attempts to compute a mapping for the specified key and its
2664 * current mapped value (or {@code null} if there is no current
2665 * mapping). The entire method invocation is performed atomically.
2666 * Some attempted update operations on this map by other threads
2667 * may be blocked while computation is in progress, so the
2668 * computation should be short and simple, and must not attempt to
2669 * update any other mappings of this Map.
2670 *
2671 * @param key key with which the specified value is to be associated
2672 * @param remappingFunction the function to compute a value
2673 * @return the new value associated with the specified key, or null if none
2674 * @throws NullPointerException if the specified key or remappingFunction
2675 * is null
2676 * @throws IllegalStateException if the computation detectably
2677 * attempts a recursive update to this map that would
2678 * otherwise never complete
2679 * @throws RuntimeException or Error if the remappingFunction does so,
2680 * in which case the mapping is unchanged
2681 */
2682 public V compute
2683 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2684 return internalCompute(key, false, remappingFunction);
2685 }
2686
2687 /**
2688 * If the specified key is not already associated with a
2689 * (non-null) value, associates it with the given value.
2690 * Otherwise, replaces the value with the results of the given
2691 * remapping function, or removes if {@code null}. The entire
2692 * method invocation is performed atomically. Some attempted
2693 * update operations on this map by other threads may be blocked
2694 * while computation is in progress, so the computation should be
2695 * short and simple, and must not attempt to update any other
2696 * mappings of this Map.
2697 *
2698 * @param key key with which the specified value is to be associated
2699 * @param value the value to use if absent
2700 * @param remappingFunction the function to recompute a value if present
2701 * @return the new value associated with the specified key, or null if none
2702 * @throws NullPointerException if the specified key or the
2703 * remappingFunction is null
2704 * @throws RuntimeException or Error if the remappingFunction does so,
2705 * in which case the mapping is unchanged
2706 */
2707 public V merge
2708 (K key, V value,
2709 BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2710 return internalMerge(key, value, remappingFunction);
2711 }
2712
2713 /**
2714 * Removes the key (and its corresponding value) from this map.
2715 * This method does nothing if the key is not in the map.
2716 *
2717 * @param key the key that needs to be removed
2718 * @return the previous value associated with {@code key}, or
2719 * {@code null} if there was no mapping for {@code key}
2720 * @throws NullPointerException if the specified key is null
2721 */
2722 public V remove(Object key) {
2723 return internalReplace(key, null, null);
2724 }
2725
2726 /**
2727 * {@inheritDoc}
2728 *
2729 * @throws NullPointerException if the specified key is null
2730 */
2731 public boolean remove(Object key, Object value) {
2732 if (key == null)
2733 throw new NullPointerException();
2734 return value != null && internalReplace(key, null, value) != null;
2735 }
2736
2737 /**
2738 * {@inheritDoc}
2739 *
2740 * @throws NullPointerException if any of the arguments are null
2741 */
2742 public boolean replace(K key, V oldValue, V newValue) {
2743 if (key == null || oldValue == null || newValue == null)
2744 throw new NullPointerException();
2745 return internalReplace(key, newValue, oldValue) != null;
2746 }
2747
2748 /**
2749 * {@inheritDoc}
2750 *
2751 * @return the previous value associated with the specified key,
2752 * or {@code null} if there was no mapping for the key
2753 * @throws NullPointerException if the specified key or value is null
2754 */
2755 public V replace(K key, V value) {
2756 if (key == null || value == null)
2757 throw new NullPointerException();
2758 return internalReplace(key, value, null);
2759 }
2760
2761 /**
2762 * Removes all of the mappings from this map.
2763 */
2764 public void clear() {
2765 internalClear();
2766 }
2767
2768 /**
2769 * Returns a {@link Set} view of the keys contained in this map.
2770 * The set is backed by the map, so changes to the map are
2771 * reflected in the set, and vice-versa.
2772 *
2773 * @return the set view
2774 */
2775 public KeySetView<K,V> keySet() {
2776 KeySetView<K,V> ks = keySet;
2777 return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2778 }
2779
2780 /**
2781 * Returns a {@link Set} view of the keys in this map, using the
2782 * given common mapped value for any additions (i.e., {@link
2783 * Collection#add} and {@link Collection#addAll(Collection)}).
2784 * This is of course only appropriate if it is acceptable to use
2785 * the same value for all additions from this view.
2786 *
2787 * @param mappedValue the mapped value to use for any additions
2788 * @return the set view
2789 * @throws NullPointerException if the mappedValue is null
2790 */
2791 public KeySetView<K,V> keySet(V mappedValue) {
2792 if (mappedValue == null)
2793 throw new NullPointerException();
2794 return new KeySetView<K,V>(this, mappedValue);
2795 }
2796
2797 /**
2798 * Returns a {@link Collection} view of the values contained in this map.
2799 * The collection is backed by the map, so changes to the map are
2800 * reflected in the collection, and vice-versa.
2801 *
2802 * @return the collection view
2803 */
2804 public ValuesView<K,V> values() {
2805 ValuesView<K,V> vs = values;
2806 return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2807 }
2808
2809 /**
2810 * Returns a {@link Set} view of the mappings contained in this map.
2811 * The set is backed by the map, so changes to the map are
2812 * reflected in the set, and vice-versa. The set supports element
2813 * removal, which removes the corresponding mapping from the map,
2814 * via the {@code Iterator.remove}, {@code Set.remove},
2815 * {@code removeAll}, {@code retainAll}, and {@code clear}
2816 * operations. It does not support the {@code add} or
2817 * {@code addAll} operations.
2818 *
2819 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2820 * that will never throw {@link ConcurrentModificationException},
2821 * and guarantees to traverse elements as they existed upon
2822 * construction of the iterator, and may (but is not guaranteed to)
2823 * reflect any modifications subsequent to construction.
2824 *
2825 * @return the set view
2826 */
2827 public Set<Map.Entry<K,V>> entrySet() {
2828 EntrySetView<K,V> es = entrySet;
2829 return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2830 }
2831
2832 /**
2833 * Returns an enumeration of the keys in this table.
2834 *
2835 * @return an enumeration of the keys in this table
2836 * @see #keySet()
2837 */
2838 public Enumeration<K> keys() {
2839 return new KeyIterator<K,V>(this);
2840 }
2841
2842 /**
2843 * Returns an enumeration of the values in this table.
2844 *
2845 * @return an enumeration of the values in this table
2846 * @see #values()
2847 */
2848 public Enumeration<V> elements() {
2849 return new ValueIterator<K,V>(this);
2850 }
2851
2852 /**
2853 * Returns the hash code value for this {@link Map}, i.e.,
2854 * the sum of, for each key-value pair in the map,
2855 * {@code key.hashCode() ^ value.hashCode()}.
2856 *
2857 * @return the hash code value for this map
2858 */
2859 public int hashCode() {
2860 int h = 0;
2861 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2862 V v;
2863 while ((v = it.advance()) != null) {
2864 h += it.nextKey.hashCode() ^ v.hashCode();
2865 }
2866 return h;
2867 }
2868
2869 /**
2870 * Returns a string representation of this map. The string
2871 * representation consists of a list of key-value mappings (in no
2872 * particular order) enclosed in braces ("{@code {}}"). Adjacent
2873 * mappings are separated by the characters {@code ", "} (comma
2874 * and space). Each key-value mapping is rendered as the key
2875 * followed by an equals sign ("{@code =}") followed by the
2876 * associated value.
2877 *
2878 * @return a string representation of this map
2879 */
2880 public String toString() {
2881 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2882 StringBuilder sb = new StringBuilder();
2883 sb.append('{');
2884 V v;
2885 if ((v = it.advance()) != null) {
2886 for (;;) {
2887 K k = it.nextKey;
2888 sb.append(k == this ? "(this Map)" : k);
2889 sb.append('=');
2890 sb.append(v == this ? "(this Map)" : v);
2891 if ((v = it.advance()) == null)
2892 break;
2893 sb.append(',').append(' ');
2894 }
2895 }
2896 return sb.append('}').toString();
2897 }
2898
2899 /**
2900 * Compares the specified object with this map for equality.
2901 * Returns {@code true} if the given object is a map with the same
2902 * mappings as this map. This operation may return misleading
2903 * results if either map is concurrently modified during execution
2904 * of this method.
2905 *
2906 * @param o object to be compared for equality with this map
2907 * @return {@code true} if the specified object is equal to this map
2908 */
2909 public boolean equals(Object o) {
2910 if (o != this) {
2911 if (!(o instanceof Map))
2912 return false;
2913 Map<?,?> m = (Map<?,?>) o;
2914 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2915 V val;
2916 while ((val = it.advance()) != null) {
2917 Object v = m.get(it.nextKey);
2918 if (v == null || (v != val && !v.equals(val)))
2919 return false;
2920 }
2921 for (Map.Entry<?,?> e : m.entrySet()) {
2922 Object mk, mv, v;
2923 if ((mk = e.getKey()) == null ||
2924 (mv = e.getValue()) == null ||
2925 (v = internalGet(mk)) == null ||
2926 (mv != v && !mv.equals(v)))
2927 return false;
2928 }
2929 }
2930 return true;
2931 }
2932
2933 /* ----------------Iterators -------------- */
2934
2935 @SuppressWarnings("serial") static final class KeyIterator<K,V>
2936 extends Traverser<K,V,Object>
2937 implements Spliterator<K>, Iterator<K>, Enumeration<K> {
2938 KeyIterator(ConcurrentHashMap<K, V> map) { super(map); }
2939 KeyIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2940 super(map, it);
2941 }
2942 public KeyIterator<K,V> trySplit() {
2943 if (tab != null && baseIndex == baseLimit)
2944 return null;
2945 return new KeyIterator<K,V>(map, this);
2946 }
2947 public final K next() {
2948 if (nextVal == null && advance() == null)
2949 throw new NoSuchElementException();
2950 K k = nextKey;
2951 nextVal = null;
2952 return k;
2953 }
2954
2955 public final K nextElement() { return next(); }
2956
2957 public Iterator<K> iterator() { return this; }
2958
2959 public void forEach(Consumer<? super K> action) {
2960 if (action == null) throw new NullPointerException();
2961 while (advance() != null)
2962 action.accept(nextKey);
2963 }
2964
2965 public boolean tryAdvance(Consumer<? super K> block) {
2966 if (block == null) throw new NullPointerException();
2967 if (advance() == null)
2968 return false;
2969 block.accept(nextKey);
2970 return true;
2971 }
2972 }
2973
2974 @SuppressWarnings("serial") static final class ValueIterator<K,V>
2975 extends Traverser<K,V,Object>
2976 implements Spliterator<V>, Iterator<V>, Enumeration<V> {
2977 ValueIterator(ConcurrentHashMap<K, V> map) { super(map); }
2978 ValueIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
2979 super(map, it);
2980 }
2981 public ValueIterator<K,V> trySplit() {
2982 if (tab != null && baseIndex == baseLimit)
2983 return null;
2984 return new ValueIterator<K,V>(map, this);
2985 }
2986
2987 public final V next() {
2988 V v;
2989 if ((v = nextVal) == null && (v = advance()) == null)
2990 throw new NoSuchElementException();
2991 nextVal = null;
2992 return v;
2993 }
2994
2995 public final V nextElement() { return next(); }
2996
2997 public Iterator<V> iterator() { return this; }
2998
2999 public void forEach(Consumer<? super V> action) {
3000 if (action == null) throw new NullPointerException();
3001 V v;
3002 while ((v = advance()) != null)
3003 action.accept(v);
3004 }
3005
3006 public boolean tryAdvance(Consumer<? super V> block) {
3007 V v;
3008 if (block == null) throw new NullPointerException();
3009 if ((v = advance()) == null)
3010 return false;
3011 block.accept(v);
3012 return true;
3013 }
3014
3015 }
3016
3017 @SuppressWarnings("serial") static final class EntryIterator<K,V>
3018 extends Traverser<K,V,Object>
3019 implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3020 EntryIterator(ConcurrentHashMap<K, V> map) { super(map); }
3021 EntryIterator(ConcurrentHashMap<K, V> map, Traverser<K,V,Object> it) {
3022 super(map, it);
3023 }
3024 public EntryIterator<K,V> trySplit() {
3025 if (tab != null && baseIndex == baseLimit)
3026 return null;
3027 return new EntryIterator<K,V>(map, this);
3028 }
3029
3030 public final Map.Entry<K,V> next() {
3031 V v;
3032 if ((v = nextVal) == null && (v = advance()) == null)
3033 throw new NoSuchElementException();
3034 K k = nextKey;
3035 nextVal = null;
3036 return new MapEntry<K,V>(k, v, map);
3037 }
3038
3039 public Iterator<Map.Entry<K,V>> iterator() { return this; }
3040
3041 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
3042 if (action == null) throw new NullPointerException();
3043 V v;
3044 while ((v = advance()) != null)
3045 action.accept(entryFor(nextKey, v));
3046 }
3047
3048 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> block) {
3049 V v;
3050 if (block == null) throw new NullPointerException();
3051 if ((v = advance()) == null)
3052 return false;
3053 block.accept(entryFor(nextKey, v));
3054 return true;
3055 }
3056
3057 }
3058
3059 /**
3060 * Exported Entry for iterators
3061 */
3062 static final class MapEntry<K,V> implements Map.Entry<K, V> {
3063 final K key; // non-null
3064 V val; // non-null
3065 final ConcurrentHashMap<K, V> map;
3066 MapEntry(K key, V val, ConcurrentHashMap<K, V> map) {
3067 this.key = key;
3068 this.val = val;
3069 this.map = map;
3070 }
3071 public final K getKey() { return key; }
3072 public final V getValue() { return val; }
3073 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3074 public final String toString(){ return key + "=" + val; }
3075
3076 public final boolean equals(Object o) {
3077 Object k, v; Map.Entry<?,?> e;
3078 return ((o instanceof Map.Entry) &&
3079 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3080 (v = e.getValue()) != null &&
3081 (k == key || k.equals(key)) &&
3082 (v == val || v.equals(val)));
3083 }
3084
3085 /**
3086 * Sets our entry's value and writes through to the map. The
3087 * value to return is somewhat arbitrary here. Since we do not
3088 * necessarily track asynchronous changes, the most recent
3089 * "previous" value could be different from what we return (or
3090 * could even have been removed in which case the put will
3091 * re-establish). We do not and cannot guarantee more.
3092 */
3093 public final V setValue(V value) {
3094 if (value == null) throw new NullPointerException();
3095 V v = val;
3096 val = value;
3097 map.put(key, value);
3098 return v;
3099 }
3100 }
3101
3102 /**
3103 * Returns exportable snapshot entry for the given key and value
3104 * when write-through can't or shouldn't be used.
3105 */
3106 static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3107 return new AbstractMap.SimpleEntry<K,V>(k, v);
3108 }
3109
3110 /* ---------------- Serialization Support -------------- */
3111
3112 /**
3113 * Stripped-down version of helper class used in previous version,
3114 * declared for the sake of serialization compatibility
3115 */
3116 static class Segment<K,V> implements Serializable {
3117 private static final long serialVersionUID = 2249069246763182397L;
3118 final float loadFactor;
3119 Segment(float lf) { this.loadFactor = lf; }
3120 }
3121
3122 /**
3123 * Saves the state of the {@code ConcurrentHashMap} instance to a
3124 * stream (i.e., serializes it).
3125 * @param s the stream
3126 * @serialData
3127 * the key (Object) and value (Object)
3128 * for each key-value mapping, followed by a null pair.
3129 * The key-value mappings are emitted in no particular order.
3130 */
3131 @SuppressWarnings("unchecked") private void writeObject
3132 (java.io.ObjectOutputStream s)
3133 throws java.io.IOException {
3134 if (segments == null) { // for serialization compatibility
3135 segments = (Segment<K,V>[])
3136 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3137 for (int i = 0; i < segments.length; ++i)
3138 segments[i] = new Segment<K,V>(LOAD_FACTOR);
3139 }
3140 s.defaultWriteObject();
3141 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3142 V v;
3143 while ((v = it.advance()) != null) {
3144 s.writeObject(it.nextKey);
3145 s.writeObject(v);
3146 }
3147 s.writeObject(null);
3148 s.writeObject(null);
3149 segments = null; // throw away
3150 }
3151
3152 /**
3153 * Reconstitutes the instance from a stream (that is, deserializes it).
3154 * @param s the stream
3155 */
3156 @SuppressWarnings("unchecked") private void readObject
3157 (java.io.ObjectInputStream s)
3158 throws java.io.IOException, ClassNotFoundException {
3159 s.defaultReadObject();
3160 this.segments = null; // unneeded
3161
3162 // Create all nodes, then place in table once size is known
3163 long size = 0L;
3164 Node<V> p = null;
3165 for (;;) {
3166 K k = (K) s.readObject();
3167 V v = (V) s.readObject();
3168 if (k != null && v != null) {
3169 int h = spread(k.hashCode());
3170 p = new Node<V>(h, k, v, p);
3171 ++size;
3172 }
3173 else
3174 break;
3175 }
3176 if (p != null) {
3177 boolean init = false;
3178 int n;
3179 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3180 n = MAXIMUM_CAPACITY;
3181 else {
3182 int sz = (int)size;
3183 n = tableSizeFor(sz + (sz >>> 1) + 1);
3184 }
3185 int sc = sizeCtl;
3186 boolean collide = false;
3187 if (n > sc &&
3188 U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3189 try {
3190 if (table == null) {
3191 init = true;
3192 @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3193 Node<V>[] tab = (Node<V>[])rt;
3194 int mask = n - 1;
3195 while (p != null) {
3196 int j = p.hash & mask;
3197 Node<V> next = p.next;
3198 Node<V> q = p.next = tabAt(tab, j);
3199 setTabAt(tab, j, p);
3200 if (!collide && q != null && q.hash == p.hash)
3201 collide = true;
3202 p = next;
3203 }
3204 table = tab;
3205 addCount(size, -1);
3206 sc = n - (n >>> 2);
3207 }
3208 } finally {
3209 sizeCtl = sc;
3210 }
3211 if (collide) { // rescan and convert to TreeBins
3212 Node<V>[] tab = table;
3213 for (int i = 0; i < tab.length; ++i) {
3214 int c = 0;
3215 for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3216 if (++c > TREE_THRESHOLD &&
3217 (e.key instanceof Comparable)) {
3218 replaceWithTreeBin(tab, i, e.key);
3219 break;
3220 }
3221 }
3222 }
3223 }
3224 }
3225 if (!init) { // Can only happen if unsafely published.
3226 while (p != null) {
3227 internalPut((K)p.key, p.val, false);
3228 p = p.next;
3229 }
3230 }
3231 }
3232 }
3233
3234 // -------------------------------------------------------
3235
3236 // Sequential bulk operations
3237
3238 /**
3239 * Performs the given action for each (key, value).
3240 *
3241 * @param action the action
3242 */
3243 public void forEachSequentially
3244 (BiConsumer<? super K, ? super V> action) {
3245 if (action == null) throw new NullPointerException();
3246 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3247 V v;
3248 while ((v = it.advance()) != null)
3249 action.accept(it.nextKey, v);
3250 }
3251
3252 /**
3253 * Performs the given action for each non-null transformation
3254 * of each (key, value).
3255 *
3256 * @param transformer a function returning the transformation
3257 * for an element, or null if there is no transformation (in
3258 * which case the action is not applied)
3259 * @param action the action
3260 */
3261 public <U> void forEachSequentially
3262 (BiFunction<? super K, ? super V, ? extends U> transformer,
3263 Consumer<? super U> action) {
3264 if (transformer == null || action == null)
3265 throw new NullPointerException();
3266 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3267 V v; U u;
3268 while ((v = it.advance()) != null) {
3269 if ((u = transformer.apply(it.nextKey, v)) != null)
3270 action.accept(u);
3271 }
3272 }
3273
3274 /**
3275 * Returns a non-null result from applying the given search
3276 * function on each (key, value), or null if none.
3277 *
3278 * @param searchFunction a function returning a non-null
3279 * result on success, else null
3280 * @return a non-null result from applying the given search
3281 * function on each (key, value), or null if none
3282 */
3283 public <U> U searchSequentially
3284 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3285 if (searchFunction == null) throw new NullPointerException();
3286 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3287 V v; U u;
3288 while ((v = it.advance()) != null) {
3289 if ((u = searchFunction.apply(it.nextKey, v)) != null)
3290 return u;
3291 }
3292 return null;
3293 }
3294
3295 /**
3296 * Returns the result of accumulating the given transformation
3297 * of all (key, value) pairs using the given reducer to
3298 * combine values, or null if none.
3299 *
3300 * @param transformer a function returning the transformation
3301 * for an element, or null if there is no transformation (in
3302 * which case it is not combined)
3303 * @param reducer a commutative associative combining function
3304 * @return the result of accumulating the given transformation
3305 * of all (key, value) pairs
3306 */
3307 public <U> U reduceSequentially
3308 (BiFunction<? super K, ? super V, ? extends U> transformer,
3309 BiFunction<? super U, ? super U, ? extends U> reducer) {
3310 if (transformer == null || reducer == null)
3311 throw new NullPointerException();
3312 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3313 U r = null, u; V v;
3314 while ((v = it.advance()) != null) {
3315 if ((u = transformer.apply(it.nextKey, v)) != null)
3316 r = (r == null) ? u : reducer.apply(r, u);
3317 }
3318 return r;
3319 }
3320
3321 /**
3322 * Returns the result of accumulating the given transformation
3323 * of all (key, value) pairs using the given reducer to
3324 * combine values, and the given basis as an identity value.
3325 *
3326 * @param transformer a function returning the transformation
3327 * for an element
3328 * @param basis the identity (initial default value) for the reduction
3329 * @param reducer a commutative associative combining function
3330 * @return the result of accumulating the given transformation
3331 * of all (key, value) pairs
3332 */
3333 public double reduceToDoubleSequentially
3334 (ToDoubleBiFunction<? super K, ? super V> transformer,
3335 double basis,
3336 DoubleBinaryOperator reducer) {
3337 if (transformer == null || reducer == null)
3338 throw new NullPointerException();
3339 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3340 double r = basis; V v;
3341 while ((v = it.advance()) != null)
3342 r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey, v));
3343 return r;
3344 }
3345
3346 /**
3347 * Returns the result of accumulating the given transformation
3348 * of all (key, value) pairs using the given reducer to
3349 * combine values, and the given basis as an identity value.
3350 *
3351 * @param transformer a function returning the transformation
3352 * for an element
3353 * @param basis the identity (initial default value) for the reduction
3354 * @param reducer a commutative associative combining function
3355 * @return the result of accumulating the given transformation
3356 * of all (key, value) pairs
3357 */
3358 public long reduceToLongSequentially
3359 (ToLongBiFunction<? super K, ? super V> transformer,
3360 long basis,
3361 LongBinaryOperator reducer) {
3362 if (transformer == null || reducer == null)
3363 throw new NullPointerException();
3364 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3365 long r = basis; V v;
3366 while ((v = it.advance()) != null)
3367 r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey, v));
3368 return r;
3369 }
3370
3371 /**
3372 * Returns the result of accumulating the given transformation
3373 * of all (key, value) pairs using the given reducer to
3374 * combine values, and the given basis as an identity value.
3375 *
3376 * @param transformer a function returning the transformation
3377 * for an element
3378 * @param basis the identity (initial default value) for the reduction
3379 * @param reducer a commutative associative combining function
3380 * @return the result of accumulating the given transformation
3381 * of all (key, value) pairs
3382 */
3383 public int reduceToIntSequentially
3384 (ToIntBiFunction<? super K, ? super V> transformer,
3385 int basis,
3386 IntBinaryOperator reducer) {
3387 if (transformer == null || reducer == null)
3388 throw new NullPointerException();
3389 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3390 int r = basis; V v;
3391 while ((v = it.advance()) != null)
3392 r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey, v));
3393 return r;
3394 }
3395
3396 /**
3397 * Performs the given action for each key.
3398 *
3399 * @param action the action
3400 */
3401 public void forEachKeySequentially
3402 (Consumer<? super K> action) {
3403 if (action == null) throw new NullPointerException();
3404 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3405 while (it.advance() != null)
3406 action.accept(it.nextKey);
3407 }
3408
3409 /**
3410 * Performs the given action for each non-null transformation
3411 * of each key.
3412 *
3413 * @param transformer a function returning the transformation
3414 * for an element, or null if there is no transformation (in
3415 * which case the action is not applied)
3416 * @param action the action
3417 */
3418 public <U> void forEachKeySequentially
3419 (Function<? super K, ? extends U> transformer,
3420 Consumer<? super U> action) {
3421 if (transformer == null || action == null)
3422 throw new NullPointerException();
3423 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3424 U u;
3425 while (it.advance() != null) {
3426 if ((u = transformer.apply(it.nextKey)) != null)
3427 action.accept(u);
3428 }
3429 ForkJoinTasks.forEachKey
3430 (this, transformer, action).invoke();
3431 }
3432
3433 /**
3434 * Returns a non-null result from applying the given search
3435 * function on each key, or null if none.
3436 *
3437 * @param searchFunction a function returning a non-null
3438 * result on success, else null
3439 * @return a non-null result from applying the given search
3440 * function on each key, or null if none
3441 */
3442 public <U> U searchKeysSequentially
3443 (Function<? super K, ? extends U> searchFunction) {
3444 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3445 U u;
3446 while (it.advance() != null) {
3447 if ((u = searchFunction.apply(it.nextKey)) != null)
3448 return u;
3449 }
3450 return null;
3451 }
3452
3453 /**
3454 * Returns the result of accumulating all keys using the given
3455 * reducer to combine values, or null if none.
3456 *
3457 * @param reducer a commutative associative combining function
3458 * @return the result of accumulating all keys using the given
3459 * reducer to combine values, or null if none
3460 */
3461 public K reduceKeysSequentially
3462 (BiFunction<? super K, ? super K, ? extends K> reducer) {
3463 if (reducer == null) throw new NullPointerException();
3464 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3465 K r = null;
3466 while (it.advance() != null) {
3467 K u = it.nextKey;
3468 r = (r == null) ? u : reducer.apply(r, u);
3469 }
3470 return r;
3471 }
3472
3473 /**
3474 * Returns the result of accumulating the given transformation
3475 * of all keys using the given reducer to combine values, or
3476 * null if none.
3477 *
3478 * @param transformer a function returning the transformation
3479 * for an element, or null if there is no transformation (in
3480 * which case it is not combined)
3481 * @param reducer a commutative associative combining function
3482 * @return the result of accumulating the given transformation
3483 * of all keys
3484 */
3485 public <U> U reduceKeysSequentially
3486 (Function<? super K, ? extends U> transformer,
3487 BiFunction<? super U, ? super U, ? extends U> reducer) {
3488 if (transformer == null || reducer == null)
3489 throw new NullPointerException();
3490 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3491 U r = null, u;
3492 while (it.advance() != null) {
3493 if ((u = transformer.apply(it.nextKey)) != null)
3494 r = (r == null) ? u : reducer.apply(r, u);
3495 }
3496 return r;
3497 }
3498
3499 /**
3500 * Returns the result of accumulating the given transformation
3501 * of all keys using the given reducer to combine values, and
3502 * the given basis as an identity value.
3503 *
3504 * @param transformer a function returning the transformation
3505 * for an element
3506 * @param basis the identity (initial default value) for the reduction
3507 * @param reducer a commutative associative combining function
3508 * @return the result of accumulating the given transformation
3509 * of all keys
3510 */
3511 public double reduceKeysToDoubleSequentially
3512 (ToDoubleFunction<? super K> transformer,
3513 double basis,
3514 DoubleBinaryOperator reducer) {
3515 if (transformer == null || reducer == null)
3516 throw new NullPointerException();
3517 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3518 double r = basis;
3519 while (it.advance() != null)
3520 r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey));
3521 return r;
3522 }
3523
3524 /**
3525 * Returns the result of accumulating the given transformation
3526 * of all keys using the given reducer to combine values, and
3527 * the given basis as an identity value.
3528 *
3529 * @param transformer a function returning the transformation
3530 * for an element
3531 * @param basis the identity (initial default value) for the reduction
3532 * @param reducer a commutative associative combining function
3533 * @return the result of accumulating the given transformation
3534 * of all keys
3535 */
3536 public long reduceKeysToLongSequentially
3537 (ToLongFunction<? super K> transformer,
3538 long basis,
3539 LongBinaryOperator reducer) {
3540 if (transformer == null || reducer == null)
3541 throw new NullPointerException();
3542 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3543 long r = basis;
3544 while (it.advance() != null)
3545 r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey));
3546 return r;
3547 }
3548
3549 /**
3550 * Returns the result of accumulating the given transformation
3551 * of all keys using the given reducer to combine values, and
3552 * the given basis as an identity value.
3553 *
3554 * @param transformer a function returning the transformation
3555 * for an element
3556 * @param basis the identity (initial default value) for the reduction
3557 * @param reducer a commutative associative combining function
3558 * @return the result of accumulating the given transformation
3559 * of all keys
3560 */
3561 public int reduceKeysToIntSequentially
3562 (ToIntFunction<? super K> transformer,
3563 int basis,
3564 IntBinaryOperator reducer) {
3565 if (transformer == null || reducer == null)
3566 throw new NullPointerException();
3567 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3568 int r = basis;
3569 while (it.advance() != null)
3570 r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey));
3571 return r;
3572 }
3573
3574 /**
3575 * Performs the given action for each value.
3576 *
3577 * @param action the action
3578 */
3579 public void forEachValueSequentially(Consumer<? super V> action) {
3580 if (action == null) throw new NullPointerException();
3581 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3582 V v;
3583 while ((v = it.advance()) != null)
3584 action.accept(v);
3585 }
3586
3587 /**
3588 * Performs the given action for each non-null transformation
3589 * of each value.
3590 *
3591 * @param transformer a function returning the transformation
3592 * for an element, or null if there is no transformation (in
3593 * which case the action is not applied)
3594 * @param action the action
3595 */
3596 public <U> void forEachValueSequentially
3597 (Function<? super V, ? extends U> transformer,
3598 Consumer<? super U> action) {
3599 if (transformer == null || action == null)
3600 throw new NullPointerException();
3601 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3602 V v; U u;
3603 while ((v = it.advance()) != null) {
3604 if ((u = transformer.apply(v)) != null)
3605 action.accept(u);
3606 }
3607 }
3608
3609 /**
3610 * Returns a non-null result from applying the given search
3611 * function on each value, or null if none.
3612 *
3613 * @param searchFunction a function returning a non-null
3614 * result on success, else null
3615 * @return a non-null result from applying the given search
3616 * function on each value, or null if none
3617 */
3618 public <U> U searchValuesSequentially
3619 (Function<? super V, ? extends U> searchFunction) {
3620 if (searchFunction == null) throw new NullPointerException();
3621 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3622 V v; U u;
3623 while ((v = it.advance()) != null) {
3624 if ((u = searchFunction.apply(v)) != null)
3625 return u;
3626 }
3627 return null;
3628 }
3629
3630 /**
3631 * Returns the result of accumulating all values using the
3632 * given reducer to combine values, or null if none.
3633 *
3634 * @param reducer a commutative associative combining function
3635 * @return the result of accumulating all values
3636 */
3637 public V reduceValuesSequentially
3638 (BiFunction<? super V, ? super V, ? extends V> reducer) {
3639 if (reducer == null) throw new NullPointerException();
3640 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3641 V r = null; V v;
3642 while ((v = it.advance()) != null)
3643 r = (r == null) ? v : reducer.apply(r, v);
3644 return r;
3645 }
3646
3647 /**
3648 * Returns the result of accumulating the given transformation
3649 * of all values using the given reducer to combine values, or
3650 * null if none.
3651 *
3652 * @param transformer a function returning the transformation
3653 * for an element, or null if there is no transformation (in
3654 * which case it is not combined)
3655 * @param reducer a commutative associative combining function
3656 * @return the result of accumulating the given transformation
3657 * of all values
3658 */
3659 public <U> U reduceValuesSequentially
3660 (Function<? super V, ? extends U> transformer,
3661 BiFunction<? super U, ? super U, ? extends U> reducer) {
3662 if (transformer == null || reducer == null)
3663 throw new NullPointerException();
3664 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3665 U r = null, u; V v;
3666 while ((v = it.advance()) != null) {
3667 if ((u = transformer.apply(v)) != null)
3668 r = (r == null) ? u : reducer.apply(r, u);
3669 }
3670 return r;
3671 }
3672
3673 /**
3674 * Returns the result of accumulating the given transformation
3675 * of all values using the given reducer to combine values,
3676 * and the given basis as an identity value.
3677 *
3678 * @param transformer a function returning the transformation
3679 * for an element
3680 * @param basis the identity (initial default value) for the reduction
3681 * @param reducer a commutative associative combining function
3682 * @return the result of accumulating the given transformation
3683 * of all values
3684 */
3685 public double reduceValuesToDoubleSequentially
3686 (ToDoubleFunction<? super V> transformer,
3687 double basis,
3688 DoubleBinaryOperator reducer) {
3689 if (transformer == null || reducer == null)
3690 throw new NullPointerException();
3691 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3692 double r = basis; V v;
3693 while ((v = it.advance()) != null)
3694 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
3695 return r;
3696 }
3697
3698 /**
3699 * Returns the result of accumulating the given transformation
3700 * of all values using the given reducer to combine values,
3701 * and the given basis as an identity value.
3702 *
3703 * @param transformer a function returning the transformation
3704 * for an element
3705 * @param basis the identity (initial default value) for the reduction
3706 * @param reducer a commutative associative combining function
3707 * @return the result of accumulating the given transformation
3708 * of all values
3709 */
3710 public long reduceValuesToLongSequentially
3711 (ToLongFunction<? super V> transformer,
3712 long basis,
3713 LongBinaryOperator reducer) {
3714 if (transformer == null || reducer == null)
3715 throw new NullPointerException();
3716 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3717 long r = basis; V v;
3718 while ((v = it.advance()) != null)
3719 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
3720 return r;
3721 }
3722
3723 /**
3724 * Returns the result of accumulating the given transformation
3725 * of all values using the given reducer to combine values,
3726 * and the given basis as an identity value.
3727 *
3728 * @param transformer a function returning the transformation
3729 * for an element
3730 * @param basis the identity (initial default value) for the reduction
3731 * @param reducer a commutative associative combining function
3732 * @return the result of accumulating the given transformation
3733 * of all values
3734 */
3735 public int reduceValuesToIntSequentially
3736 (ToIntFunction<? super V> transformer,
3737 int basis,
3738 IntBinaryOperator reducer) {
3739 if (transformer == null || reducer == null)
3740 throw new NullPointerException();
3741 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3742 int r = basis; V v;
3743 while ((v = it.advance()) != null)
3744 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
3745 return r;
3746 }
3747
3748 /**
3749 * Performs the given action for each entry.
3750 *
3751 * @param action the action
3752 */
3753 public void forEachEntrySequentially
3754 (Consumer<? super Map.Entry<K,V>> action) {
3755 if (action == null) throw new NullPointerException();
3756 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3757 V v;
3758 while ((v = it.advance()) != null)
3759 action.accept(entryFor(it.nextKey, v));
3760 }
3761
3762 /**
3763 * Performs the given action for each non-null transformation
3764 * of each entry.
3765 *
3766 * @param transformer a function returning the transformation
3767 * for an element, or null if there is no transformation (in
3768 * which case the action is not applied)
3769 * @param action the action
3770 */
3771 public <U> void forEachEntrySequentially
3772 (Function<Map.Entry<K,V>, ? extends U> transformer,
3773 Consumer<? super U> action) {
3774 if (transformer == null || action == null)
3775 throw new NullPointerException();
3776 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3777 V v; U u;
3778 while ((v = it.advance()) != null) {
3779 if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3780 action.accept(u);
3781 }
3782 }
3783
3784 /**
3785 * Returns a non-null result from applying the given search
3786 * function on each entry, or null if none.
3787 *
3788 * @param searchFunction a function returning a non-null
3789 * result on success, else null
3790 * @return a non-null result from applying the given search
3791 * function on each entry, or null if none
3792 */
3793 public <U> U searchEntriesSequentially
3794 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3795 if (searchFunction == null) throw new NullPointerException();
3796 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3797 V v; U u;
3798 while ((v = it.advance()) != null) {
3799 if ((u = searchFunction.apply(entryFor(it.nextKey, v))) != null)
3800 return u;
3801 }
3802 return null;
3803 }
3804
3805 /**
3806 * Returns the result of accumulating all entries using the
3807 * given reducer to combine values, or null if none.
3808 *
3809 * @param reducer a commutative associative combining function
3810 * @return the result of accumulating all entries
3811 */
3812 public Map.Entry<K,V> reduceEntriesSequentially
3813 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3814 if (reducer == null) throw new NullPointerException();
3815 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3816 Map.Entry<K,V> r = null; V v;
3817 while ((v = it.advance()) != null) {
3818 Map.Entry<K,V> u = entryFor(it.nextKey, v);
3819 r = (r == null) ? u : reducer.apply(r, u);
3820 }
3821 return r;
3822 }
3823
3824 /**
3825 * Returns the result of accumulating the given transformation
3826 * of all entries using the given reducer to combine values,
3827 * or null if none.
3828 *
3829 * @param transformer a function returning the transformation
3830 * for an element, or null if there is no transformation (in
3831 * which case it is not combined)
3832 * @param reducer a commutative associative combining function
3833 * @return the result of accumulating the given transformation
3834 * of all entries
3835 */
3836 public <U> U reduceEntriesSequentially
3837 (Function<Map.Entry<K,V>, ? extends U> transformer,
3838 BiFunction<? super U, ? super U, ? extends U> reducer) {
3839 if (transformer == null || reducer == null)
3840 throw new NullPointerException();
3841 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3842 U r = null, u; V v;
3843 while ((v = it.advance()) != null) {
3844 if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3845 r = (r == null) ? u : reducer.apply(r, u);
3846 }
3847 return r;
3848 }
3849
3850 /**
3851 * Returns the result of accumulating the given transformation
3852 * of all entries using the given reducer to combine values,
3853 * and the given basis as an identity value.
3854 *
3855 * @param transformer a function returning the transformation
3856 * for an element
3857 * @param basis the identity (initial default value) for the reduction
3858 * @param reducer a commutative associative combining function
3859 * @return the result of accumulating the given transformation
3860 * of all entries
3861 */
3862 public double reduceEntriesToDoubleSequentially
3863 (ToDoubleFunction<Map.Entry<K,V>> transformer,
3864 double basis,
3865 DoubleBinaryOperator reducer) {
3866 if (transformer == null || reducer == null)
3867 throw new NullPointerException();
3868 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3869 double r = basis; V v;
3870 while ((v = it.advance()) != null)
3871 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(it.nextKey, v)));
3872 return r;
3873 }
3874
3875 /**
3876 * Returns the result of accumulating the given transformation
3877 * of all entries using the given reducer to combine values,
3878 * and the given basis as an identity value.
3879 *
3880 * @param transformer a function returning the transformation
3881 * for an element
3882 * @param basis the identity (initial default value) for the reduction
3883 * @param reducer a commutative associative combining function
3884 * @return the result of accumulating the given transformation
3885 * of all entries
3886 */
3887 public long reduceEntriesToLongSequentially
3888 (ToLongFunction<Map.Entry<K,V>> transformer,
3889 long basis,
3890 LongBinaryOperator reducer) {
3891 if (transformer == null || reducer == null)
3892 throw new NullPointerException();
3893 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3894 long r = basis; V v;
3895 while ((v = it.advance()) != null)
3896 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(it.nextKey, v)));
3897 return r;
3898 }
3899
3900 /**
3901 * Returns the result of accumulating the given transformation
3902 * of all entries using the given reducer to combine values,
3903 * and the given basis as an identity value.
3904 *
3905 * @param transformer a function returning the transformation
3906 * for an element
3907 * @param basis the identity (initial default value) for the reduction
3908 * @param reducer a commutative associative combining function
3909 * @return the result of accumulating the given transformation
3910 * of all entries
3911 */
3912 public int reduceEntriesToIntSequentially
3913 (ToIntFunction<Map.Entry<K,V>> transformer,
3914 int basis,
3915 IntBinaryOperator reducer) {
3916 if (transformer == null || reducer == null)
3917 throw new NullPointerException();
3918 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3919 int r = basis; V v;
3920 while ((v = it.advance()) != null)
3921 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(it.nextKey, v)));
3922 return r;
3923 }
3924
3925 // Parallel bulk operations
3926
3927 /**
3928 * Performs the given action for each (key, value).
3929 *
3930 * @param action the action
3931 */
3932 public void forEachInParallel(BiConsumer<? super K,? super V> action) {
3933 ForkJoinTasks.forEach
3934 (this, action).invoke();
3935 }
3936
3937 /**
3938 * Performs the given action for each non-null transformation
3939 * of each (key, value).
3940 *
3941 * @param transformer a function returning the transformation
3942 * for an element, or null if there is no transformation (in
3943 * which case the action is not applied)
3944 * @param action the action
3945 */
3946 public <U> void forEachInParallel
3947 (BiFunction<? super K, ? super V, ? extends U> transformer,
3948 Consumer<? super U> action) {
3949 ForkJoinTasks.forEach
3950 (this, transformer, action).invoke();
3951 }
3952
3953 /**
3954 * Returns a non-null result from applying the given search
3955 * function on each (key, value), or null if none. Upon
3956 * success, further element processing is suppressed and the
3957 * results of any other parallel invocations of the search
3958 * function are ignored.
3959 *
3960 * @param searchFunction a function returning a non-null
3961 * result on success, else null
3962 * @return a non-null result from applying the given search
3963 * function on each (key, value), or null if none
3964 */
3965 public <U> U searchInParallel
3966 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3967 return ForkJoinTasks.search
3968 (this, searchFunction).invoke();
3969 }
3970
3971 /**
3972 * Returns the result of accumulating the given transformation
3973 * of all (key, value) pairs using the given reducer to
3974 * combine values, or null if none.
3975 *
3976 * @param transformer a function returning the transformation
3977 * for an element, or null if there is no transformation (in
3978 * which case it is not combined)
3979 * @param reducer a commutative associative combining function
3980 * @return the result of accumulating the given transformation
3981 * of all (key, value) pairs
3982 */
3983 public <U> U reduceInParallel
3984 (BiFunction<? super K, ? super V, ? extends U> transformer,
3985 BiFunction<? super U, ? super U, ? extends U> reducer) {
3986 return ForkJoinTasks.reduce
3987 (this, transformer, reducer).invoke();
3988 }
3989
3990 /**
3991 * Returns the result of accumulating the given transformation
3992 * of all (key, value) pairs using the given reducer to
3993 * combine values, and the given basis as an identity value.
3994 *
3995 * @param transformer a function returning the transformation
3996 * for an element
3997 * @param basis the identity (initial default value) for the reduction
3998 * @param reducer a commutative associative combining function
3999 * @return the result of accumulating the given transformation
4000 * of all (key, value) pairs
4001 */
4002 public double reduceToDoubleInParallel
4003 (ToDoubleBiFunction<? super K, ? super V> transformer,
4004 double basis,
4005 DoubleBinaryOperator reducer) {
4006 return ForkJoinTasks.reduceToDouble
4007 (this, transformer, basis, reducer).invoke();
4008 }
4009
4010 /**
4011 * Returns the result of accumulating the given transformation
4012 * of all (key, value) pairs using the given reducer to
4013 * combine values, and the given basis as an identity value.
4014 *
4015 * @param transformer a function returning the transformation
4016 * for an element
4017 * @param basis the identity (initial default value) for the reduction
4018 * @param reducer a commutative associative combining function
4019 * @return the result of accumulating the given transformation
4020 * of all (key, value) pairs
4021 */
4022 public long reduceToLongInParallel
4023 (ToLongBiFunction<? super K, ? super V> transformer,
4024 long basis,
4025 LongBinaryOperator reducer) {
4026 return ForkJoinTasks.reduceToLong
4027 (this, transformer, basis, reducer).invoke();
4028 }
4029
4030 /**
4031 * Returns the result of accumulating the given transformation
4032 * of all (key, value) pairs using the given reducer to
4033 * combine values, and the given basis as an identity value.
4034 *
4035 * @param transformer a function returning the transformation
4036 * for an element
4037 * @param basis the identity (initial default value) for the reduction
4038 * @param reducer a commutative associative combining function
4039 * @return the result of accumulating the given transformation
4040 * of all (key, value) pairs
4041 */
4042 public int reduceToIntInParallel
4043 (ToIntBiFunction<? super K, ? super V> transformer,
4044 int basis,
4045 IntBinaryOperator reducer) {
4046 return ForkJoinTasks.reduceToInt
4047 (this, transformer, basis, reducer).invoke();
4048 }
4049
4050 /**
4051 * Performs the given action for each key.
4052 *
4053 * @param action the action
4054 */
4055 public void forEachKeyInParallel(Consumer<? super K> action) {
4056 ForkJoinTasks.forEachKey
4057 (this, action).invoke();
4058 }
4059
4060 /**
4061 * Performs the given action for each non-null transformation
4062 * of each key.
4063 *
4064 * @param transformer a function returning the transformation
4065 * for an element, or null if there is no transformation (in
4066 * which case the action is not applied)
4067 * @param action the action
4068 */
4069 public <U> void forEachKeyInParallel
4070 (Function<? super K, ? extends U> transformer,
4071 Consumer<? super U> action) {
4072 ForkJoinTasks.forEachKey
4073 (this, transformer, action).invoke();
4074 }
4075
4076 /**
4077 * Returns a non-null result from applying the given search
4078 * function on each key, or null if none. Upon success,
4079 * further element processing is suppressed and the results of
4080 * any other parallel invocations of the search function are
4081 * ignored.
4082 *
4083 * @param searchFunction a function returning a non-null
4084 * result on success, else null
4085 * @return a non-null result from applying the given search
4086 * function on each key, or null if none
4087 */
4088 public <U> U searchKeysInParallel
4089 (Function<? super K, ? extends U> searchFunction) {
4090 return ForkJoinTasks.searchKeys
4091 (this, searchFunction).invoke();
4092 }
4093
4094 /**
4095 * Returns the result of accumulating all keys using the given
4096 * reducer to combine values, or null if none.
4097 *
4098 * @param reducer a commutative associative combining function
4099 * @return the result of accumulating all keys using the given
4100 * reducer to combine values, or null if none
4101 */
4102 public K reduceKeysInParallel
4103 (BiFunction<? super K, ? super K, ? extends K> reducer) {
4104 return ForkJoinTasks.reduceKeys
4105 (this, reducer).invoke();
4106 }
4107
4108 /**
4109 * Returns the result of accumulating the given transformation
4110 * of all keys using the given reducer to combine values, or
4111 * null if none.
4112 *
4113 * @param transformer a function returning the transformation
4114 * for an element, or null if there is no transformation (in
4115 * which case it is not combined)
4116 * @param reducer a commutative associative combining function
4117 * @return the result of accumulating the given transformation
4118 * of all keys
4119 */
4120 public <U> U reduceKeysInParallel
4121 (Function<? super K, ? extends U> transformer,
4122 BiFunction<? super U, ? super U, ? extends U> reducer) {
4123 return ForkJoinTasks.reduceKeys
4124 (this, transformer, reducer).invoke();
4125 }
4126
4127 /**
4128 * Returns the result of accumulating the given transformation
4129 * of all keys using the given reducer to combine values, and
4130 * the given basis as an identity value.
4131 *
4132 * @param transformer a function returning the transformation
4133 * for an element
4134 * @param basis the identity (initial default value) for the reduction
4135 * @param reducer a commutative associative combining function
4136 * @return the result of accumulating the given transformation
4137 * of all keys
4138 */
4139 public double reduceKeysToDoubleInParallel
4140 (ToDoubleFunction<? super K> transformer,
4141 double basis,
4142 DoubleBinaryOperator reducer) {
4143 return ForkJoinTasks.reduceKeysToDouble
4144 (this, transformer, basis, reducer).invoke();
4145 }
4146
4147 /**
4148 * Returns the result of accumulating the given transformation
4149 * of all keys using the given reducer to combine values, and
4150 * the given basis as an identity value.
4151 *
4152 * @param transformer a function returning the transformation
4153 * for an element
4154 * @param basis the identity (initial default value) for the reduction
4155 * @param reducer a commutative associative combining function
4156 * @return the result of accumulating the given transformation
4157 * of all keys
4158 */
4159 public long reduceKeysToLongInParallel
4160 (ToLongFunction<? super K> transformer,
4161 long basis,
4162 LongBinaryOperator reducer) {
4163 return ForkJoinTasks.reduceKeysToLong
4164 (this, transformer, basis, reducer).invoke();
4165 }
4166
4167 /**
4168 * Returns the result of accumulating the given transformation
4169 * of all keys using the given reducer to combine values, and
4170 * the given basis as an identity value.
4171 *
4172 * @param transformer a function returning the transformation
4173 * for an element
4174 * @param basis the identity (initial default value) for the reduction
4175 * @param reducer a commutative associative combining function
4176 * @return the result of accumulating the given transformation
4177 * of all keys
4178 */
4179 public int reduceKeysToIntInParallel
4180 (ToIntFunction<? super K> transformer,
4181 int basis,
4182 IntBinaryOperator reducer) {
4183 return ForkJoinTasks.reduceKeysToInt
4184 (this, transformer, basis, reducer).invoke();
4185 }
4186
4187 /**
4188 * Performs the given action for each value.
4189 *
4190 * @param action the action
4191 */
4192 public void forEachValueInParallel(Consumer<? super V> action) {
4193 ForkJoinTasks.forEachValue
4194 (this, action).invoke();
4195 }
4196
4197 /**
4198 * Performs the given action for each non-null transformation
4199 * of each value.
4200 *
4201 * @param transformer a function returning the transformation
4202 * for an element, or null if there is no transformation (in
4203 * which case the action is not applied)
4204 * @param action the action
4205 */
4206 public <U> void forEachValueInParallel
4207 (Function<? super V, ? extends U> transformer,
4208 Consumer<? super U> action) {
4209 ForkJoinTasks.forEachValue
4210 (this, transformer, action).invoke();
4211 }
4212
4213 /**
4214 * Returns a non-null result from applying the given search
4215 * function on each value, or null if none. Upon success,
4216 * further element processing is suppressed and the results of
4217 * any other parallel invocations of the search function are
4218 * ignored.
4219 *
4220 * @param searchFunction a function returning a non-null
4221 * result on success, else null
4222 * @return a non-null result from applying the given search
4223 * function on each value, or null if none
4224 */
4225 public <U> U searchValuesInParallel
4226 (Function<? super V, ? extends U> searchFunction) {
4227 return ForkJoinTasks.searchValues
4228 (this, searchFunction).invoke();
4229 }
4230
4231 /**
4232 * Returns the result of accumulating all values using the
4233 * given reducer to combine values, or null if none.
4234 *
4235 * @param reducer a commutative associative combining function
4236 * @return the result of accumulating all values
4237 */
4238 public V reduceValuesInParallel
4239 (BiFunction<? super V, ? super V, ? extends V> reducer) {
4240 return ForkJoinTasks.reduceValues
4241 (this, reducer).invoke();
4242 }
4243
4244 /**
4245 * Returns the result of accumulating the given transformation
4246 * of all values using the given reducer to combine values, or
4247 * null if none.
4248 *
4249 * @param transformer a function returning the transformation
4250 * for an element, or null if there is no transformation (in
4251 * which case it is not combined)
4252 * @param reducer a commutative associative combining function
4253 * @return the result of accumulating the given transformation
4254 * of all values
4255 */
4256 public <U> U reduceValuesInParallel
4257 (Function<? super V, ? extends U> transformer,
4258 BiFunction<? super U, ? super U, ? extends U> reducer) {
4259 return ForkJoinTasks.reduceValues
4260 (this, transformer, reducer).invoke();
4261 }
4262
4263 /**
4264 * Returns the result of accumulating the given transformation
4265 * of all values using the given reducer to combine values,
4266 * and the given basis as an identity value.
4267 *
4268 * @param transformer a function returning the transformation
4269 * for an element
4270 * @param basis the identity (initial default value) for the reduction
4271 * @param reducer a commutative associative combining function
4272 * @return the result of accumulating the given transformation
4273 * of all values
4274 */
4275 public double reduceValuesToDoubleInParallel
4276 (ToDoubleFunction<? super V> transformer,
4277 double basis,
4278 DoubleBinaryOperator reducer) {
4279 return ForkJoinTasks.reduceValuesToDouble
4280 (this, transformer, basis, reducer).invoke();
4281 }
4282
4283 /**
4284 * Returns the result of accumulating the given transformation
4285 * of all values using the given reducer to combine values,
4286 * and the given basis as an identity value.
4287 *
4288 * @param transformer a function returning the transformation
4289 * for an element
4290 * @param basis the identity (initial default value) for the reduction
4291 * @param reducer a commutative associative combining function
4292 * @return the result of accumulating the given transformation
4293 * of all values
4294 */
4295 public long reduceValuesToLongInParallel
4296 (ToLongFunction<? super V> transformer,
4297 long basis,
4298 LongBinaryOperator reducer) {
4299 return ForkJoinTasks.reduceValuesToLong
4300 (this, transformer, basis, reducer).invoke();
4301 }
4302
4303 /**
4304 * Returns the result of accumulating the given transformation
4305 * of all values using the given reducer to combine values,
4306 * and the given basis as an identity value.
4307 *
4308 * @param transformer a function returning the transformation
4309 * for an element
4310 * @param basis the identity (initial default value) for the reduction
4311 * @param reducer a commutative associative combining function
4312 * @return the result of accumulating the given transformation
4313 * of all values
4314 */
4315 public int reduceValuesToIntInParallel
4316 (ToIntFunction<? super V> transformer,
4317 int basis,
4318 IntBinaryOperator reducer) {
4319 return ForkJoinTasks.reduceValuesToInt
4320 (this, transformer, basis, reducer).invoke();
4321 }
4322
4323 /**
4324 * Performs the given action for each entry.
4325 *
4326 * @param action the action
4327 */
4328 public void forEachEntryInParallel(Consumer<? super Map.Entry<K,V>> action) {
4329 ForkJoinTasks.forEachEntry
4330 (this, action).invoke();
4331 }
4332
4333 /**
4334 * Performs the given action for each non-null transformation
4335 * of each entry.
4336 *
4337 * @param transformer a function returning the transformation
4338 * for an element, or null if there is no transformation (in
4339 * which case the action is not applied)
4340 * @param action the action
4341 */
4342 public <U> void forEachEntryInParallel
4343 (Function<Map.Entry<K,V>, ? extends U> transformer,
4344 Consumer<? super U> action) {
4345 ForkJoinTasks.forEachEntry
4346 (this, transformer, action).invoke();
4347 }
4348
4349 /**
4350 * Returns a non-null result from applying the given search
4351 * function on each entry, or null if none. Upon success,
4352 * further element processing is suppressed and the results of
4353 * any other parallel invocations of the search function are
4354 * ignored.
4355 *
4356 * @param searchFunction a function returning a non-null
4357 * result on success, else null
4358 * @return a non-null result from applying the given search
4359 * function on each entry, or null if none
4360 */
4361 public <U> U searchEntriesInParallel
4362 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4363 return ForkJoinTasks.searchEntries
4364 (this, searchFunction).invoke();
4365 }
4366
4367 /**
4368 * Returns the result of accumulating all entries using the
4369 * given reducer to combine values, or null if none.
4370 *
4371 * @param reducer a commutative associative combining function
4372 * @return the result of accumulating all entries
4373 */
4374 public Map.Entry<K,V> reduceEntriesInParallel
4375 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4376 return ForkJoinTasks.reduceEntries
4377 (this, reducer).invoke();
4378 }
4379
4380 /**
4381 * Returns the result of accumulating the given transformation
4382 * of all entries using the given reducer to combine values,
4383 * or null if none.
4384 *
4385 * @param transformer a function returning the transformation
4386 * for an element, or null if there is no transformation (in
4387 * which case it is not combined)
4388 * @param reducer a commutative associative combining function
4389 * @return the result of accumulating the given transformation
4390 * of all entries
4391 */
4392 public <U> U reduceEntriesInParallel
4393 (Function<Map.Entry<K,V>, ? extends U> transformer,
4394 BiFunction<? super U, ? super U, ? extends U> reducer) {
4395 return ForkJoinTasks.reduceEntries
4396 (this, transformer, reducer).invoke();
4397 }
4398
4399 /**
4400 * Returns the result of accumulating the given transformation
4401 * of all entries using the given reducer to combine values,
4402 * and the given basis as an identity value.
4403 *
4404 * @param transformer a function returning the transformation
4405 * for an element
4406 * @param basis the identity (initial default value) for the reduction
4407 * @param reducer a commutative associative combining function
4408 * @return the result of accumulating the given transformation
4409 * of all entries
4410 */
4411 public double reduceEntriesToDoubleInParallel
4412 (ToDoubleFunction<Map.Entry<K,V>> transformer,
4413 double basis,
4414 DoubleBinaryOperator reducer) {
4415 return ForkJoinTasks.reduceEntriesToDouble
4416 (this, transformer, basis, reducer).invoke();
4417 }
4418
4419 /**
4420 * Returns the result of accumulating the given transformation
4421 * of all entries using the given reducer to combine values,
4422 * and the given basis as an identity value.
4423 *
4424 * @param transformer a function returning the transformation
4425 * for an element
4426 * @param basis the identity (initial default value) for the reduction
4427 * @param reducer a commutative associative combining function
4428 * @return the result of accumulating the given transformation
4429 * of all entries
4430 */
4431 public long reduceEntriesToLongInParallel
4432 (ToLongFunction<Map.Entry<K,V>> transformer,
4433 long basis,
4434 LongBinaryOperator reducer) {
4435 return ForkJoinTasks.reduceEntriesToLong
4436 (this, transformer, basis, reducer).invoke();
4437 }
4438
4439 /**
4440 * Returns the result of accumulating the given transformation
4441 * of all entries using the given reducer to combine values,
4442 * and the given basis as an identity value.
4443 *
4444 * @param transformer a function returning the transformation
4445 * for an element
4446 * @param basis the identity (initial default value) for the reduction
4447 * @param reducer a commutative associative combining function
4448 * @return the result of accumulating the given transformation
4449 * of all entries
4450 */
4451 public int reduceEntriesToIntInParallel
4452 (ToIntFunction<Map.Entry<K,V>> transformer,
4453 int basis,
4454 IntBinaryOperator reducer) {
4455 return ForkJoinTasks.reduceEntriesToInt
4456 (this, transformer, basis, reducer).invoke();
4457 }
4458
4459
4460 /* ----------------Views -------------- */
4461
4462 /**
4463 * Base class for views.
4464 */
4465 abstract static class CHMCollectionView<K, V, E>
4466 implements Collection<E>, java.io.Serializable {
4467 private static final long serialVersionUID = 7249069246763182397L;
4468 final ConcurrentHashMap<K, V> map;
4469 CHMCollectionView(ConcurrentHashMap<K, V> map) { this.map = map; }
4470
4471 /**
4472 * Returns the map backing this view.
4473 *
4474 * @return the map backing this view
4475 */
4476 public ConcurrentHashMap<K,V> getMap() { return map; }
4477
4478 /**
4479 * Removes all of the elements from this view, by removing all
4480 * the mappings from the map backing this view.
4481 */
4482 public final void clear() { map.clear(); }
4483 public final int size() { return map.size(); }
4484 public final boolean isEmpty() { return map.isEmpty(); }
4485
4486 // implementations below rely on concrete classes supplying these
4487 // abstract methods
4488 /**
4489 * Returns a "weakly consistent" iterator that will never
4490 * throw {@link ConcurrentModificationException}, and
4491 * guarantees to traverse elements as they existed upon
4492 * construction of the iterator, and may (but is not
4493 * guaranteed to) reflect any modifications subsequent to
4494 * construction.
4495 */
4496 public abstract Iterator<E> iterator();
4497 public abstract boolean contains(Object o);
4498 public abstract boolean remove(Object o);
4499
4500 private static final String oomeMsg = "Required array size too large";
4501
4502 public final Object[] toArray() {
4503 long sz = map.mappingCount();
4504 if (sz > MAX_ARRAY_SIZE)
4505 throw new OutOfMemoryError(oomeMsg);
4506 int n = (int)sz;
4507 Object[] r = new Object[n];
4508 int i = 0;
4509 for (E e : this) {
4510 if (i == n) {
4511 if (n >= MAX_ARRAY_SIZE)
4512 throw new OutOfMemoryError(oomeMsg);
4513 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4514 n = MAX_ARRAY_SIZE;
4515 else
4516 n += (n >>> 1) + 1;
4517 r = Arrays.copyOf(r, n);
4518 }
4519 r[i++] = e;
4520 }
4521 return (i == n) ? r : Arrays.copyOf(r, i);
4522 }
4523
4524 @SuppressWarnings("unchecked")
4525 public final <T> T[] toArray(T[] a) {
4526 long sz = map.mappingCount();
4527 if (sz > MAX_ARRAY_SIZE)
4528 throw new OutOfMemoryError(oomeMsg);
4529 int m = (int)sz;
4530 T[] r = (a.length >= m) ? a :
4531 (T[])java.lang.reflect.Array
4532 .newInstance(a.getClass().getComponentType(), m);
4533 int n = r.length;
4534 int i = 0;
4535 for (E e : this) {
4536 if (i == n) {
4537 if (n >= MAX_ARRAY_SIZE)
4538 throw new OutOfMemoryError(oomeMsg);
4539 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4540 n = MAX_ARRAY_SIZE;
4541 else
4542 n += (n >>> 1) + 1;
4543 r = Arrays.copyOf(r, n);
4544 }
4545 r[i++] = (T)e;
4546 }
4547 if (a == r && i < n) {
4548 r[i] = null; // null-terminate
4549 return r;
4550 }
4551 return (i == n) ? r : Arrays.copyOf(r, i);
4552 }
4553
4554 /**
4555 * Returns a string representation of this collection.
4556 * The string representation consists of the string representations
4557 * of the collection's elements in the order they are returned by
4558 * its iterator, enclosed in square brackets ({@code "[]"}).
4559 * Adjacent elements are separated by the characters {@code ", "}
4560 * (comma and space). Elements are converted to strings as by
4561 * {@link String#valueOf(Object)}.
4562 *
4563 * @return a string representation of this collection
4564 */
4565 public final String toString() {
4566 StringBuilder sb = new StringBuilder();
4567 sb.append('[');
4568 Iterator<E> it = iterator();
4569 if (it.hasNext()) {
4570 for (;;) {
4571 Object e = it.next();
4572 sb.append(e == this ? "(this Collection)" : e);
4573 if (!it.hasNext())
4574 break;
4575 sb.append(',').append(' ');
4576 }
4577 }
4578 return sb.append(']').toString();
4579 }
4580
4581 public final boolean containsAll(Collection<?> c) {
4582 if (c != this) {
4583 for (Object e : c) {
4584 if (e == null || !contains(e))
4585 return false;
4586 }
4587 }
4588 return true;
4589 }
4590
4591 public final boolean removeAll(Collection<?> c) {
4592 boolean modified = false;
4593 for (Iterator<E> it = iterator(); it.hasNext();) {
4594 if (c.contains(it.next())) {
4595 it.remove();
4596 modified = true;
4597 }
4598 }
4599 return modified;
4600 }
4601
4602 public final boolean retainAll(Collection<?> c) {
4603 boolean modified = false;
4604 for (Iterator<E> it = iterator(); it.hasNext();) {
4605 if (!c.contains(it.next())) {
4606 it.remove();
4607 modified = true;
4608 }
4609 }
4610 return modified;
4611 }
4612
4613 }
4614
4615 abstract static class CHMSetView<K, V, E>
4616 extends CHMCollectionView<K, V, E>
4617 implements Set<E>, java.io.Serializable {
4618 private static final long serialVersionUID = 7249069246763182397L;
4619 CHMSetView(ConcurrentHashMap<K, V> map) { super(map); }
4620
4621 // Implement Set API
4622
4623 /**
4624 * Implements {@link Set#hashCode()}.
4625 * @return the hash code value for this set
4626 */
4627 public final int hashCode() {
4628 int h = 0;
4629 for (E e : this)
4630 h += e.hashCode();
4631 return h;
4632 }
4633
4634 /**
4635 * Implements {@link Set#equals(Object)}.
4636 * @param o object to be compared for equality with this set
4637 * @return {@code true} if the specified object is equal to this set
4638 */
4639 public final boolean equals(Object o) {
4640 Set<?> c;
4641 return ((o instanceof Set) &&
4642 ((c = (Set<?>)o) == this ||
4643 (containsAll(c) && c.containsAll(this))));
4644 }
4645 }
4646
4647 /**
4648 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4649 * which additions may optionally be enabled by mapping to a
4650 * common value. This class cannot be directly instantiated.
4651 * See {@link #keySet() keySet()},
4652 * {@link #keySet(Object) keySet(V)},
4653 * {@link #newKeySet() newKeySet()},
4654 * {@link #newKeySet(int) newKeySet(int)}.
4655 */
4656 public static class KeySetView<K,V>
4657 extends CHMSetView<K,V,K>
4658 implements Set<K>, java.io.Serializable {
4659 private static final long serialVersionUID = 7249069246763182397L;
4660 private final V value;
4661 KeySetView(ConcurrentHashMap<K, V> map, V value) { // non-public
4662 super(map);
4663 this.value = value;
4664 }
4665
4666 /**
4667 * Returns the default mapped value for additions,
4668 * or {@code null} if additions are not supported.
4669 *
4670 * @return the default mapped value for additions, or {@code null}
4671 * if not supported
4672 */
4673 public V getMappedValue() { return value; }
4674
4675 /**
4676 * {@inheritDoc}
4677 * @throws NullPointerException if the specified key is null
4678 */
4679 public boolean contains(Object o) { return map.containsKey(o); }
4680
4681 /**
4682 * Removes the key from this map view, by removing the key (and its
4683 * corresponding value) from the backing map. This method does
4684 * nothing if the key is not in the map.
4685 *
4686 * @param o the key to be removed from the backing map
4687 * @return {@code true} if the backing map contained the specified key
4688 * @throws NullPointerException if the specified key is null
4689 */
4690 public boolean remove(Object o) { return map.remove(o) != null; }
4691
4692 /**
4693 * @return an iterator over the keys of the backing map
4694 */
4695 public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4696
4697 /**
4698 * Adds the specified key to this set view by mapping the key to
4699 * the default mapped value in the backing map, if defined.
4700 *
4701 * @param e key to be added
4702 * @return {@code true} if this set changed as a result of the call
4703 * @throws NullPointerException if the specified key is null
4704 * @throws UnsupportedOperationException if no default mapped value
4705 * for additions was provided
4706 */
4707 public boolean add(K e) {
4708 V v;
4709 if ((v = value) == null)
4710 throw new UnsupportedOperationException();
4711 return map.internalPut(e, v, true) == null;
4712 }
4713
4714 /**
4715 * Adds all of the elements in the specified collection to this set,
4716 * as if by calling {@link #add} on each one.
4717 *
4718 * @param c the elements to be inserted into this set
4719 * @return {@code true} if this set changed as a result of the call
4720 * @throws NullPointerException if the collection or any of its
4721 * elements are {@code null}
4722 * @throws UnsupportedOperationException if no default mapped value
4723 * for additions was provided
4724 */
4725 public boolean addAll(Collection<? extends K> c) {
4726 boolean added = false;
4727 V v;
4728 if ((v = value) == null)
4729 throw new UnsupportedOperationException();
4730 for (K e : c) {
4731 if (map.internalPut(e, v, true) == null)
4732 added = true;
4733 }
4734 return added;
4735 }
4736
4737 public Stream<K> stream() {
4738 return Streams.stream(() -> new KeyIterator<K,V>(map), 0);
4739 }
4740 public Stream<K> parallelStream() {
4741 return Streams.parallelStream(() -> new KeyIterator<K,V>(map, null),
4742 0);
4743 }
4744 }
4745
4746 /**
4747 * A view of a ConcurrentHashMap as a {@link Collection} of
4748 * values, in which additions are disabled. This class cannot be
4749 * directly instantiated. See {@link #values()}.
4750 *
4751 * <p>The view's {@code iterator} is a "weakly consistent" iterator
4752 * that will never throw {@link ConcurrentModificationException},
4753 * and guarantees to traverse elements as they existed upon
4754 * construction of the iterator, and may (but is not guaranteed to)
4755 * reflect any modifications subsequent to construction.
4756 */
4757 public static final class ValuesView<K,V>
4758 extends CHMCollectionView<K,V,V>
4759 implements Collection<V>, java.io.Serializable {
4760 private static final long serialVersionUID = 2249069246763182397L;
4761 ValuesView(ConcurrentHashMap<K, V> map) { super(map); }
4762 public final boolean contains(Object o) {
4763 return map.containsValue(o);
4764 }
4765 public final boolean remove(Object o) {
4766 if (o != null) {
4767 for (Iterator<V> it = iterator(); it.hasNext();) {
4768 if (o.equals(it.next())) {
4769 it.remove();
4770 return true;
4771 }
4772 }
4773 }
4774 return false;
4775 }
4776
4777 /**
4778 * @return an iterator over the values of the backing map
4779 */
4780 public final Iterator<V> iterator() {
4781 return new ValueIterator<K,V>(map);
4782 }
4783
4784 /** Always throws {@link UnsupportedOperationException}. */
4785 public final boolean add(V e) {
4786 throw new UnsupportedOperationException();
4787 }
4788 /** Always throws {@link UnsupportedOperationException}. */
4789 public final boolean addAll(Collection<? extends V> c) {
4790 throw new UnsupportedOperationException();
4791 }
4792
4793 public Stream<V> stream() {
4794 return Streams.stream(() -> new ValueIterator<K,V>(map), 0);
4795 }
4796
4797 public Stream<V> parallelStream() {
4798 return Streams.parallelStream(() -> new ValueIterator<K,V>(map, null),
4799 0);
4800 }
4801
4802 }
4803
4804 /**
4805 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4806 * entries. This class cannot be directly instantiated. See
4807 * {@link #entrySet()}.
4808 */
4809 public static final class EntrySetView<K,V>
4810 extends CHMSetView<K,V,Map.Entry<K,V>>
4811 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4812 private static final long serialVersionUID = 2249069246763182397L;
4813 EntrySetView(ConcurrentHashMap<K, V> map) { super(map); }
4814
4815 public final boolean contains(Object o) {
4816 Object k, v, r; Map.Entry<?,?> e;
4817 return ((o instanceof Map.Entry) &&
4818 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4819 (r = map.get(k)) != null &&
4820 (v = e.getValue()) != null &&
4821 (v == r || v.equals(r)));
4822 }
4823 public final boolean remove(Object o) {
4824 Object k, v; Map.Entry<?,?> e;
4825 return ((o instanceof Map.Entry) &&
4826 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4827 (v = e.getValue()) != null &&
4828 map.remove(k, v));
4829 }
4830
4831 /**
4832 * @return an iterator over the entries of the backing map
4833 */
4834 public final Iterator<Map.Entry<K,V>> iterator() {
4835 return new EntryIterator<K,V>(map);
4836 }
4837
4838 /**
4839 * Adds the specified mapping to this view.
4840 *
4841 * @param e mapping to be added
4842 * @return {@code true} if this set changed as a result of the call
4843 * @throws NullPointerException if the entry, its key, or its
4844 * value is null
4845 */
4846 public final boolean add(Entry<K,V> e) {
4847 return map.internalPut(e.getKey(), e.getValue(), false) == null;
4848 }
4849 /**
4850 * Adds all of the mappings in the specified collection to this
4851 * set, as if by calling {@link #add(Map.Entry)} on each one.
4852 * @param c the mappings to be inserted into this set
4853 * @return {@code true} if this set changed as a result of the call
4854 * @throws NullPointerException if the collection or any of its
4855 * entries, keys, or values are null
4856 */
4857 public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4858 boolean added = false;
4859 for (Entry<K,V> e : c) {
4860 if (add(e))
4861 added = true;
4862 }
4863 return added;
4864 }
4865
4866 public Stream<Map.Entry<K,V>> stream() {
4867 return Streams.stream(() -> new EntryIterator<K,V>(map), 0);
4868 }
4869
4870 public Stream<Map.Entry<K,V>> parallelStream() {
4871 return Streams.parallelStream(() -> new EntryIterator<K,V>(map, null),
4872 0);
4873 }
4874 }
4875
4876 // ---------------------------------------------------------------------
4877
4878 /**
4879 * Predefined tasks for performing bulk parallel operations on
4880 * ConcurrentHashMaps. These tasks follow the forms and rules used
4881 * for bulk operations. Each method has the same name, but returns
4882 * a task rather than invoking it. These methods may be useful in
4883 * custom applications such as submitting a task without waiting
4884 * for completion, using a custom pool, or combining with other
4885 * tasks.
4886 */
4887 public static class ForkJoinTasks {
4888 private ForkJoinTasks() {}
4889
4890 /**
4891 * Returns a task that when invoked, performs the given
4892 * action for each (key, value)
4893 *
4894 * @param map the map
4895 * @param action the action
4896 * @return the task
4897 */
4898 public static <K,V> ForkJoinTask<Void> forEach
4899 (ConcurrentHashMap<K,V> map,
4900 BiConsumer<? super K, ? super V> action) {
4901 if (action == null) throw new NullPointerException();
4902 return new ForEachMappingTask<K,V>(map, null, -1, action);
4903 }
4904
4905 /**
4906 * Returns a task that when invoked, performs the given
4907 * action for each non-null transformation of each (key, value)
4908 *
4909 * @param map the map
4910 * @param transformer a function returning the transformation
4911 * for an element, or null if there is no transformation (in
4912 * which case the action is not applied)
4913 * @param action the action
4914 * @return the task
4915 */
4916 public static <K,V,U> ForkJoinTask<Void> forEach
4917 (ConcurrentHashMap<K,V> map,
4918 BiFunction<? super K, ? super V, ? extends U> transformer,
4919 Consumer<? super U> action) {
4920 if (transformer == null || action == null)
4921 throw new NullPointerException();
4922 return new ForEachTransformedMappingTask<K,V,U>
4923 (map, null, -1, transformer, action);
4924 }
4925
4926 /**
4927 * Returns a task that when invoked, returns a non-null result
4928 * from applying the given search function on each (key,
4929 * value), or null if none. Upon success, further element
4930 * processing is suppressed and the results of any other
4931 * parallel invocations of the search function are ignored.
4932 *
4933 * @param map the map
4934 * @param searchFunction a function returning a non-null
4935 * result on success, else null
4936 * @return the task
4937 */
4938 public static <K,V,U> ForkJoinTask<U> search
4939 (ConcurrentHashMap<K,V> map,
4940 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4941 if (searchFunction == null) throw new NullPointerException();
4942 return new SearchMappingsTask<K,V,U>
4943 (map, null, -1, searchFunction,
4944 new AtomicReference<U>());
4945 }
4946
4947 /**
4948 * Returns a task that when invoked, returns the result of
4949 * accumulating the given transformation of all (key, value) pairs
4950 * using the given reducer to combine values, or null if none.
4951 *
4952 * @param map the map
4953 * @param transformer a function returning the transformation
4954 * for an element, or null if there is no transformation (in
4955 * which case it is not combined)
4956 * @param reducer a commutative associative combining function
4957 * @return the task
4958 */
4959 public static <K,V,U> ForkJoinTask<U> reduce
4960 (ConcurrentHashMap<K,V> map,
4961 BiFunction<? super K, ? super V, ? extends U> transformer,
4962 BiFunction<? super U, ? super U, ? extends U> reducer) {
4963 if (transformer == null || reducer == null)
4964 throw new NullPointerException();
4965 return new MapReduceMappingsTask<K,V,U>
4966 (map, null, -1, null, transformer, reducer);
4967 }
4968
4969 /**
4970 * Returns a task that when invoked, returns the result of
4971 * accumulating the given transformation of all (key, value) pairs
4972 * using the given reducer to combine values, and the given
4973 * basis as an identity value.
4974 *
4975 * @param map the map
4976 * @param transformer a function returning the transformation
4977 * for an element
4978 * @param basis the identity (initial default value) for the reduction
4979 * @param reducer a commutative associative combining function
4980 * @return the task
4981 */
4982 public static <K,V> ForkJoinTask<Double> reduceToDouble
4983 (ConcurrentHashMap<K,V> map,
4984 ToDoubleBiFunction<? super K, ? super V> transformer,
4985 double basis,
4986 DoubleBinaryOperator reducer) {
4987 if (transformer == null || reducer == null)
4988 throw new NullPointerException();
4989 return new MapReduceMappingsToDoubleTask<K,V>
4990 (map, null, -1, null, transformer, basis, reducer);
4991 }
4992
4993 /**
4994 * Returns a task that when invoked, returns the result of
4995 * accumulating the given transformation of all (key, value) pairs
4996 * using the given reducer to combine values, and the given
4997 * basis as an identity value.
4998 *
4999 * @param map the map
5000 * @param transformer a function returning the transformation
5001 * for an element
5002 * @param basis the identity (initial default value) for the reduction
5003 * @param reducer a commutative associative combining function
5004 * @return the task
5005 */
5006 public static <K,V> ForkJoinTask<Long> reduceToLong
5007 (ConcurrentHashMap<K,V> map,
5008 ToLongBiFunction<? super K, ? super V> transformer,
5009 long basis,
5010 LongBinaryOperator reducer) {
5011 if (transformer == null || reducer == null)
5012 throw new NullPointerException();
5013 return new MapReduceMappingsToLongTask<K,V>
5014 (map, null, -1, null, transformer, basis, reducer);
5015 }
5016
5017 /**
5018 * Returns a task that when invoked, returns the result of
5019 * accumulating the given transformation of all (key, value) pairs
5020 * using the given reducer to combine values, and the given
5021 * basis as an identity value.
5022 *
5023 * @param map the map
5024 * @param transformer a function returning the transformation
5025 * for an element
5026 * @param basis the identity (initial default value) for the reduction
5027 * @param reducer a commutative associative combining function
5028 * @return the task
5029 */
5030 public static <K,V> ForkJoinTask<Integer> reduceToInt
5031 (ConcurrentHashMap<K,V> map,
5032 ToIntBiFunction<? super K, ? super V> transformer,
5033 int basis,
5034 IntBinaryOperator reducer) {
5035 if (transformer == null || reducer == null)
5036 throw new NullPointerException();
5037 return new MapReduceMappingsToIntTask<K,V>
5038 (map, null, -1, null, transformer, basis, reducer);
5039 }
5040
5041 /**
5042 * Returns a task that when invoked, performs the given action
5043 * for each key.
5044 *
5045 * @param map the map
5046 * @param action the action
5047 * @return the task
5048 */
5049 public static <K,V> ForkJoinTask<Void> forEachKey
5050 (ConcurrentHashMap<K,V> map,
5051 Consumer<? super K> action) {
5052 if (action == null) throw new NullPointerException();
5053 return new ForEachKeyTask<K,V>(map, null, -1, action);
5054 }
5055
5056 /**
5057 * Returns a task that when invoked, performs the given action
5058 * for each non-null transformation of each key.
5059 *
5060 * @param map the map
5061 * @param transformer a function returning the transformation
5062 * for an element, or null if there is no transformation (in
5063 * which case the action is not applied)
5064 * @param action the action
5065 * @return the task
5066 */
5067 public static <K,V,U> ForkJoinTask<Void> forEachKey
5068 (ConcurrentHashMap<K,V> map,
5069 Function<? super K, ? extends U> transformer,
5070 Consumer<? super U> action) {
5071 if (transformer == null || action == null)
5072 throw new NullPointerException();
5073 return new ForEachTransformedKeyTask<K,V,U>
5074 (map, null, -1, transformer, action);
5075 }
5076
5077 /**
5078 * Returns a task that when invoked, returns a non-null result
5079 * from applying the given search function on each key, or
5080 * null if none. Upon success, further element processing is
5081 * suppressed and the results of any other parallel
5082 * invocations of the search function are ignored.
5083 *
5084 * @param map the map
5085 * @param searchFunction a function returning a non-null
5086 * result on success, else null
5087 * @return the task
5088 */
5089 public static <K,V,U> ForkJoinTask<U> searchKeys
5090 (ConcurrentHashMap<K,V> map,
5091 Function<? super K, ? extends U> searchFunction) {
5092 if (searchFunction == null) throw new NullPointerException();
5093 return new SearchKeysTask<K,V,U>
5094 (map, null, -1, searchFunction,
5095 new AtomicReference<U>());
5096 }
5097
5098 /**
5099 * Returns a task that when invoked, returns the result of
5100 * accumulating all keys using the given reducer to combine
5101 * values, or null if none.
5102 *
5103 * @param map the map
5104 * @param reducer a commutative associative combining function
5105 * @return the task
5106 */
5107 public static <K,V> ForkJoinTask<K> reduceKeys
5108 (ConcurrentHashMap<K,V> map,
5109 BiFunction<? super K, ? super K, ? extends K> reducer) {
5110 if (reducer == null) throw new NullPointerException();
5111 return new ReduceKeysTask<K,V>
5112 (map, null, -1, null, reducer);
5113 }
5114
5115 /**
5116 * Returns a task that when invoked, returns the result of
5117 * accumulating the given transformation of all keys using the given
5118 * reducer to combine values, or null if none.
5119 *
5120 * @param map the map
5121 * @param transformer a function returning the transformation
5122 * for an element, or null if there is no transformation (in
5123 * which case it is not combined)
5124 * @param reducer a commutative associative combining function
5125 * @return the task
5126 */
5127 public static <K,V,U> ForkJoinTask<U> reduceKeys
5128 (ConcurrentHashMap<K,V> map,
5129 Function<? super K, ? extends U> transformer,
5130 BiFunction<? super U, ? super U, ? extends U> reducer) {
5131 if (transformer == null || reducer == null)
5132 throw new NullPointerException();
5133 return new MapReduceKeysTask<K,V,U>
5134 (map, null, -1, null, transformer, reducer);
5135 }
5136
5137 /**
5138 * Returns a task that when invoked, returns the result of
5139 * accumulating the given transformation of all keys using the given
5140 * reducer to combine values, and the given basis as an
5141 * identity value.
5142 *
5143 * @param map the map
5144 * @param transformer a function returning the transformation
5145 * for an element
5146 * @param basis the identity (initial default value) for the reduction
5147 * @param reducer a commutative associative combining function
5148 * @return the task
5149 */
5150 public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5151 (ConcurrentHashMap<K,V> map,
5152 ToDoubleFunction<? super K> transformer,
5153 double basis,
5154 DoubleBinaryOperator reducer) {
5155 if (transformer == null || reducer == null)
5156 throw new NullPointerException();
5157 return new MapReduceKeysToDoubleTask<K,V>
5158 (map, null, -1, null, transformer, basis, reducer);
5159 }
5160
5161 /**
5162 * Returns a task that when invoked, returns the result of
5163 * accumulating the given transformation of all keys using the given
5164 * reducer to combine values, and the given basis as an
5165 * identity value.
5166 *
5167 * @param map the map
5168 * @param transformer a function returning the transformation
5169 * for an element
5170 * @param basis the identity (initial default value) for the reduction
5171 * @param reducer a commutative associative combining function
5172 * @return the task
5173 */
5174 public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5175 (ConcurrentHashMap<K,V> map,
5176 ToLongFunction<? super K> transformer,
5177 long basis,
5178 LongBinaryOperator reducer) {
5179 if (transformer == null || reducer == null)
5180 throw new NullPointerException();
5181 return new MapReduceKeysToLongTask<K,V>
5182 (map, null, -1, null, transformer, basis, reducer);
5183 }
5184
5185 /**
5186 * Returns a task that when invoked, returns the result of
5187 * accumulating the given transformation of all keys using the given
5188 * reducer to combine values, and the given basis as an
5189 * identity value.
5190 *
5191 * @param map the map
5192 * @param transformer a function returning the transformation
5193 * for an element
5194 * @param basis the identity (initial default value) for the reduction
5195 * @param reducer a commutative associative combining function
5196 * @return the task
5197 */
5198 public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5199 (ConcurrentHashMap<K,V> map,
5200 ToIntFunction<? super K> transformer,
5201 int basis,
5202 IntBinaryOperator reducer) {
5203 if (transformer == null || reducer == null)
5204 throw new NullPointerException();
5205 return new MapReduceKeysToIntTask<K,V>
5206 (map, null, -1, null, transformer, basis, reducer);
5207 }
5208
5209 /**
5210 * Returns a task that when invoked, performs the given action
5211 * for each value.
5212 *
5213 * @param map the map
5214 * @param action the action
5215 * @return the task
5216 */
5217 public static <K,V> ForkJoinTask<Void> forEachValue
5218 (ConcurrentHashMap<K,V> map,
5219 Consumer<? super V> action) {
5220 if (action == null) throw new NullPointerException();
5221 return new ForEachValueTask<K,V>(map, null, -1, action);
5222 }
5223
5224 /**
5225 * Returns a task that when invoked, performs the given action
5226 * for each non-null transformation of each value.
5227 *
5228 * @param map the map
5229 * @param transformer a function returning the transformation
5230 * for an element, or null if there is no transformation (in
5231 * which case the action is not applied)
5232 * @param action the action
5233 * @return the task
5234 */
5235 public static <K,V,U> ForkJoinTask<Void> forEachValue
5236 (ConcurrentHashMap<K,V> map,
5237 Function<? super V, ? extends U> transformer,
5238 Consumer<? super U> action) {
5239 if (transformer == null || action == null)
5240 throw new NullPointerException();
5241 return new ForEachTransformedValueTask<K,V,U>
5242 (map, null, -1, transformer, action);
5243 }
5244
5245 /**
5246 * Returns a task that when invoked, returns a non-null result
5247 * from applying the given search function on each value, or
5248 * null if none. Upon success, further element processing is
5249 * suppressed and the results of any other parallel
5250 * invocations of the search function are ignored.
5251 *
5252 * @param map the map
5253 * @param searchFunction a function returning a non-null
5254 * result on success, else null
5255 * @return the task
5256 */
5257 public static <K,V,U> ForkJoinTask<U> searchValues
5258 (ConcurrentHashMap<K,V> map,
5259 Function<? super V, ? extends U> searchFunction) {
5260 if (searchFunction == null) throw new NullPointerException();
5261 return new SearchValuesTask<K,V,U>
5262 (map, null, -1, searchFunction,
5263 new AtomicReference<U>());
5264 }
5265
5266 /**
5267 * Returns a task that when invoked, returns the result of
5268 * accumulating all values using the given reducer to combine
5269 * values, or null if none.
5270 *
5271 * @param map the map
5272 * @param reducer a commutative associative combining function
5273 * @return the task
5274 */
5275 public static <K,V> ForkJoinTask<V> reduceValues
5276 (ConcurrentHashMap<K,V> map,
5277 BiFunction<? super V, ? super V, ? extends V> reducer) {
5278 if (reducer == null) throw new NullPointerException();
5279 return new ReduceValuesTask<K,V>
5280 (map, null, -1, null, reducer);
5281 }
5282
5283 /**
5284 * Returns a task that when invoked, returns the result of
5285 * accumulating the given transformation of all values using the
5286 * given reducer to combine values, or null if none.
5287 *
5288 * @param map the map
5289 * @param transformer a function returning the transformation
5290 * for an element, or null if there is no transformation (in
5291 * which case it is not combined)
5292 * @param reducer a commutative associative combining function
5293 * @return the task
5294 */
5295 public static <K,V,U> ForkJoinTask<U> reduceValues
5296 (ConcurrentHashMap<K,V> map,
5297 Function<? super V, ? extends U> transformer,
5298 BiFunction<? super U, ? super U, ? extends U> reducer) {
5299 if (transformer == null || reducer == null)
5300 throw new NullPointerException();
5301 return new MapReduceValuesTask<K,V,U>
5302 (map, null, -1, null, transformer, reducer);
5303 }
5304
5305 /**
5306 * Returns a task that when invoked, returns the result of
5307 * accumulating the given transformation of all values using the
5308 * given reducer to combine values, and the given basis as an
5309 * identity value.
5310 *
5311 * @param map the map
5312 * @param transformer a function returning the transformation
5313 * for an element
5314 * @param basis the identity (initial default value) for the reduction
5315 * @param reducer a commutative associative combining function
5316 * @return the task
5317 */
5318 public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5319 (ConcurrentHashMap<K,V> map,
5320 ToDoubleFunction<? super V> transformer,
5321 double basis,
5322 DoubleBinaryOperator reducer) {
5323 if (transformer == null || reducer == null)
5324 throw new NullPointerException();
5325 return new MapReduceValuesToDoubleTask<K,V>
5326 (map, null, -1, null, transformer, basis, reducer);
5327 }
5328
5329 /**
5330 * Returns a task that when invoked, returns the result of
5331 * accumulating the given transformation of all values using the
5332 * given reducer to combine values, and the given basis as an
5333 * identity value.
5334 *
5335 * @param map the map
5336 * @param transformer a function returning the transformation
5337 * for an element
5338 * @param basis the identity (initial default value) for the reduction
5339 * @param reducer a commutative associative combining function
5340 * @return the task
5341 */
5342 public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5343 (ConcurrentHashMap<K,V> map,
5344 ToLongFunction<? super V> transformer,
5345 long basis,
5346 LongBinaryOperator reducer) {
5347 if (transformer == null || reducer == null)
5348 throw new NullPointerException();
5349 return new MapReduceValuesToLongTask<K,V>
5350 (map, null, -1, null, transformer, basis, reducer);
5351 }
5352
5353 /**
5354 * Returns a task that when invoked, returns the result of
5355 * accumulating the given transformation of all values using the
5356 * given reducer to combine values, and the given basis as an
5357 * identity value.
5358 *
5359 * @param map the map
5360 * @param transformer a function returning the transformation
5361 * for an element
5362 * @param basis the identity (initial default value) for the reduction
5363 * @param reducer a commutative associative combining function
5364 * @return the task
5365 */
5366 public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5367 (ConcurrentHashMap<K,V> map,
5368 ToIntFunction<? super V> transformer,
5369 int basis,
5370 IntBinaryOperator reducer) {
5371 if (transformer == null || reducer == null)
5372 throw new NullPointerException();
5373 return new MapReduceValuesToIntTask<K,V>
5374 (map, null, -1, null, transformer, basis, reducer);
5375 }
5376
5377 /**
5378 * Returns a task that when invoked, perform the given action
5379 * for each entry.
5380 *
5381 * @param map the map
5382 * @param action the action
5383 * @return the task
5384 */
5385 public static <K,V> ForkJoinTask<Void> forEachEntry
5386 (ConcurrentHashMap<K,V> map,
5387 Consumer<? super Map.Entry<K,V>> action) {
5388 if (action == null) throw new NullPointerException();
5389 return new ForEachEntryTask<K,V>(map, null, -1, action);
5390 }
5391
5392 /**
5393 * Returns a task that when invoked, perform the given action
5394 * for each non-null transformation of each entry.
5395 *
5396 * @param map the map
5397 * @param transformer a function returning the transformation
5398 * for an element, or null if there is no transformation (in
5399 * which case the action is not applied)
5400 * @param action the action
5401 * @return the task
5402 */
5403 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5404 (ConcurrentHashMap<K,V> map,
5405 Function<Map.Entry<K,V>, ? extends U> transformer,
5406 Consumer<? super U> action) {
5407 if (transformer == null || action == null)
5408 throw new NullPointerException();
5409 return new ForEachTransformedEntryTask<K,V,U>
5410 (map, null, -1, transformer, action);
5411 }
5412
5413 /**
5414 * Returns a task that when invoked, returns a non-null result
5415 * from applying the given search function on each entry, or
5416 * null if none. Upon success, further element processing is
5417 * suppressed and the results of any other parallel
5418 * invocations of the search function are ignored.
5419 *
5420 * @param map the map
5421 * @param searchFunction a function returning a non-null
5422 * result on success, else null
5423 * @return the task
5424 */
5425 public static <K,V,U> ForkJoinTask<U> searchEntries
5426 (ConcurrentHashMap<K,V> map,
5427 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
5428 if (searchFunction == null) throw new NullPointerException();
5429 return new SearchEntriesTask<K,V,U>
5430 (map, null, -1, searchFunction,
5431 new AtomicReference<U>());
5432 }
5433
5434 /**
5435 * Returns a task that when invoked, returns the result of
5436 * accumulating all entries using the given reducer to combine
5437 * values, or null if none.
5438 *
5439 * @param map the map
5440 * @param reducer a commutative associative combining function
5441 * @return the task
5442 */
5443 public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5444 (ConcurrentHashMap<K,V> map,
5445 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5446 if (reducer == null) throw new NullPointerException();
5447 return new ReduceEntriesTask<K,V>
5448 (map, null, -1, null, reducer);
5449 }
5450
5451 /**
5452 * Returns a task that when invoked, returns the result of
5453 * accumulating the given transformation of all entries using the
5454 * given reducer to combine values, or null if none.
5455 *
5456 * @param map the map
5457 * @param transformer a function returning the transformation
5458 * for an element, or null if there is no transformation (in
5459 * which case it is not combined)
5460 * @param reducer a commutative associative combining function
5461 * @return the task
5462 */
5463 public static <K,V,U> ForkJoinTask<U> reduceEntries
5464 (ConcurrentHashMap<K,V> map,
5465 Function<Map.Entry<K,V>, ? extends U> transformer,
5466 BiFunction<? super U, ? super U, ? extends U> reducer) {
5467 if (transformer == null || reducer == null)
5468 throw new NullPointerException();
5469 return new MapReduceEntriesTask<K,V,U>
5470 (map, null, -1, null, transformer, reducer);
5471 }
5472
5473 /**
5474 * Returns a task that when invoked, returns the result of
5475 * accumulating the given transformation of all entries using the
5476 * given reducer to combine values, and the given basis as an
5477 * identity value.
5478 *
5479 * @param map the map
5480 * @param transformer a function returning the transformation
5481 * for an element
5482 * @param basis the identity (initial default value) for the reduction
5483 * @param reducer a commutative associative combining function
5484 * @return the task
5485 */
5486 public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5487 (ConcurrentHashMap<K,V> map,
5488 ToDoubleFunction<Map.Entry<K,V>> transformer,
5489 double basis,
5490 DoubleBinaryOperator reducer) {
5491 if (transformer == null || reducer == null)
5492 throw new NullPointerException();
5493 return new MapReduceEntriesToDoubleTask<K,V>
5494 (map, null, -1, null, transformer, basis, reducer);
5495 }
5496
5497 /**
5498 * Returns a task that when invoked, returns the result of
5499 * accumulating the given transformation of all entries using the
5500 * given reducer to combine values, and the given basis as an
5501 * identity value.
5502 *
5503 * @param map the map
5504 * @param transformer a function returning the transformation
5505 * for an element
5506 * @param basis the identity (initial default value) for the reduction
5507 * @param reducer a commutative associative combining function
5508 * @return the task
5509 */
5510 public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5511 (ConcurrentHashMap<K,V> map,
5512 ToLongFunction<Map.Entry<K,V>> transformer,
5513 long basis,
5514 LongBinaryOperator reducer) {
5515 if (transformer == null || reducer == null)
5516 throw new NullPointerException();
5517 return new MapReduceEntriesToLongTask<K,V>
5518 (map, null, -1, null, transformer, basis, reducer);
5519 }
5520
5521 /**
5522 * Returns a task that when invoked, returns the result of
5523 * accumulating the given transformation of all entries using the
5524 * given reducer to combine values, and the given basis as an
5525 * identity value.
5526 *
5527 * @param map the map
5528 * @param transformer a function returning the transformation
5529 * for an element
5530 * @param basis the identity (initial default value) for the reduction
5531 * @param reducer a commutative associative combining function
5532 * @return the task
5533 */
5534 public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5535 (ConcurrentHashMap<K,V> map,
5536 ToIntFunction<Map.Entry<K,V>> transformer,
5537 int basis,
5538 IntBinaryOperator reducer) {
5539 if (transformer == null || reducer == null)
5540 throw new NullPointerException();
5541 return new MapReduceEntriesToIntTask<K,V>
5542 (map, null, -1, null, transformer, basis, reducer);
5543 }
5544 }
5545
5546 // -------------------------------------------------------
5547
5548 /*
5549 * Task classes. Coded in a regular but ugly format/style to
5550 * simplify checks that each variant differs in the right way from
5551 * others. The null screenings exist because compilers cannot tell
5552 * that we've already null-checked task arguments, so we force
5553 * simplest hoisted bypass to help avoid convoluted traps.
5554 */
5555
5556 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5557 extends Traverser<K,V,Void> {
5558 final Consumer<? super K> action;
5559 ForEachKeyTask
5560 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5561 Consumer<? super K> action) {
5562 super(m, p, b);
5563 this.action = action;
5564 }
5565 public final void compute() {
5566 final Consumer<? super K> action;
5567 if ((action = this.action) != null) {
5568 for (int b; (b = preSplit()) > 0;)
5569 new ForEachKeyTask<K,V>(map, this, b, action).fork();
5570 while (advance() != null)
5571 action.accept(nextKey);
5572 propagateCompletion();
5573 }
5574 }
5575 }
5576
5577 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5578 extends Traverser<K,V,Void> {
5579 final Consumer<? super V> action;
5580 ForEachValueTask
5581 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5582 Consumer<? super V> action) {
5583 super(m, p, b);
5584 this.action = action;
5585 }
5586 public final void compute() {
5587 final Consumer<? super V> action;
5588 if ((action = this.action) != null) {
5589 for (int b; (b = preSplit()) > 0;)
5590 new ForEachValueTask<K,V>(map, this, b, action).fork();
5591 V v;
5592 while ((v = advance()) != null)
5593 action.accept(v);
5594 propagateCompletion();
5595 }
5596 }
5597 }
5598
5599 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5600 extends Traverser<K,V,Void> {
5601 final Consumer<? super Entry<K,V>> action;
5602 ForEachEntryTask
5603 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5604 Consumer<? super Entry<K,V>> action) {
5605 super(m, p, b);
5606 this.action = action;
5607 }
5608 public final void compute() {
5609 final Consumer<? super Entry<K,V>> action;
5610 if ((action = this.action) != null) {
5611 for (int b; (b = preSplit()) > 0;)
5612 new ForEachEntryTask<K,V>(map, this, b, action).fork();
5613 V v;
5614 while ((v = advance()) != null)
5615 action.accept(entryFor(nextKey, v));
5616 propagateCompletion();
5617 }
5618 }
5619 }
5620
5621 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5622 extends Traverser<K,V,Void> {
5623 final BiConsumer<? super K, ? super V> action;
5624 ForEachMappingTask
5625 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5626 BiConsumer<? super K,? super V> action) {
5627 super(m, p, b);
5628 this.action = action;
5629 }
5630 public final void compute() {
5631 final BiConsumer<? super K, ? super V> action;
5632 if ((action = this.action) != null) {
5633 for (int b; (b = preSplit()) > 0;)
5634 new ForEachMappingTask<K,V>(map, this, b, action).fork();
5635 V v;
5636 while ((v = advance()) != null)
5637 action.accept(nextKey, v);
5638 propagateCompletion();
5639 }
5640 }
5641 }
5642
5643 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5644 extends Traverser<K,V,Void> {
5645 final Function<? super K, ? extends U> transformer;
5646 final Consumer<? super U> action;
5647 ForEachTransformedKeyTask
5648 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5649 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5650 super(m, p, b);
5651 this.transformer = transformer; this.action = action;
5652 }
5653 public final void compute() {
5654 final Function<? super K, ? extends U> transformer;
5655 final Consumer<? super U> action;
5656 if ((transformer = this.transformer) != null &&
5657 (action = this.action) != null) {
5658 for (int b; (b = preSplit()) > 0;)
5659 new ForEachTransformedKeyTask<K,V,U>
5660 (map, this, b, transformer, action).fork();
5661 U u;
5662 while (advance() != null) {
5663 if ((u = transformer.apply(nextKey)) != null)
5664 action.accept(u);
5665 }
5666 propagateCompletion();
5667 }
5668 }
5669 }
5670
5671 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5672 extends Traverser<K,V,Void> {
5673 final Function<? super V, ? extends U> transformer;
5674 final Consumer<? super U> action;
5675 ForEachTransformedValueTask
5676 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5677 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5678 super(m, p, b);
5679 this.transformer = transformer; this.action = action;
5680 }
5681 public final void compute() {
5682 final Function<? super V, ? extends U> transformer;
5683 final Consumer<? super U> action;
5684 if ((transformer = this.transformer) != null &&
5685 (action = this.action) != null) {
5686 for (int b; (b = preSplit()) > 0;)
5687 new ForEachTransformedValueTask<K,V,U>
5688 (map, this, b, transformer, action).fork();
5689 V v; U u;
5690 while ((v = advance()) != null) {
5691 if ((u = transformer.apply(v)) != null)
5692 action.accept(u);
5693 }
5694 propagateCompletion();
5695 }
5696 }
5697 }
5698
5699 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5700 extends Traverser<K,V,Void> {
5701 final Function<Map.Entry<K,V>, ? extends U> transformer;
5702 final Consumer<? super U> action;
5703 ForEachTransformedEntryTask
5704 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5705 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5706 super(m, p, b);
5707 this.transformer = transformer; this.action = action;
5708 }
5709 public final void compute() {
5710 final Function<Map.Entry<K,V>, ? extends U> transformer;
5711 final Consumer<? super U> action;
5712 if ((transformer = this.transformer) != null &&
5713 (action = this.action) != null) {
5714 for (int b; (b = preSplit()) > 0;)
5715 new ForEachTransformedEntryTask<K,V,U>
5716 (map, this, b, transformer, action).fork();
5717 V v; U u;
5718 while ((v = advance()) != null) {
5719 if ((u = transformer.apply(entryFor(nextKey,
5720 v))) != null)
5721 action.accept(u);
5722 }
5723 propagateCompletion();
5724 }
5725 }
5726 }
5727
5728 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5729 extends Traverser<K,V,Void> {
5730 final BiFunction<? super K, ? super V, ? extends U> transformer;
5731 final Consumer<? super U> action;
5732 ForEachTransformedMappingTask
5733 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5734 BiFunction<? super K, ? super V, ? extends U> transformer,
5735 Consumer<? super U> action) {
5736 super(m, p, b);
5737 this.transformer = transformer; this.action = action;
5738 }
5739 public final void compute() {
5740 final BiFunction<? super K, ? super V, ? extends U> transformer;
5741 final Consumer<? super U> action;
5742 if ((transformer = this.transformer) != null &&
5743 (action = this.action) != null) {
5744 for (int b; (b = preSplit()) > 0;)
5745 new ForEachTransformedMappingTask<K,V,U>
5746 (map, this, b, transformer, action).fork();
5747 V v; U u;
5748 while ((v = advance()) != null) {
5749 if ((u = transformer.apply(nextKey, v)) != null)
5750 action.accept(u);
5751 }
5752 propagateCompletion();
5753 }
5754 }
5755 }
5756
5757 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5758 extends Traverser<K,V,U> {
5759 final Function<? super K, ? extends U> searchFunction;
5760 final AtomicReference<U> result;
5761 SearchKeysTask
5762 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5763 Function<? super K, ? extends U> searchFunction,
5764 AtomicReference<U> result) {
5765 super(m, p, b);
5766 this.searchFunction = searchFunction; this.result = result;
5767 }
5768 public final U getRawResult() { return result.get(); }
5769 public final void compute() {
5770 final Function<? super K, ? extends U> searchFunction;
5771 final AtomicReference<U> result;
5772 if ((searchFunction = this.searchFunction) != null &&
5773 (result = this.result) != null) {
5774 for (int b;;) {
5775 if (result.get() != null)
5776 return;
5777 if ((b = preSplit()) <= 0)
5778 break;
5779 new SearchKeysTask<K,V,U>
5780 (map, this, b, searchFunction, result).fork();
5781 }
5782 while (result.get() == null) {
5783 U u;
5784 if (advance() == null) {
5785 propagateCompletion();
5786 break;
5787 }
5788 if ((u = searchFunction.apply(nextKey)) != null) {
5789 if (result.compareAndSet(null, u))
5790 quietlyCompleteRoot();
5791 break;
5792 }
5793 }
5794 }
5795 }
5796 }
5797
5798 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5799 extends Traverser<K,V,U> {
5800 final Function<? super V, ? extends U> searchFunction;
5801 final AtomicReference<U> result;
5802 SearchValuesTask
5803 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5804 Function<? super V, ? extends U> searchFunction,
5805 AtomicReference<U> result) {
5806 super(m, p, b);
5807 this.searchFunction = searchFunction; this.result = result;
5808 }
5809 public final U getRawResult() { return result.get(); }
5810 public final void compute() {
5811 final Function<? super V, ? extends U> searchFunction;
5812 final AtomicReference<U> result;
5813 if ((searchFunction = this.searchFunction) != null &&
5814 (result = this.result) != null) {
5815 for (int b;;) {
5816 if (result.get() != null)
5817 return;
5818 if ((b = preSplit()) <= 0)
5819 break;
5820 new SearchValuesTask<K,V,U>
5821 (map, this, b, searchFunction, result).fork();
5822 }
5823 while (result.get() == null) {
5824 V v; U u;
5825 if ((v = advance()) == null) {
5826 propagateCompletion();
5827 break;
5828 }
5829 if ((u = searchFunction.apply(v)) != null) {
5830 if (result.compareAndSet(null, u))
5831 quietlyCompleteRoot();
5832 break;
5833 }
5834 }
5835 }
5836 }
5837 }
5838
5839 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5840 extends Traverser<K,V,U> {
5841 final Function<Entry<K,V>, ? extends U> searchFunction;
5842 final AtomicReference<U> result;
5843 SearchEntriesTask
5844 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5845 Function<Entry<K,V>, ? extends U> searchFunction,
5846 AtomicReference<U> result) {
5847 super(m, p, b);
5848 this.searchFunction = searchFunction; this.result = result;
5849 }
5850 public final U getRawResult() { return result.get(); }
5851 public final void compute() {
5852 final Function<Entry<K,V>, ? extends U> searchFunction;
5853 final AtomicReference<U> result;
5854 if ((searchFunction = this.searchFunction) != null &&
5855 (result = this.result) != null) {
5856 for (int b;;) {
5857 if (result.get() != null)
5858 return;
5859 if ((b = preSplit()) <= 0)
5860 break;
5861 new SearchEntriesTask<K,V,U>
5862 (map, this, b, searchFunction, result).fork();
5863 }
5864 while (result.get() == null) {
5865 V v; U u;
5866 if ((v = advance()) == null) {
5867 propagateCompletion();
5868 break;
5869 }
5870 if ((u = searchFunction.apply(entryFor(nextKey,
5871 v))) != null) {
5872 if (result.compareAndSet(null, u))
5873 quietlyCompleteRoot();
5874 return;
5875 }
5876 }
5877 }
5878 }
5879 }
5880
5881 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5882 extends Traverser<K,V,U> {
5883 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5884 final AtomicReference<U> result;
5885 SearchMappingsTask
5886 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5887 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5888 AtomicReference<U> result) {
5889 super(m, p, b);
5890 this.searchFunction = searchFunction; this.result = result;
5891 }
5892 public final U getRawResult() { return result.get(); }
5893 public final void compute() {
5894 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5895 final AtomicReference<U> result;
5896 if ((searchFunction = this.searchFunction) != null &&
5897 (result = this.result) != null) {
5898 for (int b;;) {
5899 if (result.get() != null)
5900 return;
5901 if ((b = preSplit()) <= 0)
5902 break;
5903 new SearchMappingsTask<K,V,U>
5904 (map, this, b, searchFunction, result).fork();
5905 }
5906 while (result.get() == null) {
5907 V v; U u;
5908 if ((v = advance()) == null) {
5909 propagateCompletion();
5910 break;
5911 }
5912 if ((u = searchFunction.apply(nextKey, v)) != null) {
5913 if (result.compareAndSet(null, u))
5914 quietlyCompleteRoot();
5915 break;
5916 }
5917 }
5918 }
5919 }
5920 }
5921
5922 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5923 extends Traverser<K,V,K> {
5924 final BiFunction<? super K, ? super K, ? extends K> reducer;
5925 K result;
5926 ReduceKeysTask<K,V> rights, nextRight;
5927 ReduceKeysTask
5928 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5929 ReduceKeysTask<K,V> nextRight,
5930 BiFunction<? super K, ? super K, ? extends K> reducer) {
5931 super(m, p, b); this.nextRight = nextRight;
5932 this.reducer = reducer;
5933 }
5934 public final K getRawResult() { return result; }
5935 @SuppressWarnings("unchecked") public final void compute() {
5936 final BiFunction<? super K, ? super K, ? extends K> reducer;
5937 if ((reducer = this.reducer) != null) {
5938 for (int b; (b = preSplit()) > 0;)
5939 (rights = new ReduceKeysTask<K,V>
5940 (map, this, b, rights, reducer)).fork();
5941 K r = null;
5942 while (advance() != null) {
5943 K u = nextKey;
5944 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5945 }
5946 result = r;
5947 CountedCompleter<?> c;
5948 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5949 ReduceKeysTask<K,V>
5950 t = (ReduceKeysTask<K,V>)c,
5951 s = t.rights;
5952 while (s != null) {
5953 K tr, sr;
5954 if ((sr = s.result) != null)
5955 t.result = (((tr = t.result) == null) ? sr :
5956 reducer.apply(tr, sr));
5957 s = t.rights = s.nextRight;
5958 }
5959 }
5960 }
5961 }
5962 }
5963
5964 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5965 extends Traverser<K,V,V> {
5966 final BiFunction<? super V, ? super V, ? extends V> reducer;
5967 V result;
5968 ReduceValuesTask<K,V> rights, nextRight;
5969 ReduceValuesTask
5970 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5971 ReduceValuesTask<K,V> nextRight,
5972 BiFunction<? super V, ? super V, ? extends V> reducer) {
5973 super(m, p, b); this.nextRight = nextRight;
5974 this.reducer = reducer;
5975 }
5976 public final V getRawResult() { return result; }
5977 @SuppressWarnings("unchecked") public final void compute() {
5978 final BiFunction<? super V, ? super V, ? extends V> reducer;
5979 if ((reducer = this.reducer) != null) {
5980 for (int b; (b = preSplit()) > 0;)
5981 (rights = new ReduceValuesTask<K,V>
5982 (map, this, b, rights, reducer)).fork();
5983 V r = null, v;
5984 while ((v = advance()) != null)
5985 r = (r == null) ? v : reducer.apply(r, v);
5986 result = r;
5987 CountedCompleter<?> c;
5988 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5989 ReduceValuesTask<K,V>
5990 t = (ReduceValuesTask<K,V>)c,
5991 s = t.rights;
5992 while (s != null) {
5993 V tr, sr;
5994 if ((sr = s.result) != null)
5995 t.result = (((tr = t.result) == null) ? sr :
5996 reducer.apply(tr, sr));
5997 s = t.rights = s.nextRight;
5998 }
5999 }
6000 }
6001 }
6002 }
6003
6004 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
6005 extends Traverser<K,V,Map.Entry<K,V>> {
6006 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6007 Map.Entry<K,V> result;
6008 ReduceEntriesTask<K,V> rights, nextRight;
6009 ReduceEntriesTask
6010 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6011 ReduceEntriesTask<K,V> nextRight,
6012 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
6013 super(m, p, b); this.nextRight = nextRight;
6014 this.reducer = reducer;
6015 }
6016 public final Map.Entry<K,V> getRawResult() { return result; }
6017 @SuppressWarnings("unchecked") public final void compute() {
6018 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6019 if ((reducer = this.reducer) != null) {
6020 for (int b; (b = preSplit()) > 0;)
6021 (rights = new ReduceEntriesTask<K,V>
6022 (map, this, b, rights, reducer)).fork();
6023 Map.Entry<K,V> r = null;
6024 V v;
6025 while ((v = advance()) != null) {
6026 Map.Entry<K,V> u = entryFor(nextKey, v);
6027 r = (r == null) ? u : reducer.apply(r, u);
6028 }
6029 result = r;
6030 CountedCompleter<?> c;
6031 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6032 ReduceEntriesTask<K,V>
6033 t = (ReduceEntriesTask<K,V>)c,
6034 s = t.rights;
6035 while (s != null) {
6036 Map.Entry<K,V> tr, sr;
6037 if ((sr = s.result) != null)
6038 t.result = (((tr = t.result) == null) ? sr :
6039 reducer.apply(tr, sr));
6040 s = t.rights = s.nextRight;
6041 }
6042 }
6043 }
6044 }
6045 }
6046
6047 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
6048 extends Traverser<K,V,U> {
6049 final Function<? super K, ? extends U> transformer;
6050 final BiFunction<? super U, ? super U, ? extends U> reducer;
6051 U result;
6052 MapReduceKeysTask<K,V,U> rights, nextRight;
6053 MapReduceKeysTask
6054 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6055 MapReduceKeysTask<K,V,U> nextRight,
6056 Function<? super K, ? extends U> transformer,
6057 BiFunction<? super U, ? super U, ? extends U> reducer) {
6058 super(m, p, b); this.nextRight = nextRight;
6059 this.transformer = transformer;
6060 this.reducer = reducer;
6061 }
6062 public final U getRawResult() { return result; }
6063 @SuppressWarnings("unchecked") public final void compute() {
6064 final Function<? super K, ? extends U> transformer;
6065 final BiFunction<? super U, ? super U, ? extends U> reducer;
6066 if ((transformer = this.transformer) != null &&
6067 (reducer = this.reducer) != null) {
6068 for (int b; (b = preSplit()) > 0;)
6069 (rights = new MapReduceKeysTask<K,V,U>
6070 (map, this, b, rights, transformer, reducer)).fork();
6071 U r = null, u;
6072 while (advance() != null) {
6073 if ((u = transformer.apply(nextKey)) != null)
6074 r = (r == null) ? u : reducer.apply(r, u);
6075 }
6076 result = r;
6077 CountedCompleter<?> c;
6078 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6079 MapReduceKeysTask<K,V,U>
6080 t = (MapReduceKeysTask<K,V,U>)c,
6081 s = t.rights;
6082 while (s != null) {
6083 U tr, sr;
6084 if ((sr = s.result) != null)
6085 t.result = (((tr = t.result) == null) ? sr :
6086 reducer.apply(tr, sr));
6087 s = t.rights = s.nextRight;
6088 }
6089 }
6090 }
6091 }
6092 }
6093
6094 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6095 extends Traverser<K,V,U> {
6096 final Function<? super V, ? extends U> transformer;
6097 final BiFunction<? super U, ? super U, ? extends U> reducer;
6098 U result;
6099 MapReduceValuesTask<K,V,U> rights, nextRight;
6100 MapReduceValuesTask
6101 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6102 MapReduceValuesTask<K,V,U> nextRight,
6103 Function<? super V, ? extends U> transformer,
6104 BiFunction<? super U, ? super U, ? extends U> reducer) {
6105 super(m, p, b); this.nextRight = nextRight;
6106 this.transformer = transformer;
6107 this.reducer = reducer;
6108 }
6109 public final U getRawResult() { return result; }
6110 @SuppressWarnings("unchecked") public final void compute() {
6111 final Function<? super V, ? extends U> transformer;
6112 final BiFunction<? super U, ? super U, ? extends U> reducer;
6113 if ((transformer = this.transformer) != null &&
6114 (reducer = this.reducer) != null) {
6115 for (int b; (b = preSplit()) > 0;)
6116 (rights = new MapReduceValuesTask<K,V,U>
6117 (map, this, b, rights, transformer, reducer)).fork();
6118 U r = null, u;
6119 V v;
6120 while ((v = advance()) != null) {
6121 if ((u = transformer.apply(v)) != null)
6122 r = (r == null) ? u : reducer.apply(r, u);
6123 }
6124 result = r;
6125 CountedCompleter<?> c;
6126 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6127 MapReduceValuesTask<K,V,U>
6128 t = (MapReduceValuesTask<K,V,U>)c,
6129 s = t.rights;
6130 while (s != null) {
6131 U tr, sr;
6132 if ((sr = s.result) != null)
6133 t.result = (((tr = t.result) == null) ? sr :
6134 reducer.apply(tr, sr));
6135 s = t.rights = s.nextRight;
6136 }
6137 }
6138 }
6139 }
6140 }
6141
6142 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6143 extends Traverser<K,V,U> {
6144 final Function<Map.Entry<K,V>, ? extends U> transformer;
6145 final BiFunction<? super U, ? super U, ? extends U> reducer;
6146 U result;
6147 MapReduceEntriesTask<K,V,U> rights, nextRight;
6148 MapReduceEntriesTask
6149 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6150 MapReduceEntriesTask<K,V,U> nextRight,
6151 Function<Map.Entry<K,V>, ? extends U> transformer,
6152 BiFunction<? super U, ? super U, ? extends U> reducer) {
6153 super(m, p, b); this.nextRight = nextRight;
6154 this.transformer = transformer;
6155 this.reducer = reducer;
6156 }
6157 public final U getRawResult() { return result; }
6158 @SuppressWarnings("unchecked") public final void compute() {
6159 final Function<Map.Entry<K,V>, ? extends U> transformer;
6160 final BiFunction<? super U, ? super U, ? extends U> reducer;
6161 if ((transformer = this.transformer) != null &&
6162 (reducer = this.reducer) != null) {
6163 for (int b; (b = preSplit()) > 0;)
6164 (rights = new MapReduceEntriesTask<K,V,U>
6165 (map, this, b, rights, transformer, reducer)).fork();
6166 U r = null, u;
6167 V v;
6168 while ((v = advance()) != null) {
6169 if ((u = transformer.apply(entryFor(nextKey,
6170 v))) != null)
6171 r = (r == null) ? u : reducer.apply(r, u);
6172 }
6173 result = r;
6174 CountedCompleter<?> c;
6175 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6176 MapReduceEntriesTask<K,V,U>
6177 t = (MapReduceEntriesTask<K,V,U>)c,
6178 s = t.rights;
6179 while (s != null) {
6180 U tr, sr;
6181 if ((sr = s.result) != null)
6182 t.result = (((tr = t.result) == null) ? sr :
6183 reducer.apply(tr, sr));
6184 s = t.rights = s.nextRight;
6185 }
6186 }
6187 }
6188 }
6189 }
6190
6191 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6192 extends Traverser<K,V,U> {
6193 final BiFunction<? super K, ? super V, ? extends U> transformer;
6194 final BiFunction<? super U, ? super U, ? extends U> reducer;
6195 U result;
6196 MapReduceMappingsTask<K,V,U> rights, nextRight;
6197 MapReduceMappingsTask
6198 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6199 MapReduceMappingsTask<K,V,U> nextRight,
6200 BiFunction<? super K, ? super V, ? extends U> transformer,
6201 BiFunction<? super U, ? super U, ? extends U> reducer) {
6202 super(m, p, b); this.nextRight = nextRight;
6203 this.transformer = transformer;
6204 this.reducer = reducer;
6205 }
6206 public final U getRawResult() { return result; }
6207 @SuppressWarnings("unchecked") public final void compute() {
6208 final BiFunction<? super K, ? super V, ? extends U> transformer;
6209 final BiFunction<? super U, ? super U, ? extends U> reducer;
6210 if ((transformer = this.transformer) != null &&
6211 (reducer = this.reducer) != null) {
6212 for (int b; (b = preSplit()) > 0;)
6213 (rights = new MapReduceMappingsTask<K,V,U>
6214 (map, this, b, rights, transformer, reducer)).fork();
6215 U r = null, u;
6216 V v;
6217 while ((v = advance()) != null) {
6218 if ((u = transformer.apply(nextKey, v)) != null)
6219 r = (r == null) ? u : reducer.apply(r, u);
6220 }
6221 result = r;
6222 CountedCompleter<?> c;
6223 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6224 MapReduceMappingsTask<K,V,U>
6225 t = (MapReduceMappingsTask<K,V,U>)c,
6226 s = t.rights;
6227 while (s != null) {
6228 U tr, sr;
6229 if ((sr = s.result) != null)
6230 t.result = (((tr = t.result) == null) ? sr :
6231 reducer.apply(tr, sr));
6232 s = t.rights = s.nextRight;
6233 }
6234 }
6235 }
6236 }
6237 }
6238
6239 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6240 extends Traverser<K,V,Double> {
6241 final ToDoubleFunction<? super K> transformer;
6242 final DoubleBinaryOperator reducer;
6243 final double basis;
6244 double result;
6245 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6246 MapReduceKeysToDoubleTask
6247 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6248 MapReduceKeysToDoubleTask<K,V> nextRight,
6249 ToDoubleFunction<? super K> transformer,
6250 double basis,
6251 DoubleBinaryOperator reducer) {
6252 super(m, p, b); this.nextRight = nextRight;
6253 this.transformer = transformer;
6254 this.basis = basis; this.reducer = reducer;
6255 }
6256 public final Double getRawResult() { return result; }
6257 @SuppressWarnings("unchecked") public final void compute() {
6258 final ToDoubleFunction<? super K> transformer;
6259 final DoubleBinaryOperator reducer;
6260 if ((transformer = this.transformer) != null &&
6261 (reducer = this.reducer) != null) {
6262 double r = this.basis;
6263 for (int b; (b = preSplit()) > 0;)
6264 (rights = new MapReduceKeysToDoubleTask<K,V>
6265 (map, this, b, rights, transformer, r, reducer)).fork();
6266 while (advance() != null)
6267 r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey));
6268 result = r;
6269 CountedCompleter<?> c;
6270 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6271 MapReduceKeysToDoubleTask<K,V>
6272 t = (MapReduceKeysToDoubleTask<K,V>)c,
6273 s = t.rights;
6274 while (s != null) {
6275 t.result = reducer.applyAsDouble(t.result, s.result);
6276 s = t.rights = s.nextRight;
6277 }
6278 }
6279 }
6280 }
6281 }
6282
6283 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6284 extends Traverser<K,V,Double> {
6285 final ToDoubleFunction<? super V> transformer;
6286 final DoubleBinaryOperator reducer;
6287 final double basis;
6288 double result;
6289 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6290 MapReduceValuesToDoubleTask
6291 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6292 MapReduceValuesToDoubleTask<K,V> nextRight,
6293 ToDoubleFunction<? super V> transformer,
6294 double basis,
6295 DoubleBinaryOperator reducer) {
6296 super(m, p, b); this.nextRight = nextRight;
6297 this.transformer = transformer;
6298 this.basis = basis; this.reducer = reducer;
6299 }
6300 public final Double getRawResult() { return result; }
6301 @SuppressWarnings("unchecked") public final void compute() {
6302 final ToDoubleFunction<? super V> transformer;
6303 final DoubleBinaryOperator reducer;
6304 if ((transformer = this.transformer) != null &&
6305 (reducer = this.reducer) != null) {
6306 double r = this.basis;
6307 for (int b; (b = preSplit()) > 0;)
6308 (rights = new MapReduceValuesToDoubleTask<K,V>
6309 (map, this, b, rights, transformer, r, reducer)).fork();
6310 V v;
6311 while ((v = advance()) != null)
6312 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
6313 result = r;
6314 CountedCompleter<?> c;
6315 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6316 MapReduceValuesToDoubleTask<K,V>
6317 t = (MapReduceValuesToDoubleTask<K,V>)c,
6318 s = t.rights;
6319 while (s != null) {
6320 t.result = reducer.applyAsDouble(t.result, s.result);
6321 s = t.rights = s.nextRight;
6322 }
6323 }
6324 }
6325 }
6326 }
6327
6328 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6329 extends Traverser<K,V,Double> {
6330 final ToDoubleFunction<Map.Entry<K,V>> transformer;
6331 final DoubleBinaryOperator reducer;
6332 final double basis;
6333 double result;
6334 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6335 MapReduceEntriesToDoubleTask
6336 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6337 MapReduceEntriesToDoubleTask<K,V> nextRight,
6338 ToDoubleFunction<Map.Entry<K,V>> transformer,
6339 double basis,
6340 DoubleBinaryOperator reducer) {
6341 super(m, p, b); this.nextRight = nextRight;
6342 this.transformer = transformer;
6343 this.basis = basis; this.reducer = reducer;
6344 }
6345 public final Double getRawResult() { return result; }
6346 @SuppressWarnings("unchecked") public final void compute() {
6347 final ToDoubleFunction<Map.Entry<K,V>> transformer;
6348 final DoubleBinaryOperator reducer;
6349 if ((transformer = this.transformer) != null &&
6350 (reducer = this.reducer) != null) {
6351 double r = this.basis;
6352 for (int b; (b = preSplit()) > 0;)
6353 (rights = new MapReduceEntriesToDoubleTask<K,V>
6354 (map, this, b, rights, transformer, r, reducer)).fork();
6355 V v;
6356 while ((v = advance()) != null)
6357 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(nextKey,
6358 v)));
6359 result = r;
6360 CountedCompleter<?> c;
6361 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6362 MapReduceEntriesToDoubleTask<K,V>
6363 t = (MapReduceEntriesToDoubleTask<K,V>)c,
6364 s = t.rights;
6365 while (s != null) {
6366 t.result = reducer.applyAsDouble(t.result, s.result);
6367 s = t.rights = s.nextRight;
6368 }
6369 }
6370 }
6371 }
6372 }
6373
6374 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6375 extends Traverser<K,V,Double> {
6376 final ToDoubleBiFunction<? super K, ? super V> transformer;
6377 final DoubleBinaryOperator reducer;
6378 final double basis;
6379 double result;
6380 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6381 MapReduceMappingsToDoubleTask
6382 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6383 MapReduceMappingsToDoubleTask<K,V> nextRight,
6384 ToDoubleBiFunction<? super K, ? super V> transformer,
6385 double basis,
6386 DoubleBinaryOperator reducer) {
6387 super(m, p, b); this.nextRight = nextRight;
6388 this.transformer = transformer;
6389 this.basis = basis; this.reducer = reducer;
6390 }
6391 public final Double getRawResult() { return result; }
6392 @SuppressWarnings("unchecked") public final void compute() {
6393 final ToDoubleBiFunction<? super K, ? super V> transformer;
6394 final DoubleBinaryOperator reducer;
6395 if ((transformer = this.transformer) != null &&
6396 (reducer = this.reducer) != null) {
6397 double r = this.basis;
6398 for (int b; (b = preSplit()) > 0;)
6399 (rights = new MapReduceMappingsToDoubleTask<K,V>
6400 (map, this, b, rights, transformer, r, reducer)).fork();
6401 V v;
6402 while ((v = advance()) != null)
6403 r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey, v));
6404 result = r;
6405 CountedCompleter<?> c;
6406 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6407 MapReduceMappingsToDoubleTask<K,V>
6408 t = (MapReduceMappingsToDoubleTask<K,V>)c,
6409 s = t.rights;
6410 while (s != null) {
6411 t.result = reducer.applyAsDouble(t.result, s.result);
6412 s = t.rights = s.nextRight;
6413 }
6414 }
6415 }
6416 }
6417 }
6418
6419 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6420 extends Traverser<K,V,Long> {
6421 final ToLongFunction<? super K> transformer;
6422 final LongBinaryOperator reducer;
6423 final long basis;
6424 long result;
6425 MapReduceKeysToLongTask<K,V> rights, nextRight;
6426 MapReduceKeysToLongTask
6427 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6428 MapReduceKeysToLongTask<K,V> nextRight,
6429 ToLongFunction<? super K> transformer,
6430 long basis,
6431 LongBinaryOperator reducer) {
6432 super(m, p, b); this.nextRight = nextRight;
6433 this.transformer = transformer;
6434 this.basis = basis; this.reducer = reducer;
6435 }
6436 public final Long getRawResult() { return result; }
6437 @SuppressWarnings("unchecked") public final void compute() {
6438 final ToLongFunction<? super K> transformer;
6439 final LongBinaryOperator reducer;
6440 if ((transformer = this.transformer) != null &&
6441 (reducer = this.reducer) != null) {
6442 long r = this.basis;
6443 for (int b; (b = preSplit()) > 0;)
6444 (rights = new MapReduceKeysToLongTask<K,V>
6445 (map, this, b, rights, transformer, r, reducer)).fork();
6446 while (advance() != null)
6447 r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey));
6448 result = r;
6449 CountedCompleter<?> c;
6450 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6451 MapReduceKeysToLongTask<K,V>
6452 t = (MapReduceKeysToLongTask<K,V>)c,
6453 s = t.rights;
6454 while (s != null) {
6455 t.result = reducer.applyAsLong(t.result, s.result);
6456 s = t.rights = s.nextRight;
6457 }
6458 }
6459 }
6460 }
6461 }
6462
6463 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6464 extends Traverser<K,V,Long> {
6465 final ToLongFunction<? super V> transformer;
6466 final LongBinaryOperator reducer;
6467 final long basis;
6468 long result;
6469 MapReduceValuesToLongTask<K,V> rights, nextRight;
6470 MapReduceValuesToLongTask
6471 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6472 MapReduceValuesToLongTask<K,V> nextRight,
6473 ToLongFunction<? super V> transformer,
6474 long basis,
6475 LongBinaryOperator reducer) {
6476 super(m, p, b); this.nextRight = nextRight;
6477 this.transformer = transformer;
6478 this.basis = basis; this.reducer = reducer;
6479 }
6480 public final Long getRawResult() { return result; }
6481 @SuppressWarnings("unchecked") public final void compute() {
6482 final ToLongFunction<? super V> transformer;
6483 final LongBinaryOperator reducer;
6484 if ((transformer = this.transformer) != null &&
6485 (reducer = this.reducer) != null) {
6486 long r = this.basis;
6487 for (int b; (b = preSplit()) > 0;)
6488 (rights = new MapReduceValuesToLongTask<K,V>
6489 (map, this, b, rights, transformer, r, reducer)).fork();
6490 V v;
6491 while ((v = advance()) != null)
6492 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
6493 result = r;
6494 CountedCompleter<?> c;
6495 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6496 MapReduceValuesToLongTask<K,V>
6497 t = (MapReduceValuesToLongTask<K,V>)c,
6498 s = t.rights;
6499 while (s != null) {
6500 t.result = reducer.applyAsLong(t.result, s.result);
6501 s = t.rights = s.nextRight;
6502 }
6503 }
6504 }
6505 }
6506 }
6507
6508 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6509 extends Traverser<K,V,Long> {
6510 final ToLongFunction<Map.Entry<K,V>> transformer;
6511 final LongBinaryOperator reducer;
6512 final long basis;
6513 long result;
6514 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6515 MapReduceEntriesToLongTask
6516 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6517 MapReduceEntriesToLongTask<K,V> nextRight,
6518 ToLongFunction<Map.Entry<K,V>> transformer,
6519 long basis,
6520 LongBinaryOperator reducer) {
6521 super(m, p, b); this.nextRight = nextRight;
6522 this.transformer = transformer;
6523 this.basis = basis; this.reducer = reducer;
6524 }
6525 public final Long getRawResult() { return result; }
6526 @SuppressWarnings("unchecked") public final void compute() {
6527 final ToLongFunction<Map.Entry<K,V>> transformer;
6528 final LongBinaryOperator reducer;
6529 if ((transformer = this.transformer) != null &&
6530 (reducer = this.reducer) != null) {
6531 long r = this.basis;
6532 for (int b; (b = preSplit()) > 0;)
6533 (rights = new MapReduceEntriesToLongTask<K,V>
6534 (map, this, b, rights, transformer, r, reducer)).fork();
6535 V v;
6536 while ((v = advance()) != null)
6537 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(nextKey, v)));
6538 result = r;
6539 CountedCompleter<?> c;
6540 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6541 MapReduceEntriesToLongTask<K,V>
6542 t = (MapReduceEntriesToLongTask<K,V>)c,
6543 s = t.rights;
6544 while (s != null) {
6545 t.result = reducer.applyAsLong(t.result, s.result);
6546 s = t.rights = s.nextRight;
6547 }
6548 }
6549 }
6550 }
6551 }
6552
6553 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6554 extends Traverser<K,V,Long> {
6555 final ToLongBiFunction<? super K, ? super V> transformer;
6556 final LongBinaryOperator reducer;
6557 final long basis;
6558 long result;
6559 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6560 MapReduceMappingsToLongTask
6561 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6562 MapReduceMappingsToLongTask<K,V> nextRight,
6563 ToLongBiFunction<? super K, ? super V> transformer,
6564 long basis,
6565 LongBinaryOperator reducer) {
6566 super(m, p, b); this.nextRight = nextRight;
6567 this.transformer = transformer;
6568 this.basis = basis; this.reducer = reducer;
6569 }
6570 public final Long getRawResult() { return result; }
6571 @SuppressWarnings("unchecked") public final void compute() {
6572 final ToLongBiFunction<? super K, ? super V> transformer;
6573 final LongBinaryOperator reducer;
6574 if ((transformer = this.transformer) != null &&
6575 (reducer = this.reducer) != null) {
6576 long r = this.basis;
6577 for (int b; (b = preSplit()) > 0;)
6578 (rights = new MapReduceMappingsToLongTask<K,V>
6579 (map, this, b, rights, transformer, r, reducer)).fork();
6580 V v;
6581 while ((v = advance()) != null)
6582 r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey, v));
6583 result = r;
6584 CountedCompleter<?> c;
6585 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6586 MapReduceMappingsToLongTask<K,V>
6587 t = (MapReduceMappingsToLongTask<K,V>)c,
6588 s = t.rights;
6589 while (s != null) {
6590 t.result = reducer.applyAsLong(t.result, s.result);
6591 s = t.rights = s.nextRight;
6592 }
6593 }
6594 }
6595 }
6596 }
6597
6598 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6599 extends Traverser<K,V,Integer> {
6600 final ToIntFunction<? super K> transformer;
6601 final IntBinaryOperator reducer;
6602 final int basis;
6603 int result;
6604 MapReduceKeysToIntTask<K,V> rights, nextRight;
6605 MapReduceKeysToIntTask
6606 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6607 MapReduceKeysToIntTask<K,V> nextRight,
6608 ToIntFunction<? super K> transformer,
6609 int basis,
6610 IntBinaryOperator reducer) {
6611 super(m, p, b); this.nextRight = nextRight;
6612 this.transformer = transformer;
6613 this.basis = basis; this.reducer = reducer;
6614 }
6615 public final Integer getRawResult() { return result; }
6616 @SuppressWarnings("unchecked") public final void compute() {
6617 final ToIntFunction<? super K> transformer;
6618 final IntBinaryOperator reducer;
6619 if ((transformer = this.transformer) != null &&
6620 (reducer = this.reducer) != null) {
6621 int r = this.basis;
6622 for (int b; (b = preSplit()) > 0;)
6623 (rights = new MapReduceKeysToIntTask<K,V>
6624 (map, this, b, rights, transformer, r, reducer)).fork();
6625 while (advance() != null)
6626 r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey));
6627 result = r;
6628 CountedCompleter<?> c;
6629 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6630 MapReduceKeysToIntTask<K,V>
6631 t = (MapReduceKeysToIntTask<K,V>)c,
6632 s = t.rights;
6633 while (s != null) {
6634 t.result = reducer.applyAsInt(t.result, s.result);
6635 s = t.rights = s.nextRight;
6636 }
6637 }
6638 }
6639 }
6640 }
6641
6642 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6643 extends Traverser<K,V,Integer> {
6644 final ToIntFunction<? super V> transformer;
6645 final IntBinaryOperator reducer;
6646 final int basis;
6647 int result;
6648 MapReduceValuesToIntTask<K,V> rights, nextRight;
6649 MapReduceValuesToIntTask
6650 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6651 MapReduceValuesToIntTask<K,V> nextRight,
6652 ToIntFunction<? super V> transformer,
6653 int basis,
6654 IntBinaryOperator reducer) {
6655 super(m, p, b); this.nextRight = nextRight;
6656 this.transformer = transformer;
6657 this.basis = basis; this.reducer = reducer;
6658 }
6659 public final Integer getRawResult() { return result; }
6660 @SuppressWarnings("unchecked") public final void compute() {
6661 final ToIntFunction<? super V> transformer;
6662 final IntBinaryOperator reducer;
6663 if ((transformer = this.transformer) != null &&
6664 (reducer = this.reducer) != null) {
6665 int r = this.basis;
6666 for (int b; (b = preSplit()) > 0;)
6667 (rights = new MapReduceValuesToIntTask<K,V>
6668 (map, this, b, rights, transformer, r, reducer)).fork();
6669 V v;
6670 while ((v = advance()) != null)
6671 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
6672 result = r;
6673 CountedCompleter<?> c;
6674 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6675 MapReduceValuesToIntTask<K,V>
6676 t = (MapReduceValuesToIntTask<K,V>)c,
6677 s = t.rights;
6678 while (s != null) {
6679 t.result = reducer.applyAsInt(t.result, s.result);
6680 s = t.rights = s.nextRight;
6681 }
6682 }
6683 }
6684 }
6685 }
6686
6687 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6688 extends Traverser<K,V,Integer> {
6689 final ToIntFunction<Map.Entry<K,V>> transformer;
6690 final IntBinaryOperator reducer;
6691 final int basis;
6692 int result;
6693 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6694 MapReduceEntriesToIntTask
6695 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6696 MapReduceEntriesToIntTask<K,V> nextRight,
6697 ToIntFunction<Map.Entry<K,V>> transformer,
6698 int basis,
6699 IntBinaryOperator reducer) {
6700 super(m, p, b); this.nextRight = nextRight;
6701 this.transformer = transformer;
6702 this.basis = basis; this.reducer = reducer;
6703 }
6704 public final Integer getRawResult() { return result; }
6705 @SuppressWarnings("unchecked") public final void compute() {
6706 final ToIntFunction<Map.Entry<K,V>> transformer;
6707 final IntBinaryOperator reducer;
6708 if ((transformer = this.transformer) != null &&
6709 (reducer = this.reducer) != null) {
6710 int r = this.basis;
6711 for (int b; (b = preSplit()) > 0;)
6712 (rights = new MapReduceEntriesToIntTask<K,V>
6713 (map, this, b, rights, transformer, r, reducer)).fork();
6714 V v;
6715 while ((v = advance()) != null)
6716 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(nextKey,
6717 v)));
6718 result = r;
6719 CountedCompleter<?> c;
6720 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6721 MapReduceEntriesToIntTask<K,V>
6722 t = (MapReduceEntriesToIntTask<K,V>)c,
6723 s = t.rights;
6724 while (s != null) {
6725 t.result = reducer.applyAsInt(t.result, s.result);
6726 s = t.rights = s.nextRight;
6727 }
6728 }
6729 }
6730 }
6731 }
6732
6733 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6734 extends Traverser<K,V,Integer> {
6735 final ToIntBiFunction<? super K, ? super V> transformer;
6736 final IntBinaryOperator reducer;
6737 final int basis;
6738 int result;
6739 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6740 MapReduceMappingsToIntTask
6741 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6742 MapReduceMappingsToIntTask<K,V> nextRight,
6743 ToIntBiFunction<? super K, ? super V> transformer,
6744 int basis,
6745 IntBinaryOperator reducer) {
6746 super(m, p, b); this.nextRight = nextRight;
6747 this.transformer = transformer;
6748 this.basis = basis; this.reducer = reducer;
6749 }
6750 public final Integer getRawResult() { return result; }
6751 @SuppressWarnings("unchecked") public final void compute() {
6752 final ToIntBiFunction<? super K, ? super V> transformer;
6753 final IntBinaryOperator reducer;
6754 if ((transformer = this.transformer) != null &&
6755 (reducer = this.reducer) != null) {
6756 int r = this.basis;
6757 for (int b; (b = preSplit()) > 0;)
6758 (rights = new MapReduceMappingsToIntTask<K,V>
6759 (map, this, b, rights, transformer, r, reducer)).fork();
6760 V v;
6761 while ((v = advance()) != null)
6762 r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey, v));
6763 result = r;
6764 CountedCompleter<?> c;
6765 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6766 MapReduceMappingsToIntTask<K,V>
6767 t = (MapReduceMappingsToIntTask<K,V>)c,
6768 s = t.rights;
6769 while (s != null) {
6770 t.result = reducer.applyAsInt(t.result, s.result);
6771 s = t.rights = s.nextRight;
6772 }
6773 }
6774 }
6775 }
6776 }
6777
6778 // Unsafe mechanics
6779 private static final sun.misc.Unsafe U;
6780 private static final long SIZECTL;
6781 private static final long TRANSFERINDEX;
6782 private static final long TRANSFERORIGIN;
6783 private static final long BASECOUNT;
6784 private static final long CELLSBUSY;
6785 private static final long CELLVALUE;
6786 private static final long ABASE;
6787 private static final int ASHIFT;
6788
6789 static {
6790 try {
6791 U = sun.misc.Unsafe.getUnsafe();
6792 Class<?> k = ConcurrentHashMap.class;
6793 SIZECTL = U.objectFieldOffset
6794 (k.getDeclaredField("sizeCtl"));
6795 TRANSFERINDEX = U.objectFieldOffset
6796 (k.getDeclaredField("transferIndex"));
6797 TRANSFERORIGIN = U.objectFieldOffset
6798 (k.getDeclaredField("transferOrigin"));
6799 BASECOUNT = U.objectFieldOffset
6800 (k.getDeclaredField("baseCount"));
6801 CELLSBUSY = U.objectFieldOffset
6802 (k.getDeclaredField("cellsBusy"));
6803 Class<?> ck = Cell.class;
6804 CELLVALUE = U.objectFieldOffset
6805 (ck.getDeclaredField("value"));
6806 Class<?> sc = Node[].class;
6807 ABASE = U.arrayBaseOffset(sc);
6808 int scale = U.arrayIndexScale(sc);
6809 if ((scale & (scale - 1)) != 0)
6810 throw new Error("data type scale not a power of two");
6811 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6812 } catch (Exception e) {
6813 throw new Error(e);
6814 }
6815 }
6816
6817 }