ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.188
Committed: Sun Feb 17 23:36:34 2013 UTC (11 years, 3 months ago) by dl
Branch: MAIN
Changes since 1.187: +19 -17 lines
Log Message:
Spliterator sync

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8 import java.util.concurrent.ForkJoinPool;
9 import java.util.concurrent.CountedCompleter;
10 import java.util.function.*;
11 import java.util.Spliterator;
12 import java.util.stream.Stream;
13 import java.util.stream.Streams;
14
15 import java.util.Comparator;
16 import java.util.Arrays;
17 import java.util.Map;
18 import java.util.Set;
19 import java.util.Collection;
20 import java.util.AbstractMap;
21 import java.util.AbstractSet;
22 import java.util.AbstractCollection;
23 import java.util.Hashtable;
24 import java.util.HashMap;
25 import java.util.Iterator;
26 import java.util.Enumeration;
27 import java.util.ConcurrentModificationException;
28 import java.util.NoSuchElementException;
29 import java.util.concurrent.ConcurrentMap;
30 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
31 import java.util.concurrent.atomic.AtomicInteger;
32 import java.util.concurrent.atomic.AtomicReference;
33 import java.io.Serializable;
34
35 /**
36 * A hash table supporting full concurrency of retrievals and
37 * high expected concurrency for updates. This class obeys the
38 * same functional specification as {@link java.util.Hashtable}, and
39 * includes versions of methods corresponding to each method of
40 * {@code Hashtable}. However, even though all operations are
41 * thread-safe, retrieval operations do <em>not</em> entail locking,
42 * and there is <em>not</em> any support for locking the entire table
43 * in a way that prevents all access. This class is fully
44 * interoperable with {@code Hashtable} in programs that rely on its
45 * thread safety but not on its synchronization details.
46 *
47 * <p>Retrieval operations (including {@code get}) generally do not
48 * block, so may overlap with update operations (including {@code put}
49 * and {@code remove}). Retrievals reflect the results of the most
50 * recently <em>completed</em> update operations holding upon their
51 * onset. (More formally, an update operation for a given key bears a
52 * <em>happens-before</em> relation with any (non-null) retrieval for
53 * that key reporting the updated value.) For aggregate operations
54 * such as {@code putAll} and {@code clear}, concurrent retrievals may
55 * reflect insertion or removal of only some entries. Similarly,
56 * Iterators and Enumerations return elements reflecting the state of
57 * the hash table at some point at or since the creation of the
58 * iterator/enumeration. They do <em>not</em> throw {@link
59 * ConcurrentModificationException}. However, iterators are designed
60 * to be used by only one thread at a time. Bear in mind that the
61 * results of aggregate status methods including {@code size}, {@code
62 * isEmpty}, and {@code containsValue} are typically useful only when
63 * a map is not undergoing concurrent updates in other threads.
64 * Otherwise the results of these methods reflect transient states
65 * that may be adequate for monitoring or estimation purposes, but not
66 * for program control.
67 *
68 * <p>The table is dynamically expanded when there are too many
69 * collisions (i.e., keys that have distinct hash codes but fall into
70 * the same slot modulo the table size), with the expected average
71 * effect of maintaining roughly two bins per mapping (corresponding
72 * to a 0.75 load factor threshold for resizing). There may be much
73 * variance around this average as mappings are added and removed, but
74 * overall, this maintains a commonly accepted time/space tradeoff for
75 * hash tables. However, resizing this or any other kind of hash
76 * table may be a relatively slow operation. When possible, it is a
77 * good idea to provide a size estimate as an optional {@code
78 * initialCapacity} constructor argument. An additional optional
79 * {@code loadFactor} constructor argument provides a further means of
80 * customizing initial table capacity by specifying the table density
81 * to be used in calculating the amount of space to allocate for the
82 * given number of elements. Also, for compatibility with previous
83 * versions of this class, constructors may optionally specify an
84 * expected {@code concurrencyLevel} as an additional hint for
85 * internal sizing. Note that using many keys with exactly the same
86 * {@code hashCode()} is a sure way to slow down performance of any
87 * hash table.
88 *
89 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
90 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
91 * (using {@link #keySet(Object)} when only keys are of interest, and the
92 * mapped values are (perhaps transiently) not used or all take the
93 * same mapping value.
94 *
95 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
96 * form of histogram or multiset) by using {@link
97 * java.util.concurrent.atomic.LongAdder} values and initializing via
98 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
99 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
100 * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
101 *
102 * <p>This class and its views and iterators implement all of the
103 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
104 * interfaces.
105 *
106 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
107 * does <em>not</em> allow {@code null} to be used as a key or value.
108 *
109 * <p>ConcurrentHashMaps support sequential and parallel operations
110 * bulk operations. (Parallel forms use the {@link
111 * ForkJoinPool#commonPool()}). Tasks that may be used in other
112 * contexts are available in class {@link ForkJoinTasks}. These
113 * operations are designed to be safely, and often sensibly, applied
114 * even with maps that are being concurrently updated by other
115 * threads; for example, when computing a snapshot summary of the
116 * values in a shared registry. There are three kinds of operation,
117 * each with four forms, accepting functions with Keys, Values,
118 * Entries, and (Key, Value) arguments and/or return values. Because
119 * the elements of a ConcurrentHashMap are not ordered in any
120 * particular way, and may be processed in different orders in
121 * different parallel executions, the correctness of supplied
122 * functions should not depend on any ordering, or on any other
123 * objects or values that may transiently change while computation is
124 * in progress; and except for forEach actions, should ideally be
125 * side-effect-free.
126 *
127 * <ul>
128 * <li> forEach: Perform a given action on each element.
129 * A variant form applies a given transformation on each element
130 * before performing the action.</li>
131 *
132 * <li> search: Return the first available non-null result of
133 * applying a given function on each element; skipping further
134 * search when a result is found.</li>
135 *
136 * <li> reduce: Accumulate each element. The supplied reduction
137 * function cannot rely on ordering (more formally, it should be
138 * both associative and commutative). There are five variants:
139 *
140 * <ul>
141 *
142 * <li> Plain reductions. (There is not a form of this method for
143 * (key, value) function arguments since there is no corresponding
144 * return type.)</li>
145 *
146 * <li> Mapped reductions that accumulate the results of a given
147 * function applied to each element.</li>
148 *
149 * <li> Reductions to scalar doubles, longs, and ints, using a
150 * given basis value.</li>
151 *
152 * </ul>
153 * </li>
154 * </ul>
155 *
156 * <p>The concurrency properties of bulk operations follow
157 * from those of ConcurrentHashMap: Any non-null result returned
158 * from {@code get(key)} and related access methods bears a
159 * happens-before relation with the associated insertion or
160 * update. The result of any bulk operation reflects the
161 * composition of these per-element relations (but is not
162 * necessarily atomic with respect to the map as a whole unless it
163 * is somehow known to be quiescent). Conversely, because keys
164 * and values in the map are never null, null serves as a reliable
165 * atomic indicator of the current lack of any result. To
166 * maintain this property, null serves as an implicit basis for
167 * all non-scalar reduction operations. For the double, long, and
168 * int versions, the basis should be one that, when combined with
169 * any other value, returns that other value (more formally, it
170 * should be the identity element for the reduction). Most common
171 * reductions have these properties; for example, computing a sum
172 * with basis 0 or a minimum with basis MAX_VALUE.
173 *
174 * <p>Search and transformation functions provided as arguments
175 * should similarly return null to indicate the lack of any result
176 * (in which case it is not used). In the case of mapped
177 * reductions, this also enables transformations to serve as
178 * filters, returning null (or, in the case of primitive
179 * specializations, the identity basis) if the element should not
180 * be combined. You can create compound transformations and
181 * filterings by composing them yourself under this "null means
182 * there is nothing there now" rule before using them in search or
183 * reduce operations.
184 *
185 * <p>Methods accepting and/or returning Entry arguments maintain
186 * key-value associations. They may be useful for example when
187 * finding the key for the greatest value. Note that "plain" Entry
188 * arguments can be supplied using {@code new
189 * AbstractMap.SimpleEntry(k,v)}.
190 *
191 * <p>Bulk operations may complete abruptly, throwing an
192 * exception encountered in the application of a supplied
193 * function. Bear in mind when handling such exceptions that other
194 * concurrently executing functions could also have thrown
195 * exceptions, or would have done so if the first exception had
196 * not occurred.
197 *
198 * <p>Speedups for parallel compared to sequential forms are common
199 * but not guaranteed. Parallel operations involving brief functions
200 * on small maps may execute more slowly than sequential forms if the
201 * underlying work to parallelize the computation is more expensive
202 * than the computation itself. Similarly, parallelization may not
203 * lead to much actual parallelism if all processors are busy
204 * performing unrelated tasks.
205 *
206 * <p>All arguments to all task methods must be non-null.
207 *
208 * <p>This class is a member of the
209 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
210 * Java Collections Framework</a>.
211 *
212 * @since 1.5
213 * @author Doug Lea
214 * @param <K> the type of keys maintained by this map
215 * @param <V> the type of mapped values
216 */
217 public class ConcurrentHashMap<K,V>
218 implements ConcurrentMap<K,V>, Serializable {
219 private static final long serialVersionUID = 7249069246763182397L;
220
221 /*
222 * Overview:
223 *
224 * The primary design goal of this hash table is to maintain
225 * concurrent readability (typically method get(), but also
226 * iterators and related methods) while minimizing update
227 * contention. Secondary goals are to keep space consumption about
228 * the same or better than java.util.HashMap, and to support high
229 * initial insertion rates on an empty table by many threads.
230 *
231 * Each key-value mapping is held in a Node. Because Node key
232 * fields can contain special values, they are defined using plain
233 * Object types (not type "K"). This leads to a lot of explicit
234 * casting (and many explicit warning suppressions to tell
235 * compilers not to complain about it). It also allows some of the
236 * public methods to be factored into a smaller number of internal
237 * methods (although sadly not so for the five variants of
238 * put-related operations). The validation-based approach
239 * explained below leads to a lot of code sprawl because
240 * retry-control precludes factoring into smaller methods.
241 *
242 * The table is lazily initialized to a power-of-two size upon the
243 * first insertion. Each bin in the table normally contains a
244 * list of Nodes (most often, the list has only zero or one Node).
245 * Table accesses require volatile/atomic reads, writes, and
246 * CASes. Because there is no other way to arrange this without
247 * adding further indirections, we use intrinsics
248 * (sun.misc.Unsafe) operations. The lists of nodes within bins
249 * are always accurately traversable under volatile reads, so long
250 * as lookups check hash code and non-nullness of value before
251 * checking key equality.
252 *
253 * We use the top (sign) bit of Node hash fields for control
254 * purposes -- it is available anyway because of addressing
255 * constraints. Nodes with negative hash fields are forwarding
256 * nodes to either TreeBins or resized tables. The lower 31 bits
257 * of each normal Node's hash field contain a transformation of
258 * the key's hash code.
259 *
260 * Insertion (via put or its variants) of the first node in an
261 * empty bin is performed by just CASing it to the bin. This is
262 * by far the most common case for put operations under most
263 * key/hash distributions. Other update operations (insert,
264 * delete, and replace) require locks. We do not want to waste
265 * the space required to associate a distinct lock object with
266 * each bin, so instead use the first node of a bin list itself as
267 * a lock. Locking support for these locks relies on builtin
268 * "synchronized" monitors.
269 *
270 * Using the first node of a list as a lock does not by itself
271 * suffice though: When a node is locked, any update must first
272 * validate that it is still the first node after locking it, and
273 * retry if not. Because new nodes are always appended to lists,
274 * once a node is first in a bin, it remains first until deleted
275 * or the bin becomes invalidated (upon resizing). However,
276 * operations that only conditionally update may inspect nodes
277 * until the point of update. This is a converse of sorts to the
278 * lazy locking technique described by Herlihy & Shavit.
279 *
280 * The main disadvantage of per-bin locks is that other update
281 * operations on other nodes in a bin list protected by the same
282 * lock can stall, for example when user equals() or mapping
283 * functions take a long time. However, statistically, under
284 * random hash codes, this is not a common problem. Ideally, the
285 * frequency of nodes in bins follows a Poisson distribution
286 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
287 * parameter of about 0.5 on average, given the resizing threshold
288 * of 0.75, although with a large variance because of resizing
289 * granularity. Ignoring variance, the expected occurrences of
290 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
291 * first values are:
292 *
293 * 0: 0.60653066
294 * 1: 0.30326533
295 * 2: 0.07581633
296 * 3: 0.01263606
297 * 4: 0.00157952
298 * 5: 0.00015795
299 * 6: 0.00001316
300 * 7: 0.00000094
301 * 8: 0.00000006
302 * more: less than 1 in ten million
303 *
304 * Lock contention probability for two threads accessing distinct
305 * elements is roughly 1 / (8 * #elements) under random hashes.
306 *
307 * Actual hash code distributions encountered in practice
308 * sometimes deviate significantly from uniform randomness. This
309 * includes the case when N > (1<<30), so some keys MUST collide.
310 * Similarly for dumb or hostile usages in which multiple keys are
311 * designed to have identical hash codes. Also, although we guard
312 * against the worst effects of this (see method spread), sets of
313 * hashes may differ only in bits that do not impact their bin
314 * index for a given power-of-two mask. So we use a secondary
315 * strategy that applies when the number of nodes in a bin exceeds
316 * a threshold, and at least one of the keys implements
317 * Comparable. These TreeBins use a balanced tree to hold nodes
318 * (a specialized form of red-black trees), bounding search time
319 * to O(log N). Each search step in a TreeBin is around twice as
320 * slow as in a regular list, but given that N cannot exceed
321 * (1<<64) (before running out of addresses) this bounds search
322 * steps, lock hold times, etc, to reasonable constants (roughly
323 * 100 nodes inspected per operation worst case) so long as keys
324 * are Comparable (which is very common -- String, Long, etc).
325 * TreeBin nodes (TreeNodes) also maintain the same "next"
326 * traversal pointers as regular nodes, so can be traversed in
327 * iterators in the same way.
328 *
329 * The table is resized when occupancy exceeds a percentage
330 * threshold (nominally, 0.75, but see below). Any thread
331 * noticing an overfull bin may assist in resizing after the
332 * initiating thread allocates and sets up the replacement
333 * array. However, rather than stalling, these other threads may
334 * proceed with insertions etc. The use of TreeBins shields us
335 * from the worst case effects of overfilling while resizes are in
336 * progress. Resizing proceeds by transferring bins, one by one,
337 * from the table to the next table. To enable concurrency, the
338 * next table must be (incrementally) prefilled with place-holders
339 * serving as reverse forwarders to the old table. Because we are
340 * using power-of-two expansion, the elements from each bin must
341 * either stay at same index, or move with a power of two
342 * offset. We eliminate unnecessary node creation by catching
343 * cases where old nodes can be reused because their next fields
344 * won't change. On average, only about one-sixth of them need
345 * cloning when a table doubles. The nodes they replace will be
346 * garbage collectable as soon as they are no longer referenced by
347 * any reader thread that may be in the midst of concurrently
348 * traversing table. Upon transfer, the old table bin contains
349 * only a special forwarding node (with hash field "MOVED") that
350 * contains the next table as its key. On encountering a
351 * forwarding node, access and update operations restart, using
352 * the new table.
353 *
354 * Each bin transfer requires its bin lock, which can stall
355 * waiting for locks while resizing. However, because other
356 * threads can join in and help resize rather than contend for
357 * locks, average aggregate waits become shorter as resizing
358 * progresses. The transfer operation must also ensure that all
359 * accessible bins in both the old and new table are usable by any
360 * traversal. This is arranged by proceeding from the last bin
361 * (table.length - 1) up towards the first. Upon seeing a
362 * forwarding node, traversals (see class Traverser) arrange to
363 * move to the new table without revisiting nodes. However, to
364 * ensure that no intervening nodes are skipped, bin splitting can
365 * only begin after the associated reverse-forwarders are in
366 * place.
367 *
368 * The traversal scheme also applies to partial traversals of
369 * ranges of bins (via an alternate Traverser constructor)
370 * to support partitioned aggregate operations. Also, read-only
371 * operations give up if ever forwarded to a null table, which
372 * provides support for shutdown-style clearing, which is also not
373 * currently implemented.
374 *
375 * Lazy table initialization minimizes footprint until first use,
376 * and also avoids resizings when the first operation is from a
377 * putAll, constructor with map argument, or deserialization.
378 * These cases attempt to override the initial capacity settings,
379 * but harmlessly fail to take effect in cases of races.
380 *
381 * The element count is maintained using a specialization of
382 * LongAdder. We need to incorporate a specialization rather than
383 * just use a LongAdder in order to access implicit
384 * contention-sensing that leads to creation of multiple
385 * Cells. The counter mechanics avoid contention on
386 * updates but can encounter cache thrashing if read too
387 * frequently during concurrent access. To avoid reading so often,
388 * resizing under contention is attempted only upon adding to a
389 * bin already holding two or more nodes. Under uniform hash
390 * distributions, the probability of this occurring at threshold
391 * is around 13%, meaning that only about 1 in 8 puts check
392 * threshold (and after resizing, many fewer do so). The bulk
393 * putAll operation further reduces contention by only committing
394 * count updates upon these size checks.
395 *
396 * Maintaining API and serialization compatibility with previous
397 * versions of this class introduces several oddities. Mainly: We
398 * leave untouched but unused constructor arguments refering to
399 * concurrencyLevel. We accept a loadFactor constructor argument,
400 * but apply it only to initial table capacity (which is the only
401 * time that we can guarantee to honor it.) We also declare an
402 * unused "Segment" class that is instantiated in minimal form
403 * only when serializing.
404 */
405
406 /* ---------------- Constants -------------- */
407
408 /**
409 * The largest possible table capacity. This value must be
410 * exactly 1<<30 to stay within Java array allocation and indexing
411 * bounds for power of two table sizes, and is further required
412 * because the top two bits of 32bit hash fields are used for
413 * control purposes.
414 */
415 private static final int MAXIMUM_CAPACITY = 1 << 30;
416
417 /**
418 * The default initial table capacity. Must be a power of 2
419 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
420 */
421 private static final int DEFAULT_CAPACITY = 16;
422
423 /**
424 * The largest possible (non-power of two) array size.
425 * Needed by toArray and related methods.
426 */
427 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
428
429 /**
430 * The default concurrency level for this table. Unused but
431 * defined for compatibility with previous versions of this class.
432 */
433 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
434
435 /**
436 * The load factor for this table. Overrides of this value in
437 * constructors affect only the initial table capacity. The
438 * actual floating point value isn't normally used -- it is
439 * simpler to use expressions such as {@code n - (n >>> 2)} for
440 * the associated resizing threshold.
441 */
442 private static final float LOAD_FACTOR = 0.75f;
443
444 /**
445 * The bin count threshold for using a tree rather than list for a
446 * bin. The value reflects the approximate break-even point for
447 * using tree-based operations.
448 */
449 private static final int TREE_THRESHOLD = 8;
450
451 /**
452 * Minimum number of rebinnings per transfer step. Ranges are
453 * subdivided to allow multiple resizer threads. This value
454 * serves as a lower bound to avoid resizers encountering
455 * excessive memory contention. The value should be at least
456 * DEFAULT_CAPACITY.
457 */
458 private static final int MIN_TRANSFER_STRIDE = 16;
459
460 /*
461 * Encodings for Node hash fields. See above for explanation.
462 */
463 static final int MOVED = 0x80000000; // hash field for forwarding nodes
464 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
465
466 /** Number of CPUS, to place bounds on some sizings */
467 static final int NCPU = Runtime.getRuntime().availableProcessors();
468
469 /* ---------------- Counters -------------- */
470
471 // Adapted from LongAdder and Striped64.
472 // See their internal docs for explanation.
473
474 // A padded cell for distributing counts
475 static final class Cell {
476 volatile long p0, p1, p2, p3, p4, p5, p6;
477 volatile long value;
478 volatile long q0, q1, q2, q3, q4, q5, q6;
479 Cell(long x) { value = x; }
480 }
481
482 /* ---------------- Fields -------------- */
483
484 /**
485 * The array of bins. Lazily initialized upon first insertion.
486 * Size is always a power of two. Accessed directly by iterators.
487 */
488 transient volatile Node<V>[] table;
489
490 /**
491 * The next table to use; non-null only while resizing.
492 */
493 private transient volatile Node<V>[] nextTable;
494
495 /**
496 * Base counter value, used mainly when there is no contention,
497 * but also as a fallback during table initialization
498 * races. Updated via CAS.
499 */
500 private transient volatile long baseCount;
501
502 /**
503 * Table initialization and resizing control. When negative, the
504 * table is being initialized or resized: -1 for initialization,
505 * else -(1 + the number of active resizing threads). Otherwise,
506 * when table is null, holds the initial table size to use upon
507 * creation, or 0 for default. After initialization, holds the
508 * next element count value upon which to resize the table.
509 */
510 private transient volatile int sizeCtl;
511
512 /**
513 * The next table index (plus one) to split while resizing.
514 */
515 private transient volatile int transferIndex;
516
517 /**
518 * The least available table index to split while resizing.
519 */
520 private transient volatile int transferOrigin;
521
522 /**
523 * Spinlock (locked via CAS) used when resizing and/or creating Cells.
524 */
525 private transient volatile int cellsBusy;
526
527 /**
528 * Table of counter cells. When non-null, size is a power of 2.
529 */
530 private transient volatile Cell[] counterCells;
531
532 // views
533 private transient KeySetView<K,V> keySet;
534 private transient ValuesView<K,V> values;
535 private transient EntrySetView<K,V> entrySet;
536
537 /** For serialization compatibility. Null unless serialized; see below */
538 private Segment<K,V>[] segments;
539
540 /* ---------------- Table element access -------------- */
541
542 /*
543 * Volatile access methods are used for table elements as well as
544 * elements of in-progress next table while resizing. Uses are
545 * null checked by callers, and implicitly bounds-checked, relying
546 * on the invariants that tab arrays have non-zero size, and all
547 * indices are masked with (tab.length - 1) which is never
548 * negative and always less than length. Note that, to be correct
549 * wrt arbitrary concurrency errors by users, bounds checks must
550 * operate on local variables, which accounts for some odd-looking
551 * inline assignments below.
552 */
553
554 @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
555 (Node<V>[] tab, int i) { // used by Traverser
556 return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
557 }
558
559 private static final <V> boolean casTabAt
560 (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
561 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
562 }
563
564 private static final <V> void setTabAt
565 (Node<V>[] tab, int i, Node<V> v) {
566 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
567 }
568
569 /* ---------------- Nodes -------------- */
570
571 /**
572 * Key-value entry. Note that this is never exported out as a
573 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
574 * field of MOVED are special, and do not contain user keys or
575 * values. Otherwise, keys are never null, and null val fields
576 * indicate that a node is in the process of being deleted or
577 * created. For purposes of read-only access, a key may be read
578 * before a val, but can only be used after checking val to be
579 * non-null.
580 */
581 static class Node<V> {
582 final int hash;
583 final Object key;
584 volatile V val;
585 volatile Node<V> next;
586
587 Node(int hash, Object key, V val, Node<V> next) {
588 this.hash = hash;
589 this.key = key;
590 this.val = val;
591 this.next = next;
592 }
593 }
594
595 /* ---------------- TreeBins -------------- */
596
597 /**
598 * Nodes for use in TreeBins
599 */
600 static final class TreeNode<V> extends Node<V> {
601 TreeNode<V> parent; // red-black tree links
602 TreeNode<V> left;
603 TreeNode<V> right;
604 TreeNode<V> prev; // needed to unlink next upon deletion
605 boolean red;
606
607 TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
608 super(hash, key, val, next);
609 this.parent = parent;
610 }
611 }
612
613 /**
614 * A specialized form of red-black tree for use in bins
615 * whose size exceeds a threshold.
616 *
617 * TreeBins use a special form of comparison for search and
618 * related operations (which is the main reason we cannot use
619 * existing collections such as TreeMaps). TreeBins contain
620 * Comparable elements, but may contain others, as well as
621 * elements that are Comparable but not necessarily Comparable<T>
622 * for the same T, so we cannot invoke compareTo among them. To
623 * handle this, the tree is ordered primarily by hash value, then
624 * by getClass().getName() order, and then by Comparator order
625 * among elements of the same class. On lookup at a node, if
626 * elements are not comparable or compare as 0, both left and
627 * right children may need to be searched in the case of tied hash
628 * values. (This corresponds to the full list search that would be
629 * necessary if all elements were non-Comparable and had tied
630 * hashes.) The red-black balancing code is updated from
631 * pre-jdk-collections
632 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
633 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
634 * Algorithms" (CLR).
635 *
636 * TreeBins also maintain a separate locking discipline than
637 * regular bins. Because they are forwarded via special MOVED
638 * nodes at bin heads (which can never change once established),
639 * we cannot use those nodes as locks. Instead, TreeBin
640 * extends AbstractQueuedSynchronizer to support a simple form of
641 * read-write lock. For update operations and table validation,
642 * the exclusive form of lock behaves in the same way as bin-head
643 * locks. However, lookups use shared read-lock mechanics to allow
644 * multiple readers in the absence of writers. Additionally,
645 * these lookups do not ever block: While the lock is not
646 * available, they proceed along the slow traversal path (via
647 * next-pointers) until the lock becomes available or the list is
648 * exhausted, whichever comes first. (These cases are not fast,
649 * but maximize aggregate expected throughput.) The AQS mechanics
650 * for doing this are straightforward. The lock state is held as
651 * AQS getState(). Read counts are negative; the write count (1)
652 * is positive. There are no signalling preferences among readers
653 * and writers. Since we don't need to export full Lock API, we
654 * just override the minimal AQS methods and use them directly.
655 */
656 static final class TreeBin<V> extends AbstractQueuedSynchronizer {
657 private static final long serialVersionUID = 2249069246763182397L;
658 transient TreeNode<V> root; // root of tree
659 transient TreeNode<V> first; // head of next-pointer list
660
661 /* AQS overrides */
662 public final boolean isHeldExclusively() { return getState() > 0; }
663 public final boolean tryAcquire(int ignore) {
664 if (compareAndSetState(0, 1)) {
665 setExclusiveOwnerThread(Thread.currentThread());
666 return true;
667 }
668 return false;
669 }
670 public final boolean tryRelease(int ignore) {
671 setExclusiveOwnerThread(null);
672 setState(0);
673 return true;
674 }
675 public final int tryAcquireShared(int ignore) {
676 for (int c;;) {
677 if ((c = getState()) > 0)
678 return -1;
679 if (compareAndSetState(c, c -1))
680 return 1;
681 }
682 }
683 public final boolean tryReleaseShared(int ignore) {
684 int c;
685 do {} while (!compareAndSetState(c = getState(), c + 1));
686 return c == -1;
687 }
688
689 /** From CLR */
690 private void rotateLeft(TreeNode<V> p) {
691 if (p != null) {
692 TreeNode<V> r = p.right, pp, rl;
693 if ((rl = p.right = r.left) != null)
694 rl.parent = p;
695 if ((pp = r.parent = p.parent) == null)
696 root = r;
697 else if (pp.left == p)
698 pp.left = r;
699 else
700 pp.right = r;
701 r.left = p;
702 p.parent = r;
703 }
704 }
705
706 /** From CLR */
707 private void rotateRight(TreeNode<V> p) {
708 if (p != null) {
709 TreeNode<V> l = p.left, pp, lr;
710 if ((lr = p.left = l.right) != null)
711 lr.parent = p;
712 if ((pp = l.parent = p.parent) == null)
713 root = l;
714 else if (pp.right == p)
715 pp.right = l;
716 else
717 pp.left = l;
718 l.right = p;
719 p.parent = l;
720 }
721 }
722
723 /**
724 * Returns the TreeNode (or null if not found) for the given key
725 * starting at given root.
726 */
727 @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
728 (int h, Object k, TreeNode<V> p) {
729 Class<?> c = k.getClass();
730 while (p != null) {
731 int dir, ph; Object pk; Class<?> pc;
732 if ((ph = p.hash) == h) {
733 if ((pk = p.key) == k || k.equals(pk))
734 return p;
735 if (c != (pc = pk.getClass()) ||
736 !(k instanceof Comparable) ||
737 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
738 if ((dir = (c == pc) ? 0 :
739 c.getName().compareTo(pc.getName())) == 0) {
740 TreeNode<V> r = null, pl, pr; // check both sides
741 if ((pr = p.right) != null && h >= pr.hash &&
742 (r = getTreeNode(h, k, pr)) != null)
743 return r;
744 else if ((pl = p.left) != null && h <= pl.hash)
745 dir = -1;
746 else // nothing there
747 return null;
748 }
749 }
750 }
751 else
752 dir = (h < ph) ? -1 : 1;
753 p = (dir > 0) ? p.right : p.left;
754 }
755 return null;
756 }
757
758 /**
759 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
760 * read-lock to call getTreeNode, but during failure to get
761 * lock, searches along next links.
762 */
763 final V getValue(int h, Object k) {
764 Node<V> r = null;
765 int c = getState(); // Must read lock state first
766 for (Node<V> e = first; e != null; e = e.next) {
767 if (c <= 0 && compareAndSetState(c, c - 1)) {
768 try {
769 r = getTreeNode(h, k, root);
770 } finally {
771 releaseShared(0);
772 }
773 break;
774 }
775 else if (e.hash == h && k.equals(e.key)) {
776 r = e;
777 break;
778 }
779 else
780 c = getState();
781 }
782 return r == null ? null : r.val;
783 }
784
785 /**
786 * Finds or adds a node.
787 * @return null if added
788 */
789 @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
790 (int h, Object k, V v) {
791 Class<?> c = k.getClass();
792 TreeNode<V> pp = root, p = null;
793 int dir = 0;
794 while (pp != null) { // find existing node or leaf to insert at
795 int ph; Object pk; Class<?> pc;
796 p = pp;
797 if ((ph = p.hash) == h) {
798 if ((pk = p.key) == k || k.equals(pk))
799 return p;
800 if (c != (pc = pk.getClass()) ||
801 !(k instanceof Comparable) ||
802 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
803 TreeNode<V> s = null, r = null, pr;
804 if ((dir = (c == pc) ? 0 :
805 c.getName().compareTo(pc.getName())) == 0) {
806 if ((pr = p.right) != null && h >= pr.hash &&
807 (r = getTreeNode(h, k, pr)) != null)
808 return r;
809 else // continue left
810 dir = -1;
811 }
812 else if ((pr = p.right) != null && h >= pr.hash)
813 s = pr;
814 if (s != null && (r = getTreeNode(h, k, s)) != null)
815 return r;
816 }
817 }
818 else
819 dir = (h < ph) ? -1 : 1;
820 pp = (dir > 0) ? p.right : p.left;
821 }
822
823 TreeNode<V> f = first;
824 TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
825 if (p == null)
826 root = x;
827 else { // attach and rebalance; adapted from CLR
828 TreeNode<V> xp, xpp;
829 if (f != null)
830 f.prev = x;
831 if (dir <= 0)
832 p.left = x;
833 else
834 p.right = x;
835 x.red = true;
836 while (x != null && (xp = x.parent) != null && xp.red &&
837 (xpp = xp.parent) != null) {
838 TreeNode<V> xppl = xpp.left;
839 if (xp == xppl) {
840 TreeNode<V> y = xpp.right;
841 if (y != null && y.red) {
842 y.red = false;
843 xp.red = false;
844 xpp.red = true;
845 x = xpp;
846 }
847 else {
848 if (x == xp.right) {
849 rotateLeft(x = xp);
850 xpp = (xp = x.parent) == null ? null : xp.parent;
851 }
852 if (xp != null) {
853 xp.red = false;
854 if (xpp != null) {
855 xpp.red = true;
856 rotateRight(xpp);
857 }
858 }
859 }
860 }
861 else {
862 TreeNode<V> y = xppl;
863 if (y != null && y.red) {
864 y.red = false;
865 xp.red = false;
866 xpp.red = true;
867 x = xpp;
868 }
869 else {
870 if (x == xp.left) {
871 rotateRight(x = xp);
872 xpp = (xp = x.parent) == null ? null : xp.parent;
873 }
874 if (xp != null) {
875 xp.red = false;
876 if (xpp != null) {
877 xpp.red = true;
878 rotateLeft(xpp);
879 }
880 }
881 }
882 }
883 }
884 TreeNode<V> r = root;
885 if (r != null && r.red)
886 r.red = false;
887 }
888 return null;
889 }
890
891 /**
892 * Removes the given node, that must be present before this
893 * call. This is messier than typical red-black deletion code
894 * because we cannot swap the contents of an interior node
895 * with a leaf successor that is pinned by "next" pointers
896 * that are accessible independently of lock. So instead we
897 * swap the tree linkages.
898 */
899 final void deleteTreeNode(TreeNode<V> p) {
900 TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
901 TreeNode<V> pred = p.prev;
902 if (pred == null)
903 first = next;
904 else
905 pred.next = next;
906 if (next != null)
907 next.prev = pred;
908 TreeNode<V> replacement;
909 TreeNode<V> pl = p.left;
910 TreeNode<V> pr = p.right;
911 if (pl != null && pr != null) {
912 TreeNode<V> s = pr, sl;
913 while ((sl = s.left) != null) // find successor
914 s = sl;
915 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
916 TreeNode<V> sr = s.right;
917 TreeNode<V> pp = p.parent;
918 if (s == pr) { // p was s's direct parent
919 p.parent = s;
920 s.right = p;
921 }
922 else {
923 TreeNode<V> sp = s.parent;
924 if ((p.parent = sp) != null) {
925 if (s == sp.left)
926 sp.left = p;
927 else
928 sp.right = p;
929 }
930 if ((s.right = pr) != null)
931 pr.parent = s;
932 }
933 p.left = null;
934 if ((p.right = sr) != null)
935 sr.parent = p;
936 if ((s.left = pl) != null)
937 pl.parent = s;
938 if ((s.parent = pp) == null)
939 root = s;
940 else if (p == pp.left)
941 pp.left = s;
942 else
943 pp.right = s;
944 replacement = sr;
945 }
946 else
947 replacement = (pl != null) ? pl : pr;
948 TreeNode<V> pp = p.parent;
949 if (replacement == null) {
950 if (pp == null) {
951 root = null;
952 return;
953 }
954 replacement = p;
955 }
956 else {
957 replacement.parent = pp;
958 if (pp == null)
959 root = replacement;
960 else if (p == pp.left)
961 pp.left = replacement;
962 else
963 pp.right = replacement;
964 p.left = p.right = p.parent = null;
965 }
966 if (!p.red) { // rebalance, from CLR
967 TreeNode<V> x = replacement;
968 while (x != null) {
969 TreeNode<V> xp, xpl;
970 if (x.red || (xp = x.parent) == null) {
971 x.red = false;
972 break;
973 }
974 if (x == (xpl = xp.left)) {
975 TreeNode<V> sib = xp.right;
976 if (sib != null && sib.red) {
977 sib.red = false;
978 xp.red = true;
979 rotateLeft(xp);
980 sib = (xp = x.parent) == null ? null : xp.right;
981 }
982 if (sib == null)
983 x = xp;
984 else {
985 TreeNode<V> sl = sib.left, sr = sib.right;
986 if ((sr == null || !sr.red) &&
987 (sl == null || !sl.red)) {
988 sib.red = true;
989 x = xp;
990 }
991 else {
992 if (sr == null || !sr.red) {
993 if (sl != null)
994 sl.red = false;
995 sib.red = true;
996 rotateRight(sib);
997 sib = (xp = x.parent) == null ?
998 null : xp.right;
999 }
1000 if (sib != null) {
1001 sib.red = (xp == null) ? false : xp.red;
1002 if ((sr = sib.right) != null)
1003 sr.red = false;
1004 }
1005 if (xp != null) {
1006 xp.red = false;
1007 rotateLeft(xp);
1008 }
1009 x = root;
1010 }
1011 }
1012 }
1013 else { // symmetric
1014 TreeNode<V> sib = xpl;
1015 if (sib != null && sib.red) {
1016 sib.red = false;
1017 xp.red = true;
1018 rotateRight(xp);
1019 sib = (xp = x.parent) == null ? null : xp.left;
1020 }
1021 if (sib == null)
1022 x = xp;
1023 else {
1024 TreeNode<V> sl = sib.left, sr = sib.right;
1025 if ((sl == null || !sl.red) &&
1026 (sr == null || !sr.red)) {
1027 sib.red = true;
1028 x = xp;
1029 }
1030 else {
1031 if (sl == null || !sl.red) {
1032 if (sr != null)
1033 sr.red = false;
1034 sib.red = true;
1035 rotateLeft(sib);
1036 sib = (xp = x.parent) == null ?
1037 null : xp.left;
1038 }
1039 if (sib != null) {
1040 sib.red = (xp == null) ? false : xp.red;
1041 if ((sl = sib.left) != null)
1042 sl.red = false;
1043 }
1044 if (xp != null) {
1045 xp.red = false;
1046 rotateRight(xp);
1047 }
1048 x = root;
1049 }
1050 }
1051 }
1052 }
1053 }
1054 if (p == replacement && (pp = p.parent) != null) {
1055 if (p == pp.left) // detach pointers
1056 pp.left = null;
1057 else if (p == pp.right)
1058 pp.right = null;
1059 p.parent = null;
1060 }
1061 }
1062 }
1063
1064 /* ---------------- Collision reduction methods -------------- */
1065
1066 /**
1067 * Spreads higher bits to lower, and also forces top bit to 0.
1068 * Because the table uses power-of-two masking, sets of hashes
1069 * that vary only in bits above the current mask will always
1070 * collide. (Among known examples are sets of Float keys holding
1071 * consecutive whole numbers in small tables.) To counter this,
1072 * we apply a transform that spreads the impact of higher bits
1073 * downward. There is a tradeoff between speed, utility, and
1074 * quality of bit-spreading. Because many common sets of hashes
1075 * are already reasonably distributed across bits (so don't benefit
1076 * from spreading), and because we use trees to handle large sets
1077 * of collisions in bins, we don't need excessively high quality.
1078 */
1079 private static final int spread(int h) {
1080 h ^= (h >>> 18) ^ (h >>> 12);
1081 return (h ^ (h >>> 10)) & HASH_BITS;
1082 }
1083
1084 /**
1085 * Replaces a list bin with a tree bin if key is comparable. Call
1086 * only when locked.
1087 */
1088 private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1089 if (key instanceof Comparable) {
1090 TreeBin<V> t = new TreeBin<V>();
1091 for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1092 t.putTreeNode(e.hash, e.key, e.val);
1093 setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1094 }
1095 }
1096
1097 /* ---------------- Internal access and update methods -------------- */
1098
1099 /** Implementation for get and containsKey */
1100 @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1101 int h = spread(k.hashCode());
1102 retry: for (Node<V>[] tab = table; tab != null;) {
1103 Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1104 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1105 if ((eh = e.hash) < 0) {
1106 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1107 return ((TreeBin<V>)ek).getValue(h, k);
1108 else { // restart with new table
1109 tab = (Node<V>[])ek;
1110 continue retry;
1111 }
1112 }
1113 else if (eh == h && (ev = e.val) != null &&
1114 ((ek = e.key) == k || k.equals(ek)))
1115 return ev;
1116 }
1117 break;
1118 }
1119 return null;
1120 }
1121
1122 /**
1123 * Implementation for the four public remove/replace methods:
1124 * Replaces node value with v, conditional upon match of cv if
1125 * non-null. If resulting value is null, delete.
1126 */
1127 @SuppressWarnings("unchecked") private final V internalReplace
1128 (Object k, V v, Object cv) {
1129 int h = spread(k.hashCode());
1130 V oldVal = null;
1131 for (Node<V>[] tab = table;;) {
1132 Node<V> f; int i, fh; Object fk;
1133 if (tab == null ||
1134 (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1135 break;
1136 else if ((fh = f.hash) < 0) {
1137 if ((fk = f.key) instanceof TreeBin) {
1138 TreeBin<V> t = (TreeBin<V>)fk;
1139 boolean validated = false;
1140 boolean deleted = false;
1141 t.acquire(0);
1142 try {
1143 if (tabAt(tab, i) == f) {
1144 validated = true;
1145 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1146 if (p != null) {
1147 V pv = p.val;
1148 if (cv == null || cv == pv || cv.equals(pv)) {
1149 oldVal = pv;
1150 if ((p.val = v) == null) {
1151 deleted = true;
1152 t.deleteTreeNode(p);
1153 }
1154 }
1155 }
1156 }
1157 } finally {
1158 t.release(0);
1159 }
1160 if (validated) {
1161 if (deleted)
1162 addCount(-1L, -1);
1163 break;
1164 }
1165 }
1166 else
1167 tab = (Node<V>[])fk;
1168 }
1169 else if (fh != h && f.next == null) // precheck
1170 break; // rules out possible existence
1171 else {
1172 boolean validated = false;
1173 boolean deleted = false;
1174 synchronized (f) {
1175 if (tabAt(tab, i) == f) {
1176 validated = true;
1177 for (Node<V> e = f, pred = null;;) {
1178 Object ek; V ev;
1179 if (e.hash == h &&
1180 ((ev = e.val) != null) &&
1181 ((ek = e.key) == k || k.equals(ek))) {
1182 if (cv == null || cv == ev || cv.equals(ev)) {
1183 oldVal = ev;
1184 if ((e.val = v) == null) {
1185 deleted = true;
1186 Node<V> en = e.next;
1187 if (pred != null)
1188 pred.next = en;
1189 else
1190 setTabAt(tab, i, en);
1191 }
1192 }
1193 break;
1194 }
1195 pred = e;
1196 if ((e = e.next) == null)
1197 break;
1198 }
1199 }
1200 }
1201 if (validated) {
1202 if (deleted)
1203 addCount(-1L, -1);
1204 break;
1205 }
1206 }
1207 }
1208 return oldVal;
1209 }
1210
1211 /*
1212 * Internal versions of insertion methods
1213 * All have the same basic structure as the first (internalPut):
1214 * 1. If table uninitialized, create
1215 * 2. If bin empty, try to CAS new node
1216 * 3. If bin stale, use new table
1217 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1218 * 5. Lock and validate; if valid, scan and add or update
1219 *
1220 * The putAll method differs mainly in attempting to pre-allocate
1221 * enough table space, and also more lazily performs count updates
1222 * and checks.
1223 *
1224 * Most of the function-accepting methods can't be factored nicely
1225 * because they require different functional forms, so instead
1226 * sprawl out similar mechanics.
1227 */
1228
1229 /** Implementation for put and putIfAbsent */
1230 @SuppressWarnings("unchecked") private final V internalPut
1231 (K k, V v, boolean onlyIfAbsent) {
1232 if (k == null || v == null) throw new NullPointerException();
1233 int h = spread(k.hashCode());
1234 int len = 0;
1235 for (Node<V>[] tab = table;;) {
1236 int i, fh; Node<V> f; Object fk; V fv;
1237 if (tab == null)
1238 tab = initTable();
1239 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1240 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1241 break; // no lock when adding to empty bin
1242 }
1243 else if ((fh = f.hash) < 0) {
1244 if ((fk = f.key) instanceof TreeBin) {
1245 TreeBin<V> t = (TreeBin<V>)fk;
1246 V oldVal = null;
1247 t.acquire(0);
1248 try {
1249 if (tabAt(tab, i) == f) {
1250 len = 2;
1251 TreeNode<V> p = t.putTreeNode(h, k, v);
1252 if (p != null) {
1253 oldVal = p.val;
1254 if (!onlyIfAbsent)
1255 p.val = v;
1256 }
1257 }
1258 } finally {
1259 t.release(0);
1260 }
1261 if (len != 0) {
1262 if (oldVal != null)
1263 return oldVal;
1264 break;
1265 }
1266 }
1267 else
1268 tab = (Node<V>[])fk;
1269 }
1270 else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1271 ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1272 return fv;
1273 else {
1274 V oldVal = null;
1275 synchronized (f) {
1276 if (tabAt(tab, i) == f) {
1277 len = 1;
1278 for (Node<V> e = f;; ++len) {
1279 Object ek; V ev;
1280 if (e.hash == h &&
1281 (ev = e.val) != null &&
1282 ((ek = e.key) == k || k.equals(ek))) {
1283 oldVal = ev;
1284 if (!onlyIfAbsent)
1285 e.val = v;
1286 break;
1287 }
1288 Node<V> last = e;
1289 if ((e = e.next) == null) {
1290 last.next = new Node<V>(h, k, v, null);
1291 if (len >= TREE_THRESHOLD)
1292 replaceWithTreeBin(tab, i, k);
1293 break;
1294 }
1295 }
1296 }
1297 }
1298 if (len != 0) {
1299 if (oldVal != null)
1300 return oldVal;
1301 break;
1302 }
1303 }
1304 }
1305 addCount(1L, len);
1306 return null;
1307 }
1308
1309 /** Implementation for computeIfAbsent */
1310 @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1311 (K k, Function<? super K, ? extends V> mf) {
1312 if (k == null || mf == null)
1313 throw new NullPointerException();
1314 int h = spread(k.hashCode());
1315 V val = null;
1316 int len = 0;
1317 for (Node<V>[] tab = table;;) {
1318 Node<V> f; int i; Object fk;
1319 if (tab == null)
1320 tab = initTable();
1321 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1322 Node<V> node = new Node<V>(h, k, null, null);
1323 synchronized (node) {
1324 if (casTabAt(tab, i, null, node)) {
1325 len = 1;
1326 try {
1327 if ((val = mf.apply(k)) != null)
1328 node.val = val;
1329 } finally {
1330 if (val == null)
1331 setTabAt(tab, i, null);
1332 }
1333 }
1334 }
1335 if (len != 0)
1336 break;
1337 }
1338 else if (f.hash < 0) {
1339 if ((fk = f.key) instanceof TreeBin) {
1340 TreeBin<V> t = (TreeBin<V>)fk;
1341 boolean added = false;
1342 t.acquire(0);
1343 try {
1344 if (tabAt(tab, i) == f) {
1345 len = 1;
1346 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1347 if (p != null)
1348 val = p.val;
1349 else if ((val = mf.apply(k)) != null) {
1350 added = true;
1351 len = 2;
1352 t.putTreeNode(h, k, val);
1353 }
1354 }
1355 } finally {
1356 t.release(0);
1357 }
1358 if (len != 0) {
1359 if (!added)
1360 return val;
1361 break;
1362 }
1363 }
1364 else
1365 tab = (Node<V>[])fk;
1366 }
1367 else {
1368 for (Node<V> e = f; e != null; e = e.next) { // prescan
1369 Object ek; V ev;
1370 if (e.hash == h && (ev = e.val) != null &&
1371 ((ek = e.key) == k || k.equals(ek)))
1372 return ev;
1373 }
1374 boolean added = false;
1375 synchronized (f) {
1376 if (tabAt(tab, i) == f) {
1377 len = 1;
1378 for (Node<V> e = f;; ++len) {
1379 Object ek; V ev;
1380 if (e.hash == h &&
1381 (ev = e.val) != null &&
1382 ((ek = e.key) == k || k.equals(ek))) {
1383 val = ev;
1384 break;
1385 }
1386 Node<V> last = e;
1387 if ((e = e.next) == null) {
1388 if ((val = mf.apply(k)) != null) {
1389 added = true;
1390 last.next = new Node<V>(h, k, val, null);
1391 if (len >= TREE_THRESHOLD)
1392 replaceWithTreeBin(tab, i, k);
1393 }
1394 break;
1395 }
1396 }
1397 }
1398 }
1399 if (len != 0) {
1400 if (!added)
1401 return val;
1402 break;
1403 }
1404 }
1405 }
1406 if (val != null)
1407 addCount(1L, len);
1408 return val;
1409 }
1410
1411 /** Implementation for compute */
1412 @SuppressWarnings("unchecked") private final V internalCompute
1413 (K k, boolean onlyIfPresent,
1414 BiFunction<? super K, ? super V, ? extends V> mf) {
1415 if (k == null || mf == null)
1416 throw new NullPointerException();
1417 int h = spread(k.hashCode());
1418 V val = null;
1419 int delta = 0;
1420 int len = 0;
1421 for (Node<V>[] tab = table;;) {
1422 Node<V> f; int i, fh; Object fk;
1423 if (tab == null)
1424 tab = initTable();
1425 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1426 if (onlyIfPresent)
1427 break;
1428 Node<V> node = new Node<V>(h, k, null, null);
1429 synchronized (node) {
1430 if (casTabAt(tab, i, null, node)) {
1431 try {
1432 len = 1;
1433 if ((val = mf.apply(k, null)) != null) {
1434 node.val = val;
1435 delta = 1;
1436 }
1437 } finally {
1438 if (delta == 0)
1439 setTabAt(tab, i, null);
1440 }
1441 }
1442 }
1443 if (len != 0)
1444 break;
1445 }
1446 else if ((fh = f.hash) < 0) {
1447 if ((fk = f.key) instanceof TreeBin) {
1448 TreeBin<V> t = (TreeBin<V>)fk;
1449 t.acquire(0);
1450 try {
1451 if (tabAt(tab, i) == f) {
1452 len = 1;
1453 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1454 if (p == null && onlyIfPresent)
1455 break;
1456 V pv = (p == null) ? null : p.val;
1457 if ((val = mf.apply(k, pv)) != null) {
1458 if (p != null)
1459 p.val = val;
1460 else {
1461 len = 2;
1462 delta = 1;
1463 t.putTreeNode(h, k, val);
1464 }
1465 }
1466 else if (p != null) {
1467 delta = -1;
1468 t.deleteTreeNode(p);
1469 }
1470 }
1471 } finally {
1472 t.release(0);
1473 }
1474 if (len != 0)
1475 break;
1476 }
1477 else
1478 tab = (Node<V>[])fk;
1479 }
1480 else {
1481 synchronized (f) {
1482 if (tabAt(tab, i) == f) {
1483 len = 1;
1484 for (Node<V> e = f, pred = null;; ++len) {
1485 Object ek; V ev;
1486 if (e.hash == h &&
1487 (ev = e.val) != null &&
1488 ((ek = e.key) == k || k.equals(ek))) {
1489 val = mf.apply(k, ev);
1490 if (val != null)
1491 e.val = val;
1492 else {
1493 delta = -1;
1494 Node<V> en = e.next;
1495 if (pred != null)
1496 pred.next = en;
1497 else
1498 setTabAt(tab, i, en);
1499 }
1500 break;
1501 }
1502 pred = e;
1503 if ((e = e.next) == null) {
1504 if (!onlyIfPresent &&
1505 (val = mf.apply(k, null)) != null) {
1506 pred.next = new Node<V>(h, k, val, null);
1507 delta = 1;
1508 if (len >= TREE_THRESHOLD)
1509 replaceWithTreeBin(tab, i, k);
1510 }
1511 break;
1512 }
1513 }
1514 }
1515 }
1516 if (len != 0)
1517 break;
1518 }
1519 }
1520 if (delta != 0)
1521 addCount((long)delta, len);
1522 return val;
1523 }
1524
1525 /** Implementation for merge */
1526 @SuppressWarnings("unchecked") private final V internalMerge
1527 (K k, V v, BiFunction<? super V, ? super V, ? extends V> mf) {
1528 if (k == null || v == null || mf == null)
1529 throw new NullPointerException();
1530 int h = spread(k.hashCode());
1531 V val = null;
1532 int delta = 0;
1533 int len = 0;
1534 for (Node<V>[] tab = table;;) {
1535 int i; Node<V> f; Object fk; V fv;
1536 if (tab == null)
1537 tab = initTable();
1538 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1539 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1540 delta = 1;
1541 val = v;
1542 break;
1543 }
1544 }
1545 else if (f.hash < 0) {
1546 if ((fk = f.key) instanceof TreeBin) {
1547 TreeBin<V> t = (TreeBin<V>)fk;
1548 t.acquire(0);
1549 try {
1550 if (tabAt(tab, i) == f) {
1551 len = 1;
1552 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1553 val = (p == null) ? v : mf.apply(p.val, v);
1554 if (val != null) {
1555 if (p != null)
1556 p.val = val;
1557 else {
1558 len = 2;
1559 delta = 1;
1560 t.putTreeNode(h, k, val);
1561 }
1562 }
1563 else if (p != null) {
1564 delta = -1;
1565 t.deleteTreeNode(p);
1566 }
1567 }
1568 } finally {
1569 t.release(0);
1570 }
1571 if (len != 0)
1572 break;
1573 }
1574 else
1575 tab = (Node<V>[])fk;
1576 }
1577 else {
1578 synchronized (f) {
1579 if (tabAt(tab, i) == f) {
1580 len = 1;
1581 for (Node<V> e = f, pred = null;; ++len) {
1582 Object ek; V ev;
1583 if (e.hash == h &&
1584 (ev = e.val) != null &&
1585 ((ek = e.key) == k || k.equals(ek))) {
1586 val = mf.apply(ev, v);
1587 if (val != null)
1588 e.val = val;
1589 else {
1590 delta = -1;
1591 Node<V> en = e.next;
1592 if (pred != null)
1593 pred.next = en;
1594 else
1595 setTabAt(tab, i, en);
1596 }
1597 break;
1598 }
1599 pred = e;
1600 if ((e = e.next) == null) {
1601 val = v;
1602 pred.next = new Node<V>(h, k, val, null);
1603 delta = 1;
1604 if (len >= TREE_THRESHOLD)
1605 replaceWithTreeBin(tab, i, k);
1606 break;
1607 }
1608 }
1609 }
1610 }
1611 if (len != 0)
1612 break;
1613 }
1614 }
1615 if (delta != 0)
1616 addCount((long)delta, len);
1617 return val;
1618 }
1619
1620 /** Implementation for putAll */
1621 @SuppressWarnings("unchecked") private final void internalPutAll
1622 (Map<? extends K, ? extends V> m) {
1623 tryPresize(m.size());
1624 long delta = 0L; // number of uncommitted additions
1625 boolean npe = false; // to throw exception on exit for nulls
1626 try { // to clean up counts on other exceptions
1627 for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1628 Object k; V v;
1629 if (entry == null || (k = entry.getKey()) == null ||
1630 (v = entry.getValue()) == null) {
1631 npe = true;
1632 break;
1633 }
1634 int h = spread(k.hashCode());
1635 for (Node<V>[] tab = table;;) {
1636 int i; Node<V> f; int fh; Object fk;
1637 if (tab == null)
1638 tab = initTable();
1639 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1640 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1641 ++delta;
1642 break;
1643 }
1644 }
1645 else if ((fh = f.hash) < 0) {
1646 if ((fk = f.key) instanceof TreeBin) {
1647 TreeBin<V> t = (TreeBin<V>)fk;
1648 boolean validated = false;
1649 t.acquire(0);
1650 try {
1651 if (tabAt(tab, i) == f) {
1652 validated = true;
1653 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1654 if (p != null)
1655 p.val = v;
1656 else {
1657 t.putTreeNode(h, k, v);
1658 ++delta;
1659 }
1660 }
1661 } finally {
1662 t.release(0);
1663 }
1664 if (validated)
1665 break;
1666 }
1667 else
1668 tab = (Node<V>[])fk;
1669 }
1670 else {
1671 int len = 0;
1672 synchronized (f) {
1673 if (tabAt(tab, i) == f) {
1674 len = 1;
1675 for (Node<V> e = f;; ++len) {
1676 Object ek; V ev;
1677 if (e.hash == h &&
1678 (ev = e.val) != null &&
1679 ((ek = e.key) == k || k.equals(ek))) {
1680 e.val = v;
1681 break;
1682 }
1683 Node<V> last = e;
1684 if ((e = e.next) == null) {
1685 ++delta;
1686 last.next = new Node<V>(h, k, v, null);
1687 if (len >= TREE_THRESHOLD)
1688 replaceWithTreeBin(tab, i, k);
1689 break;
1690 }
1691 }
1692 }
1693 }
1694 if (len != 0) {
1695 if (len > 1) {
1696 addCount(delta, len);
1697 delta = 0L;
1698 }
1699 break;
1700 }
1701 }
1702 }
1703 }
1704 } finally {
1705 if (delta != 0L)
1706 addCount(delta, 2);
1707 }
1708 if (npe)
1709 throw new NullPointerException();
1710 }
1711
1712 /**
1713 * Implementation for clear. Steps through each bin, removing all
1714 * nodes.
1715 */
1716 @SuppressWarnings("unchecked") private final void internalClear() {
1717 long delta = 0L; // negative number of deletions
1718 int i = 0;
1719 Node<V>[] tab = table;
1720 while (tab != null && i < tab.length) {
1721 Node<V> f = tabAt(tab, i);
1722 if (f == null)
1723 ++i;
1724 else if (f.hash < 0) {
1725 Object fk;
1726 if ((fk = f.key) instanceof TreeBin) {
1727 TreeBin<V> t = (TreeBin<V>)fk;
1728 t.acquire(0);
1729 try {
1730 if (tabAt(tab, i) == f) {
1731 for (Node<V> p = t.first; p != null; p = p.next) {
1732 if (p.val != null) { // (currently always true)
1733 p.val = null;
1734 --delta;
1735 }
1736 }
1737 t.first = null;
1738 t.root = null;
1739 ++i;
1740 }
1741 } finally {
1742 t.release(0);
1743 }
1744 }
1745 else
1746 tab = (Node<V>[])fk;
1747 }
1748 else {
1749 synchronized (f) {
1750 if (tabAt(tab, i) == f) {
1751 for (Node<V> e = f; e != null; e = e.next) {
1752 if (e.val != null) { // (currently always true)
1753 e.val = null;
1754 --delta;
1755 }
1756 }
1757 setTabAt(tab, i, null);
1758 ++i;
1759 }
1760 }
1761 }
1762 }
1763 if (delta != 0L)
1764 addCount(delta, -1);
1765 }
1766
1767 /* ---------------- Table Initialization and Resizing -------------- */
1768
1769 /**
1770 * Returns a power of two table size for the given desired capacity.
1771 * See Hackers Delight, sec 3.2
1772 */
1773 private static final int tableSizeFor(int c) {
1774 int n = c - 1;
1775 n |= n >>> 1;
1776 n |= n >>> 2;
1777 n |= n >>> 4;
1778 n |= n >>> 8;
1779 n |= n >>> 16;
1780 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1781 }
1782
1783 /**
1784 * Initializes table, using the size recorded in sizeCtl.
1785 */
1786 @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1787 Node<V>[] tab; int sc;
1788 while ((tab = table) == null) {
1789 if ((sc = sizeCtl) < 0)
1790 Thread.yield(); // lost initialization race; just spin
1791 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1792 try {
1793 if ((tab = table) == null) {
1794 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1795 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1796 table = tab = (Node<V>[])tb;
1797 sc = n - (n >>> 2);
1798 }
1799 } finally {
1800 sizeCtl = sc;
1801 }
1802 break;
1803 }
1804 }
1805 return tab;
1806 }
1807
1808 /**
1809 * Adds to count, and if table is too small and not already
1810 * resizing, initiates transfer. If already resizing, helps
1811 * perform transfer if work is available. Rechecks occupancy
1812 * after a transfer to see if another resize is already needed
1813 * because resizings are lagging additions.
1814 *
1815 * @param x the count to add
1816 * @param check if <0, don't check resize, if <= 1 only check if uncontended
1817 */
1818 private final void addCount(long x, int check) {
1819 Cell[] as; long b, s;
1820 if ((as = counterCells) != null ||
1821 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1822 Cell a; long v; int m;
1823 boolean uncontended = true;
1824 if (as == null || (m = as.length - 1) < 0 ||
1825 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
1826 !(uncontended =
1827 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1828 fullAddCount(x, uncontended);
1829 return;
1830 }
1831 if (check <= 1)
1832 return;
1833 s = sumCount();
1834 }
1835 if (check >= 0) {
1836 Node<V>[] tab, nt; int sc;
1837 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1838 tab.length < MAXIMUM_CAPACITY) {
1839 if (sc < 0) {
1840 if (sc == -1 || transferIndex <= transferOrigin ||
1841 (nt = nextTable) == null)
1842 break;
1843 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1844 transfer(tab, nt);
1845 }
1846 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1847 transfer(tab, null);
1848 s = sumCount();
1849 }
1850 }
1851 }
1852
1853 /**
1854 * Tries to presize table to accommodate the given number of elements.
1855 *
1856 * @param size number of elements (doesn't need to be perfectly accurate)
1857 */
1858 @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1859 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1860 tableSizeFor(size + (size >>> 1) + 1);
1861 int sc;
1862 while ((sc = sizeCtl) >= 0) {
1863 Node<V>[] tab = table; int n;
1864 if (tab == null || (n = tab.length) == 0) {
1865 n = (sc > c) ? sc : c;
1866 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1867 try {
1868 if (table == tab) {
1869 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1870 table = (Node<V>[])tb;
1871 sc = n - (n >>> 2);
1872 }
1873 } finally {
1874 sizeCtl = sc;
1875 }
1876 }
1877 }
1878 else if (c <= sc || n >= MAXIMUM_CAPACITY)
1879 break;
1880 else if (tab == table &&
1881 U.compareAndSwapInt(this, SIZECTL, sc, -2))
1882 transfer(tab, null);
1883 }
1884 }
1885
1886 /**
1887 * Moves and/or copies the nodes in each bin to new table. See
1888 * above for explanation.
1889 */
1890 @SuppressWarnings("unchecked") private final void transfer
1891 (Node<V>[] tab, Node<V>[] nextTab) {
1892 int n = tab.length, stride;
1893 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1894 stride = MIN_TRANSFER_STRIDE; // subdivide range
1895 if (nextTab == null) { // initiating
1896 try {
1897 @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1898 nextTab = (Node<V>[])tb;
1899 } catch (Throwable ex) { // try to cope with OOME
1900 sizeCtl = Integer.MAX_VALUE;
1901 return;
1902 }
1903 nextTable = nextTab;
1904 transferOrigin = n;
1905 transferIndex = n;
1906 Node<V> rev = new Node<V>(MOVED, tab, null, null);
1907 for (int k = n; k > 0;) { // progressively reveal ready slots
1908 int nextk = (k > stride) ? k - stride : 0;
1909 for (int m = nextk; m < k; ++m)
1910 nextTab[m] = rev;
1911 for (int m = n + nextk; m < n + k; ++m)
1912 nextTab[m] = rev;
1913 U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1914 }
1915 }
1916 int nextn = nextTab.length;
1917 Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
1918 boolean advance = true;
1919 for (int i = 0, bound = 0;;) {
1920 int nextIndex, nextBound; Node<V> f; Object fk;
1921 while (advance) {
1922 if (--i >= bound)
1923 advance = false;
1924 else if ((nextIndex = transferIndex) <= transferOrigin) {
1925 i = -1;
1926 advance = false;
1927 }
1928 else if (U.compareAndSwapInt
1929 (this, TRANSFERINDEX, nextIndex,
1930 nextBound = (nextIndex > stride ?
1931 nextIndex - stride : 0))) {
1932 bound = nextBound;
1933 i = nextIndex - 1;
1934 advance = false;
1935 }
1936 }
1937 if (i < 0 || i >= n || i + n >= nextn) {
1938 for (int sc;;) {
1939 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
1940 if (sc == -1) {
1941 nextTable = null;
1942 table = nextTab;
1943 sizeCtl = (n << 1) - (n >>> 1);
1944 }
1945 return;
1946 }
1947 }
1948 }
1949 else if ((f = tabAt(tab, i)) == null) {
1950 if (casTabAt(tab, i, null, fwd)) {
1951 setTabAt(nextTab, i, null);
1952 setTabAt(nextTab, i + n, null);
1953 advance = true;
1954 }
1955 }
1956 else if (f.hash >= 0) {
1957 synchronized (f) {
1958 if (tabAt(tab, i) == f) {
1959 int runBit = f.hash & n;
1960 Node<V> lastRun = f, lo = null, hi = null;
1961 for (Node<V> p = f.next; p != null; p = p.next) {
1962 int b = p.hash & n;
1963 if (b != runBit) {
1964 runBit = b;
1965 lastRun = p;
1966 }
1967 }
1968 if (runBit == 0)
1969 lo = lastRun;
1970 else
1971 hi = lastRun;
1972 for (Node<V> p = f; p != lastRun; p = p.next) {
1973 int ph = p.hash;
1974 Object pk = p.key; V pv = p.val;
1975 if ((ph & n) == 0)
1976 lo = new Node<V>(ph, pk, pv, lo);
1977 else
1978 hi = new Node<V>(ph, pk, pv, hi);
1979 }
1980 setTabAt(nextTab, i, lo);
1981 setTabAt(nextTab, i + n, hi);
1982 setTabAt(tab, i, fwd);
1983 advance = true;
1984 }
1985 }
1986 }
1987 else if ((fk = f.key) instanceof TreeBin) {
1988 TreeBin<V> t = (TreeBin<V>)fk;
1989 t.acquire(0);
1990 try {
1991 if (tabAt(tab, i) == f) {
1992 TreeBin<V> lt = new TreeBin<V>();
1993 TreeBin<V> ht = new TreeBin<V>();
1994 int lc = 0, hc = 0;
1995 for (Node<V> e = t.first; e != null; e = e.next) {
1996 int h = e.hash;
1997 Object k = e.key; V v = e.val;
1998 if ((h & n) == 0) {
1999 ++lc;
2000 lt.putTreeNode(h, k, v);
2001 }
2002 else {
2003 ++hc;
2004 ht.putTreeNode(h, k, v);
2005 }
2006 }
2007 Node<V> ln, hn; // throw away trees if too small
2008 if (lc < TREE_THRESHOLD) {
2009 ln = null;
2010 for (Node<V> p = lt.first; p != null; p = p.next)
2011 ln = new Node<V>(p.hash, p.key, p.val, ln);
2012 }
2013 else
2014 ln = new Node<V>(MOVED, lt, null, null);
2015 setTabAt(nextTab, i, ln);
2016 if (hc < TREE_THRESHOLD) {
2017 hn = null;
2018 for (Node<V> p = ht.first; p != null; p = p.next)
2019 hn = new Node<V>(p.hash, p.key, p.val, hn);
2020 }
2021 else
2022 hn = new Node<V>(MOVED, ht, null, null);
2023 setTabAt(nextTab, i + n, hn);
2024 setTabAt(tab, i, fwd);
2025 advance = true;
2026 }
2027 } finally {
2028 t.release(0);
2029 }
2030 }
2031 else
2032 advance = true; // already processed
2033 }
2034 }
2035
2036 /* ---------------- Counter support -------------- */
2037
2038 final long sumCount() {
2039 Cell[] as = counterCells; Cell a;
2040 long sum = baseCount;
2041 if (as != null) {
2042 for (int i = 0; i < as.length; ++i) {
2043 if ((a = as[i]) != null)
2044 sum += a.value;
2045 }
2046 }
2047 return sum;
2048 }
2049
2050 // See LongAdder version for explanation
2051 private final void fullAddCount(long x, boolean wasUncontended) {
2052 int h;
2053 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2054 ThreadLocalRandom.localInit(); // force initialization
2055 h = ThreadLocalRandom.getProbe();
2056 wasUncontended = true;
2057 }
2058 boolean collide = false; // True if last slot nonempty
2059 for (;;) {
2060 Cell[] as; Cell a; int n; long v;
2061 if ((as = counterCells) != null && (n = as.length) > 0) {
2062 if ((a = as[(n - 1) & h]) == null) {
2063 if (cellsBusy == 0) { // Try to attach new Cell
2064 Cell r = new Cell(x); // Optimistic create
2065 if (cellsBusy == 0 &&
2066 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2067 boolean created = false;
2068 try { // Recheck under lock
2069 Cell[] rs; int m, j;
2070 if ((rs = counterCells) != null &&
2071 (m = rs.length) > 0 &&
2072 rs[j = (m - 1) & h] == null) {
2073 rs[j] = r;
2074 created = true;
2075 }
2076 } finally {
2077 cellsBusy = 0;
2078 }
2079 if (created)
2080 break;
2081 continue; // Slot is now non-empty
2082 }
2083 }
2084 collide = false;
2085 }
2086 else if (!wasUncontended) // CAS already known to fail
2087 wasUncontended = true; // Continue after rehash
2088 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2089 break;
2090 else if (counterCells != as || n >= NCPU)
2091 collide = false; // At max size or stale
2092 else if (!collide)
2093 collide = true;
2094 else if (cellsBusy == 0 &&
2095 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2096 try {
2097 if (counterCells == as) {// Expand table unless stale
2098 Cell[] rs = new Cell[n << 1];
2099 for (int i = 0; i < n; ++i)
2100 rs[i] = as[i];
2101 counterCells = rs;
2102 }
2103 } finally {
2104 cellsBusy = 0;
2105 }
2106 collide = false;
2107 continue; // Retry with expanded table
2108 }
2109 h = ThreadLocalRandom.advanceProbe(h);
2110 }
2111 else if (cellsBusy == 0 && counterCells == as &&
2112 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2113 boolean init = false;
2114 try { // Initialize table
2115 if (counterCells == as) {
2116 Cell[] rs = new Cell[2];
2117 rs[h & 1] = new Cell(x);
2118 counterCells = rs;
2119 init = true;
2120 }
2121 } finally {
2122 cellsBusy = 0;
2123 }
2124 if (init)
2125 break;
2126 }
2127 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2128 break; // Fall back on using base
2129 }
2130 }
2131
2132 /* ----------------Table Traversal -------------- */
2133
2134 /**
2135 * Encapsulates traversal for methods such as containsValue; also
2136 * serves as a base class for other iterators and bulk tasks.
2137 *
2138 * At each step, the iterator snapshots the key ("nextKey") and
2139 * value ("nextVal") of a valid node (i.e., one that, at point of
2140 * snapshot, has a non-null user value). Because val fields can
2141 * change (including to null, indicating deletion), field nextVal
2142 * might not be accurate at point of use, but still maintains the
2143 * weak consistency property of holding a value that was once
2144 * valid. To support iterator.remove, the nextKey field is not
2145 * updated (nulled out) when the iterator cannot advance.
2146 *
2147 * Internal traversals directly access these fields, as in:
2148 * {@code while (it.advance() != null) { process(it.nextKey); }}
2149 *
2150 * Exported iterators must track whether the iterator has advanced
2151 * (in hasNext vs next) (by setting/checking/nulling field
2152 * nextVal), and then extract key, value, or key-value pairs as
2153 * return values of next().
2154 *
2155 * The iterator visits once each still-valid node that was
2156 * reachable upon iterator construction. It might miss some that
2157 * were added to a bin after the bin was visited, which is OK wrt
2158 * consistency guarantees. Maintaining this property in the face
2159 * of possible ongoing resizes requires a fair amount of
2160 * bookkeeping state that is difficult to optimize away amidst
2161 * volatile accesses. Even so, traversal maintains reasonable
2162 * throughput.
2163 *
2164 * Normally, iteration proceeds bin-by-bin traversing lists.
2165 * However, if the table has been resized, then all future steps
2166 * must traverse both the bin at the current index as well as at
2167 * (index + baseSize); and so on for further resizings. To
2168 * paranoically cope with potential sharing by users of iterators
2169 * across threads, iteration terminates if a bounds checks fails
2170 * for a table read.
2171 *
2172 * This class supports both Spliterator-based traversal and
2173 * CountedCompleter-based bulk tasks. The same "batch" field is
2174 * used, but in slightly different ways, in the two cases. For
2175 * Spliterators, it is a saturating (at Integer.MAX_VALUE)
2176 * estimate of element coverage. For CHM tasks, it is a pre-scaled
2177 * size that halves down to zero for leaf tasks, that is only
2178 * computed upon execution of the task. (Tasks can be submitted to
2179 * any pool, of any size, so we don't know scale factors until
2180 * running.)
2181 *
2182 * This class extends CountedCompleter to streamline parallel
2183 * iteration in bulk operations. This adds only a few fields of
2184 * space overhead, which is small enough in cases where it is not
2185 * needed to not worry about it. Because CountedCompleter is
2186 * Serializable, but iterators need not be, we need to add warning
2187 * suppressions.
2188 */
2189 @SuppressWarnings("serial") static class Traverser<K,V,R>
2190 extends CountedCompleter<R> {
2191 final ConcurrentHashMap<K,V> map;
2192 Node<V> next; // the next entry to use
2193 K nextKey; // cached key field of next
2194 V nextVal; // cached val field of next
2195 Node<V>[] tab; // current table; updated if resized
2196 int index; // index of bin to use next
2197 int baseIndex; // current index of initial table
2198 int baseLimit; // index bound for initial table
2199 int baseSize; // initial table size
2200 int batch; // split control
2201 /** Creates iterator for all entries in the table. */
2202 Traverser(ConcurrentHashMap<K,V> map) {
2203 this.map = map;
2204 Node<V>[] t;
2205 if ((t = tab = map.table) != null)
2206 baseLimit = baseSize = t.length;
2207 }
2208
2209 /** Task constructor */
2210 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2211 super(it);
2212 this.map = map;
2213 this.batch = batch; // -1 if unknown
2214 if (it == null) {
2215 Node<V>[] t;
2216 if ((t = tab = map.table) != null)
2217 baseLimit = baseSize = t.length;
2218 }
2219 else { // split parent
2220 this.tab = it.tab;
2221 this.baseSize = it.baseSize;
2222 int hi = this.baseLimit = it.baseLimit;
2223 it.baseLimit = this.index = this.baseIndex =
2224 (hi + it.baseIndex + 1) >>> 1;
2225 }
2226 }
2227
2228 /** Spliterator constructor */
2229 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it) {
2230 super(it);
2231 this.map = map;
2232 if (it == null) {
2233 Node<V>[] t;
2234 if ((t = tab = map.table) != null)
2235 baseLimit = baseSize = t.length;
2236 long n = map.sumCount();
2237 batch = ((n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2238 (int)n);
2239 }
2240 else {
2241 this.tab = it.tab;
2242 this.baseSize = it.baseSize;
2243 int hi = this.baseLimit = it.baseLimit;
2244 it.baseLimit = this.index = this.baseIndex =
2245 (hi + it.baseIndex + 1) >>> 1;
2246 this.batch = it.batch >>>= 1;
2247 }
2248 }
2249
2250 /**
2251 * Advances next; returns nextVal or null if terminated.
2252 * See above for explanation.
2253 */
2254 @SuppressWarnings("unchecked") final V advance() {
2255 Node<V> e = next;
2256 V ev = null;
2257 outer: do {
2258 if (e != null) // advance past used/skipped node
2259 e = e.next;
2260 while (e == null) { // get to next non-null bin
2261 ConcurrentHashMap<K,V> m;
2262 Node<V>[] t; int b, i, n; Object ek; // must use locals
2263 if ((t = tab) != null)
2264 n = t.length;
2265 else if ((m = map) != null && (t = tab = m.table) != null)
2266 n = baseLimit = baseSize = t.length;
2267 else
2268 break outer;
2269 if ((b = baseIndex) >= baseLimit ||
2270 (i = index) < 0 || i >= n)
2271 break outer;
2272 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2273 if ((ek = e.key) instanceof TreeBin)
2274 e = ((TreeBin<V>)ek).first;
2275 else {
2276 tab = (Node<V>[])ek;
2277 continue; // restarts due to null val
2278 }
2279 } // visit upper slots if present
2280 index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2281 }
2282 nextKey = (K)e.key;
2283 } while ((ev = e.val) == null); // skip deleted or special nodes
2284 next = e;
2285 return nextVal = ev;
2286 }
2287
2288 public final void remove() {
2289 K k = nextKey;
2290 if (k == null && (advance() == null || (k = nextKey) == null))
2291 throw new IllegalStateException();
2292 map.internalReplace(k, null, null);
2293 }
2294
2295 public final boolean hasNext() {
2296 return nextVal != null || advance() != null;
2297 }
2298
2299 public final boolean hasMoreElements() { return hasNext(); }
2300
2301 public void compute() { } // default no-op CountedCompleter body
2302
2303 /**
2304 * Returns a batch value > 0 if this task should (and must) be
2305 * split, if so, adding to pending count, and in any case
2306 * updating batch value. The initial batch value is approx
2307 * exp2 of the number of times (minus one) to split task by
2308 * two before executing leaf action. This value is faster to
2309 * compute and more convenient to use as a guide to splitting
2310 * than is the depth, since it is used while dividing by two
2311 * anyway.
2312 */
2313 final int preSplit() {
2314 int b; ForkJoinPool pool;
2315 if ((b = batch) < 0) { // force initialization
2316 int sp = (((pool = getPool()) == null) ?
2317 ForkJoinPool.getCommonPoolParallelism() :
2318 pool.getParallelism()) << 3; // slack of 8
2319 long n = map.sumCount();
2320 b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2321 }
2322 b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2323 if ((batch = b) > 0)
2324 addToPendingCount(1);
2325 return b;
2326 }
2327
2328 // spliterator support
2329
2330 public long estimateSize() {
2331 return batch;
2332 }
2333 }
2334
2335 /* ---------------- Public operations -------------- */
2336
2337 /**
2338 * Creates a new, empty map with the default initial table size (16).
2339 */
2340 public ConcurrentHashMap() {
2341 }
2342
2343 /**
2344 * Creates a new, empty map with an initial table size
2345 * accommodating the specified number of elements without the need
2346 * to dynamically resize.
2347 *
2348 * @param initialCapacity The implementation performs internal
2349 * sizing to accommodate this many elements.
2350 * @throws IllegalArgumentException if the initial capacity of
2351 * elements is negative
2352 */
2353 public ConcurrentHashMap(int initialCapacity) {
2354 if (initialCapacity < 0)
2355 throw new IllegalArgumentException();
2356 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2357 MAXIMUM_CAPACITY :
2358 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2359 this.sizeCtl = cap;
2360 }
2361
2362 /**
2363 * Creates a new map with the same mappings as the given map.
2364 *
2365 * @param m the map
2366 */
2367 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2368 this.sizeCtl = DEFAULT_CAPACITY;
2369 internalPutAll(m);
2370 }
2371
2372 /**
2373 * Creates a new, empty map with an initial table size based on
2374 * the given number of elements ({@code initialCapacity}) and
2375 * initial table density ({@code loadFactor}).
2376 *
2377 * @param initialCapacity the initial capacity. The implementation
2378 * performs internal sizing to accommodate this many elements,
2379 * given the specified load factor.
2380 * @param loadFactor the load factor (table density) for
2381 * establishing the initial table size
2382 * @throws IllegalArgumentException if the initial capacity of
2383 * elements is negative or the load factor is nonpositive
2384 *
2385 * @since 1.6
2386 */
2387 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2388 this(initialCapacity, loadFactor, 1);
2389 }
2390
2391 /**
2392 * Creates a new, empty map with an initial table size based on
2393 * the given number of elements ({@code initialCapacity}), table
2394 * density ({@code loadFactor}), and number of concurrently
2395 * updating threads ({@code concurrencyLevel}).
2396 *
2397 * @param initialCapacity the initial capacity. The implementation
2398 * performs internal sizing to accommodate this many elements,
2399 * given the specified load factor.
2400 * @param loadFactor the load factor (table density) for
2401 * establishing the initial table size
2402 * @param concurrencyLevel the estimated number of concurrently
2403 * updating threads. The implementation may use this value as
2404 * a sizing hint.
2405 * @throws IllegalArgumentException if the initial capacity is
2406 * negative or the load factor or concurrencyLevel are
2407 * nonpositive
2408 */
2409 public ConcurrentHashMap(int initialCapacity,
2410 float loadFactor, int concurrencyLevel) {
2411 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2412 throw new IllegalArgumentException();
2413 if (initialCapacity < concurrencyLevel) // Use at least as many bins
2414 initialCapacity = concurrencyLevel; // as estimated threads
2415 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2416 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2417 MAXIMUM_CAPACITY : tableSizeFor((int)size);
2418 this.sizeCtl = cap;
2419 }
2420
2421 /**
2422 * Creates a new {@link Set} backed by a ConcurrentHashMap
2423 * from the given type to {@code Boolean.TRUE}.
2424 *
2425 * @return the new set
2426 */
2427 public static <K> KeySetView<K,Boolean> newKeySet() {
2428 return new KeySetView<K,Boolean>
2429 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2430 }
2431
2432 /**
2433 * Creates a new {@link Set} backed by a ConcurrentHashMap
2434 * from the given type to {@code Boolean.TRUE}.
2435 *
2436 * @param initialCapacity The implementation performs internal
2437 * sizing to accommodate this many elements.
2438 * @throws IllegalArgumentException if the initial capacity of
2439 * elements is negative
2440 * @return the new set
2441 */
2442 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2443 return new KeySetView<K,Boolean>
2444 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2445 }
2446
2447 /**
2448 * {@inheritDoc}
2449 */
2450 public boolean isEmpty() {
2451 return sumCount() <= 0L; // ignore transient negative values
2452 }
2453
2454 /**
2455 * {@inheritDoc}
2456 */
2457 public int size() {
2458 long n = sumCount();
2459 return ((n < 0L) ? 0 :
2460 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2461 (int)n);
2462 }
2463
2464 /**
2465 * Returns the number of mappings. This method should be used
2466 * instead of {@link #size} because a ConcurrentHashMap may
2467 * contain more mappings than can be represented as an int. The
2468 * value returned is an estimate; the actual count may differ if
2469 * there are concurrent insertions or removals.
2470 *
2471 * @return the number of mappings
2472 */
2473 public long mappingCount() {
2474 long n = sumCount();
2475 return (n < 0L) ? 0L : n; // ignore transient negative values
2476 }
2477
2478 /**
2479 * Returns the value to which the specified key is mapped,
2480 * or {@code null} if this map contains no mapping for the key.
2481 *
2482 * <p>More formally, if this map contains a mapping from a key
2483 * {@code k} to a value {@code v} such that {@code key.equals(k)},
2484 * then this method returns {@code v}; otherwise it returns
2485 * {@code null}. (There can be at most one such mapping.)
2486 *
2487 * @throws NullPointerException if the specified key is null
2488 */
2489 public V get(Object key) {
2490 return internalGet(key);
2491 }
2492
2493 /**
2494 * Returns the value to which the specified key is mapped,
2495 * or the given defaultValue if this map contains no mapping for the key.
2496 *
2497 * @param key the key
2498 * @param defaultValue the value to return if this map contains
2499 * no mapping for the given key
2500 * @return the mapping for the key, if present; else the defaultValue
2501 * @throws NullPointerException if the specified key is null
2502 */
2503 public V getValueOrDefault(Object key, V defaultValue) {
2504 V v;
2505 return (v = internalGet(key)) == null ? defaultValue : v;
2506 }
2507
2508 /**
2509 * Tests if the specified object is a key in this table.
2510 *
2511 * @param key possible key
2512 * @return {@code true} if and only if the specified object
2513 * is a key in this table, as determined by the
2514 * {@code equals} method; {@code false} otherwise
2515 * @throws NullPointerException if the specified key is null
2516 */
2517 public boolean containsKey(Object key) {
2518 return internalGet(key) != null;
2519 }
2520
2521 /**
2522 * Returns {@code true} if this map maps one or more keys to the
2523 * specified value. Note: This method may require a full traversal
2524 * of the map, and is much slower than method {@code containsKey}.
2525 *
2526 * @param value value whose presence in this map is to be tested
2527 * @return {@code true} if this map maps one or more keys to the
2528 * specified value
2529 * @throws NullPointerException if the specified value is null
2530 */
2531 public boolean containsValue(Object value) {
2532 if (value == null)
2533 throw new NullPointerException();
2534 V v;
2535 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2536 while ((v = it.advance()) != null) {
2537 if (v == value || value.equals(v))
2538 return true;
2539 }
2540 return false;
2541 }
2542
2543 /**
2544 * Legacy method testing if some key maps into the specified value
2545 * in this table. This method is identical in functionality to
2546 * {@link #containsValue(Object)}, and exists solely to ensure
2547 * full compatibility with class {@link java.util.Hashtable},
2548 * which supported this method prior to introduction of the
2549 * Java Collections framework.
2550 *
2551 * @param value a value to search for
2552 * @return {@code true} if and only if some key maps to the
2553 * {@code value} argument in this table as
2554 * determined by the {@code equals} method;
2555 * {@code false} otherwise
2556 * @throws NullPointerException if the specified value is null
2557 */
2558 @Deprecated public boolean contains(Object value) {
2559 return containsValue(value);
2560 }
2561
2562 /**
2563 * Maps the specified key to the specified value in this table.
2564 * Neither the key nor the value can be null.
2565 *
2566 * <p>The value can be retrieved by calling the {@code get} method
2567 * with a key that is equal to the original key.
2568 *
2569 * @param key key with which the specified value is to be associated
2570 * @param value value to be associated with the specified key
2571 * @return the previous value associated with {@code key}, or
2572 * {@code null} if there was no mapping for {@code key}
2573 * @throws NullPointerException if the specified key or value is null
2574 */
2575 public V put(K key, V value) {
2576 return internalPut(key, value, false);
2577 }
2578
2579 /**
2580 * {@inheritDoc}
2581 *
2582 * @return the previous value associated with the specified key,
2583 * or {@code null} if there was no mapping for the key
2584 * @throws NullPointerException if the specified key or value is null
2585 */
2586 public V putIfAbsent(K key, V value) {
2587 return internalPut(key, value, true);
2588 }
2589
2590 /**
2591 * Copies all of the mappings from the specified map to this one.
2592 * These mappings replace any mappings that this map had for any of the
2593 * keys currently in the specified map.
2594 *
2595 * @param m mappings to be stored in this map
2596 */
2597 public void putAll(Map<? extends K, ? extends V> m) {
2598 internalPutAll(m);
2599 }
2600
2601 /**
2602 * If the specified key is not already associated with a value (or
2603 * is mapped to {@code null}), attempts to compute its value using
2604 * the given mapping function and enters it into this map unless
2605 * {@code null}. The entire method invocation is performed
2606 * atomically, so the function is applied at most once per key.
2607 * Some attempted update operations on this map by other threads
2608 * may be blocked while computation is in progress, so the
2609 * computation should be short and simple, and must not attempt to
2610 * update any other mappings of this Map.
2611 *
2612 * @param key key with which the specified value is to be associated
2613 * @param mappingFunction the function to compute a value
2614 * @return the current (existing or computed) value associated with
2615 * the specified key, or null if the computed value is null
2616 * @throws NullPointerException if the specified key or mappingFunction
2617 * is null
2618 * @throws IllegalStateException if the computation detectably
2619 * attempts a recursive update to this map that would
2620 * otherwise never complete
2621 * @throws RuntimeException or Error if the mappingFunction does so,
2622 * in which case the mapping is left unestablished
2623 */
2624 public V computeIfAbsent
2625 (K key, Function<? super K, ? extends V> mappingFunction) {
2626 return internalComputeIfAbsent(key, mappingFunction);
2627 }
2628
2629 /**
2630 * If the value for the specified key is present and non-null,
2631 * attempts to compute a new mapping given the key and its current
2632 * mapped value. The entire method invocation is performed
2633 * atomically. Some attempted update operations on this map by
2634 * other threads may be blocked while computation is in progress,
2635 * so the computation should be short and simple, and must not
2636 * attempt to update any other mappings of this Map.
2637 *
2638 * @param key key with which the specified value is to be associated
2639 * @param remappingFunction the function to compute a value
2640 * @return the new value associated with the specified key, or null if none
2641 * @throws NullPointerException if the specified key or remappingFunction
2642 * is null
2643 * @throws IllegalStateException if the computation detectably
2644 * attempts a recursive update to this map that would
2645 * otherwise never complete
2646 * @throws RuntimeException or Error if the remappingFunction does so,
2647 * in which case the mapping is unchanged
2648 */
2649 public V computeIfPresent
2650 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2651 return internalCompute(key, true, remappingFunction);
2652 }
2653
2654 /**
2655 * Attempts to compute a mapping for the specified key and its
2656 * current mapped value (or {@code null} if there is no current
2657 * mapping). The entire method invocation is performed atomically.
2658 * Some attempted update operations on this map by other threads
2659 * may be blocked while computation is in progress, so the
2660 * computation should be short and simple, and must not attempt to
2661 * update any other mappings of this Map.
2662 *
2663 * @param key key with which the specified value is to be associated
2664 * @param remappingFunction the function to compute a value
2665 * @return the new value associated with the specified key, or null if none
2666 * @throws NullPointerException if the specified key or remappingFunction
2667 * is null
2668 * @throws IllegalStateException if the computation detectably
2669 * attempts a recursive update to this map that would
2670 * otherwise never complete
2671 * @throws RuntimeException or Error if the remappingFunction does so,
2672 * in which case the mapping is unchanged
2673 */
2674 public V compute
2675 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2676 return internalCompute(key, false, remappingFunction);
2677 }
2678
2679 /**
2680 * If the specified key is not already associated with a
2681 * (non-null) value, associates it with the given value.
2682 * Otherwise, replaces the value with the results of the given
2683 * remapping function, or removes if {@code null}. The entire
2684 * method invocation is performed atomically. Some attempted
2685 * update operations on this map by other threads may be blocked
2686 * while computation is in progress, so the computation should be
2687 * short and simple, and must not attempt to update any other
2688 * mappings of this Map.
2689 *
2690 * @param key key with which the specified value is to be associated
2691 * @param value the value to use if absent
2692 * @param remappingFunction the function to recompute a value if present
2693 * @return the new value associated with the specified key, or null if none
2694 * @throws NullPointerException if the specified key or the
2695 * remappingFunction is null
2696 * @throws RuntimeException or Error if the remappingFunction does so,
2697 * in which case the mapping is unchanged
2698 */
2699 public V merge
2700 (K key, V value,
2701 BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2702 return internalMerge(key, value, remappingFunction);
2703 }
2704
2705 /**
2706 * Removes the key (and its corresponding value) from this map.
2707 * This method does nothing if the key is not in the map.
2708 *
2709 * @param key the key that needs to be removed
2710 * @return the previous value associated with {@code key}, or
2711 * {@code null} if there was no mapping for {@code key}
2712 * @throws NullPointerException if the specified key is null
2713 */
2714 public V remove(Object key) {
2715 return internalReplace(key, null, null);
2716 }
2717
2718 /**
2719 * {@inheritDoc}
2720 *
2721 * @throws NullPointerException if the specified key is null
2722 */
2723 public boolean remove(Object key, Object value) {
2724 if (key == null)
2725 throw new NullPointerException();
2726 return value != null && internalReplace(key, null, value) != null;
2727 }
2728
2729 /**
2730 * {@inheritDoc}
2731 *
2732 * @throws NullPointerException if any of the arguments are null
2733 */
2734 public boolean replace(K key, V oldValue, V newValue) {
2735 if (key == null || oldValue == null || newValue == null)
2736 throw new NullPointerException();
2737 return internalReplace(key, newValue, oldValue) != null;
2738 }
2739
2740 /**
2741 * {@inheritDoc}
2742 *
2743 * @return the previous value associated with the specified key,
2744 * or {@code null} if there was no mapping for the key
2745 * @throws NullPointerException if the specified key or value is null
2746 */
2747 public V replace(K key, V value) {
2748 if (key == null || value == null)
2749 throw new NullPointerException();
2750 return internalReplace(key, value, null);
2751 }
2752
2753 /**
2754 * Removes all of the mappings from this map.
2755 */
2756 public void clear() {
2757 internalClear();
2758 }
2759
2760 /**
2761 * Returns a {@link Set} view of the keys contained in this map.
2762 * The set is backed by the map, so changes to the map are
2763 * reflected in the set, and vice-versa.
2764 *
2765 * @return the set view
2766 */
2767 public KeySetView<K,V> keySet() {
2768 KeySetView<K,V> ks = keySet;
2769 return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2770 }
2771
2772 /**
2773 * Returns a {@link Set} view of the keys in this map, using the
2774 * given common mapped value for any additions (i.e., {@link
2775 * Collection#add} and {@link Collection#addAll(Collection)}).
2776 * This is of course only appropriate if it is acceptable to use
2777 * the same value for all additions from this view.
2778 *
2779 * @param mappedValue the mapped value to use for any additions
2780 * @return the set view
2781 * @throws NullPointerException if the mappedValue is null
2782 */
2783 public KeySetView<K,V> keySet(V mappedValue) {
2784 if (mappedValue == null)
2785 throw new NullPointerException();
2786 return new KeySetView<K,V>(this, mappedValue);
2787 }
2788
2789 /**
2790 * Returns a {@link Collection} view of the values contained in this map.
2791 * The collection is backed by the map, so changes to the map are
2792 * reflected in the collection, and vice-versa.
2793 *
2794 * @return the collection view
2795 */
2796 public ValuesView<K,V> values() {
2797 ValuesView<K,V> vs = values;
2798 return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2799 }
2800
2801 /**
2802 * Returns a {@link Set} view of the mappings contained in this map.
2803 * The set is backed by the map, so changes to the map are
2804 * reflected in the set, and vice-versa. The set supports element
2805 * removal, which removes the corresponding mapping from the map,
2806 * via the {@code Iterator.remove}, {@code Set.remove},
2807 * {@code removeAll}, {@code retainAll}, and {@code clear}
2808 * operations. It does not support the {@code add} or
2809 * {@code addAll} operations.
2810 *
2811 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2812 * that will never throw {@link ConcurrentModificationException},
2813 * and guarantees to traverse elements as they existed upon
2814 * construction of the iterator, and may (but is not guaranteed to)
2815 * reflect any modifications subsequent to construction.
2816 *
2817 * @return the set view
2818 */
2819 public Set<Map.Entry<K,V>> entrySet() {
2820 EntrySetView<K,V> es = entrySet;
2821 return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2822 }
2823
2824 /**
2825 * Returns an enumeration of the keys in this table.
2826 *
2827 * @return an enumeration of the keys in this table
2828 * @see #keySet()
2829 */
2830 public Enumeration<K> keys() {
2831 return new KeyIterator<K,V>(this);
2832 }
2833
2834 /**
2835 * Returns an enumeration of the values in this table.
2836 *
2837 * @return an enumeration of the values in this table
2838 * @see #values()
2839 */
2840 public Enumeration<V> elements() {
2841 return new ValueIterator<K,V>(this);
2842 }
2843
2844 /**
2845 * Returns the hash code value for this {@link Map}, i.e.,
2846 * the sum of, for each key-value pair in the map,
2847 * {@code key.hashCode() ^ value.hashCode()}.
2848 *
2849 * @return the hash code value for this map
2850 */
2851 public int hashCode() {
2852 int h = 0;
2853 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2854 V v;
2855 while ((v = it.advance()) != null) {
2856 h += it.nextKey.hashCode() ^ v.hashCode();
2857 }
2858 return h;
2859 }
2860
2861 /**
2862 * Returns a string representation of this map. The string
2863 * representation consists of a list of key-value mappings (in no
2864 * particular order) enclosed in braces ("{@code {}}"). Adjacent
2865 * mappings are separated by the characters {@code ", "} (comma
2866 * and space). Each key-value mapping is rendered as the key
2867 * followed by an equals sign ("{@code =}") followed by the
2868 * associated value.
2869 *
2870 * @return a string representation of this map
2871 */
2872 public String toString() {
2873 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2874 StringBuilder sb = new StringBuilder();
2875 sb.append('{');
2876 V v;
2877 if ((v = it.advance()) != null) {
2878 for (;;) {
2879 K k = it.nextKey;
2880 sb.append(k == this ? "(this Map)" : k);
2881 sb.append('=');
2882 sb.append(v == this ? "(this Map)" : v);
2883 if ((v = it.advance()) == null)
2884 break;
2885 sb.append(',').append(' ');
2886 }
2887 }
2888 return sb.append('}').toString();
2889 }
2890
2891 /**
2892 * Compares the specified object with this map for equality.
2893 * Returns {@code true} if the given object is a map with the same
2894 * mappings as this map. This operation may return misleading
2895 * results if either map is concurrently modified during execution
2896 * of this method.
2897 *
2898 * @param o object to be compared for equality with this map
2899 * @return {@code true} if the specified object is equal to this map
2900 */
2901 public boolean equals(Object o) {
2902 if (o != this) {
2903 if (!(o instanceof Map))
2904 return false;
2905 Map<?,?> m = (Map<?,?>) o;
2906 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2907 V val;
2908 while ((val = it.advance()) != null) {
2909 Object v = m.get(it.nextKey);
2910 if (v == null || (v != val && !v.equals(val)))
2911 return false;
2912 }
2913 for (Map.Entry<?,?> e : m.entrySet()) {
2914 Object mk, mv, v;
2915 if ((mk = e.getKey()) == null ||
2916 (mv = e.getValue()) == null ||
2917 (v = internalGet(mk)) == null ||
2918 (mv != v && !mv.equals(v)))
2919 return false;
2920 }
2921 }
2922 return true;
2923 }
2924
2925 /* ----------------Iterators -------------- */
2926
2927 @SuppressWarnings("serial") static final class KeyIterator<K,V>
2928 extends Traverser<K,V,Object>
2929 implements Spliterator<K>, Iterator<K>, Enumeration<K> {
2930 KeyIterator(ConcurrentHashMap<K,V> map) { super(map); }
2931 KeyIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
2932 super(map, it);
2933 }
2934 public KeyIterator<K,V> trySplit() {
2935 if (tab != null && baseIndex == baseLimit)
2936 return null;
2937 return new KeyIterator<K,V>(map, this);
2938 }
2939 public final K next() {
2940 if (nextVal == null && advance() == null)
2941 throw new NoSuchElementException();
2942 K k = nextKey;
2943 nextVal = null;
2944 return k;
2945 }
2946
2947 public final K nextElement() { return next(); }
2948
2949 public Iterator<K> iterator() { return this; }
2950
2951 public void forEach(Consumer<? super K> action) {
2952 if (action == null) throw new NullPointerException();
2953 while (advance() != null)
2954 action.accept(nextKey);
2955 }
2956
2957 public boolean tryAdvance(Consumer<? super K> block) {
2958 if (block == null) throw new NullPointerException();
2959 if (advance() == null)
2960 return false;
2961 block.accept(nextKey);
2962 return true;
2963 }
2964
2965 public int characteristics() {
2966 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
2967 Spliterator.NONNULL;
2968 }
2969
2970 }
2971
2972 @SuppressWarnings("serial") static final class ValueIterator<K,V>
2973 extends Traverser<K,V,Object>
2974 implements Spliterator<V>, Iterator<V>, Enumeration<V> {
2975 ValueIterator(ConcurrentHashMap<K,V> map) { super(map); }
2976 ValueIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
2977 super(map, it);
2978 }
2979 public ValueIterator<K,V> trySplit() {
2980 if (tab != null && baseIndex == baseLimit)
2981 return null;
2982 return new ValueIterator<K,V>(map, this);
2983 }
2984
2985 public final V next() {
2986 V v;
2987 if ((v = nextVal) == null && (v = advance()) == null)
2988 throw new NoSuchElementException();
2989 nextVal = null;
2990 return v;
2991 }
2992
2993 public final V nextElement() { return next(); }
2994
2995 public Iterator<V> iterator() { return this; }
2996
2997 public void forEach(Consumer<? super V> action) {
2998 if (action == null) throw new NullPointerException();
2999 V v;
3000 while ((v = advance()) != null)
3001 action.accept(v);
3002 }
3003
3004 public boolean tryAdvance(Consumer<? super V> block) {
3005 V v;
3006 if (block == null) throw new NullPointerException();
3007 if ((v = advance()) == null)
3008 return false;
3009 block.accept(v);
3010 return true;
3011 }
3012
3013 public int characteristics() {
3014 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3015 }
3016 }
3017
3018 @SuppressWarnings("serial") static final class EntryIterator<K,V>
3019 extends Traverser<K,V,Object>
3020 implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3021 EntryIterator(ConcurrentHashMap<K,V> map) { super(map); }
3022 EntryIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3023 super(map, it);
3024 }
3025 public EntryIterator<K,V> trySplit() {
3026 if (tab != null && baseIndex == baseLimit)
3027 return null;
3028 return new EntryIterator<K,V>(map, this);
3029 }
3030
3031 public final Map.Entry<K,V> next() {
3032 V v;
3033 if ((v = nextVal) == null && (v = advance()) == null)
3034 throw new NoSuchElementException();
3035 K k = nextKey;
3036 nextVal = null;
3037 return new MapEntry<K,V>(k, v, map);
3038 }
3039
3040 public Iterator<Map.Entry<K,V>> iterator() { return this; }
3041
3042 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
3043 if (action == null) throw new NullPointerException();
3044 V v;
3045 while ((v = advance()) != null)
3046 action.accept(entryFor(nextKey, v));
3047 }
3048
3049 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> block) {
3050 V v;
3051 if (block == null) throw new NullPointerException();
3052 if ((v = advance()) == null)
3053 return false;
3054 block.accept(entryFor(nextKey, v));
3055 return true;
3056 }
3057
3058 public int characteristics() {
3059 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3060 Spliterator.NONNULL;
3061 }
3062 }
3063
3064 /**
3065 * Exported Entry for iterators
3066 */
3067 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3068 final K key; // non-null
3069 V val; // non-null
3070 final ConcurrentHashMap<K,V> map;
3071 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3072 this.key = key;
3073 this.val = val;
3074 this.map = map;
3075 }
3076 public final K getKey() { return key; }
3077 public final V getValue() { return val; }
3078 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3079 public final String toString(){ return key + "=" + val; }
3080
3081 public final boolean equals(Object o) {
3082 Object k, v; Map.Entry<?,?> e;
3083 return ((o instanceof Map.Entry) &&
3084 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3085 (v = e.getValue()) != null &&
3086 (k == key || k.equals(key)) &&
3087 (v == val || v.equals(val)));
3088 }
3089
3090 /**
3091 * Sets our entry's value and writes through to the map. The
3092 * value to return is somewhat arbitrary here. Since we do not
3093 * necessarily track asynchronous changes, the most recent
3094 * "previous" value could be different from what we return (or
3095 * could even have been removed in which case the put will
3096 * re-establish). We do not and cannot guarantee more.
3097 */
3098 public final V setValue(V value) {
3099 if (value == null) throw new NullPointerException();
3100 V v = val;
3101 val = value;
3102 map.put(key, value);
3103 return v;
3104 }
3105 }
3106
3107 /**
3108 * Returns exportable snapshot entry for the given key and value
3109 * when write-through can't or shouldn't be used.
3110 */
3111 static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3112 return new AbstractMap.SimpleEntry<K,V>(k, v);
3113 }
3114
3115 /* ---------------- Serialization Support -------------- */
3116
3117 /**
3118 * Stripped-down version of helper class used in previous version,
3119 * declared for the sake of serialization compatibility
3120 */
3121 static class Segment<K,V> implements Serializable {
3122 private static final long serialVersionUID = 2249069246763182397L;
3123 final float loadFactor;
3124 Segment(float lf) { this.loadFactor = lf; }
3125 }
3126
3127 /**
3128 * Saves the state of the {@code ConcurrentHashMap} instance to a
3129 * stream (i.e., serializes it).
3130 * @param s the stream
3131 * @serialData
3132 * the key (Object) and value (Object)
3133 * for each key-value mapping, followed by a null pair.
3134 * The key-value mappings are emitted in no particular order.
3135 */
3136 @SuppressWarnings("unchecked") private void writeObject
3137 (java.io.ObjectOutputStream s)
3138 throws java.io.IOException {
3139 if (segments == null) { // for serialization compatibility
3140 segments = (Segment<K,V>[])
3141 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3142 for (int i = 0; i < segments.length; ++i)
3143 segments[i] = new Segment<K,V>(LOAD_FACTOR);
3144 }
3145 s.defaultWriteObject();
3146 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3147 V v;
3148 while ((v = it.advance()) != null) {
3149 s.writeObject(it.nextKey);
3150 s.writeObject(v);
3151 }
3152 s.writeObject(null);
3153 s.writeObject(null);
3154 segments = null; // throw away
3155 }
3156
3157 /**
3158 * Reconstitutes the instance from a stream (that is, deserializes it).
3159 * @param s the stream
3160 */
3161 @SuppressWarnings("unchecked") private void readObject
3162 (java.io.ObjectInputStream s)
3163 throws java.io.IOException, ClassNotFoundException {
3164 s.defaultReadObject();
3165 this.segments = null; // unneeded
3166
3167 // Create all nodes, then place in table once size is known
3168 long size = 0L;
3169 Node<V> p = null;
3170 for (;;) {
3171 K k = (K) s.readObject();
3172 V v = (V) s.readObject();
3173 if (k != null && v != null) {
3174 int h = spread(k.hashCode());
3175 p = new Node<V>(h, k, v, p);
3176 ++size;
3177 }
3178 else
3179 break;
3180 }
3181 if (p != null) {
3182 boolean init = false;
3183 int n;
3184 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3185 n = MAXIMUM_CAPACITY;
3186 else {
3187 int sz = (int)size;
3188 n = tableSizeFor(sz + (sz >>> 1) + 1);
3189 }
3190 int sc = sizeCtl;
3191 boolean collide = false;
3192 if (n > sc &&
3193 U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3194 try {
3195 if (table == null) {
3196 init = true;
3197 @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3198 Node<V>[] tab = (Node<V>[])rt;
3199 int mask = n - 1;
3200 while (p != null) {
3201 int j = p.hash & mask;
3202 Node<V> next = p.next;
3203 Node<V> q = p.next = tabAt(tab, j);
3204 setTabAt(tab, j, p);
3205 if (!collide && q != null && q.hash == p.hash)
3206 collide = true;
3207 p = next;
3208 }
3209 table = tab;
3210 addCount(size, -1);
3211 sc = n - (n >>> 2);
3212 }
3213 } finally {
3214 sizeCtl = sc;
3215 }
3216 if (collide) { // rescan and convert to TreeBins
3217 Node<V>[] tab = table;
3218 for (int i = 0; i < tab.length; ++i) {
3219 int c = 0;
3220 for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3221 if (++c > TREE_THRESHOLD &&
3222 (e.key instanceof Comparable)) {
3223 replaceWithTreeBin(tab, i, e.key);
3224 break;
3225 }
3226 }
3227 }
3228 }
3229 }
3230 if (!init) { // Can only happen if unsafely published.
3231 while (p != null) {
3232 internalPut((K)p.key, p.val, false);
3233 p = p.next;
3234 }
3235 }
3236 }
3237 }
3238
3239 // -------------------------------------------------------
3240
3241 // Sequential bulk operations
3242
3243 /**
3244 * Performs the given action for each (key, value).
3245 *
3246 * @param action the action
3247 */
3248 public void forEachSequentially
3249 (BiConsumer<? super K, ? super V> action) {
3250 if (action == null) throw new NullPointerException();
3251 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3252 V v;
3253 while ((v = it.advance()) != null)
3254 action.accept(it.nextKey, v);
3255 }
3256
3257 /**
3258 * Performs the given action for each non-null transformation
3259 * of each (key, value).
3260 *
3261 * @param transformer a function returning the transformation
3262 * for an element, or null if there is no transformation (in
3263 * which case the action is not applied)
3264 * @param action the action
3265 */
3266 public <U> void forEachSequentially
3267 (BiFunction<? super K, ? super V, ? extends U> transformer,
3268 Consumer<? super U> action) {
3269 if (transformer == null || action == null)
3270 throw new NullPointerException();
3271 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3272 V v; U u;
3273 while ((v = it.advance()) != null) {
3274 if ((u = transformer.apply(it.nextKey, v)) != null)
3275 action.accept(u);
3276 }
3277 }
3278
3279 /**
3280 * Returns a non-null result from applying the given search
3281 * function on each (key, value), or null if none.
3282 *
3283 * @param searchFunction a function returning a non-null
3284 * result on success, else null
3285 * @return a non-null result from applying the given search
3286 * function on each (key, value), or null if none
3287 */
3288 public <U> U searchSequentially
3289 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3290 if (searchFunction == null) throw new NullPointerException();
3291 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3292 V v; U u;
3293 while ((v = it.advance()) != null) {
3294 if ((u = searchFunction.apply(it.nextKey, v)) != null)
3295 return u;
3296 }
3297 return null;
3298 }
3299
3300 /**
3301 * Returns the result of accumulating the given transformation
3302 * of all (key, value) pairs using the given reducer to
3303 * combine values, or null if none.
3304 *
3305 * @param transformer a function returning the transformation
3306 * for an element, or null if there is no transformation (in
3307 * which case it is not combined)
3308 * @param reducer a commutative associative combining function
3309 * @return the result of accumulating the given transformation
3310 * of all (key, value) pairs
3311 */
3312 public <U> U reduceSequentially
3313 (BiFunction<? super K, ? super V, ? extends U> transformer,
3314 BiFunction<? super U, ? super U, ? extends U> reducer) {
3315 if (transformer == null || reducer == null)
3316 throw new NullPointerException();
3317 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3318 U r = null, u; V v;
3319 while ((v = it.advance()) != null) {
3320 if ((u = transformer.apply(it.nextKey, v)) != null)
3321 r = (r == null) ? u : reducer.apply(r, u);
3322 }
3323 return r;
3324 }
3325
3326 /**
3327 * Returns the result of accumulating the given transformation
3328 * of all (key, value) pairs using the given reducer to
3329 * combine values, and the given basis as an identity value.
3330 *
3331 * @param transformer a function returning the transformation
3332 * for an element
3333 * @param basis the identity (initial default value) for the reduction
3334 * @param reducer a commutative associative combining function
3335 * @return the result of accumulating the given transformation
3336 * of all (key, value) pairs
3337 */
3338 public double reduceToDoubleSequentially
3339 (ToDoubleBiFunction<? super K, ? super V> transformer,
3340 double basis,
3341 DoubleBinaryOperator reducer) {
3342 if (transformer == null || reducer == null)
3343 throw new NullPointerException();
3344 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3345 double r = basis; V v;
3346 while ((v = it.advance()) != null)
3347 r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey, v));
3348 return r;
3349 }
3350
3351 /**
3352 * Returns the result of accumulating the given transformation
3353 * of all (key, value) pairs using the given reducer to
3354 * combine values, and the given basis as an identity value.
3355 *
3356 * @param transformer a function returning the transformation
3357 * for an element
3358 * @param basis the identity (initial default value) for the reduction
3359 * @param reducer a commutative associative combining function
3360 * @return the result of accumulating the given transformation
3361 * of all (key, value) pairs
3362 */
3363 public long reduceToLongSequentially
3364 (ToLongBiFunction<? super K, ? super V> transformer,
3365 long basis,
3366 LongBinaryOperator reducer) {
3367 if (transformer == null || reducer == null)
3368 throw new NullPointerException();
3369 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3370 long r = basis; V v;
3371 while ((v = it.advance()) != null)
3372 r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey, v));
3373 return r;
3374 }
3375
3376 /**
3377 * Returns the result of accumulating the given transformation
3378 * of all (key, value) pairs using the given reducer to
3379 * combine values, and the given basis as an identity value.
3380 *
3381 * @param transformer a function returning the transformation
3382 * for an element
3383 * @param basis the identity (initial default value) for the reduction
3384 * @param reducer a commutative associative combining function
3385 * @return the result of accumulating the given transformation
3386 * of all (key, value) pairs
3387 */
3388 public int reduceToIntSequentially
3389 (ToIntBiFunction<? super K, ? super V> transformer,
3390 int basis,
3391 IntBinaryOperator reducer) {
3392 if (transformer == null || reducer == null)
3393 throw new NullPointerException();
3394 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3395 int r = basis; V v;
3396 while ((v = it.advance()) != null)
3397 r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey, v));
3398 return r;
3399 }
3400
3401 /**
3402 * Performs the given action for each key.
3403 *
3404 * @param action the action
3405 */
3406 public void forEachKeySequentially
3407 (Consumer<? super K> action) {
3408 if (action == null) throw new NullPointerException();
3409 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3410 while (it.advance() != null)
3411 action.accept(it.nextKey);
3412 }
3413
3414 /**
3415 * Performs the given action for each non-null transformation
3416 * of each key.
3417 *
3418 * @param transformer a function returning the transformation
3419 * for an element, or null if there is no transformation (in
3420 * which case the action is not applied)
3421 * @param action the action
3422 */
3423 public <U> void forEachKeySequentially
3424 (Function<? super K, ? extends U> transformer,
3425 Consumer<? super U> action) {
3426 if (transformer == null || action == null)
3427 throw new NullPointerException();
3428 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3429 U u;
3430 while (it.advance() != null) {
3431 if ((u = transformer.apply(it.nextKey)) != null)
3432 action.accept(u);
3433 }
3434 ForkJoinTasks.forEachKey
3435 (this, transformer, action).invoke();
3436 }
3437
3438 /**
3439 * Returns a non-null result from applying the given search
3440 * function on each key, or null if none.
3441 *
3442 * @param searchFunction a function returning a non-null
3443 * result on success, else null
3444 * @return a non-null result from applying the given search
3445 * function on each key, or null if none
3446 */
3447 public <U> U searchKeysSequentially
3448 (Function<? super K, ? extends U> searchFunction) {
3449 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3450 U u;
3451 while (it.advance() != null) {
3452 if ((u = searchFunction.apply(it.nextKey)) != null)
3453 return u;
3454 }
3455 return null;
3456 }
3457
3458 /**
3459 * Returns the result of accumulating all keys using the given
3460 * reducer to combine values, or null if none.
3461 *
3462 * @param reducer a commutative associative combining function
3463 * @return the result of accumulating all keys using the given
3464 * reducer to combine values, or null if none
3465 */
3466 public K reduceKeysSequentially
3467 (BiFunction<? super K, ? super K, ? extends K> reducer) {
3468 if (reducer == null) throw new NullPointerException();
3469 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3470 K r = null;
3471 while (it.advance() != null) {
3472 K u = it.nextKey;
3473 r = (r == null) ? u : reducer.apply(r, u);
3474 }
3475 return r;
3476 }
3477
3478 /**
3479 * Returns the result of accumulating the given transformation
3480 * of all keys using the given reducer to combine values, or
3481 * null if none.
3482 *
3483 * @param transformer a function returning the transformation
3484 * for an element, or null if there is no transformation (in
3485 * which case it is not combined)
3486 * @param reducer a commutative associative combining function
3487 * @return the result of accumulating the given transformation
3488 * of all keys
3489 */
3490 public <U> U reduceKeysSequentially
3491 (Function<? super K, ? extends U> transformer,
3492 BiFunction<? super U, ? super U, ? extends U> reducer) {
3493 if (transformer == null || reducer == null)
3494 throw new NullPointerException();
3495 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3496 U r = null, u;
3497 while (it.advance() != null) {
3498 if ((u = transformer.apply(it.nextKey)) != null)
3499 r = (r == null) ? u : reducer.apply(r, u);
3500 }
3501 return r;
3502 }
3503
3504 /**
3505 * Returns the result of accumulating the given transformation
3506 * of all keys using the given reducer to combine values, and
3507 * the given basis as an identity value.
3508 *
3509 * @param transformer a function returning the transformation
3510 * for an element
3511 * @param basis the identity (initial default value) for the reduction
3512 * @param reducer a commutative associative combining function
3513 * @return the result of accumulating the given transformation
3514 * of all keys
3515 */
3516 public double reduceKeysToDoubleSequentially
3517 (ToDoubleFunction<? super K> transformer,
3518 double basis,
3519 DoubleBinaryOperator reducer) {
3520 if (transformer == null || reducer == null)
3521 throw new NullPointerException();
3522 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3523 double r = basis;
3524 while (it.advance() != null)
3525 r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey));
3526 return r;
3527 }
3528
3529 /**
3530 * Returns the result of accumulating the given transformation
3531 * of all keys using the given reducer to combine values, and
3532 * the given basis as an identity value.
3533 *
3534 * @param transformer a function returning the transformation
3535 * for an element
3536 * @param basis the identity (initial default value) for the reduction
3537 * @param reducer a commutative associative combining function
3538 * @return the result of accumulating the given transformation
3539 * of all keys
3540 */
3541 public long reduceKeysToLongSequentially
3542 (ToLongFunction<? super K> transformer,
3543 long basis,
3544 LongBinaryOperator reducer) {
3545 if (transformer == null || reducer == null)
3546 throw new NullPointerException();
3547 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3548 long r = basis;
3549 while (it.advance() != null)
3550 r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey));
3551 return r;
3552 }
3553
3554 /**
3555 * Returns the result of accumulating the given transformation
3556 * of all keys using the given reducer to combine values, and
3557 * the given basis as an identity value.
3558 *
3559 * @param transformer a function returning the transformation
3560 * for an element
3561 * @param basis the identity (initial default value) for the reduction
3562 * @param reducer a commutative associative combining function
3563 * @return the result of accumulating the given transformation
3564 * of all keys
3565 */
3566 public int reduceKeysToIntSequentially
3567 (ToIntFunction<? super K> transformer,
3568 int basis,
3569 IntBinaryOperator reducer) {
3570 if (transformer == null || reducer == null)
3571 throw new NullPointerException();
3572 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3573 int r = basis;
3574 while (it.advance() != null)
3575 r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey));
3576 return r;
3577 }
3578
3579 /**
3580 * Performs the given action for each value.
3581 *
3582 * @param action the action
3583 */
3584 public void forEachValueSequentially(Consumer<? super V> action) {
3585 if (action == null) throw new NullPointerException();
3586 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3587 V v;
3588 while ((v = it.advance()) != null)
3589 action.accept(v);
3590 }
3591
3592 /**
3593 * Performs the given action for each non-null transformation
3594 * of each value.
3595 *
3596 * @param transformer a function returning the transformation
3597 * for an element, or null if there is no transformation (in
3598 * which case the action is not applied)
3599 * @param action the action
3600 */
3601 public <U> void forEachValueSequentially
3602 (Function<? super V, ? extends U> transformer,
3603 Consumer<? super U> action) {
3604 if (transformer == null || action == null)
3605 throw new NullPointerException();
3606 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3607 V v; U u;
3608 while ((v = it.advance()) != null) {
3609 if ((u = transformer.apply(v)) != null)
3610 action.accept(u);
3611 }
3612 }
3613
3614 /**
3615 * Returns a non-null result from applying the given search
3616 * function on each value, or null if none.
3617 *
3618 * @param searchFunction a function returning a non-null
3619 * result on success, else null
3620 * @return a non-null result from applying the given search
3621 * function on each value, or null if none
3622 */
3623 public <U> U searchValuesSequentially
3624 (Function<? super V, ? extends U> searchFunction) {
3625 if (searchFunction == null) throw new NullPointerException();
3626 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3627 V v; U u;
3628 while ((v = it.advance()) != null) {
3629 if ((u = searchFunction.apply(v)) != null)
3630 return u;
3631 }
3632 return null;
3633 }
3634
3635 /**
3636 * Returns the result of accumulating all values using the
3637 * given reducer to combine values, or null if none.
3638 *
3639 * @param reducer a commutative associative combining function
3640 * @return the result of accumulating all values
3641 */
3642 public V reduceValuesSequentially
3643 (BiFunction<? super V, ? super V, ? extends V> reducer) {
3644 if (reducer == null) throw new NullPointerException();
3645 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3646 V r = null; V v;
3647 while ((v = it.advance()) != null)
3648 r = (r == null) ? v : reducer.apply(r, v);
3649 return r;
3650 }
3651
3652 /**
3653 * Returns the result of accumulating the given transformation
3654 * of all values using the given reducer to combine values, or
3655 * null if none.
3656 *
3657 * @param transformer a function returning the transformation
3658 * for an element, or null if there is no transformation (in
3659 * which case it is not combined)
3660 * @param reducer a commutative associative combining function
3661 * @return the result of accumulating the given transformation
3662 * of all values
3663 */
3664 public <U> U reduceValuesSequentially
3665 (Function<? super V, ? extends U> transformer,
3666 BiFunction<? super U, ? super U, ? extends U> reducer) {
3667 if (transformer == null || reducer == null)
3668 throw new NullPointerException();
3669 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3670 U r = null, u; V v;
3671 while ((v = it.advance()) != null) {
3672 if ((u = transformer.apply(v)) != null)
3673 r = (r == null) ? u : reducer.apply(r, u);
3674 }
3675 return r;
3676 }
3677
3678 /**
3679 * Returns the result of accumulating the given transformation
3680 * of all values using the given reducer to combine values,
3681 * and the given basis as an identity value.
3682 *
3683 * @param transformer a function returning the transformation
3684 * for an element
3685 * @param basis the identity (initial default value) for the reduction
3686 * @param reducer a commutative associative combining function
3687 * @return the result of accumulating the given transformation
3688 * of all values
3689 */
3690 public double reduceValuesToDoubleSequentially
3691 (ToDoubleFunction<? super V> transformer,
3692 double basis,
3693 DoubleBinaryOperator reducer) {
3694 if (transformer == null || reducer == null)
3695 throw new NullPointerException();
3696 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3697 double r = basis; V v;
3698 while ((v = it.advance()) != null)
3699 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
3700 return r;
3701 }
3702
3703 /**
3704 * Returns the result of accumulating the given transformation
3705 * of all values using the given reducer to combine values,
3706 * and the given basis as an identity value.
3707 *
3708 * @param transformer a function returning the transformation
3709 * for an element
3710 * @param basis the identity (initial default value) for the reduction
3711 * @param reducer a commutative associative combining function
3712 * @return the result of accumulating the given transformation
3713 * of all values
3714 */
3715 public long reduceValuesToLongSequentially
3716 (ToLongFunction<? super V> transformer,
3717 long basis,
3718 LongBinaryOperator reducer) {
3719 if (transformer == null || reducer == null)
3720 throw new NullPointerException();
3721 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3722 long r = basis; V v;
3723 while ((v = it.advance()) != null)
3724 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
3725 return r;
3726 }
3727
3728 /**
3729 * Returns the result of accumulating the given transformation
3730 * of all values using the given reducer to combine values,
3731 * and the given basis as an identity value.
3732 *
3733 * @param transformer a function returning the transformation
3734 * for an element
3735 * @param basis the identity (initial default value) for the reduction
3736 * @param reducer a commutative associative combining function
3737 * @return the result of accumulating the given transformation
3738 * of all values
3739 */
3740 public int reduceValuesToIntSequentially
3741 (ToIntFunction<? super V> transformer,
3742 int basis,
3743 IntBinaryOperator reducer) {
3744 if (transformer == null || reducer == null)
3745 throw new NullPointerException();
3746 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3747 int r = basis; V v;
3748 while ((v = it.advance()) != null)
3749 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
3750 return r;
3751 }
3752
3753 /**
3754 * Performs the given action for each entry.
3755 *
3756 * @param action the action
3757 */
3758 public void forEachEntrySequentially
3759 (Consumer<? super Map.Entry<K,V>> action) {
3760 if (action == null) throw new NullPointerException();
3761 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3762 V v;
3763 while ((v = it.advance()) != null)
3764 action.accept(entryFor(it.nextKey, v));
3765 }
3766
3767 /**
3768 * Performs the given action for each non-null transformation
3769 * of each entry.
3770 *
3771 * @param transformer a function returning the transformation
3772 * for an element, or null if there is no transformation (in
3773 * which case the action is not applied)
3774 * @param action the action
3775 */
3776 public <U> void forEachEntrySequentially
3777 (Function<Map.Entry<K,V>, ? extends U> transformer,
3778 Consumer<? super U> action) {
3779 if (transformer == null || action == null)
3780 throw new NullPointerException();
3781 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3782 V v; U u;
3783 while ((v = it.advance()) != null) {
3784 if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3785 action.accept(u);
3786 }
3787 }
3788
3789 /**
3790 * Returns a non-null result from applying the given search
3791 * function on each entry, or null if none.
3792 *
3793 * @param searchFunction a function returning a non-null
3794 * result on success, else null
3795 * @return a non-null result from applying the given search
3796 * function on each entry, or null if none
3797 */
3798 public <U> U searchEntriesSequentially
3799 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3800 if (searchFunction == null) throw new NullPointerException();
3801 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3802 V v; U u;
3803 while ((v = it.advance()) != null) {
3804 if ((u = searchFunction.apply(entryFor(it.nextKey, v))) != null)
3805 return u;
3806 }
3807 return null;
3808 }
3809
3810 /**
3811 * Returns the result of accumulating all entries using the
3812 * given reducer to combine values, or null if none.
3813 *
3814 * @param reducer a commutative associative combining function
3815 * @return the result of accumulating all entries
3816 */
3817 public Map.Entry<K,V> reduceEntriesSequentially
3818 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3819 if (reducer == null) throw new NullPointerException();
3820 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3821 Map.Entry<K,V> r = null; V v;
3822 while ((v = it.advance()) != null) {
3823 Map.Entry<K,V> u = entryFor(it.nextKey, v);
3824 r = (r == null) ? u : reducer.apply(r, u);
3825 }
3826 return r;
3827 }
3828
3829 /**
3830 * Returns the result of accumulating the given transformation
3831 * of all entries using the given reducer to combine values,
3832 * or null if none.
3833 *
3834 * @param transformer a function returning the transformation
3835 * for an element, or null if there is no transformation (in
3836 * which case it is not combined)
3837 * @param reducer a commutative associative combining function
3838 * @return the result of accumulating the given transformation
3839 * of all entries
3840 */
3841 public <U> U reduceEntriesSequentially
3842 (Function<Map.Entry<K,V>, ? extends U> transformer,
3843 BiFunction<? super U, ? super U, ? extends U> reducer) {
3844 if (transformer == null || reducer == null)
3845 throw new NullPointerException();
3846 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3847 U r = null, u; V v;
3848 while ((v = it.advance()) != null) {
3849 if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3850 r = (r == null) ? u : reducer.apply(r, u);
3851 }
3852 return r;
3853 }
3854
3855 /**
3856 * Returns the result of accumulating the given transformation
3857 * of all entries using the given reducer to combine values,
3858 * and the given basis as an identity value.
3859 *
3860 * @param transformer a function returning the transformation
3861 * for an element
3862 * @param basis the identity (initial default value) for the reduction
3863 * @param reducer a commutative associative combining function
3864 * @return the result of accumulating the given transformation
3865 * of all entries
3866 */
3867 public double reduceEntriesToDoubleSequentially
3868 (ToDoubleFunction<Map.Entry<K,V>> transformer,
3869 double basis,
3870 DoubleBinaryOperator reducer) {
3871 if (transformer == null || reducer == null)
3872 throw new NullPointerException();
3873 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3874 double r = basis; V v;
3875 while ((v = it.advance()) != null)
3876 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(it.nextKey, v)));
3877 return r;
3878 }
3879
3880 /**
3881 * Returns the result of accumulating the given transformation
3882 * of all entries using the given reducer to combine values,
3883 * and the given basis as an identity value.
3884 *
3885 * @param transformer a function returning the transformation
3886 * for an element
3887 * @param basis the identity (initial default value) for the reduction
3888 * @param reducer a commutative associative combining function
3889 * @return the result of accumulating the given transformation
3890 * of all entries
3891 */
3892 public long reduceEntriesToLongSequentially
3893 (ToLongFunction<Map.Entry<K,V>> transformer,
3894 long basis,
3895 LongBinaryOperator reducer) {
3896 if (transformer == null || reducer == null)
3897 throw new NullPointerException();
3898 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3899 long r = basis; V v;
3900 while ((v = it.advance()) != null)
3901 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(it.nextKey, v)));
3902 return r;
3903 }
3904
3905 /**
3906 * Returns the result of accumulating the given transformation
3907 * of all entries using the given reducer to combine values,
3908 * and the given basis as an identity value.
3909 *
3910 * @param transformer a function returning the transformation
3911 * for an element
3912 * @param basis the identity (initial default value) for the reduction
3913 * @param reducer a commutative associative combining function
3914 * @return the result of accumulating the given transformation
3915 * of all entries
3916 */
3917 public int reduceEntriesToIntSequentially
3918 (ToIntFunction<Map.Entry<K,V>> transformer,
3919 int basis,
3920 IntBinaryOperator reducer) {
3921 if (transformer == null || reducer == null)
3922 throw new NullPointerException();
3923 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3924 int r = basis; V v;
3925 while ((v = it.advance()) != null)
3926 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(it.nextKey, v)));
3927 return r;
3928 }
3929
3930 // Parallel bulk operations
3931
3932 /**
3933 * Performs the given action for each (key, value).
3934 *
3935 * @param action the action
3936 */
3937 public void forEachInParallel(BiConsumer<? super K,? super V> action) {
3938 ForkJoinTasks.forEach
3939 (this, action).invoke();
3940 }
3941
3942 /**
3943 * Performs the given action for each non-null transformation
3944 * of each (key, value).
3945 *
3946 * @param transformer a function returning the transformation
3947 * for an element, or null if there is no transformation (in
3948 * which case the action is not applied)
3949 * @param action the action
3950 */
3951 public <U> void forEachInParallel
3952 (BiFunction<? super K, ? super V, ? extends U> transformer,
3953 Consumer<? super U> action) {
3954 ForkJoinTasks.forEach
3955 (this, transformer, action).invoke();
3956 }
3957
3958 /**
3959 * Returns a non-null result from applying the given search
3960 * function on each (key, value), or null if none. Upon
3961 * success, further element processing is suppressed and the
3962 * results of any other parallel invocations of the search
3963 * function are ignored.
3964 *
3965 * @param searchFunction a function returning a non-null
3966 * result on success, else null
3967 * @return a non-null result from applying the given search
3968 * function on each (key, value), or null if none
3969 */
3970 public <U> U searchInParallel
3971 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3972 return ForkJoinTasks.search
3973 (this, searchFunction).invoke();
3974 }
3975
3976 /**
3977 * Returns the result of accumulating the given transformation
3978 * of all (key, value) pairs using the given reducer to
3979 * combine values, or null if none.
3980 *
3981 * @param transformer a function returning the transformation
3982 * for an element, or null if there is no transformation (in
3983 * which case it is not combined)
3984 * @param reducer a commutative associative combining function
3985 * @return the result of accumulating the given transformation
3986 * of all (key, value) pairs
3987 */
3988 public <U> U reduceInParallel
3989 (BiFunction<? super K, ? super V, ? extends U> transformer,
3990 BiFunction<? super U, ? super U, ? extends U> reducer) {
3991 return ForkJoinTasks.reduce
3992 (this, transformer, reducer).invoke();
3993 }
3994
3995 /**
3996 * Returns the result of accumulating the given transformation
3997 * of all (key, value) pairs using the given reducer to
3998 * combine values, and the given basis as an identity value.
3999 *
4000 * @param transformer a function returning the transformation
4001 * for an element
4002 * @param basis the identity (initial default value) for the reduction
4003 * @param reducer a commutative associative combining function
4004 * @return the result of accumulating the given transformation
4005 * of all (key, value) pairs
4006 */
4007 public double reduceToDoubleInParallel
4008 (ToDoubleBiFunction<? super K, ? super V> transformer,
4009 double basis,
4010 DoubleBinaryOperator reducer) {
4011 return ForkJoinTasks.reduceToDouble
4012 (this, transformer, basis, reducer).invoke();
4013 }
4014
4015 /**
4016 * Returns the result of accumulating the given transformation
4017 * of all (key, value) pairs using the given reducer to
4018 * combine values, and the given basis as an identity value.
4019 *
4020 * @param transformer a function returning the transformation
4021 * for an element
4022 * @param basis the identity (initial default value) for the reduction
4023 * @param reducer a commutative associative combining function
4024 * @return the result of accumulating the given transformation
4025 * of all (key, value) pairs
4026 */
4027 public long reduceToLongInParallel
4028 (ToLongBiFunction<? super K, ? super V> transformer,
4029 long basis,
4030 LongBinaryOperator reducer) {
4031 return ForkJoinTasks.reduceToLong
4032 (this, transformer, basis, reducer).invoke();
4033 }
4034
4035 /**
4036 * Returns the result of accumulating the given transformation
4037 * of all (key, value) pairs using the given reducer to
4038 * combine values, and the given basis as an identity value.
4039 *
4040 * @param transformer a function returning the transformation
4041 * for an element
4042 * @param basis the identity (initial default value) for the reduction
4043 * @param reducer a commutative associative combining function
4044 * @return the result of accumulating the given transformation
4045 * of all (key, value) pairs
4046 */
4047 public int reduceToIntInParallel
4048 (ToIntBiFunction<? super K, ? super V> transformer,
4049 int basis,
4050 IntBinaryOperator reducer) {
4051 return ForkJoinTasks.reduceToInt
4052 (this, transformer, basis, reducer).invoke();
4053 }
4054
4055 /**
4056 * Performs the given action for each key.
4057 *
4058 * @param action the action
4059 */
4060 public void forEachKeyInParallel(Consumer<? super K> action) {
4061 ForkJoinTasks.forEachKey
4062 (this, action).invoke();
4063 }
4064
4065 /**
4066 * Performs the given action for each non-null transformation
4067 * of each key.
4068 *
4069 * @param transformer a function returning the transformation
4070 * for an element, or null if there is no transformation (in
4071 * which case the action is not applied)
4072 * @param action the action
4073 */
4074 public <U> void forEachKeyInParallel
4075 (Function<? super K, ? extends U> transformer,
4076 Consumer<? super U> action) {
4077 ForkJoinTasks.forEachKey
4078 (this, transformer, action).invoke();
4079 }
4080
4081 /**
4082 * Returns a non-null result from applying the given search
4083 * function on each key, or null if none. Upon success,
4084 * further element processing is suppressed and the results of
4085 * any other parallel invocations of the search function are
4086 * ignored.
4087 *
4088 * @param searchFunction a function returning a non-null
4089 * result on success, else null
4090 * @return a non-null result from applying the given search
4091 * function on each key, or null if none
4092 */
4093 public <U> U searchKeysInParallel
4094 (Function<? super K, ? extends U> searchFunction) {
4095 return ForkJoinTasks.searchKeys
4096 (this, searchFunction).invoke();
4097 }
4098
4099 /**
4100 * Returns the result of accumulating all keys using the given
4101 * reducer to combine values, or null if none.
4102 *
4103 * @param reducer a commutative associative combining function
4104 * @return the result of accumulating all keys using the given
4105 * reducer to combine values, or null if none
4106 */
4107 public K reduceKeysInParallel
4108 (BiFunction<? super K, ? super K, ? extends K> reducer) {
4109 return ForkJoinTasks.reduceKeys
4110 (this, reducer).invoke();
4111 }
4112
4113 /**
4114 * Returns the result of accumulating the given transformation
4115 * of all keys using the given reducer to combine values, or
4116 * null if none.
4117 *
4118 * @param transformer a function returning the transformation
4119 * for an element, or null if there is no transformation (in
4120 * which case it is not combined)
4121 * @param reducer a commutative associative combining function
4122 * @return the result of accumulating the given transformation
4123 * of all keys
4124 */
4125 public <U> U reduceKeysInParallel
4126 (Function<? super K, ? extends U> transformer,
4127 BiFunction<? super U, ? super U, ? extends U> reducer) {
4128 return ForkJoinTasks.reduceKeys
4129 (this, transformer, reducer).invoke();
4130 }
4131
4132 /**
4133 * Returns the result of accumulating the given transformation
4134 * of all keys using the given reducer to combine values, and
4135 * the given basis as an identity value.
4136 *
4137 * @param transformer a function returning the transformation
4138 * for an element
4139 * @param basis the identity (initial default value) for the reduction
4140 * @param reducer a commutative associative combining function
4141 * @return the result of accumulating the given transformation
4142 * of all keys
4143 */
4144 public double reduceKeysToDoubleInParallel
4145 (ToDoubleFunction<? super K> transformer,
4146 double basis,
4147 DoubleBinaryOperator reducer) {
4148 return ForkJoinTasks.reduceKeysToDouble
4149 (this, transformer, basis, reducer).invoke();
4150 }
4151
4152 /**
4153 * Returns the result of accumulating the given transformation
4154 * of all keys using the given reducer to combine values, and
4155 * the given basis as an identity value.
4156 *
4157 * @param transformer a function returning the transformation
4158 * for an element
4159 * @param basis the identity (initial default value) for the reduction
4160 * @param reducer a commutative associative combining function
4161 * @return the result of accumulating the given transformation
4162 * of all keys
4163 */
4164 public long reduceKeysToLongInParallel
4165 (ToLongFunction<? super K> transformer,
4166 long basis,
4167 LongBinaryOperator reducer) {
4168 return ForkJoinTasks.reduceKeysToLong
4169 (this, transformer, basis, reducer).invoke();
4170 }
4171
4172 /**
4173 * Returns the result of accumulating the given transformation
4174 * of all keys using the given reducer to combine values, and
4175 * the given basis as an identity value.
4176 *
4177 * @param transformer a function returning the transformation
4178 * for an element
4179 * @param basis the identity (initial default value) for the reduction
4180 * @param reducer a commutative associative combining function
4181 * @return the result of accumulating the given transformation
4182 * of all keys
4183 */
4184 public int reduceKeysToIntInParallel
4185 (ToIntFunction<? super K> transformer,
4186 int basis,
4187 IntBinaryOperator reducer) {
4188 return ForkJoinTasks.reduceKeysToInt
4189 (this, transformer, basis, reducer).invoke();
4190 }
4191
4192 /**
4193 * Performs the given action for each value.
4194 *
4195 * @param action the action
4196 */
4197 public void forEachValueInParallel(Consumer<? super V> action) {
4198 ForkJoinTasks.forEachValue
4199 (this, action).invoke();
4200 }
4201
4202 /**
4203 * Performs the given action for each non-null transformation
4204 * of each value.
4205 *
4206 * @param transformer a function returning the transformation
4207 * for an element, or null if there is no transformation (in
4208 * which case the action is not applied)
4209 * @param action the action
4210 */
4211 public <U> void forEachValueInParallel
4212 (Function<? super V, ? extends U> transformer,
4213 Consumer<? super U> action) {
4214 ForkJoinTasks.forEachValue
4215 (this, transformer, action).invoke();
4216 }
4217
4218 /**
4219 * Returns a non-null result from applying the given search
4220 * function on each value, or null if none. Upon success,
4221 * further element processing is suppressed and the results of
4222 * any other parallel invocations of the search function are
4223 * ignored.
4224 *
4225 * @param searchFunction a function returning a non-null
4226 * result on success, else null
4227 * @return a non-null result from applying the given search
4228 * function on each value, or null if none
4229 */
4230 public <U> U searchValuesInParallel
4231 (Function<? super V, ? extends U> searchFunction) {
4232 return ForkJoinTasks.searchValues
4233 (this, searchFunction).invoke();
4234 }
4235
4236 /**
4237 * Returns the result of accumulating all values using the
4238 * given reducer to combine values, or null if none.
4239 *
4240 * @param reducer a commutative associative combining function
4241 * @return the result of accumulating all values
4242 */
4243 public V reduceValuesInParallel
4244 (BiFunction<? super V, ? super V, ? extends V> reducer) {
4245 return ForkJoinTasks.reduceValues
4246 (this, reducer).invoke();
4247 }
4248
4249 /**
4250 * Returns the result of accumulating the given transformation
4251 * of all values using the given reducer to combine values, or
4252 * null if none.
4253 *
4254 * @param transformer a function returning the transformation
4255 * for an element, or null if there is no transformation (in
4256 * which case it is not combined)
4257 * @param reducer a commutative associative combining function
4258 * @return the result of accumulating the given transformation
4259 * of all values
4260 */
4261 public <U> U reduceValuesInParallel
4262 (Function<? super V, ? extends U> transformer,
4263 BiFunction<? super U, ? super U, ? extends U> reducer) {
4264 return ForkJoinTasks.reduceValues
4265 (this, transformer, reducer).invoke();
4266 }
4267
4268 /**
4269 * Returns the result of accumulating the given transformation
4270 * of all values using the given reducer to combine values,
4271 * and the given basis as an identity value.
4272 *
4273 * @param transformer a function returning the transformation
4274 * for an element
4275 * @param basis the identity (initial default value) for the reduction
4276 * @param reducer a commutative associative combining function
4277 * @return the result of accumulating the given transformation
4278 * of all values
4279 */
4280 public double reduceValuesToDoubleInParallel
4281 (ToDoubleFunction<? super V> transformer,
4282 double basis,
4283 DoubleBinaryOperator reducer) {
4284 return ForkJoinTasks.reduceValuesToDouble
4285 (this, transformer, basis, reducer).invoke();
4286 }
4287
4288 /**
4289 * Returns the result of accumulating the given transformation
4290 * of all values using the given reducer to combine values,
4291 * and the given basis as an identity value.
4292 *
4293 * @param transformer a function returning the transformation
4294 * for an element
4295 * @param basis the identity (initial default value) for the reduction
4296 * @param reducer a commutative associative combining function
4297 * @return the result of accumulating the given transformation
4298 * of all values
4299 */
4300 public long reduceValuesToLongInParallel
4301 (ToLongFunction<? super V> transformer,
4302 long basis,
4303 LongBinaryOperator reducer) {
4304 return ForkJoinTasks.reduceValuesToLong
4305 (this, transformer, basis, reducer).invoke();
4306 }
4307
4308 /**
4309 * Returns the result of accumulating the given transformation
4310 * of all values using the given reducer to combine values,
4311 * and the given basis as an identity value.
4312 *
4313 * @param transformer a function returning the transformation
4314 * for an element
4315 * @param basis the identity (initial default value) for the reduction
4316 * @param reducer a commutative associative combining function
4317 * @return the result of accumulating the given transformation
4318 * of all values
4319 */
4320 public int reduceValuesToIntInParallel
4321 (ToIntFunction<? super V> transformer,
4322 int basis,
4323 IntBinaryOperator reducer) {
4324 return ForkJoinTasks.reduceValuesToInt
4325 (this, transformer, basis, reducer).invoke();
4326 }
4327
4328 /**
4329 * Performs the given action for each entry.
4330 *
4331 * @param action the action
4332 */
4333 public void forEachEntryInParallel(Consumer<? super Map.Entry<K,V>> action) {
4334 ForkJoinTasks.forEachEntry
4335 (this, action).invoke();
4336 }
4337
4338 /**
4339 * Performs the given action for each non-null transformation
4340 * of each entry.
4341 *
4342 * @param transformer a function returning the transformation
4343 * for an element, or null if there is no transformation (in
4344 * which case the action is not applied)
4345 * @param action the action
4346 */
4347 public <U> void forEachEntryInParallel
4348 (Function<Map.Entry<K,V>, ? extends U> transformer,
4349 Consumer<? super U> action) {
4350 ForkJoinTasks.forEachEntry
4351 (this, transformer, action).invoke();
4352 }
4353
4354 /**
4355 * Returns a non-null result from applying the given search
4356 * function on each entry, or null if none. Upon success,
4357 * further element processing is suppressed and the results of
4358 * any other parallel invocations of the search function are
4359 * ignored.
4360 *
4361 * @param searchFunction a function returning a non-null
4362 * result on success, else null
4363 * @return a non-null result from applying the given search
4364 * function on each entry, or null if none
4365 */
4366 public <U> U searchEntriesInParallel
4367 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4368 return ForkJoinTasks.searchEntries
4369 (this, searchFunction).invoke();
4370 }
4371
4372 /**
4373 * Returns the result of accumulating all entries using the
4374 * given reducer to combine values, or null if none.
4375 *
4376 * @param reducer a commutative associative combining function
4377 * @return the result of accumulating all entries
4378 */
4379 public Map.Entry<K,V> reduceEntriesInParallel
4380 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4381 return ForkJoinTasks.reduceEntries
4382 (this, reducer).invoke();
4383 }
4384
4385 /**
4386 * Returns the result of accumulating the given transformation
4387 * of all entries using the given reducer to combine values,
4388 * or null if none.
4389 *
4390 * @param transformer a function returning the transformation
4391 * for an element, or null if there is no transformation (in
4392 * which case it is not combined)
4393 * @param reducer a commutative associative combining function
4394 * @return the result of accumulating the given transformation
4395 * of all entries
4396 */
4397 public <U> U reduceEntriesInParallel
4398 (Function<Map.Entry<K,V>, ? extends U> transformer,
4399 BiFunction<? super U, ? super U, ? extends U> reducer) {
4400 return ForkJoinTasks.reduceEntries
4401 (this, transformer, reducer).invoke();
4402 }
4403
4404 /**
4405 * Returns the result of accumulating the given transformation
4406 * of all entries using the given reducer to combine values,
4407 * and the given basis as an identity value.
4408 *
4409 * @param transformer a function returning the transformation
4410 * for an element
4411 * @param basis the identity (initial default value) for the reduction
4412 * @param reducer a commutative associative combining function
4413 * @return the result of accumulating the given transformation
4414 * of all entries
4415 */
4416 public double reduceEntriesToDoubleInParallel
4417 (ToDoubleFunction<Map.Entry<K,V>> transformer,
4418 double basis,
4419 DoubleBinaryOperator reducer) {
4420 return ForkJoinTasks.reduceEntriesToDouble
4421 (this, transformer, basis, reducer).invoke();
4422 }
4423
4424 /**
4425 * Returns the result of accumulating the given transformation
4426 * of all entries using the given reducer to combine values,
4427 * and the given basis as an identity value.
4428 *
4429 * @param transformer a function returning the transformation
4430 * for an element
4431 * @param basis the identity (initial default value) for the reduction
4432 * @param reducer a commutative associative combining function
4433 * @return the result of accumulating the given transformation
4434 * of all entries
4435 */
4436 public long reduceEntriesToLongInParallel
4437 (ToLongFunction<Map.Entry<K,V>> transformer,
4438 long basis,
4439 LongBinaryOperator reducer) {
4440 return ForkJoinTasks.reduceEntriesToLong
4441 (this, transformer, basis, reducer).invoke();
4442 }
4443
4444 /**
4445 * Returns the result of accumulating the given transformation
4446 * of all entries using the given reducer to combine values,
4447 * and the given basis as an identity value.
4448 *
4449 * @param transformer a function returning the transformation
4450 * for an element
4451 * @param basis the identity (initial default value) for the reduction
4452 * @param reducer a commutative associative combining function
4453 * @return the result of accumulating the given transformation
4454 * of all entries
4455 */
4456 public int reduceEntriesToIntInParallel
4457 (ToIntFunction<Map.Entry<K,V>> transformer,
4458 int basis,
4459 IntBinaryOperator reducer) {
4460 return ForkJoinTasks.reduceEntriesToInt
4461 (this, transformer, basis, reducer).invoke();
4462 }
4463
4464
4465 /* ----------------Views -------------- */
4466
4467 /**
4468 * Base class for views.
4469 */
4470 abstract static class CHMCollectionView<K,V,E>
4471 implements Collection<E>, java.io.Serializable {
4472 private static final long serialVersionUID = 7249069246763182397L;
4473 final ConcurrentHashMap<K,V> map;
4474 CHMCollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4475
4476 /**
4477 * Returns the map backing this view.
4478 *
4479 * @return the map backing this view
4480 */
4481 public ConcurrentHashMap<K,V> getMap() { return map; }
4482
4483 /**
4484 * Removes all of the elements from this view, by removing all
4485 * the mappings from the map backing this view.
4486 */
4487 public final void clear() { map.clear(); }
4488 public final int size() { return map.size(); }
4489 public final boolean isEmpty() { return map.isEmpty(); }
4490
4491 // implementations below rely on concrete classes supplying these
4492 // abstract methods
4493 /**
4494 * Returns a "weakly consistent" iterator that will never
4495 * throw {@link ConcurrentModificationException}, and
4496 * guarantees to traverse elements as they existed upon
4497 * construction of the iterator, and may (but is not
4498 * guaranteed to) reflect any modifications subsequent to
4499 * construction.
4500 */
4501 public abstract Iterator<E> iterator();
4502 public abstract boolean contains(Object o);
4503 public abstract boolean remove(Object o);
4504
4505 private static final String oomeMsg = "Required array size too large";
4506
4507 public final Object[] toArray() {
4508 long sz = map.mappingCount();
4509 if (sz > MAX_ARRAY_SIZE)
4510 throw new OutOfMemoryError(oomeMsg);
4511 int n = (int)sz;
4512 Object[] r = new Object[n];
4513 int i = 0;
4514 for (E e : this) {
4515 if (i == n) {
4516 if (n >= MAX_ARRAY_SIZE)
4517 throw new OutOfMemoryError(oomeMsg);
4518 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4519 n = MAX_ARRAY_SIZE;
4520 else
4521 n += (n >>> 1) + 1;
4522 r = Arrays.copyOf(r, n);
4523 }
4524 r[i++] = e;
4525 }
4526 return (i == n) ? r : Arrays.copyOf(r, i);
4527 }
4528
4529 @SuppressWarnings("unchecked")
4530 public final <T> T[] toArray(T[] a) {
4531 long sz = map.mappingCount();
4532 if (sz > MAX_ARRAY_SIZE)
4533 throw new OutOfMemoryError(oomeMsg);
4534 int m = (int)sz;
4535 T[] r = (a.length >= m) ? a :
4536 (T[])java.lang.reflect.Array
4537 .newInstance(a.getClass().getComponentType(), m);
4538 int n = r.length;
4539 int i = 0;
4540 for (E e : this) {
4541 if (i == n) {
4542 if (n >= MAX_ARRAY_SIZE)
4543 throw new OutOfMemoryError(oomeMsg);
4544 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4545 n = MAX_ARRAY_SIZE;
4546 else
4547 n += (n >>> 1) + 1;
4548 r = Arrays.copyOf(r, n);
4549 }
4550 r[i++] = (T)e;
4551 }
4552 if (a == r && i < n) {
4553 r[i] = null; // null-terminate
4554 return r;
4555 }
4556 return (i == n) ? r : Arrays.copyOf(r, i);
4557 }
4558
4559 /**
4560 * Returns a string representation of this collection.
4561 * The string representation consists of the string representations
4562 * of the collection's elements in the order they are returned by
4563 * its iterator, enclosed in square brackets ({@code "[]"}).
4564 * Adjacent elements are separated by the characters {@code ", "}
4565 * (comma and space). Elements are converted to strings as by
4566 * {@link String#valueOf(Object)}.
4567 *
4568 * @return a string representation of this collection
4569 */
4570 public final String toString() {
4571 StringBuilder sb = new StringBuilder();
4572 sb.append('[');
4573 Iterator<E> it = iterator();
4574 if (it.hasNext()) {
4575 for (;;) {
4576 Object e = it.next();
4577 sb.append(e == this ? "(this Collection)" : e);
4578 if (!it.hasNext())
4579 break;
4580 sb.append(',').append(' ');
4581 }
4582 }
4583 return sb.append(']').toString();
4584 }
4585
4586 public final boolean containsAll(Collection<?> c) {
4587 if (c != this) {
4588 for (Object e : c) {
4589 if (e == null || !contains(e))
4590 return false;
4591 }
4592 }
4593 return true;
4594 }
4595
4596 public final boolean removeAll(Collection<?> c) {
4597 boolean modified = false;
4598 for (Iterator<E> it = iterator(); it.hasNext();) {
4599 if (c.contains(it.next())) {
4600 it.remove();
4601 modified = true;
4602 }
4603 }
4604 return modified;
4605 }
4606
4607 public final boolean retainAll(Collection<?> c) {
4608 boolean modified = false;
4609 for (Iterator<E> it = iterator(); it.hasNext();) {
4610 if (!c.contains(it.next())) {
4611 it.remove();
4612 modified = true;
4613 }
4614 }
4615 return modified;
4616 }
4617
4618 }
4619
4620 abstract static class CHMSetView<K,V,E>
4621 extends CHMCollectionView<K,V,E>
4622 implements Set<E>, java.io.Serializable {
4623 private static final long serialVersionUID = 7249069246763182397L;
4624 CHMSetView(ConcurrentHashMap<K,V> map) { super(map); }
4625
4626 // Implement Set API
4627
4628 /**
4629 * Implements {@link Set#hashCode()}.
4630 * @return the hash code value for this set
4631 */
4632 public final int hashCode() {
4633 int h = 0;
4634 for (E e : this)
4635 h += e.hashCode();
4636 return h;
4637 }
4638
4639 /**
4640 * Implements {@link Set#equals(Object)}.
4641 * @param o object to be compared for equality with this set
4642 * @return {@code true} if the specified object is equal to this set
4643 */
4644 public final boolean equals(Object o) {
4645 Set<?> c;
4646 return ((o instanceof Set) &&
4647 ((c = (Set<?>)o) == this ||
4648 (containsAll(c) && c.containsAll(this))));
4649 }
4650 }
4651
4652 /**
4653 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4654 * which additions may optionally be enabled by mapping to a
4655 * common value. This class cannot be directly instantiated.
4656 * See {@link #keySet() keySet()},
4657 * {@link #keySet(Object) keySet(V)},
4658 * {@link #newKeySet() newKeySet()},
4659 * {@link #newKeySet(int) newKeySet(int)}.
4660 */
4661 public static class KeySetView<K,V>
4662 extends CHMSetView<K,V,K>
4663 implements Set<K>, java.io.Serializable {
4664 private static final long serialVersionUID = 7249069246763182397L;
4665 private final V value;
4666 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4667 super(map);
4668 this.value = value;
4669 }
4670
4671 /**
4672 * Returns the default mapped value for additions,
4673 * or {@code null} if additions are not supported.
4674 *
4675 * @return the default mapped value for additions, or {@code null}
4676 * if not supported
4677 */
4678 public V getMappedValue() { return value; }
4679
4680 /**
4681 * {@inheritDoc}
4682 * @throws NullPointerException if the specified key is null
4683 */
4684 public boolean contains(Object o) { return map.containsKey(o); }
4685
4686 /**
4687 * Removes the key from this map view, by removing the key (and its
4688 * corresponding value) from the backing map. This method does
4689 * nothing if the key is not in the map.
4690 *
4691 * @param o the key to be removed from the backing map
4692 * @return {@code true} if the backing map contained the specified key
4693 * @throws NullPointerException if the specified key is null
4694 */
4695 public boolean remove(Object o) { return map.remove(o) != null; }
4696
4697 /**
4698 * @return an iterator over the keys of the backing map
4699 */
4700 public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4701
4702 /**
4703 * Adds the specified key to this set view by mapping the key to
4704 * the default mapped value in the backing map, if defined.
4705 *
4706 * @param e key to be added
4707 * @return {@code true} if this set changed as a result of the call
4708 * @throws NullPointerException if the specified key is null
4709 * @throws UnsupportedOperationException if no default mapped value
4710 * for additions was provided
4711 */
4712 public boolean add(K e) {
4713 V v;
4714 if ((v = value) == null)
4715 throw new UnsupportedOperationException();
4716 return map.internalPut(e, v, true) == null;
4717 }
4718
4719 /**
4720 * Adds all of the elements in the specified collection to this set,
4721 * as if by calling {@link #add} on each one.
4722 *
4723 * @param c the elements to be inserted into this set
4724 * @return {@code true} if this set changed as a result of the call
4725 * @throws NullPointerException if the collection or any of its
4726 * elements are {@code null}
4727 * @throws UnsupportedOperationException if no default mapped value
4728 * for additions was provided
4729 */
4730 public boolean addAll(Collection<? extends K> c) {
4731 boolean added = false;
4732 V v;
4733 if ((v = value) == null)
4734 throw new UnsupportedOperationException();
4735 for (K e : c) {
4736 if (map.internalPut(e, v, true) == null)
4737 added = true;
4738 }
4739 return added;
4740 }
4741
4742 public Stream<K> stream() {
4743 return Streams.stream(new KeyIterator<>(map, null));
4744 }
4745 public Stream<K> parallelStream() {
4746 return Streams.parallelStream(new KeyIterator<K,V>(map, null));
4747 }
4748 }
4749
4750 /**
4751 * A view of a ConcurrentHashMap as a {@link Collection} of
4752 * values, in which additions are disabled. This class cannot be
4753 * directly instantiated. See {@link #values()}.
4754 *
4755 * <p>The view's {@code iterator} is a "weakly consistent" iterator
4756 * that will never throw {@link ConcurrentModificationException},
4757 * and guarantees to traverse elements as they existed upon
4758 * construction of the iterator, and may (but is not guaranteed to)
4759 * reflect any modifications subsequent to construction.
4760 */
4761 public static final class ValuesView<K,V>
4762 extends CHMCollectionView<K,V,V>
4763 implements Collection<V>, java.io.Serializable {
4764 private static final long serialVersionUID = 2249069246763182397L;
4765 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4766 public final boolean contains(Object o) {
4767 return map.containsValue(o);
4768 }
4769 public final boolean remove(Object o) {
4770 if (o != null) {
4771 for (Iterator<V> it = iterator(); it.hasNext();) {
4772 if (o.equals(it.next())) {
4773 it.remove();
4774 return true;
4775 }
4776 }
4777 }
4778 return false;
4779 }
4780
4781 /**
4782 * @return an iterator over the values of the backing map
4783 */
4784 public final Iterator<V> iterator() {
4785 return new ValueIterator<K,V>(map);
4786 }
4787
4788 /** Always throws {@link UnsupportedOperationException}. */
4789 public final boolean add(V e) {
4790 throw new UnsupportedOperationException();
4791 }
4792 /** Always throws {@link UnsupportedOperationException}. */
4793 public final boolean addAll(Collection<? extends V> c) {
4794 throw new UnsupportedOperationException();
4795 }
4796
4797 public Stream<V> stream() {
4798 return Streams.stream(new ValueIterator<K,V>(map, null));
4799 }
4800
4801 public Stream<V> parallelStream() {
4802 return Streams.parallelStream(new ValueIterator<K,V>(map, null));
4803 }
4804
4805 }
4806
4807 /**
4808 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4809 * entries. This class cannot be directly instantiated. See
4810 * {@link #entrySet()}.
4811 */
4812 public static final class EntrySetView<K,V>
4813 extends CHMSetView<K,V,Map.Entry<K,V>>
4814 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4815 private static final long serialVersionUID = 2249069246763182397L;
4816 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4817
4818 public final boolean contains(Object o) {
4819 Object k, v, r; Map.Entry<?,?> e;
4820 return ((o instanceof Map.Entry) &&
4821 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4822 (r = map.get(k)) != null &&
4823 (v = e.getValue()) != null &&
4824 (v == r || v.equals(r)));
4825 }
4826 public final boolean remove(Object o) {
4827 Object k, v; Map.Entry<?,?> e;
4828 return ((o instanceof Map.Entry) &&
4829 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4830 (v = e.getValue()) != null &&
4831 map.remove(k, v));
4832 }
4833
4834 /**
4835 * @return an iterator over the entries of the backing map
4836 */
4837 public final Iterator<Map.Entry<K,V>> iterator() {
4838 return new EntryIterator<K,V>(map);
4839 }
4840
4841 /**
4842 * Adds the specified mapping to this view.
4843 *
4844 * @param e mapping to be added
4845 * @return {@code true} if this set changed as a result of the call
4846 * @throws NullPointerException if the entry, its key, or its
4847 * value is null
4848 */
4849 public final boolean add(Entry<K,V> e) {
4850 return map.internalPut(e.getKey(), e.getValue(), false) == null;
4851 }
4852 /**
4853 * Adds all of the mappings in the specified collection to this
4854 * set, as if by calling {@link #add(Map.Entry)} on each one.
4855 * @param c the mappings to be inserted into this set
4856 * @return {@code true} if this set changed as a result of the call
4857 * @throws NullPointerException if the collection or any of its
4858 * entries, keys, or values are null
4859 */
4860 public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4861 boolean added = false;
4862 for (Entry<K,V> e : c) {
4863 if (add(e))
4864 added = true;
4865 }
4866 return added;
4867 }
4868
4869 public Stream<Map.Entry<K,V>> stream() {
4870 return Streams.stream(new EntryIterator<K,V>(map, null));
4871 }
4872
4873 public Stream<Map.Entry<K,V>> parallelStream() {
4874 return Streams.parallelStream(new EntryIterator<K,V>(map, null));
4875 }
4876 }
4877
4878 // ---------------------------------------------------------------------
4879
4880 /**
4881 * Predefined tasks for performing bulk parallel operations on
4882 * ConcurrentHashMaps. These tasks follow the forms and rules used
4883 * for bulk operations. Each method has the same name, but returns
4884 * a task rather than invoking it. These methods may be useful in
4885 * custom applications such as submitting a task without waiting
4886 * for completion, using a custom pool, or combining with other
4887 * tasks.
4888 */
4889 public static class ForkJoinTasks {
4890 private ForkJoinTasks() {}
4891
4892 /**
4893 * Returns a task that when invoked, performs the given
4894 * action for each (key, value)
4895 *
4896 * @param map the map
4897 * @param action the action
4898 * @return the task
4899 */
4900 public static <K,V> ForkJoinTask<Void> forEach
4901 (ConcurrentHashMap<K,V> map,
4902 BiConsumer<? super K, ? super V> action) {
4903 if (action == null) throw new NullPointerException();
4904 return new ForEachMappingTask<K,V>(map, null, -1, action);
4905 }
4906
4907 /**
4908 * Returns a task that when invoked, performs the given
4909 * action for each non-null transformation of each (key, value)
4910 *
4911 * @param map the map
4912 * @param transformer a function returning the transformation
4913 * for an element, or null if there is no transformation (in
4914 * which case the action is not applied)
4915 * @param action the action
4916 * @return the task
4917 */
4918 public static <K,V,U> ForkJoinTask<Void> forEach
4919 (ConcurrentHashMap<K,V> map,
4920 BiFunction<? super K, ? super V, ? extends U> transformer,
4921 Consumer<? super U> action) {
4922 if (transformer == null || action == null)
4923 throw new NullPointerException();
4924 return new ForEachTransformedMappingTask<K,V,U>
4925 (map, null, -1, transformer, action);
4926 }
4927
4928 /**
4929 * Returns a task that when invoked, returns a non-null result
4930 * from applying the given search function on each (key,
4931 * value), or null if none. Upon success, further element
4932 * processing is suppressed and the results of any other
4933 * parallel invocations of the search function are ignored.
4934 *
4935 * @param map the map
4936 * @param searchFunction a function returning a non-null
4937 * result on success, else null
4938 * @return the task
4939 */
4940 public static <K,V,U> ForkJoinTask<U> search
4941 (ConcurrentHashMap<K,V> map,
4942 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4943 if (searchFunction == null) throw new NullPointerException();
4944 return new SearchMappingsTask<K,V,U>
4945 (map, null, -1, searchFunction,
4946 new AtomicReference<U>());
4947 }
4948
4949 /**
4950 * Returns a task that when invoked, returns the result of
4951 * accumulating the given transformation of all (key, value) pairs
4952 * using the given reducer to combine values, or null if none.
4953 *
4954 * @param map the map
4955 * @param transformer a function returning the transformation
4956 * for an element, or null if there is no transformation (in
4957 * which case it is not combined)
4958 * @param reducer a commutative associative combining function
4959 * @return the task
4960 */
4961 public static <K,V,U> ForkJoinTask<U> reduce
4962 (ConcurrentHashMap<K,V> map,
4963 BiFunction<? super K, ? super V, ? extends U> transformer,
4964 BiFunction<? super U, ? super U, ? extends U> reducer) {
4965 if (transformer == null || reducer == null)
4966 throw new NullPointerException();
4967 return new MapReduceMappingsTask<K,V,U>
4968 (map, null, -1, null, transformer, reducer);
4969 }
4970
4971 /**
4972 * Returns a task that when invoked, returns the result of
4973 * accumulating the given transformation of all (key, value) pairs
4974 * using the given reducer to combine values, and the given
4975 * basis as an identity value.
4976 *
4977 * @param map the map
4978 * @param transformer a function returning the transformation
4979 * for an element
4980 * @param basis the identity (initial default value) for the reduction
4981 * @param reducer a commutative associative combining function
4982 * @return the task
4983 */
4984 public static <K,V> ForkJoinTask<Double> reduceToDouble
4985 (ConcurrentHashMap<K,V> map,
4986 ToDoubleBiFunction<? super K, ? super V> transformer,
4987 double basis,
4988 DoubleBinaryOperator reducer) {
4989 if (transformer == null || reducer == null)
4990 throw new NullPointerException();
4991 return new MapReduceMappingsToDoubleTask<K,V>
4992 (map, null, -1, null, transformer, basis, reducer);
4993 }
4994
4995 /**
4996 * Returns a task that when invoked, returns the result of
4997 * accumulating the given transformation of all (key, value) pairs
4998 * using the given reducer to combine values, and the given
4999 * basis as an identity value.
5000 *
5001 * @param map the map
5002 * @param transformer a function returning the transformation
5003 * for an element
5004 * @param basis the identity (initial default value) for the reduction
5005 * @param reducer a commutative associative combining function
5006 * @return the task
5007 */
5008 public static <K,V> ForkJoinTask<Long> reduceToLong
5009 (ConcurrentHashMap<K,V> map,
5010 ToLongBiFunction<? super K, ? super V> transformer,
5011 long basis,
5012 LongBinaryOperator reducer) {
5013 if (transformer == null || reducer == null)
5014 throw new NullPointerException();
5015 return new MapReduceMappingsToLongTask<K,V>
5016 (map, null, -1, null, transformer, basis, reducer);
5017 }
5018
5019 /**
5020 * Returns a task that when invoked, returns the result of
5021 * accumulating the given transformation of all (key, value) pairs
5022 * using the given reducer to combine values, and the given
5023 * basis as an identity value.
5024 *
5025 * @param map the map
5026 * @param transformer a function returning the transformation
5027 * for an element
5028 * @param basis the identity (initial default value) for the reduction
5029 * @param reducer a commutative associative combining function
5030 * @return the task
5031 */
5032 public static <K,V> ForkJoinTask<Integer> reduceToInt
5033 (ConcurrentHashMap<K,V> map,
5034 ToIntBiFunction<? super K, ? super V> transformer,
5035 int basis,
5036 IntBinaryOperator reducer) {
5037 if (transformer == null || reducer == null)
5038 throw new NullPointerException();
5039 return new MapReduceMappingsToIntTask<K,V>
5040 (map, null, -1, null, transformer, basis, reducer);
5041 }
5042
5043 /**
5044 * Returns a task that when invoked, performs the given action
5045 * for each key.
5046 *
5047 * @param map the map
5048 * @param action the action
5049 * @return the task
5050 */
5051 public static <K,V> ForkJoinTask<Void> forEachKey
5052 (ConcurrentHashMap<K,V> map,
5053 Consumer<? super K> action) {
5054 if (action == null) throw new NullPointerException();
5055 return new ForEachKeyTask<K,V>(map, null, -1, action);
5056 }
5057
5058 /**
5059 * Returns a task that when invoked, performs the given action
5060 * for each non-null transformation of each key.
5061 *
5062 * @param map the map
5063 * @param transformer a function returning the transformation
5064 * for an element, or null if there is no transformation (in
5065 * which case the action is not applied)
5066 * @param action the action
5067 * @return the task
5068 */
5069 public static <K,V,U> ForkJoinTask<Void> forEachKey
5070 (ConcurrentHashMap<K,V> map,
5071 Function<? super K, ? extends U> transformer,
5072 Consumer<? super U> action) {
5073 if (transformer == null || action == null)
5074 throw new NullPointerException();
5075 return new ForEachTransformedKeyTask<K,V,U>
5076 (map, null, -1, transformer, action);
5077 }
5078
5079 /**
5080 * Returns a task that when invoked, returns a non-null result
5081 * from applying the given search function on each key, or
5082 * null if none. Upon success, further element processing is
5083 * suppressed and the results of any other parallel
5084 * invocations of the search function are ignored.
5085 *
5086 * @param map the map
5087 * @param searchFunction a function returning a non-null
5088 * result on success, else null
5089 * @return the task
5090 */
5091 public static <K,V,U> ForkJoinTask<U> searchKeys
5092 (ConcurrentHashMap<K,V> map,
5093 Function<? super K, ? extends U> searchFunction) {
5094 if (searchFunction == null) throw new NullPointerException();
5095 return new SearchKeysTask<K,V,U>
5096 (map, null, -1, searchFunction,
5097 new AtomicReference<U>());
5098 }
5099
5100 /**
5101 * Returns a task that when invoked, returns the result of
5102 * accumulating all keys using the given reducer to combine
5103 * values, or null if none.
5104 *
5105 * @param map the map
5106 * @param reducer a commutative associative combining function
5107 * @return the task
5108 */
5109 public static <K,V> ForkJoinTask<K> reduceKeys
5110 (ConcurrentHashMap<K,V> map,
5111 BiFunction<? super K, ? super K, ? extends K> reducer) {
5112 if (reducer == null) throw new NullPointerException();
5113 return new ReduceKeysTask<K,V>
5114 (map, null, -1, null, reducer);
5115 }
5116
5117 /**
5118 * Returns a task that when invoked, returns the result of
5119 * accumulating the given transformation of all keys using the given
5120 * reducer to combine values, or null if none.
5121 *
5122 * @param map the map
5123 * @param transformer a function returning the transformation
5124 * for an element, or null if there is no transformation (in
5125 * which case it is not combined)
5126 * @param reducer a commutative associative combining function
5127 * @return the task
5128 */
5129 public static <K,V,U> ForkJoinTask<U> reduceKeys
5130 (ConcurrentHashMap<K,V> map,
5131 Function<? super K, ? extends U> transformer,
5132 BiFunction<? super U, ? super U, ? extends U> reducer) {
5133 if (transformer == null || reducer == null)
5134 throw new NullPointerException();
5135 return new MapReduceKeysTask<K,V,U>
5136 (map, null, -1, null, transformer, reducer);
5137 }
5138
5139 /**
5140 * Returns a task that when invoked, returns the result of
5141 * accumulating the given transformation of all keys using the given
5142 * reducer to combine values, and the given basis as an
5143 * identity value.
5144 *
5145 * @param map the map
5146 * @param transformer a function returning the transformation
5147 * for an element
5148 * @param basis the identity (initial default value) for the reduction
5149 * @param reducer a commutative associative combining function
5150 * @return the task
5151 */
5152 public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5153 (ConcurrentHashMap<K,V> map,
5154 ToDoubleFunction<? super K> transformer,
5155 double basis,
5156 DoubleBinaryOperator reducer) {
5157 if (transformer == null || reducer == null)
5158 throw new NullPointerException();
5159 return new MapReduceKeysToDoubleTask<K,V>
5160 (map, null, -1, null, transformer, basis, reducer);
5161 }
5162
5163 /**
5164 * Returns a task that when invoked, returns the result of
5165 * accumulating the given transformation of all keys using the given
5166 * reducer to combine values, and the given basis as an
5167 * identity value.
5168 *
5169 * @param map the map
5170 * @param transformer a function returning the transformation
5171 * for an element
5172 * @param basis the identity (initial default value) for the reduction
5173 * @param reducer a commutative associative combining function
5174 * @return the task
5175 */
5176 public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5177 (ConcurrentHashMap<K,V> map,
5178 ToLongFunction<? super K> transformer,
5179 long basis,
5180 LongBinaryOperator reducer) {
5181 if (transformer == null || reducer == null)
5182 throw new NullPointerException();
5183 return new MapReduceKeysToLongTask<K,V>
5184 (map, null, -1, null, transformer, basis, reducer);
5185 }
5186
5187 /**
5188 * Returns a task that when invoked, returns the result of
5189 * accumulating the given transformation of all keys using the given
5190 * reducer to combine values, and the given basis as an
5191 * identity value.
5192 *
5193 * @param map the map
5194 * @param transformer a function returning the transformation
5195 * for an element
5196 * @param basis the identity (initial default value) for the reduction
5197 * @param reducer a commutative associative combining function
5198 * @return the task
5199 */
5200 public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5201 (ConcurrentHashMap<K,V> map,
5202 ToIntFunction<? super K> transformer,
5203 int basis,
5204 IntBinaryOperator reducer) {
5205 if (transformer == null || reducer == null)
5206 throw new NullPointerException();
5207 return new MapReduceKeysToIntTask<K,V>
5208 (map, null, -1, null, transformer, basis, reducer);
5209 }
5210
5211 /**
5212 * Returns a task that when invoked, performs the given action
5213 * for each value.
5214 *
5215 * @param map the map
5216 * @param action the action
5217 * @return the task
5218 */
5219 public static <K,V> ForkJoinTask<Void> forEachValue
5220 (ConcurrentHashMap<K,V> map,
5221 Consumer<? super V> action) {
5222 if (action == null) throw new NullPointerException();
5223 return new ForEachValueTask<K,V>(map, null, -1, action);
5224 }
5225
5226 /**
5227 * Returns a task that when invoked, performs the given action
5228 * for each non-null transformation of each value.
5229 *
5230 * @param map the map
5231 * @param transformer a function returning the transformation
5232 * for an element, or null if there is no transformation (in
5233 * which case the action is not applied)
5234 * @param action the action
5235 * @return the task
5236 */
5237 public static <K,V,U> ForkJoinTask<Void> forEachValue
5238 (ConcurrentHashMap<K,V> map,
5239 Function<? super V, ? extends U> transformer,
5240 Consumer<? super U> action) {
5241 if (transformer == null || action == null)
5242 throw new NullPointerException();
5243 return new ForEachTransformedValueTask<K,V,U>
5244 (map, null, -1, transformer, action);
5245 }
5246
5247 /**
5248 * Returns a task that when invoked, returns a non-null result
5249 * from applying the given search function on each value, or
5250 * null if none. Upon success, further element processing is
5251 * suppressed and the results of any other parallel
5252 * invocations of the search function are ignored.
5253 *
5254 * @param map the map
5255 * @param searchFunction a function returning a non-null
5256 * result on success, else null
5257 * @return the task
5258 */
5259 public static <K,V,U> ForkJoinTask<U> searchValues
5260 (ConcurrentHashMap<K,V> map,
5261 Function<? super V, ? extends U> searchFunction) {
5262 if (searchFunction == null) throw new NullPointerException();
5263 return new SearchValuesTask<K,V,U>
5264 (map, null, -1, searchFunction,
5265 new AtomicReference<U>());
5266 }
5267
5268 /**
5269 * Returns a task that when invoked, returns the result of
5270 * accumulating all values using the given reducer to combine
5271 * values, or null if none.
5272 *
5273 * @param map the map
5274 * @param reducer a commutative associative combining function
5275 * @return the task
5276 */
5277 public static <K,V> ForkJoinTask<V> reduceValues
5278 (ConcurrentHashMap<K,V> map,
5279 BiFunction<? super V, ? super V, ? extends V> reducer) {
5280 if (reducer == null) throw new NullPointerException();
5281 return new ReduceValuesTask<K,V>
5282 (map, null, -1, null, reducer);
5283 }
5284
5285 /**
5286 * Returns a task that when invoked, returns the result of
5287 * accumulating the given transformation of all values using the
5288 * given reducer to combine values, or null if none.
5289 *
5290 * @param map the map
5291 * @param transformer a function returning the transformation
5292 * for an element, or null if there is no transformation (in
5293 * which case it is not combined)
5294 * @param reducer a commutative associative combining function
5295 * @return the task
5296 */
5297 public static <K,V,U> ForkJoinTask<U> reduceValues
5298 (ConcurrentHashMap<K,V> map,
5299 Function<? super V, ? extends U> transformer,
5300 BiFunction<? super U, ? super U, ? extends U> reducer) {
5301 if (transformer == null || reducer == null)
5302 throw new NullPointerException();
5303 return new MapReduceValuesTask<K,V,U>
5304 (map, null, -1, null, transformer, reducer);
5305 }
5306
5307 /**
5308 * Returns a task that when invoked, returns the result of
5309 * accumulating the given transformation of all values using the
5310 * given reducer to combine values, and the given basis as an
5311 * identity value.
5312 *
5313 * @param map the map
5314 * @param transformer a function returning the transformation
5315 * for an element
5316 * @param basis the identity (initial default value) for the reduction
5317 * @param reducer a commutative associative combining function
5318 * @return the task
5319 */
5320 public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5321 (ConcurrentHashMap<K,V> map,
5322 ToDoubleFunction<? super V> transformer,
5323 double basis,
5324 DoubleBinaryOperator reducer) {
5325 if (transformer == null || reducer == null)
5326 throw new NullPointerException();
5327 return new MapReduceValuesToDoubleTask<K,V>
5328 (map, null, -1, null, transformer, basis, reducer);
5329 }
5330
5331 /**
5332 * Returns a task that when invoked, returns the result of
5333 * accumulating the given transformation of all values using the
5334 * given reducer to combine values, and the given basis as an
5335 * identity value.
5336 *
5337 * @param map the map
5338 * @param transformer a function returning the transformation
5339 * for an element
5340 * @param basis the identity (initial default value) for the reduction
5341 * @param reducer a commutative associative combining function
5342 * @return the task
5343 */
5344 public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5345 (ConcurrentHashMap<K,V> map,
5346 ToLongFunction<? super V> transformer,
5347 long basis,
5348 LongBinaryOperator reducer) {
5349 if (transformer == null || reducer == null)
5350 throw new NullPointerException();
5351 return new MapReduceValuesToLongTask<K,V>
5352 (map, null, -1, null, transformer, basis, reducer);
5353 }
5354
5355 /**
5356 * Returns a task that when invoked, returns the result of
5357 * accumulating the given transformation of all values using the
5358 * given reducer to combine values, and the given basis as an
5359 * identity value.
5360 *
5361 * @param map the map
5362 * @param transformer a function returning the transformation
5363 * for an element
5364 * @param basis the identity (initial default value) for the reduction
5365 * @param reducer a commutative associative combining function
5366 * @return the task
5367 */
5368 public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5369 (ConcurrentHashMap<K,V> map,
5370 ToIntFunction<? super V> transformer,
5371 int basis,
5372 IntBinaryOperator reducer) {
5373 if (transformer == null || reducer == null)
5374 throw new NullPointerException();
5375 return new MapReduceValuesToIntTask<K,V>
5376 (map, null, -1, null, transformer, basis, reducer);
5377 }
5378
5379 /**
5380 * Returns a task that when invoked, perform the given action
5381 * for each entry.
5382 *
5383 * @param map the map
5384 * @param action the action
5385 * @return the task
5386 */
5387 public static <K,V> ForkJoinTask<Void> forEachEntry
5388 (ConcurrentHashMap<K,V> map,
5389 Consumer<? super Map.Entry<K,V>> action) {
5390 if (action == null) throw new NullPointerException();
5391 return new ForEachEntryTask<K,V>(map, null, -1, action);
5392 }
5393
5394 /**
5395 * Returns a task that when invoked, perform the given action
5396 * for each non-null transformation of each entry.
5397 *
5398 * @param map the map
5399 * @param transformer a function returning the transformation
5400 * for an element, or null if there is no transformation (in
5401 * which case the action is not applied)
5402 * @param action the action
5403 * @return the task
5404 */
5405 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5406 (ConcurrentHashMap<K,V> map,
5407 Function<Map.Entry<K,V>, ? extends U> transformer,
5408 Consumer<? super U> action) {
5409 if (transformer == null || action == null)
5410 throw new NullPointerException();
5411 return new ForEachTransformedEntryTask<K,V,U>
5412 (map, null, -1, transformer, action);
5413 }
5414
5415 /**
5416 * Returns a task that when invoked, returns a non-null result
5417 * from applying the given search function on each entry, or
5418 * null if none. Upon success, further element processing is
5419 * suppressed and the results of any other parallel
5420 * invocations of the search function are ignored.
5421 *
5422 * @param map the map
5423 * @param searchFunction a function returning a non-null
5424 * result on success, else null
5425 * @return the task
5426 */
5427 public static <K,V,U> ForkJoinTask<U> searchEntries
5428 (ConcurrentHashMap<K,V> map,
5429 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
5430 if (searchFunction == null) throw new NullPointerException();
5431 return new SearchEntriesTask<K,V,U>
5432 (map, null, -1, searchFunction,
5433 new AtomicReference<U>());
5434 }
5435
5436 /**
5437 * Returns a task that when invoked, returns the result of
5438 * accumulating all entries using the given reducer to combine
5439 * values, or null if none.
5440 *
5441 * @param map the map
5442 * @param reducer a commutative associative combining function
5443 * @return the task
5444 */
5445 public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5446 (ConcurrentHashMap<K,V> map,
5447 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5448 if (reducer == null) throw new NullPointerException();
5449 return new ReduceEntriesTask<K,V>
5450 (map, null, -1, null, reducer);
5451 }
5452
5453 /**
5454 * Returns a task that when invoked, returns the result of
5455 * accumulating the given transformation of all entries using the
5456 * given reducer to combine values, or null if none.
5457 *
5458 * @param map the map
5459 * @param transformer a function returning the transformation
5460 * for an element, or null if there is no transformation (in
5461 * which case it is not combined)
5462 * @param reducer a commutative associative combining function
5463 * @return the task
5464 */
5465 public static <K,V,U> ForkJoinTask<U> reduceEntries
5466 (ConcurrentHashMap<K,V> map,
5467 Function<Map.Entry<K,V>, ? extends U> transformer,
5468 BiFunction<? super U, ? super U, ? extends U> reducer) {
5469 if (transformer == null || reducer == null)
5470 throw new NullPointerException();
5471 return new MapReduceEntriesTask<K,V,U>
5472 (map, null, -1, null, transformer, reducer);
5473 }
5474
5475 /**
5476 * Returns a task that when invoked, returns the result of
5477 * accumulating the given transformation of all entries using the
5478 * given reducer to combine values, and the given basis as an
5479 * identity value.
5480 *
5481 * @param map the map
5482 * @param transformer a function returning the transformation
5483 * for an element
5484 * @param basis the identity (initial default value) for the reduction
5485 * @param reducer a commutative associative combining function
5486 * @return the task
5487 */
5488 public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5489 (ConcurrentHashMap<K,V> map,
5490 ToDoubleFunction<Map.Entry<K,V>> transformer,
5491 double basis,
5492 DoubleBinaryOperator reducer) {
5493 if (transformer == null || reducer == null)
5494 throw new NullPointerException();
5495 return new MapReduceEntriesToDoubleTask<K,V>
5496 (map, null, -1, null, transformer, basis, reducer);
5497 }
5498
5499 /**
5500 * Returns a task that when invoked, returns the result of
5501 * accumulating the given transformation of all entries using the
5502 * given reducer to combine values, and the given basis as an
5503 * identity value.
5504 *
5505 * @param map the map
5506 * @param transformer a function returning the transformation
5507 * for an element
5508 * @param basis the identity (initial default value) for the reduction
5509 * @param reducer a commutative associative combining function
5510 * @return the task
5511 */
5512 public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5513 (ConcurrentHashMap<K,V> map,
5514 ToLongFunction<Map.Entry<K,V>> transformer,
5515 long basis,
5516 LongBinaryOperator reducer) {
5517 if (transformer == null || reducer == null)
5518 throw new NullPointerException();
5519 return new MapReduceEntriesToLongTask<K,V>
5520 (map, null, -1, null, transformer, basis, reducer);
5521 }
5522
5523 /**
5524 * Returns a task that when invoked, returns the result of
5525 * accumulating the given transformation of all entries using the
5526 * given reducer to combine values, and the given basis as an
5527 * identity value.
5528 *
5529 * @param map the map
5530 * @param transformer a function returning the transformation
5531 * for an element
5532 * @param basis the identity (initial default value) for the reduction
5533 * @param reducer a commutative associative combining function
5534 * @return the task
5535 */
5536 public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5537 (ConcurrentHashMap<K,V> map,
5538 ToIntFunction<Map.Entry<K,V>> transformer,
5539 int basis,
5540 IntBinaryOperator reducer) {
5541 if (transformer == null || reducer == null)
5542 throw new NullPointerException();
5543 return new MapReduceEntriesToIntTask<K,V>
5544 (map, null, -1, null, transformer, basis, reducer);
5545 }
5546 }
5547
5548 // -------------------------------------------------------
5549
5550 /*
5551 * Task classes. Coded in a regular but ugly format/style to
5552 * simplify checks that each variant differs in the right way from
5553 * others. The null screenings exist because compilers cannot tell
5554 * that we've already null-checked task arguments, so we force
5555 * simplest hoisted bypass to help avoid convoluted traps.
5556 */
5557
5558 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5559 extends Traverser<K,V,Void> {
5560 final Consumer<? super K> action;
5561 ForEachKeyTask
5562 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5563 Consumer<? super K> action) {
5564 super(m, p, b);
5565 this.action = action;
5566 }
5567 public final void compute() {
5568 final Consumer<? super K> action;
5569 if ((action = this.action) != null) {
5570 for (int b; (b = preSplit()) > 0;)
5571 new ForEachKeyTask<K,V>(map, this, b, action).fork();
5572 while (advance() != null)
5573 action.accept(nextKey);
5574 propagateCompletion();
5575 }
5576 }
5577 }
5578
5579 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5580 extends Traverser<K,V,Void> {
5581 final Consumer<? super V> action;
5582 ForEachValueTask
5583 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5584 Consumer<? super V> action) {
5585 super(m, p, b);
5586 this.action = action;
5587 }
5588 public final void compute() {
5589 final Consumer<? super V> action;
5590 if ((action = this.action) != null) {
5591 for (int b; (b = preSplit()) > 0;)
5592 new ForEachValueTask<K,V>(map, this, b, action).fork();
5593 V v;
5594 while ((v = advance()) != null)
5595 action.accept(v);
5596 propagateCompletion();
5597 }
5598 }
5599 }
5600
5601 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5602 extends Traverser<K,V,Void> {
5603 final Consumer<? super Entry<K,V>> action;
5604 ForEachEntryTask
5605 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5606 Consumer<? super Entry<K,V>> action) {
5607 super(m, p, b);
5608 this.action = action;
5609 }
5610 public final void compute() {
5611 final Consumer<? super Entry<K,V>> action;
5612 if ((action = this.action) != null) {
5613 for (int b; (b = preSplit()) > 0;)
5614 new ForEachEntryTask<K,V>(map, this, b, action).fork();
5615 V v;
5616 while ((v = advance()) != null)
5617 action.accept(entryFor(nextKey, v));
5618 propagateCompletion();
5619 }
5620 }
5621 }
5622
5623 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5624 extends Traverser<K,V,Void> {
5625 final BiConsumer<? super K, ? super V> action;
5626 ForEachMappingTask
5627 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5628 BiConsumer<? super K,? super V> action) {
5629 super(m, p, b);
5630 this.action = action;
5631 }
5632 public final void compute() {
5633 final BiConsumer<? super K, ? super V> action;
5634 if ((action = this.action) != null) {
5635 for (int b; (b = preSplit()) > 0;)
5636 new ForEachMappingTask<K,V>(map, this, b, action).fork();
5637 V v;
5638 while ((v = advance()) != null)
5639 action.accept(nextKey, v);
5640 propagateCompletion();
5641 }
5642 }
5643 }
5644
5645 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5646 extends Traverser<K,V,Void> {
5647 final Function<? super K, ? extends U> transformer;
5648 final Consumer<? super U> action;
5649 ForEachTransformedKeyTask
5650 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5651 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5652 super(m, p, b);
5653 this.transformer = transformer; this.action = action;
5654 }
5655 public final void compute() {
5656 final Function<? super K, ? extends U> transformer;
5657 final Consumer<? super U> action;
5658 if ((transformer = this.transformer) != null &&
5659 (action = this.action) != null) {
5660 for (int b; (b = preSplit()) > 0;)
5661 new ForEachTransformedKeyTask<K,V,U>
5662 (map, this, b, transformer, action).fork();
5663 U u;
5664 while (advance() != null) {
5665 if ((u = transformer.apply(nextKey)) != null)
5666 action.accept(u);
5667 }
5668 propagateCompletion();
5669 }
5670 }
5671 }
5672
5673 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5674 extends Traverser<K,V,Void> {
5675 final Function<? super V, ? extends U> transformer;
5676 final Consumer<? super U> action;
5677 ForEachTransformedValueTask
5678 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5679 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5680 super(m, p, b);
5681 this.transformer = transformer; this.action = action;
5682 }
5683 public final void compute() {
5684 final Function<? super V, ? extends U> transformer;
5685 final Consumer<? super U> action;
5686 if ((transformer = this.transformer) != null &&
5687 (action = this.action) != null) {
5688 for (int b; (b = preSplit()) > 0;)
5689 new ForEachTransformedValueTask<K,V,U>
5690 (map, this, b, transformer, action).fork();
5691 V v; U u;
5692 while ((v = advance()) != null) {
5693 if ((u = transformer.apply(v)) != null)
5694 action.accept(u);
5695 }
5696 propagateCompletion();
5697 }
5698 }
5699 }
5700
5701 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5702 extends Traverser<K,V,Void> {
5703 final Function<Map.Entry<K,V>, ? extends U> transformer;
5704 final Consumer<? super U> action;
5705 ForEachTransformedEntryTask
5706 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5707 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5708 super(m, p, b);
5709 this.transformer = transformer; this.action = action;
5710 }
5711 public final void compute() {
5712 final Function<Map.Entry<K,V>, ? extends U> transformer;
5713 final Consumer<? super U> action;
5714 if ((transformer = this.transformer) != null &&
5715 (action = this.action) != null) {
5716 for (int b; (b = preSplit()) > 0;)
5717 new ForEachTransformedEntryTask<K,V,U>
5718 (map, this, b, transformer, action).fork();
5719 V v; U u;
5720 while ((v = advance()) != null) {
5721 if ((u = transformer.apply(entryFor(nextKey,
5722 v))) != null)
5723 action.accept(u);
5724 }
5725 propagateCompletion();
5726 }
5727 }
5728 }
5729
5730 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5731 extends Traverser<K,V,Void> {
5732 final BiFunction<? super K, ? super V, ? extends U> transformer;
5733 final Consumer<? super U> action;
5734 ForEachTransformedMappingTask
5735 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5736 BiFunction<? super K, ? super V, ? extends U> transformer,
5737 Consumer<? super U> action) {
5738 super(m, p, b);
5739 this.transformer = transformer; this.action = action;
5740 }
5741 public final void compute() {
5742 final BiFunction<? super K, ? super V, ? extends U> transformer;
5743 final Consumer<? super U> action;
5744 if ((transformer = this.transformer) != null &&
5745 (action = this.action) != null) {
5746 for (int b; (b = preSplit()) > 0;)
5747 new ForEachTransformedMappingTask<K,V,U>
5748 (map, this, b, transformer, action).fork();
5749 V v; U u;
5750 while ((v = advance()) != null) {
5751 if ((u = transformer.apply(nextKey, v)) != null)
5752 action.accept(u);
5753 }
5754 propagateCompletion();
5755 }
5756 }
5757 }
5758
5759 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5760 extends Traverser<K,V,U> {
5761 final Function<? super K, ? extends U> searchFunction;
5762 final AtomicReference<U> result;
5763 SearchKeysTask
5764 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5765 Function<? super K, ? extends U> searchFunction,
5766 AtomicReference<U> result) {
5767 super(m, p, b);
5768 this.searchFunction = searchFunction; this.result = result;
5769 }
5770 public final U getRawResult() { return result.get(); }
5771 public final void compute() {
5772 final Function<? super K, ? extends U> searchFunction;
5773 final AtomicReference<U> result;
5774 if ((searchFunction = this.searchFunction) != null &&
5775 (result = this.result) != null) {
5776 for (int b;;) {
5777 if (result.get() != null)
5778 return;
5779 if ((b = preSplit()) <= 0)
5780 break;
5781 new SearchKeysTask<K,V,U>
5782 (map, this, b, searchFunction, result).fork();
5783 }
5784 while (result.get() == null) {
5785 U u;
5786 if (advance() == null) {
5787 propagateCompletion();
5788 break;
5789 }
5790 if ((u = searchFunction.apply(nextKey)) != null) {
5791 if (result.compareAndSet(null, u))
5792 quietlyCompleteRoot();
5793 break;
5794 }
5795 }
5796 }
5797 }
5798 }
5799
5800 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5801 extends Traverser<K,V,U> {
5802 final Function<? super V, ? extends U> searchFunction;
5803 final AtomicReference<U> result;
5804 SearchValuesTask
5805 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5806 Function<? super V, ? extends U> searchFunction,
5807 AtomicReference<U> result) {
5808 super(m, p, b);
5809 this.searchFunction = searchFunction; this.result = result;
5810 }
5811 public final U getRawResult() { return result.get(); }
5812 public final void compute() {
5813 final Function<? super V, ? extends U> searchFunction;
5814 final AtomicReference<U> result;
5815 if ((searchFunction = this.searchFunction) != null &&
5816 (result = this.result) != null) {
5817 for (int b;;) {
5818 if (result.get() != null)
5819 return;
5820 if ((b = preSplit()) <= 0)
5821 break;
5822 new SearchValuesTask<K,V,U>
5823 (map, this, b, searchFunction, result).fork();
5824 }
5825 while (result.get() == null) {
5826 V v; U u;
5827 if ((v = advance()) == null) {
5828 propagateCompletion();
5829 break;
5830 }
5831 if ((u = searchFunction.apply(v)) != null) {
5832 if (result.compareAndSet(null, u))
5833 quietlyCompleteRoot();
5834 break;
5835 }
5836 }
5837 }
5838 }
5839 }
5840
5841 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5842 extends Traverser<K,V,U> {
5843 final Function<Entry<K,V>, ? extends U> searchFunction;
5844 final AtomicReference<U> result;
5845 SearchEntriesTask
5846 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5847 Function<Entry<K,V>, ? extends U> searchFunction,
5848 AtomicReference<U> result) {
5849 super(m, p, b);
5850 this.searchFunction = searchFunction; this.result = result;
5851 }
5852 public final U getRawResult() { return result.get(); }
5853 public final void compute() {
5854 final Function<Entry<K,V>, ? extends U> searchFunction;
5855 final AtomicReference<U> result;
5856 if ((searchFunction = this.searchFunction) != null &&
5857 (result = this.result) != null) {
5858 for (int b;;) {
5859 if (result.get() != null)
5860 return;
5861 if ((b = preSplit()) <= 0)
5862 break;
5863 new SearchEntriesTask<K,V,U>
5864 (map, this, b, searchFunction, result).fork();
5865 }
5866 while (result.get() == null) {
5867 V v; U u;
5868 if ((v = advance()) == null) {
5869 propagateCompletion();
5870 break;
5871 }
5872 if ((u = searchFunction.apply(entryFor(nextKey,
5873 v))) != null) {
5874 if (result.compareAndSet(null, u))
5875 quietlyCompleteRoot();
5876 return;
5877 }
5878 }
5879 }
5880 }
5881 }
5882
5883 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5884 extends Traverser<K,V,U> {
5885 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5886 final AtomicReference<U> result;
5887 SearchMappingsTask
5888 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5889 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5890 AtomicReference<U> result) {
5891 super(m, p, b);
5892 this.searchFunction = searchFunction; this.result = result;
5893 }
5894 public final U getRawResult() { return result.get(); }
5895 public final void compute() {
5896 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5897 final AtomicReference<U> result;
5898 if ((searchFunction = this.searchFunction) != null &&
5899 (result = this.result) != null) {
5900 for (int b;;) {
5901 if (result.get() != null)
5902 return;
5903 if ((b = preSplit()) <= 0)
5904 break;
5905 new SearchMappingsTask<K,V,U>
5906 (map, this, b, searchFunction, result).fork();
5907 }
5908 while (result.get() == null) {
5909 V v; U u;
5910 if ((v = advance()) == null) {
5911 propagateCompletion();
5912 break;
5913 }
5914 if ((u = searchFunction.apply(nextKey, v)) != null) {
5915 if (result.compareAndSet(null, u))
5916 quietlyCompleteRoot();
5917 break;
5918 }
5919 }
5920 }
5921 }
5922 }
5923
5924 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5925 extends Traverser<K,V,K> {
5926 final BiFunction<? super K, ? super K, ? extends K> reducer;
5927 K result;
5928 ReduceKeysTask<K,V> rights, nextRight;
5929 ReduceKeysTask
5930 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5931 ReduceKeysTask<K,V> nextRight,
5932 BiFunction<? super K, ? super K, ? extends K> reducer) {
5933 super(m, p, b); this.nextRight = nextRight;
5934 this.reducer = reducer;
5935 }
5936 public final K getRawResult() { return result; }
5937 @SuppressWarnings("unchecked") public final void compute() {
5938 final BiFunction<? super K, ? super K, ? extends K> reducer;
5939 if ((reducer = this.reducer) != null) {
5940 for (int b; (b = preSplit()) > 0;)
5941 (rights = new ReduceKeysTask<K,V>
5942 (map, this, b, rights, reducer)).fork();
5943 K r = null;
5944 while (advance() != null) {
5945 K u = nextKey;
5946 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5947 }
5948 result = r;
5949 CountedCompleter<?> c;
5950 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5951 ReduceKeysTask<K,V>
5952 t = (ReduceKeysTask<K,V>)c,
5953 s = t.rights;
5954 while (s != null) {
5955 K tr, sr;
5956 if ((sr = s.result) != null)
5957 t.result = (((tr = t.result) == null) ? sr :
5958 reducer.apply(tr, sr));
5959 s = t.rights = s.nextRight;
5960 }
5961 }
5962 }
5963 }
5964 }
5965
5966 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5967 extends Traverser<K,V,V> {
5968 final BiFunction<? super V, ? super V, ? extends V> reducer;
5969 V result;
5970 ReduceValuesTask<K,V> rights, nextRight;
5971 ReduceValuesTask
5972 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5973 ReduceValuesTask<K,V> nextRight,
5974 BiFunction<? super V, ? super V, ? extends V> reducer) {
5975 super(m, p, b); this.nextRight = nextRight;
5976 this.reducer = reducer;
5977 }
5978 public final V getRawResult() { return result; }
5979 @SuppressWarnings("unchecked") public final void compute() {
5980 final BiFunction<? super V, ? super V, ? extends V> reducer;
5981 if ((reducer = this.reducer) != null) {
5982 for (int b; (b = preSplit()) > 0;)
5983 (rights = new ReduceValuesTask<K,V>
5984 (map, this, b, rights, reducer)).fork();
5985 V r = null, v;
5986 while ((v = advance()) != null)
5987 r = (r == null) ? v : reducer.apply(r, v);
5988 result = r;
5989 CountedCompleter<?> c;
5990 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5991 ReduceValuesTask<K,V>
5992 t = (ReduceValuesTask<K,V>)c,
5993 s = t.rights;
5994 while (s != null) {
5995 V tr, sr;
5996 if ((sr = s.result) != null)
5997 t.result = (((tr = t.result) == null) ? sr :
5998 reducer.apply(tr, sr));
5999 s = t.rights = s.nextRight;
6000 }
6001 }
6002 }
6003 }
6004 }
6005
6006 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
6007 extends Traverser<K,V,Map.Entry<K,V>> {
6008 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6009 Map.Entry<K,V> result;
6010 ReduceEntriesTask<K,V> rights, nextRight;
6011 ReduceEntriesTask
6012 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6013 ReduceEntriesTask<K,V> nextRight,
6014 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
6015 super(m, p, b); this.nextRight = nextRight;
6016 this.reducer = reducer;
6017 }
6018 public final Map.Entry<K,V> getRawResult() { return result; }
6019 @SuppressWarnings("unchecked") public final void compute() {
6020 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6021 if ((reducer = this.reducer) != null) {
6022 for (int b; (b = preSplit()) > 0;)
6023 (rights = new ReduceEntriesTask<K,V>
6024 (map, this, b, rights, reducer)).fork();
6025 Map.Entry<K,V> r = null;
6026 V v;
6027 while ((v = advance()) != null) {
6028 Map.Entry<K,V> u = entryFor(nextKey, v);
6029 r = (r == null) ? u : reducer.apply(r, u);
6030 }
6031 result = r;
6032 CountedCompleter<?> c;
6033 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6034 ReduceEntriesTask<K,V>
6035 t = (ReduceEntriesTask<K,V>)c,
6036 s = t.rights;
6037 while (s != null) {
6038 Map.Entry<K,V> tr, sr;
6039 if ((sr = s.result) != null)
6040 t.result = (((tr = t.result) == null) ? sr :
6041 reducer.apply(tr, sr));
6042 s = t.rights = s.nextRight;
6043 }
6044 }
6045 }
6046 }
6047 }
6048
6049 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
6050 extends Traverser<K,V,U> {
6051 final Function<? super K, ? extends U> transformer;
6052 final BiFunction<? super U, ? super U, ? extends U> reducer;
6053 U result;
6054 MapReduceKeysTask<K,V,U> rights, nextRight;
6055 MapReduceKeysTask
6056 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6057 MapReduceKeysTask<K,V,U> nextRight,
6058 Function<? super K, ? extends U> transformer,
6059 BiFunction<? super U, ? super U, ? extends U> reducer) {
6060 super(m, p, b); this.nextRight = nextRight;
6061 this.transformer = transformer;
6062 this.reducer = reducer;
6063 }
6064 public final U getRawResult() { return result; }
6065 @SuppressWarnings("unchecked") public final void compute() {
6066 final Function<? super K, ? extends U> transformer;
6067 final BiFunction<? super U, ? super U, ? extends U> reducer;
6068 if ((transformer = this.transformer) != null &&
6069 (reducer = this.reducer) != null) {
6070 for (int b; (b = preSplit()) > 0;)
6071 (rights = new MapReduceKeysTask<K,V,U>
6072 (map, this, b, rights, transformer, reducer)).fork();
6073 U r = null, u;
6074 while (advance() != null) {
6075 if ((u = transformer.apply(nextKey)) != null)
6076 r = (r == null) ? u : reducer.apply(r, u);
6077 }
6078 result = r;
6079 CountedCompleter<?> c;
6080 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6081 MapReduceKeysTask<K,V,U>
6082 t = (MapReduceKeysTask<K,V,U>)c,
6083 s = t.rights;
6084 while (s != null) {
6085 U tr, sr;
6086 if ((sr = s.result) != null)
6087 t.result = (((tr = t.result) == null) ? sr :
6088 reducer.apply(tr, sr));
6089 s = t.rights = s.nextRight;
6090 }
6091 }
6092 }
6093 }
6094 }
6095
6096 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6097 extends Traverser<K,V,U> {
6098 final Function<? super V, ? extends U> transformer;
6099 final BiFunction<? super U, ? super U, ? extends U> reducer;
6100 U result;
6101 MapReduceValuesTask<K,V,U> rights, nextRight;
6102 MapReduceValuesTask
6103 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6104 MapReduceValuesTask<K,V,U> nextRight,
6105 Function<? super V, ? extends U> transformer,
6106 BiFunction<? super U, ? super U, ? extends U> reducer) {
6107 super(m, p, b); this.nextRight = nextRight;
6108 this.transformer = transformer;
6109 this.reducer = reducer;
6110 }
6111 public final U getRawResult() { return result; }
6112 @SuppressWarnings("unchecked") public final void compute() {
6113 final Function<? super V, ? extends U> transformer;
6114 final BiFunction<? super U, ? super U, ? extends U> reducer;
6115 if ((transformer = this.transformer) != null &&
6116 (reducer = this.reducer) != null) {
6117 for (int b; (b = preSplit()) > 0;)
6118 (rights = new MapReduceValuesTask<K,V,U>
6119 (map, this, b, rights, transformer, reducer)).fork();
6120 U r = null, u;
6121 V v;
6122 while ((v = advance()) != null) {
6123 if ((u = transformer.apply(v)) != null)
6124 r = (r == null) ? u : reducer.apply(r, u);
6125 }
6126 result = r;
6127 CountedCompleter<?> c;
6128 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6129 MapReduceValuesTask<K,V,U>
6130 t = (MapReduceValuesTask<K,V,U>)c,
6131 s = t.rights;
6132 while (s != null) {
6133 U tr, sr;
6134 if ((sr = s.result) != null)
6135 t.result = (((tr = t.result) == null) ? sr :
6136 reducer.apply(tr, sr));
6137 s = t.rights = s.nextRight;
6138 }
6139 }
6140 }
6141 }
6142 }
6143
6144 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6145 extends Traverser<K,V,U> {
6146 final Function<Map.Entry<K,V>, ? extends U> transformer;
6147 final BiFunction<? super U, ? super U, ? extends U> reducer;
6148 U result;
6149 MapReduceEntriesTask<K,V,U> rights, nextRight;
6150 MapReduceEntriesTask
6151 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6152 MapReduceEntriesTask<K,V,U> nextRight,
6153 Function<Map.Entry<K,V>, ? extends U> transformer,
6154 BiFunction<? super U, ? super U, ? extends U> reducer) {
6155 super(m, p, b); this.nextRight = nextRight;
6156 this.transformer = transformer;
6157 this.reducer = reducer;
6158 }
6159 public final U getRawResult() { return result; }
6160 @SuppressWarnings("unchecked") public final void compute() {
6161 final Function<Map.Entry<K,V>, ? extends U> transformer;
6162 final BiFunction<? super U, ? super U, ? extends U> reducer;
6163 if ((transformer = this.transformer) != null &&
6164 (reducer = this.reducer) != null) {
6165 for (int b; (b = preSplit()) > 0;)
6166 (rights = new MapReduceEntriesTask<K,V,U>
6167 (map, this, b, rights, transformer, reducer)).fork();
6168 U r = null, u;
6169 V v;
6170 while ((v = advance()) != null) {
6171 if ((u = transformer.apply(entryFor(nextKey,
6172 v))) != null)
6173 r = (r == null) ? u : reducer.apply(r, u);
6174 }
6175 result = r;
6176 CountedCompleter<?> c;
6177 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6178 MapReduceEntriesTask<K,V,U>
6179 t = (MapReduceEntriesTask<K,V,U>)c,
6180 s = t.rights;
6181 while (s != null) {
6182 U tr, sr;
6183 if ((sr = s.result) != null)
6184 t.result = (((tr = t.result) == null) ? sr :
6185 reducer.apply(tr, sr));
6186 s = t.rights = s.nextRight;
6187 }
6188 }
6189 }
6190 }
6191 }
6192
6193 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6194 extends Traverser<K,V,U> {
6195 final BiFunction<? super K, ? super V, ? extends U> transformer;
6196 final BiFunction<? super U, ? super U, ? extends U> reducer;
6197 U result;
6198 MapReduceMappingsTask<K,V,U> rights, nextRight;
6199 MapReduceMappingsTask
6200 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6201 MapReduceMappingsTask<K,V,U> nextRight,
6202 BiFunction<? super K, ? super V, ? extends U> transformer,
6203 BiFunction<? super U, ? super U, ? extends U> reducer) {
6204 super(m, p, b); this.nextRight = nextRight;
6205 this.transformer = transformer;
6206 this.reducer = reducer;
6207 }
6208 public final U getRawResult() { return result; }
6209 @SuppressWarnings("unchecked") public final void compute() {
6210 final BiFunction<? super K, ? super V, ? extends U> transformer;
6211 final BiFunction<? super U, ? super U, ? extends U> reducer;
6212 if ((transformer = this.transformer) != null &&
6213 (reducer = this.reducer) != null) {
6214 for (int b; (b = preSplit()) > 0;)
6215 (rights = new MapReduceMappingsTask<K,V,U>
6216 (map, this, b, rights, transformer, reducer)).fork();
6217 U r = null, u;
6218 V v;
6219 while ((v = advance()) != null) {
6220 if ((u = transformer.apply(nextKey, v)) != null)
6221 r = (r == null) ? u : reducer.apply(r, u);
6222 }
6223 result = r;
6224 CountedCompleter<?> c;
6225 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6226 MapReduceMappingsTask<K,V,U>
6227 t = (MapReduceMappingsTask<K,V,U>)c,
6228 s = t.rights;
6229 while (s != null) {
6230 U tr, sr;
6231 if ((sr = s.result) != null)
6232 t.result = (((tr = t.result) == null) ? sr :
6233 reducer.apply(tr, sr));
6234 s = t.rights = s.nextRight;
6235 }
6236 }
6237 }
6238 }
6239 }
6240
6241 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6242 extends Traverser<K,V,Double> {
6243 final ToDoubleFunction<? super K> transformer;
6244 final DoubleBinaryOperator reducer;
6245 final double basis;
6246 double result;
6247 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6248 MapReduceKeysToDoubleTask
6249 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6250 MapReduceKeysToDoubleTask<K,V> nextRight,
6251 ToDoubleFunction<? super K> transformer,
6252 double basis,
6253 DoubleBinaryOperator reducer) {
6254 super(m, p, b); this.nextRight = nextRight;
6255 this.transformer = transformer;
6256 this.basis = basis; this.reducer = reducer;
6257 }
6258 public final Double getRawResult() { return result; }
6259 @SuppressWarnings("unchecked") public final void compute() {
6260 final ToDoubleFunction<? super K> transformer;
6261 final DoubleBinaryOperator reducer;
6262 if ((transformer = this.transformer) != null &&
6263 (reducer = this.reducer) != null) {
6264 double r = this.basis;
6265 for (int b; (b = preSplit()) > 0;)
6266 (rights = new MapReduceKeysToDoubleTask<K,V>
6267 (map, this, b, rights, transformer, r, reducer)).fork();
6268 while (advance() != null)
6269 r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey));
6270 result = r;
6271 CountedCompleter<?> c;
6272 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6273 MapReduceKeysToDoubleTask<K,V>
6274 t = (MapReduceKeysToDoubleTask<K,V>)c,
6275 s = t.rights;
6276 while (s != null) {
6277 t.result = reducer.applyAsDouble(t.result, s.result);
6278 s = t.rights = s.nextRight;
6279 }
6280 }
6281 }
6282 }
6283 }
6284
6285 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6286 extends Traverser<K,V,Double> {
6287 final ToDoubleFunction<? super V> transformer;
6288 final DoubleBinaryOperator reducer;
6289 final double basis;
6290 double result;
6291 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6292 MapReduceValuesToDoubleTask
6293 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6294 MapReduceValuesToDoubleTask<K,V> nextRight,
6295 ToDoubleFunction<? super V> transformer,
6296 double basis,
6297 DoubleBinaryOperator reducer) {
6298 super(m, p, b); this.nextRight = nextRight;
6299 this.transformer = transformer;
6300 this.basis = basis; this.reducer = reducer;
6301 }
6302 public final Double getRawResult() { return result; }
6303 @SuppressWarnings("unchecked") public final void compute() {
6304 final ToDoubleFunction<? super V> transformer;
6305 final DoubleBinaryOperator reducer;
6306 if ((transformer = this.transformer) != null &&
6307 (reducer = this.reducer) != null) {
6308 double r = this.basis;
6309 for (int b; (b = preSplit()) > 0;)
6310 (rights = new MapReduceValuesToDoubleTask<K,V>
6311 (map, this, b, rights, transformer, r, reducer)).fork();
6312 V v;
6313 while ((v = advance()) != null)
6314 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
6315 result = r;
6316 CountedCompleter<?> c;
6317 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6318 MapReduceValuesToDoubleTask<K,V>
6319 t = (MapReduceValuesToDoubleTask<K,V>)c,
6320 s = t.rights;
6321 while (s != null) {
6322 t.result = reducer.applyAsDouble(t.result, s.result);
6323 s = t.rights = s.nextRight;
6324 }
6325 }
6326 }
6327 }
6328 }
6329
6330 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6331 extends Traverser<K,V,Double> {
6332 final ToDoubleFunction<Map.Entry<K,V>> transformer;
6333 final DoubleBinaryOperator reducer;
6334 final double basis;
6335 double result;
6336 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6337 MapReduceEntriesToDoubleTask
6338 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6339 MapReduceEntriesToDoubleTask<K,V> nextRight,
6340 ToDoubleFunction<Map.Entry<K,V>> transformer,
6341 double basis,
6342 DoubleBinaryOperator reducer) {
6343 super(m, p, b); this.nextRight = nextRight;
6344 this.transformer = transformer;
6345 this.basis = basis; this.reducer = reducer;
6346 }
6347 public final Double getRawResult() { return result; }
6348 @SuppressWarnings("unchecked") public final void compute() {
6349 final ToDoubleFunction<Map.Entry<K,V>> transformer;
6350 final DoubleBinaryOperator reducer;
6351 if ((transformer = this.transformer) != null &&
6352 (reducer = this.reducer) != null) {
6353 double r = this.basis;
6354 for (int b; (b = preSplit()) > 0;)
6355 (rights = new MapReduceEntriesToDoubleTask<K,V>
6356 (map, this, b, rights, transformer, r, reducer)).fork();
6357 V v;
6358 while ((v = advance()) != null)
6359 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(nextKey,
6360 v)));
6361 result = r;
6362 CountedCompleter<?> c;
6363 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6364 MapReduceEntriesToDoubleTask<K,V>
6365 t = (MapReduceEntriesToDoubleTask<K,V>)c,
6366 s = t.rights;
6367 while (s != null) {
6368 t.result = reducer.applyAsDouble(t.result, s.result);
6369 s = t.rights = s.nextRight;
6370 }
6371 }
6372 }
6373 }
6374 }
6375
6376 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6377 extends Traverser<K,V,Double> {
6378 final ToDoubleBiFunction<? super K, ? super V> transformer;
6379 final DoubleBinaryOperator reducer;
6380 final double basis;
6381 double result;
6382 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6383 MapReduceMappingsToDoubleTask
6384 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6385 MapReduceMappingsToDoubleTask<K,V> nextRight,
6386 ToDoubleBiFunction<? super K, ? super V> transformer,
6387 double basis,
6388 DoubleBinaryOperator reducer) {
6389 super(m, p, b); this.nextRight = nextRight;
6390 this.transformer = transformer;
6391 this.basis = basis; this.reducer = reducer;
6392 }
6393 public final Double getRawResult() { return result; }
6394 @SuppressWarnings("unchecked") public final void compute() {
6395 final ToDoubleBiFunction<? super K, ? super V> transformer;
6396 final DoubleBinaryOperator reducer;
6397 if ((transformer = this.transformer) != null &&
6398 (reducer = this.reducer) != null) {
6399 double r = this.basis;
6400 for (int b; (b = preSplit()) > 0;)
6401 (rights = new MapReduceMappingsToDoubleTask<K,V>
6402 (map, this, b, rights, transformer, r, reducer)).fork();
6403 V v;
6404 while ((v = advance()) != null)
6405 r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey, v));
6406 result = r;
6407 CountedCompleter<?> c;
6408 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6409 MapReduceMappingsToDoubleTask<K,V>
6410 t = (MapReduceMappingsToDoubleTask<K,V>)c,
6411 s = t.rights;
6412 while (s != null) {
6413 t.result = reducer.applyAsDouble(t.result, s.result);
6414 s = t.rights = s.nextRight;
6415 }
6416 }
6417 }
6418 }
6419 }
6420
6421 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6422 extends Traverser<K,V,Long> {
6423 final ToLongFunction<? super K> transformer;
6424 final LongBinaryOperator reducer;
6425 final long basis;
6426 long result;
6427 MapReduceKeysToLongTask<K,V> rights, nextRight;
6428 MapReduceKeysToLongTask
6429 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6430 MapReduceKeysToLongTask<K,V> nextRight,
6431 ToLongFunction<? super K> transformer,
6432 long basis,
6433 LongBinaryOperator reducer) {
6434 super(m, p, b); this.nextRight = nextRight;
6435 this.transformer = transformer;
6436 this.basis = basis; this.reducer = reducer;
6437 }
6438 public final Long getRawResult() { return result; }
6439 @SuppressWarnings("unchecked") public final void compute() {
6440 final ToLongFunction<? super K> transformer;
6441 final LongBinaryOperator reducer;
6442 if ((transformer = this.transformer) != null &&
6443 (reducer = this.reducer) != null) {
6444 long r = this.basis;
6445 for (int b; (b = preSplit()) > 0;)
6446 (rights = new MapReduceKeysToLongTask<K,V>
6447 (map, this, b, rights, transformer, r, reducer)).fork();
6448 while (advance() != null)
6449 r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey));
6450 result = r;
6451 CountedCompleter<?> c;
6452 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6453 MapReduceKeysToLongTask<K,V>
6454 t = (MapReduceKeysToLongTask<K,V>)c,
6455 s = t.rights;
6456 while (s != null) {
6457 t.result = reducer.applyAsLong(t.result, s.result);
6458 s = t.rights = s.nextRight;
6459 }
6460 }
6461 }
6462 }
6463 }
6464
6465 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6466 extends Traverser<K,V,Long> {
6467 final ToLongFunction<? super V> transformer;
6468 final LongBinaryOperator reducer;
6469 final long basis;
6470 long result;
6471 MapReduceValuesToLongTask<K,V> rights, nextRight;
6472 MapReduceValuesToLongTask
6473 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6474 MapReduceValuesToLongTask<K,V> nextRight,
6475 ToLongFunction<? super V> transformer,
6476 long basis,
6477 LongBinaryOperator reducer) {
6478 super(m, p, b); this.nextRight = nextRight;
6479 this.transformer = transformer;
6480 this.basis = basis; this.reducer = reducer;
6481 }
6482 public final Long getRawResult() { return result; }
6483 @SuppressWarnings("unchecked") public final void compute() {
6484 final ToLongFunction<? super V> transformer;
6485 final LongBinaryOperator reducer;
6486 if ((transformer = this.transformer) != null &&
6487 (reducer = this.reducer) != null) {
6488 long r = this.basis;
6489 for (int b; (b = preSplit()) > 0;)
6490 (rights = new MapReduceValuesToLongTask<K,V>
6491 (map, this, b, rights, transformer, r, reducer)).fork();
6492 V v;
6493 while ((v = advance()) != null)
6494 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
6495 result = r;
6496 CountedCompleter<?> c;
6497 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6498 MapReduceValuesToLongTask<K,V>
6499 t = (MapReduceValuesToLongTask<K,V>)c,
6500 s = t.rights;
6501 while (s != null) {
6502 t.result = reducer.applyAsLong(t.result, s.result);
6503 s = t.rights = s.nextRight;
6504 }
6505 }
6506 }
6507 }
6508 }
6509
6510 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6511 extends Traverser<K,V,Long> {
6512 final ToLongFunction<Map.Entry<K,V>> transformer;
6513 final LongBinaryOperator reducer;
6514 final long basis;
6515 long result;
6516 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6517 MapReduceEntriesToLongTask
6518 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6519 MapReduceEntriesToLongTask<K,V> nextRight,
6520 ToLongFunction<Map.Entry<K,V>> transformer,
6521 long basis,
6522 LongBinaryOperator reducer) {
6523 super(m, p, b); this.nextRight = nextRight;
6524 this.transformer = transformer;
6525 this.basis = basis; this.reducer = reducer;
6526 }
6527 public final Long getRawResult() { return result; }
6528 @SuppressWarnings("unchecked") public final void compute() {
6529 final ToLongFunction<Map.Entry<K,V>> transformer;
6530 final LongBinaryOperator reducer;
6531 if ((transformer = this.transformer) != null &&
6532 (reducer = this.reducer) != null) {
6533 long r = this.basis;
6534 for (int b; (b = preSplit()) > 0;)
6535 (rights = new MapReduceEntriesToLongTask<K,V>
6536 (map, this, b, rights, transformer, r, reducer)).fork();
6537 V v;
6538 while ((v = advance()) != null)
6539 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(nextKey, v)));
6540 result = r;
6541 CountedCompleter<?> c;
6542 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6543 MapReduceEntriesToLongTask<K,V>
6544 t = (MapReduceEntriesToLongTask<K,V>)c,
6545 s = t.rights;
6546 while (s != null) {
6547 t.result = reducer.applyAsLong(t.result, s.result);
6548 s = t.rights = s.nextRight;
6549 }
6550 }
6551 }
6552 }
6553 }
6554
6555 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6556 extends Traverser<K,V,Long> {
6557 final ToLongBiFunction<? super K, ? super V> transformer;
6558 final LongBinaryOperator reducer;
6559 final long basis;
6560 long result;
6561 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6562 MapReduceMappingsToLongTask
6563 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6564 MapReduceMappingsToLongTask<K,V> nextRight,
6565 ToLongBiFunction<? super K, ? super V> transformer,
6566 long basis,
6567 LongBinaryOperator reducer) {
6568 super(m, p, b); this.nextRight = nextRight;
6569 this.transformer = transformer;
6570 this.basis = basis; this.reducer = reducer;
6571 }
6572 public final Long getRawResult() { return result; }
6573 @SuppressWarnings("unchecked") public final void compute() {
6574 final ToLongBiFunction<? super K, ? super V> transformer;
6575 final LongBinaryOperator reducer;
6576 if ((transformer = this.transformer) != null &&
6577 (reducer = this.reducer) != null) {
6578 long r = this.basis;
6579 for (int b; (b = preSplit()) > 0;)
6580 (rights = new MapReduceMappingsToLongTask<K,V>
6581 (map, this, b, rights, transformer, r, reducer)).fork();
6582 V v;
6583 while ((v = advance()) != null)
6584 r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey, v));
6585 result = r;
6586 CountedCompleter<?> c;
6587 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6588 MapReduceMappingsToLongTask<K,V>
6589 t = (MapReduceMappingsToLongTask<K,V>)c,
6590 s = t.rights;
6591 while (s != null) {
6592 t.result = reducer.applyAsLong(t.result, s.result);
6593 s = t.rights = s.nextRight;
6594 }
6595 }
6596 }
6597 }
6598 }
6599
6600 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6601 extends Traverser<K,V,Integer> {
6602 final ToIntFunction<? super K> transformer;
6603 final IntBinaryOperator reducer;
6604 final int basis;
6605 int result;
6606 MapReduceKeysToIntTask<K,V> rights, nextRight;
6607 MapReduceKeysToIntTask
6608 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6609 MapReduceKeysToIntTask<K,V> nextRight,
6610 ToIntFunction<? super K> transformer,
6611 int basis,
6612 IntBinaryOperator reducer) {
6613 super(m, p, b); this.nextRight = nextRight;
6614 this.transformer = transformer;
6615 this.basis = basis; this.reducer = reducer;
6616 }
6617 public final Integer getRawResult() { return result; }
6618 @SuppressWarnings("unchecked") public final void compute() {
6619 final ToIntFunction<? super K> transformer;
6620 final IntBinaryOperator reducer;
6621 if ((transformer = this.transformer) != null &&
6622 (reducer = this.reducer) != null) {
6623 int r = this.basis;
6624 for (int b; (b = preSplit()) > 0;)
6625 (rights = new MapReduceKeysToIntTask<K,V>
6626 (map, this, b, rights, transformer, r, reducer)).fork();
6627 while (advance() != null)
6628 r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey));
6629 result = r;
6630 CountedCompleter<?> c;
6631 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6632 MapReduceKeysToIntTask<K,V>
6633 t = (MapReduceKeysToIntTask<K,V>)c,
6634 s = t.rights;
6635 while (s != null) {
6636 t.result = reducer.applyAsInt(t.result, s.result);
6637 s = t.rights = s.nextRight;
6638 }
6639 }
6640 }
6641 }
6642 }
6643
6644 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6645 extends Traverser<K,V,Integer> {
6646 final ToIntFunction<? super V> transformer;
6647 final IntBinaryOperator reducer;
6648 final int basis;
6649 int result;
6650 MapReduceValuesToIntTask<K,V> rights, nextRight;
6651 MapReduceValuesToIntTask
6652 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6653 MapReduceValuesToIntTask<K,V> nextRight,
6654 ToIntFunction<? super V> transformer,
6655 int basis,
6656 IntBinaryOperator reducer) {
6657 super(m, p, b); this.nextRight = nextRight;
6658 this.transformer = transformer;
6659 this.basis = basis; this.reducer = reducer;
6660 }
6661 public final Integer getRawResult() { return result; }
6662 @SuppressWarnings("unchecked") public final void compute() {
6663 final ToIntFunction<? super V> transformer;
6664 final IntBinaryOperator reducer;
6665 if ((transformer = this.transformer) != null &&
6666 (reducer = this.reducer) != null) {
6667 int r = this.basis;
6668 for (int b; (b = preSplit()) > 0;)
6669 (rights = new MapReduceValuesToIntTask<K,V>
6670 (map, this, b, rights, transformer, r, reducer)).fork();
6671 V v;
6672 while ((v = advance()) != null)
6673 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
6674 result = r;
6675 CountedCompleter<?> c;
6676 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6677 MapReduceValuesToIntTask<K,V>
6678 t = (MapReduceValuesToIntTask<K,V>)c,
6679 s = t.rights;
6680 while (s != null) {
6681 t.result = reducer.applyAsInt(t.result, s.result);
6682 s = t.rights = s.nextRight;
6683 }
6684 }
6685 }
6686 }
6687 }
6688
6689 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6690 extends Traverser<K,V,Integer> {
6691 final ToIntFunction<Map.Entry<K,V>> transformer;
6692 final IntBinaryOperator reducer;
6693 final int basis;
6694 int result;
6695 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6696 MapReduceEntriesToIntTask
6697 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6698 MapReduceEntriesToIntTask<K,V> nextRight,
6699 ToIntFunction<Map.Entry<K,V>> transformer,
6700 int basis,
6701 IntBinaryOperator reducer) {
6702 super(m, p, b); this.nextRight = nextRight;
6703 this.transformer = transformer;
6704 this.basis = basis; this.reducer = reducer;
6705 }
6706 public final Integer getRawResult() { return result; }
6707 @SuppressWarnings("unchecked") public final void compute() {
6708 final ToIntFunction<Map.Entry<K,V>> transformer;
6709 final IntBinaryOperator reducer;
6710 if ((transformer = this.transformer) != null &&
6711 (reducer = this.reducer) != null) {
6712 int r = this.basis;
6713 for (int b; (b = preSplit()) > 0;)
6714 (rights = new MapReduceEntriesToIntTask<K,V>
6715 (map, this, b, rights, transformer, r, reducer)).fork();
6716 V v;
6717 while ((v = advance()) != null)
6718 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(nextKey,
6719 v)));
6720 result = r;
6721 CountedCompleter<?> c;
6722 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6723 MapReduceEntriesToIntTask<K,V>
6724 t = (MapReduceEntriesToIntTask<K,V>)c,
6725 s = t.rights;
6726 while (s != null) {
6727 t.result = reducer.applyAsInt(t.result, s.result);
6728 s = t.rights = s.nextRight;
6729 }
6730 }
6731 }
6732 }
6733 }
6734
6735 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6736 extends Traverser<K,V,Integer> {
6737 final ToIntBiFunction<? super K, ? super V> transformer;
6738 final IntBinaryOperator reducer;
6739 final int basis;
6740 int result;
6741 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6742 MapReduceMappingsToIntTask
6743 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6744 MapReduceMappingsToIntTask<K,V> nextRight,
6745 ToIntBiFunction<? super K, ? super V> transformer,
6746 int basis,
6747 IntBinaryOperator reducer) {
6748 super(m, p, b); this.nextRight = nextRight;
6749 this.transformer = transformer;
6750 this.basis = basis; this.reducer = reducer;
6751 }
6752 public final Integer getRawResult() { return result; }
6753 @SuppressWarnings("unchecked") public final void compute() {
6754 final ToIntBiFunction<? super K, ? super V> transformer;
6755 final IntBinaryOperator reducer;
6756 if ((transformer = this.transformer) != null &&
6757 (reducer = this.reducer) != null) {
6758 int r = this.basis;
6759 for (int b; (b = preSplit()) > 0;)
6760 (rights = new MapReduceMappingsToIntTask<K,V>
6761 (map, this, b, rights, transformer, r, reducer)).fork();
6762 V v;
6763 while ((v = advance()) != null)
6764 r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey, v));
6765 result = r;
6766 CountedCompleter<?> c;
6767 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6768 MapReduceMappingsToIntTask<K,V>
6769 t = (MapReduceMappingsToIntTask<K,V>)c,
6770 s = t.rights;
6771 while (s != null) {
6772 t.result = reducer.applyAsInt(t.result, s.result);
6773 s = t.rights = s.nextRight;
6774 }
6775 }
6776 }
6777 }
6778 }
6779
6780 // Unsafe mechanics
6781 private static final sun.misc.Unsafe U;
6782 private static final long SIZECTL;
6783 private static final long TRANSFERINDEX;
6784 private static final long TRANSFERORIGIN;
6785 private static final long BASECOUNT;
6786 private static final long CELLSBUSY;
6787 private static final long CELLVALUE;
6788 private static final long ABASE;
6789 private static final int ASHIFT;
6790
6791 static {
6792 try {
6793 U = sun.misc.Unsafe.getUnsafe();
6794 Class<?> k = ConcurrentHashMap.class;
6795 SIZECTL = U.objectFieldOffset
6796 (k.getDeclaredField("sizeCtl"));
6797 TRANSFERINDEX = U.objectFieldOffset
6798 (k.getDeclaredField("transferIndex"));
6799 TRANSFERORIGIN = U.objectFieldOffset
6800 (k.getDeclaredField("transferOrigin"));
6801 BASECOUNT = U.objectFieldOffset
6802 (k.getDeclaredField("baseCount"));
6803 CELLSBUSY = U.objectFieldOffset
6804 (k.getDeclaredField("cellsBusy"));
6805 Class<?> ck = Cell.class;
6806 CELLVALUE = U.objectFieldOffset
6807 (ck.getDeclaredField("value"));
6808 Class<?> sc = Node[].class;
6809 ABASE = U.arrayBaseOffset(sc);
6810 int scale = U.arrayIndexScale(sc);
6811 if ((scale & (scale - 1)) != 0)
6812 throw new Error("data type scale not a power of two");
6813 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6814 } catch (Exception e) {
6815 throw new Error(e);
6816 }
6817 }
6818
6819 }