ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.199
Committed: Wed Mar 27 19:46:34 2013 UTC (11 years, 2 months ago) by dl
Branch: MAIN
Changes since 1.198: +3 -3 lines
Log Message:
conform to updated lambda Spliterator

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8 import java.util.concurrent.ForkJoinPool;
9 import java.util.concurrent.CountedCompleter;
10 import java.util.Spliterator;
11 import java.util.stream.Stream;
12 import java.util.stream.Streams;
13 import java.util.function.*;
14 import java.util.function.Consumer;
15 import java.util.function.Function;
16 import java.util.function.BiFunction;
17
18 import java.util.Comparator;
19 import java.util.Arrays;
20 import java.util.Map;
21 import java.util.Set;
22 import java.util.Collection;
23 import java.util.AbstractMap;
24 import java.util.AbstractSet;
25 import java.util.AbstractCollection;
26 import java.util.Hashtable;
27 import java.util.HashMap;
28 import java.util.Iterator;
29 import java.util.Enumeration;
30 import java.util.ConcurrentModificationException;
31 import java.util.NoSuchElementException;
32 import java.util.concurrent.ConcurrentMap;
33 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
34 import java.util.concurrent.atomic.AtomicInteger;
35 import java.util.concurrent.atomic.AtomicReference;
36 import java.io.Serializable;
37
38 /**
39 * A hash table supporting full concurrency of retrievals and
40 * high expected concurrency for updates. This class obeys the
41 * same functional specification as {@link java.util.Hashtable}, and
42 * includes versions of methods corresponding to each method of
43 * {@code Hashtable}. However, even though all operations are
44 * thread-safe, retrieval operations do <em>not</em> entail locking,
45 * and there is <em>not</em> any support for locking the entire table
46 * in a way that prevents all access. This class is fully
47 * interoperable with {@code Hashtable} in programs that rely on its
48 * thread safety but not on its synchronization details.
49 *
50 * <p>Retrieval operations (including {@code get}) generally do not
51 * block, so may overlap with update operations (including {@code put}
52 * and {@code remove}). Retrievals reflect the results of the most
53 * recently <em>completed</em> update operations holding upon their
54 * onset. (More formally, an update operation for a given key bears a
55 * <em>happens-before</em> relation with any (non-null) retrieval for
56 * that key reporting the updated value.) For aggregate operations
57 * such as {@code putAll} and {@code clear}, concurrent retrievals may
58 * reflect insertion or removal of only some entries. Similarly,
59 * Iterators and Enumerations return elements reflecting the state of
60 * the hash table at some point at or since the creation of the
61 * iterator/enumeration. They do <em>not</em> throw {@link
62 * ConcurrentModificationException}. However, iterators are designed
63 * to be used by only one thread at a time. Bear in mind that the
64 * results of aggregate status methods including {@code size}, {@code
65 * isEmpty}, and {@code containsValue} are typically useful only when
66 * a map is not undergoing concurrent updates in other threads.
67 * Otherwise the results of these methods reflect transient states
68 * that may be adequate for monitoring or estimation purposes, but not
69 * for program control.
70 *
71 * <p>The table is dynamically expanded when there are too many
72 * collisions (i.e., keys that have distinct hash codes but fall into
73 * the same slot modulo the table size), with the expected average
74 * effect of maintaining roughly two bins per mapping (corresponding
75 * to a 0.75 load factor threshold for resizing). There may be much
76 * variance around this average as mappings are added and removed, but
77 * overall, this maintains a commonly accepted time/space tradeoff for
78 * hash tables. However, resizing this or any other kind of hash
79 * table may be a relatively slow operation. When possible, it is a
80 * good idea to provide a size estimate as an optional {@code
81 * initialCapacity} constructor argument. An additional optional
82 * {@code loadFactor} constructor argument provides a further means of
83 * customizing initial table capacity by specifying the table density
84 * to be used in calculating the amount of space to allocate for the
85 * given number of elements. Also, for compatibility with previous
86 * versions of this class, constructors may optionally specify an
87 * expected {@code concurrencyLevel} as an additional hint for
88 * internal sizing. Note that using many keys with exactly the same
89 * {@code hashCode()} is a sure way to slow down performance of any
90 * hash table.
91 *
92 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
93 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
94 * (using {@link #keySet(Object)} when only keys are of interest, and the
95 * mapped values are (perhaps transiently) not used or all take the
96 * same mapping value.
97 *
98 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
99 * form of histogram or multiset) by using {@link
100 * java.util.concurrent.atomic.LongAdder} values and initializing via
101 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
102 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
103 * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
104 *
105 * <p>This class and its views and iterators implement all of the
106 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
107 * interfaces.
108 *
109 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
110 * does <em>not</em> allow {@code null} to be used as a key or value.
111 *
112 * <p>ConcurrentHashMaps support sequential and parallel operations
113 * bulk operations. (Parallel forms use the {@link
114 * ForkJoinPool#commonPool()}). Tasks that may be used in other
115 * contexts are available in class {@link ForkJoinTasks}. These
116 * operations are designed to be safely, and often sensibly, applied
117 * even with maps that are being concurrently updated by other
118 * threads; for example, when computing a snapshot summary of the
119 * values in a shared registry. There are three kinds of operation,
120 * each with four forms, accepting functions with Keys, Values,
121 * Entries, and (Key, Value) arguments and/or return values. Because
122 * the elements of a ConcurrentHashMap are not ordered in any
123 * particular way, and may be processed in different orders in
124 * different parallel executions, the correctness of supplied
125 * functions should not depend on any ordering, or on any other
126 * objects or values that may transiently change while computation is
127 * in progress; and except for forEach actions, should ideally be
128 * side-effect-free.
129 *
130 * <ul>
131 * <li> forEach: Perform a given action on each element.
132 * A variant form applies a given transformation on each element
133 * before performing the action.</li>
134 *
135 * <li> search: Return the first available non-null result of
136 * applying a given function on each element; skipping further
137 * search when a result is found.</li>
138 *
139 * <li> reduce: Accumulate each element. The supplied reduction
140 * function cannot rely on ordering (more formally, it should be
141 * both associative and commutative). There are five variants:
142 *
143 * <ul>
144 *
145 * <li> Plain reductions. (There is not a form of this method for
146 * (key, value) function arguments since there is no corresponding
147 * return type.)</li>
148 *
149 * <li> Mapped reductions that accumulate the results of a given
150 * function applied to each element.</li>
151 *
152 * <li> Reductions to scalar doubles, longs, and ints, using a
153 * given basis value.</li>
154 *
155 * </ul>
156 * </li>
157 * </ul>
158 *
159 * <p>The concurrency properties of bulk operations follow
160 * from those of ConcurrentHashMap: Any non-null result returned
161 * from {@code get(key)} and related access methods bears a
162 * happens-before relation with the associated insertion or
163 * update. The result of any bulk operation reflects the
164 * composition of these per-element relations (but is not
165 * necessarily atomic with respect to the map as a whole unless it
166 * is somehow known to be quiescent). Conversely, because keys
167 * and values in the map are never null, null serves as a reliable
168 * atomic indicator of the current lack of any result. To
169 * maintain this property, null serves as an implicit basis for
170 * all non-scalar reduction operations. For the double, long, and
171 * int versions, the basis should be one that, when combined with
172 * any other value, returns that other value (more formally, it
173 * should be the identity element for the reduction). Most common
174 * reductions have these properties; for example, computing a sum
175 * with basis 0 or a minimum with basis MAX_VALUE.
176 *
177 * <p>Search and transformation functions provided as arguments
178 * should similarly return null to indicate the lack of any result
179 * (in which case it is not used). In the case of mapped
180 * reductions, this also enables transformations to serve as
181 * filters, returning null (or, in the case of primitive
182 * specializations, the identity basis) if the element should not
183 * be combined. You can create compound transformations and
184 * filterings by composing them yourself under this "null means
185 * there is nothing there now" rule before using them in search or
186 * reduce operations.
187 *
188 * <p>Methods accepting and/or returning Entry arguments maintain
189 * key-value associations. They may be useful for example when
190 * finding the key for the greatest value. Note that "plain" Entry
191 * arguments can be supplied using {@code new
192 * AbstractMap.SimpleEntry(k,v)}.
193 *
194 * <p>Bulk operations may complete abruptly, throwing an
195 * exception encountered in the application of a supplied
196 * function. Bear in mind when handling such exceptions that other
197 * concurrently executing functions could also have thrown
198 * exceptions, or would have done so if the first exception had
199 * not occurred.
200 *
201 * <p>Speedups for parallel compared to sequential forms are common
202 * but not guaranteed. Parallel operations involving brief functions
203 * on small maps may execute more slowly than sequential forms if the
204 * underlying work to parallelize the computation is more expensive
205 * than the computation itself. Similarly, parallelization may not
206 * lead to much actual parallelism if all processors are busy
207 * performing unrelated tasks.
208 *
209 * <p>All arguments to all task methods must be non-null.
210 *
211 * <p>This class is a member of the
212 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
213 * Java Collections Framework</a>.
214 *
215 * @since 1.5
216 * @author Doug Lea
217 * @param <K> the type of keys maintained by this map
218 * @param <V> the type of mapped values
219 */
220 public class ConcurrentHashMap<K,V>
221 implements ConcurrentMap<K,V>, Serializable {
222 private static final long serialVersionUID = 7249069246763182397L;
223
224 /*
225 * Overview:
226 *
227 * The primary design goal of this hash table is to maintain
228 * concurrent readability (typically method get(), but also
229 * iterators and related methods) while minimizing update
230 * contention. Secondary goals are to keep space consumption about
231 * the same or better than java.util.HashMap, and to support high
232 * initial insertion rates on an empty table by many threads.
233 *
234 * Each key-value mapping is held in a Node. Because Node key
235 * fields can contain special values, they are defined using plain
236 * Object types (not type "K"). This leads to a lot of explicit
237 * casting (and many explicit warning suppressions to tell
238 * compilers not to complain about it). It also allows some of the
239 * public methods to be factored into a smaller number of internal
240 * methods (although sadly not so for the five variants of
241 * put-related operations). The validation-based approach
242 * explained below leads to a lot of code sprawl because
243 * retry-control precludes factoring into smaller methods.
244 *
245 * The table is lazily initialized to a power-of-two size upon the
246 * first insertion. Each bin in the table normally contains a
247 * list of Nodes (most often, the list has only zero or one Node).
248 * Table accesses require volatile/atomic reads, writes, and
249 * CASes. Because there is no other way to arrange this without
250 * adding further indirections, we use intrinsics
251 * (sun.misc.Unsafe) operations. The lists of nodes within bins
252 * are always accurately traversable under volatile reads, so long
253 * as lookups check hash code and non-nullness of value before
254 * checking key equality.
255 *
256 * We use the top (sign) bit of Node hash fields for control
257 * purposes -- it is available anyway because of addressing
258 * constraints. Nodes with negative hash fields are forwarding
259 * nodes to either TreeBins or resized tables. The lower 31 bits
260 * of each normal Node's hash field contain a transformation of
261 * the key's hash code.
262 *
263 * Insertion (via put or its variants) of the first node in an
264 * empty bin is performed by just CASing it to the bin. This is
265 * by far the most common case for put operations under most
266 * key/hash distributions. Other update operations (insert,
267 * delete, and replace) require locks. We do not want to waste
268 * the space required to associate a distinct lock object with
269 * each bin, so instead use the first node of a bin list itself as
270 * a lock. Locking support for these locks relies on builtin
271 * "synchronized" monitors.
272 *
273 * Using the first node of a list as a lock does not by itself
274 * suffice though: When a node is locked, any update must first
275 * validate that it is still the first node after locking it, and
276 * retry if not. Because new nodes are always appended to lists,
277 * once a node is first in a bin, it remains first until deleted
278 * or the bin becomes invalidated (upon resizing). However,
279 * operations that only conditionally update may inspect nodes
280 * until the point of update. This is a converse of sorts to the
281 * lazy locking technique described by Herlihy & Shavit.
282 *
283 * The main disadvantage of per-bin locks is that other update
284 * operations on other nodes in a bin list protected by the same
285 * lock can stall, for example when user equals() or mapping
286 * functions take a long time. However, statistically, under
287 * random hash codes, this is not a common problem. Ideally, the
288 * frequency of nodes in bins follows a Poisson distribution
289 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
290 * parameter of about 0.5 on average, given the resizing threshold
291 * of 0.75, although with a large variance because of resizing
292 * granularity. Ignoring variance, the expected occurrences of
293 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
294 * first values are:
295 *
296 * 0: 0.60653066
297 * 1: 0.30326533
298 * 2: 0.07581633
299 * 3: 0.01263606
300 * 4: 0.00157952
301 * 5: 0.00015795
302 * 6: 0.00001316
303 * 7: 0.00000094
304 * 8: 0.00000006
305 * more: less than 1 in ten million
306 *
307 * Lock contention probability for two threads accessing distinct
308 * elements is roughly 1 / (8 * #elements) under random hashes.
309 *
310 * Actual hash code distributions encountered in practice
311 * sometimes deviate significantly from uniform randomness. This
312 * includes the case when N > (1<<30), so some keys MUST collide.
313 * Similarly for dumb or hostile usages in which multiple keys are
314 * designed to have identical hash codes. Also, although we guard
315 * against the worst effects of this (see method spread), sets of
316 * hashes may differ only in bits that do not impact their bin
317 * index for a given power-of-two mask. So we use a secondary
318 * strategy that applies when the number of nodes in a bin exceeds
319 * a threshold, and at least one of the keys implements
320 * Comparable. These TreeBins use a balanced tree to hold nodes
321 * (a specialized form of red-black trees), bounding search time
322 * to O(log N). Each search step in a TreeBin is around twice as
323 * slow as in a regular list, but given that N cannot exceed
324 * (1<<64) (before running out of addresses) this bounds search
325 * steps, lock hold times, etc, to reasonable constants (roughly
326 * 100 nodes inspected per operation worst case) so long as keys
327 * are Comparable (which is very common -- String, Long, etc).
328 * TreeBin nodes (TreeNodes) also maintain the same "next"
329 * traversal pointers as regular nodes, so can be traversed in
330 * iterators in the same way.
331 *
332 * The table is resized when occupancy exceeds a percentage
333 * threshold (nominally, 0.75, but see below). Any thread
334 * noticing an overfull bin may assist in resizing after the
335 * initiating thread allocates and sets up the replacement
336 * array. However, rather than stalling, these other threads may
337 * proceed with insertions etc. The use of TreeBins shields us
338 * from the worst case effects of overfilling while resizes are in
339 * progress. Resizing proceeds by transferring bins, one by one,
340 * from the table to the next table. To enable concurrency, the
341 * next table must be (incrementally) prefilled with place-holders
342 * serving as reverse forwarders to the old table. Because we are
343 * using power-of-two expansion, the elements from each bin must
344 * either stay at same index, or move with a power of two
345 * offset. We eliminate unnecessary node creation by catching
346 * cases where old nodes can be reused because their next fields
347 * won't change. On average, only about one-sixth of them need
348 * cloning when a table doubles. The nodes they replace will be
349 * garbage collectable as soon as they are no longer referenced by
350 * any reader thread that may be in the midst of concurrently
351 * traversing table. Upon transfer, the old table bin contains
352 * only a special forwarding node (with hash field "MOVED") that
353 * contains the next table as its key. On encountering a
354 * forwarding node, access and update operations restart, using
355 * the new table.
356 *
357 * Each bin transfer requires its bin lock, which can stall
358 * waiting for locks while resizing. However, because other
359 * threads can join in and help resize rather than contend for
360 * locks, average aggregate waits become shorter as resizing
361 * progresses. The transfer operation must also ensure that all
362 * accessible bins in both the old and new table are usable by any
363 * traversal. This is arranged by proceeding from the last bin
364 * (table.length - 1) up towards the first. Upon seeing a
365 * forwarding node, traversals (see class Traverser) arrange to
366 * move to the new table without revisiting nodes. However, to
367 * ensure that no intervening nodes are skipped, bin splitting can
368 * only begin after the associated reverse-forwarders are in
369 * place.
370 *
371 * The traversal scheme also applies to partial traversals of
372 * ranges of bins (via an alternate Traverser constructor)
373 * to support partitioned aggregate operations. Also, read-only
374 * operations give up if ever forwarded to a null table, which
375 * provides support for shutdown-style clearing, which is also not
376 * currently implemented.
377 *
378 * Lazy table initialization minimizes footprint until first use,
379 * and also avoids resizings when the first operation is from a
380 * putAll, constructor with map argument, or deserialization.
381 * These cases attempt to override the initial capacity settings,
382 * but harmlessly fail to take effect in cases of races.
383 *
384 * The element count is maintained using a specialization of
385 * LongAdder. We need to incorporate a specialization rather than
386 * just use a LongAdder in order to access implicit
387 * contention-sensing that leads to creation of multiple
388 * Cells. The counter mechanics avoid contention on
389 * updates but can encounter cache thrashing if read too
390 * frequently during concurrent access. To avoid reading so often,
391 * resizing under contention is attempted only upon adding to a
392 * bin already holding two or more nodes. Under uniform hash
393 * distributions, the probability of this occurring at threshold
394 * is around 13%, meaning that only about 1 in 8 puts check
395 * threshold (and after resizing, many fewer do so). The bulk
396 * putAll operation further reduces contention by only committing
397 * count updates upon these size checks.
398 *
399 * Maintaining API and serialization compatibility with previous
400 * versions of this class introduces several oddities. Mainly: We
401 * leave untouched but unused constructor arguments refering to
402 * concurrencyLevel. We accept a loadFactor constructor argument,
403 * but apply it only to initial table capacity (which is the only
404 * time that we can guarantee to honor it.) We also declare an
405 * unused "Segment" class that is instantiated in minimal form
406 * only when serializing.
407 */
408
409 /* ---------------- Constants -------------- */
410
411 /**
412 * The largest possible table capacity. This value must be
413 * exactly 1<<30 to stay within Java array allocation and indexing
414 * bounds for power of two table sizes, and is further required
415 * because the top two bits of 32bit hash fields are used for
416 * control purposes.
417 */
418 private static final int MAXIMUM_CAPACITY = 1 << 30;
419
420 /**
421 * The default initial table capacity. Must be a power of 2
422 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
423 */
424 private static final int DEFAULT_CAPACITY = 16;
425
426 /**
427 * The largest possible (non-power of two) array size.
428 * Needed by toArray and related methods.
429 */
430 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
431
432 /**
433 * The default concurrency level for this table. Unused but
434 * defined for compatibility with previous versions of this class.
435 */
436 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
437
438 /**
439 * The load factor for this table. Overrides of this value in
440 * constructors affect only the initial table capacity. The
441 * actual floating point value isn't normally used -- it is
442 * simpler to use expressions such as {@code n - (n >>> 2)} for
443 * the associated resizing threshold.
444 */
445 private static final float LOAD_FACTOR = 0.75f;
446
447 /**
448 * The bin count threshold for using a tree rather than list for a
449 * bin. The value reflects the approximate break-even point for
450 * using tree-based operations.
451 */
452 private static final int TREE_THRESHOLD = 8;
453
454 /**
455 * Minimum number of rebinnings per transfer step. Ranges are
456 * subdivided to allow multiple resizer threads. This value
457 * serves as a lower bound to avoid resizers encountering
458 * excessive memory contention. The value should be at least
459 * DEFAULT_CAPACITY.
460 */
461 private static final int MIN_TRANSFER_STRIDE = 16;
462
463 /*
464 * Encodings for Node hash fields. See above for explanation.
465 */
466 static final int MOVED = 0x80000000; // hash field for forwarding nodes
467 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
468
469 /** Number of CPUS, to place bounds on some sizings */
470 static final int NCPU = Runtime.getRuntime().availableProcessors();
471
472 /* ---------------- Counters -------------- */
473
474 // Adapted from LongAdder and Striped64.
475 // See their internal docs for explanation.
476
477 // A padded cell for distributing counts
478 static final class Cell {
479 volatile long p0, p1, p2, p3, p4, p5, p6;
480 volatile long value;
481 volatile long q0, q1, q2, q3, q4, q5, q6;
482 Cell(long x) { value = x; }
483 }
484
485 /* ---------------- Fields -------------- */
486
487 /**
488 * The array of bins. Lazily initialized upon first insertion.
489 * Size is always a power of two. Accessed directly by iterators.
490 */
491 transient volatile Node<V>[] table;
492
493 /**
494 * The next table to use; non-null only while resizing.
495 */
496 private transient volatile Node<V>[] nextTable;
497
498 /**
499 * Base counter value, used mainly when there is no contention,
500 * but also as a fallback during table initialization
501 * races. Updated via CAS.
502 */
503 private transient volatile long baseCount;
504
505 /**
506 * Table initialization and resizing control. When negative, the
507 * table is being initialized or resized: -1 for initialization,
508 * else -(1 + the number of active resizing threads). Otherwise,
509 * when table is null, holds the initial table size to use upon
510 * creation, or 0 for default. After initialization, holds the
511 * next element count value upon which to resize the table.
512 */
513 private transient volatile int sizeCtl;
514
515 /**
516 * The next table index (plus one) to split while resizing.
517 */
518 private transient volatile int transferIndex;
519
520 /**
521 * The least available table index to split while resizing.
522 */
523 private transient volatile int transferOrigin;
524
525 /**
526 * Spinlock (locked via CAS) used when resizing and/or creating Cells.
527 */
528 private transient volatile int cellsBusy;
529
530 /**
531 * Table of counter cells. When non-null, size is a power of 2.
532 */
533 private transient volatile Cell[] counterCells;
534
535 // views
536 private transient KeySetView<K,V> keySet;
537 private transient ValuesView<K,V> values;
538 private transient EntrySetView<K,V> entrySet;
539
540 /** For serialization compatibility. Null unless serialized; see below */
541 private Segment<K,V>[] segments;
542
543 /* ---------------- Table element access -------------- */
544
545 /*
546 * Volatile access methods are used for table elements as well as
547 * elements of in-progress next table while resizing. Uses are
548 * null checked by callers, and implicitly bounds-checked, relying
549 * on the invariants that tab arrays have non-zero size, and all
550 * indices are masked with (tab.length - 1) which is never
551 * negative and always less than length. Note that, to be correct
552 * wrt arbitrary concurrency errors by users, bounds checks must
553 * operate on local variables, which accounts for some odd-looking
554 * inline assignments below.
555 */
556
557 @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
558 (Node<V>[] tab, int i) { // used by Traverser
559 return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
560 }
561
562 private static final <V> boolean casTabAt
563 (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
564 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
565 }
566
567 private static final <V> void setTabAt
568 (Node<V>[] tab, int i, Node<V> v) {
569 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
570 }
571
572 /* ---------------- Nodes -------------- */
573
574 /**
575 * Key-value entry. Note that this is never exported out as a
576 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
577 * field of MOVED are special, and do not contain user keys or
578 * values. Otherwise, keys are never null, and null val fields
579 * indicate that a node is in the process of being deleted or
580 * created. For purposes of read-only access, a key may be read
581 * before a val, but can only be used after checking val to be
582 * non-null.
583 */
584 static class Node<V> {
585 final int hash;
586 final Object key;
587 volatile V val;
588 volatile Node<V> next;
589
590 Node(int hash, Object key, V val, Node<V> next) {
591 this.hash = hash;
592 this.key = key;
593 this.val = val;
594 this.next = next;
595 }
596 }
597
598 /* ---------------- TreeBins -------------- */
599
600 /**
601 * Nodes for use in TreeBins
602 */
603 static final class TreeNode<V> extends Node<V> {
604 TreeNode<V> parent; // red-black tree links
605 TreeNode<V> left;
606 TreeNode<V> right;
607 TreeNode<V> prev; // needed to unlink next upon deletion
608 boolean red;
609
610 TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
611 super(hash, key, val, next);
612 this.parent = parent;
613 }
614 }
615
616 /**
617 * A specialized form of red-black tree for use in bins
618 * whose size exceeds a threshold.
619 *
620 * TreeBins use a special form of comparison for search and
621 * related operations (which is the main reason we cannot use
622 * existing collections such as TreeMaps). TreeBins contain
623 * Comparable elements, but may contain others, as well as
624 * elements that are Comparable but not necessarily Comparable<T>
625 * for the same T, so we cannot invoke compareTo among them. To
626 * handle this, the tree is ordered primarily by hash value, then
627 * by getClass().getName() order, and then by Comparator order
628 * among elements of the same class. On lookup at a node, if
629 * elements are not comparable or compare as 0, both left and
630 * right children may need to be searched in the case of tied hash
631 * values. (This corresponds to the full list search that would be
632 * necessary if all elements were non-Comparable and had tied
633 * hashes.) The red-black balancing code is updated from
634 * pre-jdk-collections
635 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
636 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
637 * Algorithms" (CLR).
638 *
639 * TreeBins also maintain a separate locking discipline than
640 * regular bins. Because they are forwarded via special MOVED
641 * nodes at bin heads (which can never change once established),
642 * we cannot use those nodes as locks. Instead, TreeBin
643 * extends AbstractQueuedSynchronizer to support a simple form of
644 * read-write lock. For update operations and table validation,
645 * the exclusive form of lock behaves in the same way as bin-head
646 * locks. However, lookups use shared read-lock mechanics to allow
647 * multiple readers in the absence of writers. Additionally,
648 * these lookups do not ever block: While the lock is not
649 * available, they proceed along the slow traversal path (via
650 * next-pointers) until the lock becomes available or the list is
651 * exhausted, whichever comes first. (These cases are not fast,
652 * but maximize aggregate expected throughput.) The AQS mechanics
653 * for doing this are straightforward. The lock state is held as
654 * AQS getState(). Read counts are negative; the write count (1)
655 * is positive. There are no signalling preferences among readers
656 * and writers. Since we don't need to export full Lock API, we
657 * just override the minimal AQS methods and use them directly.
658 */
659 static final class TreeBin<V> extends AbstractQueuedSynchronizer {
660 private static final long serialVersionUID = 2249069246763182397L;
661 transient TreeNode<V> root; // root of tree
662 transient TreeNode<V> first; // head of next-pointer list
663
664 /* AQS overrides */
665 public final boolean isHeldExclusively() { return getState() > 0; }
666 public final boolean tryAcquire(int ignore) {
667 if (compareAndSetState(0, 1)) {
668 setExclusiveOwnerThread(Thread.currentThread());
669 return true;
670 }
671 return false;
672 }
673 public final boolean tryRelease(int ignore) {
674 setExclusiveOwnerThread(null);
675 setState(0);
676 return true;
677 }
678 public final int tryAcquireShared(int ignore) {
679 for (int c;;) {
680 if ((c = getState()) > 0)
681 return -1;
682 if (compareAndSetState(c, c -1))
683 return 1;
684 }
685 }
686 public final boolean tryReleaseShared(int ignore) {
687 int c;
688 do {} while (!compareAndSetState(c = getState(), c + 1));
689 return c == -1;
690 }
691
692 /** From CLR */
693 private void rotateLeft(TreeNode<V> p) {
694 if (p != null) {
695 TreeNode<V> r = p.right, pp, rl;
696 if ((rl = p.right = r.left) != null)
697 rl.parent = p;
698 if ((pp = r.parent = p.parent) == null)
699 root = r;
700 else if (pp.left == p)
701 pp.left = r;
702 else
703 pp.right = r;
704 r.left = p;
705 p.parent = r;
706 }
707 }
708
709 /** From CLR */
710 private void rotateRight(TreeNode<V> p) {
711 if (p != null) {
712 TreeNode<V> l = p.left, pp, lr;
713 if ((lr = p.left = l.right) != null)
714 lr.parent = p;
715 if ((pp = l.parent = p.parent) == null)
716 root = l;
717 else if (pp.right == p)
718 pp.right = l;
719 else
720 pp.left = l;
721 l.right = p;
722 p.parent = l;
723 }
724 }
725
726 /**
727 * Returns the TreeNode (or null if not found) for the given key
728 * starting at given root.
729 */
730 @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
731 (int h, Object k, TreeNode<V> p) {
732 Class<?> c = k.getClass();
733 while (p != null) {
734 int dir, ph; Object pk; Class<?> pc;
735 if ((ph = p.hash) == h) {
736 if ((pk = p.key) == k || k.equals(pk))
737 return p;
738 if (c != (pc = pk.getClass()) ||
739 !(k instanceof Comparable) ||
740 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
741 if ((dir = (c == pc) ? 0 :
742 c.getName().compareTo(pc.getName())) == 0) {
743 TreeNode<V> r = null, pl, pr; // check both sides
744 if ((pr = p.right) != null && h >= pr.hash &&
745 (r = getTreeNode(h, k, pr)) != null)
746 return r;
747 else if ((pl = p.left) != null && h <= pl.hash)
748 dir = -1;
749 else // nothing there
750 return null;
751 }
752 }
753 }
754 else
755 dir = (h < ph) ? -1 : 1;
756 p = (dir > 0) ? p.right : p.left;
757 }
758 return null;
759 }
760
761 /**
762 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
763 * read-lock to call getTreeNode, but during failure to get
764 * lock, searches along next links.
765 */
766 final V getValue(int h, Object k) {
767 Node<V> r = null;
768 int c = getState(); // Must read lock state first
769 for (Node<V> e = first; e != null; e = e.next) {
770 if (c <= 0 && compareAndSetState(c, c - 1)) {
771 try {
772 r = getTreeNode(h, k, root);
773 } finally {
774 releaseShared(0);
775 }
776 break;
777 }
778 else if (e.hash == h && k.equals(e.key)) {
779 r = e;
780 break;
781 }
782 else
783 c = getState();
784 }
785 return r == null ? null : r.val;
786 }
787
788 /**
789 * Finds or adds a node.
790 * @return null if added
791 */
792 @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
793 (int h, Object k, V v) {
794 Class<?> c = k.getClass();
795 TreeNode<V> pp = root, p = null;
796 int dir = 0;
797 while (pp != null) { // find existing node or leaf to insert at
798 int ph; Object pk; Class<?> pc;
799 p = pp;
800 if ((ph = p.hash) == h) {
801 if ((pk = p.key) == k || k.equals(pk))
802 return p;
803 if (c != (pc = pk.getClass()) ||
804 !(k instanceof Comparable) ||
805 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
806 TreeNode<V> s = null, r = null, pr;
807 if ((dir = (c == pc) ? 0 :
808 c.getName().compareTo(pc.getName())) == 0) {
809 if ((pr = p.right) != null && h >= pr.hash &&
810 (r = getTreeNode(h, k, pr)) != null)
811 return r;
812 else // continue left
813 dir = -1;
814 }
815 else if ((pr = p.right) != null && h >= pr.hash)
816 s = pr;
817 if (s != null && (r = getTreeNode(h, k, s)) != null)
818 return r;
819 }
820 }
821 else
822 dir = (h < ph) ? -1 : 1;
823 pp = (dir > 0) ? p.right : p.left;
824 }
825
826 TreeNode<V> f = first;
827 TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
828 if (p == null)
829 root = x;
830 else { // attach and rebalance; adapted from CLR
831 TreeNode<V> xp, xpp;
832 if (f != null)
833 f.prev = x;
834 if (dir <= 0)
835 p.left = x;
836 else
837 p.right = x;
838 x.red = true;
839 while (x != null && (xp = x.parent) != null && xp.red &&
840 (xpp = xp.parent) != null) {
841 TreeNode<V> xppl = xpp.left;
842 if (xp == xppl) {
843 TreeNode<V> y = xpp.right;
844 if (y != null && y.red) {
845 y.red = false;
846 xp.red = false;
847 xpp.red = true;
848 x = xpp;
849 }
850 else {
851 if (x == xp.right) {
852 rotateLeft(x = xp);
853 xpp = (xp = x.parent) == null ? null : xp.parent;
854 }
855 if (xp != null) {
856 xp.red = false;
857 if (xpp != null) {
858 xpp.red = true;
859 rotateRight(xpp);
860 }
861 }
862 }
863 }
864 else {
865 TreeNode<V> y = xppl;
866 if (y != null && y.red) {
867 y.red = false;
868 xp.red = false;
869 xpp.red = true;
870 x = xpp;
871 }
872 else {
873 if (x == xp.left) {
874 rotateRight(x = xp);
875 xpp = (xp = x.parent) == null ? null : xp.parent;
876 }
877 if (xp != null) {
878 xp.red = false;
879 if (xpp != null) {
880 xpp.red = true;
881 rotateLeft(xpp);
882 }
883 }
884 }
885 }
886 }
887 TreeNode<V> r = root;
888 if (r != null && r.red)
889 r.red = false;
890 }
891 return null;
892 }
893
894 /**
895 * Removes the given node, that must be present before this
896 * call. This is messier than typical red-black deletion code
897 * because we cannot swap the contents of an interior node
898 * with a leaf successor that is pinned by "next" pointers
899 * that are accessible independently of lock. So instead we
900 * swap the tree linkages.
901 */
902 final void deleteTreeNode(TreeNode<V> p) {
903 TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
904 TreeNode<V> pred = p.prev;
905 if (pred == null)
906 first = next;
907 else
908 pred.next = next;
909 if (next != null)
910 next.prev = pred;
911 TreeNode<V> replacement;
912 TreeNode<V> pl = p.left;
913 TreeNode<V> pr = p.right;
914 if (pl != null && pr != null) {
915 TreeNode<V> s = pr, sl;
916 while ((sl = s.left) != null) // find successor
917 s = sl;
918 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
919 TreeNode<V> sr = s.right;
920 TreeNode<V> pp = p.parent;
921 if (s == pr) { // p was s's direct parent
922 p.parent = s;
923 s.right = p;
924 }
925 else {
926 TreeNode<V> sp = s.parent;
927 if ((p.parent = sp) != null) {
928 if (s == sp.left)
929 sp.left = p;
930 else
931 sp.right = p;
932 }
933 if ((s.right = pr) != null)
934 pr.parent = s;
935 }
936 p.left = null;
937 if ((p.right = sr) != null)
938 sr.parent = p;
939 if ((s.left = pl) != null)
940 pl.parent = s;
941 if ((s.parent = pp) == null)
942 root = s;
943 else if (p == pp.left)
944 pp.left = s;
945 else
946 pp.right = s;
947 replacement = sr;
948 }
949 else
950 replacement = (pl != null) ? pl : pr;
951 TreeNode<V> pp = p.parent;
952 if (replacement == null) {
953 if (pp == null) {
954 root = null;
955 return;
956 }
957 replacement = p;
958 }
959 else {
960 replacement.parent = pp;
961 if (pp == null)
962 root = replacement;
963 else if (p == pp.left)
964 pp.left = replacement;
965 else
966 pp.right = replacement;
967 p.left = p.right = p.parent = null;
968 }
969 if (!p.red) { // rebalance, from CLR
970 TreeNode<V> x = replacement;
971 while (x != null) {
972 TreeNode<V> xp, xpl;
973 if (x.red || (xp = x.parent) == null) {
974 x.red = false;
975 break;
976 }
977 if (x == (xpl = xp.left)) {
978 TreeNode<V> sib = xp.right;
979 if (sib != null && sib.red) {
980 sib.red = false;
981 xp.red = true;
982 rotateLeft(xp);
983 sib = (xp = x.parent) == null ? null : xp.right;
984 }
985 if (sib == null)
986 x = xp;
987 else {
988 TreeNode<V> sl = sib.left, sr = sib.right;
989 if ((sr == null || !sr.red) &&
990 (sl == null || !sl.red)) {
991 sib.red = true;
992 x = xp;
993 }
994 else {
995 if (sr == null || !sr.red) {
996 if (sl != null)
997 sl.red = false;
998 sib.red = true;
999 rotateRight(sib);
1000 sib = (xp = x.parent) == null ?
1001 null : xp.right;
1002 }
1003 if (sib != null) {
1004 sib.red = (xp == null) ? false : xp.red;
1005 if ((sr = sib.right) != null)
1006 sr.red = false;
1007 }
1008 if (xp != null) {
1009 xp.red = false;
1010 rotateLeft(xp);
1011 }
1012 x = root;
1013 }
1014 }
1015 }
1016 else { // symmetric
1017 TreeNode<V> sib = xpl;
1018 if (sib != null && sib.red) {
1019 sib.red = false;
1020 xp.red = true;
1021 rotateRight(xp);
1022 sib = (xp = x.parent) == null ? null : xp.left;
1023 }
1024 if (sib == null)
1025 x = xp;
1026 else {
1027 TreeNode<V> sl = sib.left, sr = sib.right;
1028 if ((sl == null || !sl.red) &&
1029 (sr == null || !sr.red)) {
1030 sib.red = true;
1031 x = xp;
1032 }
1033 else {
1034 if (sl == null || !sl.red) {
1035 if (sr != null)
1036 sr.red = false;
1037 sib.red = true;
1038 rotateLeft(sib);
1039 sib = (xp = x.parent) == null ?
1040 null : xp.left;
1041 }
1042 if (sib != null) {
1043 sib.red = (xp == null) ? false : xp.red;
1044 if ((sl = sib.left) != null)
1045 sl.red = false;
1046 }
1047 if (xp != null) {
1048 xp.red = false;
1049 rotateRight(xp);
1050 }
1051 x = root;
1052 }
1053 }
1054 }
1055 }
1056 }
1057 if (p == replacement && (pp = p.parent) != null) {
1058 if (p == pp.left) // detach pointers
1059 pp.left = null;
1060 else if (p == pp.right)
1061 pp.right = null;
1062 p.parent = null;
1063 }
1064 }
1065 }
1066
1067 /* ---------------- Collision reduction methods -------------- */
1068
1069 /**
1070 * Spreads higher bits to lower, and also forces top bit to 0.
1071 * Because the table uses power-of-two masking, sets of hashes
1072 * that vary only in bits above the current mask will always
1073 * collide. (Among known examples are sets of Float keys holding
1074 * consecutive whole numbers in small tables.) To counter this,
1075 * we apply a transform that spreads the impact of higher bits
1076 * downward. There is a tradeoff between speed, utility, and
1077 * quality of bit-spreading. Because many common sets of hashes
1078 * are already reasonably distributed across bits (so don't benefit
1079 * from spreading), and because we use trees to handle large sets
1080 * of collisions in bins, we don't need excessively high quality.
1081 */
1082 private static final int spread(int h) {
1083 h ^= (h >>> 18) ^ (h >>> 12);
1084 return (h ^ (h >>> 10)) & HASH_BITS;
1085 }
1086
1087 /**
1088 * Replaces a list bin with a tree bin if key is comparable. Call
1089 * only when locked.
1090 */
1091 private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1092 if (key instanceof Comparable) {
1093 TreeBin<V> t = new TreeBin<V>();
1094 for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1095 t.putTreeNode(e.hash, e.key, e.val);
1096 setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1097 }
1098 }
1099
1100 /* ---------------- Internal access and update methods -------------- */
1101
1102 /** Implementation for get and containsKey */
1103 @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1104 int h = spread(k.hashCode());
1105 retry: for (Node<V>[] tab = table; tab != null;) {
1106 Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1107 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1108 if ((eh = e.hash) < 0) {
1109 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1110 return ((TreeBin<V>)ek).getValue(h, k);
1111 else { // restart with new table
1112 tab = (Node<V>[])ek;
1113 continue retry;
1114 }
1115 }
1116 else if (eh == h && (ev = e.val) != null &&
1117 ((ek = e.key) == k || k.equals(ek)))
1118 return ev;
1119 }
1120 break;
1121 }
1122 return null;
1123 }
1124
1125 /**
1126 * Implementation for the four public remove/replace methods:
1127 * Replaces node value with v, conditional upon match of cv if
1128 * non-null. If resulting value is null, delete.
1129 */
1130 @SuppressWarnings("unchecked") private final V internalReplace
1131 (Object k, V v, Object cv) {
1132 int h = spread(k.hashCode());
1133 V oldVal = null;
1134 for (Node<V>[] tab = table;;) {
1135 Node<V> f; int i, fh; Object fk;
1136 if (tab == null ||
1137 (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1138 break;
1139 else if ((fh = f.hash) < 0) {
1140 if ((fk = f.key) instanceof TreeBin) {
1141 TreeBin<V> t = (TreeBin<V>)fk;
1142 boolean validated = false;
1143 boolean deleted = false;
1144 t.acquire(0);
1145 try {
1146 if (tabAt(tab, i) == f) {
1147 validated = true;
1148 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1149 if (p != null) {
1150 V pv = p.val;
1151 if (cv == null || cv == pv || cv.equals(pv)) {
1152 oldVal = pv;
1153 if ((p.val = v) == null) {
1154 deleted = true;
1155 t.deleteTreeNode(p);
1156 }
1157 }
1158 }
1159 }
1160 } finally {
1161 t.release(0);
1162 }
1163 if (validated) {
1164 if (deleted)
1165 addCount(-1L, -1);
1166 break;
1167 }
1168 }
1169 else
1170 tab = (Node<V>[])fk;
1171 }
1172 else if (fh != h && f.next == null) // precheck
1173 break; // rules out possible existence
1174 else {
1175 boolean validated = false;
1176 boolean deleted = false;
1177 synchronized (f) {
1178 if (tabAt(tab, i) == f) {
1179 validated = true;
1180 for (Node<V> e = f, pred = null;;) {
1181 Object ek; V ev;
1182 if (e.hash == h &&
1183 ((ev = e.val) != null) &&
1184 ((ek = e.key) == k || k.equals(ek))) {
1185 if (cv == null || cv == ev || cv.equals(ev)) {
1186 oldVal = ev;
1187 if ((e.val = v) == null) {
1188 deleted = true;
1189 Node<V> en = e.next;
1190 if (pred != null)
1191 pred.next = en;
1192 else
1193 setTabAt(tab, i, en);
1194 }
1195 }
1196 break;
1197 }
1198 pred = e;
1199 if ((e = e.next) == null)
1200 break;
1201 }
1202 }
1203 }
1204 if (validated) {
1205 if (deleted)
1206 addCount(-1L, -1);
1207 break;
1208 }
1209 }
1210 }
1211 return oldVal;
1212 }
1213
1214 /*
1215 * Internal versions of insertion methods
1216 * All have the same basic structure as the first (internalPut):
1217 * 1. If table uninitialized, create
1218 * 2. If bin empty, try to CAS new node
1219 * 3. If bin stale, use new table
1220 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1221 * 5. Lock and validate; if valid, scan and add or update
1222 *
1223 * The putAll method differs mainly in attempting to pre-allocate
1224 * enough table space, and also more lazily performs count updates
1225 * and checks.
1226 *
1227 * Most of the function-accepting methods can't be factored nicely
1228 * because they require different functional forms, so instead
1229 * sprawl out similar mechanics.
1230 */
1231
1232 /** Implementation for put and putIfAbsent */
1233 @SuppressWarnings("unchecked") private final V internalPut
1234 (K k, V v, boolean onlyIfAbsent) {
1235 if (k == null || v == null) throw new NullPointerException();
1236 int h = spread(k.hashCode());
1237 int len = 0;
1238 for (Node<V>[] tab = table;;) {
1239 int i, fh; Node<V> f; Object fk; V fv;
1240 if (tab == null)
1241 tab = initTable();
1242 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1243 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1244 break; // no lock when adding to empty bin
1245 }
1246 else if ((fh = f.hash) < 0) {
1247 if ((fk = f.key) instanceof TreeBin) {
1248 TreeBin<V> t = (TreeBin<V>)fk;
1249 V oldVal = null;
1250 t.acquire(0);
1251 try {
1252 if (tabAt(tab, i) == f) {
1253 len = 2;
1254 TreeNode<V> p = t.putTreeNode(h, k, v);
1255 if (p != null) {
1256 oldVal = p.val;
1257 if (!onlyIfAbsent)
1258 p.val = v;
1259 }
1260 }
1261 } finally {
1262 t.release(0);
1263 }
1264 if (len != 0) {
1265 if (oldVal != null)
1266 return oldVal;
1267 break;
1268 }
1269 }
1270 else
1271 tab = (Node<V>[])fk;
1272 }
1273 else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1274 ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1275 return fv;
1276 else {
1277 V oldVal = null;
1278 synchronized (f) {
1279 if (tabAt(tab, i) == f) {
1280 len = 1;
1281 for (Node<V> e = f;; ++len) {
1282 Object ek; V ev;
1283 if (e.hash == h &&
1284 (ev = e.val) != null &&
1285 ((ek = e.key) == k || k.equals(ek))) {
1286 oldVal = ev;
1287 if (!onlyIfAbsent)
1288 e.val = v;
1289 break;
1290 }
1291 Node<V> last = e;
1292 if ((e = e.next) == null) {
1293 last.next = new Node<V>(h, k, v, null);
1294 if (len >= TREE_THRESHOLD)
1295 replaceWithTreeBin(tab, i, k);
1296 break;
1297 }
1298 }
1299 }
1300 }
1301 if (len != 0) {
1302 if (oldVal != null)
1303 return oldVal;
1304 break;
1305 }
1306 }
1307 }
1308 addCount(1L, len);
1309 return null;
1310 }
1311
1312 /** Implementation for computeIfAbsent */
1313 @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1314 (K k, Function<? super K, ? extends V> mf) {
1315 if (k == null || mf == null)
1316 throw new NullPointerException();
1317 int h = spread(k.hashCode());
1318 V val = null;
1319 int len = 0;
1320 for (Node<V>[] tab = table;;) {
1321 Node<V> f; int i; Object fk;
1322 if (tab == null)
1323 tab = initTable();
1324 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1325 Node<V> node = new Node<V>(h, k, null, null);
1326 synchronized (node) {
1327 if (casTabAt(tab, i, null, node)) {
1328 len = 1;
1329 try {
1330 if ((val = mf.apply(k)) != null)
1331 node.val = val;
1332 } finally {
1333 if (val == null)
1334 setTabAt(tab, i, null);
1335 }
1336 }
1337 }
1338 if (len != 0)
1339 break;
1340 }
1341 else if (f.hash < 0) {
1342 if ((fk = f.key) instanceof TreeBin) {
1343 TreeBin<V> t = (TreeBin<V>)fk;
1344 boolean added = false;
1345 t.acquire(0);
1346 try {
1347 if (tabAt(tab, i) == f) {
1348 len = 1;
1349 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1350 if (p != null)
1351 val = p.val;
1352 else if ((val = mf.apply(k)) != null) {
1353 added = true;
1354 len = 2;
1355 t.putTreeNode(h, k, val);
1356 }
1357 }
1358 } finally {
1359 t.release(0);
1360 }
1361 if (len != 0) {
1362 if (!added)
1363 return val;
1364 break;
1365 }
1366 }
1367 else
1368 tab = (Node<V>[])fk;
1369 }
1370 else {
1371 for (Node<V> e = f; e != null; e = e.next) { // prescan
1372 Object ek; V ev;
1373 if (e.hash == h && (ev = e.val) != null &&
1374 ((ek = e.key) == k || k.equals(ek)))
1375 return ev;
1376 }
1377 boolean added = false;
1378 synchronized (f) {
1379 if (tabAt(tab, i) == f) {
1380 len = 1;
1381 for (Node<V> e = f;; ++len) {
1382 Object ek; V ev;
1383 if (e.hash == h &&
1384 (ev = e.val) != null &&
1385 ((ek = e.key) == k || k.equals(ek))) {
1386 val = ev;
1387 break;
1388 }
1389 Node<V> last = e;
1390 if ((e = e.next) == null) {
1391 if ((val = mf.apply(k)) != null) {
1392 added = true;
1393 last.next = new Node<V>(h, k, val, null);
1394 if (len >= TREE_THRESHOLD)
1395 replaceWithTreeBin(tab, i, k);
1396 }
1397 break;
1398 }
1399 }
1400 }
1401 }
1402 if (len != 0) {
1403 if (!added)
1404 return val;
1405 break;
1406 }
1407 }
1408 }
1409 if (val != null)
1410 addCount(1L, len);
1411 return val;
1412 }
1413
1414 /** Implementation for compute */
1415 @SuppressWarnings("unchecked") private final V internalCompute
1416 (K k, boolean onlyIfPresent,
1417 BiFunction<? super K, ? super V, ? extends V> mf) {
1418 if (k == null || mf == null)
1419 throw new NullPointerException();
1420 int h = spread(k.hashCode());
1421 V val = null;
1422 int delta = 0;
1423 int len = 0;
1424 for (Node<V>[] tab = table;;) {
1425 Node<V> f; int i, fh; Object fk;
1426 if (tab == null)
1427 tab = initTable();
1428 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1429 if (onlyIfPresent)
1430 break;
1431 Node<V> node = new Node<V>(h, k, null, null);
1432 synchronized (node) {
1433 if (casTabAt(tab, i, null, node)) {
1434 try {
1435 len = 1;
1436 if ((val = mf.apply(k, null)) != null) {
1437 node.val = val;
1438 delta = 1;
1439 }
1440 } finally {
1441 if (delta == 0)
1442 setTabAt(tab, i, null);
1443 }
1444 }
1445 }
1446 if (len != 0)
1447 break;
1448 }
1449 else if ((fh = f.hash) < 0) {
1450 if ((fk = f.key) instanceof TreeBin) {
1451 TreeBin<V> t = (TreeBin<V>)fk;
1452 t.acquire(0);
1453 try {
1454 if (tabAt(tab, i) == f) {
1455 len = 1;
1456 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1457 if (p == null && onlyIfPresent)
1458 break;
1459 V pv = (p == null) ? null : p.val;
1460 if ((val = mf.apply(k, pv)) != null) {
1461 if (p != null)
1462 p.val = val;
1463 else {
1464 len = 2;
1465 delta = 1;
1466 t.putTreeNode(h, k, val);
1467 }
1468 }
1469 else if (p != null) {
1470 delta = -1;
1471 t.deleteTreeNode(p);
1472 }
1473 }
1474 } finally {
1475 t.release(0);
1476 }
1477 if (len != 0)
1478 break;
1479 }
1480 else
1481 tab = (Node<V>[])fk;
1482 }
1483 else {
1484 synchronized (f) {
1485 if (tabAt(tab, i) == f) {
1486 len = 1;
1487 for (Node<V> e = f, pred = null;; ++len) {
1488 Object ek; V ev;
1489 if (e.hash == h &&
1490 (ev = e.val) != null &&
1491 ((ek = e.key) == k || k.equals(ek))) {
1492 val = mf.apply(k, ev);
1493 if (val != null)
1494 e.val = val;
1495 else {
1496 delta = -1;
1497 Node<V> en = e.next;
1498 if (pred != null)
1499 pred.next = en;
1500 else
1501 setTabAt(tab, i, en);
1502 }
1503 break;
1504 }
1505 pred = e;
1506 if ((e = e.next) == null) {
1507 if (!onlyIfPresent &&
1508 (val = mf.apply(k, null)) != null) {
1509 pred.next = new Node<V>(h, k, val, null);
1510 delta = 1;
1511 if (len >= TREE_THRESHOLD)
1512 replaceWithTreeBin(tab, i, k);
1513 }
1514 break;
1515 }
1516 }
1517 }
1518 }
1519 if (len != 0)
1520 break;
1521 }
1522 }
1523 if (delta != 0)
1524 addCount((long)delta, len);
1525 return val;
1526 }
1527
1528 /** Implementation for merge */
1529 @SuppressWarnings("unchecked") private final V internalMerge
1530 (K k, V v, BiFunction<? super V, ? super V, ? extends V> mf) {
1531 if (k == null || v == null || mf == null)
1532 throw new NullPointerException();
1533 int h = spread(k.hashCode());
1534 V val = null;
1535 int delta = 0;
1536 int len = 0;
1537 for (Node<V>[] tab = table;;) {
1538 int i; Node<V> f; Object fk; V fv;
1539 if (tab == null)
1540 tab = initTable();
1541 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1542 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1543 delta = 1;
1544 val = v;
1545 break;
1546 }
1547 }
1548 else if (f.hash < 0) {
1549 if ((fk = f.key) instanceof TreeBin) {
1550 TreeBin<V> t = (TreeBin<V>)fk;
1551 t.acquire(0);
1552 try {
1553 if (tabAt(tab, i) == f) {
1554 len = 1;
1555 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1556 val = (p == null) ? v : mf.apply(p.val, v);
1557 if (val != null) {
1558 if (p != null)
1559 p.val = val;
1560 else {
1561 len = 2;
1562 delta = 1;
1563 t.putTreeNode(h, k, val);
1564 }
1565 }
1566 else if (p != null) {
1567 delta = -1;
1568 t.deleteTreeNode(p);
1569 }
1570 }
1571 } finally {
1572 t.release(0);
1573 }
1574 if (len != 0)
1575 break;
1576 }
1577 else
1578 tab = (Node<V>[])fk;
1579 }
1580 else {
1581 synchronized (f) {
1582 if (tabAt(tab, i) == f) {
1583 len = 1;
1584 for (Node<V> e = f, pred = null;; ++len) {
1585 Object ek; V ev;
1586 if (e.hash == h &&
1587 (ev = e.val) != null &&
1588 ((ek = e.key) == k || k.equals(ek))) {
1589 val = mf.apply(ev, v);
1590 if (val != null)
1591 e.val = val;
1592 else {
1593 delta = -1;
1594 Node<V> en = e.next;
1595 if (pred != null)
1596 pred.next = en;
1597 else
1598 setTabAt(tab, i, en);
1599 }
1600 break;
1601 }
1602 pred = e;
1603 if ((e = e.next) == null) {
1604 val = v;
1605 pred.next = new Node<V>(h, k, val, null);
1606 delta = 1;
1607 if (len >= TREE_THRESHOLD)
1608 replaceWithTreeBin(tab, i, k);
1609 break;
1610 }
1611 }
1612 }
1613 }
1614 if (len != 0)
1615 break;
1616 }
1617 }
1618 if (delta != 0)
1619 addCount((long)delta, len);
1620 return val;
1621 }
1622
1623 /** Implementation for putAll */
1624 @SuppressWarnings("unchecked") private final void internalPutAll
1625 (Map<? extends K, ? extends V> m) {
1626 tryPresize(m.size());
1627 long delta = 0L; // number of uncommitted additions
1628 boolean npe = false; // to throw exception on exit for nulls
1629 try { // to clean up counts on other exceptions
1630 for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1631 Object k; V v;
1632 if (entry == null || (k = entry.getKey()) == null ||
1633 (v = entry.getValue()) == null) {
1634 npe = true;
1635 break;
1636 }
1637 int h = spread(k.hashCode());
1638 for (Node<V>[] tab = table;;) {
1639 int i; Node<V> f; int fh; Object fk;
1640 if (tab == null)
1641 tab = initTable();
1642 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1643 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1644 ++delta;
1645 break;
1646 }
1647 }
1648 else if ((fh = f.hash) < 0) {
1649 if ((fk = f.key) instanceof TreeBin) {
1650 TreeBin<V> t = (TreeBin<V>)fk;
1651 boolean validated = false;
1652 t.acquire(0);
1653 try {
1654 if (tabAt(tab, i) == f) {
1655 validated = true;
1656 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1657 if (p != null)
1658 p.val = v;
1659 else {
1660 t.putTreeNode(h, k, v);
1661 ++delta;
1662 }
1663 }
1664 } finally {
1665 t.release(0);
1666 }
1667 if (validated)
1668 break;
1669 }
1670 else
1671 tab = (Node<V>[])fk;
1672 }
1673 else {
1674 int len = 0;
1675 synchronized (f) {
1676 if (tabAt(tab, i) == f) {
1677 len = 1;
1678 for (Node<V> e = f;; ++len) {
1679 Object ek; V ev;
1680 if (e.hash == h &&
1681 (ev = e.val) != null &&
1682 ((ek = e.key) == k || k.equals(ek))) {
1683 e.val = v;
1684 break;
1685 }
1686 Node<V> last = e;
1687 if ((e = e.next) == null) {
1688 ++delta;
1689 last.next = new Node<V>(h, k, v, null);
1690 if (len >= TREE_THRESHOLD)
1691 replaceWithTreeBin(tab, i, k);
1692 break;
1693 }
1694 }
1695 }
1696 }
1697 if (len != 0) {
1698 if (len > 1) {
1699 addCount(delta, len);
1700 delta = 0L;
1701 }
1702 break;
1703 }
1704 }
1705 }
1706 }
1707 } finally {
1708 if (delta != 0L)
1709 addCount(delta, 2);
1710 }
1711 if (npe)
1712 throw new NullPointerException();
1713 }
1714
1715 /**
1716 * Implementation for clear. Steps through each bin, removing all
1717 * nodes.
1718 */
1719 @SuppressWarnings("unchecked") private final void internalClear() {
1720 long delta = 0L; // negative number of deletions
1721 int i = 0;
1722 Node<V>[] tab = table;
1723 while (tab != null && i < tab.length) {
1724 Node<V> f = tabAt(tab, i);
1725 if (f == null)
1726 ++i;
1727 else if (f.hash < 0) {
1728 Object fk;
1729 if ((fk = f.key) instanceof TreeBin) {
1730 TreeBin<V> t = (TreeBin<V>)fk;
1731 t.acquire(0);
1732 try {
1733 if (tabAt(tab, i) == f) {
1734 for (Node<V> p = t.first; p != null; p = p.next) {
1735 if (p.val != null) { // (currently always true)
1736 p.val = null;
1737 --delta;
1738 }
1739 }
1740 t.first = null;
1741 t.root = null;
1742 ++i;
1743 }
1744 } finally {
1745 t.release(0);
1746 }
1747 }
1748 else
1749 tab = (Node<V>[])fk;
1750 }
1751 else {
1752 synchronized (f) {
1753 if (tabAt(tab, i) == f) {
1754 for (Node<V> e = f; e != null; e = e.next) {
1755 if (e.val != null) { // (currently always true)
1756 e.val = null;
1757 --delta;
1758 }
1759 }
1760 setTabAt(tab, i, null);
1761 ++i;
1762 }
1763 }
1764 }
1765 }
1766 if (delta != 0L)
1767 addCount(delta, -1);
1768 }
1769
1770 /* ---------------- Table Initialization and Resizing -------------- */
1771
1772 /**
1773 * Returns a power of two table size for the given desired capacity.
1774 * See Hackers Delight, sec 3.2
1775 */
1776 private static final int tableSizeFor(int c) {
1777 int n = c - 1;
1778 n |= n >>> 1;
1779 n |= n >>> 2;
1780 n |= n >>> 4;
1781 n |= n >>> 8;
1782 n |= n >>> 16;
1783 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1784 }
1785
1786 /**
1787 * Initializes table, using the size recorded in sizeCtl.
1788 */
1789 @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1790 Node<V>[] tab; int sc;
1791 while ((tab = table) == null) {
1792 if ((sc = sizeCtl) < 0)
1793 Thread.yield(); // lost initialization race; just spin
1794 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1795 try {
1796 if ((tab = table) == null) {
1797 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1798 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1799 table = tab = (Node<V>[])tb;
1800 sc = n - (n >>> 2);
1801 }
1802 } finally {
1803 sizeCtl = sc;
1804 }
1805 break;
1806 }
1807 }
1808 return tab;
1809 }
1810
1811 /**
1812 * Adds to count, and if table is too small and not already
1813 * resizing, initiates transfer. If already resizing, helps
1814 * perform transfer if work is available. Rechecks occupancy
1815 * after a transfer to see if another resize is already needed
1816 * because resizings are lagging additions.
1817 *
1818 * @param x the count to add
1819 * @param check if <0, don't check resize, if <= 1 only check if uncontended
1820 */
1821 private final void addCount(long x, int check) {
1822 Cell[] as; long b, s;
1823 if ((as = counterCells) != null ||
1824 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1825 Cell a; long v; int m;
1826 boolean uncontended = true;
1827 if (as == null || (m = as.length - 1) < 0 ||
1828 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
1829 !(uncontended =
1830 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1831 fullAddCount(x, uncontended);
1832 return;
1833 }
1834 if (check <= 1)
1835 return;
1836 s = sumCount();
1837 }
1838 if (check >= 0) {
1839 Node<V>[] tab, nt; int sc;
1840 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1841 tab.length < MAXIMUM_CAPACITY) {
1842 if (sc < 0) {
1843 if (sc == -1 || transferIndex <= transferOrigin ||
1844 (nt = nextTable) == null)
1845 break;
1846 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1847 transfer(tab, nt);
1848 }
1849 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1850 transfer(tab, null);
1851 s = sumCount();
1852 }
1853 }
1854 }
1855
1856 /**
1857 * Tries to presize table to accommodate the given number of elements.
1858 *
1859 * @param size number of elements (doesn't need to be perfectly accurate)
1860 */
1861 @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1862 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1863 tableSizeFor(size + (size >>> 1) + 1);
1864 int sc;
1865 while ((sc = sizeCtl) >= 0) {
1866 Node<V>[] tab = table; int n;
1867 if (tab == null || (n = tab.length) == 0) {
1868 n = (sc > c) ? sc : c;
1869 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1870 try {
1871 if (table == tab) {
1872 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1873 table = (Node<V>[])tb;
1874 sc = n - (n >>> 2);
1875 }
1876 } finally {
1877 sizeCtl = sc;
1878 }
1879 }
1880 }
1881 else if (c <= sc || n >= MAXIMUM_CAPACITY)
1882 break;
1883 else if (tab == table &&
1884 U.compareAndSwapInt(this, SIZECTL, sc, -2))
1885 transfer(tab, null);
1886 }
1887 }
1888
1889 /**
1890 * Moves and/or copies the nodes in each bin to new table. See
1891 * above for explanation.
1892 */
1893 @SuppressWarnings("unchecked") private final void transfer
1894 (Node<V>[] tab, Node<V>[] nextTab) {
1895 int n = tab.length, stride;
1896 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1897 stride = MIN_TRANSFER_STRIDE; // subdivide range
1898 if (nextTab == null) { // initiating
1899 try {
1900 @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1901 nextTab = (Node<V>[])tb;
1902 } catch (Throwable ex) { // try to cope with OOME
1903 sizeCtl = Integer.MAX_VALUE;
1904 return;
1905 }
1906 nextTable = nextTab;
1907 transferOrigin = n;
1908 transferIndex = n;
1909 Node<V> rev = new Node<V>(MOVED, tab, null, null);
1910 for (int k = n; k > 0;) { // progressively reveal ready slots
1911 int nextk = (k > stride) ? k - stride : 0;
1912 for (int m = nextk; m < k; ++m)
1913 nextTab[m] = rev;
1914 for (int m = n + nextk; m < n + k; ++m)
1915 nextTab[m] = rev;
1916 U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1917 }
1918 }
1919 int nextn = nextTab.length;
1920 Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
1921 boolean advance = true;
1922 for (int i = 0, bound = 0;;) {
1923 int nextIndex, nextBound; Node<V> f; Object fk;
1924 while (advance) {
1925 if (--i >= bound)
1926 advance = false;
1927 else if ((nextIndex = transferIndex) <= transferOrigin) {
1928 i = -1;
1929 advance = false;
1930 }
1931 else if (U.compareAndSwapInt
1932 (this, TRANSFERINDEX, nextIndex,
1933 nextBound = (nextIndex > stride ?
1934 nextIndex - stride : 0))) {
1935 bound = nextBound;
1936 i = nextIndex - 1;
1937 advance = false;
1938 }
1939 }
1940 if (i < 0 || i >= n || i + n >= nextn) {
1941 for (int sc;;) {
1942 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
1943 if (sc == -1) {
1944 nextTable = null;
1945 table = nextTab;
1946 sizeCtl = (n << 1) - (n >>> 1);
1947 }
1948 return;
1949 }
1950 }
1951 }
1952 else if ((f = tabAt(tab, i)) == null) {
1953 if (casTabAt(tab, i, null, fwd)) {
1954 setTabAt(nextTab, i, null);
1955 setTabAt(nextTab, i + n, null);
1956 advance = true;
1957 }
1958 }
1959 else if (f.hash >= 0) {
1960 synchronized (f) {
1961 if (tabAt(tab, i) == f) {
1962 int runBit = f.hash & n;
1963 Node<V> lastRun = f, lo = null, hi = null;
1964 for (Node<V> p = f.next; p != null; p = p.next) {
1965 int b = p.hash & n;
1966 if (b != runBit) {
1967 runBit = b;
1968 lastRun = p;
1969 }
1970 }
1971 if (runBit == 0)
1972 lo = lastRun;
1973 else
1974 hi = lastRun;
1975 for (Node<V> p = f; p != lastRun; p = p.next) {
1976 int ph = p.hash;
1977 Object pk = p.key; V pv = p.val;
1978 if ((ph & n) == 0)
1979 lo = new Node<V>(ph, pk, pv, lo);
1980 else
1981 hi = new Node<V>(ph, pk, pv, hi);
1982 }
1983 setTabAt(nextTab, i, lo);
1984 setTabAt(nextTab, i + n, hi);
1985 setTabAt(tab, i, fwd);
1986 advance = true;
1987 }
1988 }
1989 }
1990 else if ((fk = f.key) instanceof TreeBin) {
1991 TreeBin<V> t = (TreeBin<V>)fk;
1992 t.acquire(0);
1993 try {
1994 if (tabAt(tab, i) == f) {
1995 TreeBin<V> lt = new TreeBin<V>();
1996 TreeBin<V> ht = new TreeBin<V>();
1997 int lc = 0, hc = 0;
1998 for (Node<V> e = t.first; e != null; e = e.next) {
1999 int h = e.hash;
2000 Object k = e.key; V v = e.val;
2001 if ((h & n) == 0) {
2002 ++lc;
2003 lt.putTreeNode(h, k, v);
2004 }
2005 else {
2006 ++hc;
2007 ht.putTreeNode(h, k, v);
2008 }
2009 }
2010 Node<V> ln, hn; // throw away trees if too small
2011 if (lc < TREE_THRESHOLD) {
2012 ln = null;
2013 for (Node<V> p = lt.first; p != null; p = p.next)
2014 ln = new Node<V>(p.hash, p.key, p.val, ln);
2015 }
2016 else
2017 ln = new Node<V>(MOVED, lt, null, null);
2018 setTabAt(nextTab, i, ln);
2019 if (hc < TREE_THRESHOLD) {
2020 hn = null;
2021 for (Node<V> p = ht.first; p != null; p = p.next)
2022 hn = new Node<V>(p.hash, p.key, p.val, hn);
2023 }
2024 else
2025 hn = new Node<V>(MOVED, ht, null, null);
2026 setTabAt(nextTab, i + n, hn);
2027 setTabAt(tab, i, fwd);
2028 advance = true;
2029 }
2030 } finally {
2031 t.release(0);
2032 }
2033 }
2034 else
2035 advance = true; // already processed
2036 }
2037 }
2038
2039 /* ---------------- Counter support -------------- */
2040
2041 final long sumCount() {
2042 Cell[] as = counterCells; Cell a;
2043 long sum = baseCount;
2044 if (as != null) {
2045 for (int i = 0; i < as.length; ++i) {
2046 if ((a = as[i]) != null)
2047 sum += a.value;
2048 }
2049 }
2050 return sum;
2051 }
2052
2053 // See LongAdder version for explanation
2054 private final void fullAddCount(long x, boolean wasUncontended) {
2055 int h;
2056 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2057 ThreadLocalRandom.localInit(); // force initialization
2058 h = ThreadLocalRandom.getProbe();
2059 wasUncontended = true;
2060 }
2061 boolean collide = false; // True if last slot nonempty
2062 for (;;) {
2063 Cell[] as; Cell a; int n; long v;
2064 if ((as = counterCells) != null && (n = as.length) > 0) {
2065 if ((a = as[(n - 1) & h]) == null) {
2066 if (cellsBusy == 0) { // Try to attach new Cell
2067 Cell r = new Cell(x); // Optimistic create
2068 if (cellsBusy == 0 &&
2069 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2070 boolean created = false;
2071 try { // Recheck under lock
2072 Cell[] rs; int m, j;
2073 if ((rs = counterCells) != null &&
2074 (m = rs.length) > 0 &&
2075 rs[j = (m - 1) & h] == null) {
2076 rs[j] = r;
2077 created = true;
2078 }
2079 } finally {
2080 cellsBusy = 0;
2081 }
2082 if (created)
2083 break;
2084 continue; // Slot is now non-empty
2085 }
2086 }
2087 collide = false;
2088 }
2089 else if (!wasUncontended) // CAS already known to fail
2090 wasUncontended = true; // Continue after rehash
2091 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2092 break;
2093 else if (counterCells != as || n >= NCPU)
2094 collide = false; // At max size or stale
2095 else if (!collide)
2096 collide = true;
2097 else if (cellsBusy == 0 &&
2098 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2099 try {
2100 if (counterCells == as) {// Expand table unless stale
2101 Cell[] rs = new Cell[n << 1];
2102 for (int i = 0; i < n; ++i)
2103 rs[i] = as[i];
2104 counterCells = rs;
2105 }
2106 } finally {
2107 cellsBusy = 0;
2108 }
2109 collide = false;
2110 continue; // Retry with expanded table
2111 }
2112 h = ThreadLocalRandom.advanceProbe(h);
2113 }
2114 else if (cellsBusy == 0 && counterCells == as &&
2115 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2116 boolean init = false;
2117 try { // Initialize table
2118 if (counterCells == as) {
2119 Cell[] rs = new Cell[2];
2120 rs[h & 1] = new Cell(x);
2121 counterCells = rs;
2122 init = true;
2123 }
2124 } finally {
2125 cellsBusy = 0;
2126 }
2127 if (init)
2128 break;
2129 }
2130 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2131 break; // Fall back on using base
2132 }
2133 }
2134
2135 /* ----------------Table Traversal -------------- */
2136
2137 /**
2138 * Encapsulates traversal for methods such as containsValue; also
2139 * serves as a base class for other iterators and bulk tasks.
2140 *
2141 * At each step, the iterator snapshots the key ("nextKey") and
2142 * value ("nextVal") of a valid node (i.e., one that, at point of
2143 * snapshot, has a non-null user value). Because val fields can
2144 * change (including to null, indicating deletion), field nextVal
2145 * might not be accurate at point of use, but still maintains the
2146 * weak consistency property of holding a value that was once
2147 * valid. To support iterator.remove, the nextKey field is not
2148 * updated (nulled out) when the iterator cannot advance.
2149 *
2150 * Exported iterators must track whether the iterator has advanced
2151 * (in hasNext vs next) (by setting/checking/nulling field
2152 * nextVal), and then extract key, value, or key-value pairs as
2153 * return values of next().
2154 *
2155 * Method advance visits once each still-valid node that was
2156 * reachable upon iterator construction. It might miss some that
2157 * were added to a bin after the bin was visited, which is OK wrt
2158 * consistency guarantees. Maintaining this property in the face
2159 * of possible ongoing resizes requires a fair amount of
2160 * bookkeeping state that is difficult to optimize away amidst
2161 * volatile accesses. Even so, traversal maintains reasonable
2162 * throughput.
2163 *
2164 * Normally, iteration proceeds bin-by-bin traversing lists.
2165 * However, if the table has been resized, then all future steps
2166 * must traverse both the bin at the current index as well as at
2167 * (index + baseSize); and so on for further resizings. To
2168 * paranoically cope with potential sharing by users of iterators
2169 * across threads, iteration terminates if a bounds checks fails
2170 * for a table read.
2171 *
2172 * Methods advanceKey and advanceValue are specializations of the
2173 * common cases of advance, relaying to the full version
2174 * otherwise. The forEachKey and forEachValue methods further
2175 * specialize, bypassing all incremental field updates in most cases.
2176 *
2177 * This class supports both Spliterator-based traversal and
2178 * CountedCompleter-based bulk tasks. The same "batch" field is
2179 * used, but in slightly different ways, in the two cases. For
2180 * Spliterators, it is a saturating (at Integer.MAX_VALUE)
2181 * estimate of element coverage. For CHM tasks, it is a pre-scaled
2182 * size that halves down to zero for leaf tasks, that is only
2183 * computed upon execution of the task. (Tasks can be submitted to
2184 * any pool, of any size, so we don't know scale factors until
2185 * running.)
2186 *
2187 * This class extends CountedCompleter to streamline parallel
2188 * iteration in bulk operations. This adds only a few fields of
2189 * space overhead, which is small enough in cases where it is not
2190 * needed to not worry about it. Because CountedCompleter is
2191 * Serializable, but iterators need not be, we need to add warning
2192 * suppressions.
2193 */
2194 @SuppressWarnings("serial") static class Traverser<K,V,R>
2195 extends CountedCompleter<R> {
2196 final ConcurrentHashMap<K,V> map;
2197 Node<V> next; // the next entry to use
2198 K nextKey; // cached key field of next
2199 V nextVal; // cached val field of next
2200 Node<V>[] tab; // current table; updated if resized
2201 int index; // index of bin to use next
2202 int baseIndex; // current index of initial table
2203 int baseLimit; // index bound for initial table
2204 final int baseSize; // initial table size
2205 int batch; // split control
2206
2207 /** Creates iterator for all entries in the table. */
2208 Traverser(ConcurrentHashMap<K,V> map) {
2209 this.map = map;
2210 Node<V>[] t = this.tab = map.table;
2211 baseLimit = baseSize = (t == null) ? 0 : t.length;
2212 }
2213
2214 /** Task constructor */
2215 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2216 super(it);
2217 this.map = map;
2218 this.batch = batch; // -1 if unknown
2219 if (it == null) {
2220 Node<V>[] t = this.tab = map.table;
2221 baseLimit = baseSize = (t == null) ? 0 : t.length;
2222 }
2223 else { // split parent
2224 this.tab = it.tab;
2225 this.baseSize = it.baseSize;
2226 int hi = this.baseLimit = it.baseLimit;
2227 it.baseLimit = this.index = this.baseIndex =
2228 (hi + it.baseIndex) >>> 1;
2229 }
2230 }
2231
2232 /** Spliterator constructor */
2233 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it) {
2234 super(it);
2235 this.map = map;
2236 if (it == null) {
2237 Node<V>[] t = this.tab = map.table;
2238 baseLimit = baseSize = (t == null) ? 0 : t.length;
2239 long n = map.sumCount();
2240 batch = ((n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2241 (int)n);
2242 }
2243 else {
2244 this.tab = it.tab;
2245 this.baseSize = it.baseSize;
2246 int hi = this.baseLimit = it.baseLimit;
2247 it.baseLimit = this.index = this.baseIndex =
2248 (hi + it.baseIndex) >>> 1;
2249 this.batch = it.batch >>>= 1;
2250 }
2251 }
2252
2253 /**
2254 * Advances if possible, returning next valid value, or null if none.
2255 */
2256 @SuppressWarnings("unchecked") final V advance() {
2257 for (Node<V> e = next;;) {
2258 if (e != null) // advance past used/skipped node
2259 e = next = e.next;
2260 while (e == null) { // get to next non-null bin
2261 Node<V>[] t; int i, n; // must use locals in checks
2262 if (baseIndex >= baseLimit || (t = tab) == null ||
2263 (n = t.length) <= (i = index) || i < 0)
2264 return nextVal = null;
2265 if ((e = next = tabAt(t, index)) != null && e.hash < 0) {
2266 Object ek;
2267 if ((ek = e.key) instanceof TreeBin)
2268 e = ((TreeBin<V>)ek).first;
2269 else {
2270 tab = (Node<V>[])ek;
2271 continue; // restarts due to null val
2272 }
2273 }
2274 if ((index += baseSize) >= n)
2275 index = ++baseIndex; // visit upper slots if present
2276 }
2277 nextKey = (K)e.key;
2278 if ((nextVal = e.val) != null) // skip deleted or special nodes
2279 return nextVal;
2280 }
2281 }
2282
2283 /**
2284 * Common case version for value traversal
2285 */
2286 @SuppressWarnings("unchecked") final V advanceValue() {
2287 outer: for (Node<V> e = next;;) {
2288 if (e == null || (e = e.next) == null) {
2289 Node<V>[] t; int i, len, n; Object ek;
2290 if ((t = tab) == null ||
2291 baseSize != (len = t.length) ||
2292 len < (n = baseLimit) ||
2293 baseIndex != (i = index))
2294 break;
2295 do {
2296 if (i < 0 || i >= n) {
2297 index = baseIndex = n;
2298 next = null;
2299 return nextVal = null;
2300 }
2301 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2302 if ((ek = e.key) instanceof TreeBin)
2303 e = ((TreeBin<V>)ek).first;
2304 else {
2305 index = baseIndex = i;
2306 next = null;
2307 tab = (Node<V>[])ek;
2308 break outer;
2309 }
2310 }
2311 ++i;
2312 } while (e == null);
2313 index = baseIndex = i;
2314 }
2315 V v;
2316 K k = (K)e.key;
2317 if ((v = e.val) != null) {
2318 nextVal = v;
2319 nextKey = k;
2320 next = e;
2321 return v;
2322 }
2323 }
2324 return advance();
2325 }
2326
2327 /**
2328 * Common case version for key traversal
2329 */
2330 @SuppressWarnings("unchecked") final K advanceKey() {
2331 outer: for (Node<V> e = next;;) {
2332 if (e == null || (e = e.next) == null) {
2333 Node<V>[] t; int i, len, n; Object ek;
2334 if ((t = tab) == null ||
2335 baseSize != (len = t.length) ||
2336 len < (n = baseLimit) ||
2337 baseIndex != (i = index))
2338 break;
2339 do {
2340 if (i < 0 || i >= n) {
2341 index = baseIndex = n;
2342 next = null;
2343 nextVal = null;
2344 return null;
2345 }
2346 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2347 if ((ek = e.key) instanceof TreeBin)
2348 e = ((TreeBin<V>)ek).first;
2349 else {
2350 index = baseIndex = i;
2351 next = null;
2352 tab = (Node<V>[])ek;
2353 break outer;
2354 }
2355 }
2356 ++i;
2357 } while (e == null);
2358 index = baseIndex = i;
2359 }
2360 V v;
2361 K k = (K)e.key;
2362 if ((v = e.val) != null) {
2363 nextVal = v;
2364 nextKey = k;
2365 next = e;
2366 return k;
2367 }
2368 }
2369 return (advance() == null) ? null : nextKey;
2370 }
2371
2372 @SuppressWarnings("unchecked") final void forEachValue(Consumer<? super V> action) {
2373 if (action == null) throw new NullPointerException();
2374 Node<V>[] t; int i, len, n;
2375 if ((t = tab) != null && baseSize == (len = t.length) &&
2376 len >= (n = baseLimit) && baseIndex == (i = index)) {
2377 index = baseIndex = n;
2378 nextVal = null;
2379 Node<V> e = next;
2380 next = null;
2381 if (e != null)
2382 e = e.next;
2383 outer: for (;; e = e.next) {
2384 V v; Object ek;
2385 for (; e == null; ++i) {
2386 if (i < 0 || i >= n)
2387 return;
2388 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2389 if ((ek = e.key) instanceof TreeBin)
2390 e = ((TreeBin<V>)ek).first;
2391 else {
2392 index = baseIndex = i;
2393 tab = (Node<V>[])ek;
2394 break outer;
2395 }
2396 }
2397 }
2398 if ((v = e.val) != null)
2399 action.accept(v);
2400 }
2401 }
2402 V v;
2403 while ((v = advance()) != null)
2404 action.accept(v);
2405 }
2406
2407 @SuppressWarnings("unchecked") final void forEachKey(Consumer<? super K> action) {
2408 if (action == null) throw new NullPointerException();
2409 Node<V>[] t; int i, len, n;
2410 if ((t = tab) != null && baseSize == (len = t.length) &&
2411 len >= (n = baseLimit) && baseIndex == (i = index)) {
2412 index = baseIndex = n;
2413 nextVal = null;
2414 Node<V> e = next;
2415 next = null;
2416 if (e != null)
2417 e = e.next;
2418 outer: for (;; e = e.next) {
2419 for (; e == null; ++i) {
2420 if (i < 0 || i >= n)
2421 return;
2422 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2423 Object ek;
2424 if ((ek = e.key) instanceof TreeBin)
2425 e = ((TreeBin<V>)ek).first;
2426 else {
2427 index = baseIndex = i;
2428 tab = (Node<V>[])ek;
2429 break outer;
2430 }
2431 }
2432 }
2433 Object k = e.key;
2434 if (e.val != null)
2435 action.accept((K)k);
2436 }
2437 }
2438 while (advance() != null)
2439 action.accept(nextKey);
2440 }
2441
2442 public final void remove() {
2443 K k = nextKey;
2444 if (k == null && (advanceValue() == null || (k = nextKey) == null))
2445 throw new IllegalStateException();
2446 map.internalReplace(k, null, null);
2447 }
2448
2449 public final boolean hasNext() {
2450 return nextVal != null || advanceValue() != null;
2451 }
2452
2453 public final boolean hasMoreElements() { return hasNext(); }
2454
2455 public void compute() { } // default no-op CountedCompleter body
2456
2457 public long estimateSize() { return batch; }
2458
2459 /**
2460 * Returns a batch value > 0 if this task should (and must) be
2461 * split, if so, adding to pending count, and in any case
2462 * updating batch value. The initial batch value is approx
2463 * exp2 of the number of times (minus one) to split task by
2464 * two before executing leaf action. This value is faster to
2465 * compute and more convenient to use as a guide to splitting
2466 * than is the depth, since it is used while dividing by two
2467 * anyway.
2468 */
2469 final int preSplit() {
2470 int b; ForkJoinPool pool;
2471 if ((b = batch) < 0) { // force initialization
2472 int sp = (((pool = getPool()) == null) ?
2473 ForkJoinPool.getCommonPoolParallelism() :
2474 pool.getParallelism()) << 3; // slack of 8
2475 long n = map.sumCount();
2476 b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2477 }
2478 b = (b <= 1 || baseIndex >= baseLimit) ? 0 : (b >>> 1);
2479 if ((batch = b) > 0)
2480 addToPendingCount(1);
2481 return b;
2482 }
2483 }
2484
2485 /* ---------------- Public operations -------------- */
2486
2487 /**
2488 * Creates a new, empty map with the default initial table size (16).
2489 */
2490 public ConcurrentHashMap() {
2491 }
2492
2493 /**
2494 * Creates a new, empty map with an initial table size
2495 * accommodating the specified number of elements without the need
2496 * to dynamically resize.
2497 *
2498 * @param initialCapacity The implementation performs internal
2499 * sizing to accommodate this many elements.
2500 * @throws IllegalArgumentException if the initial capacity of
2501 * elements is negative
2502 */
2503 public ConcurrentHashMap(int initialCapacity) {
2504 if (initialCapacity < 0)
2505 throw new IllegalArgumentException();
2506 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2507 MAXIMUM_CAPACITY :
2508 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2509 this.sizeCtl = cap;
2510 }
2511
2512 /**
2513 * Creates a new map with the same mappings as the given map.
2514 *
2515 * @param m the map
2516 */
2517 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2518 this.sizeCtl = DEFAULT_CAPACITY;
2519 internalPutAll(m);
2520 }
2521
2522 /**
2523 * Creates a new, empty map with an initial table size based on
2524 * the given number of elements ({@code initialCapacity}) and
2525 * initial table density ({@code loadFactor}).
2526 *
2527 * @param initialCapacity the initial capacity. The implementation
2528 * performs internal sizing to accommodate this many elements,
2529 * given the specified load factor.
2530 * @param loadFactor the load factor (table density) for
2531 * establishing the initial table size
2532 * @throws IllegalArgumentException if the initial capacity of
2533 * elements is negative or the load factor is nonpositive
2534 *
2535 * @since 1.6
2536 */
2537 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2538 this(initialCapacity, loadFactor, 1);
2539 }
2540
2541 /**
2542 * Creates a new, empty map with an initial table size based on
2543 * the given number of elements ({@code initialCapacity}), table
2544 * density ({@code loadFactor}), and number of concurrently
2545 * updating threads ({@code concurrencyLevel}).
2546 *
2547 * @param initialCapacity the initial capacity. The implementation
2548 * performs internal sizing to accommodate this many elements,
2549 * given the specified load factor.
2550 * @param loadFactor the load factor (table density) for
2551 * establishing the initial table size
2552 * @param concurrencyLevel the estimated number of concurrently
2553 * updating threads. The implementation may use this value as
2554 * a sizing hint.
2555 * @throws IllegalArgumentException if the initial capacity is
2556 * negative or the load factor or concurrencyLevel are
2557 * nonpositive
2558 */
2559 public ConcurrentHashMap(int initialCapacity,
2560 float loadFactor, int concurrencyLevel) {
2561 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2562 throw new IllegalArgumentException();
2563 if (initialCapacity < concurrencyLevel) // Use at least as many bins
2564 initialCapacity = concurrencyLevel; // as estimated threads
2565 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2566 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2567 MAXIMUM_CAPACITY : tableSizeFor((int)size);
2568 this.sizeCtl = cap;
2569 }
2570
2571 /**
2572 * Creates a new {@link Set} backed by a ConcurrentHashMap
2573 * from the given type to {@code Boolean.TRUE}.
2574 *
2575 * @return the new set
2576 */
2577 public static <K> KeySetView<K,Boolean> newKeySet() {
2578 return new KeySetView<K,Boolean>
2579 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2580 }
2581
2582 /**
2583 * Creates a new {@link Set} backed by a ConcurrentHashMap
2584 * from the given type to {@code Boolean.TRUE}.
2585 *
2586 * @param initialCapacity The implementation performs internal
2587 * sizing to accommodate this many elements.
2588 * @throws IllegalArgumentException if the initial capacity of
2589 * elements is negative
2590 * @return the new set
2591 */
2592 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2593 return new KeySetView<K,Boolean>
2594 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2595 }
2596
2597 /**
2598 * {@inheritDoc}
2599 */
2600 public boolean isEmpty() {
2601 return sumCount() <= 0L; // ignore transient negative values
2602 }
2603
2604 /**
2605 * {@inheritDoc}
2606 */
2607 public int size() {
2608 long n = sumCount();
2609 return ((n < 0L) ? 0 :
2610 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2611 (int)n);
2612 }
2613
2614 /**
2615 * Returns the number of mappings. This method should be used
2616 * instead of {@link #size} because a ConcurrentHashMap may
2617 * contain more mappings than can be represented as an int. The
2618 * value returned is an estimate; the actual count may differ if
2619 * there are concurrent insertions or removals.
2620 *
2621 * @return the number of mappings
2622 */
2623 public long mappingCount() {
2624 long n = sumCount();
2625 return (n < 0L) ? 0L : n; // ignore transient negative values
2626 }
2627
2628 /**
2629 * Returns the value to which the specified key is mapped,
2630 * or {@code null} if this map contains no mapping for the key.
2631 *
2632 * <p>More formally, if this map contains a mapping from a key
2633 * {@code k} to a value {@code v} such that {@code key.equals(k)},
2634 * then this method returns {@code v}; otherwise it returns
2635 * {@code null}. (There can be at most one such mapping.)
2636 *
2637 * @throws NullPointerException if the specified key is null
2638 */
2639 public V get(Object key) {
2640 return internalGet(key);
2641 }
2642
2643 /**
2644 * Returns the value to which the specified key is mapped,
2645 * or the given defaultValue if this map contains no mapping for the key.
2646 *
2647 * @param key the key
2648 * @param defaultValue the value to return if this map contains
2649 * no mapping for the given key
2650 * @return the mapping for the key, if present; else the defaultValue
2651 * @throws NullPointerException if the specified key is null
2652 */
2653 public V getOrDefault(Object key, V defaultValue) {
2654 V v;
2655 return (v = internalGet(key)) == null ? defaultValue : v;
2656 }
2657
2658 /**
2659 * Tests if the specified object is a key in this table.
2660 *
2661 * @param key possible key
2662 * @return {@code true} if and only if the specified object
2663 * is a key in this table, as determined by the
2664 * {@code equals} method; {@code false} otherwise
2665 * @throws NullPointerException if the specified key is null
2666 */
2667 public boolean containsKey(Object key) {
2668 return internalGet(key) != null;
2669 }
2670
2671 /**
2672 * Returns {@code true} if this map maps one or more keys to the
2673 * specified value. Note: This method may require a full traversal
2674 * of the map, and is much slower than method {@code containsKey}.
2675 *
2676 * @param value value whose presence in this map is to be tested
2677 * @return {@code true} if this map maps one or more keys to the
2678 * specified value
2679 * @throws NullPointerException if the specified value is null
2680 */
2681 public boolean containsValue(Object value) {
2682 if (value == null)
2683 throw new NullPointerException();
2684 V v;
2685 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2686 while ((v = it.advanceValue()) != null) {
2687 if (v == value || value.equals(v))
2688 return true;
2689 }
2690 return false;
2691 }
2692
2693 /**
2694 * Legacy method testing if some key maps into the specified value
2695 * in this table. This method is identical in functionality to
2696 * {@link #containsValue(Object)}, and exists solely to ensure
2697 * full compatibility with class {@link java.util.Hashtable},
2698 * which supported this method prior to introduction of the
2699 * Java Collections framework.
2700 *
2701 * @param value a value to search for
2702 * @return {@code true} if and only if some key maps to the
2703 * {@code value} argument in this table as
2704 * determined by the {@code equals} method;
2705 * {@code false} otherwise
2706 * @throws NullPointerException if the specified value is null
2707 */
2708 @Deprecated public boolean contains(Object value) {
2709 return containsValue(value);
2710 }
2711
2712 /**
2713 * Maps the specified key to the specified value in this table.
2714 * Neither the key nor the value can be null.
2715 *
2716 * <p>The value can be retrieved by calling the {@code get} method
2717 * with a key that is equal to the original key.
2718 *
2719 * @param key key with which the specified value is to be associated
2720 * @param value value to be associated with the specified key
2721 * @return the previous value associated with {@code key}, or
2722 * {@code null} if there was no mapping for {@code key}
2723 * @throws NullPointerException if the specified key or value is null
2724 */
2725 public V put(K key, V value) {
2726 return internalPut(key, value, false);
2727 }
2728
2729 /**
2730 * {@inheritDoc}
2731 *
2732 * @return the previous value associated with the specified key,
2733 * or {@code null} if there was no mapping for the key
2734 * @throws NullPointerException if the specified key or value is null
2735 */
2736 public V putIfAbsent(K key, V value) {
2737 return internalPut(key, value, true);
2738 }
2739
2740 /**
2741 * Copies all of the mappings from the specified map to this one.
2742 * These mappings replace any mappings that this map had for any of the
2743 * keys currently in the specified map.
2744 *
2745 * @param m mappings to be stored in this map
2746 */
2747 public void putAll(Map<? extends K, ? extends V> m) {
2748 internalPutAll(m);
2749 }
2750
2751 /**
2752 * If the specified key is not already associated with a value (or
2753 * is mapped to {@code null}), attempts to compute its value using
2754 * the given mapping function and enters it into this map unless
2755 * {@code null}. The entire method invocation is performed
2756 * atomically, so the function is applied at most once per key.
2757 * Some attempted update operations on this map by other threads
2758 * may be blocked while computation is in progress, so the
2759 * computation should be short and simple, and must not attempt to
2760 * update any other mappings of this Map.
2761 *
2762 * @param key key with which the specified value is to be associated
2763 * @param mappingFunction the function to compute a value
2764 * @return the current (existing or computed) value associated with
2765 * the specified key, or null if the computed value is null
2766 * @throws NullPointerException if the specified key or mappingFunction
2767 * is null
2768 * @throws IllegalStateException if the computation detectably
2769 * attempts a recursive update to this map that would
2770 * otherwise never complete
2771 * @throws RuntimeException or Error if the mappingFunction does so,
2772 * in which case the mapping is left unestablished
2773 */
2774 public V computeIfAbsent
2775 (K key, Function<? super K, ? extends V> mappingFunction) {
2776 return internalComputeIfAbsent(key, mappingFunction);
2777 }
2778
2779 /**
2780 * If the value for the specified key is present and non-null,
2781 * attempts to compute a new mapping given the key and its current
2782 * mapped value. The entire method invocation is performed
2783 * atomically. Some attempted update operations on this map by
2784 * other threads may be blocked while computation is in progress,
2785 * so the computation should be short and simple, and must not
2786 * attempt to update any other mappings of this Map.
2787 *
2788 * @param key key with which a value may be associated
2789 * @param remappingFunction the function to compute a value
2790 * @return the new value associated with the specified key, or null if none
2791 * @throws NullPointerException if the specified key or remappingFunction
2792 * is null
2793 * @throws IllegalStateException if the computation detectably
2794 * attempts a recursive update to this map that would
2795 * otherwise never complete
2796 * @throws RuntimeException or Error if the remappingFunction does so,
2797 * in which case the mapping is unchanged
2798 */
2799 public V computeIfPresent
2800 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2801 return internalCompute(key, true, remappingFunction);
2802 }
2803
2804 /**
2805 * Attempts to compute a mapping for the specified key and its
2806 * current mapped value (or {@code null} if there is no current
2807 * mapping). The entire method invocation is performed atomically.
2808 * Some attempted update operations on this map by other threads
2809 * may be blocked while computation is in progress, so the
2810 * computation should be short and simple, and must not attempt to
2811 * update any other mappings of this Map.
2812 *
2813 * @param key key with which the specified value is to be associated
2814 * @param remappingFunction the function to compute a value
2815 * @return the new value associated with the specified key, or null if none
2816 * @throws NullPointerException if the specified key or remappingFunction
2817 * is null
2818 * @throws IllegalStateException if the computation detectably
2819 * attempts a recursive update to this map that would
2820 * otherwise never complete
2821 * @throws RuntimeException or Error if the remappingFunction does so,
2822 * in which case the mapping is unchanged
2823 */
2824 public V compute
2825 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2826 return internalCompute(key, false, remappingFunction);
2827 }
2828
2829 /**
2830 * If the specified key is not already associated with a
2831 * (non-null) value, associates it with the given value.
2832 * Otherwise, replaces the value with the results of the given
2833 * remapping function, or removes if {@code null}. The entire
2834 * method invocation is performed atomically. Some attempted
2835 * update operations on this map by other threads may be blocked
2836 * while computation is in progress, so the computation should be
2837 * short and simple, and must not attempt to update any other
2838 * mappings of this Map.
2839 *
2840 * @param key key with which the specified value is to be associated
2841 * @param value the value to use if absent
2842 * @param remappingFunction the function to recompute a value if present
2843 * @return the new value associated with the specified key, or null if none
2844 * @throws NullPointerException if the specified key or the
2845 * remappingFunction is null
2846 * @throws RuntimeException or Error if the remappingFunction does so,
2847 * in which case the mapping is unchanged
2848 */
2849 public V merge
2850 (K key, V value,
2851 BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2852 return internalMerge(key, value, remappingFunction);
2853 }
2854
2855 /**
2856 * Removes the key (and its corresponding value) from this map.
2857 * This method does nothing if the key is not in the map.
2858 *
2859 * @param key the key that needs to be removed
2860 * @return the previous value associated with {@code key}, or
2861 * {@code null} if there was no mapping for {@code key}
2862 * @throws NullPointerException if the specified key is null
2863 */
2864 public V remove(Object key) {
2865 return internalReplace(key, null, null);
2866 }
2867
2868 /**
2869 * {@inheritDoc}
2870 *
2871 * @throws NullPointerException if the specified key is null
2872 */
2873 public boolean remove(Object key, Object value) {
2874 if (key == null)
2875 throw new NullPointerException();
2876 return value != null && internalReplace(key, null, value) != null;
2877 }
2878
2879 /**
2880 * {@inheritDoc}
2881 *
2882 * @throws NullPointerException if any of the arguments are null
2883 */
2884 public boolean replace(K key, V oldValue, V newValue) {
2885 if (key == null || oldValue == null || newValue == null)
2886 throw new NullPointerException();
2887 return internalReplace(key, newValue, oldValue) != null;
2888 }
2889
2890 /**
2891 * {@inheritDoc}
2892 *
2893 * @return the previous value associated with the specified key,
2894 * or {@code null} if there was no mapping for the key
2895 * @throws NullPointerException if the specified key or value is null
2896 */
2897 public V replace(K key, V value) {
2898 if (key == null || value == null)
2899 throw new NullPointerException();
2900 return internalReplace(key, value, null);
2901 }
2902
2903 /**
2904 * Removes all of the mappings from this map.
2905 */
2906 public void clear() {
2907 internalClear();
2908 }
2909
2910 /**
2911 * Returns a {@link Set} view of the keys contained in this map.
2912 * The set is backed by the map, so changes to the map are
2913 * reflected in the set, and vice-versa.
2914 *
2915 * @return the set view
2916 */
2917 public KeySetView<K,V> keySet() {
2918 KeySetView<K,V> ks = keySet;
2919 return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2920 }
2921
2922 /**
2923 * Returns a {@link Set} view of the keys in this map, using the
2924 * given common mapped value for any additions (i.e., {@link
2925 * Collection#add} and {@link Collection#addAll(Collection)}).
2926 * This is of course only appropriate if it is acceptable to use
2927 * the same value for all additions from this view.
2928 *
2929 * @param mappedValue the mapped value to use for any additions
2930 * @return the set view
2931 * @throws NullPointerException if the mappedValue is null
2932 */
2933 public KeySetView<K,V> keySet(V mappedValue) {
2934 if (mappedValue == null)
2935 throw new NullPointerException();
2936 return new KeySetView<K,V>(this, mappedValue);
2937 }
2938
2939 /**
2940 * Returns a {@link Collection} view of the values contained in this map.
2941 * The collection is backed by the map, so changes to the map are
2942 * reflected in the collection, and vice-versa.
2943 *
2944 * @return the collection view
2945 */
2946 public ValuesView<K,V> values() {
2947 ValuesView<K,V> vs = values;
2948 return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2949 }
2950
2951 /**
2952 * Returns a {@link Set} view of the mappings contained in this map.
2953 * The set is backed by the map, so changes to the map are
2954 * reflected in the set, and vice-versa. The set supports element
2955 * removal, which removes the corresponding mapping from the map,
2956 * via the {@code Iterator.remove}, {@code Set.remove},
2957 * {@code removeAll}, {@code retainAll}, and {@code clear}
2958 * operations. It does not support the {@code add} or
2959 * {@code addAll} operations.
2960 *
2961 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2962 * that will never throw {@link ConcurrentModificationException},
2963 * and guarantees to traverse elements as they existed upon
2964 * construction of the iterator, and may (but is not guaranteed to)
2965 * reflect any modifications subsequent to construction.
2966 *
2967 * @return the set view
2968 */
2969 public Set<Map.Entry<K,V>> entrySet() {
2970 EntrySetView<K,V> es = entrySet;
2971 return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2972 }
2973
2974 /**
2975 * Returns an enumeration of the keys in this table.
2976 *
2977 * @return an enumeration of the keys in this table
2978 * @see #keySet()
2979 */
2980 public Enumeration<K> keys() {
2981 return new KeyIterator<K,V>(this);
2982 }
2983
2984 /**
2985 * Returns an enumeration of the values in this table.
2986 *
2987 * @return an enumeration of the values in this table
2988 * @see #values()
2989 */
2990 public Enumeration<V> elements() {
2991 return new ValueIterator<K,V>(this);
2992 }
2993
2994 /**
2995 * Returns the hash code value for this {@link Map}, i.e.,
2996 * the sum of, for each key-value pair in the map,
2997 * {@code key.hashCode() ^ value.hashCode()}.
2998 *
2999 * @return the hash code value for this map
3000 */
3001 public int hashCode() {
3002 int h = 0;
3003 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3004 V v;
3005 while ((v = it.advanceValue()) != null) {
3006 h += it.nextKey.hashCode() ^ v.hashCode();
3007 }
3008 return h;
3009 }
3010
3011 /**
3012 * Returns a string representation of this map. The string
3013 * representation consists of a list of key-value mappings (in no
3014 * particular order) enclosed in braces ("{@code {}}"). Adjacent
3015 * mappings are separated by the characters {@code ", "} (comma
3016 * and space). Each key-value mapping is rendered as the key
3017 * followed by an equals sign ("{@code =}") followed by the
3018 * associated value.
3019 *
3020 * @return a string representation of this map
3021 */
3022 public String toString() {
3023 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3024 StringBuilder sb = new StringBuilder();
3025 sb.append('{');
3026 V v;
3027 if ((v = it.advanceValue()) != null) {
3028 for (;;) {
3029 K k = it.nextKey;
3030 sb.append(k == this ? "(this Map)" : k);
3031 sb.append('=');
3032 sb.append(v == this ? "(this Map)" : v);
3033 if ((v = it.advanceValue()) == null)
3034 break;
3035 sb.append(',').append(' ');
3036 }
3037 }
3038 return sb.append('}').toString();
3039 }
3040
3041 /**
3042 * Compares the specified object with this map for equality.
3043 * Returns {@code true} if the given object is a map with the same
3044 * mappings as this map. This operation may return misleading
3045 * results if either map is concurrently modified during execution
3046 * of this method.
3047 *
3048 * @param o object to be compared for equality with this map
3049 * @return {@code true} if the specified object is equal to this map
3050 */
3051 public boolean equals(Object o) {
3052 if (o != this) {
3053 if (!(o instanceof Map))
3054 return false;
3055 Map<?,?> m = (Map<?,?>) o;
3056 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3057 V val;
3058 while ((val = it.advanceValue()) != null) {
3059 Object v = m.get(it.nextKey);
3060 if (v == null || (v != val && !v.equals(val)))
3061 return false;
3062 }
3063 for (Map.Entry<?,?> e : m.entrySet()) {
3064 Object mk, mv, v;
3065 if ((mk = e.getKey()) == null ||
3066 (mv = e.getValue()) == null ||
3067 (v = internalGet(mk)) == null ||
3068 (mv != v && !mv.equals(v)))
3069 return false;
3070 }
3071 }
3072 return true;
3073 }
3074
3075 /* ----------------Iterators -------------- */
3076
3077 @SuppressWarnings("serial") static final class KeyIterator<K,V>
3078 extends Traverser<K,V,Object>
3079 implements Spliterator<K>, Iterator<K>, Enumeration<K> {
3080 KeyIterator(ConcurrentHashMap<K,V> map) { super(map); }
3081 KeyIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3082 super(map, it);
3083 }
3084 public Spliterator<K> trySplit() {
3085 return (baseLimit - baseIndex <= 1) ? null :
3086 new KeyIterator<K,V>(map, this);
3087 }
3088 public final K next() {
3089 K k;
3090 if ((k = (nextVal == null) ? advanceKey() : nextKey) == null)
3091 throw new NoSuchElementException();
3092 nextVal = null;
3093 return k;
3094 }
3095
3096 public final K nextElement() { return next(); }
3097
3098 public Iterator<K> iterator() { return this; }
3099
3100 public void forEachRemaining(Consumer<? super K> action) {
3101 forEachKey(action);
3102 }
3103
3104 public boolean tryAdvance(Consumer<? super K> block) {
3105 if (block == null) throw new NullPointerException();
3106 K k;
3107 if ((k = advanceKey()) == null)
3108 return false;
3109 block.accept(k);
3110 return true;
3111 }
3112
3113 public int characteristics() {
3114 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3115 Spliterator.NONNULL;
3116 }
3117
3118 }
3119
3120 @SuppressWarnings("serial") static final class ValueIterator<K,V>
3121 extends Traverser<K,V,Object>
3122 implements Spliterator<V>, Iterator<V>, Enumeration<V> {
3123 ValueIterator(ConcurrentHashMap<K,V> map) { super(map); }
3124 ValueIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3125 super(map, it);
3126 }
3127 public Spliterator<V> trySplit() {
3128 return (baseLimit - baseIndex <= 1) ? null :
3129 new ValueIterator<K,V>(map, this);
3130 }
3131
3132 public final V next() {
3133 V v;
3134 if ((v = nextVal) == null && (v = advanceValue()) == null)
3135 throw new NoSuchElementException();
3136 nextVal = null;
3137 return v;
3138 }
3139
3140 public final V nextElement() { return next(); }
3141
3142 public Iterator<V> iterator() { return this; }
3143
3144 public void forEachRemaining(Consumer<? super V> action) {
3145 forEachValue(action);
3146 }
3147
3148 public boolean tryAdvance(Consumer<? super V> block) {
3149 V v;
3150 if (block == null) throw new NullPointerException();
3151 if ((v = advanceValue()) == null)
3152 return false;
3153 block.accept(v);
3154 return true;
3155 }
3156
3157 public int characteristics() {
3158 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3159 }
3160 }
3161
3162 @SuppressWarnings("serial") static final class EntryIterator<K,V>
3163 extends Traverser<K,V,Object>
3164 implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3165 EntryIterator(ConcurrentHashMap<K,V> map) { super(map); }
3166 EntryIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3167 super(map, it);
3168 }
3169 public Spliterator<Map.Entry<K,V>> trySplit() {
3170 return (baseLimit - baseIndex <= 1) ? null :
3171 new EntryIterator<K,V>(map, this);
3172 }
3173
3174 public final Map.Entry<K,V> next() {
3175 V v;
3176 if ((v = nextVal) == null && (v = advanceValue()) == null)
3177 throw new NoSuchElementException();
3178 K k = nextKey;
3179 nextVal = null;
3180 return new MapEntry<K,V>(k, v, map);
3181 }
3182
3183 public Iterator<Map.Entry<K,V>> iterator() { return this; }
3184
3185 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3186 if (action == null) throw new NullPointerException();
3187 V v;
3188 while ((v = advanceValue()) != null)
3189 action.accept(entryFor(nextKey, v));
3190 }
3191
3192 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> block) {
3193 V v;
3194 if (block == null) throw new NullPointerException();
3195 if ((v = advanceValue()) == null)
3196 return false;
3197 block.accept(entryFor(nextKey, v));
3198 return true;
3199 }
3200
3201 public int characteristics() {
3202 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3203 Spliterator.NONNULL;
3204 }
3205 }
3206
3207 /**
3208 * Exported Entry for iterators
3209 */
3210 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3211 final K key; // non-null
3212 V val; // non-null
3213 final ConcurrentHashMap<K,V> map;
3214 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3215 this.key = key;
3216 this.val = val;
3217 this.map = map;
3218 }
3219 public final K getKey() { return key; }
3220 public final V getValue() { return val; }
3221 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3222 public final String toString(){ return key + "=" + val; }
3223
3224 public final boolean equals(Object o) {
3225 Object k, v; Map.Entry<?,?> e;
3226 return ((o instanceof Map.Entry) &&
3227 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3228 (v = e.getValue()) != null &&
3229 (k == key || k.equals(key)) &&
3230 (v == val || v.equals(val)));
3231 }
3232
3233 /**
3234 * Sets our entry's value and writes through to the map. The
3235 * value to return is somewhat arbitrary here. Since we do not
3236 * necessarily track asynchronous changes, the most recent
3237 * "previous" value could be different from what we return (or
3238 * could even have been removed in which case the put will
3239 * re-establish). We do not and cannot guarantee more.
3240 */
3241 public final V setValue(V value) {
3242 if (value == null) throw new NullPointerException();
3243 V v = val;
3244 val = value;
3245 map.put(key, value);
3246 return v;
3247 }
3248 }
3249
3250 /**
3251 * Returns exportable snapshot entry for the given key and value
3252 * when write-through can't or shouldn't be used.
3253 */
3254 static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3255 return new AbstractMap.SimpleEntry<K,V>(k, v);
3256 }
3257
3258 /* ---------------- Serialization Support -------------- */
3259
3260 /**
3261 * Stripped-down version of helper class used in previous version,
3262 * declared for the sake of serialization compatibility
3263 */
3264 static class Segment<K,V> implements Serializable {
3265 private static final long serialVersionUID = 2249069246763182397L;
3266 final float loadFactor;
3267 Segment(float lf) { this.loadFactor = lf; }
3268 }
3269
3270 /**
3271 * Saves the state of the {@code ConcurrentHashMap} instance to a
3272 * stream (i.e., serializes it).
3273 * @param s the stream
3274 * @serialData
3275 * the key (Object) and value (Object)
3276 * for each key-value mapping, followed by a null pair.
3277 * The key-value mappings are emitted in no particular order.
3278 */
3279 @SuppressWarnings("unchecked") private void writeObject
3280 (java.io.ObjectOutputStream s)
3281 throws java.io.IOException {
3282 if (segments == null) { // for serialization compatibility
3283 segments = (Segment<K,V>[])
3284 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3285 for (int i = 0; i < segments.length; ++i)
3286 segments[i] = new Segment<K,V>(LOAD_FACTOR);
3287 }
3288 s.defaultWriteObject();
3289 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3290 V v;
3291 while ((v = it.advanceValue()) != null) {
3292 s.writeObject(it.nextKey);
3293 s.writeObject(v);
3294 }
3295 s.writeObject(null);
3296 s.writeObject(null);
3297 segments = null; // throw away
3298 }
3299
3300 /**
3301 * Reconstitutes the instance from a stream (that is, deserializes it).
3302 * @param s the stream
3303 */
3304 @SuppressWarnings("unchecked") private void readObject
3305 (java.io.ObjectInputStream s)
3306 throws java.io.IOException, ClassNotFoundException {
3307 s.defaultReadObject();
3308 this.segments = null; // unneeded
3309
3310 // Create all nodes, then place in table once size is known
3311 long size = 0L;
3312 Node<V> p = null;
3313 for (;;) {
3314 K k = (K) s.readObject();
3315 V v = (V) s.readObject();
3316 if (k != null && v != null) {
3317 int h = spread(k.hashCode());
3318 p = new Node<V>(h, k, v, p);
3319 ++size;
3320 }
3321 else
3322 break;
3323 }
3324 if (p != null) {
3325 boolean init = false;
3326 int n;
3327 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3328 n = MAXIMUM_CAPACITY;
3329 else {
3330 int sz = (int)size;
3331 n = tableSizeFor(sz + (sz >>> 1) + 1);
3332 }
3333 int sc = sizeCtl;
3334 boolean collide = false;
3335 if (n > sc &&
3336 U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3337 try {
3338 if (table == null) {
3339 init = true;
3340 @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3341 Node<V>[] tab = (Node<V>[])rt;
3342 int mask = n - 1;
3343 while (p != null) {
3344 int j = p.hash & mask;
3345 Node<V> next = p.next;
3346 Node<V> q = p.next = tabAt(tab, j);
3347 setTabAt(tab, j, p);
3348 if (!collide && q != null && q.hash == p.hash)
3349 collide = true;
3350 p = next;
3351 }
3352 table = tab;
3353 addCount(size, -1);
3354 sc = n - (n >>> 2);
3355 }
3356 } finally {
3357 sizeCtl = sc;
3358 }
3359 if (collide) { // rescan and convert to TreeBins
3360 Node<V>[] tab = table;
3361 for (int i = 0; i < tab.length; ++i) {
3362 int c = 0;
3363 for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3364 if (++c > TREE_THRESHOLD &&
3365 (e.key instanceof Comparable)) {
3366 replaceWithTreeBin(tab, i, e.key);
3367 break;
3368 }
3369 }
3370 }
3371 }
3372 }
3373 if (!init) { // Can only happen if unsafely published.
3374 while (p != null) {
3375 internalPut((K)p.key, p.val, false);
3376 p = p.next;
3377 }
3378 }
3379 }
3380 }
3381
3382 // -------------------------------------------------------
3383
3384 // Sequential bulk operations
3385
3386 /**
3387 * Performs the given action for each (key, value).
3388 *
3389 * @param action the action
3390 */
3391 public void forEachSequentially
3392 (BiConsumer<? super K, ? super V> action) {
3393 if (action == null) throw new NullPointerException();
3394 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3395 V v;
3396 while ((v = it.advanceValue()) != null)
3397 action.accept(it.nextKey, v);
3398 }
3399
3400 /**
3401 * Performs the given action for each non-null transformation
3402 * of each (key, value).
3403 *
3404 * @param transformer a function returning the transformation
3405 * for an element, or null if there is no transformation (in
3406 * which case the action is not applied)
3407 * @param action the action
3408 */
3409 public <U> void forEachSequentially
3410 (BiFunction<? super K, ? super V, ? extends U> transformer,
3411 Consumer<? super U> action) {
3412 if (transformer == null || action == null)
3413 throw new NullPointerException();
3414 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3415 V v; U u;
3416 while ((v = it.advanceValue()) != null) {
3417 if ((u = transformer.apply(it.nextKey, v)) != null)
3418 action.accept(u);
3419 }
3420 }
3421
3422 /**
3423 * Returns a non-null result from applying the given search
3424 * function on each (key, value), or null if none.
3425 *
3426 * @param searchFunction a function returning a non-null
3427 * result on success, else null
3428 * @return a non-null result from applying the given search
3429 * function on each (key, value), or null if none
3430 */
3431 public <U> U searchSequentially
3432 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3433 if (searchFunction == null) throw new NullPointerException();
3434 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3435 V v; U u;
3436 while ((v = it.advanceValue()) != null) {
3437 if ((u = searchFunction.apply(it.nextKey, v)) != null)
3438 return u;
3439 }
3440 return null;
3441 }
3442
3443 /**
3444 * Returns the result of accumulating the given transformation
3445 * of all (key, value) pairs using the given reducer to
3446 * combine values, or null if none.
3447 *
3448 * @param transformer a function returning the transformation
3449 * for an element, or null if there is no transformation (in
3450 * which case it is not combined)
3451 * @param reducer a commutative associative combining function
3452 * @return the result of accumulating the given transformation
3453 * of all (key, value) pairs
3454 */
3455 public <U> U reduceSequentially
3456 (BiFunction<? super K, ? super V, ? extends U> transformer,
3457 BiFunction<? super U, ? super U, ? extends U> reducer) {
3458 if (transformer == null || reducer == null)
3459 throw new NullPointerException();
3460 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3461 U r = null, u; V v;
3462 while ((v = it.advanceValue()) != null) {
3463 if ((u = transformer.apply(it.nextKey, v)) != null)
3464 r = (r == null) ? u : reducer.apply(r, u);
3465 }
3466 return r;
3467 }
3468
3469 /**
3470 * Returns the result of accumulating the given transformation
3471 * of all (key, value) pairs using the given reducer to
3472 * combine values, and the given basis as an identity value.
3473 *
3474 * @param transformer a function returning the transformation
3475 * for an element
3476 * @param basis the identity (initial default value) for the reduction
3477 * @param reducer a commutative associative combining function
3478 * @return the result of accumulating the given transformation
3479 * of all (key, value) pairs
3480 */
3481 public double reduceToDoubleSequentially
3482 (ToDoubleBiFunction<? super K, ? super V> transformer,
3483 double basis,
3484 DoubleBinaryOperator reducer) {
3485 if (transformer == null || reducer == null)
3486 throw new NullPointerException();
3487 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3488 double r = basis; V v;
3489 while ((v = it.advanceValue()) != null)
3490 r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey, v));
3491 return r;
3492 }
3493
3494 /**
3495 * Returns the result of accumulating the given transformation
3496 * of all (key, value) pairs using the given reducer to
3497 * combine values, and the given basis as an identity value.
3498 *
3499 * @param transformer a function returning the transformation
3500 * for an element
3501 * @param basis the identity (initial default value) for the reduction
3502 * @param reducer a commutative associative combining function
3503 * @return the result of accumulating the given transformation
3504 * of all (key, value) pairs
3505 */
3506 public long reduceToLongSequentially
3507 (ToLongBiFunction<? super K, ? super V> transformer,
3508 long basis,
3509 LongBinaryOperator reducer) {
3510 if (transformer == null || reducer == null)
3511 throw new NullPointerException();
3512 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3513 long r = basis; V v;
3514 while ((v = it.advanceValue()) != null)
3515 r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey, v));
3516 return r;
3517 }
3518
3519 /**
3520 * Returns the result of accumulating the given transformation
3521 * of all (key, value) pairs using the given reducer to
3522 * combine values, and the given basis as an identity value.
3523 *
3524 * @param transformer a function returning the transformation
3525 * for an element
3526 * @param basis the identity (initial default value) for the reduction
3527 * @param reducer a commutative associative combining function
3528 * @return the result of accumulating the given transformation
3529 * of all (key, value) pairs
3530 */
3531 public int reduceToIntSequentially
3532 (ToIntBiFunction<? super K, ? super V> transformer,
3533 int basis,
3534 IntBinaryOperator reducer) {
3535 if (transformer == null || reducer == null)
3536 throw new NullPointerException();
3537 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3538 int r = basis; V v;
3539 while ((v = it.advanceValue()) != null)
3540 r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey, v));
3541 return r;
3542 }
3543
3544 /**
3545 * Performs the given action for each key.
3546 *
3547 * @param action the action
3548 */
3549 public void forEachKeySequentially
3550 (Consumer<? super K> action) {
3551 new Traverser<K,V,Object>(this).forEachKey(action);
3552 }
3553
3554 /**
3555 * Performs the given action for each non-null transformation
3556 * of each key.
3557 *
3558 * @param transformer a function returning the transformation
3559 * for an element, or null if there is no transformation (in
3560 * which case the action is not applied)
3561 * @param action the action
3562 */
3563 public <U> void forEachKeySequentially
3564 (Function<? super K, ? extends U> transformer,
3565 Consumer<? super U> action) {
3566 if (transformer == null || action == null)
3567 throw new NullPointerException();
3568 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3569 K k; U u;
3570 while ((k = it.advanceKey()) != null) {
3571 if ((u = transformer.apply(k)) != null)
3572 action.accept(u);
3573 }
3574 }
3575
3576 /**
3577 * Returns a non-null result from applying the given search
3578 * function on each key, or null if none.
3579 *
3580 * @param searchFunction a function returning a non-null
3581 * result on success, else null
3582 * @return a non-null result from applying the given search
3583 * function on each key, or null if none
3584 */
3585 public <U> U searchKeysSequentially
3586 (Function<? super K, ? extends U> searchFunction) {
3587 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3588 K k; U u;
3589 while ((k = it.advanceKey()) != null) {
3590 if ((u = searchFunction.apply(k)) != null)
3591 return u;
3592 }
3593 return null;
3594 }
3595
3596 /**
3597 * Returns the result of accumulating all keys using the given
3598 * reducer to combine values, or null if none.
3599 *
3600 * @param reducer a commutative associative combining function
3601 * @return the result of accumulating all keys using the given
3602 * reducer to combine values, or null if none
3603 */
3604 public K reduceKeysSequentially
3605 (BiFunction<? super K, ? super K, ? extends K> reducer) {
3606 if (reducer == null) throw new NullPointerException();
3607 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3608 K u, r = null;
3609 while ((u = it.advanceKey()) != null) {
3610 r = (r == null) ? u : reducer.apply(r, u);
3611 }
3612 return r;
3613 }
3614
3615 /**
3616 * Returns the result of accumulating the given transformation
3617 * of all keys using the given reducer to combine values, or
3618 * null if none.
3619 *
3620 * @param transformer a function returning the transformation
3621 * for an element, or null if there is no transformation (in
3622 * which case it is not combined)
3623 * @param reducer a commutative associative combining function
3624 * @return the result of accumulating the given transformation
3625 * of all keys
3626 */
3627 public <U> U reduceKeysSequentially
3628 (Function<? super K, ? extends U> transformer,
3629 BiFunction<? super U, ? super U, ? extends U> reducer) {
3630 if (transformer == null || reducer == null)
3631 throw new NullPointerException();
3632 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3633 K k; U r = null, u;
3634 while ((k = it.advanceKey()) != null) {
3635 if ((u = transformer.apply(k)) != null)
3636 r = (r == null) ? u : reducer.apply(r, u);
3637 }
3638 return r;
3639 }
3640
3641 /**
3642 * Returns the result of accumulating the given transformation
3643 * of all keys using the given reducer to combine values, and
3644 * the given basis as an identity value.
3645 *
3646 * @param transformer a function returning the transformation
3647 * for an element
3648 * @param basis the identity (initial default value) for the reduction
3649 * @param reducer a commutative associative combining function
3650 * @return the result of accumulating the given transformation
3651 * of all keys
3652 */
3653 public double reduceKeysToDoubleSequentially
3654 (ToDoubleFunction<? super K> transformer,
3655 double basis,
3656 DoubleBinaryOperator reducer) {
3657 if (transformer == null || reducer == null)
3658 throw new NullPointerException();
3659 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3660 double r = basis;
3661 K k;
3662 while ((k = it.advanceKey()) != null)
3663 r = reducer.applyAsDouble(r, transformer.applyAsDouble(k));
3664 return r;
3665 }
3666
3667 /**
3668 * Returns the result of accumulating the given transformation
3669 * of all keys using the given reducer to combine values, and
3670 * the given basis as an identity value.
3671 *
3672 * @param transformer a function returning the transformation
3673 * for an element
3674 * @param basis the identity (initial default value) for the reduction
3675 * @param reducer a commutative associative combining function
3676 * @return the result of accumulating the given transformation
3677 * of all keys
3678 */
3679 public long reduceKeysToLongSequentially
3680 (ToLongFunction<? super K> transformer,
3681 long basis,
3682 LongBinaryOperator reducer) {
3683 if (transformer == null || reducer == null)
3684 throw new NullPointerException();
3685 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3686 long r = basis;
3687 K k;
3688 while ((k = it.advanceKey()) != null)
3689 r = reducer.applyAsLong(r, transformer.applyAsLong(k));
3690 return r;
3691 }
3692
3693 /**
3694 * Returns the result of accumulating the given transformation
3695 * of all keys using the given reducer to combine values, and
3696 * the given basis as an identity value.
3697 *
3698 * @param transformer a function returning the transformation
3699 * for an element
3700 * @param basis the identity (initial default value) for the reduction
3701 * @param reducer a commutative associative combining function
3702 * @return the result of accumulating the given transformation
3703 * of all keys
3704 */
3705 public int reduceKeysToIntSequentially
3706 (ToIntFunction<? super K> transformer,
3707 int basis,
3708 IntBinaryOperator reducer) {
3709 if (transformer == null || reducer == null)
3710 throw new NullPointerException();
3711 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3712 int r = basis;
3713 K k;
3714 while ((k = it.advanceKey()) != null)
3715 r = reducer.applyAsInt(r, transformer.applyAsInt(k));
3716 return r;
3717 }
3718
3719 /**
3720 * Performs the given action for each value.
3721 *
3722 * @param action the action
3723 */
3724 public void forEachValueSequentially(Consumer<? super V> action) {
3725 new Traverser<K,V,Object>(this).forEachValue(action);
3726 }
3727
3728 /**
3729 * Performs the given action for each non-null transformation
3730 * of each value.
3731 *
3732 * @param transformer a function returning the transformation
3733 * for an element, or null if there is no transformation (in
3734 * which case the action is not applied)
3735 * @param action the action
3736 */
3737 public <U> void forEachValueSequentially
3738 (Function<? super V, ? extends U> transformer,
3739 Consumer<? super U> action) {
3740 if (transformer == null || action == null)
3741 throw new NullPointerException();
3742 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3743 V v; U u;
3744 while ((v = it.advanceValue()) != null) {
3745 if ((u = transformer.apply(v)) != null)
3746 action.accept(u);
3747 }
3748 }
3749
3750 /**
3751 * Returns a non-null result from applying the given search
3752 * function on each value, or null if none.
3753 *
3754 * @param searchFunction a function returning a non-null
3755 * result on success, else null
3756 * @return a non-null result from applying the given search
3757 * function on each value, or null if none
3758 */
3759 public <U> U searchValuesSequentially
3760 (Function<? super V, ? extends U> searchFunction) {
3761 if (searchFunction == null) throw new NullPointerException();
3762 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3763 V v; U u;
3764 while ((v = it.advanceValue()) != null) {
3765 if ((u = searchFunction.apply(v)) != null)
3766 return u;
3767 }
3768 return null;
3769 }
3770
3771 /**
3772 * Returns the result of accumulating all values using the
3773 * given reducer to combine values, or null if none.
3774 *
3775 * @param reducer a commutative associative combining function
3776 * @return the result of accumulating all values
3777 */
3778 public V reduceValuesSequentially
3779 (BiFunction<? super V, ? super V, ? extends V> reducer) {
3780 if (reducer == null) throw new NullPointerException();
3781 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3782 V r = null; V v;
3783 while ((v = it.advanceValue()) != null)
3784 r = (r == null) ? v : reducer.apply(r, v);
3785 return r;
3786 }
3787
3788 /**
3789 * Returns the result of accumulating the given transformation
3790 * of all values using the given reducer to combine values, or
3791 * null if none.
3792 *
3793 * @param transformer a function returning the transformation
3794 * for an element, or null if there is no transformation (in
3795 * which case it is not combined)
3796 * @param reducer a commutative associative combining function
3797 * @return the result of accumulating the given transformation
3798 * of all values
3799 */
3800 public <U> U reduceValuesSequentially
3801 (Function<? super V, ? extends U> transformer,
3802 BiFunction<? super U, ? super U, ? extends U> reducer) {
3803 if (transformer == null || reducer == null)
3804 throw new NullPointerException();
3805 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3806 U r = null, u; V v;
3807 while ((v = it.advanceValue()) != null) {
3808 if ((u = transformer.apply(v)) != null)
3809 r = (r == null) ? u : reducer.apply(r, u);
3810 }
3811 return r;
3812 }
3813
3814 /**
3815 * Returns the result of accumulating the given transformation
3816 * of all values using the given reducer to combine values,
3817 * and the given basis as an identity value.
3818 *
3819 * @param transformer a function returning the transformation
3820 * for an element
3821 * @param basis the identity (initial default value) for the reduction
3822 * @param reducer a commutative associative combining function
3823 * @return the result of accumulating the given transformation
3824 * of all values
3825 */
3826 public double reduceValuesToDoubleSequentially
3827 (ToDoubleFunction<? super V> transformer,
3828 double basis,
3829 DoubleBinaryOperator reducer) {
3830 if (transformer == null || reducer == null)
3831 throw new NullPointerException();
3832 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3833 double r = basis; V v;
3834 while ((v = it.advanceValue()) != null)
3835 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
3836 return r;
3837 }
3838
3839 /**
3840 * Returns the result of accumulating the given transformation
3841 * of all values using the given reducer to combine values,
3842 * and the given basis as an identity value.
3843 *
3844 * @param transformer a function returning the transformation
3845 * for an element
3846 * @param basis the identity (initial default value) for the reduction
3847 * @param reducer a commutative associative combining function
3848 * @return the result of accumulating the given transformation
3849 * of all values
3850 */
3851 public long reduceValuesToLongSequentially
3852 (ToLongFunction<? super V> transformer,
3853 long basis,
3854 LongBinaryOperator reducer) {
3855 if (transformer == null || reducer == null)
3856 throw new NullPointerException();
3857 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3858 long r = basis; V v;
3859 while ((v = it.advanceValue()) != null)
3860 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
3861 return r;
3862 }
3863
3864 /**
3865 * Returns the result of accumulating the given transformation
3866 * of all values using the given reducer to combine values,
3867 * and the given basis as an identity value.
3868 *
3869 * @param transformer a function returning the transformation
3870 * for an element
3871 * @param basis the identity (initial default value) for the reduction
3872 * @param reducer a commutative associative combining function
3873 * @return the result of accumulating the given transformation
3874 * of all values
3875 */
3876 public int reduceValuesToIntSequentially
3877 (ToIntFunction<? super V> transformer,
3878 int basis,
3879 IntBinaryOperator reducer) {
3880 if (transformer == null || reducer == null)
3881 throw new NullPointerException();
3882 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3883 int r = basis; V v;
3884 while ((v = it.advanceValue()) != null)
3885 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
3886 return r;
3887 }
3888
3889 /**
3890 * Performs the given action for each entry.
3891 *
3892 * @param action the action
3893 */
3894 public void forEachEntrySequentially
3895 (Consumer<? super Map.Entry<K,V>> action) {
3896 if (action == null) throw new NullPointerException();
3897 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3898 V v;
3899 while ((v = it.advanceValue()) != null)
3900 action.accept(entryFor(it.nextKey, v));
3901 }
3902
3903 /**
3904 * Performs the given action for each non-null transformation
3905 * of each entry.
3906 *
3907 * @param transformer a function returning the transformation
3908 * for an element, or null if there is no transformation (in
3909 * which case the action is not applied)
3910 * @param action the action
3911 */
3912 public <U> void forEachEntrySequentially
3913 (Function<Map.Entry<K,V>, ? extends U> transformer,
3914 Consumer<? super U> action) {
3915 if (transformer == null || action == null)
3916 throw new NullPointerException();
3917 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3918 V v; U u;
3919 while ((v = it.advanceValue()) != null) {
3920 if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3921 action.accept(u);
3922 }
3923 }
3924
3925 /**
3926 * Returns a non-null result from applying the given search
3927 * function on each entry, or null if none.
3928 *
3929 * @param searchFunction a function returning a non-null
3930 * result on success, else null
3931 * @return a non-null result from applying the given search
3932 * function on each entry, or null if none
3933 */
3934 public <U> U searchEntriesSequentially
3935 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3936 if (searchFunction == null) throw new NullPointerException();
3937 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3938 V v; U u;
3939 while ((v = it.advanceValue()) != null) {
3940 if ((u = searchFunction.apply(entryFor(it.nextKey, v))) != null)
3941 return u;
3942 }
3943 return null;
3944 }
3945
3946 /**
3947 * Returns the result of accumulating all entries using the
3948 * given reducer to combine values, or null if none.
3949 *
3950 * @param reducer a commutative associative combining function
3951 * @return the result of accumulating all entries
3952 */
3953 public Map.Entry<K,V> reduceEntriesSequentially
3954 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3955 if (reducer == null) throw new NullPointerException();
3956 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3957 Map.Entry<K,V> r = null; V v;
3958 while ((v = it.advanceValue()) != null) {
3959 Map.Entry<K,V> u = entryFor(it.nextKey, v);
3960 r = (r == null) ? u : reducer.apply(r, u);
3961 }
3962 return r;
3963 }
3964
3965 /**
3966 * Returns the result of accumulating the given transformation
3967 * of all entries using the given reducer to combine values,
3968 * or null if none.
3969 *
3970 * @param transformer a function returning the transformation
3971 * for an element, or null if there is no transformation (in
3972 * which case it is not combined)
3973 * @param reducer a commutative associative combining function
3974 * @return the result of accumulating the given transformation
3975 * of all entries
3976 */
3977 public <U> U reduceEntriesSequentially
3978 (Function<Map.Entry<K,V>, ? extends U> transformer,
3979 BiFunction<? super U, ? super U, ? extends U> reducer) {
3980 if (transformer == null || reducer == null)
3981 throw new NullPointerException();
3982 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3983 U r = null, u; V v;
3984 while ((v = it.advanceValue()) != null) {
3985 if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3986 r = (r == null) ? u : reducer.apply(r, u);
3987 }
3988 return r;
3989 }
3990
3991 /**
3992 * Returns the result of accumulating the given transformation
3993 * of all entries using the given reducer to combine values,
3994 * and the given basis as an identity value.
3995 *
3996 * @param transformer a function returning the transformation
3997 * for an element
3998 * @param basis the identity (initial default value) for the reduction
3999 * @param reducer a commutative associative combining function
4000 * @return the result of accumulating the given transformation
4001 * of all entries
4002 */
4003 public double reduceEntriesToDoubleSequentially
4004 (ToDoubleFunction<Map.Entry<K,V>> transformer,
4005 double basis,
4006 DoubleBinaryOperator reducer) {
4007 if (transformer == null || reducer == null)
4008 throw new NullPointerException();
4009 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4010 double r = basis; V v;
4011 while ((v = it.advanceValue()) != null)
4012 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(it.nextKey, v)));
4013 return r;
4014 }
4015
4016 /**
4017 * Returns the result of accumulating the given transformation
4018 * of all entries using the given reducer to combine values,
4019 * and the given basis as an identity value.
4020 *
4021 * @param transformer a function returning the transformation
4022 * for an element
4023 * @param basis the identity (initial default value) for the reduction
4024 * @param reducer a commutative associative combining function
4025 * @return the result of accumulating the given transformation
4026 * of all entries
4027 */
4028 public long reduceEntriesToLongSequentially
4029 (ToLongFunction<Map.Entry<K,V>> transformer,
4030 long basis,
4031 LongBinaryOperator reducer) {
4032 if (transformer == null || reducer == null)
4033 throw new NullPointerException();
4034 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4035 long r = basis; V v;
4036 while ((v = it.advanceValue()) != null)
4037 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(it.nextKey, v)));
4038 return r;
4039 }
4040
4041 /**
4042 * Returns the result of accumulating the given transformation
4043 * of all entries using the given reducer to combine values,
4044 * and the given basis as an identity value.
4045 *
4046 * @param transformer a function returning the transformation
4047 * for an element
4048 * @param basis the identity (initial default value) for the reduction
4049 * @param reducer a commutative associative combining function
4050 * @return the result of accumulating the given transformation
4051 * of all entries
4052 */
4053 public int reduceEntriesToIntSequentially
4054 (ToIntFunction<Map.Entry<K,V>> transformer,
4055 int basis,
4056 IntBinaryOperator reducer) {
4057 if (transformer == null || reducer == null)
4058 throw new NullPointerException();
4059 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4060 int r = basis; V v;
4061 while ((v = it.advanceValue()) != null)
4062 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(it.nextKey, v)));
4063 return r;
4064 }
4065
4066 // Parallel bulk operations
4067
4068 /**
4069 * Performs the given action for each (key, value).
4070 *
4071 * @param action the action
4072 */
4073 public void forEachInParallel(BiConsumer<? super K,? super V> action) {
4074 ForkJoinTasks.forEach
4075 (this, action).invoke();
4076 }
4077
4078 /**
4079 * Performs the given action for each non-null transformation
4080 * of each (key, value).
4081 *
4082 * @param transformer a function returning the transformation
4083 * for an element, or null if there is no transformation (in
4084 * which case the action is not applied)
4085 * @param action the action
4086 */
4087 public <U> void forEachInParallel
4088 (BiFunction<? super K, ? super V, ? extends U> transformer,
4089 Consumer<? super U> action) {
4090 ForkJoinTasks.forEach
4091 (this, transformer, action).invoke();
4092 }
4093
4094 /**
4095 * Returns a non-null result from applying the given search
4096 * function on each (key, value), or null if none. Upon
4097 * success, further element processing is suppressed and the
4098 * results of any other parallel invocations of the search
4099 * function are ignored.
4100 *
4101 * @param searchFunction a function returning a non-null
4102 * result on success, else null
4103 * @return a non-null result from applying the given search
4104 * function on each (key, value), or null if none
4105 */
4106 public <U> U searchInParallel
4107 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4108 return ForkJoinTasks.search
4109 (this, searchFunction).invoke();
4110 }
4111
4112 /**
4113 * Returns the result of accumulating the given transformation
4114 * of all (key, value) pairs using the given reducer to
4115 * combine values, or null if none.
4116 *
4117 * @param transformer a function returning the transformation
4118 * for an element, or null if there is no transformation (in
4119 * which case it is not combined)
4120 * @param reducer a commutative associative combining function
4121 * @return the result of accumulating the given transformation
4122 * of all (key, value) pairs
4123 */
4124 public <U> U reduceInParallel
4125 (BiFunction<? super K, ? super V, ? extends U> transformer,
4126 BiFunction<? super U, ? super U, ? extends U> reducer) {
4127 return ForkJoinTasks.reduce
4128 (this, transformer, reducer).invoke();
4129 }
4130
4131 /**
4132 * Returns the result of accumulating the given transformation
4133 * of all (key, value) pairs using the given reducer to
4134 * combine values, and the given basis as an identity value.
4135 *
4136 * @param transformer a function returning the transformation
4137 * for an element
4138 * @param basis the identity (initial default value) for the reduction
4139 * @param reducer a commutative associative combining function
4140 * @return the result of accumulating the given transformation
4141 * of all (key, value) pairs
4142 */
4143 public double reduceToDoubleInParallel
4144 (ToDoubleBiFunction<? super K, ? super V> transformer,
4145 double basis,
4146 DoubleBinaryOperator reducer) {
4147 return ForkJoinTasks.reduceToDouble
4148 (this, transformer, basis, reducer).invoke();
4149 }
4150
4151 /**
4152 * Returns the result of accumulating the given transformation
4153 * of all (key, value) pairs using the given reducer to
4154 * combine values, and the given basis as an identity value.
4155 *
4156 * @param transformer a function returning the transformation
4157 * for an element
4158 * @param basis the identity (initial default value) for the reduction
4159 * @param reducer a commutative associative combining function
4160 * @return the result of accumulating the given transformation
4161 * of all (key, value) pairs
4162 */
4163 public long reduceToLongInParallel
4164 (ToLongBiFunction<? super K, ? super V> transformer,
4165 long basis,
4166 LongBinaryOperator reducer) {
4167 return ForkJoinTasks.reduceToLong
4168 (this, transformer, basis, reducer).invoke();
4169 }
4170
4171 /**
4172 * Returns the result of accumulating the given transformation
4173 * of all (key, value) pairs using the given reducer to
4174 * combine values, and the given basis as an identity value.
4175 *
4176 * @param transformer a function returning the transformation
4177 * for an element
4178 * @param basis the identity (initial default value) for the reduction
4179 * @param reducer a commutative associative combining function
4180 * @return the result of accumulating the given transformation
4181 * of all (key, value) pairs
4182 */
4183 public int reduceToIntInParallel
4184 (ToIntBiFunction<? super K, ? super V> transformer,
4185 int basis,
4186 IntBinaryOperator reducer) {
4187 return ForkJoinTasks.reduceToInt
4188 (this, transformer, basis, reducer).invoke();
4189 }
4190
4191 /**
4192 * Performs the given action for each key.
4193 *
4194 * @param action the action
4195 */
4196 public void forEachKeyInParallel(Consumer<? super K> action) {
4197 ForkJoinTasks.forEachKey
4198 (this, action).invoke();
4199 }
4200
4201 /**
4202 * Performs the given action for each non-null transformation
4203 * of each key.
4204 *
4205 * @param transformer a function returning the transformation
4206 * for an element, or null if there is no transformation (in
4207 * which case the action is not applied)
4208 * @param action the action
4209 */
4210 public <U> void forEachKeyInParallel
4211 (Function<? super K, ? extends U> transformer,
4212 Consumer<? super U> action) {
4213 ForkJoinTasks.forEachKey
4214 (this, transformer, action).invoke();
4215 }
4216
4217 /**
4218 * Returns a non-null result from applying the given search
4219 * function on each key, or null if none. Upon success,
4220 * further element processing is suppressed and the results of
4221 * any other parallel invocations of the search function are
4222 * ignored.
4223 *
4224 * @param searchFunction a function returning a non-null
4225 * result on success, else null
4226 * @return a non-null result from applying the given search
4227 * function on each key, or null if none
4228 */
4229 public <U> U searchKeysInParallel
4230 (Function<? super K, ? extends U> searchFunction) {
4231 return ForkJoinTasks.searchKeys
4232 (this, searchFunction).invoke();
4233 }
4234
4235 /**
4236 * Returns the result of accumulating all keys using the given
4237 * reducer to combine values, or null if none.
4238 *
4239 * @param reducer a commutative associative combining function
4240 * @return the result of accumulating all keys using the given
4241 * reducer to combine values, or null if none
4242 */
4243 public K reduceKeysInParallel
4244 (BiFunction<? super K, ? super K, ? extends K> reducer) {
4245 return ForkJoinTasks.reduceKeys
4246 (this, reducer).invoke();
4247 }
4248
4249 /**
4250 * Returns the result of accumulating the given transformation
4251 * of all keys using the given reducer to combine values, or
4252 * null if none.
4253 *
4254 * @param transformer a function returning the transformation
4255 * for an element, or null if there is no transformation (in
4256 * which case it is not combined)
4257 * @param reducer a commutative associative combining function
4258 * @return the result of accumulating the given transformation
4259 * of all keys
4260 */
4261 public <U> U reduceKeysInParallel
4262 (Function<? super K, ? extends U> transformer,
4263 BiFunction<? super U, ? super U, ? extends U> reducer) {
4264 return ForkJoinTasks.reduceKeys
4265 (this, transformer, reducer).invoke();
4266 }
4267
4268 /**
4269 * Returns the result of accumulating the given transformation
4270 * of all keys using the given reducer to combine values, and
4271 * the given basis as an identity value.
4272 *
4273 * @param transformer a function returning the transformation
4274 * for an element
4275 * @param basis the identity (initial default value) for the reduction
4276 * @param reducer a commutative associative combining function
4277 * @return the result of accumulating the given transformation
4278 * of all keys
4279 */
4280 public double reduceKeysToDoubleInParallel
4281 (ToDoubleFunction<? super K> transformer,
4282 double basis,
4283 DoubleBinaryOperator reducer) {
4284 return ForkJoinTasks.reduceKeysToDouble
4285 (this, transformer, basis, reducer).invoke();
4286 }
4287
4288 /**
4289 * Returns the result of accumulating the given transformation
4290 * of all keys using the given reducer to combine values, and
4291 * the given basis as an identity value.
4292 *
4293 * @param transformer a function returning the transformation
4294 * for an element
4295 * @param basis the identity (initial default value) for the reduction
4296 * @param reducer a commutative associative combining function
4297 * @return the result of accumulating the given transformation
4298 * of all keys
4299 */
4300 public long reduceKeysToLongInParallel
4301 (ToLongFunction<? super K> transformer,
4302 long basis,
4303 LongBinaryOperator reducer) {
4304 return ForkJoinTasks.reduceKeysToLong
4305 (this, transformer, basis, reducer).invoke();
4306 }
4307
4308 /**
4309 * Returns the result of accumulating the given transformation
4310 * of all keys using the given reducer to combine values, and
4311 * the given basis as an identity value.
4312 *
4313 * @param transformer a function returning the transformation
4314 * for an element
4315 * @param basis the identity (initial default value) for the reduction
4316 * @param reducer a commutative associative combining function
4317 * @return the result of accumulating the given transformation
4318 * of all keys
4319 */
4320 public int reduceKeysToIntInParallel
4321 (ToIntFunction<? super K> transformer,
4322 int basis,
4323 IntBinaryOperator reducer) {
4324 return ForkJoinTasks.reduceKeysToInt
4325 (this, transformer, basis, reducer).invoke();
4326 }
4327
4328 /**
4329 * Performs the given action for each value.
4330 *
4331 * @param action the action
4332 */
4333 public void forEachValueInParallel(Consumer<? super V> action) {
4334 ForkJoinTasks.forEachValue
4335 (this, action).invoke();
4336 }
4337
4338 /**
4339 * Performs the given action for each non-null transformation
4340 * of each value.
4341 *
4342 * @param transformer a function returning the transformation
4343 * for an element, or null if there is no transformation (in
4344 * which case the action is not applied)
4345 * @param action the action
4346 */
4347 public <U> void forEachValueInParallel
4348 (Function<? super V, ? extends U> transformer,
4349 Consumer<? super U> action) {
4350 ForkJoinTasks.forEachValue
4351 (this, transformer, action).invoke();
4352 }
4353
4354 /**
4355 * Returns a non-null result from applying the given search
4356 * function on each value, or null if none. Upon success,
4357 * further element processing is suppressed and the results of
4358 * any other parallel invocations of the search function are
4359 * ignored.
4360 *
4361 * @param searchFunction a function returning a non-null
4362 * result on success, else null
4363 * @return a non-null result from applying the given search
4364 * function on each value, or null if none
4365 */
4366 public <U> U searchValuesInParallel
4367 (Function<? super V, ? extends U> searchFunction) {
4368 return ForkJoinTasks.searchValues
4369 (this, searchFunction).invoke();
4370 }
4371
4372 /**
4373 * Returns the result of accumulating all values using the
4374 * given reducer to combine values, or null if none.
4375 *
4376 * @param reducer a commutative associative combining function
4377 * @return the result of accumulating all values
4378 */
4379 public V reduceValuesInParallel
4380 (BiFunction<? super V, ? super V, ? extends V> reducer) {
4381 return ForkJoinTasks.reduceValues
4382 (this, reducer).invoke();
4383 }
4384
4385 /**
4386 * Returns the result of accumulating the given transformation
4387 * of all values using the given reducer to combine values, or
4388 * null if none.
4389 *
4390 * @param transformer a function returning the transformation
4391 * for an element, or null if there is no transformation (in
4392 * which case it is not combined)
4393 * @param reducer a commutative associative combining function
4394 * @return the result of accumulating the given transformation
4395 * of all values
4396 */
4397 public <U> U reduceValuesInParallel
4398 (Function<? super V, ? extends U> transformer,
4399 BiFunction<? super U, ? super U, ? extends U> reducer) {
4400 return ForkJoinTasks.reduceValues
4401 (this, transformer, reducer).invoke();
4402 }
4403
4404 /**
4405 * Returns the result of accumulating the given transformation
4406 * of all values using the given reducer to combine values,
4407 * and the given basis as an identity value.
4408 *
4409 * @param transformer a function returning the transformation
4410 * for an element
4411 * @param basis the identity (initial default value) for the reduction
4412 * @param reducer a commutative associative combining function
4413 * @return the result of accumulating the given transformation
4414 * of all values
4415 */
4416 public double reduceValuesToDoubleInParallel
4417 (ToDoubleFunction<? super V> transformer,
4418 double basis,
4419 DoubleBinaryOperator reducer) {
4420 return ForkJoinTasks.reduceValuesToDouble
4421 (this, transformer, basis, reducer).invoke();
4422 }
4423
4424 /**
4425 * Returns the result of accumulating the given transformation
4426 * of all values using the given reducer to combine values,
4427 * and the given basis as an identity value.
4428 *
4429 * @param transformer a function returning the transformation
4430 * for an element
4431 * @param basis the identity (initial default value) for the reduction
4432 * @param reducer a commutative associative combining function
4433 * @return the result of accumulating the given transformation
4434 * of all values
4435 */
4436 public long reduceValuesToLongInParallel
4437 (ToLongFunction<? super V> transformer,
4438 long basis,
4439 LongBinaryOperator reducer) {
4440 return ForkJoinTasks.reduceValuesToLong
4441 (this, transformer, basis, reducer).invoke();
4442 }
4443
4444 /**
4445 * Returns the result of accumulating the given transformation
4446 * of all values using the given reducer to combine values,
4447 * and the given basis as an identity value.
4448 *
4449 * @param transformer a function returning the transformation
4450 * for an element
4451 * @param basis the identity (initial default value) for the reduction
4452 * @param reducer a commutative associative combining function
4453 * @return the result of accumulating the given transformation
4454 * of all values
4455 */
4456 public int reduceValuesToIntInParallel
4457 (ToIntFunction<? super V> transformer,
4458 int basis,
4459 IntBinaryOperator reducer) {
4460 return ForkJoinTasks.reduceValuesToInt
4461 (this, transformer, basis, reducer).invoke();
4462 }
4463
4464 /**
4465 * Performs the given action for each entry.
4466 *
4467 * @param action the action
4468 */
4469 public void forEachEntryInParallel(Consumer<? super Map.Entry<K,V>> action) {
4470 ForkJoinTasks.forEachEntry
4471 (this, action).invoke();
4472 }
4473
4474 /**
4475 * Performs the given action for each non-null transformation
4476 * of each entry.
4477 *
4478 * @param transformer a function returning the transformation
4479 * for an element, or null if there is no transformation (in
4480 * which case the action is not applied)
4481 * @param action the action
4482 */
4483 public <U> void forEachEntryInParallel
4484 (Function<Map.Entry<K,V>, ? extends U> transformer,
4485 Consumer<? super U> action) {
4486 ForkJoinTasks.forEachEntry
4487 (this, transformer, action).invoke();
4488 }
4489
4490 /**
4491 * Returns a non-null result from applying the given search
4492 * function on each entry, or null if none. Upon success,
4493 * further element processing is suppressed and the results of
4494 * any other parallel invocations of the search function are
4495 * ignored.
4496 *
4497 * @param searchFunction a function returning a non-null
4498 * result on success, else null
4499 * @return a non-null result from applying the given search
4500 * function on each entry, or null if none
4501 */
4502 public <U> U searchEntriesInParallel
4503 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4504 return ForkJoinTasks.searchEntries
4505 (this, searchFunction).invoke();
4506 }
4507
4508 /**
4509 * Returns the result of accumulating all entries using the
4510 * given reducer to combine values, or null if none.
4511 *
4512 * @param reducer a commutative associative combining function
4513 * @return the result of accumulating all entries
4514 */
4515 public Map.Entry<K,V> reduceEntriesInParallel
4516 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4517 return ForkJoinTasks.reduceEntries
4518 (this, reducer).invoke();
4519 }
4520
4521 /**
4522 * Returns the result of accumulating the given transformation
4523 * of all entries using the given reducer to combine values,
4524 * or null if none.
4525 *
4526 * @param transformer a function returning the transformation
4527 * for an element, or null if there is no transformation (in
4528 * which case it is not combined)
4529 * @param reducer a commutative associative combining function
4530 * @return the result of accumulating the given transformation
4531 * of all entries
4532 */
4533 public <U> U reduceEntriesInParallel
4534 (Function<Map.Entry<K,V>, ? extends U> transformer,
4535 BiFunction<? super U, ? super U, ? extends U> reducer) {
4536 return ForkJoinTasks.reduceEntries
4537 (this, transformer, reducer).invoke();
4538 }
4539
4540 /**
4541 * Returns the result of accumulating the given transformation
4542 * of all entries using the given reducer to combine values,
4543 * and the given basis as an identity value.
4544 *
4545 * @param transformer a function returning the transformation
4546 * for an element
4547 * @param basis the identity (initial default value) for the reduction
4548 * @param reducer a commutative associative combining function
4549 * @return the result of accumulating the given transformation
4550 * of all entries
4551 */
4552 public double reduceEntriesToDoubleInParallel
4553 (ToDoubleFunction<Map.Entry<K,V>> transformer,
4554 double basis,
4555 DoubleBinaryOperator reducer) {
4556 return ForkJoinTasks.reduceEntriesToDouble
4557 (this, transformer, basis, reducer).invoke();
4558 }
4559
4560 /**
4561 * Returns the result of accumulating the given transformation
4562 * of all entries using the given reducer to combine values,
4563 * and the given basis as an identity value.
4564 *
4565 * @param transformer a function returning the transformation
4566 * for an element
4567 * @param basis the identity (initial default value) for the reduction
4568 * @param reducer a commutative associative combining function
4569 * @return the result of accumulating the given transformation
4570 * of all entries
4571 */
4572 public long reduceEntriesToLongInParallel
4573 (ToLongFunction<Map.Entry<K,V>> transformer,
4574 long basis,
4575 LongBinaryOperator reducer) {
4576 return ForkJoinTasks.reduceEntriesToLong
4577 (this, transformer, basis, reducer).invoke();
4578 }
4579
4580 /**
4581 * Returns the result of accumulating the given transformation
4582 * of all entries using the given reducer to combine values,
4583 * and the given basis as an identity value.
4584 *
4585 * @param transformer a function returning the transformation
4586 * for an element
4587 * @param basis the identity (initial default value) for the reduction
4588 * @param reducer a commutative associative combining function
4589 * @return the result of accumulating the given transformation
4590 * of all entries
4591 */
4592 public int reduceEntriesToIntInParallel
4593 (ToIntFunction<Map.Entry<K,V>> transformer,
4594 int basis,
4595 IntBinaryOperator reducer) {
4596 return ForkJoinTasks.reduceEntriesToInt
4597 (this, transformer, basis, reducer).invoke();
4598 }
4599
4600
4601 /* ----------------Views -------------- */
4602
4603 /**
4604 * Base class for views.
4605 */
4606 abstract static class CHMCollectionView<K,V,E>
4607 implements Collection<E>, java.io.Serializable {
4608 private static final long serialVersionUID = 7249069246763182397L;
4609 final ConcurrentHashMap<K,V> map;
4610 CHMCollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4611
4612 /**
4613 * Returns the map backing this view.
4614 *
4615 * @return the map backing this view
4616 */
4617 public ConcurrentHashMap<K,V> getMap() { return map; }
4618
4619 /**
4620 * Removes all of the elements from this view, by removing all
4621 * the mappings from the map backing this view.
4622 */
4623 public final void clear() { map.clear(); }
4624 public final int size() { return map.size(); }
4625 public final boolean isEmpty() { return map.isEmpty(); }
4626
4627 // implementations below rely on concrete classes supplying these
4628 // abstract methods
4629 /**
4630 * Returns a "weakly consistent" iterator that will never
4631 * throw {@link ConcurrentModificationException}, and
4632 * guarantees to traverse elements as they existed upon
4633 * construction of the iterator, and may (but is not
4634 * guaranteed to) reflect any modifications subsequent to
4635 * construction.
4636 */
4637 public abstract Iterator<E> iterator();
4638 public abstract boolean contains(Object o);
4639 public abstract boolean remove(Object o);
4640
4641 private static final String oomeMsg = "Required array size too large";
4642
4643 public final Object[] toArray() {
4644 long sz = map.mappingCount();
4645 if (sz > MAX_ARRAY_SIZE)
4646 throw new OutOfMemoryError(oomeMsg);
4647 int n = (int)sz;
4648 Object[] r = new Object[n];
4649 int i = 0;
4650 for (E e : this) {
4651 if (i == n) {
4652 if (n >= MAX_ARRAY_SIZE)
4653 throw new OutOfMemoryError(oomeMsg);
4654 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4655 n = MAX_ARRAY_SIZE;
4656 else
4657 n += (n >>> 1) + 1;
4658 r = Arrays.copyOf(r, n);
4659 }
4660 r[i++] = e;
4661 }
4662 return (i == n) ? r : Arrays.copyOf(r, i);
4663 }
4664
4665 @SuppressWarnings("unchecked")
4666 public final <T> T[] toArray(T[] a) {
4667 long sz = map.mappingCount();
4668 if (sz > MAX_ARRAY_SIZE)
4669 throw new OutOfMemoryError(oomeMsg);
4670 int m = (int)sz;
4671 T[] r = (a.length >= m) ? a :
4672 (T[])java.lang.reflect.Array
4673 .newInstance(a.getClass().getComponentType(), m);
4674 int n = r.length;
4675 int i = 0;
4676 for (E e : this) {
4677 if (i == n) {
4678 if (n >= MAX_ARRAY_SIZE)
4679 throw new OutOfMemoryError(oomeMsg);
4680 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4681 n = MAX_ARRAY_SIZE;
4682 else
4683 n += (n >>> 1) + 1;
4684 r = Arrays.copyOf(r, n);
4685 }
4686 r[i++] = (T)e;
4687 }
4688 if (a == r && i < n) {
4689 r[i] = null; // null-terminate
4690 return r;
4691 }
4692 return (i == n) ? r : Arrays.copyOf(r, i);
4693 }
4694
4695 /**
4696 * Returns a string representation of this collection.
4697 * The string representation consists of the string representations
4698 * of the collection's elements in the order they are returned by
4699 * its iterator, enclosed in square brackets ({@code "[]"}).
4700 * Adjacent elements are separated by the characters {@code ", "}
4701 * (comma and space). Elements are converted to strings as by
4702 * {@link String#valueOf(Object)}.
4703 *
4704 * @return a string representation of this collection
4705 */
4706 public final String toString() {
4707 StringBuilder sb = new StringBuilder();
4708 sb.append('[');
4709 Iterator<E> it = iterator();
4710 if (it.hasNext()) {
4711 for (;;) {
4712 Object e = it.next();
4713 sb.append(e == this ? "(this Collection)" : e);
4714 if (!it.hasNext())
4715 break;
4716 sb.append(',').append(' ');
4717 }
4718 }
4719 return sb.append(']').toString();
4720 }
4721
4722 public final boolean containsAll(Collection<?> c) {
4723 if (c != this) {
4724 for (Object e : c) {
4725 if (e == null || !contains(e))
4726 return false;
4727 }
4728 }
4729 return true;
4730 }
4731
4732 public final boolean removeAll(Collection<?> c) {
4733 boolean modified = false;
4734 for (Iterator<E> it = iterator(); it.hasNext();) {
4735 if (c.contains(it.next())) {
4736 it.remove();
4737 modified = true;
4738 }
4739 }
4740 return modified;
4741 }
4742
4743 public final boolean retainAll(Collection<?> c) {
4744 boolean modified = false;
4745 for (Iterator<E> it = iterator(); it.hasNext();) {
4746 if (!c.contains(it.next())) {
4747 it.remove();
4748 modified = true;
4749 }
4750 }
4751 return modified;
4752 }
4753
4754 }
4755
4756 abstract static class CHMSetView<K,V,E>
4757 extends CHMCollectionView<K,V,E>
4758 implements Set<E>, java.io.Serializable {
4759 private static final long serialVersionUID = 7249069246763182397L;
4760 CHMSetView(ConcurrentHashMap<K,V> map) { super(map); }
4761
4762 // Implement Set API
4763
4764 /**
4765 * Implements {@link Set#hashCode()}.
4766 * @return the hash code value for this set
4767 */
4768 public final int hashCode() {
4769 int h = 0;
4770 for (E e : this)
4771 h += e.hashCode();
4772 return h;
4773 }
4774
4775 /**
4776 * Implements {@link Set#equals(Object)}.
4777 * @param o object to be compared for equality with this set
4778 * @return {@code true} if the specified object is equal to this set
4779 */
4780 public final boolean equals(Object o) {
4781 Set<?> c;
4782 return ((o instanceof Set) &&
4783 ((c = (Set<?>)o) == this ||
4784 (containsAll(c) && c.containsAll(this))));
4785 }
4786 }
4787
4788 /**
4789 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4790 * which additions may optionally be enabled by mapping to a
4791 * common value. This class cannot be directly instantiated.
4792 * See {@link #keySet() keySet()},
4793 * {@link #keySet(Object) keySet(V)},
4794 * {@link #newKeySet() newKeySet()},
4795 * {@link #newKeySet(int) newKeySet(int)}.
4796 */
4797 public static class KeySetView<K,V>
4798 extends CHMSetView<K,V,K>
4799 implements Set<K>, java.io.Serializable {
4800 private static final long serialVersionUID = 7249069246763182397L;
4801 private final V value;
4802 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4803 super(map);
4804 this.value = value;
4805 }
4806
4807 /**
4808 * Returns the default mapped value for additions,
4809 * or {@code null} if additions are not supported.
4810 *
4811 * @return the default mapped value for additions, or {@code null}
4812 * if not supported
4813 */
4814 public V getMappedValue() { return value; }
4815
4816 /**
4817 * {@inheritDoc}
4818 * @throws NullPointerException if the specified key is null
4819 */
4820 public boolean contains(Object o) { return map.containsKey(o); }
4821
4822 /**
4823 * Removes the key from this map view, by removing the key (and its
4824 * corresponding value) from the backing map. This method does
4825 * nothing if the key is not in the map.
4826 *
4827 * @param o the key to be removed from the backing map
4828 * @return {@code true} if the backing map contained the specified key
4829 * @throws NullPointerException if the specified key is null
4830 */
4831 public boolean remove(Object o) { return map.remove(o) != null; }
4832
4833 /**
4834 * @return an iterator over the keys of the backing map
4835 */
4836 public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4837
4838 /**
4839 * Adds the specified key to this set view by mapping the key to
4840 * the default mapped value in the backing map, if defined.
4841 *
4842 * @param e key to be added
4843 * @return {@code true} if this set changed as a result of the call
4844 * @throws NullPointerException if the specified key is null
4845 * @throws UnsupportedOperationException if no default mapped value
4846 * for additions was provided
4847 */
4848 public boolean add(K e) {
4849 V v;
4850 if ((v = value) == null)
4851 throw new UnsupportedOperationException();
4852 return map.internalPut(e, v, true) == null;
4853 }
4854
4855 /**
4856 * Adds all of the elements in the specified collection to this set,
4857 * as if by calling {@link #add} on each one.
4858 *
4859 * @param c the elements to be inserted into this set
4860 * @return {@code true} if this set changed as a result of the call
4861 * @throws NullPointerException if the collection or any of its
4862 * elements are {@code null}
4863 * @throws UnsupportedOperationException if no default mapped value
4864 * for additions was provided
4865 */
4866 public boolean addAll(Collection<? extends K> c) {
4867 boolean added = false;
4868 V v;
4869 if ((v = value) == null)
4870 throw new UnsupportedOperationException();
4871 for (K e : c) {
4872 if (map.internalPut(e, v, true) == null)
4873 added = true;
4874 }
4875 return added;
4876 }
4877
4878 public Spliterator<K> spliterator() {
4879 return new KeyIterator<>(map, null);
4880 }
4881
4882 }
4883
4884 /**
4885 * A view of a ConcurrentHashMap as a {@link Collection} of
4886 * values, in which additions are disabled. This class cannot be
4887 * directly instantiated. See {@link #values()}.
4888 *
4889 * <p>The view's {@code iterator} is a "weakly consistent" iterator
4890 * that will never throw {@link ConcurrentModificationException},
4891 * and guarantees to traverse elements as they existed upon
4892 * construction of the iterator, and may (but is not guaranteed to)
4893 * reflect any modifications subsequent to construction.
4894 */
4895 public static final class ValuesView<K,V>
4896 extends CHMCollectionView<K,V,V>
4897 implements Collection<V>, java.io.Serializable {
4898 private static final long serialVersionUID = 2249069246763182397L;
4899 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4900 public final boolean contains(Object o) {
4901 return map.containsValue(o);
4902 }
4903 public final boolean remove(Object o) {
4904 if (o != null) {
4905 for (Iterator<V> it = iterator(); it.hasNext();) {
4906 if (o.equals(it.next())) {
4907 it.remove();
4908 return true;
4909 }
4910 }
4911 }
4912 return false;
4913 }
4914
4915 /**
4916 * @return an iterator over the values of the backing map
4917 */
4918 public final Iterator<V> iterator() {
4919 return new ValueIterator<K,V>(map);
4920 }
4921
4922 /** Always throws {@link UnsupportedOperationException}. */
4923 public final boolean add(V e) {
4924 throw new UnsupportedOperationException();
4925 }
4926 /** Always throws {@link UnsupportedOperationException}. */
4927 public final boolean addAll(Collection<? extends V> c) {
4928 throw new UnsupportedOperationException();
4929 }
4930
4931 public Spliterator<V> spliterator() {
4932 return new ValueIterator<K,V>(map, null);
4933 }
4934
4935 }
4936
4937 /**
4938 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4939 * entries. This class cannot be directly instantiated. See
4940 * {@link #entrySet()}.
4941 */
4942 public static final class EntrySetView<K,V>
4943 extends CHMSetView<K,V,Map.Entry<K,V>>
4944 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4945 private static final long serialVersionUID = 2249069246763182397L;
4946 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4947
4948 public final boolean contains(Object o) {
4949 Object k, v, r; Map.Entry<?,?> e;
4950 return ((o instanceof Map.Entry) &&
4951 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4952 (r = map.get(k)) != null &&
4953 (v = e.getValue()) != null &&
4954 (v == r || v.equals(r)));
4955 }
4956 public final boolean remove(Object o) {
4957 Object k, v; Map.Entry<?,?> e;
4958 return ((o instanceof Map.Entry) &&
4959 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4960 (v = e.getValue()) != null &&
4961 map.remove(k, v));
4962 }
4963
4964 /**
4965 * @return an iterator over the entries of the backing map
4966 */
4967 public final Iterator<Map.Entry<K,V>> iterator() {
4968 return new EntryIterator<K,V>(map);
4969 }
4970
4971 /**
4972 * Adds the specified mapping to this view.
4973 *
4974 * @param e mapping to be added
4975 * @return {@code true} if this set changed as a result of the call
4976 * @throws NullPointerException if the entry, its key, or its
4977 * value is null
4978 */
4979 public final boolean add(Entry<K,V> e) {
4980 return map.internalPut(e.getKey(), e.getValue(), false) == null;
4981 }
4982 /**
4983 * Adds all of the mappings in the specified collection to this
4984 * set, as if by calling {@link #add(Map.Entry)} on each one.
4985 * @param c the mappings to be inserted into this set
4986 * @return {@code true} if this set changed as a result of the call
4987 * @throws NullPointerException if the collection or any of its
4988 * entries, keys, or values are null
4989 */
4990 public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4991 boolean added = false;
4992 for (Entry<K,V> e : c) {
4993 if (add(e))
4994 added = true;
4995 }
4996 return added;
4997 }
4998
4999 public Spliterator<Map.Entry<K,V>> spliterator() {
5000 return new EntryIterator<K,V>(map, null);
5001 }
5002
5003 }
5004
5005 // ---------------------------------------------------------------------
5006
5007 /**
5008 * Predefined tasks for performing bulk parallel operations on
5009 * ConcurrentHashMaps. These tasks follow the forms and rules used
5010 * for bulk operations. Each method has the same name, but returns
5011 * a task rather than invoking it. These methods may be useful in
5012 * custom applications such as submitting a task without waiting
5013 * for completion, using a custom pool, or combining with other
5014 * tasks.
5015 */
5016 public static class ForkJoinTasks {
5017 private ForkJoinTasks() {}
5018
5019 /**
5020 * Returns a task that when invoked, performs the given
5021 * action for each (key, value)
5022 *
5023 * @param map the map
5024 * @param action the action
5025 * @return the task
5026 */
5027 public static <K,V> ForkJoinTask<Void> forEach
5028 (ConcurrentHashMap<K,V> map,
5029 BiConsumer<? super K, ? super V> action) {
5030 if (action == null) throw new NullPointerException();
5031 return new ForEachMappingTask<K,V>(map, null, -1, action);
5032 }
5033
5034 /**
5035 * Returns a task that when invoked, performs the given
5036 * action for each non-null transformation of each (key, value)
5037 *
5038 * @param map the map
5039 * @param transformer a function returning the transformation
5040 * for an element, or null if there is no transformation (in
5041 * which case the action is not applied)
5042 * @param action the action
5043 * @return the task
5044 */
5045 public static <K,V,U> ForkJoinTask<Void> forEach
5046 (ConcurrentHashMap<K,V> map,
5047 BiFunction<? super K, ? super V, ? extends U> transformer,
5048 Consumer<? super U> action) {
5049 if (transformer == null || action == null)
5050 throw new NullPointerException();
5051 return new ForEachTransformedMappingTask<K,V,U>
5052 (map, null, -1, transformer, action);
5053 }
5054
5055 /**
5056 * Returns a task that when invoked, returns a non-null result
5057 * from applying the given search function on each (key,
5058 * value), or null if none. Upon success, further element
5059 * processing is suppressed and the results of any other
5060 * parallel invocations of the search function are ignored.
5061 *
5062 * @param map the map
5063 * @param searchFunction a function returning a non-null
5064 * result on success, else null
5065 * @return the task
5066 */
5067 public static <K,V,U> ForkJoinTask<U> search
5068 (ConcurrentHashMap<K,V> map,
5069 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
5070 if (searchFunction == null) throw new NullPointerException();
5071 return new SearchMappingsTask<K,V,U>
5072 (map, null, -1, searchFunction,
5073 new AtomicReference<U>());
5074 }
5075
5076 /**
5077 * Returns a task that when invoked, returns the result of
5078 * accumulating the given transformation of all (key, value) pairs
5079 * using the given reducer to combine values, or null if none.
5080 *
5081 * @param map the map
5082 * @param transformer a function returning the transformation
5083 * for an element, or null if there is no transformation (in
5084 * which case it is not combined)
5085 * @param reducer a commutative associative combining function
5086 * @return the task
5087 */
5088 public static <K,V,U> ForkJoinTask<U> reduce
5089 (ConcurrentHashMap<K,V> map,
5090 BiFunction<? super K, ? super V, ? extends U> transformer,
5091 BiFunction<? super U, ? super U, ? extends U> reducer) {
5092 if (transformer == null || reducer == null)
5093 throw new NullPointerException();
5094 return new MapReduceMappingsTask<K,V,U>
5095 (map, null, -1, null, transformer, reducer);
5096 }
5097
5098 /**
5099 * Returns a task that when invoked, returns the result of
5100 * accumulating the given transformation of all (key, value) pairs
5101 * using the given reducer to combine values, and the given
5102 * basis as an identity value.
5103 *
5104 * @param map the map
5105 * @param transformer a function returning the transformation
5106 * for an element
5107 * @param basis the identity (initial default value) for the reduction
5108 * @param reducer a commutative associative combining function
5109 * @return the task
5110 */
5111 public static <K,V> ForkJoinTask<Double> reduceToDouble
5112 (ConcurrentHashMap<K,V> map,
5113 ToDoubleBiFunction<? super K, ? super V> transformer,
5114 double basis,
5115 DoubleBinaryOperator reducer) {
5116 if (transformer == null || reducer == null)
5117 throw new NullPointerException();
5118 return new MapReduceMappingsToDoubleTask<K,V>
5119 (map, null, -1, null, transformer, basis, reducer);
5120 }
5121
5122 /**
5123 * Returns a task that when invoked, returns the result of
5124 * accumulating the given transformation of all (key, value) pairs
5125 * using the given reducer to combine values, and the given
5126 * basis as an identity value.
5127 *
5128 * @param map the map
5129 * @param transformer a function returning the transformation
5130 * for an element
5131 * @param basis the identity (initial default value) for the reduction
5132 * @param reducer a commutative associative combining function
5133 * @return the task
5134 */
5135 public static <K,V> ForkJoinTask<Long> reduceToLong
5136 (ConcurrentHashMap<K,V> map,
5137 ToLongBiFunction<? super K, ? super V> transformer,
5138 long basis,
5139 LongBinaryOperator reducer) {
5140 if (transformer == null || reducer == null)
5141 throw new NullPointerException();
5142 return new MapReduceMappingsToLongTask<K,V>
5143 (map, null, -1, null, transformer, basis, reducer);
5144 }
5145
5146 /**
5147 * Returns a task that when invoked, returns the result of
5148 * accumulating the given transformation of all (key, value) pairs
5149 * using the given reducer to combine values, and the given
5150 * basis as an identity value.
5151 *
5152 * @param map the map
5153 * @param transformer a function returning the transformation
5154 * for an element
5155 * @param basis the identity (initial default value) for the reduction
5156 * @param reducer a commutative associative combining function
5157 * @return the task
5158 */
5159 public static <K,V> ForkJoinTask<Integer> reduceToInt
5160 (ConcurrentHashMap<K,V> map,
5161 ToIntBiFunction<? super K, ? super V> transformer,
5162 int basis,
5163 IntBinaryOperator reducer) {
5164 if (transformer == null || reducer == null)
5165 throw new NullPointerException();
5166 return new MapReduceMappingsToIntTask<K,V>
5167 (map, null, -1, null, transformer, basis, reducer);
5168 }
5169
5170 /**
5171 * Returns a task that when invoked, performs the given action
5172 * for each key.
5173 *
5174 * @param map the map
5175 * @param action the action
5176 * @return the task
5177 */
5178 public static <K,V> ForkJoinTask<Void> forEachKey
5179 (ConcurrentHashMap<K,V> map,
5180 Consumer<? super K> action) {
5181 if (action == null) throw new NullPointerException();
5182 return new ForEachKeyTask<K,V>(map, null, -1, action);
5183 }
5184
5185 /**
5186 * Returns a task that when invoked, performs the given action
5187 * for each non-null transformation of each key.
5188 *
5189 * @param map the map
5190 * @param transformer a function returning the transformation
5191 * for an element, or null if there is no transformation (in
5192 * which case the action is not applied)
5193 * @param action the action
5194 * @return the task
5195 */
5196 public static <K,V,U> ForkJoinTask<Void> forEachKey
5197 (ConcurrentHashMap<K,V> map,
5198 Function<? super K, ? extends U> transformer,
5199 Consumer<? super U> action) {
5200 if (transformer == null || action == null)
5201 throw new NullPointerException();
5202 return new ForEachTransformedKeyTask<K,V,U>
5203 (map, null, -1, transformer, action);
5204 }
5205
5206 /**
5207 * Returns a task that when invoked, returns a non-null result
5208 * from applying the given search function on each key, or
5209 * null if none. Upon success, further element processing is
5210 * suppressed and the results of any other parallel
5211 * invocations of the search function are ignored.
5212 *
5213 * @param map the map
5214 * @param searchFunction a function returning a non-null
5215 * result on success, else null
5216 * @return the task
5217 */
5218 public static <K,V,U> ForkJoinTask<U> searchKeys
5219 (ConcurrentHashMap<K,V> map,
5220 Function<? super K, ? extends U> searchFunction) {
5221 if (searchFunction == null) throw new NullPointerException();
5222 return new SearchKeysTask<K,V,U>
5223 (map, null, -1, searchFunction,
5224 new AtomicReference<U>());
5225 }
5226
5227 /**
5228 * Returns a task that when invoked, returns the result of
5229 * accumulating all keys using the given reducer to combine
5230 * values, or null if none.
5231 *
5232 * @param map the map
5233 * @param reducer a commutative associative combining function
5234 * @return the task
5235 */
5236 public static <K,V> ForkJoinTask<K> reduceKeys
5237 (ConcurrentHashMap<K,V> map,
5238 BiFunction<? super K, ? super K, ? extends K> reducer) {
5239 if (reducer == null) throw new NullPointerException();
5240 return new ReduceKeysTask<K,V>
5241 (map, null, -1, null, reducer);
5242 }
5243
5244 /**
5245 * Returns a task that when invoked, returns the result of
5246 * accumulating the given transformation of all keys using the given
5247 * reducer to combine values, or null if none.
5248 *
5249 * @param map the map
5250 * @param transformer a function returning the transformation
5251 * for an element, or null if there is no transformation (in
5252 * which case it is not combined)
5253 * @param reducer a commutative associative combining function
5254 * @return the task
5255 */
5256 public static <K,V,U> ForkJoinTask<U> reduceKeys
5257 (ConcurrentHashMap<K,V> map,
5258 Function<? super K, ? extends U> transformer,
5259 BiFunction<? super U, ? super U, ? extends U> reducer) {
5260 if (transformer == null || reducer == null)
5261 throw new NullPointerException();
5262 return new MapReduceKeysTask<K,V,U>
5263 (map, null, -1, null, transformer, reducer);
5264 }
5265
5266 /**
5267 * Returns a task that when invoked, returns the result of
5268 * accumulating the given transformation of all keys using the given
5269 * reducer to combine values, and the given basis as an
5270 * identity value.
5271 *
5272 * @param map the map
5273 * @param transformer a function returning the transformation
5274 * for an element
5275 * @param basis the identity (initial default value) for the reduction
5276 * @param reducer a commutative associative combining function
5277 * @return the task
5278 */
5279 public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5280 (ConcurrentHashMap<K,V> map,
5281 ToDoubleFunction<? super K> transformer,
5282 double basis,
5283 DoubleBinaryOperator reducer) {
5284 if (transformer == null || reducer == null)
5285 throw new NullPointerException();
5286 return new MapReduceKeysToDoubleTask<K,V>
5287 (map, null, -1, null, transformer, basis, reducer);
5288 }
5289
5290 /**
5291 * Returns a task that when invoked, returns the result of
5292 * accumulating the given transformation of all keys using the given
5293 * reducer to combine values, and the given basis as an
5294 * identity value.
5295 *
5296 * @param map the map
5297 * @param transformer a function returning the transformation
5298 * for an element
5299 * @param basis the identity (initial default value) for the reduction
5300 * @param reducer a commutative associative combining function
5301 * @return the task
5302 */
5303 public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5304 (ConcurrentHashMap<K,V> map,
5305 ToLongFunction<? super K> transformer,
5306 long basis,
5307 LongBinaryOperator reducer) {
5308 if (transformer == null || reducer == null)
5309 throw new NullPointerException();
5310 return new MapReduceKeysToLongTask<K,V>
5311 (map, null, -1, null, transformer, basis, reducer);
5312 }
5313
5314 /**
5315 * Returns a task that when invoked, returns the result of
5316 * accumulating the given transformation of all keys using the given
5317 * reducer to combine values, and the given basis as an
5318 * identity value.
5319 *
5320 * @param map the map
5321 * @param transformer a function returning the transformation
5322 * for an element
5323 * @param basis the identity (initial default value) for the reduction
5324 * @param reducer a commutative associative combining function
5325 * @return the task
5326 */
5327 public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5328 (ConcurrentHashMap<K,V> map,
5329 ToIntFunction<? super K> transformer,
5330 int basis,
5331 IntBinaryOperator reducer) {
5332 if (transformer == null || reducer == null)
5333 throw new NullPointerException();
5334 return new MapReduceKeysToIntTask<K,V>
5335 (map, null, -1, null, transformer, basis, reducer);
5336 }
5337
5338 /**
5339 * Returns a task that when invoked, performs the given action
5340 * for each value.
5341 *
5342 * @param map the map
5343 * @param action the action
5344 * @return the task
5345 */
5346 public static <K,V> ForkJoinTask<Void> forEachValue
5347 (ConcurrentHashMap<K,V> map,
5348 Consumer<? super V> action) {
5349 if (action == null) throw new NullPointerException();
5350 return new ForEachValueTask<K,V>(map, null, -1, action);
5351 }
5352
5353 /**
5354 * Returns a task that when invoked, performs the given action
5355 * for each non-null transformation of each value.
5356 *
5357 * @param map the map
5358 * @param transformer a function returning the transformation
5359 * for an element, or null if there is no transformation (in
5360 * which case the action is not applied)
5361 * @param action the action
5362 * @return the task
5363 */
5364 public static <K,V,U> ForkJoinTask<Void> forEachValue
5365 (ConcurrentHashMap<K,V> map,
5366 Function<? super V, ? extends U> transformer,
5367 Consumer<? super U> action) {
5368 if (transformer == null || action == null)
5369 throw new NullPointerException();
5370 return new ForEachTransformedValueTask<K,V,U>
5371 (map, null, -1, transformer, action);
5372 }
5373
5374 /**
5375 * Returns a task that when invoked, returns a non-null result
5376 * from applying the given search function on each value, or
5377 * null if none. Upon success, further element processing is
5378 * suppressed and the results of any other parallel
5379 * invocations of the search function are ignored.
5380 *
5381 * @param map the map
5382 * @param searchFunction a function returning a non-null
5383 * result on success, else null
5384 * @return the task
5385 */
5386 public static <K,V,U> ForkJoinTask<U> searchValues
5387 (ConcurrentHashMap<K,V> map,
5388 Function<? super V, ? extends U> searchFunction) {
5389 if (searchFunction == null) throw new NullPointerException();
5390 return new SearchValuesTask<K,V,U>
5391 (map, null, -1, searchFunction,
5392 new AtomicReference<U>());
5393 }
5394
5395 /**
5396 * Returns a task that when invoked, returns the result of
5397 * accumulating all values using the given reducer to combine
5398 * values, or null if none.
5399 *
5400 * @param map the map
5401 * @param reducer a commutative associative combining function
5402 * @return the task
5403 */
5404 public static <K,V> ForkJoinTask<V> reduceValues
5405 (ConcurrentHashMap<K,V> map,
5406 BiFunction<? super V, ? super V, ? extends V> reducer) {
5407 if (reducer == null) throw new NullPointerException();
5408 return new ReduceValuesTask<K,V>
5409 (map, null, -1, null, reducer);
5410 }
5411
5412 /**
5413 * Returns a task that when invoked, returns the result of
5414 * accumulating the given transformation of all values using the
5415 * given reducer to combine values, or null if none.
5416 *
5417 * @param map the map
5418 * @param transformer a function returning the transformation
5419 * for an element, or null if there is no transformation (in
5420 * which case it is not combined)
5421 * @param reducer a commutative associative combining function
5422 * @return the task
5423 */
5424 public static <K,V,U> ForkJoinTask<U> reduceValues
5425 (ConcurrentHashMap<K,V> map,
5426 Function<? super V, ? extends U> transformer,
5427 BiFunction<? super U, ? super U, ? extends U> reducer) {
5428 if (transformer == null || reducer == null)
5429 throw new NullPointerException();
5430 return new MapReduceValuesTask<K,V,U>
5431 (map, null, -1, null, transformer, reducer);
5432 }
5433
5434 /**
5435 * Returns a task that when invoked, returns the result of
5436 * accumulating the given transformation of all values using the
5437 * given reducer to combine values, and the given basis as an
5438 * identity value.
5439 *
5440 * @param map the map
5441 * @param transformer a function returning the transformation
5442 * for an element
5443 * @param basis the identity (initial default value) for the reduction
5444 * @param reducer a commutative associative combining function
5445 * @return the task
5446 */
5447 public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5448 (ConcurrentHashMap<K,V> map,
5449 ToDoubleFunction<? super V> transformer,
5450 double basis,
5451 DoubleBinaryOperator reducer) {
5452 if (transformer == null || reducer == null)
5453 throw new NullPointerException();
5454 return new MapReduceValuesToDoubleTask<K,V>
5455 (map, null, -1, null, transformer, basis, reducer);
5456 }
5457
5458 /**
5459 * Returns a task that when invoked, returns the result of
5460 * accumulating the given transformation of all values using the
5461 * given reducer to combine values, and the given basis as an
5462 * identity value.
5463 *
5464 * @param map the map
5465 * @param transformer a function returning the transformation
5466 * for an element
5467 * @param basis the identity (initial default value) for the reduction
5468 * @param reducer a commutative associative combining function
5469 * @return the task
5470 */
5471 public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5472 (ConcurrentHashMap<K,V> map,
5473 ToLongFunction<? super V> transformer,
5474 long basis,
5475 LongBinaryOperator reducer) {
5476 if (transformer == null || reducer == null)
5477 throw new NullPointerException();
5478 return new MapReduceValuesToLongTask<K,V>
5479 (map, null, -1, null, transformer, basis, reducer);
5480 }
5481
5482 /**
5483 * Returns a task that when invoked, returns the result of
5484 * accumulating the given transformation of all values using the
5485 * given reducer to combine values, and the given basis as an
5486 * identity value.
5487 *
5488 * @param map the map
5489 * @param transformer a function returning the transformation
5490 * for an element
5491 * @param basis the identity (initial default value) for the reduction
5492 * @param reducer a commutative associative combining function
5493 * @return the task
5494 */
5495 public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5496 (ConcurrentHashMap<K,V> map,
5497 ToIntFunction<? super V> transformer,
5498 int basis,
5499 IntBinaryOperator reducer) {
5500 if (transformer == null || reducer == null)
5501 throw new NullPointerException();
5502 return new MapReduceValuesToIntTask<K,V>
5503 (map, null, -1, null, transformer, basis, reducer);
5504 }
5505
5506 /**
5507 * Returns a task that when invoked, perform the given action
5508 * for each entry.
5509 *
5510 * @param map the map
5511 * @param action the action
5512 * @return the task
5513 */
5514 public static <K,V> ForkJoinTask<Void> forEachEntry
5515 (ConcurrentHashMap<K,V> map,
5516 Consumer<? super Map.Entry<K,V>> action) {
5517 if (action == null) throw new NullPointerException();
5518 return new ForEachEntryTask<K,V>(map, null, -1, action);
5519 }
5520
5521 /**
5522 * Returns a task that when invoked, perform the given action
5523 * for each non-null transformation of each entry.
5524 *
5525 * @param map the map
5526 * @param transformer a function returning the transformation
5527 * for an element, or null if there is no transformation (in
5528 * which case the action is not applied)
5529 * @param action the action
5530 * @return the task
5531 */
5532 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5533 (ConcurrentHashMap<K,V> map,
5534 Function<Map.Entry<K,V>, ? extends U> transformer,
5535 Consumer<? super U> action) {
5536 if (transformer == null || action == null)
5537 throw new NullPointerException();
5538 return new ForEachTransformedEntryTask<K,V,U>
5539 (map, null, -1, transformer, action);
5540 }
5541
5542 /**
5543 * Returns a task that when invoked, returns a non-null result
5544 * from applying the given search function on each entry, or
5545 * null if none. Upon success, further element processing is
5546 * suppressed and the results of any other parallel
5547 * invocations of the search function are ignored.
5548 *
5549 * @param map the map
5550 * @param searchFunction a function returning a non-null
5551 * result on success, else null
5552 * @return the task
5553 */
5554 public static <K,V,U> ForkJoinTask<U> searchEntries
5555 (ConcurrentHashMap<K,V> map,
5556 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
5557 if (searchFunction == null) throw new NullPointerException();
5558 return new SearchEntriesTask<K,V,U>
5559 (map, null, -1, searchFunction,
5560 new AtomicReference<U>());
5561 }
5562
5563 /**
5564 * Returns a task that when invoked, returns the result of
5565 * accumulating all entries using the given reducer to combine
5566 * values, or null if none.
5567 *
5568 * @param map the map
5569 * @param reducer a commutative associative combining function
5570 * @return the task
5571 */
5572 public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5573 (ConcurrentHashMap<K,V> map,
5574 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5575 if (reducer == null) throw new NullPointerException();
5576 return new ReduceEntriesTask<K,V>
5577 (map, null, -1, null, reducer);
5578 }
5579
5580 /**
5581 * Returns a task that when invoked, returns the result of
5582 * accumulating the given transformation of all entries using the
5583 * given reducer to combine values, or null if none.
5584 *
5585 * @param map the map
5586 * @param transformer a function returning the transformation
5587 * for an element, or null if there is no transformation (in
5588 * which case it is not combined)
5589 * @param reducer a commutative associative combining function
5590 * @return the task
5591 */
5592 public static <K,V,U> ForkJoinTask<U> reduceEntries
5593 (ConcurrentHashMap<K,V> map,
5594 Function<Map.Entry<K,V>, ? extends U> transformer,
5595 BiFunction<? super U, ? super U, ? extends U> reducer) {
5596 if (transformer == null || reducer == null)
5597 throw new NullPointerException();
5598 return new MapReduceEntriesTask<K,V,U>
5599 (map, null, -1, null, transformer, reducer);
5600 }
5601
5602 /**
5603 * Returns a task that when invoked, returns the result of
5604 * accumulating the given transformation of all entries using the
5605 * given reducer to combine values, and the given basis as an
5606 * identity value.
5607 *
5608 * @param map the map
5609 * @param transformer a function returning the transformation
5610 * for an element
5611 * @param basis the identity (initial default value) for the reduction
5612 * @param reducer a commutative associative combining function
5613 * @return the task
5614 */
5615 public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5616 (ConcurrentHashMap<K,V> map,
5617 ToDoubleFunction<Map.Entry<K,V>> transformer,
5618 double basis,
5619 DoubleBinaryOperator reducer) {
5620 if (transformer == null || reducer == null)
5621 throw new NullPointerException();
5622 return new MapReduceEntriesToDoubleTask<K,V>
5623 (map, null, -1, null, transformer, basis, reducer);
5624 }
5625
5626 /**
5627 * Returns a task that when invoked, returns the result of
5628 * accumulating the given transformation of all entries using the
5629 * given reducer to combine values, and the given basis as an
5630 * identity value.
5631 *
5632 * @param map the map
5633 * @param transformer a function returning the transformation
5634 * for an element
5635 * @param basis the identity (initial default value) for the reduction
5636 * @param reducer a commutative associative combining function
5637 * @return the task
5638 */
5639 public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5640 (ConcurrentHashMap<K,V> map,
5641 ToLongFunction<Map.Entry<K,V>> transformer,
5642 long basis,
5643 LongBinaryOperator reducer) {
5644 if (transformer == null || reducer == null)
5645 throw new NullPointerException();
5646 return new MapReduceEntriesToLongTask<K,V>
5647 (map, null, -1, null, transformer, basis, reducer);
5648 }
5649
5650 /**
5651 * Returns a task that when invoked, returns the result of
5652 * accumulating the given transformation of all entries using the
5653 * given reducer to combine values, and the given basis as an
5654 * identity value.
5655 *
5656 * @param map the map
5657 * @param transformer a function returning the transformation
5658 * for an element
5659 * @param basis the identity (initial default value) for the reduction
5660 * @param reducer a commutative associative combining function
5661 * @return the task
5662 */
5663 public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5664 (ConcurrentHashMap<K,V> map,
5665 ToIntFunction<Map.Entry<K,V>> transformer,
5666 int basis,
5667 IntBinaryOperator reducer) {
5668 if (transformer == null || reducer == null)
5669 throw new NullPointerException();
5670 return new MapReduceEntriesToIntTask<K,V>
5671 (map, null, -1, null, transformer, basis, reducer);
5672 }
5673 }
5674
5675 // -------------------------------------------------------
5676
5677 /*
5678 * Task classes. Coded in a regular but ugly format/style to
5679 * simplify checks that each variant differs in the right way from
5680 * others. The null screenings exist because compilers cannot tell
5681 * that we've already null-checked task arguments, so we force
5682 * simplest hoisted bypass to help avoid convoluted traps.
5683 */
5684
5685 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5686 extends Traverser<K,V,Void> {
5687 final Consumer<? super K> action;
5688 ForEachKeyTask
5689 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5690 Consumer<? super K> action) {
5691 super(m, p, b);
5692 this.action = action;
5693 }
5694 public final void compute() {
5695 final Consumer<? super K> action;
5696 if ((action = this.action) != null) {
5697 for (int b; (b = preSplit()) > 0;)
5698 new ForEachKeyTask<K,V>(map, this, b, action).fork();
5699 forEachKey(action);
5700 propagateCompletion();
5701 }
5702 }
5703 }
5704
5705 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5706 extends Traverser<K,V,Void> {
5707 final Consumer<? super V> action;
5708 ForEachValueTask
5709 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5710 Consumer<? super V> action) {
5711 super(m, p, b);
5712 this.action = action;
5713 }
5714 public final void compute() {
5715 final Consumer<? super V> action;
5716 if ((action = this.action) != null) {
5717 for (int b; (b = preSplit()) > 0;)
5718 new ForEachValueTask<K,V>(map, this, b, action).fork();
5719 forEachValue(action);
5720 propagateCompletion();
5721 }
5722 }
5723 }
5724
5725 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5726 extends Traverser<K,V,Void> {
5727 final Consumer<? super Entry<K,V>> action;
5728 ForEachEntryTask
5729 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5730 Consumer<? super Entry<K,V>> action) {
5731 super(m, p, b);
5732 this.action = action;
5733 }
5734 public final void compute() {
5735 final Consumer<? super Entry<K,V>> action;
5736 if ((action = this.action) != null) {
5737 for (int b; (b = preSplit()) > 0;)
5738 new ForEachEntryTask<K,V>(map, this, b, action).fork();
5739 V v;
5740 while ((v = advanceValue()) != null)
5741 action.accept(entryFor(nextKey, v));
5742 propagateCompletion();
5743 }
5744 }
5745 }
5746
5747 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5748 extends Traverser<K,V,Void> {
5749 final BiConsumer<? super K, ? super V> action;
5750 ForEachMappingTask
5751 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5752 BiConsumer<? super K,? super V> action) {
5753 super(m, p, b);
5754 this.action = action;
5755 }
5756 public final void compute() {
5757 final BiConsumer<? super K, ? super V> action;
5758 if ((action = this.action) != null) {
5759 for (int b; (b = preSplit()) > 0;)
5760 new ForEachMappingTask<K,V>(map, this, b, action).fork();
5761 V v;
5762 while ((v = advanceValue()) != null)
5763 action.accept(nextKey, v);
5764 propagateCompletion();
5765 }
5766 }
5767 }
5768
5769 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5770 extends Traverser<K,V,Void> {
5771 final Function<? super K, ? extends U> transformer;
5772 final Consumer<? super U> action;
5773 ForEachTransformedKeyTask
5774 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5775 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5776 super(m, p, b);
5777 this.transformer = transformer; this.action = action;
5778 }
5779 public final void compute() {
5780 final Function<? super K, ? extends U> transformer;
5781 final Consumer<? super U> action;
5782 if ((transformer = this.transformer) != null &&
5783 (action = this.action) != null) {
5784 for (int b; (b = preSplit()) > 0;)
5785 new ForEachTransformedKeyTask<K,V,U>
5786 (map, this, b, transformer, action).fork();
5787 K k; U u;
5788 while ((k = advanceKey()) != null) {
5789 if ((u = transformer.apply(k)) != null)
5790 action.accept(u);
5791 }
5792 propagateCompletion();
5793 }
5794 }
5795 }
5796
5797 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5798 extends Traverser<K,V,Void> {
5799 final Function<? super V, ? extends U> transformer;
5800 final Consumer<? super U> action;
5801 ForEachTransformedValueTask
5802 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5803 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5804 super(m, p, b);
5805 this.transformer = transformer; this.action = action;
5806 }
5807 public final void compute() {
5808 final Function<? super V, ? extends U> transformer;
5809 final Consumer<? super U> action;
5810 if ((transformer = this.transformer) != null &&
5811 (action = this.action) != null) {
5812 for (int b; (b = preSplit()) > 0;)
5813 new ForEachTransformedValueTask<K,V,U>
5814 (map, this, b, transformer, action).fork();
5815 V v; U u;
5816 while ((v = advanceValue()) != null) {
5817 if ((u = transformer.apply(v)) != null)
5818 action.accept(u);
5819 }
5820 propagateCompletion();
5821 }
5822 }
5823 }
5824
5825 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5826 extends Traverser<K,V,Void> {
5827 final Function<Map.Entry<K,V>, ? extends U> transformer;
5828 final Consumer<? super U> action;
5829 ForEachTransformedEntryTask
5830 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5831 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5832 super(m, p, b);
5833 this.transformer = transformer; this.action = action;
5834 }
5835 public final void compute() {
5836 final Function<Map.Entry<K,V>, ? extends U> transformer;
5837 final Consumer<? super U> action;
5838 if ((transformer = this.transformer) != null &&
5839 (action = this.action) != null) {
5840 for (int b; (b = preSplit()) > 0;)
5841 new ForEachTransformedEntryTask<K,V,U>
5842 (map, this, b, transformer, action).fork();
5843 V v; U u;
5844 while ((v = advanceValue()) != null) {
5845 if ((u = transformer.apply(entryFor(nextKey,
5846 v))) != null)
5847 action.accept(u);
5848 }
5849 propagateCompletion();
5850 }
5851 }
5852 }
5853
5854 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5855 extends Traverser<K,V,Void> {
5856 final BiFunction<? super K, ? super V, ? extends U> transformer;
5857 final Consumer<? super U> action;
5858 ForEachTransformedMappingTask
5859 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5860 BiFunction<? super K, ? super V, ? extends U> transformer,
5861 Consumer<? super U> action) {
5862 super(m, p, b);
5863 this.transformer = transformer; this.action = action;
5864 }
5865 public final void compute() {
5866 final BiFunction<? super K, ? super V, ? extends U> transformer;
5867 final Consumer<? super U> action;
5868 if ((transformer = this.transformer) != null &&
5869 (action = this.action) != null) {
5870 for (int b; (b = preSplit()) > 0;)
5871 new ForEachTransformedMappingTask<K,V,U>
5872 (map, this, b, transformer, action).fork();
5873 V v; U u;
5874 while ((v = advanceValue()) != null) {
5875 if ((u = transformer.apply(nextKey, v)) != null)
5876 action.accept(u);
5877 }
5878 propagateCompletion();
5879 }
5880 }
5881 }
5882
5883 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5884 extends Traverser<K,V,U> {
5885 final Function<? super K, ? extends U> searchFunction;
5886 final AtomicReference<U> result;
5887 SearchKeysTask
5888 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5889 Function<? super K, ? extends U> searchFunction,
5890 AtomicReference<U> result) {
5891 super(m, p, b);
5892 this.searchFunction = searchFunction; this.result = result;
5893 }
5894 public final U getRawResult() { return result.get(); }
5895 public final void compute() {
5896 final Function<? super K, ? extends U> searchFunction;
5897 final AtomicReference<U> result;
5898 if ((searchFunction = this.searchFunction) != null &&
5899 (result = this.result) != null) {
5900 for (int b;;) {
5901 if (result.get() != null)
5902 return;
5903 if ((b = preSplit()) <= 0)
5904 break;
5905 new SearchKeysTask<K,V,U>
5906 (map, this, b, searchFunction, result).fork();
5907 }
5908 while (result.get() == null) {
5909 K k; U u;
5910 if ((k = advanceKey()) == null) {
5911 propagateCompletion();
5912 break;
5913 }
5914 if ((u = searchFunction.apply(k)) != null) {
5915 if (result.compareAndSet(null, u))
5916 quietlyCompleteRoot();
5917 break;
5918 }
5919 }
5920 }
5921 }
5922 }
5923
5924 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5925 extends Traverser<K,V,U> {
5926 final Function<? super V, ? extends U> searchFunction;
5927 final AtomicReference<U> result;
5928 SearchValuesTask
5929 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5930 Function<? super V, ? extends U> searchFunction,
5931 AtomicReference<U> result) {
5932 super(m, p, b);
5933 this.searchFunction = searchFunction; this.result = result;
5934 }
5935 public final U getRawResult() { return result.get(); }
5936 public final void compute() {
5937 final Function<? super V, ? extends U> searchFunction;
5938 final AtomicReference<U> result;
5939 if ((searchFunction = this.searchFunction) != null &&
5940 (result = this.result) != null) {
5941 for (int b;;) {
5942 if (result.get() != null)
5943 return;
5944 if ((b = preSplit()) <= 0)
5945 break;
5946 new SearchValuesTask<K,V,U>
5947 (map, this, b, searchFunction, result).fork();
5948 }
5949 while (result.get() == null) {
5950 V v; U u;
5951 if ((v = advanceValue()) == null) {
5952 propagateCompletion();
5953 break;
5954 }
5955 if ((u = searchFunction.apply(v)) != null) {
5956 if (result.compareAndSet(null, u))
5957 quietlyCompleteRoot();
5958 break;
5959 }
5960 }
5961 }
5962 }
5963 }
5964
5965 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5966 extends Traverser<K,V,U> {
5967 final Function<Entry<K,V>, ? extends U> searchFunction;
5968 final AtomicReference<U> result;
5969 SearchEntriesTask
5970 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5971 Function<Entry<K,V>, ? extends U> searchFunction,
5972 AtomicReference<U> result) {
5973 super(m, p, b);
5974 this.searchFunction = searchFunction; this.result = result;
5975 }
5976 public final U getRawResult() { return result.get(); }
5977 public final void compute() {
5978 final Function<Entry<K,V>, ? extends U> searchFunction;
5979 final AtomicReference<U> result;
5980 if ((searchFunction = this.searchFunction) != null &&
5981 (result = this.result) != null) {
5982 for (int b;;) {
5983 if (result.get() != null)
5984 return;
5985 if ((b = preSplit()) <= 0)
5986 break;
5987 new SearchEntriesTask<K,V,U>
5988 (map, this, b, searchFunction, result).fork();
5989 }
5990 while (result.get() == null) {
5991 V v; U u;
5992 if ((v = advanceValue()) == null) {
5993 propagateCompletion();
5994 break;
5995 }
5996 if ((u = searchFunction.apply(entryFor(nextKey,
5997 v))) != null) {
5998 if (result.compareAndSet(null, u))
5999 quietlyCompleteRoot();
6000 return;
6001 }
6002 }
6003 }
6004 }
6005 }
6006
6007 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
6008 extends Traverser<K,V,U> {
6009 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
6010 final AtomicReference<U> result;
6011 SearchMappingsTask
6012 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6013 BiFunction<? super K, ? super V, ? extends U> searchFunction,
6014 AtomicReference<U> result) {
6015 super(m, p, b);
6016 this.searchFunction = searchFunction; this.result = result;
6017 }
6018 public final U getRawResult() { return result.get(); }
6019 public final void compute() {
6020 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
6021 final AtomicReference<U> result;
6022 if ((searchFunction = this.searchFunction) != null &&
6023 (result = this.result) != null) {
6024 for (int b;;) {
6025 if (result.get() != null)
6026 return;
6027 if ((b = preSplit()) <= 0)
6028 break;
6029 new SearchMappingsTask<K,V,U>
6030 (map, this, b, searchFunction, result).fork();
6031 }
6032 while (result.get() == null) {
6033 V v; U u;
6034 if ((v = advanceValue()) == null) {
6035 propagateCompletion();
6036 break;
6037 }
6038 if ((u = searchFunction.apply(nextKey, v)) != null) {
6039 if (result.compareAndSet(null, u))
6040 quietlyCompleteRoot();
6041 break;
6042 }
6043 }
6044 }
6045 }
6046 }
6047
6048 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
6049 extends Traverser<K,V,K> {
6050 final BiFunction<? super K, ? super K, ? extends K> reducer;
6051 K result;
6052 ReduceKeysTask<K,V> rights, nextRight;
6053 ReduceKeysTask
6054 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6055 ReduceKeysTask<K,V> nextRight,
6056 BiFunction<? super K, ? super K, ? extends K> reducer) {
6057 super(m, p, b); this.nextRight = nextRight;
6058 this.reducer = reducer;
6059 }
6060 public final K getRawResult() { return result; }
6061 @SuppressWarnings("unchecked") public final void compute() {
6062 final BiFunction<? super K, ? super K, ? extends K> reducer;
6063 if ((reducer = this.reducer) != null) {
6064 for (int b; (b = preSplit()) > 0;)
6065 (rights = new ReduceKeysTask<K,V>
6066 (map, this, b, rights, reducer)).fork();
6067 K u, r = null;
6068 while ((u = advanceKey()) != null) {
6069 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
6070 }
6071 result = r;
6072 CountedCompleter<?> c;
6073 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6074 ReduceKeysTask<K,V>
6075 t = (ReduceKeysTask<K,V>)c,
6076 s = t.rights;
6077 while (s != null) {
6078 K tr, sr;
6079 if ((sr = s.result) != null)
6080 t.result = (((tr = t.result) == null) ? sr :
6081 reducer.apply(tr, sr));
6082 s = t.rights = s.nextRight;
6083 }
6084 }
6085 }
6086 }
6087 }
6088
6089 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
6090 extends Traverser<K,V,V> {
6091 final BiFunction<? super V, ? super V, ? extends V> reducer;
6092 V result;
6093 ReduceValuesTask<K,V> rights, nextRight;
6094 ReduceValuesTask
6095 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6096 ReduceValuesTask<K,V> nextRight,
6097 BiFunction<? super V, ? super V, ? extends V> reducer) {
6098 super(m, p, b); this.nextRight = nextRight;
6099 this.reducer = reducer;
6100 }
6101 public final V getRawResult() { return result; }
6102 @SuppressWarnings("unchecked") public final void compute() {
6103 final BiFunction<? super V, ? super V, ? extends V> reducer;
6104 if ((reducer = this.reducer) != null) {
6105 for (int b; (b = preSplit()) > 0;)
6106 (rights = new ReduceValuesTask<K,V>
6107 (map, this, b, rights, reducer)).fork();
6108 V r = null, v;
6109 while ((v = advanceValue()) != null)
6110 r = (r == null) ? v : reducer.apply(r, v);
6111 result = r;
6112 CountedCompleter<?> c;
6113 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6114 ReduceValuesTask<K,V>
6115 t = (ReduceValuesTask<K,V>)c,
6116 s = t.rights;
6117 while (s != null) {
6118 V tr, sr;
6119 if ((sr = s.result) != null)
6120 t.result = (((tr = t.result) == null) ? sr :
6121 reducer.apply(tr, sr));
6122 s = t.rights = s.nextRight;
6123 }
6124 }
6125 }
6126 }
6127 }
6128
6129 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
6130 extends Traverser<K,V,Map.Entry<K,V>> {
6131 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6132 Map.Entry<K,V> result;
6133 ReduceEntriesTask<K,V> rights, nextRight;
6134 ReduceEntriesTask
6135 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6136 ReduceEntriesTask<K,V> nextRight,
6137 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
6138 super(m, p, b); this.nextRight = nextRight;
6139 this.reducer = reducer;
6140 }
6141 public final Map.Entry<K,V> getRawResult() { return result; }
6142 @SuppressWarnings("unchecked") public final void compute() {
6143 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6144 if ((reducer = this.reducer) != null) {
6145 for (int b; (b = preSplit()) > 0;)
6146 (rights = new ReduceEntriesTask<K,V>
6147 (map, this, b, rights, reducer)).fork();
6148 Map.Entry<K,V> r = null;
6149 V v;
6150 while ((v = advanceValue()) != null) {
6151 Map.Entry<K,V> u = entryFor(nextKey, v);
6152 r = (r == null) ? u : reducer.apply(r, u);
6153 }
6154 result = r;
6155 CountedCompleter<?> c;
6156 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6157 ReduceEntriesTask<K,V>
6158 t = (ReduceEntriesTask<K,V>)c,
6159 s = t.rights;
6160 while (s != null) {
6161 Map.Entry<K,V> tr, sr;
6162 if ((sr = s.result) != null)
6163 t.result = (((tr = t.result) == null) ? sr :
6164 reducer.apply(tr, sr));
6165 s = t.rights = s.nextRight;
6166 }
6167 }
6168 }
6169 }
6170 }
6171
6172 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
6173 extends Traverser<K,V,U> {
6174 final Function<? super K, ? extends U> transformer;
6175 final BiFunction<? super U, ? super U, ? extends U> reducer;
6176 U result;
6177 MapReduceKeysTask<K,V,U> rights, nextRight;
6178 MapReduceKeysTask
6179 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6180 MapReduceKeysTask<K,V,U> nextRight,
6181 Function<? super K, ? extends U> transformer,
6182 BiFunction<? super U, ? super U, ? extends U> reducer) {
6183 super(m, p, b); this.nextRight = nextRight;
6184 this.transformer = transformer;
6185 this.reducer = reducer;
6186 }
6187 public final U getRawResult() { return result; }
6188 @SuppressWarnings("unchecked") public final void compute() {
6189 final Function<? super K, ? extends U> transformer;
6190 final BiFunction<? super U, ? super U, ? extends U> reducer;
6191 if ((transformer = this.transformer) != null &&
6192 (reducer = this.reducer) != null) {
6193 for (int b; (b = preSplit()) > 0;)
6194 (rights = new MapReduceKeysTask<K,V,U>
6195 (map, this, b, rights, transformer, reducer)).fork();
6196 K k; U r = null, u;
6197 while ((k = advanceKey()) != null) {
6198 if ((u = transformer.apply(k)) != null)
6199 r = (r == null) ? u : reducer.apply(r, u);
6200 }
6201 result = r;
6202 CountedCompleter<?> c;
6203 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6204 MapReduceKeysTask<K,V,U>
6205 t = (MapReduceKeysTask<K,V,U>)c,
6206 s = t.rights;
6207 while (s != null) {
6208 U tr, sr;
6209 if ((sr = s.result) != null)
6210 t.result = (((tr = t.result) == null) ? sr :
6211 reducer.apply(tr, sr));
6212 s = t.rights = s.nextRight;
6213 }
6214 }
6215 }
6216 }
6217 }
6218
6219 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6220 extends Traverser<K,V,U> {
6221 final Function<? super V, ? extends U> transformer;
6222 final BiFunction<? super U, ? super U, ? extends U> reducer;
6223 U result;
6224 MapReduceValuesTask<K,V,U> rights, nextRight;
6225 MapReduceValuesTask
6226 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6227 MapReduceValuesTask<K,V,U> nextRight,
6228 Function<? super V, ? extends U> transformer,
6229 BiFunction<? super U, ? super U, ? extends U> reducer) {
6230 super(m, p, b); this.nextRight = nextRight;
6231 this.transformer = transformer;
6232 this.reducer = reducer;
6233 }
6234 public final U getRawResult() { return result; }
6235 @SuppressWarnings("unchecked") public final void compute() {
6236 final Function<? super V, ? extends U> transformer;
6237 final BiFunction<? super U, ? super U, ? extends U> reducer;
6238 if ((transformer = this.transformer) != null &&
6239 (reducer = this.reducer) != null) {
6240 for (int b; (b = preSplit()) > 0;)
6241 (rights = new MapReduceValuesTask<K,V,U>
6242 (map, this, b, rights, transformer, reducer)).fork();
6243 U r = null, u;
6244 V v;
6245 while ((v = advanceValue()) != null) {
6246 if ((u = transformer.apply(v)) != null)
6247 r = (r == null) ? u : reducer.apply(r, u);
6248 }
6249 result = r;
6250 CountedCompleter<?> c;
6251 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6252 MapReduceValuesTask<K,V,U>
6253 t = (MapReduceValuesTask<K,V,U>)c,
6254 s = t.rights;
6255 while (s != null) {
6256 U tr, sr;
6257 if ((sr = s.result) != null)
6258 t.result = (((tr = t.result) == null) ? sr :
6259 reducer.apply(tr, sr));
6260 s = t.rights = s.nextRight;
6261 }
6262 }
6263 }
6264 }
6265 }
6266
6267 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6268 extends Traverser<K,V,U> {
6269 final Function<Map.Entry<K,V>, ? extends U> transformer;
6270 final BiFunction<? super U, ? super U, ? extends U> reducer;
6271 U result;
6272 MapReduceEntriesTask<K,V,U> rights, nextRight;
6273 MapReduceEntriesTask
6274 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6275 MapReduceEntriesTask<K,V,U> nextRight,
6276 Function<Map.Entry<K,V>, ? extends U> transformer,
6277 BiFunction<? super U, ? super U, ? extends U> reducer) {
6278 super(m, p, b); this.nextRight = nextRight;
6279 this.transformer = transformer;
6280 this.reducer = reducer;
6281 }
6282 public final U getRawResult() { return result; }
6283 @SuppressWarnings("unchecked") public final void compute() {
6284 final Function<Map.Entry<K,V>, ? extends U> transformer;
6285 final BiFunction<? super U, ? super U, ? extends U> reducer;
6286 if ((transformer = this.transformer) != null &&
6287 (reducer = this.reducer) != null) {
6288 for (int b; (b = preSplit()) > 0;)
6289 (rights = new MapReduceEntriesTask<K,V,U>
6290 (map, this, b, rights, transformer, reducer)).fork();
6291 U r = null, u;
6292 V v;
6293 while ((v = advanceValue()) != null) {
6294 if ((u = transformer.apply(entryFor(nextKey,
6295 v))) != null)
6296 r = (r == null) ? u : reducer.apply(r, u);
6297 }
6298 result = r;
6299 CountedCompleter<?> c;
6300 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6301 MapReduceEntriesTask<K,V,U>
6302 t = (MapReduceEntriesTask<K,V,U>)c,
6303 s = t.rights;
6304 while (s != null) {
6305 U tr, sr;
6306 if ((sr = s.result) != null)
6307 t.result = (((tr = t.result) == null) ? sr :
6308 reducer.apply(tr, sr));
6309 s = t.rights = s.nextRight;
6310 }
6311 }
6312 }
6313 }
6314 }
6315
6316 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6317 extends Traverser<K,V,U> {
6318 final BiFunction<? super K, ? super V, ? extends U> transformer;
6319 final BiFunction<? super U, ? super U, ? extends U> reducer;
6320 U result;
6321 MapReduceMappingsTask<K,V,U> rights, nextRight;
6322 MapReduceMappingsTask
6323 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6324 MapReduceMappingsTask<K,V,U> nextRight,
6325 BiFunction<? super K, ? super V, ? extends U> transformer,
6326 BiFunction<? super U, ? super U, ? extends U> reducer) {
6327 super(m, p, b); this.nextRight = nextRight;
6328 this.transformer = transformer;
6329 this.reducer = reducer;
6330 }
6331 public final U getRawResult() { return result; }
6332 @SuppressWarnings("unchecked") public final void compute() {
6333 final BiFunction<? super K, ? super V, ? extends U> transformer;
6334 final BiFunction<? super U, ? super U, ? extends U> reducer;
6335 if ((transformer = this.transformer) != null &&
6336 (reducer = this.reducer) != null) {
6337 for (int b; (b = preSplit()) > 0;)
6338 (rights = new MapReduceMappingsTask<K,V,U>
6339 (map, this, b, rights, transformer, reducer)).fork();
6340 U r = null, u;
6341 V v;
6342 while ((v = advanceValue()) != null) {
6343 if ((u = transformer.apply(nextKey, v)) != null)
6344 r = (r == null) ? u : reducer.apply(r, u);
6345 }
6346 result = r;
6347 CountedCompleter<?> c;
6348 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6349 MapReduceMappingsTask<K,V,U>
6350 t = (MapReduceMappingsTask<K,V,U>)c,
6351 s = t.rights;
6352 while (s != null) {
6353 U tr, sr;
6354 if ((sr = s.result) != null)
6355 t.result = (((tr = t.result) == null) ? sr :
6356 reducer.apply(tr, sr));
6357 s = t.rights = s.nextRight;
6358 }
6359 }
6360 }
6361 }
6362 }
6363
6364 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6365 extends Traverser<K,V,Double> {
6366 final ToDoubleFunction<? super K> transformer;
6367 final DoubleBinaryOperator reducer;
6368 final double basis;
6369 double result;
6370 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6371 MapReduceKeysToDoubleTask
6372 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6373 MapReduceKeysToDoubleTask<K,V> nextRight,
6374 ToDoubleFunction<? super K> transformer,
6375 double basis,
6376 DoubleBinaryOperator reducer) {
6377 super(m, p, b); this.nextRight = nextRight;
6378 this.transformer = transformer;
6379 this.basis = basis; this.reducer = reducer;
6380 }
6381 public final Double getRawResult() { return result; }
6382 @SuppressWarnings("unchecked") public final void compute() {
6383 final ToDoubleFunction<? super K> transformer;
6384 final DoubleBinaryOperator reducer;
6385 if ((transformer = this.transformer) != null &&
6386 (reducer = this.reducer) != null) {
6387 double r = this.basis;
6388 for (int b; (b = preSplit()) > 0;)
6389 (rights = new MapReduceKeysToDoubleTask<K,V>
6390 (map, this, b, rights, transformer, r, reducer)).fork();
6391 K k;
6392 while ((k = advanceKey()) != null)
6393 r = reducer.applyAsDouble(r, transformer.applyAsDouble(k));
6394 result = r;
6395 CountedCompleter<?> c;
6396 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6397 MapReduceKeysToDoubleTask<K,V>
6398 t = (MapReduceKeysToDoubleTask<K,V>)c,
6399 s = t.rights;
6400 while (s != null) {
6401 t.result = reducer.applyAsDouble(t.result, s.result);
6402 s = t.rights = s.nextRight;
6403 }
6404 }
6405 }
6406 }
6407 }
6408
6409 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6410 extends Traverser<K,V,Double> {
6411 final ToDoubleFunction<? super V> transformer;
6412 final DoubleBinaryOperator reducer;
6413 final double basis;
6414 double result;
6415 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6416 MapReduceValuesToDoubleTask
6417 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6418 MapReduceValuesToDoubleTask<K,V> nextRight,
6419 ToDoubleFunction<? super V> transformer,
6420 double basis,
6421 DoubleBinaryOperator reducer) {
6422 super(m, p, b); this.nextRight = nextRight;
6423 this.transformer = transformer;
6424 this.basis = basis; this.reducer = reducer;
6425 }
6426 public final Double getRawResult() { return result; }
6427 @SuppressWarnings("unchecked") public final void compute() {
6428 final ToDoubleFunction<? super V> transformer;
6429 final DoubleBinaryOperator reducer;
6430 if ((transformer = this.transformer) != null &&
6431 (reducer = this.reducer) != null) {
6432 double r = this.basis;
6433 for (int b; (b = preSplit()) > 0;)
6434 (rights = new MapReduceValuesToDoubleTask<K,V>
6435 (map, this, b, rights, transformer, r, reducer)).fork();
6436 V v;
6437 while ((v = advanceValue()) != null)
6438 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
6439 result = r;
6440 CountedCompleter<?> c;
6441 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6442 MapReduceValuesToDoubleTask<K,V>
6443 t = (MapReduceValuesToDoubleTask<K,V>)c,
6444 s = t.rights;
6445 while (s != null) {
6446 t.result = reducer.applyAsDouble(t.result, s.result);
6447 s = t.rights = s.nextRight;
6448 }
6449 }
6450 }
6451 }
6452 }
6453
6454 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6455 extends Traverser<K,V,Double> {
6456 final ToDoubleFunction<Map.Entry<K,V>> transformer;
6457 final DoubleBinaryOperator reducer;
6458 final double basis;
6459 double result;
6460 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6461 MapReduceEntriesToDoubleTask
6462 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6463 MapReduceEntriesToDoubleTask<K,V> nextRight,
6464 ToDoubleFunction<Map.Entry<K,V>> transformer,
6465 double basis,
6466 DoubleBinaryOperator reducer) {
6467 super(m, p, b); this.nextRight = nextRight;
6468 this.transformer = transformer;
6469 this.basis = basis; this.reducer = reducer;
6470 }
6471 public final Double getRawResult() { return result; }
6472 @SuppressWarnings("unchecked") public final void compute() {
6473 final ToDoubleFunction<Map.Entry<K,V>> transformer;
6474 final DoubleBinaryOperator reducer;
6475 if ((transformer = this.transformer) != null &&
6476 (reducer = this.reducer) != null) {
6477 double r = this.basis;
6478 for (int b; (b = preSplit()) > 0;)
6479 (rights = new MapReduceEntriesToDoubleTask<K,V>
6480 (map, this, b, rights, transformer, r, reducer)).fork();
6481 V v;
6482 while ((v = advanceValue()) != null)
6483 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(nextKey,
6484 v)));
6485 result = r;
6486 CountedCompleter<?> c;
6487 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6488 MapReduceEntriesToDoubleTask<K,V>
6489 t = (MapReduceEntriesToDoubleTask<K,V>)c,
6490 s = t.rights;
6491 while (s != null) {
6492 t.result = reducer.applyAsDouble(t.result, s.result);
6493 s = t.rights = s.nextRight;
6494 }
6495 }
6496 }
6497 }
6498 }
6499
6500 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6501 extends Traverser<K,V,Double> {
6502 final ToDoubleBiFunction<? super K, ? super V> transformer;
6503 final DoubleBinaryOperator reducer;
6504 final double basis;
6505 double result;
6506 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6507 MapReduceMappingsToDoubleTask
6508 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6509 MapReduceMappingsToDoubleTask<K,V> nextRight,
6510 ToDoubleBiFunction<? super K, ? super V> transformer,
6511 double basis,
6512 DoubleBinaryOperator reducer) {
6513 super(m, p, b); this.nextRight = nextRight;
6514 this.transformer = transformer;
6515 this.basis = basis; this.reducer = reducer;
6516 }
6517 public final Double getRawResult() { return result; }
6518 @SuppressWarnings("unchecked") public final void compute() {
6519 final ToDoubleBiFunction<? super K, ? super V> transformer;
6520 final DoubleBinaryOperator reducer;
6521 if ((transformer = this.transformer) != null &&
6522 (reducer = this.reducer) != null) {
6523 double r = this.basis;
6524 for (int b; (b = preSplit()) > 0;)
6525 (rights = new MapReduceMappingsToDoubleTask<K,V>
6526 (map, this, b, rights, transformer, r, reducer)).fork();
6527 V v;
6528 while ((v = advanceValue()) != null)
6529 r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey, v));
6530 result = r;
6531 CountedCompleter<?> c;
6532 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6533 MapReduceMappingsToDoubleTask<K,V>
6534 t = (MapReduceMappingsToDoubleTask<K,V>)c,
6535 s = t.rights;
6536 while (s != null) {
6537 t.result = reducer.applyAsDouble(t.result, s.result);
6538 s = t.rights = s.nextRight;
6539 }
6540 }
6541 }
6542 }
6543 }
6544
6545 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6546 extends Traverser<K,V,Long> {
6547 final ToLongFunction<? super K> transformer;
6548 final LongBinaryOperator reducer;
6549 final long basis;
6550 long result;
6551 MapReduceKeysToLongTask<K,V> rights, nextRight;
6552 MapReduceKeysToLongTask
6553 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6554 MapReduceKeysToLongTask<K,V> nextRight,
6555 ToLongFunction<? super K> transformer,
6556 long basis,
6557 LongBinaryOperator reducer) {
6558 super(m, p, b); this.nextRight = nextRight;
6559 this.transformer = transformer;
6560 this.basis = basis; this.reducer = reducer;
6561 }
6562 public final Long getRawResult() { return result; }
6563 @SuppressWarnings("unchecked") public final void compute() {
6564 final ToLongFunction<? super K> transformer;
6565 final LongBinaryOperator reducer;
6566 if ((transformer = this.transformer) != null &&
6567 (reducer = this.reducer) != null) {
6568 long r = this.basis;
6569 for (int b; (b = preSplit()) > 0;)
6570 (rights = new MapReduceKeysToLongTask<K,V>
6571 (map, this, b, rights, transformer, r, reducer)).fork();
6572 K k;
6573 while ((k = advanceKey()) != null)
6574 r = reducer.applyAsLong(r, transformer.applyAsLong(k));
6575 result = r;
6576 CountedCompleter<?> c;
6577 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6578 MapReduceKeysToLongTask<K,V>
6579 t = (MapReduceKeysToLongTask<K,V>)c,
6580 s = t.rights;
6581 while (s != null) {
6582 t.result = reducer.applyAsLong(t.result, s.result);
6583 s = t.rights = s.nextRight;
6584 }
6585 }
6586 }
6587 }
6588 }
6589
6590 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6591 extends Traverser<K,V,Long> {
6592 final ToLongFunction<? super V> transformer;
6593 final LongBinaryOperator reducer;
6594 final long basis;
6595 long result;
6596 MapReduceValuesToLongTask<K,V> rights, nextRight;
6597 MapReduceValuesToLongTask
6598 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6599 MapReduceValuesToLongTask<K,V> nextRight,
6600 ToLongFunction<? super V> transformer,
6601 long basis,
6602 LongBinaryOperator reducer) {
6603 super(m, p, b); this.nextRight = nextRight;
6604 this.transformer = transformer;
6605 this.basis = basis; this.reducer = reducer;
6606 }
6607 public final Long getRawResult() { return result; }
6608 @SuppressWarnings("unchecked") public final void compute() {
6609 final ToLongFunction<? super V> transformer;
6610 final LongBinaryOperator reducer;
6611 if ((transformer = this.transformer) != null &&
6612 (reducer = this.reducer) != null) {
6613 long r = this.basis;
6614 for (int b; (b = preSplit()) > 0;)
6615 (rights = new MapReduceValuesToLongTask<K,V>
6616 (map, this, b, rights, transformer, r, reducer)).fork();
6617 V v;
6618 while ((v = advanceValue()) != null)
6619 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
6620 result = r;
6621 CountedCompleter<?> c;
6622 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6623 MapReduceValuesToLongTask<K,V>
6624 t = (MapReduceValuesToLongTask<K,V>)c,
6625 s = t.rights;
6626 while (s != null) {
6627 t.result = reducer.applyAsLong(t.result, s.result);
6628 s = t.rights = s.nextRight;
6629 }
6630 }
6631 }
6632 }
6633 }
6634
6635 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6636 extends Traverser<K,V,Long> {
6637 final ToLongFunction<Map.Entry<K,V>> transformer;
6638 final LongBinaryOperator reducer;
6639 final long basis;
6640 long result;
6641 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6642 MapReduceEntriesToLongTask
6643 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6644 MapReduceEntriesToLongTask<K,V> nextRight,
6645 ToLongFunction<Map.Entry<K,V>> transformer,
6646 long basis,
6647 LongBinaryOperator reducer) {
6648 super(m, p, b); this.nextRight = nextRight;
6649 this.transformer = transformer;
6650 this.basis = basis; this.reducer = reducer;
6651 }
6652 public final Long getRawResult() { return result; }
6653 @SuppressWarnings("unchecked") public final void compute() {
6654 final ToLongFunction<Map.Entry<K,V>> transformer;
6655 final LongBinaryOperator reducer;
6656 if ((transformer = this.transformer) != null &&
6657 (reducer = this.reducer) != null) {
6658 long r = this.basis;
6659 for (int b; (b = preSplit()) > 0;)
6660 (rights = new MapReduceEntriesToLongTask<K,V>
6661 (map, this, b, rights, transformer, r, reducer)).fork();
6662 V v;
6663 while ((v = advanceValue()) != null)
6664 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(nextKey, v)));
6665 result = r;
6666 CountedCompleter<?> c;
6667 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6668 MapReduceEntriesToLongTask<K,V>
6669 t = (MapReduceEntriesToLongTask<K,V>)c,
6670 s = t.rights;
6671 while (s != null) {
6672 t.result = reducer.applyAsLong(t.result, s.result);
6673 s = t.rights = s.nextRight;
6674 }
6675 }
6676 }
6677 }
6678 }
6679
6680 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6681 extends Traverser<K,V,Long> {
6682 final ToLongBiFunction<? super K, ? super V> transformer;
6683 final LongBinaryOperator reducer;
6684 final long basis;
6685 long result;
6686 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6687 MapReduceMappingsToLongTask
6688 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6689 MapReduceMappingsToLongTask<K,V> nextRight,
6690 ToLongBiFunction<? super K, ? super V> transformer,
6691 long basis,
6692 LongBinaryOperator reducer) {
6693 super(m, p, b); this.nextRight = nextRight;
6694 this.transformer = transformer;
6695 this.basis = basis; this.reducer = reducer;
6696 }
6697 public final Long getRawResult() { return result; }
6698 @SuppressWarnings("unchecked") public final void compute() {
6699 final ToLongBiFunction<? super K, ? super V> transformer;
6700 final LongBinaryOperator reducer;
6701 if ((transformer = this.transformer) != null &&
6702 (reducer = this.reducer) != null) {
6703 long r = this.basis;
6704 for (int b; (b = preSplit()) > 0;)
6705 (rights = new MapReduceMappingsToLongTask<K,V>
6706 (map, this, b, rights, transformer, r, reducer)).fork();
6707 V v;
6708 while ((v = advanceValue()) != null)
6709 r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey, v));
6710 result = r;
6711 CountedCompleter<?> c;
6712 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6713 MapReduceMappingsToLongTask<K,V>
6714 t = (MapReduceMappingsToLongTask<K,V>)c,
6715 s = t.rights;
6716 while (s != null) {
6717 t.result = reducer.applyAsLong(t.result, s.result);
6718 s = t.rights = s.nextRight;
6719 }
6720 }
6721 }
6722 }
6723 }
6724
6725 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6726 extends Traverser<K,V,Integer> {
6727 final ToIntFunction<? super K> transformer;
6728 final IntBinaryOperator reducer;
6729 final int basis;
6730 int result;
6731 MapReduceKeysToIntTask<K,V> rights, nextRight;
6732 MapReduceKeysToIntTask
6733 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6734 MapReduceKeysToIntTask<K,V> nextRight,
6735 ToIntFunction<? super K> transformer,
6736 int basis,
6737 IntBinaryOperator reducer) {
6738 super(m, p, b); this.nextRight = nextRight;
6739 this.transformer = transformer;
6740 this.basis = basis; this.reducer = reducer;
6741 }
6742 public final Integer getRawResult() { return result; }
6743 @SuppressWarnings("unchecked") public final void compute() {
6744 final ToIntFunction<? super K> transformer;
6745 final IntBinaryOperator reducer;
6746 if ((transformer = this.transformer) != null &&
6747 (reducer = this.reducer) != null) {
6748 int r = this.basis;
6749 for (int b; (b = preSplit()) > 0;)
6750 (rights = new MapReduceKeysToIntTask<K,V>
6751 (map, this, b, rights, transformer, r, reducer)).fork();
6752 K k;
6753 while ((k = advanceKey()) != null)
6754 r = reducer.applyAsInt(r, transformer.applyAsInt(k));
6755 result = r;
6756 CountedCompleter<?> c;
6757 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6758 MapReduceKeysToIntTask<K,V>
6759 t = (MapReduceKeysToIntTask<K,V>)c,
6760 s = t.rights;
6761 while (s != null) {
6762 t.result = reducer.applyAsInt(t.result, s.result);
6763 s = t.rights = s.nextRight;
6764 }
6765 }
6766 }
6767 }
6768 }
6769
6770 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6771 extends Traverser<K,V,Integer> {
6772 final ToIntFunction<? super V> transformer;
6773 final IntBinaryOperator reducer;
6774 final int basis;
6775 int result;
6776 MapReduceValuesToIntTask<K,V> rights, nextRight;
6777 MapReduceValuesToIntTask
6778 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6779 MapReduceValuesToIntTask<K,V> nextRight,
6780 ToIntFunction<? super V> transformer,
6781 int basis,
6782 IntBinaryOperator reducer) {
6783 super(m, p, b); this.nextRight = nextRight;
6784 this.transformer = transformer;
6785 this.basis = basis; this.reducer = reducer;
6786 }
6787 public final Integer getRawResult() { return result; }
6788 @SuppressWarnings("unchecked") public final void compute() {
6789 final ToIntFunction<? super V> transformer;
6790 final IntBinaryOperator reducer;
6791 if ((transformer = this.transformer) != null &&
6792 (reducer = this.reducer) != null) {
6793 int r = this.basis;
6794 for (int b; (b = preSplit()) > 0;)
6795 (rights = new MapReduceValuesToIntTask<K,V>
6796 (map, this, b, rights, transformer, r, reducer)).fork();
6797 V v;
6798 while ((v = advanceValue()) != null)
6799 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
6800 result = r;
6801 CountedCompleter<?> c;
6802 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6803 MapReduceValuesToIntTask<K,V>
6804 t = (MapReduceValuesToIntTask<K,V>)c,
6805 s = t.rights;
6806 while (s != null) {
6807 t.result = reducer.applyAsInt(t.result, s.result);
6808 s = t.rights = s.nextRight;
6809 }
6810 }
6811 }
6812 }
6813 }
6814
6815 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6816 extends Traverser<K,V,Integer> {
6817 final ToIntFunction<Map.Entry<K,V>> transformer;
6818 final IntBinaryOperator reducer;
6819 final int basis;
6820 int result;
6821 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6822 MapReduceEntriesToIntTask
6823 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6824 MapReduceEntriesToIntTask<K,V> nextRight,
6825 ToIntFunction<Map.Entry<K,V>> transformer,
6826 int basis,
6827 IntBinaryOperator reducer) {
6828 super(m, p, b); this.nextRight = nextRight;
6829 this.transformer = transformer;
6830 this.basis = basis; this.reducer = reducer;
6831 }
6832 public final Integer getRawResult() { return result; }
6833 @SuppressWarnings("unchecked") public final void compute() {
6834 final ToIntFunction<Map.Entry<K,V>> transformer;
6835 final IntBinaryOperator reducer;
6836 if ((transformer = this.transformer) != null &&
6837 (reducer = this.reducer) != null) {
6838 int r = this.basis;
6839 for (int b; (b = preSplit()) > 0;)
6840 (rights = new MapReduceEntriesToIntTask<K,V>
6841 (map, this, b, rights, transformer, r, reducer)).fork();
6842 V v;
6843 while ((v = advanceValue()) != null)
6844 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(nextKey,
6845 v)));
6846 result = r;
6847 CountedCompleter<?> c;
6848 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6849 MapReduceEntriesToIntTask<K,V>
6850 t = (MapReduceEntriesToIntTask<K,V>)c,
6851 s = t.rights;
6852 while (s != null) {
6853 t.result = reducer.applyAsInt(t.result, s.result);
6854 s = t.rights = s.nextRight;
6855 }
6856 }
6857 }
6858 }
6859 }
6860
6861 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6862 extends Traverser<K,V,Integer> {
6863 final ToIntBiFunction<? super K, ? super V> transformer;
6864 final IntBinaryOperator reducer;
6865 final int basis;
6866 int result;
6867 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6868 MapReduceMappingsToIntTask
6869 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6870 MapReduceMappingsToIntTask<K,V> nextRight,
6871 ToIntBiFunction<? super K, ? super V> transformer,
6872 int basis,
6873 IntBinaryOperator reducer) {
6874 super(m, p, b); this.nextRight = nextRight;
6875 this.transformer = transformer;
6876 this.basis = basis; this.reducer = reducer;
6877 }
6878 public final Integer getRawResult() { return result; }
6879 @SuppressWarnings("unchecked") public final void compute() {
6880 final ToIntBiFunction<? super K, ? super V> transformer;
6881 final IntBinaryOperator reducer;
6882 if ((transformer = this.transformer) != null &&
6883 (reducer = this.reducer) != null) {
6884 int r = this.basis;
6885 for (int b; (b = preSplit()) > 0;)
6886 (rights = new MapReduceMappingsToIntTask<K,V>
6887 (map, this, b, rights, transformer, r, reducer)).fork();
6888 V v;
6889 while ((v = advanceValue()) != null)
6890 r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey, v));
6891 result = r;
6892 CountedCompleter<?> c;
6893 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6894 MapReduceMappingsToIntTask<K,V>
6895 t = (MapReduceMappingsToIntTask<K,V>)c,
6896 s = t.rights;
6897 while (s != null) {
6898 t.result = reducer.applyAsInt(t.result, s.result);
6899 s = t.rights = s.nextRight;
6900 }
6901 }
6902 }
6903 }
6904 }
6905
6906 // Unsafe mechanics
6907 private static final sun.misc.Unsafe U;
6908 private static final long SIZECTL;
6909 private static final long TRANSFERINDEX;
6910 private static final long TRANSFERORIGIN;
6911 private static final long BASECOUNT;
6912 private static final long CELLSBUSY;
6913 private static final long CELLVALUE;
6914 private static final long ABASE;
6915 private static final int ASHIFT;
6916
6917 static {
6918 try {
6919 U = sun.misc.Unsafe.getUnsafe();
6920 Class<?> k = ConcurrentHashMap.class;
6921 SIZECTL = U.objectFieldOffset
6922 (k.getDeclaredField("sizeCtl"));
6923 TRANSFERINDEX = U.objectFieldOffset
6924 (k.getDeclaredField("transferIndex"));
6925 TRANSFERORIGIN = U.objectFieldOffset
6926 (k.getDeclaredField("transferOrigin"));
6927 BASECOUNT = U.objectFieldOffset
6928 (k.getDeclaredField("baseCount"));
6929 CELLSBUSY = U.objectFieldOffset
6930 (k.getDeclaredField("cellsBusy"));
6931 Class<?> ck = Cell.class;
6932 CELLVALUE = U.objectFieldOffset
6933 (ck.getDeclaredField("value"));
6934 Class<?> sc = Node[].class;
6935 ABASE = U.arrayBaseOffset(sc);
6936 int scale = U.arrayIndexScale(sc);
6937 if ((scale & (scale - 1)) != 0)
6938 throw new Error("data type scale not a power of two");
6939 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6940 } catch (Exception e) {
6941 throw new Error(e);
6942 }
6943 }
6944
6945 }