ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.205
Committed: Thu Apr 11 20:13:38 2013 UTC (11 years, 2 months ago) by dl
Branch: MAIN
Changes since 1.204: +5 -17 lines
Log Message:
Simplify comparisons

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8 import java.util.concurrent.ForkJoinPool;
9 import java.util.concurrent.CountedCompleter;
10 import java.util.Spliterator;
11 import java.util.stream.Stream;
12 import java.util.stream.Streams;
13 import java.util.function.*;
14 import java.util.function.Consumer;
15 import java.util.function.Function;
16 import java.util.function.BiFunction;
17
18 import java.util.Comparator;
19 import java.util.Arrays;
20 import java.util.Map;
21 import java.util.Set;
22 import java.util.Collection;
23 import java.util.AbstractMap;
24 import java.util.AbstractSet;
25 import java.util.AbstractCollection;
26 import java.util.Hashtable;
27 import java.util.HashMap;
28 import java.util.Iterator;
29 import java.util.Enumeration;
30 import java.util.ConcurrentModificationException;
31 import java.util.NoSuchElementException;
32 import java.util.concurrent.ConcurrentMap;
33 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
34 import java.util.concurrent.atomic.AtomicInteger;
35 import java.util.concurrent.atomic.AtomicReference;
36 import java.io.Serializable;
37 import java.lang.reflect.Type;
38 import java.lang.reflect.ParameterizedType;
39
40 /**
41 * A hash table supporting full concurrency of retrievals and
42 * high expected concurrency for updates. This class obeys the
43 * same functional specification as {@link java.util.Hashtable}, and
44 * includes versions of methods corresponding to each method of
45 * {@code Hashtable}. However, even though all operations are
46 * thread-safe, retrieval operations do <em>not</em> entail locking,
47 * and there is <em>not</em> any support for locking the entire table
48 * in a way that prevents all access. This class is fully
49 * interoperable with {@code Hashtable} in programs that rely on its
50 * thread safety but not on its synchronization details.
51 *
52 * <p>Retrieval operations (including {@code get}) generally do not
53 * block, so may overlap with update operations (including {@code put}
54 * and {@code remove}). Retrievals reflect the results of the most
55 * recently <em>completed</em> update operations holding upon their
56 * onset. (More formally, an update operation for a given key bears a
57 * <em>happens-before</em> relation with any (non-null) retrieval for
58 * that key reporting the updated value.) For aggregate operations
59 * such as {@code putAll} and {@code clear}, concurrent retrievals may
60 * reflect insertion or removal of only some entries. Similarly,
61 * Iterators and Enumerations return elements reflecting the state of
62 * the hash table at some point at or since the creation of the
63 * iterator/enumeration. They do <em>not</em> throw {@link
64 * ConcurrentModificationException}. However, iterators are designed
65 * to be used by only one thread at a time. Bear in mind that the
66 * results of aggregate status methods including {@code size}, {@code
67 * isEmpty}, and {@code containsValue} are typically useful only when
68 * a map is not undergoing concurrent updates in other threads.
69 * Otherwise the results of these methods reflect transient states
70 * that may be adequate for monitoring or estimation purposes, but not
71 * for program control.
72 *
73 * <p>The table is dynamically expanded when there are too many
74 * collisions (i.e., keys that have distinct hash codes but fall into
75 * the same slot modulo the table size), with the expected average
76 * effect of maintaining roughly two bins per mapping (corresponding
77 * to a 0.75 load factor threshold for resizing). There may be much
78 * variance around this average as mappings are added and removed, but
79 * overall, this maintains a commonly accepted time/space tradeoff for
80 * hash tables. However, resizing this or any other kind of hash
81 * table may be a relatively slow operation. When possible, it is a
82 * good idea to provide a size estimate as an optional {@code
83 * initialCapacity} constructor argument. An additional optional
84 * {@code loadFactor} constructor argument provides a further means of
85 * customizing initial table capacity by specifying the table density
86 * to be used in calculating the amount of space to allocate for the
87 * given number of elements. Also, for compatibility with previous
88 * versions of this class, constructors may optionally specify an
89 * expected {@code concurrencyLevel} as an additional hint for
90 * internal sizing. Note that using many keys with exactly the same
91 * {@code hashCode()} is a sure way to slow down performance of any
92 * hash table.
93 *
94 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
95 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
96 * (using {@link #keySet(Object)} when only keys are of interest, and the
97 * mapped values are (perhaps transiently) not used or all take the
98 * same mapping value.
99 *
100 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
101 * form of histogram or multiset) by using {@link
102 * java.util.concurrent.atomic.LongAdder} values and initializing via
103 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
104 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
105 * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
106 *
107 * <p>This class and its views and iterators implement all of the
108 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
109 * interfaces.
110 *
111 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
112 * does <em>not</em> allow {@code null} to be used as a key or value.
113 *
114 * <p>ConcurrentHashMaps support sequential and parallel operations
115 * bulk operations. (Parallel forms use the {@link
116 * ForkJoinPool#commonPool()}). Tasks that may be used in other
117 * contexts are available in class {@link ForkJoinTasks}. These
118 * operations are designed to be safely, and often sensibly, applied
119 * even with maps that are being concurrently updated by other
120 * threads; for example, when computing a snapshot summary of the
121 * values in a shared registry. There are three kinds of operation,
122 * each with four forms, accepting functions with Keys, Values,
123 * Entries, and (Key, Value) arguments and/or return values. Because
124 * the elements of a ConcurrentHashMap are not ordered in any
125 * particular way, and may be processed in different orders in
126 * different parallel executions, the correctness of supplied
127 * functions should not depend on any ordering, or on any other
128 * objects or values that may transiently change while computation is
129 * in progress; and except for forEach actions, should ideally be
130 * side-effect-free.
131 *
132 * <ul>
133 * <li> forEach: Perform a given action on each element.
134 * A variant form applies a given transformation on each element
135 * before performing the action.</li>
136 *
137 * <li> search: Return the first available non-null result of
138 * applying a given function on each element; skipping further
139 * search when a result is found.</li>
140 *
141 * <li> reduce: Accumulate each element. The supplied reduction
142 * function cannot rely on ordering (more formally, it should be
143 * both associative and commutative). There are five variants:
144 *
145 * <ul>
146 *
147 * <li> Plain reductions. (There is not a form of this method for
148 * (key, value) function arguments since there is no corresponding
149 * return type.)</li>
150 *
151 * <li> Mapped reductions that accumulate the results of a given
152 * function applied to each element.</li>
153 *
154 * <li> Reductions to scalar doubles, longs, and ints, using a
155 * given basis value.</li>
156 *
157 * </ul>
158 * </li>
159 * </ul>
160 *
161 * <p>The concurrency properties of bulk operations follow
162 * from those of ConcurrentHashMap: Any non-null result returned
163 * from {@code get(key)} and related access methods bears a
164 * happens-before relation with the associated insertion or
165 * update. The result of any bulk operation reflects the
166 * composition of these per-element relations (but is not
167 * necessarily atomic with respect to the map as a whole unless it
168 * is somehow known to be quiescent). Conversely, because keys
169 * and values in the map are never null, null serves as a reliable
170 * atomic indicator of the current lack of any result. To
171 * maintain this property, null serves as an implicit basis for
172 * all non-scalar reduction operations. For the double, long, and
173 * int versions, the basis should be one that, when combined with
174 * any other value, returns that other value (more formally, it
175 * should be the identity element for the reduction). Most common
176 * reductions have these properties; for example, computing a sum
177 * with basis 0 or a minimum with basis MAX_VALUE.
178 *
179 * <p>Search and transformation functions provided as arguments
180 * should similarly return null to indicate the lack of any result
181 * (in which case it is not used). In the case of mapped
182 * reductions, this also enables transformations to serve as
183 * filters, returning null (or, in the case of primitive
184 * specializations, the identity basis) if the element should not
185 * be combined. You can create compound transformations and
186 * filterings by composing them yourself under this "null means
187 * there is nothing there now" rule before using them in search or
188 * reduce operations.
189 *
190 * <p>Methods accepting and/or returning Entry arguments maintain
191 * key-value associations. They may be useful for example when
192 * finding the key for the greatest value. Note that "plain" Entry
193 * arguments can be supplied using {@code new
194 * AbstractMap.SimpleEntry(k,v)}.
195 *
196 * <p>Bulk operations may complete abruptly, throwing an
197 * exception encountered in the application of a supplied
198 * function. Bear in mind when handling such exceptions that other
199 * concurrently executing functions could also have thrown
200 * exceptions, or would have done so if the first exception had
201 * not occurred.
202 *
203 * <p>Speedups for parallel compared to sequential forms are common
204 * but not guaranteed. Parallel operations involving brief functions
205 * on small maps may execute more slowly than sequential forms if the
206 * underlying work to parallelize the computation is more expensive
207 * than the computation itself. Similarly, parallelization may not
208 * lead to much actual parallelism if all processors are busy
209 * performing unrelated tasks.
210 *
211 * <p>All arguments to all task methods must be non-null.
212 *
213 * <p>This class is a member of the
214 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
215 * Java Collections Framework</a>.
216 *
217 * @since 1.5
218 * @author Doug Lea
219 * @param <K> the type of keys maintained by this map
220 * @param <V> the type of mapped values
221 */
222 public class ConcurrentHashMap<K,V>
223 implements ConcurrentMap<K,V>, Serializable {
224 private static final long serialVersionUID = 7249069246763182397L;
225
226 /*
227 * Overview:
228 *
229 * The primary design goal of this hash table is to maintain
230 * concurrent readability (typically method get(), but also
231 * iterators and related methods) while minimizing update
232 * contention. Secondary goals are to keep space consumption about
233 * the same or better than java.util.HashMap, and to support high
234 * initial insertion rates on an empty table by many threads.
235 *
236 * Each key-value mapping is held in a Node. Because Node key
237 * fields can contain special values, they are defined using plain
238 * Object types (not type "K"). This leads to a lot of explicit
239 * casting (and many explicit warning suppressions to tell
240 * compilers not to complain about it). It also allows some of the
241 * public methods to be factored into a smaller number of internal
242 * methods (although sadly not so for the five variants of
243 * put-related operations). The validation-based approach
244 * explained below leads to a lot of code sprawl because
245 * retry-control precludes factoring into smaller methods.
246 *
247 * The table is lazily initialized to a power-of-two size upon the
248 * first insertion. Each bin in the table normally contains a
249 * list of Nodes (most often, the list has only zero or one Node).
250 * Table accesses require volatile/atomic reads, writes, and
251 * CASes. Because there is no other way to arrange this without
252 * adding further indirections, we use intrinsics
253 * (sun.misc.Unsafe) operations. The lists of nodes within bins
254 * are always accurately traversable under volatile reads, so long
255 * as lookups check hash code and non-nullness of value before
256 * checking key equality.
257 *
258 * We use the top (sign) bit of Node hash fields for control
259 * purposes -- it is available anyway because of addressing
260 * constraints. Nodes with negative hash fields are forwarding
261 * nodes to either TreeBins or resized tables. The lower 31 bits
262 * of each normal Node's hash field contain a transformation of
263 * the key's hash code.
264 *
265 * Insertion (via put or its variants) of the first node in an
266 * empty bin is performed by just CASing it to the bin. This is
267 * by far the most common case for put operations under most
268 * key/hash distributions. Other update operations (insert,
269 * delete, and replace) require locks. We do not want to waste
270 * the space required to associate a distinct lock object with
271 * each bin, so instead use the first node of a bin list itself as
272 * a lock. Locking support for these locks relies on builtin
273 * "synchronized" monitors.
274 *
275 * Using the first node of a list as a lock does not by itself
276 * suffice though: When a node is locked, any update must first
277 * validate that it is still the first node after locking it, and
278 * retry if not. Because new nodes are always appended to lists,
279 * once a node is first in a bin, it remains first until deleted
280 * or the bin becomes invalidated (upon resizing). However,
281 * operations that only conditionally update may inspect nodes
282 * until the point of update. This is a converse of sorts to the
283 * lazy locking technique described by Herlihy & Shavit.
284 *
285 * The main disadvantage of per-bin locks is that other update
286 * operations on other nodes in a bin list protected by the same
287 * lock can stall, for example when user equals() or mapping
288 * functions take a long time. However, statistically, under
289 * random hash codes, this is not a common problem. Ideally, the
290 * frequency of nodes in bins follows a Poisson distribution
291 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
292 * parameter of about 0.5 on average, given the resizing threshold
293 * of 0.75, although with a large variance because of resizing
294 * granularity. Ignoring variance, the expected occurrences of
295 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
296 * first values are:
297 *
298 * 0: 0.60653066
299 * 1: 0.30326533
300 * 2: 0.07581633
301 * 3: 0.01263606
302 * 4: 0.00157952
303 * 5: 0.00015795
304 * 6: 0.00001316
305 * 7: 0.00000094
306 * 8: 0.00000006
307 * more: less than 1 in ten million
308 *
309 * Lock contention probability for two threads accessing distinct
310 * elements is roughly 1 / (8 * #elements) under random hashes.
311 *
312 * Actual hash code distributions encountered in practice
313 * sometimes deviate significantly from uniform randomness. This
314 * includes the case when N > (1<<30), so some keys MUST collide.
315 * Similarly for dumb or hostile usages in which multiple keys are
316 * designed to have identical hash codes. Also, although we guard
317 * against the worst effects of this (see method spread), sets of
318 * hashes may differ only in bits that do not impact their bin
319 * index for a given power-of-two mask. So we use a secondary
320 * strategy that applies when the number of nodes in a bin exceeds
321 * a threshold, and at least one of the keys implements
322 * Comparable. These TreeBins use a balanced tree to hold nodes
323 * (a specialized form of red-black trees), bounding search time
324 * to O(log N). Each search step in a TreeBin is around twice as
325 * slow as in a regular list, but given that N cannot exceed
326 * (1<<64) (before running out of addresses) this bounds search
327 * steps, lock hold times, etc, to reasonable constants (roughly
328 * 100 nodes inspected per operation worst case) so long as keys
329 * are Comparable (which is very common -- String, Long, etc).
330 * TreeBin nodes (TreeNodes) also maintain the same "next"
331 * traversal pointers as regular nodes, so can be traversed in
332 * iterators in the same way.
333 *
334 * The table is resized when occupancy exceeds a percentage
335 * threshold (nominally, 0.75, but see below). Any thread
336 * noticing an overfull bin may assist in resizing after the
337 * initiating thread allocates and sets up the replacement
338 * array. However, rather than stalling, these other threads may
339 * proceed with insertions etc. The use of TreeBins shields us
340 * from the worst case effects of overfilling while resizes are in
341 * progress. Resizing proceeds by transferring bins, one by one,
342 * from the table to the next table. To enable concurrency, the
343 * next table must be (incrementally) prefilled with place-holders
344 * serving as reverse forwarders to the old table. Because we are
345 * using power-of-two expansion, the elements from each bin must
346 * either stay at same index, or move with a power of two
347 * offset. We eliminate unnecessary node creation by catching
348 * cases where old nodes can be reused because their next fields
349 * won't change. On average, only about one-sixth of them need
350 * cloning when a table doubles. The nodes they replace will be
351 * garbage collectable as soon as they are no longer referenced by
352 * any reader thread that may be in the midst of concurrently
353 * traversing table. Upon transfer, the old table bin contains
354 * only a special forwarding node (with hash field "MOVED") that
355 * contains the next table as its key. On encountering a
356 * forwarding node, access and update operations restart, using
357 * the new table.
358 *
359 * Each bin transfer requires its bin lock, which can stall
360 * waiting for locks while resizing. However, because other
361 * threads can join in and help resize rather than contend for
362 * locks, average aggregate waits become shorter as resizing
363 * progresses. The transfer operation must also ensure that all
364 * accessible bins in both the old and new table are usable by any
365 * traversal. This is arranged by proceeding from the last bin
366 * (table.length - 1) up towards the first. Upon seeing a
367 * forwarding node, traversals (see class Traverser) arrange to
368 * move to the new table without revisiting nodes. However, to
369 * ensure that no intervening nodes are skipped, bin splitting can
370 * only begin after the associated reverse-forwarders are in
371 * place.
372 *
373 * The traversal scheme also applies to partial traversals of
374 * ranges of bins (via an alternate Traverser constructor)
375 * to support partitioned aggregate operations. Also, read-only
376 * operations give up if ever forwarded to a null table, which
377 * provides support for shutdown-style clearing, which is also not
378 * currently implemented.
379 *
380 * Lazy table initialization minimizes footprint until first use,
381 * and also avoids resizings when the first operation is from a
382 * putAll, constructor with map argument, or deserialization.
383 * These cases attempt to override the initial capacity settings,
384 * but harmlessly fail to take effect in cases of races.
385 *
386 * The element count is maintained using a specialization of
387 * LongAdder. We need to incorporate a specialization rather than
388 * just use a LongAdder in order to access implicit
389 * contention-sensing that leads to creation of multiple
390 * Cells. The counter mechanics avoid contention on
391 * updates but can encounter cache thrashing if read too
392 * frequently during concurrent access. To avoid reading so often,
393 * resizing under contention is attempted only upon adding to a
394 * bin already holding two or more nodes. Under uniform hash
395 * distributions, the probability of this occurring at threshold
396 * is around 13%, meaning that only about 1 in 8 puts check
397 * threshold (and after resizing, many fewer do so). The bulk
398 * putAll operation further reduces contention by only committing
399 * count updates upon these size checks.
400 *
401 * Maintaining API and serialization compatibility with previous
402 * versions of this class introduces several oddities. Mainly: We
403 * leave untouched but unused constructor arguments refering to
404 * concurrencyLevel. We accept a loadFactor constructor argument,
405 * but apply it only to initial table capacity (which is the only
406 * time that we can guarantee to honor it.) We also declare an
407 * unused "Segment" class that is instantiated in minimal form
408 * only when serializing.
409 */
410
411 /* ---------------- Constants -------------- */
412
413 /**
414 * The largest possible table capacity. This value must be
415 * exactly 1<<30 to stay within Java array allocation and indexing
416 * bounds for power of two table sizes, and is further required
417 * because the top two bits of 32bit hash fields are used for
418 * control purposes.
419 */
420 private static final int MAXIMUM_CAPACITY = 1 << 30;
421
422 /**
423 * The default initial table capacity. Must be a power of 2
424 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
425 */
426 private static final int DEFAULT_CAPACITY = 16;
427
428 /**
429 * The largest possible (non-power of two) array size.
430 * Needed by toArray and related methods.
431 */
432 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
433
434 /**
435 * The default concurrency level for this table. Unused but
436 * defined for compatibility with previous versions of this class.
437 */
438 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
439
440 /**
441 * The load factor for this table. Overrides of this value in
442 * constructors affect only the initial table capacity. The
443 * actual floating point value isn't normally used -- it is
444 * simpler to use expressions such as {@code n - (n >>> 2)} for
445 * the associated resizing threshold.
446 */
447 private static final float LOAD_FACTOR = 0.75f;
448
449 /**
450 * The bin count threshold for using a tree rather than list for a
451 * bin. The value reflects the approximate break-even point for
452 * using tree-based operations.
453 */
454 private static final int TREE_THRESHOLD = 16;
455
456 /**
457 * Minimum number of rebinnings per transfer step. Ranges are
458 * subdivided to allow multiple resizer threads. This value
459 * serves as a lower bound to avoid resizers encountering
460 * excessive memory contention. The value should be at least
461 * DEFAULT_CAPACITY.
462 */
463 private static final int MIN_TRANSFER_STRIDE = 16;
464
465 /*
466 * Encodings for Node hash fields. See above for explanation.
467 */
468 static final int MOVED = 0x80000000; // hash field for forwarding nodes
469 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
470
471 /** Number of CPUS, to place bounds on some sizings */
472 static final int NCPU = Runtime.getRuntime().availableProcessors();
473
474 /* ---------------- Counters -------------- */
475
476 // Adapted from LongAdder and Striped64.
477 // See their internal docs for explanation.
478
479 // A padded cell for distributing counts
480 static final class Cell {
481 volatile long p0, p1, p2, p3, p4, p5, p6;
482 volatile long value;
483 volatile long q0, q1, q2, q3, q4, q5, q6;
484 Cell(long x) { value = x; }
485 }
486
487 /* ---------------- Fields -------------- */
488
489 /**
490 * The array of bins. Lazily initialized upon first insertion.
491 * Size is always a power of two. Accessed directly by iterators.
492 */
493 transient volatile Node<V>[] table;
494
495 /**
496 * The next table to use; non-null only while resizing.
497 */
498 private transient volatile Node<V>[] nextTable;
499
500 /**
501 * Base counter value, used mainly when there is no contention,
502 * but also as a fallback during table initialization
503 * races. Updated via CAS.
504 */
505 private transient volatile long baseCount;
506
507 /**
508 * Table initialization and resizing control. When negative, the
509 * table is being initialized or resized: -1 for initialization,
510 * else -(1 + the number of active resizing threads). Otherwise,
511 * when table is null, holds the initial table size to use upon
512 * creation, or 0 for default. After initialization, holds the
513 * next element count value upon which to resize the table.
514 */
515 private transient volatile int sizeCtl;
516
517 /**
518 * The next table index (plus one) to split while resizing.
519 */
520 private transient volatile int transferIndex;
521
522 /**
523 * The least available table index to split while resizing.
524 */
525 private transient volatile int transferOrigin;
526
527 /**
528 * Spinlock (locked via CAS) used when resizing and/or creating Cells.
529 */
530 private transient volatile int cellsBusy;
531
532 /**
533 * Table of counter cells. When non-null, size is a power of 2.
534 */
535 private transient volatile Cell[] counterCells;
536
537 // views
538 private transient KeySetView<K,V> keySet;
539 private transient ValuesView<K,V> values;
540 private transient EntrySetView<K,V> entrySet;
541
542 /** For serialization compatibility. Null unless serialized; see below */
543 private Segment<K,V>[] segments;
544
545 /* ---------------- Table element access -------------- */
546
547 /*
548 * Volatile access methods are used for table elements as well as
549 * elements of in-progress next table while resizing. Uses are
550 * null checked by callers, and implicitly bounds-checked, relying
551 * on the invariants that tab arrays have non-zero size, and all
552 * indices are masked with (tab.length - 1) which is never
553 * negative and always less than length. Note that, to be correct
554 * wrt arbitrary concurrency errors by users, bounds checks must
555 * operate on local variables, which accounts for some odd-looking
556 * inline assignments below.
557 */
558
559 @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
560 (Node<V>[] tab, int i) { // used by Traverser
561 return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
562 }
563
564 private static final <V> boolean casTabAt
565 (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
566 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
567 }
568
569 private static final <V> void setTabAt
570 (Node<V>[] tab, int i, Node<V> v) {
571 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
572 }
573
574 /* ---------------- Nodes -------------- */
575
576 /**
577 * Key-value entry. Note that this is never exported out as a
578 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
579 * field of MOVED are special, and do not contain user keys or
580 * values. Otherwise, keys are never null, and null val fields
581 * indicate that a node is in the process of being deleted or
582 * created. For purposes of read-only access, a key may be read
583 * before a val, but can only be used after checking val to be
584 * non-null.
585 */
586 static class Node<V> {
587 final int hash;
588 final Object key;
589 volatile V val;
590 volatile Node<V> next;
591
592 Node(int hash, Object key, V val, Node<V> next) {
593 this.hash = hash;
594 this.key = key;
595 this.val = val;
596 this.next = next;
597 }
598 }
599
600 /* ---------------- TreeBins -------------- */
601
602 /**
603 * Nodes for use in TreeBins
604 */
605 static final class TreeNode<V> extends Node<V> {
606 TreeNode<V> parent; // red-black tree links
607 TreeNode<V> left;
608 TreeNode<V> right;
609 TreeNode<V> prev; // needed to unlink next upon deletion
610 boolean red;
611
612 TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
613 super(hash, key, val, next);
614 this.parent = parent;
615 }
616 }
617
618
619 /**
620 * Returns a Class for the given object of the form "class C
621 * implements Comparable<C>", if one exists, else null. See below
622 * for explanation.
623 */
624 static Class<?> comparableClassFor(Object x) {
625 Class<?> c, s, cmpc; Type[] ts, as; Type t; ParameterizedType p;
626 if ((c = x.getClass()) == String.class) // bypass checks
627 return c;
628 if ((cmpc = Comparable.class).isAssignableFrom(c)) {
629 while (cmpc.isAssignableFrom(s = c.getSuperclass()))
630 c = s; // find topmost comparable class
631 if ((ts = c.getGenericInterfaces()) != null) {
632 for (int i = 0; i < ts.length; ++i) {
633 if (((t = ts[i]) instanceof ParameterizedType) &&
634 ((p = (ParameterizedType)t).getRawType() == cmpc) &&
635 (as = p.getActualTypeArguments()) != null &&
636 as.length == 1 && as[0] == c) // type arg is c
637 return c;
638 }
639 }
640 }
641 return null;
642 }
643
644 /**
645 * A specialized form of red-black tree for use in bins
646 * whose size exceeds a threshold.
647 *
648 * TreeBins use a special form of comparison for search and
649 * related operations (which is the main reason we cannot use
650 * existing collections such as TreeMaps). TreeBins contain
651 * Comparable elements, but may contain others, as well as
652 * elements that are Comparable but not necessarily Comparable<T>
653 * for the same T, so we cannot invoke compareTo among them. To
654 * handle this, the tree is ordered primarily by hash value, then
655 * by Comparable.compareTo order if applicable. On lookup at a
656 * node, if elements are not comparable or compare as 0 then both
657 * left and right children may need to be searched in the case of
658 * tied hash values. (This corresponds to the full list search
659 * that would be necessary if all elements were non-Comparable and
660 * had tied hashes.) The red-black balancing code is updated from
661 * pre-jdk-collections
662 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
663 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
664 * Algorithms" (CLR).
665 *
666 * TreeBins also maintain a separate locking discipline than
667 * regular bins. Because they are forwarded via special MOVED
668 * nodes at bin heads (which can never change once established),
669 * we cannot use those nodes as locks. Instead, TreeBin
670 * extends AbstractQueuedSynchronizer to support a simple form of
671 * read-write lock. For update operations and table validation,
672 * the exclusive form of lock behaves in the same way as bin-head
673 * locks. However, lookups use shared read-lock mechanics to allow
674 * multiple readers in the absence of writers. Additionally,
675 * these lookups do not ever block: While the lock is not
676 * available, they proceed along the slow traversal path (via
677 * next-pointers) until the lock becomes available or the list is
678 * exhausted, whichever comes first. (These cases are not fast,
679 * but maximize aggregate expected throughput.) The AQS mechanics
680 * for doing this are straightforward. The lock state is held as
681 * AQS getState(). Read counts are negative; the write count (1)
682 * is positive. There are no signalling preferences among readers
683 * and writers. Since we don't need to export full Lock API, we
684 * just override the minimal AQS methods and use them directly.
685 */
686 static final class TreeBin<V> extends AbstractQueuedSynchronizer {
687 private static final long serialVersionUID = 2249069246763182397L;
688 transient TreeNode<V> root; // root of tree
689 transient TreeNode<V> first; // head of next-pointer list
690
691 /* AQS overrides */
692 public final boolean isHeldExclusively() { return getState() > 0; }
693 public final boolean tryAcquire(int ignore) {
694 if (compareAndSetState(0, 1)) {
695 setExclusiveOwnerThread(Thread.currentThread());
696 return true;
697 }
698 return false;
699 }
700 public final boolean tryRelease(int ignore) {
701 setExclusiveOwnerThread(null);
702 setState(0);
703 return true;
704 }
705 public final int tryAcquireShared(int ignore) {
706 for (int c;;) {
707 if ((c = getState()) > 0)
708 return -1;
709 if (compareAndSetState(c, c -1))
710 return 1;
711 }
712 }
713 public final boolean tryReleaseShared(int ignore) {
714 int c;
715 do {} while (!compareAndSetState(c = getState(), c + 1));
716 return c == -1;
717 }
718
719 /** From CLR */
720 private void rotateLeft(TreeNode<V> p) {
721 if (p != null) {
722 TreeNode<V> r = p.right, pp, rl;
723 if ((rl = p.right = r.left) != null)
724 rl.parent = p;
725 if ((pp = r.parent = p.parent) == null)
726 root = r;
727 else if (pp.left == p)
728 pp.left = r;
729 else
730 pp.right = r;
731 r.left = p;
732 p.parent = r;
733 }
734 }
735
736 /** From CLR */
737 private void rotateRight(TreeNode<V> p) {
738 if (p != null) {
739 TreeNode<V> l = p.left, pp, lr;
740 if ((lr = p.left = l.right) != null)
741 lr.parent = p;
742 if ((pp = l.parent = p.parent) == null)
743 root = l;
744 else if (pp.right == p)
745 pp.right = l;
746 else
747 pp.left = l;
748 l.right = p;
749 p.parent = l;
750 }
751 }
752
753 /**
754 * Returns the TreeNode (or null if not found) for the given
755 * key. A front-end for recursive version.
756 */
757 final TreeNode<V> getTreeNode(int h, Object k) {
758 return getTreeNode(h, k, root, comparableClassFor(k));
759 }
760
761 /**
762 * Returns the TreeNode (or null if not found) for the given key
763 * starting at given root.
764 */
765 @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
766 (int h, Object k, TreeNode<V> p, Class<?> cc) {
767 while (p != null) {
768 int dir, ph; Object pk;
769 if ((ph = p.hash) != h)
770 dir = (h < ph) ? -1 : 1;
771 else if ((pk = p.key) == k || k.equals(pk))
772 return p;
773 else if (cc == null || comparableClassFor(pk) != cc ||
774 (dir = ((Comparable<Object>)k).compareTo(pk)) == 0) {
775 TreeNode<V> r, pl, pr; // check both sides
776 if ((pr = p.right) != null && h >= pr.hash &&
777 (r = getTreeNode(h, k, pr, cc)) != null)
778 return r;
779 else if ((pl = p.left) != null && h <= pl.hash)
780 dir = -1;
781 else // nothing there
782 break;
783 }
784 p = (dir > 0) ? p.right : p.left;
785 }
786 return null;
787 }
788
789 /**
790 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
791 * read-lock to call getTreeNode, but during failure to get
792 * lock, searches along next links.
793 */
794 final V getValue(int h, Object k) {
795 Node<V> r = null;
796 int c = getState(); // Must read lock state first
797 for (Node<V> e = first; e != null; e = e.next) {
798 if (c <= 0 && compareAndSetState(c, c - 1)) {
799 try {
800 r = getTreeNode(h, k, root, comparableClassFor(k));
801 } finally {
802 releaseShared(0);
803 }
804 break;
805 }
806 else if (e.hash == h && k.equals(e.key)) {
807 r = e;
808 break;
809 }
810 else
811 c = getState();
812 }
813 return r == null ? null : r.val;
814 }
815
816 /**
817 * Finds or adds a node.
818 * @return null if added
819 */
820 @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
821 (int h, Object k, V v) {
822 Class<?> cc = comparableClassFor(k);
823 TreeNode<V> pp = root, p = null;
824 int dir = 0;
825 while (pp != null) { // find existing node or leaf to insert at
826 int ph; Object pk;
827 p = pp;
828 if ((ph = p.hash) != h)
829 dir = (h < ph) ? -1 : 1;
830 else if ((pk = p.key) == k || k.equals(pk))
831 return p;
832 else if (cc == null || comparableClassFor(pk) != cc ||
833 (dir = ((Comparable<Object>)k).compareTo(pk)) == 0) {
834 TreeNode<V> r, pr;
835 if ((pr = p.right) != null && h >= pr.hash &&
836 (r = getTreeNode(h, k, pr, cc)) != null)
837 return r;
838 else // continue left
839 dir = -1;
840 }
841 pp = (dir > 0) ? p.right : p.left;
842 }
843
844 TreeNode<V> f = first;
845 TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
846 if (p == null)
847 root = x;
848 else { // attach and rebalance; adapted from CLR
849 TreeNode<V> xp, xpp;
850 if (f != null)
851 f.prev = x;
852 if (dir <= 0)
853 p.left = x;
854 else
855 p.right = x;
856 x.red = true;
857 while (x != null && (xp = x.parent) != null && xp.red &&
858 (xpp = xp.parent) != null) {
859 TreeNode<V> xppl = xpp.left;
860 if (xp == xppl) {
861 TreeNode<V> y = xpp.right;
862 if (y != null && y.red) {
863 y.red = false;
864 xp.red = false;
865 xpp.red = true;
866 x = xpp;
867 }
868 else {
869 if (x == xp.right) {
870 rotateLeft(x = xp);
871 xpp = (xp = x.parent) == null ? null : xp.parent;
872 }
873 if (xp != null) {
874 xp.red = false;
875 if (xpp != null) {
876 xpp.red = true;
877 rotateRight(xpp);
878 }
879 }
880 }
881 }
882 else {
883 TreeNode<V> y = xppl;
884 if (y != null && y.red) {
885 y.red = false;
886 xp.red = false;
887 xpp.red = true;
888 x = xpp;
889 }
890 else {
891 if (x == xp.left) {
892 rotateRight(x = xp);
893 xpp = (xp = x.parent) == null ? null : xp.parent;
894 }
895 if (xp != null) {
896 xp.red = false;
897 if (xpp != null) {
898 xpp.red = true;
899 rotateLeft(xpp);
900 }
901 }
902 }
903 }
904 }
905 TreeNode<V> r = root;
906 if (r != null && r.red)
907 r.red = false;
908 }
909 return null;
910 }
911
912 /**
913 * Removes the given node, that must be present before this
914 * call. This is messier than typical red-black deletion code
915 * because we cannot swap the contents of an interior node
916 * with a leaf successor that is pinned by "next" pointers
917 * that are accessible independently of lock. So instead we
918 * swap the tree linkages.
919 */
920 final void deleteTreeNode(TreeNode<V> p) {
921 TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
922 TreeNode<V> pred = p.prev;
923 if (pred == null)
924 first = next;
925 else
926 pred.next = next;
927 if (next != null)
928 next.prev = pred;
929 TreeNode<V> replacement;
930 TreeNode<V> pl = p.left;
931 TreeNode<V> pr = p.right;
932 if (pl != null && pr != null) {
933 TreeNode<V> s = pr, sl;
934 while ((sl = s.left) != null) // find successor
935 s = sl;
936 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
937 TreeNode<V> sr = s.right;
938 TreeNode<V> pp = p.parent;
939 if (s == pr) { // p was s's direct parent
940 p.parent = s;
941 s.right = p;
942 }
943 else {
944 TreeNode<V> sp = s.parent;
945 if ((p.parent = sp) != null) {
946 if (s == sp.left)
947 sp.left = p;
948 else
949 sp.right = p;
950 }
951 if ((s.right = pr) != null)
952 pr.parent = s;
953 }
954 p.left = null;
955 if ((p.right = sr) != null)
956 sr.parent = p;
957 if ((s.left = pl) != null)
958 pl.parent = s;
959 if ((s.parent = pp) == null)
960 root = s;
961 else if (p == pp.left)
962 pp.left = s;
963 else
964 pp.right = s;
965 replacement = sr;
966 }
967 else
968 replacement = (pl != null) ? pl : pr;
969 TreeNode<V> pp = p.parent;
970 if (replacement == null) {
971 if (pp == null) {
972 root = null;
973 return;
974 }
975 replacement = p;
976 }
977 else {
978 replacement.parent = pp;
979 if (pp == null)
980 root = replacement;
981 else if (p == pp.left)
982 pp.left = replacement;
983 else
984 pp.right = replacement;
985 p.left = p.right = p.parent = null;
986 }
987 if (!p.red) { // rebalance, from CLR
988 TreeNode<V> x = replacement;
989 while (x != null) {
990 TreeNode<V> xp, xpl;
991 if (x.red || (xp = x.parent) == null) {
992 x.red = false;
993 break;
994 }
995 if (x == (xpl = xp.left)) {
996 TreeNode<V> sib = xp.right;
997 if (sib != null && sib.red) {
998 sib.red = false;
999 xp.red = true;
1000 rotateLeft(xp);
1001 sib = (xp = x.parent) == null ? null : xp.right;
1002 }
1003 if (sib == null)
1004 x = xp;
1005 else {
1006 TreeNode<V> sl = sib.left, sr = sib.right;
1007 if ((sr == null || !sr.red) &&
1008 (sl == null || !sl.red)) {
1009 sib.red = true;
1010 x = xp;
1011 }
1012 else {
1013 if (sr == null || !sr.red) {
1014 if (sl != null)
1015 sl.red = false;
1016 sib.red = true;
1017 rotateRight(sib);
1018 sib = (xp = x.parent) == null ?
1019 null : xp.right;
1020 }
1021 if (sib != null) {
1022 sib.red = (xp == null) ? false : xp.red;
1023 if ((sr = sib.right) != null)
1024 sr.red = false;
1025 }
1026 if (xp != null) {
1027 xp.red = false;
1028 rotateLeft(xp);
1029 }
1030 x = root;
1031 }
1032 }
1033 }
1034 else { // symmetric
1035 TreeNode<V> sib = xpl;
1036 if (sib != null && sib.red) {
1037 sib.red = false;
1038 xp.red = true;
1039 rotateRight(xp);
1040 sib = (xp = x.parent) == null ? null : xp.left;
1041 }
1042 if (sib == null)
1043 x = xp;
1044 else {
1045 TreeNode<V> sl = sib.left, sr = sib.right;
1046 if ((sl == null || !sl.red) &&
1047 (sr == null || !sr.red)) {
1048 sib.red = true;
1049 x = xp;
1050 }
1051 else {
1052 if (sl == null || !sl.red) {
1053 if (sr != null)
1054 sr.red = false;
1055 sib.red = true;
1056 rotateLeft(sib);
1057 sib = (xp = x.parent) == null ?
1058 null : xp.left;
1059 }
1060 if (sib != null) {
1061 sib.red = (xp == null) ? false : xp.red;
1062 if ((sl = sib.left) != null)
1063 sl.red = false;
1064 }
1065 if (xp != null) {
1066 xp.red = false;
1067 rotateRight(xp);
1068 }
1069 x = root;
1070 }
1071 }
1072 }
1073 }
1074 }
1075 if (p == replacement && (pp = p.parent) != null) {
1076 if (p == pp.left) // detach pointers
1077 pp.left = null;
1078 else if (p == pp.right)
1079 pp.right = null;
1080 p.parent = null;
1081 }
1082 }
1083 }
1084
1085 /* ---------------- Collision reduction methods -------------- */
1086
1087 /**
1088 * Spreads higher bits to lower, and also forces top bit to 0.
1089 * Because the table uses power-of-two masking, sets of hashes
1090 * that vary only in bits above the current mask will always
1091 * collide. (Among known examples are sets of Float keys holding
1092 * consecutive whole numbers in small tables.) To counter this,
1093 * we apply a transform that spreads the impact of higher bits
1094 * downward. There is a tradeoff between speed, utility, and
1095 * quality of bit-spreading. Because many common sets of hashes
1096 * are already reasonably distributed across bits (so don't benefit
1097 * from spreading), and because we use trees to handle large sets
1098 * of collisions in bins, we don't need excessively high quality.
1099 */
1100 private static final int spread(int h) {
1101 h ^= (h >>> 18) ^ (h >>> 12);
1102 return (h ^ (h >>> 10)) & HASH_BITS;
1103 }
1104
1105 /**
1106 * Replaces a list bin with a tree bin if key is comparable. Call
1107 * only when locked.
1108 */
1109 private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1110 if (comparableClassFor(key) != null) {
1111 TreeBin<V> t = new TreeBin<V>();
1112 for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1113 t.putTreeNode(e.hash, e.key, e.val);
1114 setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1115 }
1116 }
1117
1118 /* ---------------- Internal access and update methods -------------- */
1119
1120 /** Implementation for get and containsKey */
1121 @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1122 int h = spread(k.hashCode());
1123 retry: for (Node<V>[] tab = table; tab != null;) {
1124 Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1125 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1126 if ((eh = e.hash) < 0) {
1127 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1128 return ((TreeBin<V>)ek).getValue(h, k);
1129 else { // restart with new table
1130 tab = (Node<V>[])ek;
1131 continue retry;
1132 }
1133 }
1134 else if (eh == h && (ev = e.val) != null &&
1135 ((ek = e.key) == k || k.equals(ek)))
1136 return ev;
1137 }
1138 break;
1139 }
1140 return null;
1141 }
1142
1143 /**
1144 * Implementation for the four public remove/replace methods:
1145 * Replaces node value with v, conditional upon match of cv if
1146 * non-null. If resulting value is null, delete.
1147 */
1148 @SuppressWarnings("unchecked") private final V internalReplace
1149 (Object k, V v, Object cv) {
1150 int h = spread(k.hashCode());
1151 V oldVal = null;
1152 for (Node<V>[] tab = table;;) {
1153 Node<V> f; int i, fh; Object fk;
1154 if (tab == null ||
1155 (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1156 break;
1157 else if ((fh = f.hash) < 0) {
1158 if ((fk = f.key) instanceof TreeBin) {
1159 TreeBin<V> t = (TreeBin<V>)fk;
1160 boolean validated = false;
1161 boolean deleted = false;
1162 t.acquire(0);
1163 try {
1164 if (tabAt(tab, i) == f) {
1165 validated = true;
1166 TreeNode<V> p = t.getTreeNode(h, k);
1167 if (p != null) {
1168 V pv = p.val;
1169 if (cv == null || cv == pv || cv.equals(pv)) {
1170 oldVal = pv;
1171 if ((p.val = v) == null) {
1172 deleted = true;
1173 t.deleteTreeNode(p);
1174 }
1175 }
1176 }
1177 }
1178 } finally {
1179 t.release(0);
1180 }
1181 if (validated) {
1182 if (deleted)
1183 addCount(-1L, -1);
1184 break;
1185 }
1186 }
1187 else
1188 tab = (Node<V>[])fk;
1189 }
1190 else if (fh != h && f.next == null) // precheck
1191 break; // rules out possible existence
1192 else {
1193 boolean validated = false;
1194 boolean deleted = false;
1195 synchronized (f) {
1196 if (tabAt(tab, i) == f) {
1197 validated = true;
1198 for (Node<V> e = f, pred = null;;) {
1199 Object ek; V ev;
1200 if (e.hash == h &&
1201 ((ev = e.val) != null) &&
1202 ((ek = e.key) == k || k.equals(ek))) {
1203 if (cv == null || cv == ev || cv.equals(ev)) {
1204 oldVal = ev;
1205 if ((e.val = v) == null) {
1206 deleted = true;
1207 Node<V> en = e.next;
1208 if (pred != null)
1209 pred.next = en;
1210 else
1211 setTabAt(tab, i, en);
1212 }
1213 }
1214 break;
1215 }
1216 pred = e;
1217 if ((e = e.next) == null)
1218 break;
1219 }
1220 }
1221 }
1222 if (validated) {
1223 if (deleted)
1224 addCount(-1L, -1);
1225 break;
1226 }
1227 }
1228 }
1229 return oldVal;
1230 }
1231
1232 /*
1233 * Internal versions of insertion methods
1234 * All have the same basic structure as the first (internalPut):
1235 * 1. If table uninitialized, create
1236 * 2. If bin empty, try to CAS new node
1237 * 3. If bin stale, use new table
1238 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1239 * 5. Lock and validate; if valid, scan and add or update
1240 *
1241 * The putAll method differs mainly in attempting to pre-allocate
1242 * enough table space, and also more lazily performs count updates
1243 * and checks.
1244 *
1245 * Most of the function-accepting methods can't be factored nicely
1246 * because they require different functional forms, so instead
1247 * sprawl out similar mechanics.
1248 */
1249
1250 /** Implementation for put and putIfAbsent */
1251 @SuppressWarnings("unchecked") private final V internalPut
1252 (K k, V v, boolean onlyIfAbsent) {
1253 if (k == null || v == null) throw new NullPointerException();
1254 int h = spread(k.hashCode());
1255 int len = 0;
1256 for (Node<V>[] tab = table;;) {
1257 int i, fh; Node<V> f; Object fk; V fv;
1258 if (tab == null)
1259 tab = initTable();
1260 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1261 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1262 break; // no lock when adding to empty bin
1263 }
1264 else if ((fh = f.hash) < 0) {
1265 if ((fk = f.key) instanceof TreeBin) {
1266 TreeBin<V> t = (TreeBin<V>)fk;
1267 V oldVal = null;
1268 t.acquire(0);
1269 try {
1270 if (tabAt(tab, i) == f) {
1271 len = 2;
1272 TreeNode<V> p = t.putTreeNode(h, k, v);
1273 if (p != null) {
1274 oldVal = p.val;
1275 if (!onlyIfAbsent)
1276 p.val = v;
1277 }
1278 }
1279 } finally {
1280 t.release(0);
1281 }
1282 if (len != 0) {
1283 if (oldVal != null)
1284 return oldVal;
1285 break;
1286 }
1287 }
1288 else
1289 tab = (Node<V>[])fk;
1290 }
1291 else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1292 ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1293 return fv;
1294 else {
1295 V oldVal = null;
1296 synchronized (f) {
1297 if (tabAt(tab, i) == f) {
1298 len = 1;
1299 for (Node<V> e = f;; ++len) {
1300 Object ek; V ev;
1301 if (e.hash == h &&
1302 (ev = e.val) != null &&
1303 ((ek = e.key) == k || k.equals(ek))) {
1304 oldVal = ev;
1305 if (!onlyIfAbsent)
1306 e.val = v;
1307 break;
1308 }
1309 Node<V> last = e;
1310 if ((e = e.next) == null) {
1311 last.next = new Node<V>(h, k, v, null);
1312 if (len >= TREE_THRESHOLD)
1313 replaceWithTreeBin(tab, i, k);
1314 break;
1315 }
1316 }
1317 }
1318 }
1319 if (len != 0) {
1320 if (oldVal != null)
1321 return oldVal;
1322 break;
1323 }
1324 }
1325 }
1326 addCount(1L, len);
1327 return null;
1328 }
1329
1330 /** Implementation for computeIfAbsent */
1331 @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1332 (K k, Function<? super K, ? extends V> mf) {
1333 if (k == null || mf == null)
1334 throw new NullPointerException();
1335 int h = spread(k.hashCode());
1336 V val = null;
1337 int len = 0;
1338 for (Node<V>[] tab = table;;) {
1339 Node<V> f; int i; Object fk;
1340 if (tab == null)
1341 tab = initTable();
1342 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1343 Node<V> node = new Node<V>(h, k, null, null);
1344 synchronized (node) {
1345 if (casTabAt(tab, i, null, node)) {
1346 len = 1;
1347 try {
1348 if ((val = mf.apply(k)) != null)
1349 node.val = val;
1350 } finally {
1351 if (val == null)
1352 setTabAt(tab, i, null);
1353 }
1354 }
1355 }
1356 if (len != 0)
1357 break;
1358 }
1359 else if (f.hash < 0) {
1360 if ((fk = f.key) instanceof TreeBin) {
1361 TreeBin<V> t = (TreeBin<V>)fk;
1362 boolean added = false;
1363 t.acquire(0);
1364 try {
1365 if (tabAt(tab, i) == f) {
1366 len = 1;
1367 TreeNode<V> p = t.getTreeNode(h, k);
1368 if (p != null)
1369 val = p.val;
1370 else if ((val = mf.apply(k)) != null) {
1371 added = true;
1372 len = 2;
1373 t.putTreeNode(h, k, val);
1374 }
1375 }
1376 } finally {
1377 t.release(0);
1378 }
1379 if (len != 0) {
1380 if (!added)
1381 return val;
1382 break;
1383 }
1384 }
1385 else
1386 tab = (Node<V>[])fk;
1387 }
1388 else {
1389 for (Node<V> e = f; e != null; e = e.next) { // prescan
1390 Object ek; V ev;
1391 if (e.hash == h && (ev = e.val) != null &&
1392 ((ek = e.key) == k || k.equals(ek)))
1393 return ev;
1394 }
1395 boolean added = false;
1396 synchronized (f) {
1397 if (tabAt(tab, i) == f) {
1398 len = 1;
1399 for (Node<V> e = f;; ++len) {
1400 Object ek; V ev;
1401 if (e.hash == h &&
1402 (ev = e.val) != null &&
1403 ((ek = e.key) == k || k.equals(ek))) {
1404 val = ev;
1405 break;
1406 }
1407 Node<V> last = e;
1408 if ((e = e.next) == null) {
1409 if ((val = mf.apply(k)) != null) {
1410 added = true;
1411 last.next = new Node<V>(h, k, val, null);
1412 if (len >= TREE_THRESHOLD)
1413 replaceWithTreeBin(tab, i, k);
1414 }
1415 break;
1416 }
1417 }
1418 }
1419 }
1420 if (len != 0) {
1421 if (!added)
1422 return val;
1423 break;
1424 }
1425 }
1426 }
1427 if (val != null)
1428 addCount(1L, len);
1429 return val;
1430 }
1431
1432 /** Implementation for compute */
1433 @SuppressWarnings("unchecked") private final V internalCompute
1434 (K k, boolean onlyIfPresent,
1435 BiFunction<? super K, ? super V, ? extends V> mf) {
1436 if (k == null || mf == null)
1437 throw new NullPointerException();
1438 int h = spread(k.hashCode());
1439 V val = null;
1440 int delta = 0;
1441 int len = 0;
1442 for (Node<V>[] tab = table;;) {
1443 Node<V> f; int i, fh; Object fk;
1444 if (tab == null)
1445 tab = initTable();
1446 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1447 if (onlyIfPresent)
1448 break;
1449 Node<V> node = new Node<V>(h, k, null, null);
1450 synchronized (node) {
1451 if (casTabAt(tab, i, null, node)) {
1452 try {
1453 len = 1;
1454 if ((val = mf.apply(k, null)) != null) {
1455 node.val = val;
1456 delta = 1;
1457 }
1458 } finally {
1459 if (delta == 0)
1460 setTabAt(tab, i, null);
1461 }
1462 }
1463 }
1464 if (len != 0)
1465 break;
1466 }
1467 else if ((fh = f.hash) < 0) {
1468 if ((fk = f.key) instanceof TreeBin) {
1469 TreeBin<V> t = (TreeBin<V>)fk;
1470 t.acquire(0);
1471 try {
1472 if (tabAt(tab, i) == f) {
1473 len = 1;
1474 TreeNode<V> p = t.getTreeNode(h, k);
1475 if (p == null && onlyIfPresent)
1476 break;
1477 V pv = (p == null) ? null : p.val;
1478 if ((val = mf.apply(k, pv)) != null) {
1479 if (p != null)
1480 p.val = val;
1481 else {
1482 len = 2;
1483 delta = 1;
1484 t.putTreeNode(h, k, val);
1485 }
1486 }
1487 else if (p != null) {
1488 delta = -1;
1489 t.deleteTreeNode(p);
1490 }
1491 }
1492 } finally {
1493 t.release(0);
1494 }
1495 if (len != 0)
1496 break;
1497 }
1498 else
1499 tab = (Node<V>[])fk;
1500 }
1501 else {
1502 synchronized (f) {
1503 if (tabAt(tab, i) == f) {
1504 len = 1;
1505 for (Node<V> e = f, pred = null;; ++len) {
1506 Object ek; V ev;
1507 if (e.hash == h &&
1508 (ev = e.val) != null &&
1509 ((ek = e.key) == k || k.equals(ek))) {
1510 val = mf.apply(k, ev);
1511 if (val != null)
1512 e.val = val;
1513 else {
1514 delta = -1;
1515 Node<V> en = e.next;
1516 if (pred != null)
1517 pred.next = en;
1518 else
1519 setTabAt(tab, i, en);
1520 }
1521 break;
1522 }
1523 pred = e;
1524 if ((e = e.next) == null) {
1525 if (!onlyIfPresent &&
1526 (val = mf.apply(k, null)) != null) {
1527 pred.next = new Node<V>(h, k, val, null);
1528 delta = 1;
1529 if (len >= TREE_THRESHOLD)
1530 replaceWithTreeBin(tab, i, k);
1531 }
1532 break;
1533 }
1534 }
1535 }
1536 }
1537 if (len != 0)
1538 break;
1539 }
1540 }
1541 if (delta != 0)
1542 addCount((long)delta, len);
1543 return val;
1544 }
1545
1546 /** Implementation for merge */
1547 @SuppressWarnings("unchecked") private final V internalMerge
1548 (K k, V v, BiFunction<? super V, ? super V, ? extends V> mf) {
1549 if (k == null || v == null || mf == null)
1550 throw new NullPointerException();
1551 int h = spread(k.hashCode());
1552 V val = null;
1553 int delta = 0;
1554 int len = 0;
1555 for (Node<V>[] tab = table;;) {
1556 int i; Node<V> f; Object fk; V fv;
1557 if (tab == null)
1558 tab = initTable();
1559 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1560 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1561 delta = 1;
1562 val = v;
1563 break;
1564 }
1565 }
1566 else if (f.hash < 0) {
1567 if ((fk = f.key) instanceof TreeBin) {
1568 TreeBin<V> t = (TreeBin<V>)fk;
1569 t.acquire(0);
1570 try {
1571 if (tabAt(tab, i) == f) {
1572 len = 1;
1573 TreeNode<V> p = t.getTreeNode(h, k);
1574 val = (p == null) ? v : mf.apply(p.val, v);
1575 if (val != null) {
1576 if (p != null)
1577 p.val = val;
1578 else {
1579 len = 2;
1580 delta = 1;
1581 t.putTreeNode(h, k, val);
1582 }
1583 }
1584 else if (p != null) {
1585 delta = -1;
1586 t.deleteTreeNode(p);
1587 }
1588 }
1589 } finally {
1590 t.release(0);
1591 }
1592 if (len != 0)
1593 break;
1594 }
1595 else
1596 tab = (Node<V>[])fk;
1597 }
1598 else {
1599 synchronized (f) {
1600 if (tabAt(tab, i) == f) {
1601 len = 1;
1602 for (Node<V> e = f, pred = null;; ++len) {
1603 Object ek; V ev;
1604 if (e.hash == h &&
1605 (ev = e.val) != null &&
1606 ((ek = e.key) == k || k.equals(ek))) {
1607 val = mf.apply(ev, v);
1608 if (val != null)
1609 e.val = val;
1610 else {
1611 delta = -1;
1612 Node<V> en = e.next;
1613 if (pred != null)
1614 pred.next = en;
1615 else
1616 setTabAt(tab, i, en);
1617 }
1618 break;
1619 }
1620 pred = e;
1621 if ((e = e.next) == null) {
1622 val = v;
1623 pred.next = new Node<V>(h, k, val, null);
1624 delta = 1;
1625 if (len >= TREE_THRESHOLD)
1626 replaceWithTreeBin(tab, i, k);
1627 break;
1628 }
1629 }
1630 }
1631 }
1632 if (len != 0)
1633 break;
1634 }
1635 }
1636 if (delta != 0)
1637 addCount((long)delta, len);
1638 return val;
1639 }
1640
1641 /** Implementation for putAll */
1642 @SuppressWarnings("unchecked") private final void internalPutAll
1643 (Map<? extends K, ? extends V> m) {
1644 tryPresize(m.size());
1645 long delta = 0L; // number of uncommitted additions
1646 boolean npe = false; // to throw exception on exit for nulls
1647 try { // to clean up counts on other exceptions
1648 for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1649 Object k; V v;
1650 if (entry == null || (k = entry.getKey()) == null ||
1651 (v = entry.getValue()) == null) {
1652 npe = true;
1653 break;
1654 }
1655 int h = spread(k.hashCode());
1656 for (Node<V>[] tab = table;;) {
1657 int i; Node<V> f; int fh; Object fk;
1658 if (tab == null)
1659 tab = initTable();
1660 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1661 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1662 ++delta;
1663 break;
1664 }
1665 }
1666 else if ((fh = f.hash) < 0) {
1667 if ((fk = f.key) instanceof TreeBin) {
1668 TreeBin<V> t = (TreeBin<V>)fk;
1669 boolean validated = false;
1670 t.acquire(0);
1671 try {
1672 if (tabAt(tab, i) == f) {
1673 validated = true;
1674 TreeNode<V> p = t.getTreeNode(h, k);
1675 if (p != null)
1676 p.val = v;
1677 else {
1678 t.putTreeNode(h, k, v);
1679 ++delta;
1680 }
1681 }
1682 } finally {
1683 t.release(0);
1684 }
1685 if (validated)
1686 break;
1687 }
1688 else
1689 tab = (Node<V>[])fk;
1690 }
1691 else {
1692 int len = 0;
1693 synchronized (f) {
1694 if (tabAt(tab, i) == f) {
1695 len = 1;
1696 for (Node<V> e = f;; ++len) {
1697 Object ek; V ev;
1698 if (e.hash == h &&
1699 (ev = e.val) != null &&
1700 ((ek = e.key) == k || k.equals(ek))) {
1701 e.val = v;
1702 break;
1703 }
1704 Node<V> last = e;
1705 if ((e = e.next) == null) {
1706 ++delta;
1707 last.next = new Node<V>(h, k, v, null);
1708 if (len >= TREE_THRESHOLD)
1709 replaceWithTreeBin(tab, i, k);
1710 break;
1711 }
1712 }
1713 }
1714 }
1715 if (len != 0) {
1716 if (len > 1) {
1717 addCount(delta, len);
1718 delta = 0L;
1719 }
1720 break;
1721 }
1722 }
1723 }
1724 }
1725 } finally {
1726 if (delta != 0L)
1727 addCount(delta, 2);
1728 }
1729 if (npe)
1730 throw new NullPointerException();
1731 }
1732
1733 /**
1734 * Implementation for clear. Steps through each bin, removing all
1735 * nodes.
1736 */
1737 @SuppressWarnings("unchecked") private final void internalClear() {
1738 long delta = 0L; // negative number of deletions
1739 int i = 0;
1740 Node<V>[] tab = table;
1741 while (tab != null && i < tab.length) {
1742 Node<V> f = tabAt(tab, i);
1743 if (f == null)
1744 ++i;
1745 else if (f.hash < 0) {
1746 Object fk;
1747 if ((fk = f.key) instanceof TreeBin) {
1748 TreeBin<V> t = (TreeBin<V>)fk;
1749 t.acquire(0);
1750 try {
1751 if (tabAt(tab, i) == f) {
1752 for (Node<V> p = t.first; p != null; p = p.next) {
1753 if (p.val != null) { // (currently always true)
1754 p.val = null;
1755 --delta;
1756 }
1757 }
1758 t.first = null;
1759 t.root = null;
1760 ++i;
1761 }
1762 } finally {
1763 t.release(0);
1764 }
1765 }
1766 else
1767 tab = (Node<V>[])fk;
1768 }
1769 else {
1770 synchronized (f) {
1771 if (tabAt(tab, i) == f) {
1772 for (Node<V> e = f; e != null; e = e.next) {
1773 if (e.val != null) { // (currently always true)
1774 e.val = null;
1775 --delta;
1776 }
1777 }
1778 setTabAt(tab, i, null);
1779 ++i;
1780 }
1781 }
1782 }
1783 }
1784 if (delta != 0L)
1785 addCount(delta, -1);
1786 }
1787
1788 /* ---------------- Table Initialization and Resizing -------------- */
1789
1790 /**
1791 * Returns a power of two table size for the given desired capacity.
1792 * See Hackers Delight, sec 3.2
1793 */
1794 private static final int tableSizeFor(int c) {
1795 int n = c - 1;
1796 n |= n >>> 1;
1797 n |= n >>> 2;
1798 n |= n >>> 4;
1799 n |= n >>> 8;
1800 n |= n >>> 16;
1801 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1802 }
1803
1804 /**
1805 * Initializes table, using the size recorded in sizeCtl.
1806 */
1807 @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1808 Node<V>[] tab; int sc;
1809 while ((tab = table) == null) {
1810 if ((sc = sizeCtl) < 0)
1811 Thread.yield(); // lost initialization race; just spin
1812 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1813 try {
1814 if ((tab = table) == null) {
1815 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1816 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1817 table = tab = (Node<V>[])tb;
1818 sc = n - (n >>> 2);
1819 }
1820 } finally {
1821 sizeCtl = sc;
1822 }
1823 break;
1824 }
1825 }
1826 return tab;
1827 }
1828
1829 /**
1830 * Adds to count, and if table is too small and not already
1831 * resizing, initiates transfer. If already resizing, helps
1832 * perform transfer if work is available. Rechecks occupancy
1833 * after a transfer to see if another resize is already needed
1834 * because resizings are lagging additions.
1835 *
1836 * @param x the count to add
1837 * @param check if <0, don't check resize, if <= 1 only check if uncontended
1838 */
1839 private final void addCount(long x, int check) {
1840 Cell[] as; long b, s;
1841 if ((as = counterCells) != null ||
1842 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1843 Cell a; long v; int m;
1844 boolean uncontended = true;
1845 if (as == null || (m = as.length - 1) < 0 ||
1846 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
1847 !(uncontended =
1848 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1849 fullAddCount(x, uncontended);
1850 return;
1851 }
1852 if (check <= 1)
1853 return;
1854 s = sumCount();
1855 }
1856 if (check >= 0) {
1857 Node<V>[] tab, nt; int sc;
1858 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1859 tab.length < MAXIMUM_CAPACITY) {
1860 if (sc < 0) {
1861 if (sc == -1 || transferIndex <= transferOrigin ||
1862 (nt = nextTable) == null)
1863 break;
1864 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1865 transfer(tab, nt);
1866 }
1867 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1868 transfer(tab, null);
1869 s = sumCount();
1870 }
1871 }
1872 }
1873
1874 /**
1875 * Tries to presize table to accommodate the given number of elements.
1876 *
1877 * @param size number of elements (doesn't need to be perfectly accurate)
1878 */
1879 @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1880 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1881 tableSizeFor(size + (size >>> 1) + 1);
1882 int sc;
1883 while ((sc = sizeCtl) >= 0) {
1884 Node<V>[] tab = table; int n;
1885 if (tab == null || (n = tab.length) == 0) {
1886 n = (sc > c) ? sc : c;
1887 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1888 try {
1889 if (table == tab) {
1890 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1891 table = (Node<V>[])tb;
1892 sc = n - (n >>> 2);
1893 }
1894 } finally {
1895 sizeCtl = sc;
1896 }
1897 }
1898 }
1899 else if (c <= sc || n >= MAXIMUM_CAPACITY)
1900 break;
1901 else if (tab == table &&
1902 U.compareAndSwapInt(this, SIZECTL, sc, -2))
1903 transfer(tab, null);
1904 }
1905 }
1906
1907 /**
1908 * Moves and/or copies the nodes in each bin to new table. See
1909 * above for explanation.
1910 */
1911 @SuppressWarnings("unchecked") private final void transfer
1912 (Node<V>[] tab, Node<V>[] nextTab) {
1913 int n = tab.length, stride;
1914 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1915 stride = MIN_TRANSFER_STRIDE; // subdivide range
1916 if (nextTab == null) { // initiating
1917 try {
1918 @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1919 nextTab = (Node<V>[])tb;
1920 } catch (Throwable ex) { // try to cope with OOME
1921 sizeCtl = Integer.MAX_VALUE;
1922 return;
1923 }
1924 nextTable = nextTab;
1925 transferOrigin = n;
1926 transferIndex = n;
1927 Node<V> rev = new Node<V>(MOVED, tab, null, null);
1928 for (int k = n; k > 0;) { // progressively reveal ready slots
1929 int nextk = (k > stride) ? k - stride : 0;
1930 for (int m = nextk; m < k; ++m)
1931 nextTab[m] = rev;
1932 for (int m = n + nextk; m < n + k; ++m)
1933 nextTab[m] = rev;
1934 U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1935 }
1936 }
1937 int nextn = nextTab.length;
1938 Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
1939 boolean advance = true;
1940 for (int i = 0, bound = 0;;) {
1941 int nextIndex, nextBound; Node<V> f; Object fk;
1942 while (advance) {
1943 if (--i >= bound)
1944 advance = false;
1945 else if ((nextIndex = transferIndex) <= transferOrigin) {
1946 i = -1;
1947 advance = false;
1948 }
1949 else if (U.compareAndSwapInt
1950 (this, TRANSFERINDEX, nextIndex,
1951 nextBound = (nextIndex > stride ?
1952 nextIndex - stride : 0))) {
1953 bound = nextBound;
1954 i = nextIndex - 1;
1955 advance = false;
1956 }
1957 }
1958 if (i < 0 || i >= n || i + n >= nextn) {
1959 for (int sc;;) {
1960 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
1961 if (sc == -1) {
1962 nextTable = null;
1963 table = nextTab;
1964 sizeCtl = (n << 1) - (n >>> 1);
1965 }
1966 return;
1967 }
1968 }
1969 }
1970 else if ((f = tabAt(tab, i)) == null) {
1971 if (casTabAt(tab, i, null, fwd)) {
1972 setTabAt(nextTab, i, null);
1973 setTabAt(nextTab, i + n, null);
1974 advance = true;
1975 }
1976 }
1977 else if (f.hash >= 0) {
1978 synchronized (f) {
1979 if (tabAt(tab, i) == f) {
1980 int runBit = f.hash & n;
1981 Node<V> lastRun = f, lo = null, hi = null;
1982 for (Node<V> p = f.next; p != null; p = p.next) {
1983 int b = p.hash & n;
1984 if (b != runBit) {
1985 runBit = b;
1986 lastRun = p;
1987 }
1988 }
1989 if (runBit == 0)
1990 lo = lastRun;
1991 else
1992 hi = lastRun;
1993 for (Node<V> p = f; p != lastRun; p = p.next) {
1994 int ph = p.hash;
1995 Object pk = p.key; V pv = p.val;
1996 if ((ph & n) == 0)
1997 lo = new Node<V>(ph, pk, pv, lo);
1998 else
1999 hi = new Node<V>(ph, pk, pv, hi);
2000 }
2001 setTabAt(nextTab, i, lo);
2002 setTabAt(nextTab, i + n, hi);
2003 setTabAt(tab, i, fwd);
2004 advance = true;
2005 }
2006 }
2007 }
2008 else if ((fk = f.key) instanceof TreeBin) {
2009 TreeBin<V> t = (TreeBin<V>)fk;
2010 t.acquire(0);
2011 try {
2012 if (tabAt(tab, i) == f) {
2013 TreeBin<V> lt = new TreeBin<V>();
2014 TreeBin<V> ht = new TreeBin<V>();
2015 int lc = 0, hc = 0;
2016 for (Node<V> e = t.first; e != null; e = e.next) {
2017 int h = e.hash;
2018 Object k = e.key; V v = e.val;
2019 if ((h & n) == 0) {
2020 ++lc;
2021 lt.putTreeNode(h, k, v);
2022 }
2023 else {
2024 ++hc;
2025 ht.putTreeNode(h, k, v);
2026 }
2027 }
2028 Node<V> ln, hn; // throw away trees if too small
2029 if (lc < TREE_THRESHOLD) {
2030 ln = null;
2031 for (Node<V> p = lt.first; p != null; p = p.next)
2032 ln = new Node<V>(p.hash, p.key, p.val, ln);
2033 }
2034 else
2035 ln = new Node<V>(MOVED, lt, null, null);
2036 setTabAt(nextTab, i, ln);
2037 if (hc < TREE_THRESHOLD) {
2038 hn = null;
2039 for (Node<V> p = ht.first; p != null; p = p.next)
2040 hn = new Node<V>(p.hash, p.key, p.val, hn);
2041 }
2042 else
2043 hn = new Node<V>(MOVED, ht, null, null);
2044 setTabAt(nextTab, i + n, hn);
2045 setTabAt(tab, i, fwd);
2046 advance = true;
2047 }
2048 } finally {
2049 t.release(0);
2050 }
2051 }
2052 else
2053 advance = true; // already processed
2054 }
2055 }
2056
2057 /* ---------------- Counter support -------------- */
2058
2059 final long sumCount() {
2060 Cell[] as = counterCells; Cell a;
2061 long sum = baseCount;
2062 if (as != null) {
2063 for (int i = 0; i < as.length; ++i) {
2064 if ((a = as[i]) != null)
2065 sum += a.value;
2066 }
2067 }
2068 return sum;
2069 }
2070
2071 // See LongAdder version for explanation
2072 private final void fullAddCount(long x, boolean wasUncontended) {
2073 int h;
2074 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2075 ThreadLocalRandom.localInit(); // force initialization
2076 h = ThreadLocalRandom.getProbe();
2077 wasUncontended = true;
2078 }
2079 boolean collide = false; // True if last slot nonempty
2080 for (;;) {
2081 Cell[] as; Cell a; int n; long v;
2082 if ((as = counterCells) != null && (n = as.length) > 0) {
2083 if ((a = as[(n - 1) & h]) == null) {
2084 if (cellsBusy == 0) { // Try to attach new Cell
2085 Cell r = new Cell(x); // Optimistic create
2086 if (cellsBusy == 0 &&
2087 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2088 boolean created = false;
2089 try { // Recheck under lock
2090 Cell[] rs; int m, j;
2091 if ((rs = counterCells) != null &&
2092 (m = rs.length) > 0 &&
2093 rs[j = (m - 1) & h] == null) {
2094 rs[j] = r;
2095 created = true;
2096 }
2097 } finally {
2098 cellsBusy = 0;
2099 }
2100 if (created)
2101 break;
2102 continue; // Slot is now non-empty
2103 }
2104 }
2105 collide = false;
2106 }
2107 else if (!wasUncontended) // CAS already known to fail
2108 wasUncontended = true; // Continue after rehash
2109 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2110 break;
2111 else if (counterCells != as || n >= NCPU)
2112 collide = false; // At max size or stale
2113 else if (!collide)
2114 collide = true;
2115 else if (cellsBusy == 0 &&
2116 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2117 try {
2118 if (counterCells == as) {// Expand table unless stale
2119 Cell[] rs = new Cell[n << 1];
2120 for (int i = 0; i < n; ++i)
2121 rs[i] = as[i];
2122 counterCells = rs;
2123 }
2124 } finally {
2125 cellsBusy = 0;
2126 }
2127 collide = false;
2128 continue; // Retry with expanded table
2129 }
2130 h = ThreadLocalRandom.advanceProbe(h);
2131 }
2132 else if (cellsBusy == 0 && counterCells == as &&
2133 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2134 boolean init = false;
2135 try { // Initialize table
2136 if (counterCells == as) {
2137 Cell[] rs = new Cell[2];
2138 rs[h & 1] = new Cell(x);
2139 counterCells = rs;
2140 init = true;
2141 }
2142 } finally {
2143 cellsBusy = 0;
2144 }
2145 if (init)
2146 break;
2147 }
2148 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2149 break; // Fall back on using base
2150 }
2151 }
2152
2153 /* ----------------Table Traversal -------------- */
2154
2155 /**
2156 * Encapsulates traversal for methods such as containsValue; also
2157 * serves as a base class for other iterators and bulk tasks.
2158 *
2159 * At each step, the iterator snapshots the key ("nextKey") and
2160 * value ("nextVal") of a valid node (i.e., one that, at point of
2161 * snapshot, has a non-null user value). Because val fields can
2162 * change (including to null, indicating deletion), field nextVal
2163 * might not be accurate at point of use, but still maintains the
2164 * weak consistency property of holding a value that was once
2165 * valid. To support iterator.remove, the nextKey field is not
2166 * updated (nulled out) when the iterator cannot advance.
2167 *
2168 * Exported iterators must track whether the iterator has advanced
2169 * (in hasNext vs next) (by setting/checking/nulling field
2170 * nextVal), and then extract key, value, or key-value pairs as
2171 * return values of next().
2172 *
2173 * Method advance visits once each still-valid node that was
2174 * reachable upon iterator construction. It might miss some that
2175 * were added to a bin after the bin was visited, which is OK wrt
2176 * consistency guarantees. Maintaining this property in the face
2177 * of possible ongoing resizes requires a fair amount of
2178 * bookkeeping state that is difficult to optimize away amidst
2179 * volatile accesses. Even so, traversal maintains reasonable
2180 * throughput.
2181 *
2182 * Normally, iteration proceeds bin-by-bin traversing lists.
2183 * However, if the table has been resized, then all future steps
2184 * must traverse both the bin at the current index as well as at
2185 * (index + baseSize); and so on for further resizings. To
2186 * paranoically cope with potential sharing by users of iterators
2187 * across threads, iteration terminates if a bounds checks fails
2188 * for a table read.
2189 *
2190 * Methods advanceKey and advanceValue are specializations of the
2191 * common cases of advance, relaying to the full version
2192 * otherwise. The forEachKey and forEachValue methods further
2193 * specialize, bypassing all incremental field updates in most cases.
2194 *
2195 * This class supports both Spliterator-based traversal and
2196 * CountedCompleter-based bulk tasks. The same "batch" field is
2197 * used, but in slightly different ways, in the two cases. For
2198 * Spliterators, it is a saturating (at Integer.MAX_VALUE)
2199 * estimate of element coverage. For CHM tasks, it is a pre-scaled
2200 * size that halves down to zero for leaf tasks, that is only
2201 * computed upon execution of the task. (Tasks can be submitted to
2202 * any pool, of any size, so we don't know scale factors until
2203 * running.)
2204 *
2205 * This class extends CountedCompleter to streamline parallel
2206 * iteration in bulk operations. This adds only a few fields of
2207 * space overhead, which is small enough in cases where it is not
2208 * needed to not worry about it. Because CountedCompleter is
2209 * Serializable, but iterators need not be, we need to add warning
2210 * suppressions.
2211 */
2212 @SuppressWarnings("serial") static class Traverser<K,V,R>
2213 extends CountedCompleter<R> {
2214 final ConcurrentHashMap<K,V> map;
2215 Node<V> next; // the next entry to use
2216 K nextKey; // cached key field of next
2217 V nextVal; // cached val field of next
2218 Node<V>[] tab; // current table; updated if resized
2219 int index; // index of bin to use next
2220 int baseIndex; // current index of initial table
2221 int baseLimit; // index bound for initial table
2222 final int baseSize; // initial table size
2223 int batch; // split control
2224
2225 /** Creates iterator for all entries in the table. */
2226 Traverser(ConcurrentHashMap<K,V> map) {
2227 this.map = map;
2228 Node<V>[] t = this.tab = map.table;
2229 baseLimit = baseSize = (t == null) ? 0 : t.length;
2230 }
2231
2232 /** Task constructor */
2233 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it, int batch) {
2234 super(it);
2235 this.map = map;
2236 this.batch = batch; // -1 if unknown
2237 if (it == null) {
2238 Node<V>[] t = this.tab = map.table;
2239 baseLimit = baseSize = (t == null) ? 0 : t.length;
2240 }
2241 else { // split parent
2242 this.tab = it.tab;
2243 this.baseSize = it.baseSize;
2244 int hi = this.baseLimit = it.baseLimit;
2245 it.baseLimit = this.index = this.baseIndex =
2246 (hi + it.baseIndex) >>> 1;
2247 }
2248 }
2249
2250 /** Spliterator constructor */
2251 Traverser(ConcurrentHashMap<K,V> map, Traverser<K,V,?> it) {
2252 super(it);
2253 this.map = map;
2254 if (it == null) {
2255 Node<V>[] t = this.tab = map.table;
2256 baseLimit = baseSize = (t == null) ? 0 : t.length;
2257 long n = map.sumCount();
2258 batch = ((n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2259 (int)n);
2260 }
2261 else {
2262 this.tab = it.tab;
2263 this.baseSize = it.baseSize;
2264 int hi = this.baseLimit = it.baseLimit;
2265 it.baseLimit = this.index = this.baseIndex =
2266 (hi + it.baseIndex) >>> 1;
2267 this.batch = it.batch >>>= 1;
2268 }
2269 }
2270
2271 /**
2272 * Advances if possible, returning next valid value, or null if none.
2273 */
2274 @SuppressWarnings("unchecked") final V advance() {
2275 for (Node<V> e = next;;) {
2276 if (e != null) // advance past used/skipped node
2277 e = next = e.next;
2278 while (e == null) { // get to next non-null bin
2279 Node<V>[] t; int i, n; // must use locals in checks
2280 if (baseIndex >= baseLimit || (t = tab) == null ||
2281 (n = t.length) <= (i = index) || i < 0)
2282 return nextVal = null;
2283 if ((e = next = tabAt(t, index)) != null && e.hash < 0) {
2284 Object ek;
2285 if ((ek = e.key) instanceof TreeBin)
2286 e = ((TreeBin<V>)ek).first;
2287 else {
2288 tab = (Node<V>[])ek;
2289 continue; // restarts due to null val
2290 }
2291 }
2292 if ((index += baseSize) >= n)
2293 index = ++baseIndex; // visit upper slots if present
2294 }
2295 nextKey = (K)e.key;
2296 if ((nextVal = e.val) != null) // skip deleted or special nodes
2297 return nextVal;
2298 }
2299 }
2300
2301 /**
2302 * Common case version for value traversal
2303 */
2304 @SuppressWarnings("unchecked") final V advanceValue() {
2305 outer: for (Node<V> e = next;;) {
2306 if (e == null || (e = e.next) == null) {
2307 Node<V>[] t; int i, len, n; Object ek;
2308 if ((t = tab) == null ||
2309 baseSize != (len = t.length) ||
2310 len < (n = baseLimit) ||
2311 baseIndex != (i = index))
2312 break;
2313 do {
2314 if (i < 0 || i >= n) {
2315 index = baseIndex = n;
2316 next = null;
2317 return nextVal = null;
2318 }
2319 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2320 if ((ek = e.key) instanceof TreeBin)
2321 e = ((TreeBin<V>)ek).first;
2322 else {
2323 index = baseIndex = i;
2324 next = null;
2325 tab = (Node<V>[])ek;
2326 break outer;
2327 }
2328 }
2329 ++i;
2330 } while (e == null);
2331 index = baseIndex = i;
2332 }
2333 V v;
2334 K k = (K)e.key;
2335 if ((v = e.val) != null) {
2336 nextVal = v;
2337 nextKey = k;
2338 next = e;
2339 return v;
2340 }
2341 }
2342 return advance();
2343 }
2344
2345 /**
2346 * Common case version for key traversal
2347 */
2348 @SuppressWarnings("unchecked") final K advanceKey() {
2349 outer: for (Node<V> e = next;;) {
2350 if (e == null || (e = e.next) == null) {
2351 Node<V>[] t; int i, len, n; Object ek;
2352 if ((t = tab) == null ||
2353 baseSize != (len = t.length) ||
2354 len < (n = baseLimit) ||
2355 baseIndex != (i = index))
2356 break;
2357 do {
2358 if (i < 0 || i >= n) {
2359 index = baseIndex = n;
2360 next = null;
2361 nextVal = null;
2362 return null;
2363 }
2364 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2365 if ((ek = e.key) instanceof TreeBin)
2366 e = ((TreeBin<V>)ek).first;
2367 else {
2368 index = baseIndex = i;
2369 next = null;
2370 tab = (Node<V>[])ek;
2371 break outer;
2372 }
2373 }
2374 ++i;
2375 } while (e == null);
2376 index = baseIndex = i;
2377 }
2378 V v;
2379 K k = (K)e.key;
2380 if ((v = e.val) != null) {
2381 nextVal = v;
2382 nextKey = k;
2383 next = e;
2384 return k;
2385 }
2386 }
2387 return (advance() == null) ? null : nextKey;
2388 }
2389
2390 @SuppressWarnings("unchecked") final void forEachValue(Consumer<? super V> action) {
2391 if (action == null) throw new NullPointerException();
2392 Node<V>[] t; int i, len, n;
2393 if ((t = tab) != null && baseSize == (len = t.length) &&
2394 len >= (n = baseLimit) && baseIndex == (i = index)) {
2395 index = baseIndex = n;
2396 nextVal = null;
2397 Node<V> e = next;
2398 next = null;
2399 if (e != null)
2400 e = e.next;
2401 outer: for (;; e = e.next) {
2402 V v; Object ek;
2403 for (; e == null; ++i) {
2404 if (i < 0 || i >= n)
2405 return;
2406 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2407 if ((ek = e.key) instanceof TreeBin)
2408 e = ((TreeBin<V>)ek).first;
2409 else {
2410 index = baseIndex = i;
2411 tab = (Node<V>[])ek;
2412 break outer;
2413 }
2414 }
2415 }
2416 if ((v = e.val) != null)
2417 action.accept(v);
2418 }
2419 }
2420 V v;
2421 while ((v = advance()) != null)
2422 action.accept(v);
2423 }
2424
2425 @SuppressWarnings("unchecked") final void forEachKey(Consumer<? super K> action) {
2426 if (action == null) throw new NullPointerException();
2427 Node<V>[] t; int i, len, n;
2428 if ((t = tab) != null && baseSize == (len = t.length) &&
2429 len >= (n = baseLimit) && baseIndex == (i = index)) {
2430 index = baseIndex = n;
2431 nextVal = null;
2432 Node<V> e = next;
2433 next = null;
2434 if (e != null)
2435 e = e.next;
2436 outer: for (;; e = e.next) {
2437 for (; e == null; ++i) {
2438 if (i < 0 || i >= n)
2439 return;
2440 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2441 Object ek;
2442 if ((ek = e.key) instanceof TreeBin)
2443 e = ((TreeBin<V>)ek).first;
2444 else {
2445 index = baseIndex = i;
2446 tab = (Node<V>[])ek;
2447 break outer;
2448 }
2449 }
2450 }
2451 Object k = e.key;
2452 if (e.val != null)
2453 action.accept((K)k);
2454 }
2455 }
2456 while (advance() != null)
2457 action.accept(nextKey);
2458 }
2459
2460 public final void remove() {
2461 K k = nextKey;
2462 if (k == null && (advanceValue() == null || (k = nextKey) == null))
2463 throw new IllegalStateException();
2464 map.internalReplace(k, null, null);
2465 }
2466
2467 public final boolean hasNext() {
2468 return nextVal != null || advanceValue() != null;
2469 }
2470
2471 public final boolean hasMoreElements() { return hasNext(); }
2472
2473 public void compute() { } // default no-op CountedCompleter body
2474
2475 public long estimateSize() { return batch; }
2476
2477 /**
2478 * Returns a batch value > 0 if this task should (and must) be
2479 * split, if so, adding to pending count, and in any case
2480 * updating batch value. The initial batch value is approx
2481 * exp2 of the number of times (minus one) to split task by
2482 * two before executing leaf action. This value is faster to
2483 * compute and more convenient to use as a guide to splitting
2484 * than is the depth, since it is used while dividing by two
2485 * anyway.
2486 */
2487 final int preSplit() {
2488 int b; ForkJoinPool pool;
2489 if ((b = batch) < 0) { // force initialization
2490 int sp = (((pool = getPool()) == null) ?
2491 ForkJoinPool.getCommonPoolParallelism() :
2492 pool.getParallelism()) << 3; // slack of 8
2493 long n = map.sumCount();
2494 b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2495 }
2496 b = (b <= 1 || baseIndex >= baseLimit) ? 0 : (b >>> 1);
2497 if ((batch = b) > 0)
2498 addToPendingCount(1);
2499 return b;
2500 }
2501 }
2502
2503 /* ---------------- Public operations -------------- */
2504
2505 /**
2506 * Creates a new, empty map with the default initial table size (16).
2507 */
2508 public ConcurrentHashMap() {
2509 }
2510
2511 /**
2512 * Creates a new, empty map with an initial table size
2513 * accommodating the specified number of elements without the need
2514 * to dynamically resize.
2515 *
2516 * @param initialCapacity The implementation performs internal
2517 * sizing to accommodate this many elements.
2518 * @throws IllegalArgumentException if the initial capacity of
2519 * elements is negative
2520 */
2521 public ConcurrentHashMap(int initialCapacity) {
2522 if (initialCapacity < 0)
2523 throw new IllegalArgumentException();
2524 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2525 MAXIMUM_CAPACITY :
2526 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2527 this.sizeCtl = cap;
2528 }
2529
2530 /**
2531 * Creates a new map with the same mappings as the given map.
2532 *
2533 * @param m the map
2534 */
2535 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2536 this.sizeCtl = DEFAULT_CAPACITY;
2537 internalPutAll(m);
2538 }
2539
2540 /**
2541 * Creates a new, empty map with an initial table size based on
2542 * the given number of elements ({@code initialCapacity}) and
2543 * initial table density ({@code loadFactor}).
2544 *
2545 * @param initialCapacity the initial capacity. The implementation
2546 * performs internal sizing to accommodate this many elements,
2547 * given the specified load factor.
2548 * @param loadFactor the load factor (table density) for
2549 * establishing the initial table size
2550 * @throws IllegalArgumentException if the initial capacity of
2551 * elements is negative or the load factor is nonpositive
2552 *
2553 * @since 1.6
2554 */
2555 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2556 this(initialCapacity, loadFactor, 1);
2557 }
2558
2559 /**
2560 * Creates a new, empty map with an initial table size based on
2561 * the given number of elements ({@code initialCapacity}), table
2562 * density ({@code loadFactor}), and number of concurrently
2563 * updating threads ({@code concurrencyLevel}).
2564 *
2565 * @param initialCapacity the initial capacity. The implementation
2566 * performs internal sizing to accommodate this many elements,
2567 * given the specified load factor.
2568 * @param loadFactor the load factor (table density) for
2569 * establishing the initial table size
2570 * @param concurrencyLevel the estimated number of concurrently
2571 * updating threads. The implementation may use this value as
2572 * a sizing hint.
2573 * @throws IllegalArgumentException if the initial capacity is
2574 * negative or the load factor or concurrencyLevel are
2575 * nonpositive
2576 */
2577 public ConcurrentHashMap(int initialCapacity,
2578 float loadFactor, int concurrencyLevel) {
2579 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2580 throw new IllegalArgumentException();
2581 if (initialCapacity < concurrencyLevel) // Use at least as many bins
2582 initialCapacity = concurrencyLevel; // as estimated threads
2583 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2584 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2585 MAXIMUM_CAPACITY : tableSizeFor((int)size);
2586 this.sizeCtl = cap;
2587 }
2588
2589 /**
2590 * Creates a new {@link Set} backed by a ConcurrentHashMap
2591 * from the given type to {@code Boolean.TRUE}.
2592 *
2593 * @return the new set
2594 */
2595 public static <K> KeySetView<K,Boolean> newKeySet() {
2596 return new KeySetView<K,Boolean>
2597 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2598 }
2599
2600 /**
2601 * Creates a new {@link Set} backed by a ConcurrentHashMap
2602 * from the given type to {@code Boolean.TRUE}.
2603 *
2604 * @param initialCapacity The implementation performs internal
2605 * sizing to accommodate this many elements.
2606 * @throws IllegalArgumentException if the initial capacity of
2607 * elements is negative
2608 * @return the new set
2609 */
2610 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2611 return new KeySetView<K,Boolean>
2612 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2613 }
2614
2615 /**
2616 * {@inheritDoc}
2617 */
2618 public boolean isEmpty() {
2619 return sumCount() <= 0L; // ignore transient negative values
2620 }
2621
2622 /**
2623 * {@inheritDoc}
2624 */
2625 public int size() {
2626 long n = sumCount();
2627 return ((n < 0L) ? 0 :
2628 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2629 (int)n);
2630 }
2631
2632 /**
2633 * Returns the number of mappings. This method should be used
2634 * instead of {@link #size} because a ConcurrentHashMap may
2635 * contain more mappings than can be represented as an int. The
2636 * value returned is an estimate; the actual count may differ if
2637 * there are concurrent insertions or removals.
2638 *
2639 * @return the number of mappings
2640 */
2641 public long mappingCount() {
2642 long n = sumCount();
2643 return (n < 0L) ? 0L : n; // ignore transient negative values
2644 }
2645
2646 /**
2647 * Returns the value to which the specified key is mapped,
2648 * or {@code null} if this map contains no mapping for the key.
2649 *
2650 * <p>More formally, if this map contains a mapping from a key
2651 * {@code k} to a value {@code v} such that {@code key.equals(k)},
2652 * then this method returns {@code v}; otherwise it returns
2653 * {@code null}. (There can be at most one such mapping.)
2654 *
2655 * @throws NullPointerException if the specified key is null
2656 */
2657 public V get(Object key) {
2658 return internalGet(key);
2659 }
2660
2661 /**
2662 * Returns the value to which the specified key is mapped,
2663 * or the given defaultValue if this map contains no mapping for the key.
2664 *
2665 * @param key the key
2666 * @param defaultValue the value to return if this map contains
2667 * no mapping for the given key
2668 * @return the mapping for the key, if present; else the defaultValue
2669 * @throws NullPointerException if the specified key is null
2670 */
2671 public V getOrDefault(Object key, V defaultValue) {
2672 V v;
2673 return (v = internalGet(key)) == null ? defaultValue : v;
2674 }
2675
2676 /**
2677 * Tests if the specified object is a key in this table.
2678 *
2679 * @param key possible key
2680 * @return {@code true} if and only if the specified object
2681 * is a key in this table, as determined by the
2682 * {@code equals} method; {@code false} otherwise
2683 * @throws NullPointerException if the specified key is null
2684 */
2685 public boolean containsKey(Object key) {
2686 return internalGet(key) != null;
2687 }
2688
2689 /**
2690 * Returns {@code true} if this map maps one or more keys to the
2691 * specified value. Note: This method may require a full traversal
2692 * of the map, and is much slower than method {@code containsKey}.
2693 *
2694 * @param value value whose presence in this map is to be tested
2695 * @return {@code true} if this map maps one or more keys to the
2696 * specified value
2697 * @throws NullPointerException if the specified value is null
2698 */
2699 public boolean containsValue(Object value) {
2700 if (value == null)
2701 throw new NullPointerException();
2702 V v;
2703 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2704 while ((v = it.advanceValue()) != null) {
2705 if (v == value || value.equals(v))
2706 return true;
2707 }
2708 return false;
2709 }
2710
2711 /**
2712 * Legacy method testing if some key maps into the specified value
2713 * in this table. This method is identical in functionality to
2714 * {@link #containsValue(Object)}, and exists solely to ensure
2715 * full compatibility with class {@link java.util.Hashtable},
2716 * which supported this method prior to introduction of the
2717 * Java Collections framework.
2718 *
2719 * @param value a value to search for
2720 * @return {@code true} if and only if some key maps to the
2721 * {@code value} argument in this table as
2722 * determined by the {@code equals} method;
2723 * {@code false} otherwise
2724 * @throws NullPointerException if the specified value is null
2725 */
2726 @Deprecated public boolean contains(Object value) {
2727 return containsValue(value);
2728 }
2729
2730 /**
2731 * Maps the specified key to the specified value in this table.
2732 * Neither the key nor the value can be null.
2733 *
2734 * <p>The value can be retrieved by calling the {@code get} method
2735 * with a key that is equal to the original key.
2736 *
2737 * @param key key with which the specified value is to be associated
2738 * @param value value to be associated with the specified key
2739 * @return the previous value associated with {@code key}, or
2740 * {@code null} if there was no mapping for {@code key}
2741 * @throws NullPointerException if the specified key or value is null
2742 */
2743 public V put(K key, V value) {
2744 return internalPut(key, value, false);
2745 }
2746
2747 /**
2748 * {@inheritDoc}
2749 *
2750 * @return the previous value associated with the specified key,
2751 * or {@code null} if there was no mapping for the key
2752 * @throws NullPointerException if the specified key or value is null
2753 */
2754 public V putIfAbsent(K key, V value) {
2755 return internalPut(key, value, true);
2756 }
2757
2758 /**
2759 * Copies all of the mappings from the specified map to this one.
2760 * These mappings replace any mappings that this map had for any of the
2761 * keys currently in the specified map.
2762 *
2763 * @param m mappings to be stored in this map
2764 */
2765 public void putAll(Map<? extends K, ? extends V> m) {
2766 internalPutAll(m);
2767 }
2768
2769 /**
2770 * If the specified key is not already associated with a value (or
2771 * is mapped to {@code null}), attempts to compute its value using
2772 * the given mapping function and enters it into this map unless
2773 * {@code null}. The entire method invocation is performed
2774 * atomically, so the function is applied at most once per key.
2775 * Some attempted update operations on this map by other threads
2776 * may be blocked while computation is in progress, so the
2777 * computation should be short and simple, and must not attempt to
2778 * update any other mappings of this Map.
2779 *
2780 * @param key key with which the specified value is to be associated
2781 * @param mappingFunction the function to compute a value
2782 * @return the current (existing or computed) value associated with
2783 * the specified key, or null if the computed value is null
2784 * @throws NullPointerException if the specified key or mappingFunction
2785 * is null
2786 * @throws IllegalStateException if the computation detectably
2787 * attempts a recursive update to this map that would
2788 * otherwise never complete
2789 * @throws RuntimeException or Error if the mappingFunction does so,
2790 * in which case the mapping is left unestablished
2791 */
2792 public V computeIfAbsent
2793 (K key, Function<? super K, ? extends V> mappingFunction) {
2794 return internalComputeIfAbsent(key, mappingFunction);
2795 }
2796
2797 /**
2798 * If the value for the specified key is present and non-null,
2799 * attempts to compute a new mapping given the key and its current
2800 * mapped value. The entire method invocation is performed
2801 * atomically. Some attempted update operations on this map by
2802 * other threads may be blocked while computation is in progress,
2803 * so the computation should be short and simple, and must not
2804 * attempt to update any other mappings of this Map.
2805 *
2806 * @param key key with which a value may be associated
2807 * @param remappingFunction the function to compute a value
2808 * @return the new value associated with the specified key, or null if none
2809 * @throws NullPointerException if the specified key or remappingFunction
2810 * is null
2811 * @throws IllegalStateException if the computation detectably
2812 * attempts a recursive update to this map that would
2813 * otherwise never complete
2814 * @throws RuntimeException or Error if the remappingFunction does so,
2815 * in which case the mapping is unchanged
2816 */
2817 public V computeIfPresent
2818 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2819 return internalCompute(key, true, remappingFunction);
2820 }
2821
2822 /**
2823 * Attempts to compute a mapping for the specified key and its
2824 * current mapped value (or {@code null} if there is no current
2825 * mapping). The entire method invocation is performed atomically.
2826 * Some attempted update operations on this map by other threads
2827 * may be blocked while computation is in progress, so the
2828 * computation should be short and simple, and must not attempt to
2829 * update any other mappings of this Map.
2830 *
2831 * @param key key with which the specified value is to be associated
2832 * @param remappingFunction the function to compute a value
2833 * @return the new value associated with the specified key, or null if none
2834 * @throws NullPointerException if the specified key or remappingFunction
2835 * is null
2836 * @throws IllegalStateException if the computation detectably
2837 * attempts a recursive update to this map that would
2838 * otherwise never complete
2839 * @throws RuntimeException or Error if the remappingFunction does so,
2840 * in which case the mapping is unchanged
2841 */
2842 public V compute
2843 (K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2844 return internalCompute(key, false, remappingFunction);
2845 }
2846
2847 /**
2848 * If the specified key is not already associated with a
2849 * (non-null) value, associates it with the given value.
2850 * Otherwise, replaces the value with the results of the given
2851 * remapping function, or removes if {@code null}. The entire
2852 * method invocation is performed atomically. Some attempted
2853 * update operations on this map by other threads may be blocked
2854 * while computation is in progress, so the computation should be
2855 * short and simple, and must not attempt to update any other
2856 * mappings of this Map.
2857 *
2858 * @param key key with which the specified value is to be associated
2859 * @param value the value to use if absent
2860 * @param remappingFunction the function to recompute a value if present
2861 * @return the new value associated with the specified key, or null if none
2862 * @throws NullPointerException if the specified key or the
2863 * remappingFunction is null
2864 * @throws RuntimeException or Error if the remappingFunction does so,
2865 * in which case the mapping is unchanged
2866 */
2867 public V merge
2868 (K key, V value,
2869 BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2870 return internalMerge(key, value, remappingFunction);
2871 }
2872
2873 /**
2874 * Removes the key (and its corresponding value) from this map.
2875 * This method does nothing if the key is not in the map.
2876 *
2877 * @param key the key that needs to be removed
2878 * @return the previous value associated with {@code key}, or
2879 * {@code null} if there was no mapping for {@code key}
2880 * @throws NullPointerException if the specified key is null
2881 */
2882 public V remove(Object key) {
2883 return internalReplace(key, null, null);
2884 }
2885
2886 /**
2887 * {@inheritDoc}
2888 *
2889 * @throws NullPointerException if the specified key is null
2890 */
2891 public boolean remove(Object key, Object value) {
2892 if (key == null)
2893 throw new NullPointerException();
2894 return value != null && internalReplace(key, null, value) != null;
2895 }
2896
2897 /**
2898 * {@inheritDoc}
2899 *
2900 * @throws NullPointerException if any of the arguments are null
2901 */
2902 public boolean replace(K key, V oldValue, V newValue) {
2903 if (key == null || oldValue == null || newValue == null)
2904 throw new NullPointerException();
2905 return internalReplace(key, newValue, oldValue) != null;
2906 }
2907
2908 /**
2909 * {@inheritDoc}
2910 *
2911 * @return the previous value associated with the specified key,
2912 * or {@code null} if there was no mapping for the key
2913 * @throws NullPointerException if the specified key or value is null
2914 */
2915 public V replace(K key, V value) {
2916 if (key == null || value == null)
2917 throw new NullPointerException();
2918 return internalReplace(key, value, null);
2919 }
2920
2921 /**
2922 * Removes all of the mappings from this map.
2923 */
2924 public void clear() {
2925 internalClear();
2926 }
2927
2928 /**
2929 * Returns a {@link Set} view of the keys contained in this map.
2930 * The set is backed by the map, so changes to the map are
2931 * reflected in the set, and vice-versa.
2932 *
2933 * @return the set view
2934 */
2935 public KeySetView<K,V> keySet() {
2936 KeySetView<K,V> ks = keySet;
2937 return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2938 }
2939
2940 /**
2941 * Returns a {@link Set} view of the keys in this map, using the
2942 * given common mapped value for any additions (i.e., {@link
2943 * Collection#add} and {@link Collection#addAll(Collection)}).
2944 * This is of course only appropriate if it is acceptable to use
2945 * the same value for all additions from this view.
2946 *
2947 * @param mappedValue the mapped value to use for any additions
2948 * @return the set view
2949 * @throws NullPointerException if the mappedValue is null
2950 */
2951 public KeySetView<K,V> keySet(V mappedValue) {
2952 if (mappedValue == null)
2953 throw new NullPointerException();
2954 return new KeySetView<K,V>(this, mappedValue);
2955 }
2956
2957 /**
2958 * Returns a {@link Collection} view of the values contained in this map.
2959 * The collection is backed by the map, so changes to the map are
2960 * reflected in the collection, and vice-versa.
2961 *
2962 * @return the collection view
2963 */
2964 public ValuesView<K,V> values() {
2965 ValuesView<K,V> vs = values;
2966 return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2967 }
2968
2969 /**
2970 * Returns a {@link Set} view of the mappings contained in this map.
2971 * The set is backed by the map, so changes to the map are
2972 * reflected in the set, and vice-versa. The set supports element
2973 * removal, which removes the corresponding mapping from the map,
2974 * via the {@code Iterator.remove}, {@code Set.remove},
2975 * {@code removeAll}, {@code retainAll}, and {@code clear}
2976 * operations. It does not support the {@code add} or
2977 * {@code addAll} operations.
2978 *
2979 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2980 * that will never throw {@link ConcurrentModificationException},
2981 * and guarantees to traverse elements as they existed upon
2982 * construction of the iterator, and may (but is not guaranteed to)
2983 * reflect any modifications subsequent to construction.
2984 *
2985 * @return the set view
2986 */
2987 public Set<Map.Entry<K,V>> entrySet() {
2988 EntrySetView<K,V> es = entrySet;
2989 return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2990 }
2991
2992 /**
2993 * Returns an enumeration of the keys in this table.
2994 *
2995 * @return an enumeration of the keys in this table
2996 * @see #keySet()
2997 */
2998 public Enumeration<K> keys() {
2999 return new KeyIterator<K,V>(this);
3000 }
3001
3002 /**
3003 * Returns an enumeration of the values in this table.
3004 *
3005 * @return an enumeration of the values in this table
3006 * @see #values()
3007 */
3008 public Enumeration<V> elements() {
3009 return new ValueIterator<K,V>(this);
3010 }
3011
3012 /**
3013 * Returns the hash code value for this {@link Map}, i.e.,
3014 * the sum of, for each key-value pair in the map,
3015 * {@code key.hashCode() ^ value.hashCode()}.
3016 *
3017 * @return the hash code value for this map
3018 */
3019 public int hashCode() {
3020 int h = 0;
3021 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3022 V v;
3023 while ((v = it.advanceValue()) != null) {
3024 h += it.nextKey.hashCode() ^ v.hashCode();
3025 }
3026 return h;
3027 }
3028
3029 /**
3030 * Returns a string representation of this map. The string
3031 * representation consists of a list of key-value mappings (in no
3032 * particular order) enclosed in braces ("{@code {}}"). Adjacent
3033 * mappings are separated by the characters {@code ", "} (comma
3034 * and space). Each key-value mapping is rendered as the key
3035 * followed by an equals sign ("{@code =}") followed by the
3036 * associated value.
3037 *
3038 * @return a string representation of this map
3039 */
3040 public String toString() {
3041 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3042 StringBuilder sb = new StringBuilder();
3043 sb.append('{');
3044 V v;
3045 if ((v = it.advanceValue()) != null) {
3046 for (;;) {
3047 K k = it.nextKey;
3048 sb.append(k == this ? "(this Map)" : k);
3049 sb.append('=');
3050 sb.append(v == this ? "(this Map)" : v);
3051 if ((v = it.advanceValue()) == null)
3052 break;
3053 sb.append(',').append(' ');
3054 }
3055 }
3056 return sb.append('}').toString();
3057 }
3058
3059 /**
3060 * Compares the specified object with this map for equality.
3061 * Returns {@code true} if the given object is a map with the same
3062 * mappings as this map. This operation may return misleading
3063 * results if either map is concurrently modified during execution
3064 * of this method.
3065 *
3066 * @param o object to be compared for equality with this map
3067 * @return {@code true} if the specified object is equal to this map
3068 */
3069 public boolean equals(Object o) {
3070 if (o != this) {
3071 if (!(o instanceof Map))
3072 return false;
3073 Map<?,?> m = (Map<?,?>) o;
3074 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3075 V val;
3076 while ((val = it.advanceValue()) != null) {
3077 Object v = m.get(it.nextKey);
3078 if (v == null || (v != val && !v.equals(val)))
3079 return false;
3080 }
3081 for (Map.Entry<?,?> e : m.entrySet()) {
3082 Object mk, mv, v;
3083 if ((mk = e.getKey()) == null ||
3084 (mv = e.getValue()) == null ||
3085 (v = internalGet(mk)) == null ||
3086 (mv != v && !mv.equals(v)))
3087 return false;
3088 }
3089 }
3090 return true;
3091 }
3092
3093 /* ----------------Iterators -------------- */
3094
3095 @SuppressWarnings("serial") static final class KeyIterator<K,V>
3096 extends Traverser<K,V,Object>
3097 implements Spliterator<K>, Iterator<K>, Enumeration<K> {
3098 KeyIterator(ConcurrentHashMap<K,V> map) { super(map); }
3099 KeyIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3100 super(map, it);
3101 }
3102 public Spliterator<K> trySplit() {
3103 return (baseLimit - baseIndex <= 1) ? null :
3104 new KeyIterator<K,V>(map, this);
3105 }
3106 public final K next() {
3107 K k;
3108 if ((k = (nextVal == null) ? advanceKey() : nextKey) == null)
3109 throw new NoSuchElementException();
3110 nextVal = null;
3111 return k;
3112 }
3113
3114 public final K nextElement() { return next(); }
3115
3116 public Iterator<K> iterator() { return this; }
3117
3118 public void forEachRemaining(Consumer<? super K> action) {
3119 forEachKey(action);
3120 }
3121
3122 public boolean tryAdvance(Consumer<? super K> block) {
3123 if (block == null) throw new NullPointerException();
3124 K k;
3125 if ((k = advanceKey()) == null)
3126 return false;
3127 block.accept(k);
3128 return true;
3129 }
3130
3131 public int characteristics() {
3132 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3133 Spliterator.NONNULL;
3134 }
3135
3136 }
3137
3138 @SuppressWarnings("serial") static final class ValueIterator<K,V>
3139 extends Traverser<K,V,Object>
3140 implements Spliterator<V>, Iterator<V>, Enumeration<V> {
3141 ValueIterator(ConcurrentHashMap<K,V> map) { super(map); }
3142 ValueIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3143 super(map, it);
3144 }
3145 public Spliterator<V> trySplit() {
3146 return (baseLimit - baseIndex <= 1) ? null :
3147 new ValueIterator<K,V>(map, this);
3148 }
3149
3150 public final V next() {
3151 V v;
3152 if ((v = nextVal) == null && (v = advanceValue()) == null)
3153 throw new NoSuchElementException();
3154 nextVal = null;
3155 return v;
3156 }
3157
3158 public final V nextElement() { return next(); }
3159
3160 public Iterator<V> iterator() { return this; }
3161
3162 public void forEachRemaining(Consumer<? super V> action) {
3163 forEachValue(action);
3164 }
3165
3166 public boolean tryAdvance(Consumer<? super V> block) {
3167 V v;
3168 if (block == null) throw new NullPointerException();
3169 if ((v = advanceValue()) == null)
3170 return false;
3171 block.accept(v);
3172 return true;
3173 }
3174
3175 public int characteristics() {
3176 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3177 }
3178 }
3179
3180 @SuppressWarnings("serial") static final class EntryIterator<K,V>
3181 extends Traverser<K,V,Object>
3182 implements Spliterator<Map.Entry<K,V>>, Iterator<Map.Entry<K,V>> {
3183 EntryIterator(ConcurrentHashMap<K,V> map) { super(map); }
3184 EntryIterator(ConcurrentHashMap<K,V> map, Traverser<K,V,Object> it) {
3185 super(map, it);
3186 }
3187 public Spliterator<Map.Entry<K,V>> trySplit() {
3188 return (baseLimit - baseIndex <= 1) ? null :
3189 new EntryIterator<K,V>(map, this);
3190 }
3191
3192 public final Map.Entry<K,V> next() {
3193 V v;
3194 if ((v = nextVal) == null && (v = advanceValue()) == null)
3195 throw new NoSuchElementException();
3196 K k = nextKey;
3197 nextVal = null;
3198 return new MapEntry<K,V>(k, v, map);
3199 }
3200
3201 public Iterator<Map.Entry<K,V>> iterator() { return this; }
3202
3203 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3204 if (action == null) throw new NullPointerException();
3205 V v;
3206 while ((v = advanceValue()) != null)
3207 action.accept(entryFor(nextKey, v));
3208 }
3209
3210 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> block) {
3211 V v;
3212 if (block == null) throw new NullPointerException();
3213 if ((v = advanceValue()) == null)
3214 return false;
3215 block.accept(entryFor(nextKey, v));
3216 return true;
3217 }
3218
3219 public int characteristics() {
3220 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3221 Spliterator.NONNULL;
3222 }
3223 }
3224
3225 /**
3226 * Exported Entry for iterators
3227 */
3228 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3229 final K key; // non-null
3230 V val; // non-null
3231 final ConcurrentHashMap<K,V> map;
3232 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3233 this.key = key;
3234 this.val = val;
3235 this.map = map;
3236 }
3237 public final K getKey() { return key; }
3238 public final V getValue() { return val; }
3239 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3240 public final String toString(){ return key + "=" + val; }
3241
3242 public final boolean equals(Object o) {
3243 Object k, v; Map.Entry<?,?> e;
3244 return ((o instanceof Map.Entry) &&
3245 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3246 (v = e.getValue()) != null &&
3247 (k == key || k.equals(key)) &&
3248 (v == val || v.equals(val)));
3249 }
3250
3251 /**
3252 * Sets our entry's value and writes through to the map. The
3253 * value to return is somewhat arbitrary here. Since we do not
3254 * necessarily track asynchronous changes, the most recent
3255 * "previous" value could be different from what we return (or
3256 * could even have been removed in which case the put will
3257 * re-establish). We do not and cannot guarantee more.
3258 */
3259 public final V setValue(V value) {
3260 if (value == null) throw new NullPointerException();
3261 V v = val;
3262 val = value;
3263 map.put(key, value);
3264 return v;
3265 }
3266 }
3267
3268 /**
3269 * Returns exportable snapshot entry for the given key and value
3270 * when write-through can't or shouldn't be used.
3271 */
3272 static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3273 return new AbstractMap.SimpleEntry<K,V>(k, v);
3274 }
3275
3276 /* ---------------- Serialization Support -------------- */
3277
3278 /**
3279 * Stripped-down version of helper class used in previous version,
3280 * declared for the sake of serialization compatibility
3281 */
3282 static class Segment<K,V> implements Serializable {
3283 private static final long serialVersionUID = 2249069246763182397L;
3284 final float loadFactor;
3285 Segment(float lf) { this.loadFactor = lf; }
3286 }
3287
3288 /**
3289 * Saves the state of the {@code ConcurrentHashMap} instance to a
3290 * stream (i.e., serializes it).
3291 * @param s the stream
3292 * @serialData
3293 * the key (Object) and value (Object)
3294 * for each key-value mapping, followed by a null pair.
3295 * The key-value mappings are emitted in no particular order.
3296 */
3297 @SuppressWarnings("unchecked") private void writeObject
3298 (java.io.ObjectOutputStream s)
3299 throws java.io.IOException {
3300 if (segments == null) { // for serialization compatibility
3301 segments = (Segment<K,V>[])
3302 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3303 for (int i = 0; i < segments.length; ++i)
3304 segments[i] = new Segment<K,V>(LOAD_FACTOR);
3305 }
3306 s.defaultWriteObject();
3307 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3308 V v;
3309 while ((v = it.advanceValue()) != null) {
3310 s.writeObject(it.nextKey);
3311 s.writeObject(v);
3312 }
3313 s.writeObject(null);
3314 s.writeObject(null);
3315 segments = null; // throw away
3316 }
3317
3318 /**
3319 * Reconstitutes the instance from a stream (that is, deserializes it).
3320 * @param s the stream
3321 */
3322 @SuppressWarnings("unchecked") private void readObject
3323 (java.io.ObjectInputStream s)
3324 throws java.io.IOException, ClassNotFoundException {
3325 s.defaultReadObject();
3326 this.segments = null; // unneeded
3327
3328 // Create all nodes, then place in table once size is known
3329 long size = 0L;
3330 Node<V> p = null;
3331 for (;;) {
3332 K k = (K) s.readObject();
3333 V v = (V) s.readObject();
3334 if (k != null && v != null) {
3335 int h = spread(k.hashCode());
3336 p = new Node<V>(h, k, v, p);
3337 ++size;
3338 }
3339 else
3340 break;
3341 }
3342 if (p != null) {
3343 boolean init = false;
3344 int n;
3345 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3346 n = MAXIMUM_CAPACITY;
3347 else {
3348 int sz = (int)size;
3349 n = tableSizeFor(sz + (sz >>> 1) + 1);
3350 }
3351 int sc = sizeCtl;
3352 boolean collide = false;
3353 if (n > sc &&
3354 U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3355 try {
3356 if (table == null) {
3357 init = true;
3358 @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3359 Node<V>[] tab = (Node<V>[])rt;
3360 int mask = n - 1;
3361 while (p != null) {
3362 int j = p.hash & mask;
3363 Node<V> next = p.next;
3364 Node<V> q = p.next = tabAt(tab, j);
3365 setTabAt(tab, j, p);
3366 if (!collide && q != null && q.hash == p.hash)
3367 collide = true;
3368 p = next;
3369 }
3370 table = tab;
3371 addCount(size, -1);
3372 sc = n - (n >>> 2);
3373 }
3374 } finally {
3375 sizeCtl = sc;
3376 }
3377 if (collide) { // rescan and convert to TreeBins
3378 Node<V>[] tab = table;
3379 for (int i = 0; i < tab.length; ++i) {
3380 int c = 0;
3381 for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3382 if (++c > TREE_THRESHOLD &&
3383 (e.key instanceof Comparable)) {
3384 replaceWithTreeBin(tab, i, e.key);
3385 break;
3386 }
3387 }
3388 }
3389 }
3390 }
3391 if (!init) { // Can only happen if unsafely published.
3392 while (p != null) {
3393 internalPut((K)p.key, p.val, false);
3394 p = p.next;
3395 }
3396 }
3397 }
3398 }
3399
3400 // -------------------------------------------------------
3401
3402 // Sequential bulk operations
3403
3404 /**
3405 * Performs the given action for each (key, value).
3406 *
3407 * @param action the action
3408 */
3409 public void forEachSequentially
3410 (BiConsumer<? super K, ? super V> action) {
3411 if (action == null) throw new NullPointerException();
3412 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3413 V v;
3414 while ((v = it.advanceValue()) != null)
3415 action.accept(it.nextKey, v);
3416 }
3417
3418 /**
3419 * Performs the given action for each non-null transformation
3420 * of each (key, value).
3421 *
3422 * @param transformer a function returning the transformation
3423 * for an element, or null if there is no transformation (in
3424 * which case the action is not applied)
3425 * @param action the action
3426 */
3427 public <U> void forEachSequentially
3428 (BiFunction<? super K, ? super V, ? extends U> transformer,
3429 Consumer<? super U> action) {
3430 if (transformer == null || action == null)
3431 throw new NullPointerException();
3432 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3433 V v; U u;
3434 while ((v = it.advanceValue()) != null) {
3435 if ((u = transformer.apply(it.nextKey, v)) != null)
3436 action.accept(u);
3437 }
3438 }
3439
3440 /**
3441 * Returns a non-null result from applying the given search
3442 * function on each (key, value), or null if none.
3443 *
3444 * @param searchFunction a function returning a non-null
3445 * result on success, else null
3446 * @return a non-null result from applying the given search
3447 * function on each (key, value), or null if none
3448 */
3449 public <U> U searchSequentially
3450 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3451 if (searchFunction == null) throw new NullPointerException();
3452 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3453 V v; U u;
3454 while ((v = it.advanceValue()) != null) {
3455 if ((u = searchFunction.apply(it.nextKey, v)) != null)
3456 return u;
3457 }
3458 return null;
3459 }
3460
3461 /**
3462 * Returns the result of accumulating the given transformation
3463 * of all (key, value) pairs using the given reducer to
3464 * combine values, or null if none.
3465 *
3466 * @param transformer a function returning the transformation
3467 * for an element, or null if there is no transformation (in
3468 * which case it is not combined)
3469 * @param reducer a commutative associative combining function
3470 * @return the result of accumulating the given transformation
3471 * of all (key, value) pairs
3472 */
3473 public <U> U reduceSequentially
3474 (BiFunction<? super K, ? super V, ? extends U> transformer,
3475 BiFunction<? super U, ? super U, ? extends U> reducer) {
3476 if (transformer == null || reducer == null)
3477 throw new NullPointerException();
3478 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3479 U r = null, u; V v;
3480 while ((v = it.advanceValue()) != null) {
3481 if ((u = transformer.apply(it.nextKey, v)) != null)
3482 r = (r == null) ? u : reducer.apply(r, u);
3483 }
3484 return r;
3485 }
3486
3487 /**
3488 * Returns the result of accumulating the given transformation
3489 * of all (key, value) pairs using the given reducer to
3490 * combine values, and the given basis as an identity value.
3491 *
3492 * @param transformer a function returning the transformation
3493 * for an element
3494 * @param basis the identity (initial default value) for the reduction
3495 * @param reducer a commutative associative combining function
3496 * @return the result of accumulating the given transformation
3497 * of all (key, value) pairs
3498 */
3499 public double reduceToDoubleSequentially
3500 (ToDoubleBiFunction<? super K, ? super V> transformer,
3501 double basis,
3502 DoubleBinaryOperator reducer) {
3503 if (transformer == null || reducer == null)
3504 throw new NullPointerException();
3505 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3506 double r = basis; V v;
3507 while ((v = it.advanceValue()) != null)
3508 r = reducer.applyAsDouble(r, transformer.applyAsDouble(it.nextKey, v));
3509 return r;
3510 }
3511
3512 /**
3513 * Returns the result of accumulating the given transformation
3514 * of all (key, value) pairs using the given reducer to
3515 * combine values, and the given basis as an identity value.
3516 *
3517 * @param transformer a function returning the transformation
3518 * for an element
3519 * @param basis the identity (initial default value) for the reduction
3520 * @param reducer a commutative associative combining function
3521 * @return the result of accumulating the given transformation
3522 * of all (key, value) pairs
3523 */
3524 public long reduceToLongSequentially
3525 (ToLongBiFunction<? super K, ? super V> transformer,
3526 long basis,
3527 LongBinaryOperator reducer) {
3528 if (transformer == null || reducer == null)
3529 throw new NullPointerException();
3530 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3531 long r = basis; V v;
3532 while ((v = it.advanceValue()) != null)
3533 r = reducer.applyAsLong(r, transformer.applyAsLong(it.nextKey, v));
3534 return r;
3535 }
3536
3537 /**
3538 * Returns the result of accumulating the given transformation
3539 * of all (key, value) pairs using the given reducer to
3540 * combine values, and the given basis as an identity value.
3541 *
3542 * @param transformer a function returning the transformation
3543 * for an element
3544 * @param basis the identity (initial default value) for the reduction
3545 * @param reducer a commutative associative combining function
3546 * @return the result of accumulating the given transformation
3547 * of all (key, value) pairs
3548 */
3549 public int reduceToIntSequentially
3550 (ToIntBiFunction<? super K, ? super V> transformer,
3551 int basis,
3552 IntBinaryOperator reducer) {
3553 if (transformer == null || reducer == null)
3554 throw new NullPointerException();
3555 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3556 int r = basis; V v;
3557 while ((v = it.advanceValue()) != null)
3558 r = reducer.applyAsInt(r, transformer.applyAsInt(it.nextKey, v));
3559 return r;
3560 }
3561
3562 /**
3563 * Performs the given action for each key.
3564 *
3565 * @param action the action
3566 */
3567 public void forEachKeySequentially
3568 (Consumer<? super K> action) {
3569 new Traverser<K,V,Object>(this).forEachKey(action);
3570 }
3571
3572 /**
3573 * Performs the given action for each non-null transformation
3574 * of each key.
3575 *
3576 * @param transformer a function returning the transformation
3577 * for an element, or null if there is no transformation (in
3578 * which case the action is not applied)
3579 * @param action the action
3580 */
3581 public <U> void forEachKeySequentially
3582 (Function<? super K, ? extends U> transformer,
3583 Consumer<? super U> action) {
3584 if (transformer == null || action == null)
3585 throw new NullPointerException();
3586 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3587 K k; U u;
3588 while ((k = it.advanceKey()) != null) {
3589 if ((u = transformer.apply(k)) != null)
3590 action.accept(u);
3591 }
3592 }
3593
3594 /**
3595 * Returns a non-null result from applying the given search
3596 * function on each key, or null if none.
3597 *
3598 * @param searchFunction a function returning a non-null
3599 * result on success, else null
3600 * @return a non-null result from applying the given search
3601 * function on each key, or null if none
3602 */
3603 public <U> U searchKeysSequentially
3604 (Function<? super K, ? extends U> searchFunction) {
3605 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3606 K k; U u;
3607 while ((k = it.advanceKey()) != null) {
3608 if ((u = searchFunction.apply(k)) != null)
3609 return u;
3610 }
3611 return null;
3612 }
3613
3614 /**
3615 * Returns the result of accumulating all keys using the given
3616 * reducer to combine values, or null if none.
3617 *
3618 * @param reducer a commutative associative combining function
3619 * @return the result of accumulating all keys using the given
3620 * reducer to combine values, or null if none
3621 */
3622 public K reduceKeysSequentially
3623 (BiFunction<? super K, ? super K, ? extends K> reducer) {
3624 if (reducer == null) throw new NullPointerException();
3625 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3626 K u, r = null;
3627 while ((u = it.advanceKey()) != null) {
3628 r = (r == null) ? u : reducer.apply(r, u);
3629 }
3630 return r;
3631 }
3632
3633 /**
3634 * Returns the result of accumulating the given transformation
3635 * of all keys using the given reducer to combine values, or
3636 * null if none.
3637 *
3638 * @param transformer a function returning the transformation
3639 * for an element, or null if there is no transformation (in
3640 * which case it is not combined)
3641 * @param reducer a commutative associative combining function
3642 * @return the result of accumulating the given transformation
3643 * of all keys
3644 */
3645 public <U> U reduceKeysSequentially
3646 (Function<? super K, ? extends U> transformer,
3647 BiFunction<? super U, ? super U, ? extends U> reducer) {
3648 if (transformer == null || reducer == null)
3649 throw new NullPointerException();
3650 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3651 K k; U r = null, u;
3652 while ((k = it.advanceKey()) != null) {
3653 if ((u = transformer.apply(k)) != null)
3654 r = (r == null) ? u : reducer.apply(r, u);
3655 }
3656 return r;
3657 }
3658
3659 /**
3660 * Returns the result of accumulating the given transformation
3661 * of all keys using the given reducer to combine values, and
3662 * the given basis as an identity value.
3663 *
3664 * @param transformer a function returning the transformation
3665 * for an element
3666 * @param basis the identity (initial default value) for the reduction
3667 * @param reducer a commutative associative combining function
3668 * @return the result of accumulating the given transformation
3669 * of all keys
3670 */
3671 public double reduceKeysToDoubleSequentially
3672 (ToDoubleFunction<? super K> transformer,
3673 double basis,
3674 DoubleBinaryOperator reducer) {
3675 if (transformer == null || reducer == null)
3676 throw new NullPointerException();
3677 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3678 double r = basis;
3679 K k;
3680 while ((k = it.advanceKey()) != null)
3681 r = reducer.applyAsDouble(r, transformer.applyAsDouble(k));
3682 return r;
3683 }
3684
3685 /**
3686 * Returns the result of accumulating the given transformation
3687 * of all keys using the given reducer to combine values, and
3688 * the given basis as an identity value.
3689 *
3690 * @param transformer a function returning the transformation
3691 * for an element
3692 * @param basis the identity (initial default value) for the reduction
3693 * @param reducer a commutative associative combining function
3694 * @return the result of accumulating the given transformation
3695 * of all keys
3696 */
3697 public long reduceKeysToLongSequentially
3698 (ToLongFunction<? super K> transformer,
3699 long basis,
3700 LongBinaryOperator reducer) {
3701 if (transformer == null || reducer == null)
3702 throw new NullPointerException();
3703 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3704 long r = basis;
3705 K k;
3706 while ((k = it.advanceKey()) != null)
3707 r = reducer.applyAsLong(r, transformer.applyAsLong(k));
3708 return r;
3709 }
3710
3711 /**
3712 * Returns the result of accumulating the given transformation
3713 * of all keys using the given reducer to combine values, and
3714 * the given basis as an identity value.
3715 *
3716 * @param transformer a function returning the transformation
3717 * for an element
3718 * @param basis the identity (initial default value) for the reduction
3719 * @param reducer a commutative associative combining function
3720 * @return the result of accumulating the given transformation
3721 * of all keys
3722 */
3723 public int reduceKeysToIntSequentially
3724 (ToIntFunction<? super K> transformer,
3725 int basis,
3726 IntBinaryOperator reducer) {
3727 if (transformer == null || reducer == null)
3728 throw new NullPointerException();
3729 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3730 int r = basis;
3731 K k;
3732 while ((k = it.advanceKey()) != null)
3733 r = reducer.applyAsInt(r, transformer.applyAsInt(k));
3734 return r;
3735 }
3736
3737 /**
3738 * Performs the given action for each value.
3739 *
3740 * @param action the action
3741 */
3742 public void forEachValueSequentially(Consumer<? super V> action) {
3743 new Traverser<K,V,Object>(this).forEachValue(action);
3744 }
3745
3746 /**
3747 * Performs the given action for each non-null transformation
3748 * of each value.
3749 *
3750 * @param transformer a function returning the transformation
3751 * for an element, or null if there is no transformation (in
3752 * which case the action is not applied)
3753 * @param action the action
3754 */
3755 public <U> void forEachValueSequentially
3756 (Function<? super V, ? extends U> transformer,
3757 Consumer<? super U> action) {
3758 if (transformer == null || action == null)
3759 throw new NullPointerException();
3760 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3761 V v; U u;
3762 while ((v = it.advanceValue()) != null) {
3763 if ((u = transformer.apply(v)) != null)
3764 action.accept(u);
3765 }
3766 }
3767
3768 /**
3769 * Returns a non-null result from applying the given search
3770 * function on each value, or null if none.
3771 *
3772 * @param searchFunction a function returning a non-null
3773 * result on success, else null
3774 * @return a non-null result from applying the given search
3775 * function on each value, or null if none
3776 */
3777 public <U> U searchValuesSequentially
3778 (Function<? super V, ? extends U> searchFunction) {
3779 if (searchFunction == null) throw new NullPointerException();
3780 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3781 V v; U u;
3782 while ((v = it.advanceValue()) != null) {
3783 if ((u = searchFunction.apply(v)) != null)
3784 return u;
3785 }
3786 return null;
3787 }
3788
3789 /**
3790 * Returns the result of accumulating all values using the
3791 * given reducer to combine values, or null if none.
3792 *
3793 * @param reducer a commutative associative combining function
3794 * @return the result of accumulating all values
3795 */
3796 public V reduceValuesSequentially
3797 (BiFunction<? super V, ? super V, ? extends V> reducer) {
3798 if (reducer == null) throw new NullPointerException();
3799 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3800 V r = null; V v;
3801 while ((v = it.advanceValue()) != null)
3802 r = (r == null) ? v : reducer.apply(r, v);
3803 return r;
3804 }
3805
3806 /**
3807 * Returns the result of accumulating the given transformation
3808 * of all values using the given reducer to combine values, or
3809 * null if none.
3810 *
3811 * @param transformer a function returning the transformation
3812 * for an element, or null if there is no transformation (in
3813 * which case it is not combined)
3814 * @param reducer a commutative associative combining function
3815 * @return the result of accumulating the given transformation
3816 * of all values
3817 */
3818 public <U> U reduceValuesSequentially
3819 (Function<? super V, ? extends U> transformer,
3820 BiFunction<? super U, ? super U, ? extends U> reducer) {
3821 if (transformer == null || reducer == null)
3822 throw new NullPointerException();
3823 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3824 U r = null, u; V v;
3825 while ((v = it.advanceValue()) != null) {
3826 if ((u = transformer.apply(v)) != null)
3827 r = (r == null) ? u : reducer.apply(r, u);
3828 }
3829 return r;
3830 }
3831
3832 /**
3833 * Returns the result of accumulating the given transformation
3834 * of all values using the given reducer to combine values,
3835 * and the given basis as an identity value.
3836 *
3837 * @param transformer a function returning the transformation
3838 * for an element
3839 * @param basis the identity (initial default value) for the reduction
3840 * @param reducer a commutative associative combining function
3841 * @return the result of accumulating the given transformation
3842 * of all values
3843 */
3844 public double reduceValuesToDoubleSequentially
3845 (ToDoubleFunction<? super V> transformer,
3846 double basis,
3847 DoubleBinaryOperator reducer) {
3848 if (transformer == null || reducer == null)
3849 throw new NullPointerException();
3850 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3851 double r = basis; V v;
3852 while ((v = it.advanceValue()) != null)
3853 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
3854 return r;
3855 }
3856
3857 /**
3858 * Returns the result of accumulating the given transformation
3859 * of all values using the given reducer to combine values,
3860 * and the given basis as an identity value.
3861 *
3862 * @param transformer a function returning the transformation
3863 * for an element
3864 * @param basis the identity (initial default value) for the reduction
3865 * @param reducer a commutative associative combining function
3866 * @return the result of accumulating the given transformation
3867 * of all values
3868 */
3869 public long reduceValuesToLongSequentially
3870 (ToLongFunction<? super V> transformer,
3871 long basis,
3872 LongBinaryOperator reducer) {
3873 if (transformer == null || reducer == null)
3874 throw new NullPointerException();
3875 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3876 long r = basis; V v;
3877 while ((v = it.advanceValue()) != null)
3878 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
3879 return r;
3880 }
3881
3882 /**
3883 * Returns the result of accumulating the given transformation
3884 * of all values using the given reducer to combine values,
3885 * and the given basis as an identity value.
3886 *
3887 * @param transformer a function returning the transformation
3888 * for an element
3889 * @param basis the identity (initial default value) for the reduction
3890 * @param reducer a commutative associative combining function
3891 * @return the result of accumulating the given transformation
3892 * of all values
3893 */
3894 public int reduceValuesToIntSequentially
3895 (ToIntFunction<? super V> transformer,
3896 int basis,
3897 IntBinaryOperator reducer) {
3898 if (transformer == null || reducer == null)
3899 throw new NullPointerException();
3900 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3901 int r = basis; V v;
3902 while ((v = it.advanceValue()) != null)
3903 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
3904 return r;
3905 }
3906
3907 /**
3908 * Performs the given action for each entry.
3909 *
3910 * @param action the action
3911 */
3912 public void forEachEntrySequentially
3913 (Consumer<? super Map.Entry<K,V>> action) {
3914 if (action == null) throw new NullPointerException();
3915 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3916 V v;
3917 while ((v = it.advanceValue()) != null)
3918 action.accept(entryFor(it.nextKey, v));
3919 }
3920
3921 /**
3922 * Performs the given action for each non-null transformation
3923 * of each entry.
3924 *
3925 * @param transformer a function returning the transformation
3926 * for an element, or null if there is no transformation (in
3927 * which case the action is not applied)
3928 * @param action the action
3929 */
3930 public <U> void forEachEntrySequentially
3931 (Function<Map.Entry<K,V>, ? extends U> transformer,
3932 Consumer<? super U> action) {
3933 if (transformer == null || action == null)
3934 throw new NullPointerException();
3935 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3936 V v; U u;
3937 while ((v = it.advanceValue()) != null) {
3938 if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
3939 action.accept(u);
3940 }
3941 }
3942
3943 /**
3944 * Returns a non-null result from applying the given search
3945 * function on each entry, or null if none.
3946 *
3947 * @param searchFunction a function returning a non-null
3948 * result on success, else null
3949 * @return a non-null result from applying the given search
3950 * function on each entry, or null if none
3951 */
3952 public <U> U searchEntriesSequentially
3953 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3954 if (searchFunction == null) throw new NullPointerException();
3955 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3956 V v; U u;
3957 while ((v = it.advanceValue()) != null) {
3958 if ((u = searchFunction.apply(entryFor(it.nextKey, v))) != null)
3959 return u;
3960 }
3961 return null;
3962 }
3963
3964 /**
3965 * Returns the result of accumulating all entries using the
3966 * given reducer to combine values, or null if none.
3967 *
3968 * @param reducer a commutative associative combining function
3969 * @return the result of accumulating all entries
3970 */
3971 public Map.Entry<K,V> reduceEntriesSequentially
3972 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3973 if (reducer == null) throw new NullPointerException();
3974 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3975 Map.Entry<K,V> r = null; V v;
3976 while ((v = it.advanceValue()) != null) {
3977 Map.Entry<K,V> u = entryFor(it.nextKey, v);
3978 r = (r == null) ? u : reducer.apply(r, u);
3979 }
3980 return r;
3981 }
3982
3983 /**
3984 * Returns the result of accumulating the given transformation
3985 * of all entries using the given reducer to combine values,
3986 * or null if none.
3987 *
3988 * @param transformer a function returning the transformation
3989 * for an element, or null if there is no transformation (in
3990 * which case it is not combined)
3991 * @param reducer a commutative associative combining function
3992 * @return the result of accumulating the given transformation
3993 * of all entries
3994 */
3995 public <U> U reduceEntriesSequentially
3996 (Function<Map.Entry<K,V>, ? extends U> transformer,
3997 BiFunction<? super U, ? super U, ? extends U> reducer) {
3998 if (transformer == null || reducer == null)
3999 throw new NullPointerException();
4000 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4001 U r = null, u; V v;
4002 while ((v = it.advanceValue()) != null) {
4003 if ((u = transformer.apply(entryFor(it.nextKey, v))) != null)
4004 r = (r == null) ? u : reducer.apply(r, u);
4005 }
4006 return r;
4007 }
4008
4009 /**
4010 * Returns the result of accumulating the given transformation
4011 * of all entries using the given reducer to combine values,
4012 * and the given basis as an identity value.
4013 *
4014 * @param transformer a function returning the transformation
4015 * for an element
4016 * @param basis the identity (initial default value) for the reduction
4017 * @param reducer a commutative associative combining function
4018 * @return the result of accumulating the given transformation
4019 * of all entries
4020 */
4021 public double reduceEntriesToDoubleSequentially
4022 (ToDoubleFunction<Map.Entry<K,V>> transformer,
4023 double basis,
4024 DoubleBinaryOperator reducer) {
4025 if (transformer == null || reducer == null)
4026 throw new NullPointerException();
4027 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4028 double r = basis; V v;
4029 while ((v = it.advanceValue()) != null)
4030 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(it.nextKey, v)));
4031 return r;
4032 }
4033
4034 /**
4035 * Returns the result of accumulating the given transformation
4036 * of all entries using the given reducer to combine values,
4037 * and the given basis as an identity value.
4038 *
4039 * @param transformer a function returning the transformation
4040 * for an element
4041 * @param basis the identity (initial default value) for the reduction
4042 * @param reducer a commutative associative combining function
4043 * @return the result of accumulating the given transformation
4044 * of all entries
4045 */
4046 public long reduceEntriesToLongSequentially
4047 (ToLongFunction<Map.Entry<K,V>> transformer,
4048 long basis,
4049 LongBinaryOperator reducer) {
4050 if (transformer == null || reducer == null)
4051 throw new NullPointerException();
4052 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4053 long r = basis; V v;
4054 while ((v = it.advanceValue()) != null)
4055 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(it.nextKey, v)));
4056 return r;
4057 }
4058
4059 /**
4060 * Returns the result of accumulating the given transformation
4061 * of all entries using the given reducer to combine values,
4062 * and the given basis as an identity value.
4063 *
4064 * @param transformer a function returning the transformation
4065 * for an element
4066 * @param basis the identity (initial default value) for the reduction
4067 * @param reducer a commutative associative combining function
4068 * @return the result of accumulating the given transformation
4069 * of all entries
4070 */
4071 public int reduceEntriesToIntSequentially
4072 (ToIntFunction<Map.Entry<K,V>> transformer,
4073 int basis,
4074 IntBinaryOperator reducer) {
4075 if (transformer == null || reducer == null)
4076 throw new NullPointerException();
4077 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4078 int r = basis; V v;
4079 while ((v = it.advanceValue()) != null)
4080 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(it.nextKey, v)));
4081 return r;
4082 }
4083
4084 // Parallel bulk operations
4085
4086 /**
4087 * Performs the given action for each (key, value).
4088 *
4089 * @param action the action
4090 */
4091 public void forEachInParallel(BiConsumer<? super K,? super V> action) {
4092 ForkJoinTasks.forEach
4093 (this, action).invoke();
4094 }
4095
4096 /**
4097 * Performs the given action for each non-null transformation
4098 * of each (key, value).
4099 *
4100 * @param transformer a function returning the transformation
4101 * for an element, or null if there is no transformation (in
4102 * which case the action is not applied)
4103 * @param action the action
4104 */
4105 public <U> void forEachInParallel
4106 (BiFunction<? super K, ? super V, ? extends U> transformer,
4107 Consumer<? super U> action) {
4108 ForkJoinTasks.forEach
4109 (this, transformer, action).invoke();
4110 }
4111
4112 /**
4113 * Returns a non-null result from applying the given search
4114 * function on each (key, value), or null if none. Upon
4115 * success, further element processing is suppressed and the
4116 * results of any other parallel invocations of the search
4117 * function are ignored.
4118 *
4119 * @param searchFunction a function returning a non-null
4120 * result on success, else null
4121 * @return a non-null result from applying the given search
4122 * function on each (key, value), or null if none
4123 */
4124 public <U> U searchInParallel
4125 (BiFunction<? super K, ? super V, ? extends U> searchFunction) {
4126 return ForkJoinTasks.search
4127 (this, searchFunction).invoke();
4128 }
4129
4130 /**
4131 * Returns the result of accumulating the given transformation
4132 * of all (key, value) pairs using the given reducer to
4133 * combine values, or null if none.
4134 *
4135 * @param transformer a function returning the transformation
4136 * for an element, or null if there is no transformation (in
4137 * which case it is not combined)
4138 * @param reducer a commutative associative combining function
4139 * @return the result of accumulating the given transformation
4140 * of all (key, value) pairs
4141 */
4142 public <U> U reduceInParallel
4143 (BiFunction<? super K, ? super V, ? extends U> transformer,
4144 BiFunction<? super U, ? super U, ? extends U> reducer) {
4145 return ForkJoinTasks.reduce
4146 (this, transformer, reducer).invoke();
4147 }
4148
4149 /**
4150 * Returns the result of accumulating the given transformation
4151 * of all (key, value) pairs using the given reducer to
4152 * combine values, and the given basis as an identity value.
4153 *
4154 * @param transformer a function returning the transformation
4155 * for an element
4156 * @param basis the identity (initial default value) for the reduction
4157 * @param reducer a commutative associative combining function
4158 * @return the result of accumulating the given transformation
4159 * of all (key, value) pairs
4160 */
4161 public double reduceToDoubleInParallel
4162 (ToDoubleBiFunction<? super K, ? super V> transformer,
4163 double basis,
4164 DoubleBinaryOperator reducer) {
4165 return ForkJoinTasks.reduceToDouble
4166 (this, transformer, basis, reducer).invoke();
4167 }
4168
4169 /**
4170 * Returns the result of accumulating the given transformation
4171 * of all (key, value) pairs using the given reducer to
4172 * combine values, and the given basis as an identity value.
4173 *
4174 * @param transformer a function returning the transformation
4175 * for an element
4176 * @param basis the identity (initial default value) for the reduction
4177 * @param reducer a commutative associative combining function
4178 * @return the result of accumulating the given transformation
4179 * of all (key, value) pairs
4180 */
4181 public long reduceToLongInParallel
4182 (ToLongBiFunction<? super K, ? super V> transformer,
4183 long basis,
4184 LongBinaryOperator reducer) {
4185 return ForkJoinTasks.reduceToLong
4186 (this, transformer, basis, reducer).invoke();
4187 }
4188
4189 /**
4190 * Returns the result of accumulating the given transformation
4191 * of all (key, value) pairs using the given reducer to
4192 * combine values, and the given basis as an identity value.
4193 *
4194 * @param transformer a function returning the transformation
4195 * for an element
4196 * @param basis the identity (initial default value) for the reduction
4197 * @param reducer a commutative associative combining function
4198 * @return the result of accumulating the given transformation
4199 * of all (key, value) pairs
4200 */
4201 public int reduceToIntInParallel
4202 (ToIntBiFunction<? super K, ? super V> transformer,
4203 int basis,
4204 IntBinaryOperator reducer) {
4205 return ForkJoinTasks.reduceToInt
4206 (this, transformer, basis, reducer).invoke();
4207 }
4208
4209 /**
4210 * Performs the given action for each key.
4211 *
4212 * @param action the action
4213 */
4214 public void forEachKeyInParallel(Consumer<? super K> action) {
4215 ForkJoinTasks.forEachKey
4216 (this, action).invoke();
4217 }
4218
4219 /**
4220 * Performs the given action for each non-null transformation
4221 * of each key.
4222 *
4223 * @param transformer a function returning the transformation
4224 * for an element, or null if there is no transformation (in
4225 * which case the action is not applied)
4226 * @param action the action
4227 */
4228 public <U> void forEachKeyInParallel
4229 (Function<? super K, ? extends U> transformer,
4230 Consumer<? super U> action) {
4231 ForkJoinTasks.forEachKey
4232 (this, transformer, action).invoke();
4233 }
4234
4235 /**
4236 * Returns a non-null result from applying the given search
4237 * function on each key, or null if none. Upon success,
4238 * further element processing is suppressed and the results of
4239 * any other parallel invocations of the search function are
4240 * ignored.
4241 *
4242 * @param searchFunction a function returning a non-null
4243 * result on success, else null
4244 * @return a non-null result from applying the given search
4245 * function on each key, or null if none
4246 */
4247 public <U> U searchKeysInParallel
4248 (Function<? super K, ? extends U> searchFunction) {
4249 return ForkJoinTasks.searchKeys
4250 (this, searchFunction).invoke();
4251 }
4252
4253 /**
4254 * Returns the result of accumulating all keys using the given
4255 * reducer to combine values, or null if none.
4256 *
4257 * @param reducer a commutative associative combining function
4258 * @return the result of accumulating all keys using the given
4259 * reducer to combine values, or null if none
4260 */
4261 public K reduceKeysInParallel
4262 (BiFunction<? super K, ? super K, ? extends K> reducer) {
4263 return ForkJoinTasks.reduceKeys
4264 (this, reducer).invoke();
4265 }
4266
4267 /**
4268 * Returns the result of accumulating the given transformation
4269 * of all keys using the given reducer to combine values, or
4270 * null if none.
4271 *
4272 * @param transformer a function returning the transformation
4273 * for an element, or null if there is no transformation (in
4274 * which case it is not combined)
4275 * @param reducer a commutative associative combining function
4276 * @return the result of accumulating the given transformation
4277 * of all keys
4278 */
4279 public <U> U reduceKeysInParallel
4280 (Function<? super K, ? extends U> transformer,
4281 BiFunction<? super U, ? super U, ? extends U> reducer) {
4282 return ForkJoinTasks.reduceKeys
4283 (this, transformer, reducer).invoke();
4284 }
4285
4286 /**
4287 * Returns the result of accumulating the given transformation
4288 * of all keys using the given reducer to combine values, and
4289 * the given basis as an identity value.
4290 *
4291 * @param transformer a function returning the transformation
4292 * for an element
4293 * @param basis the identity (initial default value) for the reduction
4294 * @param reducer a commutative associative combining function
4295 * @return the result of accumulating the given transformation
4296 * of all keys
4297 */
4298 public double reduceKeysToDoubleInParallel
4299 (ToDoubleFunction<? super K> transformer,
4300 double basis,
4301 DoubleBinaryOperator reducer) {
4302 return ForkJoinTasks.reduceKeysToDouble
4303 (this, transformer, basis, reducer).invoke();
4304 }
4305
4306 /**
4307 * Returns the result of accumulating the given transformation
4308 * of all keys using the given reducer to combine values, and
4309 * the given basis as an identity value.
4310 *
4311 * @param transformer a function returning the transformation
4312 * for an element
4313 * @param basis the identity (initial default value) for the reduction
4314 * @param reducer a commutative associative combining function
4315 * @return the result of accumulating the given transformation
4316 * of all keys
4317 */
4318 public long reduceKeysToLongInParallel
4319 (ToLongFunction<? super K> transformer,
4320 long basis,
4321 LongBinaryOperator reducer) {
4322 return ForkJoinTasks.reduceKeysToLong
4323 (this, transformer, basis, reducer).invoke();
4324 }
4325
4326 /**
4327 * Returns the result of accumulating the given transformation
4328 * of all keys using the given reducer to combine values, and
4329 * the given basis as an identity value.
4330 *
4331 * @param transformer a function returning the transformation
4332 * for an element
4333 * @param basis the identity (initial default value) for the reduction
4334 * @param reducer a commutative associative combining function
4335 * @return the result of accumulating the given transformation
4336 * of all keys
4337 */
4338 public int reduceKeysToIntInParallel
4339 (ToIntFunction<? super K> transformer,
4340 int basis,
4341 IntBinaryOperator reducer) {
4342 return ForkJoinTasks.reduceKeysToInt
4343 (this, transformer, basis, reducer).invoke();
4344 }
4345
4346 /**
4347 * Performs the given action for each value.
4348 *
4349 * @param action the action
4350 */
4351 public void forEachValueInParallel(Consumer<? super V> action) {
4352 ForkJoinTasks.forEachValue
4353 (this, action).invoke();
4354 }
4355
4356 /**
4357 * Performs the given action for each non-null transformation
4358 * of each value.
4359 *
4360 * @param transformer a function returning the transformation
4361 * for an element, or null if there is no transformation (in
4362 * which case the action is not applied)
4363 * @param action the action
4364 */
4365 public <U> void forEachValueInParallel
4366 (Function<? super V, ? extends U> transformer,
4367 Consumer<? super U> action) {
4368 ForkJoinTasks.forEachValue
4369 (this, transformer, action).invoke();
4370 }
4371
4372 /**
4373 * Returns a non-null result from applying the given search
4374 * function on each value, or null if none. Upon success,
4375 * further element processing is suppressed and the results of
4376 * any other parallel invocations of the search function are
4377 * ignored.
4378 *
4379 * @param searchFunction a function returning a non-null
4380 * result on success, else null
4381 * @return a non-null result from applying the given search
4382 * function on each value, or null if none
4383 */
4384 public <U> U searchValuesInParallel
4385 (Function<? super V, ? extends U> searchFunction) {
4386 return ForkJoinTasks.searchValues
4387 (this, searchFunction).invoke();
4388 }
4389
4390 /**
4391 * Returns the result of accumulating all values using the
4392 * given reducer to combine values, or null if none.
4393 *
4394 * @param reducer a commutative associative combining function
4395 * @return the result of accumulating all values
4396 */
4397 public V reduceValuesInParallel
4398 (BiFunction<? super V, ? super V, ? extends V> reducer) {
4399 return ForkJoinTasks.reduceValues
4400 (this, reducer).invoke();
4401 }
4402
4403 /**
4404 * Returns the result of accumulating the given transformation
4405 * of all values using the given reducer to combine values, or
4406 * null if none.
4407 *
4408 * @param transformer a function returning the transformation
4409 * for an element, or null if there is no transformation (in
4410 * which case it is not combined)
4411 * @param reducer a commutative associative combining function
4412 * @return the result of accumulating the given transformation
4413 * of all values
4414 */
4415 public <U> U reduceValuesInParallel
4416 (Function<? super V, ? extends U> transformer,
4417 BiFunction<? super U, ? super U, ? extends U> reducer) {
4418 return ForkJoinTasks.reduceValues
4419 (this, transformer, reducer).invoke();
4420 }
4421
4422 /**
4423 * Returns the result of accumulating the given transformation
4424 * of all values using the given reducer to combine values,
4425 * and the given basis as an identity value.
4426 *
4427 * @param transformer a function returning the transformation
4428 * for an element
4429 * @param basis the identity (initial default value) for the reduction
4430 * @param reducer a commutative associative combining function
4431 * @return the result of accumulating the given transformation
4432 * of all values
4433 */
4434 public double reduceValuesToDoubleInParallel
4435 (ToDoubleFunction<? super V> transformer,
4436 double basis,
4437 DoubleBinaryOperator reducer) {
4438 return ForkJoinTasks.reduceValuesToDouble
4439 (this, transformer, basis, reducer).invoke();
4440 }
4441
4442 /**
4443 * Returns the result of accumulating the given transformation
4444 * of all values using the given reducer to combine values,
4445 * and the given basis as an identity value.
4446 *
4447 * @param transformer a function returning the transformation
4448 * for an element
4449 * @param basis the identity (initial default value) for the reduction
4450 * @param reducer a commutative associative combining function
4451 * @return the result of accumulating the given transformation
4452 * of all values
4453 */
4454 public long reduceValuesToLongInParallel
4455 (ToLongFunction<? super V> transformer,
4456 long basis,
4457 LongBinaryOperator reducer) {
4458 return ForkJoinTasks.reduceValuesToLong
4459 (this, transformer, basis, reducer).invoke();
4460 }
4461
4462 /**
4463 * Returns the result of accumulating the given transformation
4464 * of all values using the given reducer to combine values,
4465 * and the given basis as an identity value.
4466 *
4467 * @param transformer a function returning the transformation
4468 * for an element
4469 * @param basis the identity (initial default value) for the reduction
4470 * @param reducer a commutative associative combining function
4471 * @return the result of accumulating the given transformation
4472 * of all values
4473 */
4474 public int reduceValuesToIntInParallel
4475 (ToIntFunction<? super V> transformer,
4476 int basis,
4477 IntBinaryOperator reducer) {
4478 return ForkJoinTasks.reduceValuesToInt
4479 (this, transformer, basis, reducer).invoke();
4480 }
4481
4482 /**
4483 * Performs the given action for each entry.
4484 *
4485 * @param action the action
4486 */
4487 public void forEachEntryInParallel(Consumer<? super Map.Entry<K,V>> action) {
4488 ForkJoinTasks.forEachEntry
4489 (this, action).invoke();
4490 }
4491
4492 /**
4493 * Performs the given action for each non-null transformation
4494 * of each entry.
4495 *
4496 * @param transformer a function returning the transformation
4497 * for an element, or null if there is no transformation (in
4498 * which case the action is not applied)
4499 * @param action the action
4500 */
4501 public <U> void forEachEntryInParallel
4502 (Function<Map.Entry<K,V>, ? extends U> transformer,
4503 Consumer<? super U> action) {
4504 ForkJoinTasks.forEachEntry
4505 (this, transformer, action).invoke();
4506 }
4507
4508 /**
4509 * Returns a non-null result from applying the given search
4510 * function on each entry, or null if none. Upon success,
4511 * further element processing is suppressed and the results of
4512 * any other parallel invocations of the search function are
4513 * ignored.
4514 *
4515 * @param searchFunction a function returning a non-null
4516 * result on success, else null
4517 * @return a non-null result from applying the given search
4518 * function on each entry, or null if none
4519 */
4520 public <U> U searchEntriesInParallel
4521 (Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4522 return ForkJoinTasks.searchEntries
4523 (this, searchFunction).invoke();
4524 }
4525
4526 /**
4527 * Returns the result of accumulating all entries using the
4528 * given reducer to combine values, or null if none.
4529 *
4530 * @param reducer a commutative associative combining function
4531 * @return the result of accumulating all entries
4532 */
4533 public Map.Entry<K,V> reduceEntriesInParallel
4534 (BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4535 return ForkJoinTasks.reduceEntries
4536 (this, reducer).invoke();
4537 }
4538
4539 /**
4540 * Returns the result of accumulating the given transformation
4541 * of all entries using the given reducer to combine values,
4542 * or null if none.
4543 *
4544 * @param transformer a function returning the transformation
4545 * for an element, or null if there is no transformation (in
4546 * which case it is not combined)
4547 * @param reducer a commutative associative combining function
4548 * @return the result of accumulating the given transformation
4549 * of all entries
4550 */
4551 public <U> U reduceEntriesInParallel
4552 (Function<Map.Entry<K,V>, ? extends U> transformer,
4553 BiFunction<? super U, ? super U, ? extends U> reducer) {
4554 return ForkJoinTasks.reduceEntries
4555 (this, transformer, reducer).invoke();
4556 }
4557
4558 /**
4559 * Returns the result of accumulating the given transformation
4560 * of all entries using the given reducer to combine values,
4561 * and the given basis as an identity value.
4562 *
4563 * @param transformer a function returning the transformation
4564 * for an element
4565 * @param basis the identity (initial default value) for the reduction
4566 * @param reducer a commutative associative combining function
4567 * @return the result of accumulating the given transformation
4568 * of all entries
4569 */
4570 public double reduceEntriesToDoubleInParallel
4571 (ToDoubleFunction<Map.Entry<K,V>> transformer,
4572 double basis,
4573 DoubleBinaryOperator reducer) {
4574 return ForkJoinTasks.reduceEntriesToDouble
4575 (this, transformer, basis, reducer).invoke();
4576 }
4577
4578 /**
4579 * Returns the result of accumulating the given transformation
4580 * of all entries using the given reducer to combine values,
4581 * and the given basis as an identity value.
4582 *
4583 * @param transformer a function returning the transformation
4584 * for an element
4585 * @param basis the identity (initial default value) for the reduction
4586 * @param reducer a commutative associative combining function
4587 * @return the result of accumulating the given transformation
4588 * of all entries
4589 */
4590 public long reduceEntriesToLongInParallel
4591 (ToLongFunction<Map.Entry<K,V>> transformer,
4592 long basis,
4593 LongBinaryOperator reducer) {
4594 return ForkJoinTasks.reduceEntriesToLong
4595 (this, transformer, basis, reducer).invoke();
4596 }
4597
4598 /**
4599 * Returns the result of accumulating the given transformation
4600 * of all entries using the given reducer to combine values,
4601 * and the given basis as an identity value.
4602 *
4603 * @param transformer a function returning the transformation
4604 * for an element
4605 * @param basis the identity (initial default value) for the reduction
4606 * @param reducer a commutative associative combining function
4607 * @return the result of accumulating the given transformation
4608 * of all entries
4609 */
4610 public int reduceEntriesToIntInParallel
4611 (ToIntFunction<Map.Entry<K,V>> transformer,
4612 int basis,
4613 IntBinaryOperator reducer) {
4614 return ForkJoinTasks.reduceEntriesToInt
4615 (this, transformer, basis, reducer).invoke();
4616 }
4617
4618
4619 /* ----------------Views -------------- */
4620
4621 /**
4622 * Base class for views.
4623 */
4624 abstract static class CHMCollectionView<K,V,E>
4625 implements Collection<E>, java.io.Serializable {
4626 private static final long serialVersionUID = 7249069246763182397L;
4627 final ConcurrentHashMap<K,V> map;
4628 CHMCollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4629
4630 /**
4631 * Returns the map backing this view.
4632 *
4633 * @return the map backing this view
4634 */
4635 public ConcurrentHashMap<K,V> getMap() { return map; }
4636
4637 /**
4638 * Removes all of the elements from this view, by removing all
4639 * the mappings from the map backing this view.
4640 */
4641 public final void clear() { map.clear(); }
4642 public final int size() { return map.size(); }
4643 public final boolean isEmpty() { return map.isEmpty(); }
4644
4645 // implementations below rely on concrete classes supplying these
4646 // abstract methods
4647 /**
4648 * Returns a "weakly consistent" iterator that will never
4649 * throw {@link ConcurrentModificationException}, and
4650 * guarantees to traverse elements as they existed upon
4651 * construction of the iterator, and may (but is not
4652 * guaranteed to) reflect any modifications subsequent to
4653 * construction.
4654 */
4655 public abstract Iterator<E> iterator();
4656 public abstract boolean contains(Object o);
4657 public abstract boolean remove(Object o);
4658
4659 private static final String oomeMsg = "Required array size too large";
4660
4661 public final Object[] toArray() {
4662 long sz = map.mappingCount();
4663 if (sz > MAX_ARRAY_SIZE)
4664 throw new OutOfMemoryError(oomeMsg);
4665 int n = (int)sz;
4666 Object[] r = new Object[n];
4667 int i = 0;
4668 for (E e : this) {
4669 if (i == n) {
4670 if (n >= MAX_ARRAY_SIZE)
4671 throw new OutOfMemoryError(oomeMsg);
4672 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4673 n = MAX_ARRAY_SIZE;
4674 else
4675 n += (n >>> 1) + 1;
4676 r = Arrays.copyOf(r, n);
4677 }
4678 r[i++] = e;
4679 }
4680 return (i == n) ? r : Arrays.copyOf(r, i);
4681 }
4682
4683 @SuppressWarnings("unchecked")
4684 public final <T> T[] toArray(T[] a) {
4685 long sz = map.mappingCount();
4686 if (sz > MAX_ARRAY_SIZE)
4687 throw new OutOfMemoryError(oomeMsg);
4688 int m = (int)sz;
4689 T[] r = (a.length >= m) ? a :
4690 (T[])java.lang.reflect.Array
4691 .newInstance(a.getClass().getComponentType(), m);
4692 int n = r.length;
4693 int i = 0;
4694 for (E e : this) {
4695 if (i == n) {
4696 if (n >= MAX_ARRAY_SIZE)
4697 throw new OutOfMemoryError(oomeMsg);
4698 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4699 n = MAX_ARRAY_SIZE;
4700 else
4701 n += (n >>> 1) + 1;
4702 r = Arrays.copyOf(r, n);
4703 }
4704 r[i++] = (T)e;
4705 }
4706 if (a == r && i < n) {
4707 r[i] = null; // null-terminate
4708 return r;
4709 }
4710 return (i == n) ? r : Arrays.copyOf(r, i);
4711 }
4712
4713 /**
4714 * Returns a string representation of this collection.
4715 * The string representation consists of the string representations
4716 * of the collection's elements in the order they are returned by
4717 * its iterator, enclosed in square brackets ({@code "[]"}).
4718 * Adjacent elements are separated by the characters {@code ", "}
4719 * (comma and space). Elements are converted to strings as by
4720 * {@link String#valueOf(Object)}.
4721 *
4722 * @return a string representation of this collection
4723 */
4724 public final String toString() {
4725 StringBuilder sb = new StringBuilder();
4726 sb.append('[');
4727 Iterator<E> it = iterator();
4728 if (it.hasNext()) {
4729 for (;;) {
4730 Object e = it.next();
4731 sb.append(e == this ? "(this Collection)" : e);
4732 if (!it.hasNext())
4733 break;
4734 sb.append(',').append(' ');
4735 }
4736 }
4737 return sb.append(']').toString();
4738 }
4739
4740 public final boolean containsAll(Collection<?> c) {
4741 if (c != this) {
4742 for (Object e : c) {
4743 if (e == null || !contains(e))
4744 return false;
4745 }
4746 }
4747 return true;
4748 }
4749
4750 public final boolean removeAll(Collection<?> c) {
4751 boolean modified = false;
4752 for (Iterator<E> it = iterator(); it.hasNext();) {
4753 if (c.contains(it.next())) {
4754 it.remove();
4755 modified = true;
4756 }
4757 }
4758 return modified;
4759 }
4760
4761 public final boolean retainAll(Collection<?> c) {
4762 boolean modified = false;
4763 for (Iterator<E> it = iterator(); it.hasNext();) {
4764 if (!c.contains(it.next())) {
4765 it.remove();
4766 modified = true;
4767 }
4768 }
4769 return modified;
4770 }
4771
4772 }
4773
4774 abstract static class CHMSetView<K,V,E>
4775 extends CHMCollectionView<K,V,E>
4776 implements Set<E>, java.io.Serializable {
4777 private static final long serialVersionUID = 7249069246763182397L;
4778 CHMSetView(ConcurrentHashMap<K,V> map) { super(map); }
4779
4780 // Implement Set API
4781
4782 /**
4783 * Implements {@link Set#hashCode()}.
4784 * @return the hash code value for this set
4785 */
4786 public final int hashCode() {
4787 int h = 0;
4788 for (E e : this)
4789 h += e.hashCode();
4790 return h;
4791 }
4792
4793 /**
4794 * Implements {@link Set#equals(Object)}.
4795 * @param o object to be compared for equality with this set
4796 * @return {@code true} if the specified object is equal to this set
4797 */
4798 public final boolean equals(Object o) {
4799 Set<?> c;
4800 return ((o instanceof Set) &&
4801 ((c = (Set<?>)o) == this ||
4802 (containsAll(c) && c.containsAll(this))));
4803 }
4804 }
4805
4806 /**
4807 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4808 * which additions may optionally be enabled by mapping to a
4809 * common value. This class cannot be directly instantiated.
4810 * See {@link #keySet() keySet()},
4811 * {@link #keySet(Object) keySet(V)},
4812 * {@link #newKeySet() newKeySet()},
4813 * {@link #newKeySet(int) newKeySet(int)}.
4814 */
4815 public static class KeySetView<K,V>
4816 extends CHMSetView<K,V,K>
4817 implements Set<K>, java.io.Serializable {
4818 private static final long serialVersionUID = 7249069246763182397L;
4819 private final V value;
4820 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4821 super(map);
4822 this.value = value;
4823 }
4824
4825 /**
4826 * Returns the default mapped value for additions,
4827 * or {@code null} if additions are not supported.
4828 *
4829 * @return the default mapped value for additions, or {@code null}
4830 * if not supported
4831 */
4832 public V getMappedValue() { return value; }
4833
4834 /**
4835 * {@inheritDoc}
4836 * @throws NullPointerException if the specified key is null
4837 */
4838 public boolean contains(Object o) { return map.containsKey(o); }
4839
4840 /**
4841 * Removes the key from this map view, by removing the key (and its
4842 * corresponding value) from the backing map. This method does
4843 * nothing if the key is not in the map.
4844 *
4845 * @param o the key to be removed from the backing map
4846 * @return {@code true} if the backing map contained the specified key
4847 * @throws NullPointerException if the specified key is null
4848 */
4849 public boolean remove(Object o) { return map.remove(o) != null; }
4850
4851 /**
4852 * @return an iterator over the keys of the backing map
4853 */
4854 public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4855
4856 /**
4857 * Adds the specified key to this set view by mapping the key to
4858 * the default mapped value in the backing map, if defined.
4859 *
4860 * @param e key to be added
4861 * @return {@code true} if this set changed as a result of the call
4862 * @throws NullPointerException if the specified key is null
4863 * @throws UnsupportedOperationException if no default mapped value
4864 * for additions was provided
4865 */
4866 public boolean add(K e) {
4867 V v;
4868 if ((v = value) == null)
4869 throw new UnsupportedOperationException();
4870 return map.internalPut(e, v, true) == null;
4871 }
4872
4873 /**
4874 * Adds all of the elements in the specified collection to this set,
4875 * as if by calling {@link #add} on each one.
4876 *
4877 * @param c the elements to be inserted into this set
4878 * @return {@code true} if this set changed as a result of the call
4879 * @throws NullPointerException if the collection or any of its
4880 * elements are {@code null}
4881 * @throws UnsupportedOperationException if no default mapped value
4882 * for additions was provided
4883 */
4884 public boolean addAll(Collection<? extends K> c) {
4885 boolean added = false;
4886 V v;
4887 if ((v = value) == null)
4888 throw new UnsupportedOperationException();
4889 for (K e : c) {
4890 if (map.internalPut(e, v, true) == null)
4891 added = true;
4892 }
4893 return added;
4894 }
4895
4896 public Spliterator<K> spliterator() {
4897 return new KeyIterator<>(map, null);
4898 }
4899
4900 }
4901
4902 /**
4903 * A view of a ConcurrentHashMap as a {@link Collection} of
4904 * values, in which additions are disabled. This class cannot be
4905 * directly instantiated. See {@link #values()}.
4906 *
4907 * <p>The view's {@code iterator} is a "weakly consistent" iterator
4908 * that will never throw {@link ConcurrentModificationException},
4909 * and guarantees to traverse elements as they existed upon
4910 * construction of the iterator, and may (but is not guaranteed to)
4911 * reflect any modifications subsequent to construction.
4912 */
4913 public static final class ValuesView<K,V>
4914 extends CHMCollectionView<K,V,V>
4915 implements Collection<V>, java.io.Serializable {
4916 private static final long serialVersionUID = 2249069246763182397L;
4917 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4918 public final boolean contains(Object o) {
4919 return map.containsValue(o);
4920 }
4921 public final boolean remove(Object o) {
4922 if (o != null) {
4923 for (Iterator<V> it = iterator(); it.hasNext();) {
4924 if (o.equals(it.next())) {
4925 it.remove();
4926 return true;
4927 }
4928 }
4929 }
4930 return false;
4931 }
4932
4933 /**
4934 * @return an iterator over the values of the backing map
4935 */
4936 public final Iterator<V> iterator() {
4937 return new ValueIterator<K,V>(map);
4938 }
4939
4940 /** Always throws {@link UnsupportedOperationException}. */
4941 public final boolean add(V e) {
4942 throw new UnsupportedOperationException();
4943 }
4944 /** Always throws {@link UnsupportedOperationException}. */
4945 public final boolean addAll(Collection<? extends V> c) {
4946 throw new UnsupportedOperationException();
4947 }
4948
4949 public Spliterator<V> spliterator() {
4950 return new ValueIterator<K,V>(map, null);
4951 }
4952
4953 }
4954
4955 /**
4956 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4957 * entries. This class cannot be directly instantiated. See
4958 * {@link #entrySet()}.
4959 */
4960 public static final class EntrySetView<K,V>
4961 extends CHMSetView<K,V,Map.Entry<K,V>>
4962 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4963 private static final long serialVersionUID = 2249069246763182397L;
4964 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4965
4966 public final boolean contains(Object o) {
4967 Object k, v, r; Map.Entry<?,?> e;
4968 return ((o instanceof Map.Entry) &&
4969 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4970 (r = map.get(k)) != null &&
4971 (v = e.getValue()) != null &&
4972 (v == r || v.equals(r)));
4973 }
4974 public final boolean remove(Object o) {
4975 Object k, v; Map.Entry<?,?> e;
4976 return ((o instanceof Map.Entry) &&
4977 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4978 (v = e.getValue()) != null &&
4979 map.remove(k, v));
4980 }
4981
4982 /**
4983 * @return an iterator over the entries of the backing map
4984 */
4985 public final Iterator<Map.Entry<K,V>> iterator() {
4986 return new EntryIterator<K,V>(map);
4987 }
4988
4989 /**
4990 * Adds the specified mapping to this view.
4991 *
4992 * @param e mapping to be added
4993 * @return {@code true} if this set changed as a result of the call
4994 * @throws NullPointerException if the entry, its key, or its
4995 * value is null
4996 */
4997 public final boolean add(Entry<K,V> e) {
4998 return map.internalPut(e.getKey(), e.getValue(), false) == null;
4999 }
5000
5001 /**
5002 * Adds all of the mappings in the specified collection to this
5003 * set, as if by calling {@link #add(Map.Entry)} on each one.
5004 * @param c the mappings to be inserted into this set
5005 * @return {@code true} if this set changed as a result of the call
5006 * @throws NullPointerException if the collection or any of its
5007 * entries, keys, or values are null
5008 */
5009 public final boolean addAll(Collection<? extends Entry<K,V>> c) {
5010 boolean added = false;
5011 for (Entry<K,V> e : c) {
5012 if (add(e))
5013 added = true;
5014 }
5015 return added;
5016 }
5017
5018 public Spliterator<Map.Entry<K,V>> spliterator() {
5019 return new EntryIterator<K,V>(map, null);
5020 }
5021
5022 }
5023
5024 // ---------------------------------------------------------------------
5025
5026 /**
5027 * Predefined tasks for performing bulk parallel operations on
5028 * ConcurrentHashMaps. These tasks follow the forms and rules used
5029 * for bulk operations. Each method has the same name, but returns
5030 * a task rather than invoking it. These methods may be useful in
5031 * custom applications such as submitting a task without waiting
5032 * for completion, using a custom pool, or combining with other
5033 * tasks.
5034 */
5035 public static class ForkJoinTasks {
5036 private ForkJoinTasks() {}
5037
5038 /**
5039 * Returns a task that when invoked, performs the given
5040 * action for each (key, value)
5041 *
5042 * @param map the map
5043 * @param action the action
5044 * @return the task
5045 */
5046 public static <K,V> ForkJoinTask<Void> forEach
5047 (ConcurrentHashMap<K,V> map,
5048 BiConsumer<? super K, ? super V> action) {
5049 if (action == null) throw new NullPointerException();
5050 return new ForEachMappingTask<K,V>(map, null, -1, action);
5051 }
5052
5053 /**
5054 * Returns a task that when invoked, performs the given
5055 * action for each non-null transformation of each (key, value)
5056 *
5057 * @param map the map
5058 * @param transformer a function returning the transformation
5059 * for an element, or null if there is no transformation (in
5060 * which case the action is not applied)
5061 * @param action the action
5062 * @return the task
5063 */
5064 public static <K,V,U> ForkJoinTask<Void> forEach
5065 (ConcurrentHashMap<K,V> map,
5066 BiFunction<? super K, ? super V, ? extends U> transformer,
5067 Consumer<? super U> action) {
5068 if (transformer == null || action == null)
5069 throw new NullPointerException();
5070 return new ForEachTransformedMappingTask<K,V,U>
5071 (map, null, -1, transformer, action);
5072 }
5073
5074 /**
5075 * Returns a task that when invoked, returns a non-null result
5076 * from applying the given search function on each (key,
5077 * value), or null if none. Upon success, further element
5078 * processing is suppressed and the results of any other
5079 * parallel invocations of the search function are ignored.
5080 *
5081 * @param map the map
5082 * @param searchFunction a function returning a non-null
5083 * result on success, else null
5084 * @return the task
5085 */
5086 public static <K,V,U> ForkJoinTask<U> search
5087 (ConcurrentHashMap<K,V> map,
5088 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
5089 if (searchFunction == null) throw new NullPointerException();
5090 return new SearchMappingsTask<K,V,U>
5091 (map, null, -1, searchFunction,
5092 new AtomicReference<U>());
5093 }
5094
5095 /**
5096 * Returns a task that when invoked, returns the result of
5097 * accumulating the given transformation of all (key, value) pairs
5098 * using the given reducer to combine values, or null if none.
5099 *
5100 * @param map the map
5101 * @param transformer a function returning the transformation
5102 * for an element, or null if there is no transformation (in
5103 * which case it is not combined)
5104 * @param reducer a commutative associative combining function
5105 * @return the task
5106 */
5107 public static <K,V,U> ForkJoinTask<U> reduce
5108 (ConcurrentHashMap<K,V> map,
5109 BiFunction<? super K, ? super V, ? extends U> transformer,
5110 BiFunction<? super U, ? super U, ? extends U> reducer) {
5111 if (transformer == null || reducer == null)
5112 throw new NullPointerException();
5113 return new MapReduceMappingsTask<K,V,U>
5114 (map, null, -1, null, transformer, reducer);
5115 }
5116
5117 /**
5118 * Returns a task that when invoked, returns the result of
5119 * accumulating the given transformation of all (key, value) pairs
5120 * using the given reducer to combine values, and the given
5121 * basis as an identity value.
5122 *
5123 * @param map the map
5124 * @param transformer a function returning the transformation
5125 * for an element
5126 * @param basis the identity (initial default value) for the reduction
5127 * @param reducer a commutative associative combining function
5128 * @return the task
5129 */
5130 public static <K,V> ForkJoinTask<Double> reduceToDouble
5131 (ConcurrentHashMap<K,V> map,
5132 ToDoubleBiFunction<? super K, ? super V> transformer,
5133 double basis,
5134 DoubleBinaryOperator reducer) {
5135 if (transformer == null || reducer == null)
5136 throw new NullPointerException();
5137 return new MapReduceMappingsToDoubleTask<K,V>
5138 (map, null, -1, null, transformer, basis, reducer);
5139 }
5140
5141 /**
5142 * Returns a task that when invoked, returns the result of
5143 * accumulating the given transformation of all (key, value) pairs
5144 * using the given reducer to combine values, and the given
5145 * basis as an identity value.
5146 *
5147 * @param map the map
5148 * @param transformer a function returning the transformation
5149 * for an element
5150 * @param basis the identity (initial default value) for the reduction
5151 * @param reducer a commutative associative combining function
5152 * @return the task
5153 */
5154 public static <K,V> ForkJoinTask<Long> reduceToLong
5155 (ConcurrentHashMap<K,V> map,
5156 ToLongBiFunction<? super K, ? super V> transformer,
5157 long basis,
5158 LongBinaryOperator reducer) {
5159 if (transformer == null || reducer == null)
5160 throw new NullPointerException();
5161 return new MapReduceMappingsToLongTask<K,V>
5162 (map, null, -1, null, transformer, basis, reducer);
5163 }
5164
5165 /**
5166 * Returns a task that when invoked, returns the result of
5167 * accumulating the given transformation of all (key, value) pairs
5168 * using the given reducer to combine values, and the given
5169 * basis as an identity value.
5170 *
5171 * @param map the map
5172 * @param transformer a function returning the transformation
5173 * for an element
5174 * @param basis the identity (initial default value) for the reduction
5175 * @param reducer a commutative associative combining function
5176 * @return the task
5177 */
5178 public static <K,V> ForkJoinTask<Integer> reduceToInt
5179 (ConcurrentHashMap<K,V> map,
5180 ToIntBiFunction<? super K, ? super V> transformer,
5181 int basis,
5182 IntBinaryOperator reducer) {
5183 if (transformer == null || reducer == null)
5184 throw new NullPointerException();
5185 return new MapReduceMappingsToIntTask<K,V>
5186 (map, null, -1, null, transformer, basis, reducer);
5187 }
5188
5189 /**
5190 * Returns a task that when invoked, performs the given action
5191 * for each key.
5192 *
5193 * @param map the map
5194 * @param action the action
5195 * @return the task
5196 */
5197 public static <K,V> ForkJoinTask<Void> forEachKey
5198 (ConcurrentHashMap<K,V> map,
5199 Consumer<? super K> action) {
5200 if (action == null) throw new NullPointerException();
5201 return new ForEachKeyTask<K,V>(map, null, -1, action);
5202 }
5203
5204 /**
5205 * Returns a task that when invoked, performs the given action
5206 * for each non-null transformation of each key.
5207 *
5208 * @param map the map
5209 * @param transformer a function returning the transformation
5210 * for an element, or null if there is no transformation (in
5211 * which case the action is not applied)
5212 * @param action the action
5213 * @return the task
5214 */
5215 public static <K,V,U> ForkJoinTask<Void> forEachKey
5216 (ConcurrentHashMap<K,V> map,
5217 Function<? super K, ? extends U> transformer,
5218 Consumer<? super U> action) {
5219 if (transformer == null || action == null)
5220 throw new NullPointerException();
5221 return new ForEachTransformedKeyTask<K,V,U>
5222 (map, null, -1, transformer, action);
5223 }
5224
5225 /**
5226 * Returns a task that when invoked, returns a non-null result
5227 * from applying the given search function on each key, or
5228 * null if none. Upon success, further element processing is
5229 * suppressed and the results of any other parallel
5230 * invocations of the search function are ignored.
5231 *
5232 * @param map the map
5233 * @param searchFunction a function returning a non-null
5234 * result on success, else null
5235 * @return the task
5236 */
5237 public static <K,V,U> ForkJoinTask<U> searchKeys
5238 (ConcurrentHashMap<K,V> map,
5239 Function<? super K, ? extends U> searchFunction) {
5240 if (searchFunction == null) throw new NullPointerException();
5241 return new SearchKeysTask<K,V,U>
5242 (map, null, -1, searchFunction,
5243 new AtomicReference<U>());
5244 }
5245
5246 /**
5247 * Returns a task that when invoked, returns the result of
5248 * accumulating all keys using the given reducer to combine
5249 * values, or null if none.
5250 *
5251 * @param map the map
5252 * @param reducer a commutative associative combining function
5253 * @return the task
5254 */
5255 public static <K,V> ForkJoinTask<K> reduceKeys
5256 (ConcurrentHashMap<K,V> map,
5257 BiFunction<? super K, ? super K, ? extends K> reducer) {
5258 if (reducer == null) throw new NullPointerException();
5259 return new ReduceKeysTask<K,V>
5260 (map, null, -1, null, reducer);
5261 }
5262
5263 /**
5264 * Returns a task that when invoked, returns the result of
5265 * accumulating the given transformation of all keys using the given
5266 * reducer to combine values, or null if none.
5267 *
5268 * @param map the map
5269 * @param transformer a function returning the transformation
5270 * for an element, or null if there is no transformation (in
5271 * which case it is not combined)
5272 * @param reducer a commutative associative combining function
5273 * @return the task
5274 */
5275 public static <K,V,U> ForkJoinTask<U> reduceKeys
5276 (ConcurrentHashMap<K,V> map,
5277 Function<? super K, ? extends U> transformer,
5278 BiFunction<? super U, ? super U, ? extends U> reducer) {
5279 if (transformer == null || reducer == null)
5280 throw new NullPointerException();
5281 return new MapReduceKeysTask<K,V,U>
5282 (map, null, -1, null, transformer, reducer);
5283 }
5284
5285 /**
5286 * Returns a task that when invoked, returns the result of
5287 * accumulating the given transformation of all keys using the given
5288 * reducer to combine values, and the given basis as an
5289 * identity value.
5290 *
5291 * @param map the map
5292 * @param transformer a function returning the transformation
5293 * for an element
5294 * @param basis the identity (initial default value) for the reduction
5295 * @param reducer a commutative associative combining function
5296 * @return the task
5297 */
5298 public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5299 (ConcurrentHashMap<K,V> map,
5300 ToDoubleFunction<? super K> transformer,
5301 double basis,
5302 DoubleBinaryOperator reducer) {
5303 if (transformer == null || reducer == null)
5304 throw new NullPointerException();
5305 return new MapReduceKeysToDoubleTask<K,V>
5306 (map, null, -1, null, transformer, basis, reducer);
5307 }
5308
5309 /**
5310 * Returns a task that when invoked, returns the result of
5311 * accumulating the given transformation of all keys using the given
5312 * reducer to combine values, and the given basis as an
5313 * identity value.
5314 *
5315 * @param map the map
5316 * @param transformer a function returning the transformation
5317 * for an element
5318 * @param basis the identity (initial default value) for the reduction
5319 * @param reducer a commutative associative combining function
5320 * @return the task
5321 */
5322 public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5323 (ConcurrentHashMap<K,V> map,
5324 ToLongFunction<? super K> transformer,
5325 long basis,
5326 LongBinaryOperator reducer) {
5327 if (transformer == null || reducer == null)
5328 throw new NullPointerException();
5329 return new MapReduceKeysToLongTask<K,V>
5330 (map, null, -1, null, transformer, basis, reducer);
5331 }
5332
5333 /**
5334 * Returns a task that when invoked, returns the result of
5335 * accumulating the given transformation of all keys using the given
5336 * reducer to combine values, and the given basis as an
5337 * identity value.
5338 *
5339 * @param map the map
5340 * @param transformer a function returning the transformation
5341 * for an element
5342 * @param basis the identity (initial default value) for the reduction
5343 * @param reducer a commutative associative combining function
5344 * @return the task
5345 */
5346 public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5347 (ConcurrentHashMap<K,V> map,
5348 ToIntFunction<? super K> transformer,
5349 int basis,
5350 IntBinaryOperator reducer) {
5351 if (transformer == null || reducer == null)
5352 throw new NullPointerException();
5353 return new MapReduceKeysToIntTask<K,V>
5354 (map, null, -1, null, transformer, basis, reducer);
5355 }
5356
5357 /**
5358 * Returns a task that when invoked, performs the given action
5359 * for each value.
5360 *
5361 * @param map the map
5362 * @param action the action
5363 * @return the task
5364 */
5365 public static <K,V> ForkJoinTask<Void> forEachValue
5366 (ConcurrentHashMap<K,V> map,
5367 Consumer<? super V> action) {
5368 if (action == null) throw new NullPointerException();
5369 return new ForEachValueTask<K,V>(map, null, -1, action);
5370 }
5371
5372 /**
5373 * Returns a task that when invoked, performs the given action
5374 * for each non-null transformation of each value.
5375 *
5376 * @param map the map
5377 * @param transformer a function returning the transformation
5378 * for an element, or null if there is no transformation (in
5379 * which case the action is not applied)
5380 * @param action the action
5381 * @return the task
5382 */
5383 public static <K,V,U> ForkJoinTask<Void> forEachValue
5384 (ConcurrentHashMap<K,V> map,
5385 Function<? super V, ? extends U> transformer,
5386 Consumer<? super U> action) {
5387 if (transformer == null || action == null)
5388 throw new NullPointerException();
5389 return new ForEachTransformedValueTask<K,V,U>
5390 (map, null, -1, transformer, action);
5391 }
5392
5393 /**
5394 * Returns a task that when invoked, returns a non-null result
5395 * from applying the given search function on each value, or
5396 * null if none. Upon success, further element processing is
5397 * suppressed and the results of any other parallel
5398 * invocations of the search function are ignored.
5399 *
5400 * @param map the map
5401 * @param searchFunction a function returning a non-null
5402 * result on success, else null
5403 * @return the task
5404 */
5405 public static <K,V,U> ForkJoinTask<U> searchValues
5406 (ConcurrentHashMap<K,V> map,
5407 Function<? super V, ? extends U> searchFunction) {
5408 if (searchFunction == null) throw new NullPointerException();
5409 return new SearchValuesTask<K,V,U>
5410 (map, null, -1, searchFunction,
5411 new AtomicReference<U>());
5412 }
5413
5414 /**
5415 * Returns a task that when invoked, returns the result of
5416 * accumulating all values using the given reducer to combine
5417 * values, or null if none.
5418 *
5419 * @param map the map
5420 * @param reducer a commutative associative combining function
5421 * @return the task
5422 */
5423 public static <K,V> ForkJoinTask<V> reduceValues
5424 (ConcurrentHashMap<K,V> map,
5425 BiFunction<? super V, ? super V, ? extends V> reducer) {
5426 if (reducer == null) throw new NullPointerException();
5427 return new ReduceValuesTask<K,V>
5428 (map, null, -1, null, reducer);
5429 }
5430
5431 /**
5432 * Returns a task that when invoked, returns the result of
5433 * accumulating the given transformation of all values using the
5434 * given reducer to combine values, or null if none.
5435 *
5436 * @param map the map
5437 * @param transformer a function returning the transformation
5438 * for an element, or null if there is no transformation (in
5439 * which case it is not combined)
5440 * @param reducer a commutative associative combining function
5441 * @return the task
5442 */
5443 public static <K,V,U> ForkJoinTask<U> reduceValues
5444 (ConcurrentHashMap<K,V> map,
5445 Function<? super V, ? extends U> transformer,
5446 BiFunction<? super U, ? super U, ? extends U> reducer) {
5447 if (transformer == null || reducer == null)
5448 throw new NullPointerException();
5449 return new MapReduceValuesTask<K,V,U>
5450 (map, null, -1, null, transformer, reducer);
5451 }
5452
5453 /**
5454 * Returns a task that when invoked, returns the result of
5455 * accumulating the given transformation of all values using the
5456 * given reducer to combine values, and the given basis as an
5457 * identity value.
5458 *
5459 * @param map the map
5460 * @param transformer a function returning the transformation
5461 * for an element
5462 * @param basis the identity (initial default value) for the reduction
5463 * @param reducer a commutative associative combining function
5464 * @return the task
5465 */
5466 public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5467 (ConcurrentHashMap<K,V> map,
5468 ToDoubleFunction<? super V> transformer,
5469 double basis,
5470 DoubleBinaryOperator reducer) {
5471 if (transformer == null || reducer == null)
5472 throw new NullPointerException();
5473 return new MapReduceValuesToDoubleTask<K,V>
5474 (map, null, -1, null, transformer, basis, reducer);
5475 }
5476
5477 /**
5478 * Returns a task that when invoked, returns the result of
5479 * accumulating the given transformation of all values using the
5480 * given reducer to combine values, and the given basis as an
5481 * identity value.
5482 *
5483 * @param map the map
5484 * @param transformer a function returning the transformation
5485 * for an element
5486 * @param basis the identity (initial default value) for the reduction
5487 * @param reducer a commutative associative combining function
5488 * @return the task
5489 */
5490 public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5491 (ConcurrentHashMap<K,V> map,
5492 ToLongFunction<? super V> transformer,
5493 long basis,
5494 LongBinaryOperator reducer) {
5495 if (transformer == null || reducer == null)
5496 throw new NullPointerException();
5497 return new MapReduceValuesToLongTask<K,V>
5498 (map, null, -1, null, transformer, basis, reducer);
5499 }
5500
5501 /**
5502 * Returns a task that when invoked, returns the result of
5503 * accumulating the given transformation of all values using the
5504 * given reducer to combine values, and the given basis as an
5505 * identity value.
5506 *
5507 * @param map the map
5508 * @param transformer a function returning the transformation
5509 * for an element
5510 * @param basis the identity (initial default value) for the reduction
5511 * @param reducer a commutative associative combining function
5512 * @return the task
5513 */
5514 public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5515 (ConcurrentHashMap<K,V> map,
5516 ToIntFunction<? super V> transformer,
5517 int basis,
5518 IntBinaryOperator reducer) {
5519 if (transformer == null || reducer == null)
5520 throw new NullPointerException();
5521 return new MapReduceValuesToIntTask<K,V>
5522 (map, null, -1, null, transformer, basis, reducer);
5523 }
5524
5525 /**
5526 * Returns a task that when invoked, perform the given action
5527 * for each entry.
5528 *
5529 * @param map the map
5530 * @param action the action
5531 * @return the task
5532 */
5533 public static <K,V> ForkJoinTask<Void> forEachEntry
5534 (ConcurrentHashMap<K,V> map,
5535 Consumer<? super Map.Entry<K,V>> action) {
5536 if (action == null) throw new NullPointerException();
5537 return new ForEachEntryTask<K,V>(map, null, -1, action);
5538 }
5539
5540 /**
5541 * Returns a task that when invoked, perform the given action
5542 * for each non-null transformation of each entry.
5543 *
5544 * @param map the map
5545 * @param transformer a function returning the transformation
5546 * for an element, or null if there is no transformation (in
5547 * which case the action is not applied)
5548 * @param action the action
5549 * @return the task
5550 */
5551 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5552 (ConcurrentHashMap<K,V> map,
5553 Function<Map.Entry<K,V>, ? extends U> transformer,
5554 Consumer<? super U> action) {
5555 if (transformer == null || action == null)
5556 throw new NullPointerException();
5557 return new ForEachTransformedEntryTask<K,V,U>
5558 (map, null, -1, transformer, action);
5559 }
5560
5561 /**
5562 * Returns a task that when invoked, returns a non-null result
5563 * from applying the given search function on each entry, or
5564 * null if none. Upon success, further element processing is
5565 * suppressed and the results of any other parallel
5566 * invocations of the search function are ignored.
5567 *
5568 * @param map the map
5569 * @param searchFunction a function returning a non-null
5570 * result on success, else null
5571 * @return the task
5572 */
5573 public static <K,V,U> ForkJoinTask<U> searchEntries
5574 (ConcurrentHashMap<K,V> map,
5575 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
5576 if (searchFunction == null) throw new NullPointerException();
5577 return new SearchEntriesTask<K,V,U>
5578 (map, null, -1, searchFunction,
5579 new AtomicReference<U>());
5580 }
5581
5582 /**
5583 * Returns a task that when invoked, returns the result of
5584 * accumulating all entries using the given reducer to combine
5585 * values, or null if none.
5586 *
5587 * @param map the map
5588 * @param reducer a commutative associative combining function
5589 * @return the task
5590 */
5591 public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5592 (ConcurrentHashMap<K,V> map,
5593 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5594 if (reducer == null) throw new NullPointerException();
5595 return new ReduceEntriesTask<K,V>
5596 (map, null, -1, null, reducer);
5597 }
5598
5599 /**
5600 * Returns a task that when invoked, returns the result of
5601 * accumulating the given transformation of all entries using the
5602 * given reducer to combine values, or null if none.
5603 *
5604 * @param map the map
5605 * @param transformer a function returning the transformation
5606 * for an element, or null if there is no transformation (in
5607 * which case it is not combined)
5608 * @param reducer a commutative associative combining function
5609 * @return the task
5610 */
5611 public static <K,V,U> ForkJoinTask<U> reduceEntries
5612 (ConcurrentHashMap<K,V> map,
5613 Function<Map.Entry<K,V>, ? extends U> transformer,
5614 BiFunction<? super U, ? super U, ? extends U> reducer) {
5615 if (transformer == null || reducer == null)
5616 throw new NullPointerException();
5617 return new MapReduceEntriesTask<K,V,U>
5618 (map, null, -1, null, transformer, reducer);
5619 }
5620
5621 /**
5622 * Returns a task that when invoked, returns the result of
5623 * accumulating the given transformation of all entries using the
5624 * given reducer to combine values, and the given basis as an
5625 * identity value.
5626 *
5627 * @param map the map
5628 * @param transformer a function returning the transformation
5629 * for an element
5630 * @param basis the identity (initial default value) for the reduction
5631 * @param reducer a commutative associative combining function
5632 * @return the task
5633 */
5634 public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5635 (ConcurrentHashMap<K,V> map,
5636 ToDoubleFunction<Map.Entry<K,V>> transformer,
5637 double basis,
5638 DoubleBinaryOperator reducer) {
5639 if (transformer == null || reducer == null)
5640 throw new NullPointerException();
5641 return new MapReduceEntriesToDoubleTask<K,V>
5642 (map, null, -1, null, transformer, basis, reducer);
5643 }
5644
5645 /**
5646 * Returns a task that when invoked, returns the result of
5647 * accumulating the given transformation of all entries using the
5648 * given reducer to combine values, and the given basis as an
5649 * identity value.
5650 *
5651 * @param map the map
5652 * @param transformer a function returning the transformation
5653 * for an element
5654 * @param basis the identity (initial default value) for the reduction
5655 * @param reducer a commutative associative combining function
5656 * @return the task
5657 */
5658 public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5659 (ConcurrentHashMap<K,V> map,
5660 ToLongFunction<Map.Entry<K,V>> transformer,
5661 long basis,
5662 LongBinaryOperator reducer) {
5663 if (transformer == null || reducer == null)
5664 throw new NullPointerException();
5665 return new MapReduceEntriesToLongTask<K,V>
5666 (map, null, -1, null, transformer, basis, reducer);
5667 }
5668
5669 /**
5670 * Returns a task that when invoked, returns the result of
5671 * accumulating the given transformation of all entries using the
5672 * given reducer to combine values, and the given basis as an
5673 * identity value.
5674 *
5675 * @param map the map
5676 * @param transformer a function returning the transformation
5677 * for an element
5678 * @param basis the identity (initial default value) for the reduction
5679 * @param reducer a commutative associative combining function
5680 * @return the task
5681 */
5682 public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5683 (ConcurrentHashMap<K,V> map,
5684 ToIntFunction<Map.Entry<K,V>> transformer,
5685 int basis,
5686 IntBinaryOperator reducer) {
5687 if (transformer == null || reducer == null)
5688 throw new NullPointerException();
5689 return new MapReduceEntriesToIntTask<K,V>
5690 (map, null, -1, null, transformer, basis, reducer);
5691 }
5692 }
5693
5694 // -------------------------------------------------------
5695
5696 /*
5697 * Task classes. Coded in a regular but ugly format/style to
5698 * simplify checks that each variant differs in the right way from
5699 * others. The null screenings exist because compilers cannot tell
5700 * that we've already null-checked task arguments, so we force
5701 * simplest hoisted bypass to help avoid convoluted traps.
5702 */
5703
5704 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5705 extends Traverser<K,V,Void> {
5706 final Consumer<? super K> action;
5707 ForEachKeyTask
5708 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5709 Consumer<? super K> action) {
5710 super(m, p, b);
5711 this.action = action;
5712 }
5713 public final void compute() {
5714 final Consumer<? super K> action;
5715 if ((action = this.action) != null) {
5716 for (int b; (b = preSplit()) > 0;)
5717 new ForEachKeyTask<K,V>(map, this, b, action).fork();
5718 forEachKey(action);
5719 propagateCompletion();
5720 }
5721 }
5722 }
5723
5724 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5725 extends Traverser<K,V,Void> {
5726 final Consumer<? super V> action;
5727 ForEachValueTask
5728 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5729 Consumer<? super V> action) {
5730 super(m, p, b);
5731 this.action = action;
5732 }
5733 public final void compute() {
5734 final Consumer<? super V> action;
5735 if ((action = this.action) != null) {
5736 for (int b; (b = preSplit()) > 0;)
5737 new ForEachValueTask<K,V>(map, this, b, action).fork();
5738 forEachValue(action);
5739 propagateCompletion();
5740 }
5741 }
5742 }
5743
5744 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5745 extends Traverser<K,V,Void> {
5746 final Consumer<? super Entry<K,V>> action;
5747 ForEachEntryTask
5748 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5749 Consumer<? super Entry<K,V>> action) {
5750 super(m, p, b);
5751 this.action = action;
5752 }
5753 public final void compute() {
5754 final Consumer<? super Entry<K,V>> action;
5755 if ((action = this.action) != null) {
5756 for (int b; (b = preSplit()) > 0;)
5757 new ForEachEntryTask<K,V>(map, this, b, action).fork();
5758 V v;
5759 while ((v = advanceValue()) != null)
5760 action.accept(entryFor(nextKey, v));
5761 propagateCompletion();
5762 }
5763 }
5764 }
5765
5766 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5767 extends Traverser<K,V,Void> {
5768 final BiConsumer<? super K, ? super V> action;
5769 ForEachMappingTask
5770 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5771 BiConsumer<? super K,? super V> action) {
5772 super(m, p, b);
5773 this.action = action;
5774 }
5775 public final void compute() {
5776 final BiConsumer<? super K, ? super V> action;
5777 if ((action = this.action) != null) {
5778 for (int b; (b = preSplit()) > 0;)
5779 new ForEachMappingTask<K,V>(map, this, b, action).fork();
5780 V v;
5781 while ((v = advanceValue()) != null)
5782 action.accept(nextKey, v);
5783 propagateCompletion();
5784 }
5785 }
5786 }
5787
5788 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5789 extends Traverser<K,V,Void> {
5790 final Function<? super K, ? extends U> transformer;
5791 final Consumer<? super U> action;
5792 ForEachTransformedKeyTask
5793 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5794 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5795 super(m, p, b);
5796 this.transformer = transformer; this.action = action;
5797 }
5798 public final void compute() {
5799 final Function<? super K, ? extends U> transformer;
5800 final Consumer<? super U> action;
5801 if ((transformer = this.transformer) != null &&
5802 (action = this.action) != null) {
5803 for (int b; (b = preSplit()) > 0;)
5804 new ForEachTransformedKeyTask<K,V,U>
5805 (map, this, b, transformer, action).fork();
5806 K k; U u;
5807 while ((k = advanceKey()) != null) {
5808 if ((u = transformer.apply(k)) != null)
5809 action.accept(u);
5810 }
5811 propagateCompletion();
5812 }
5813 }
5814 }
5815
5816 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5817 extends Traverser<K,V,Void> {
5818 final Function<? super V, ? extends U> transformer;
5819 final Consumer<? super U> action;
5820 ForEachTransformedValueTask
5821 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5822 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5823 super(m, p, b);
5824 this.transformer = transformer; this.action = action;
5825 }
5826 public final void compute() {
5827 final Function<? super V, ? extends U> transformer;
5828 final Consumer<? super U> action;
5829 if ((transformer = this.transformer) != null &&
5830 (action = this.action) != null) {
5831 for (int b; (b = preSplit()) > 0;)
5832 new ForEachTransformedValueTask<K,V,U>
5833 (map, this, b, transformer, action).fork();
5834 V v; U u;
5835 while ((v = advanceValue()) != null) {
5836 if ((u = transformer.apply(v)) != null)
5837 action.accept(u);
5838 }
5839 propagateCompletion();
5840 }
5841 }
5842 }
5843
5844 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5845 extends Traverser<K,V,Void> {
5846 final Function<Map.Entry<K,V>, ? extends U> transformer;
5847 final Consumer<? super U> action;
5848 ForEachTransformedEntryTask
5849 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5850 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5851 super(m, p, b);
5852 this.transformer = transformer; this.action = action;
5853 }
5854 public final void compute() {
5855 final Function<Map.Entry<K,V>, ? extends U> transformer;
5856 final Consumer<? super U> action;
5857 if ((transformer = this.transformer) != null &&
5858 (action = this.action) != null) {
5859 for (int b; (b = preSplit()) > 0;)
5860 new ForEachTransformedEntryTask<K,V,U>
5861 (map, this, b, transformer, action).fork();
5862 V v; U u;
5863 while ((v = advanceValue()) != null) {
5864 if ((u = transformer.apply(entryFor(nextKey,
5865 v))) != null)
5866 action.accept(u);
5867 }
5868 propagateCompletion();
5869 }
5870 }
5871 }
5872
5873 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5874 extends Traverser<K,V,Void> {
5875 final BiFunction<? super K, ? super V, ? extends U> transformer;
5876 final Consumer<? super U> action;
5877 ForEachTransformedMappingTask
5878 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5879 BiFunction<? super K, ? super V, ? extends U> transformer,
5880 Consumer<? super U> action) {
5881 super(m, p, b);
5882 this.transformer = transformer; this.action = action;
5883 }
5884 public final void compute() {
5885 final BiFunction<? super K, ? super V, ? extends U> transformer;
5886 final Consumer<? super U> action;
5887 if ((transformer = this.transformer) != null &&
5888 (action = this.action) != null) {
5889 for (int b; (b = preSplit()) > 0;)
5890 new ForEachTransformedMappingTask<K,V,U>
5891 (map, this, b, transformer, action).fork();
5892 V v; U u;
5893 while ((v = advanceValue()) != null) {
5894 if ((u = transformer.apply(nextKey, v)) != null)
5895 action.accept(u);
5896 }
5897 propagateCompletion();
5898 }
5899 }
5900 }
5901
5902 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5903 extends Traverser<K,V,U> {
5904 final Function<? super K, ? extends U> searchFunction;
5905 final AtomicReference<U> result;
5906 SearchKeysTask
5907 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5908 Function<? super K, ? extends U> searchFunction,
5909 AtomicReference<U> result) {
5910 super(m, p, b);
5911 this.searchFunction = searchFunction; this.result = result;
5912 }
5913 public final U getRawResult() { return result.get(); }
5914 public final void compute() {
5915 final Function<? super K, ? extends U> searchFunction;
5916 final AtomicReference<U> result;
5917 if ((searchFunction = this.searchFunction) != null &&
5918 (result = this.result) != null) {
5919 for (int b;;) {
5920 if (result.get() != null)
5921 return;
5922 if ((b = preSplit()) <= 0)
5923 break;
5924 new SearchKeysTask<K,V,U>
5925 (map, this, b, searchFunction, result).fork();
5926 }
5927 while (result.get() == null) {
5928 K k; U u;
5929 if ((k = advanceKey()) == null) {
5930 propagateCompletion();
5931 break;
5932 }
5933 if ((u = searchFunction.apply(k)) != null) {
5934 if (result.compareAndSet(null, u))
5935 quietlyCompleteRoot();
5936 break;
5937 }
5938 }
5939 }
5940 }
5941 }
5942
5943 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5944 extends Traverser<K,V,U> {
5945 final Function<? super V, ? extends U> searchFunction;
5946 final AtomicReference<U> result;
5947 SearchValuesTask
5948 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5949 Function<? super V, ? extends U> searchFunction,
5950 AtomicReference<U> result) {
5951 super(m, p, b);
5952 this.searchFunction = searchFunction; this.result = result;
5953 }
5954 public final U getRawResult() { return result.get(); }
5955 public final void compute() {
5956 final Function<? super V, ? extends U> searchFunction;
5957 final AtomicReference<U> result;
5958 if ((searchFunction = this.searchFunction) != null &&
5959 (result = this.result) != null) {
5960 for (int b;;) {
5961 if (result.get() != null)
5962 return;
5963 if ((b = preSplit()) <= 0)
5964 break;
5965 new SearchValuesTask<K,V,U>
5966 (map, this, b, searchFunction, result).fork();
5967 }
5968 while (result.get() == null) {
5969 V v; U u;
5970 if ((v = advanceValue()) == null) {
5971 propagateCompletion();
5972 break;
5973 }
5974 if ((u = searchFunction.apply(v)) != null) {
5975 if (result.compareAndSet(null, u))
5976 quietlyCompleteRoot();
5977 break;
5978 }
5979 }
5980 }
5981 }
5982 }
5983
5984 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5985 extends Traverser<K,V,U> {
5986 final Function<Entry<K,V>, ? extends U> searchFunction;
5987 final AtomicReference<U> result;
5988 SearchEntriesTask
5989 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
5990 Function<Entry<K,V>, ? extends U> searchFunction,
5991 AtomicReference<U> result) {
5992 super(m, p, b);
5993 this.searchFunction = searchFunction; this.result = result;
5994 }
5995 public final U getRawResult() { return result.get(); }
5996 public final void compute() {
5997 final Function<Entry<K,V>, ? extends U> searchFunction;
5998 final AtomicReference<U> result;
5999 if ((searchFunction = this.searchFunction) != null &&
6000 (result = this.result) != null) {
6001 for (int b;;) {
6002 if (result.get() != null)
6003 return;
6004 if ((b = preSplit()) <= 0)
6005 break;
6006 new SearchEntriesTask<K,V,U>
6007 (map, this, b, searchFunction, result).fork();
6008 }
6009 while (result.get() == null) {
6010 V v; U u;
6011 if ((v = advanceValue()) == null) {
6012 propagateCompletion();
6013 break;
6014 }
6015 if ((u = searchFunction.apply(entryFor(nextKey,
6016 v))) != null) {
6017 if (result.compareAndSet(null, u))
6018 quietlyCompleteRoot();
6019 return;
6020 }
6021 }
6022 }
6023 }
6024 }
6025
6026 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
6027 extends Traverser<K,V,U> {
6028 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
6029 final AtomicReference<U> result;
6030 SearchMappingsTask
6031 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6032 BiFunction<? super K, ? super V, ? extends U> searchFunction,
6033 AtomicReference<U> result) {
6034 super(m, p, b);
6035 this.searchFunction = searchFunction; this.result = result;
6036 }
6037 public final U getRawResult() { return result.get(); }
6038 public final void compute() {
6039 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
6040 final AtomicReference<U> result;
6041 if ((searchFunction = this.searchFunction) != null &&
6042 (result = this.result) != null) {
6043 for (int b;;) {
6044 if (result.get() != null)
6045 return;
6046 if ((b = preSplit()) <= 0)
6047 break;
6048 new SearchMappingsTask<K,V,U>
6049 (map, this, b, searchFunction, result).fork();
6050 }
6051 while (result.get() == null) {
6052 V v; U u;
6053 if ((v = advanceValue()) == null) {
6054 propagateCompletion();
6055 break;
6056 }
6057 if ((u = searchFunction.apply(nextKey, v)) != null) {
6058 if (result.compareAndSet(null, u))
6059 quietlyCompleteRoot();
6060 break;
6061 }
6062 }
6063 }
6064 }
6065 }
6066
6067 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
6068 extends Traverser<K,V,K> {
6069 final BiFunction<? super K, ? super K, ? extends K> reducer;
6070 K result;
6071 ReduceKeysTask<K,V> rights, nextRight;
6072 ReduceKeysTask
6073 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6074 ReduceKeysTask<K,V> nextRight,
6075 BiFunction<? super K, ? super K, ? extends K> reducer) {
6076 super(m, p, b); this.nextRight = nextRight;
6077 this.reducer = reducer;
6078 }
6079 public final K getRawResult() { return result; }
6080 @SuppressWarnings("unchecked") public final void compute() {
6081 final BiFunction<? super K, ? super K, ? extends K> reducer;
6082 if ((reducer = this.reducer) != null) {
6083 for (int b; (b = preSplit()) > 0;)
6084 (rights = new ReduceKeysTask<K,V>
6085 (map, this, b, rights, reducer)).fork();
6086 K u, r = null;
6087 while ((u = advanceKey()) != null) {
6088 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
6089 }
6090 result = r;
6091 CountedCompleter<?> c;
6092 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6093 ReduceKeysTask<K,V>
6094 t = (ReduceKeysTask<K,V>)c,
6095 s = t.rights;
6096 while (s != null) {
6097 K tr, sr;
6098 if ((sr = s.result) != null)
6099 t.result = (((tr = t.result) == null) ? sr :
6100 reducer.apply(tr, sr));
6101 s = t.rights = s.nextRight;
6102 }
6103 }
6104 }
6105 }
6106 }
6107
6108 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
6109 extends Traverser<K,V,V> {
6110 final BiFunction<? super V, ? super V, ? extends V> reducer;
6111 V result;
6112 ReduceValuesTask<K,V> rights, nextRight;
6113 ReduceValuesTask
6114 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6115 ReduceValuesTask<K,V> nextRight,
6116 BiFunction<? super V, ? super V, ? extends V> reducer) {
6117 super(m, p, b); this.nextRight = nextRight;
6118 this.reducer = reducer;
6119 }
6120 public final V getRawResult() { return result; }
6121 @SuppressWarnings("unchecked") public final void compute() {
6122 final BiFunction<? super V, ? super V, ? extends V> reducer;
6123 if ((reducer = this.reducer) != null) {
6124 for (int b; (b = preSplit()) > 0;)
6125 (rights = new ReduceValuesTask<K,V>
6126 (map, this, b, rights, reducer)).fork();
6127 V r = null, v;
6128 while ((v = advanceValue()) != null)
6129 r = (r == null) ? v : reducer.apply(r, v);
6130 result = r;
6131 CountedCompleter<?> c;
6132 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6133 ReduceValuesTask<K,V>
6134 t = (ReduceValuesTask<K,V>)c,
6135 s = t.rights;
6136 while (s != null) {
6137 V tr, sr;
6138 if ((sr = s.result) != null)
6139 t.result = (((tr = t.result) == null) ? sr :
6140 reducer.apply(tr, sr));
6141 s = t.rights = s.nextRight;
6142 }
6143 }
6144 }
6145 }
6146 }
6147
6148 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
6149 extends Traverser<K,V,Map.Entry<K,V>> {
6150 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6151 Map.Entry<K,V> result;
6152 ReduceEntriesTask<K,V> rights, nextRight;
6153 ReduceEntriesTask
6154 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6155 ReduceEntriesTask<K,V> nextRight,
6156 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
6157 super(m, p, b); this.nextRight = nextRight;
6158 this.reducer = reducer;
6159 }
6160 public final Map.Entry<K,V> getRawResult() { return result; }
6161 @SuppressWarnings("unchecked") public final void compute() {
6162 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6163 if ((reducer = this.reducer) != null) {
6164 for (int b; (b = preSplit()) > 0;)
6165 (rights = new ReduceEntriesTask<K,V>
6166 (map, this, b, rights, reducer)).fork();
6167 Map.Entry<K,V> r = null;
6168 V v;
6169 while ((v = advanceValue()) != null) {
6170 Map.Entry<K,V> u = entryFor(nextKey, v);
6171 r = (r == null) ? u : reducer.apply(r, u);
6172 }
6173 result = r;
6174 CountedCompleter<?> c;
6175 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6176 ReduceEntriesTask<K,V>
6177 t = (ReduceEntriesTask<K,V>)c,
6178 s = t.rights;
6179 while (s != null) {
6180 Map.Entry<K,V> tr, sr;
6181 if ((sr = s.result) != null)
6182 t.result = (((tr = t.result) == null) ? sr :
6183 reducer.apply(tr, sr));
6184 s = t.rights = s.nextRight;
6185 }
6186 }
6187 }
6188 }
6189 }
6190
6191 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
6192 extends Traverser<K,V,U> {
6193 final Function<? super K, ? extends U> transformer;
6194 final BiFunction<? super U, ? super U, ? extends U> reducer;
6195 U result;
6196 MapReduceKeysTask<K,V,U> rights, nextRight;
6197 MapReduceKeysTask
6198 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6199 MapReduceKeysTask<K,V,U> nextRight,
6200 Function<? super K, ? extends U> transformer,
6201 BiFunction<? super U, ? super U, ? extends U> reducer) {
6202 super(m, p, b); this.nextRight = nextRight;
6203 this.transformer = transformer;
6204 this.reducer = reducer;
6205 }
6206 public final U getRawResult() { return result; }
6207 @SuppressWarnings("unchecked") public final void compute() {
6208 final Function<? super K, ? extends U> transformer;
6209 final BiFunction<? super U, ? super U, ? extends U> reducer;
6210 if ((transformer = this.transformer) != null &&
6211 (reducer = this.reducer) != null) {
6212 for (int b; (b = preSplit()) > 0;)
6213 (rights = new MapReduceKeysTask<K,V,U>
6214 (map, this, b, rights, transformer, reducer)).fork();
6215 K k; U r = null, u;
6216 while ((k = advanceKey()) != null) {
6217 if ((u = transformer.apply(k)) != null)
6218 r = (r == null) ? u : reducer.apply(r, u);
6219 }
6220 result = r;
6221 CountedCompleter<?> c;
6222 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6223 MapReduceKeysTask<K,V,U>
6224 t = (MapReduceKeysTask<K,V,U>)c,
6225 s = t.rights;
6226 while (s != null) {
6227 U tr, sr;
6228 if ((sr = s.result) != null)
6229 t.result = (((tr = t.result) == null) ? sr :
6230 reducer.apply(tr, sr));
6231 s = t.rights = s.nextRight;
6232 }
6233 }
6234 }
6235 }
6236 }
6237
6238 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6239 extends Traverser<K,V,U> {
6240 final Function<? super V, ? extends U> transformer;
6241 final BiFunction<? super U, ? super U, ? extends U> reducer;
6242 U result;
6243 MapReduceValuesTask<K,V,U> rights, nextRight;
6244 MapReduceValuesTask
6245 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6246 MapReduceValuesTask<K,V,U> nextRight,
6247 Function<? super V, ? extends U> transformer,
6248 BiFunction<? super U, ? super U, ? extends U> reducer) {
6249 super(m, p, b); this.nextRight = nextRight;
6250 this.transformer = transformer;
6251 this.reducer = reducer;
6252 }
6253 public final U getRawResult() { return result; }
6254 @SuppressWarnings("unchecked") public final void compute() {
6255 final Function<? super V, ? extends U> transformer;
6256 final BiFunction<? super U, ? super U, ? extends U> reducer;
6257 if ((transformer = this.transformer) != null &&
6258 (reducer = this.reducer) != null) {
6259 for (int b; (b = preSplit()) > 0;)
6260 (rights = new MapReduceValuesTask<K,V,U>
6261 (map, this, b, rights, transformer, reducer)).fork();
6262 U r = null, u;
6263 V v;
6264 while ((v = advanceValue()) != null) {
6265 if ((u = transformer.apply(v)) != null)
6266 r = (r == null) ? u : reducer.apply(r, u);
6267 }
6268 result = r;
6269 CountedCompleter<?> c;
6270 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6271 MapReduceValuesTask<K,V,U>
6272 t = (MapReduceValuesTask<K,V,U>)c,
6273 s = t.rights;
6274 while (s != null) {
6275 U tr, sr;
6276 if ((sr = s.result) != null)
6277 t.result = (((tr = t.result) == null) ? sr :
6278 reducer.apply(tr, sr));
6279 s = t.rights = s.nextRight;
6280 }
6281 }
6282 }
6283 }
6284 }
6285
6286 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6287 extends Traverser<K,V,U> {
6288 final Function<Map.Entry<K,V>, ? extends U> transformer;
6289 final BiFunction<? super U, ? super U, ? extends U> reducer;
6290 U result;
6291 MapReduceEntriesTask<K,V,U> rights, nextRight;
6292 MapReduceEntriesTask
6293 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6294 MapReduceEntriesTask<K,V,U> nextRight,
6295 Function<Map.Entry<K,V>, ? extends U> transformer,
6296 BiFunction<? super U, ? super U, ? extends U> reducer) {
6297 super(m, p, b); this.nextRight = nextRight;
6298 this.transformer = transformer;
6299 this.reducer = reducer;
6300 }
6301 public final U getRawResult() { return result; }
6302 @SuppressWarnings("unchecked") public final void compute() {
6303 final Function<Map.Entry<K,V>, ? extends U> transformer;
6304 final BiFunction<? super U, ? super U, ? extends U> reducer;
6305 if ((transformer = this.transformer) != null &&
6306 (reducer = this.reducer) != null) {
6307 for (int b; (b = preSplit()) > 0;)
6308 (rights = new MapReduceEntriesTask<K,V,U>
6309 (map, this, b, rights, transformer, reducer)).fork();
6310 U r = null, u;
6311 V v;
6312 while ((v = advanceValue()) != null) {
6313 if ((u = transformer.apply(entryFor(nextKey,
6314 v))) != null)
6315 r = (r == null) ? u : reducer.apply(r, u);
6316 }
6317 result = r;
6318 CountedCompleter<?> c;
6319 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6320 MapReduceEntriesTask<K,V,U>
6321 t = (MapReduceEntriesTask<K,V,U>)c,
6322 s = t.rights;
6323 while (s != null) {
6324 U tr, sr;
6325 if ((sr = s.result) != null)
6326 t.result = (((tr = t.result) == null) ? sr :
6327 reducer.apply(tr, sr));
6328 s = t.rights = s.nextRight;
6329 }
6330 }
6331 }
6332 }
6333 }
6334
6335 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6336 extends Traverser<K,V,U> {
6337 final BiFunction<? super K, ? super V, ? extends U> transformer;
6338 final BiFunction<? super U, ? super U, ? extends U> reducer;
6339 U result;
6340 MapReduceMappingsTask<K,V,U> rights, nextRight;
6341 MapReduceMappingsTask
6342 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6343 MapReduceMappingsTask<K,V,U> nextRight,
6344 BiFunction<? super K, ? super V, ? extends U> transformer,
6345 BiFunction<? super U, ? super U, ? extends U> reducer) {
6346 super(m, p, b); this.nextRight = nextRight;
6347 this.transformer = transformer;
6348 this.reducer = reducer;
6349 }
6350 public final U getRawResult() { return result; }
6351 @SuppressWarnings("unchecked") public final void compute() {
6352 final BiFunction<? super K, ? super V, ? extends U> transformer;
6353 final BiFunction<? super U, ? super U, ? extends U> reducer;
6354 if ((transformer = this.transformer) != null &&
6355 (reducer = this.reducer) != null) {
6356 for (int b; (b = preSplit()) > 0;)
6357 (rights = new MapReduceMappingsTask<K,V,U>
6358 (map, this, b, rights, transformer, reducer)).fork();
6359 U r = null, u;
6360 V v;
6361 while ((v = advanceValue()) != null) {
6362 if ((u = transformer.apply(nextKey, v)) != null)
6363 r = (r == null) ? u : reducer.apply(r, u);
6364 }
6365 result = r;
6366 CountedCompleter<?> c;
6367 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6368 MapReduceMappingsTask<K,V,U>
6369 t = (MapReduceMappingsTask<K,V,U>)c,
6370 s = t.rights;
6371 while (s != null) {
6372 U tr, sr;
6373 if ((sr = s.result) != null)
6374 t.result = (((tr = t.result) == null) ? sr :
6375 reducer.apply(tr, sr));
6376 s = t.rights = s.nextRight;
6377 }
6378 }
6379 }
6380 }
6381 }
6382
6383 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6384 extends Traverser<K,V,Double> {
6385 final ToDoubleFunction<? super K> transformer;
6386 final DoubleBinaryOperator reducer;
6387 final double basis;
6388 double result;
6389 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6390 MapReduceKeysToDoubleTask
6391 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6392 MapReduceKeysToDoubleTask<K,V> nextRight,
6393 ToDoubleFunction<? super K> transformer,
6394 double basis,
6395 DoubleBinaryOperator reducer) {
6396 super(m, p, b); this.nextRight = nextRight;
6397 this.transformer = transformer;
6398 this.basis = basis; this.reducer = reducer;
6399 }
6400 public final Double getRawResult() { return result; }
6401 @SuppressWarnings("unchecked") public final void compute() {
6402 final ToDoubleFunction<? super K> transformer;
6403 final DoubleBinaryOperator reducer;
6404 if ((transformer = this.transformer) != null &&
6405 (reducer = this.reducer) != null) {
6406 double r = this.basis;
6407 for (int b; (b = preSplit()) > 0;)
6408 (rights = new MapReduceKeysToDoubleTask<K,V>
6409 (map, this, b, rights, transformer, r, reducer)).fork();
6410 K k;
6411 while ((k = advanceKey()) != null)
6412 r = reducer.applyAsDouble(r, transformer.applyAsDouble(k));
6413 result = r;
6414 CountedCompleter<?> c;
6415 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6416 MapReduceKeysToDoubleTask<K,V>
6417 t = (MapReduceKeysToDoubleTask<K,V>)c,
6418 s = t.rights;
6419 while (s != null) {
6420 t.result = reducer.applyAsDouble(t.result, s.result);
6421 s = t.rights = s.nextRight;
6422 }
6423 }
6424 }
6425 }
6426 }
6427
6428 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6429 extends Traverser<K,V,Double> {
6430 final ToDoubleFunction<? super V> transformer;
6431 final DoubleBinaryOperator reducer;
6432 final double basis;
6433 double result;
6434 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6435 MapReduceValuesToDoubleTask
6436 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6437 MapReduceValuesToDoubleTask<K,V> nextRight,
6438 ToDoubleFunction<? super V> transformer,
6439 double basis,
6440 DoubleBinaryOperator reducer) {
6441 super(m, p, b); this.nextRight = nextRight;
6442 this.transformer = transformer;
6443 this.basis = basis; this.reducer = reducer;
6444 }
6445 public final Double getRawResult() { return result; }
6446 @SuppressWarnings("unchecked") public final void compute() {
6447 final ToDoubleFunction<? super V> transformer;
6448 final DoubleBinaryOperator reducer;
6449 if ((transformer = this.transformer) != null &&
6450 (reducer = this.reducer) != null) {
6451 double r = this.basis;
6452 for (int b; (b = preSplit()) > 0;)
6453 (rights = new MapReduceValuesToDoubleTask<K,V>
6454 (map, this, b, rights, transformer, r, reducer)).fork();
6455 V v;
6456 while ((v = advanceValue()) != null)
6457 r = reducer.applyAsDouble(r, transformer.applyAsDouble(v));
6458 result = r;
6459 CountedCompleter<?> c;
6460 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6461 MapReduceValuesToDoubleTask<K,V>
6462 t = (MapReduceValuesToDoubleTask<K,V>)c,
6463 s = t.rights;
6464 while (s != null) {
6465 t.result = reducer.applyAsDouble(t.result, s.result);
6466 s = t.rights = s.nextRight;
6467 }
6468 }
6469 }
6470 }
6471 }
6472
6473 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6474 extends Traverser<K,V,Double> {
6475 final ToDoubleFunction<Map.Entry<K,V>> transformer;
6476 final DoubleBinaryOperator reducer;
6477 final double basis;
6478 double result;
6479 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6480 MapReduceEntriesToDoubleTask
6481 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6482 MapReduceEntriesToDoubleTask<K,V> nextRight,
6483 ToDoubleFunction<Map.Entry<K,V>> transformer,
6484 double basis,
6485 DoubleBinaryOperator reducer) {
6486 super(m, p, b); this.nextRight = nextRight;
6487 this.transformer = transformer;
6488 this.basis = basis; this.reducer = reducer;
6489 }
6490 public final Double getRawResult() { return result; }
6491 @SuppressWarnings("unchecked") public final void compute() {
6492 final ToDoubleFunction<Map.Entry<K,V>> transformer;
6493 final DoubleBinaryOperator reducer;
6494 if ((transformer = this.transformer) != null &&
6495 (reducer = this.reducer) != null) {
6496 double r = this.basis;
6497 for (int b; (b = preSplit()) > 0;)
6498 (rights = new MapReduceEntriesToDoubleTask<K,V>
6499 (map, this, b, rights, transformer, r, reducer)).fork();
6500 V v;
6501 while ((v = advanceValue()) != null)
6502 r = reducer.applyAsDouble(r, transformer.applyAsDouble(entryFor(nextKey,
6503 v)));
6504 result = r;
6505 CountedCompleter<?> c;
6506 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6507 MapReduceEntriesToDoubleTask<K,V>
6508 t = (MapReduceEntriesToDoubleTask<K,V>)c,
6509 s = t.rights;
6510 while (s != null) {
6511 t.result = reducer.applyAsDouble(t.result, s.result);
6512 s = t.rights = s.nextRight;
6513 }
6514 }
6515 }
6516 }
6517 }
6518
6519 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6520 extends Traverser<K,V,Double> {
6521 final ToDoubleBiFunction<? super K, ? super V> transformer;
6522 final DoubleBinaryOperator reducer;
6523 final double basis;
6524 double result;
6525 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6526 MapReduceMappingsToDoubleTask
6527 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6528 MapReduceMappingsToDoubleTask<K,V> nextRight,
6529 ToDoubleBiFunction<? super K, ? super V> transformer,
6530 double basis,
6531 DoubleBinaryOperator reducer) {
6532 super(m, p, b); this.nextRight = nextRight;
6533 this.transformer = transformer;
6534 this.basis = basis; this.reducer = reducer;
6535 }
6536 public final Double getRawResult() { return result; }
6537 @SuppressWarnings("unchecked") public final void compute() {
6538 final ToDoubleBiFunction<? super K, ? super V> transformer;
6539 final DoubleBinaryOperator reducer;
6540 if ((transformer = this.transformer) != null &&
6541 (reducer = this.reducer) != null) {
6542 double r = this.basis;
6543 for (int b; (b = preSplit()) > 0;)
6544 (rights = new MapReduceMappingsToDoubleTask<K,V>
6545 (map, this, b, rights, transformer, r, reducer)).fork();
6546 V v;
6547 while ((v = advanceValue()) != null)
6548 r = reducer.applyAsDouble(r, transformer.applyAsDouble(nextKey, v));
6549 result = r;
6550 CountedCompleter<?> c;
6551 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6552 MapReduceMappingsToDoubleTask<K,V>
6553 t = (MapReduceMappingsToDoubleTask<K,V>)c,
6554 s = t.rights;
6555 while (s != null) {
6556 t.result = reducer.applyAsDouble(t.result, s.result);
6557 s = t.rights = s.nextRight;
6558 }
6559 }
6560 }
6561 }
6562 }
6563
6564 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6565 extends Traverser<K,V,Long> {
6566 final ToLongFunction<? super K> transformer;
6567 final LongBinaryOperator reducer;
6568 final long basis;
6569 long result;
6570 MapReduceKeysToLongTask<K,V> rights, nextRight;
6571 MapReduceKeysToLongTask
6572 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6573 MapReduceKeysToLongTask<K,V> nextRight,
6574 ToLongFunction<? super K> transformer,
6575 long basis,
6576 LongBinaryOperator reducer) {
6577 super(m, p, b); this.nextRight = nextRight;
6578 this.transformer = transformer;
6579 this.basis = basis; this.reducer = reducer;
6580 }
6581 public final Long getRawResult() { return result; }
6582 @SuppressWarnings("unchecked") public final void compute() {
6583 final ToLongFunction<? super K> transformer;
6584 final LongBinaryOperator reducer;
6585 if ((transformer = this.transformer) != null &&
6586 (reducer = this.reducer) != null) {
6587 long r = this.basis;
6588 for (int b; (b = preSplit()) > 0;)
6589 (rights = new MapReduceKeysToLongTask<K,V>
6590 (map, this, b, rights, transformer, r, reducer)).fork();
6591 K k;
6592 while ((k = advanceKey()) != null)
6593 r = reducer.applyAsLong(r, transformer.applyAsLong(k));
6594 result = r;
6595 CountedCompleter<?> c;
6596 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6597 MapReduceKeysToLongTask<K,V>
6598 t = (MapReduceKeysToLongTask<K,V>)c,
6599 s = t.rights;
6600 while (s != null) {
6601 t.result = reducer.applyAsLong(t.result, s.result);
6602 s = t.rights = s.nextRight;
6603 }
6604 }
6605 }
6606 }
6607 }
6608
6609 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6610 extends Traverser<K,V,Long> {
6611 final ToLongFunction<? super V> transformer;
6612 final LongBinaryOperator reducer;
6613 final long basis;
6614 long result;
6615 MapReduceValuesToLongTask<K,V> rights, nextRight;
6616 MapReduceValuesToLongTask
6617 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6618 MapReduceValuesToLongTask<K,V> nextRight,
6619 ToLongFunction<? super V> transformer,
6620 long basis,
6621 LongBinaryOperator reducer) {
6622 super(m, p, b); this.nextRight = nextRight;
6623 this.transformer = transformer;
6624 this.basis = basis; this.reducer = reducer;
6625 }
6626 public final Long getRawResult() { return result; }
6627 @SuppressWarnings("unchecked") public final void compute() {
6628 final ToLongFunction<? super V> transformer;
6629 final LongBinaryOperator reducer;
6630 if ((transformer = this.transformer) != null &&
6631 (reducer = this.reducer) != null) {
6632 long r = this.basis;
6633 for (int b; (b = preSplit()) > 0;)
6634 (rights = new MapReduceValuesToLongTask<K,V>
6635 (map, this, b, rights, transformer, r, reducer)).fork();
6636 V v;
6637 while ((v = advanceValue()) != null)
6638 r = reducer.applyAsLong(r, transformer.applyAsLong(v));
6639 result = r;
6640 CountedCompleter<?> c;
6641 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6642 MapReduceValuesToLongTask<K,V>
6643 t = (MapReduceValuesToLongTask<K,V>)c,
6644 s = t.rights;
6645 while (s != null) {
6646 t.result = reducer.applyAsLong(t.result, s.result);
6647 s = t.rights = s.nextRight;
6648 }
6649 }
6650 }
6651 }
6652 }
6653
6654 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6655 extends Traverser<K,V,Long> {
6656 final ToLongFunction<Map.Entry<K,V>> transformer;
6657 final LongBinaryOperator reducer;
6658 final long basis;
6659 long result;
6660 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6661 MapReduceEntriesToLongTask
6662 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6663 MapReduceEntriesToLongTask<K,V> nextRight,
6664 ToLongFunction<Map.Entry<K,V>> transformer,
6665 long basis,
6666 LongBinaryOperator reducer) {
6667 super(m, p, b); this.nextRight = nextRight;
6668 this.transformer = transformer;
6669 this.basis = basis; this.reducer = reducer;
6670 }
6671 public final Long getRawResult() { return result; }
6672 @SuppressWarnings("unchecked") public final void compute() {
6673 final ToLongFunction<Map.Entry<K,V>> transformer;
6674 final LongBinaryOperator reducer;
6675 if ((transformer = this.transformer) != null &&
6676 (reducer = this.reducer) != null) {
6677 long r = this.basis;
6678 for (int b; (b = preSplit()) > 0;)
6679 (rights = new MapReduceEntriesToLongTask<K,V>
6680 (map, this, b, rights, transformer, r, reducer)).fork();
6681 V v;
6682 while ((v = advanceValue()) != null)
6683 r = reducer.applyAsLong(r, transformer.applyAsLong(entryFor(nextKey, v)));
6684 result = r;
6685 CountedCompleter<?> c;
6686 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6687 MapReduceEntriesToLongTask<K,V>
6688 t = (MapReduceEntriesToLongTask<K,V>)c,
6689 s = t.rights;
6690 while (s != null) {
6691 t.result = reducer.applyAsLong(t.result, s.result);
6692 s = t.rights = s.nextRight;
6693 }
6694 }
6695 }
6696 }
6697 }
6698
6699 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6700 extends Traverser<K,V,Long> {
6701 final ToLongBiFunction<? super K, ? super V> transformer;
6702 final LongBinaryOperator reducer;
6703 final long basis;
6704 long result;
6705 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6706 MapReduceMappingsToLongTask
6707 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6708 MapReduceMappingsToLongTask<K,V> nextRight,
6709 ToLongBiFunction<? super K, ? super V> transformer,
6710 long basis,
6711 LongBinaryOperator reducer) {
6712 super(m, p, b); this.nextRight = nextRight;
6713 this.transformer = transformer;
6714 this.basis = basis; this.reducer = reducer;
6715 }
6716 public final Long getRawResult() { return result; }
6717 @SuppressWarnings("unchecked") public final void compute() {
6718 final ToLongBiFunction<? super K, ? super V> transformer;
6719 final LongBinaryOperator reducer;
6720 if ((transformer = this.transformer) != null &&
6721 (reducer = this.reducer) != null) {
6722 long r = this.basis;
6723 for (int b; (b = preSplit()) > 0;)
6724 (rights = new MapReduceMappingsToLongTask<K,V>
6725 (map, this, b, rights, transformer, r, reducer)).fork();
6726 V v;
6727 while ((v = advanceValue()) != null)
6728 r = reducer.applyAsLong(r, transformer.applyAsLong(nextKey, v));
6729 result = r;
6730 CountedCompleter<?> c;
6731 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6732 MapReduceMappingsToLongTask<K,V>
6733 t = (MapReduceMappingsToLongTask<K,V>)c,
6734 s = t.rights;
6735 while (s != null) {
6736 t.result = reducer.applyAsLong(t.result, s.result);
6737 s = t.rights = s.nextRight;
6738 }
6739 }
6740 }
6741 }
6742 }
6743
6744 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6745 extends Traverser<K,V,Integer> {
6746 final ToIntFunction<? super K> transformer;
6747 final IntBinaryOperator reducer;
6748 final int basis;
6749 int result;
6750 MapReduceKeysToIntTask<K,V> rights, nextRight;
6751 MapReduceKeysToIntTask
6752 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6753 MapReduceKeysToIntTask<K,V> nextRight,
6754 ToIntFunction<? super K> transformer,
6755 int basis,
6756 IntBinaryOperator reducer) {
6757 super(m, p, b); this.nextRight = nextRight;
6758 this.transformer = transformer;
6759 this.basis = basis; this.reducer = reducer;
6760 }
6761 public final Integer getRawResult() { return result; }
6762 @SuppressWarnings("unchecked") public final void compute() {
6763 final ToIntFunction<? super K> transformer;
6764 final IntBinaryOperator reducer;
6765 if ((transformer = this.transformer) != null &&
6766 (reducer = this.reducer) != null) {
6767 int r = this.basis;
6768 for (int b; (b = preSplit()) > 0;)
6769 (rights = new MapReduceKeysToIntTask<K,V>
6770 (map, this, b, rights, transformer, r, reducer)).fork();
6771 K k;
6772 while ((k = advanceKey()) != null)
6773 r = reducer.applyAsInt(r, transformer.applyAsInt(k));
6774 result = r;
6775 CountedCompleter<?> c;
6776 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6777 MapReduceKeysToIntTask<K,V>
6778 t = (MapReduceKeysToIntTask<K,V>)c,
6779 s = t.rights;
6780 while (s != null) {
6781 t.result = reducer.applyAsInt(t.result, s.result);
6782 s = t.rights = s.nextRight;
6783 }
6784 }
6785 }
6786 }
6787 }
6788
6789 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6790 extends Traverser<K,V,Integer> {
6791 final ToIntFunction<? super V> transformer;
6792 final IntBinaryOperator reducer;
6793 final int basis;
6794 int result;
6795 MapReduceValuesToIntTask<K,V> rights, nextRight;
6796 MapReduceValuesToIntTask
6797 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6798 MapReduceValuesToIntTask<K,V> nextRight,
6799 ToIntFunction<? super V> transformer,
6800 int basis,
6801 IntBinaryOperator reducer) {
6802 super(m, p, b); this.nextRight = nextRight;
6803 this.transformer = transformer;
6804 this.basis = basis; this.reducer = reducer;
6805 }
6806 public final Integer getRawResult() { return result; }
6807 @SuppressWarnings("unchecked") public final void compute() {
6808 final ToIntFunction<? super V> transformer;
6809 final IntBinaryOperator reducer;
6810 if ((transformer = this.transformer) != null &&
6811 (reducer = this.reducer) != null) {
6812 int r = this.basis;
6813 for (int b; (b = preSplit()) > 0;)
6814 (rights = new MapReduceValuesToIntTask<K,V>
6815 (map, this, b, rights, transformer, r, reducer)).fork();
6816 V v;
6817 while ((v = advanceValue()) != null)
6818 r = reducer.applyAsInt(r, transformer.applyAsInt(v));
6819 result = r;
6820 CountedCompleter<?> c;
6821 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6822 MapReduceValuesToIntTask<K,V>
6823 t = (MapReduceValuesToIntTask<K,V>)c,
6824 s = t.rights;
6825 while (s != null) {
6826 t.result = reducer.applyAsInt(t.result, s.result);
6827 s = t.rights = s.nextRight;
6828 }
6829 }
6830 }
6831 }
6832 }
6833
6834 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6835 extends Traverser<K,V,Integer> {
6836 final ToIntFunction<Map.Entry<K,V>> transformer;
6837 final IntBinaryOperator reducer;
6838 final int basis;
6839 int result;
6840 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6841 MapReduceEntriesToIntTask
6842 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6843 MapReduceEntriesToIntTask<K,V> nextRight,
6844 ToIntFunction<Map.Entry<K,V>> transformer,
6845 int basis,
6846 IntBinaryOperator reducer) {
6847 super(m, p, b); this.nextRight = nextRight;
6848 this.transformer = transformer;
6849 this.basis = basis; this.reducer = reducer;
6850 }
6851 public final Integer getRawResult() { return result; }
6852 @SuppressWarnings("unchecked") public final void compute() {
6853 final ToIntFunction<Map.Entry<K,V>> transformer;
6854 final IntBinaryOperator reducer;
6855 if ((transformer = this.transformer) != null &&
6856 (reducer = this.reducer) != null) {
6857 int r = this.basis;
6858 for (int b; (b = preSplit()) > 0;)
6859 (rights = new MapReduceEntriesToIntTask<K,V>
6860 (map, this, b, rights, transformer, r, reducer)).fork();
6861 V v;
6862 while ((v = advanceValue()) != null)
6863 r = reducer.applyAsInt(r, transformer.applyAsInt(entryFor(nextKey,
6864 v)));
6865 result = r;
6866 CountedCompleter<?> c;
6867 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6868 MapReduceEntriesToIntTask<K,V>
6869 t = (MapReduceEntriesToIntTask<K,V>)c,
6870 s = t.rights;
6871 while (s != null) {
6872 t.result = reducer.applyAsInt(t.result, s.result);
6873 s = t.rights = s.nextRight;
6874 }
6875 }
6876 }
6877 }
6878 }
6879
6880 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6881 extends Traverser<K,V,Integer> {
6882 final ToIntBiFunction<? super K, ? super V> transformer;
6883 final IntBinaryOperator reducer;
6884 final int basis;
6885 int result;
6886 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6887 MapReduceMappingsToIntTask
6888 (ConcurrentHashMap<K,V> m, Traverser<K,V,?> p, int b,
6889 MapReduceMappingsToIntTask<K,V> nextRight,
6890 ToIntBiFunction<? super K, ? super V> transformer,
6891 int basis,
6892 IntBinaryOperator reducer) {
6893 super(m, p, b); this.nextRight = nextRight;
6894 this.transformer = transformer;
6895 this.basis = basis; this.reducer = reducer;
6896 }
6897 public final Integer getRawResult() { return result; }
6898 @SuppressWarnings("unchecked") public final void compute() {
6899 final ToIntBiFunction<? super K, ? super V> transformer;
6900 final IntBinaryOperator reducer;
6901 if ((transformer = this.transformer) != null &&
6902 (reducer = this.reducer) != null) {
6903 int r = this.basis;
6904 for (int b; (b = preSplit()) > 0;)
6905 (rights = new MapReduceMappingsToIntTask<K,V>
6906 (map, this, b, rights, transformer, r, reducer)).fork();
6907 V v;
6908 while ((v = advanceValue()) != null)
6909 r = reducer.applyAsInt(r, transformer.applyAsInt(nextKey, v));
6910 result = r;
6911 CountedCompleter<?> c;
6912 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6913 MapReduceMappingsToIntTask<K,V>
6914 t = (MapReduceMappingsToIntTask<K,V>)c,
6915 s = t.rights;
6916 while (s != null) {
6917 t.result = reducer.applyAsInt(t.result, s.result);
6918 s = t.rights = s.nextRight;
6919 }
6920 }
6921 }
6922 }
6923 }
6924
6925 // Unsafe mechanics
6926 private static final sun.misc.Unsafe U;
6927 private static final long SIZECTL;
6928 private static final long TRANSFERINDEX;
6929 private static final long TRANSFERORIGIN;
6930 private static final long BASECOUNT;
6931 private static final long CELLSBUSY;
6932 private static final long CELLVALUE;
6933 private static final long ABASE;
6934 private static final int ASHIFT;
6935
6936 static {
6937 try {
6938 U = sun.misc.Unsafe.getUnsafe();
6939 Class<?> k = ConcurrentHashMap.class;
6940 SIZECTL = U.objectFieldOffset
6941 (k.getDeclaredField("sizeCtl"));
6942 TRANSFERINDEX = U.objectFieldOffset
6943 (k.getDeclaredField("transferIndex"));
6944 TRANSFERORIGIN = U.objectFieldOffset
6945 (k.getDeclaredField("transferOrigin"));
6946 BASECOUNT = U.objectFieldOffset
6947 (k.getDeclaredField("baseCount"));
6948 CELLSBUSY = U.objectFieldOffset
6949 (k.getDeclaredField("cellsBusy"));
6950 Class<?> ck = Cell.class;
6951 CELLVALUE = U.objectFieldOffset
6952 (ck.getDeclaredField("value"));
6953 Class<?> sc = Node[].class;
6954 ABASE = U.arrayBaseOffset(sc);
6955 int scale = U.arrayIndexScale(sc);
6956 if ((scale & (scale - 1)) != 0)
6957 throw new Error("data type scale not a power of two");
6958 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6959 } catch (Exception e) {
6960 throw new Error(e);
6961 }
6962 }
6963
6964 }