ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.216
Committed: Fri May 24 03:27:47 2013 UTC (11 years ago) by jsr166
Branch: MAIN
Changes since 1.215: +15 -16 lines
Log Message:
remove references to null values in javadoc

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8 import java.io.Serializable;
9 import java.io.ObjectStreamField;
10 import java.lang.reflect.ParameterizedType;
11 import java.lang.reflect.Type;
12 import java.util.Arrays;
13 import java.util.Collection;
14 import java.util.Comparator;
15 import java.util.ConcurrentModificationException;
16 import java.util.Enumeration;
17 import java.util.HashMap;
18 import java.util.Hashtable;
19 import java.util.Iterator;
20 import java.util.Map;
21 import java.util.NoSuchElementException;
22 import java.util.Set;
23 import java.util.Spliterator;
24 import java.util.concurrent.ConcurrentMap;
25 import java.util.concurrent.ForkJoinPool;
26 import java.util.concurrent.atomic.AtomicReference;
27 import java.util.concurrent.locks.ReentrantLock;
28 import java.util.concurrent.locks.StampedLock;
29 import java.util.function.BiConsumer;
30 import java.util.function.BiFunction;
31 import java.util.function.BinaryOperator;
32 import java.util.function.Consumer;
33 import java.util.function.DoubleBinaryOperator;
34 import java.util.function.Function;
35 import java.util.function.IntBinaryOperator;
36 import java.util.function.LongBinaryOperator;
37 import java.util.function.ToDoubleBiFunction;
38 import java.util.function.ToDoubleFunction;
39 import java.util.function.ToIntBiFunction;
40 import java.util.function.ToIntFunction;
41 import java.util.function.ToLongBiFunction;
42 import java.util.function.ToLongFunction;
43 import java.util.stream.Stream;
44
45 /**
46 * A hash table supporting full concurrency of retrievals and
47 * high expected concurrency for updates. This class obeys the
48 * same functional specification as {@link java.util.Hashtable}, and
49 * includes versions of methods corresponding to each method of
50 * {@code Hashtable}. However, even though all operations are
51 * thread-safe, retrieval operations do <em>not</em> entail locking,
52 * and there is <em>not</em> any support for locking the entire table
53 * in a way that prevents all access. This class is fully
54 * interoperable with {@code Hashtable} in programs that rely on its
55 * thread safety but not on its synchronization details.
56 *
57 * <p>Retrieval operations (including {@code get}) generally do not
58 * block, so may overlap with update operations (including {@code put}
59 * and {@code remove}). Retrievals reflect the results of the most
60 * recently <em>completed</em> update operations holding upon their
61 * onset. (More formally, an update operation for a given key bears a
62 * <em>happens-before</em> relation with any (non-null) retrieval for
63 * that key reporting the updated value.) For aggregate operations
64 * such as {@code putAll} and {@code clear}, concurrent retrievals may
65 * reflect insertion or removal of only some entries. Similarly,
66 * Iterators and Enumerations return elements reflecting the state of
67 * the hash table at some point at or since the creation of the
68 * iterator/enumeration. They do <em>not</em> throw {@link
69 * ConcurrentModificationException}. However, iterators are designed
70 * to be used by only one thread at a time. Bear in mind that the
71 * results of aggregate status methods including {@code size}, {@code
72 * isEmpty}, and {@code containsValue} are typically useful only when
73 * a map is not undergoing concurrent updates in other threads.
74 * Otherwise the results of these methods reflect transient states
75 * that may be adequate for monitoring or estimation purposes, but not
76 * for program control.
77 *
78 * <p>The table is dynamically expanded when there are too many
79 * collisions (i.e., keys that have distinct hash codes but fall into
80 * the same slot modulo the table size), with the expected average
81 * effect of maintaining roughly two bins per mapping (corresponding
82 * to a 0.75 load factor threshold for resizing). There may be much
83 * variance around this average as mappings are added and removed, but
84 * overall, this maintains a commonly accepted time/space tradeoff for
85 * hash tables. However, resizing this or any other kind of hash
86 * table may be a relatively slow operation. When possible, it is a
87 * good idea to provide a size estimate as an optional {@code
88 * initialCapacity} constructor argument. An additional optional
89 * {@code loadFactor} constructor argument provides a further means of
90 * customizing initial table capacity by specifying the table density
91 * to be used in calculating the amount of space to allocate for the
92 * given number of elements. Also, for compatibility with previous
93 * versions of this class, constructors may optionally specify an
94 * expected {@code concurrencyLevel} as an additional hint for
95 * internal sizing. Note that using many keys with exactly the same
96 * {@code hashCode()} is a sure way to slow down performance of any
97 * hash table. To ameliorate impact, when keys are {@link Comparable},
98 * this class may use comparison order among keys to help break ties.
99 *
100 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
101 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
102 * (using {@link #keySet(Object)} when only keys are of interest, and the
103 * mapped values are (perhaps transiently) not used or all take the
104 * same mapping value.
105 *
106 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
107 * form of histogram or multiset) by using {@link
108 * java.util.concurrent.atomic.LongAdder} values and initializing via
109 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
110 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
111 * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
112 *
113 * <p>This class and its views and iterators implement all of the
114 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
115 * interfaces.
116 *
117 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
118 * does <em>not</em> allow {@code null} to be used as a key or value.
119 *
120 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
121 * operations that, unlike most {@link Stream} methods, are designed
122 * to be safely, and often sensibly, applied even with maps that are
123 * being concurrently updated by other threads; for example, when
124 * computing a snapshot summary of the values in a shared registry.
125 * There are three kinds of operation, each with four forms, accepting
126 * functions with Keys, Values, Entries, and (Key, Value) arguments
127 * and/or return values. Because the elements of a ConcurrentHashMap
128 * are not ordered in any particular way, and may be processed in
129 * different orders in different parallel executions, the correctness
130 * of supplied functions should not depend on any ordering, or on any
131 * other objects or values that may transiently change while
132 * computation is in progress; and except for forEach actions, should
133 * ideally be side-effect-free. Bulk operations on {@link Map.Entry}
134 * objects do not support method {@code setValue}.
135 *
136 * <ul>
137 * <li> forEach: Perform a given action on each element.
138 * A variant form applies a given transformation on each element
139 * before performing the action.</li>
140 *
141 * <li> search: Return the first available non-null result of
142 * applying a given function on each element; skipping further
143 * search when a result is found.</li>
144 *
145 * <li> reduce: Accumulate each element. The supplied reduction
146 * function cannot rely on ordering (more formally, it should be
147 * both associative and commutative). There are five variants:
148 *
149 * <ul>
150 *
151 * <li> Plain reductions. (There is not a form of this method for
152 * (key, value) function arguments since there is no corresponding
153 * return type.)</li>
154 *
155 * <li> Mapped reductions that accumulate the results of a given
156 * function applied to each element.</li>
157 *
158 * <li> Reductions to scalar doubles, longs, and ints, using a
159 * given basis value.</li>
160 *
161 * </ul>
162 * </li>
163 * </ul>
164 *
165 * <p>These bulk operations accept a {@code parallelismThreshold}
166 * argument. Methods proceed sequentially if the current map size is
167 * estimated to be less than the given threshold. Using a value of
168 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
169 * of {@code 1} results in maximal parallelism. In-between values can
170 * be used to trade off overhead versus throughput. Parallel forms use
171 * the {@link ForkJoinPool#commonPool()}.
172 *
173 * <p>The concurrency properties of bulk operations follow
174 * from those of ConcurrentHashMap: Any non-null result returned
175 * from {@code get(key)} and related access methods bears a
176 * happens-before relation with the associated insertion or
177 * update. The result of any bulk operation reflects the
178 * composition of these per-element relations (but is not
179 * necessarily atomic with respect to the map as a whole unless it
180 * is somehow known to be quiescent). Conversely, because keys
181 * and values in the map are never null, null serves as a reliable
182 * atomic indicator of the current lack of any result. To
183 * maintain this property, null serves as an implicit basis for
184 * all non-scalar reduction operations. For the double, long, and
185 * int versions, the basis should be one that, when combined with
186 * any other value, returns that other value (more formally, it
187 * should be the identity element for the reduction). Most common
188 * reductions have these properties; for example, computing a sum
189 * with basis 0 or a minimum with basis MAX_VALUE.
190 *
191 * <p>Search and transformation functions provided as arguments
192 * should similarly return null to indicate the lack of any result
193 * (in which case it is not used). In the case of mapped
194 * reductions, this also enables transformations to serve as
195 * filters, returning null (or, in the case of primitive
196 * specializations, the identity basis) if the element should not
197 * be combined. You can create compound transformations and
198 * filterings by composing them yourself under this "null means
199 * there is nothing there now" rule before using them in search or
200 * reduce operations.
201 *
202 * <p>Methods accepting and/or returning Entry arguments maintain
203 * key-value associations. They may be useful for example when
204 * finding the key for the greatest value. Note that "plain" Entry
205 * arguments can be supplied using {@code new
206 * AbstractMap.SimpleEntry(k,v)}.
207 *
208 * <p>Bulk operations may complete abruptly, throwing an
209 * exception encountered in the application of a supplied
210 * function. Bear in mind when handling such exceptions that other
211 * concurrently executing functions could also have thrown
212 * exceptions, or would have done so if the first exception had
213 * not occurred.
214 *
215 * <p>Speedups for parallel compared to sequential forms are common
216 * but not guaranteed. Parallel operations involving brief functions
217 * on small maps may execute more slowly than sequential forms if the
218 * underlying work to parallelize the computation is more expensive
219 * than the computation itself. Similarly, parallelization may not
220 * lead to much actual parallelism if all processors are busy
221 * performing unrelated tasks.
222 *
223 * <p>All arguments to all task methods must be non-null.
224 *
225 * <p>This class is a member of the
226 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
227 * Java Collections Framework</a>.
228 *
229 * @since 1.5
230 * @author Doug Lea
231 * @param <K> the type of keys maintained by this map
232 * @param <V> the type of mapped values
233 */
234 @SuppressWarnings({"unchecked", "rawtypes", "serial"})
235 public class ConcurrentHashMap<K,V> implements ConcurrentMap<K,V>, Serializable {
236 private static final long serialVersionUID = 7249069246763182397L;
237
238 /*
239 * Overview:
240 *
241 * The primary design goal of this hash table is to maintain
242 * concurrent readability (typically method get(), but also
243 * iterators and related methods) while minimizing update
244 * contention. Secondary goals are to keep space consumption about
245 * the same or better than java.util.HashMap, and to support high
246 * initial insertion rates on an empty table by many threads.
247 *
248 * Each key-value mapping is held in a Node. Because Node key
249 * fields can contain special values, they are defined using plain
250 * Object types (not type "K"). This leads to a lot of explicit
251 * casting (and the use of class-wide warning suppressions). It
252 * also allows some of the public methods to be factored into a
253 * smaller number of internal methods (although sadly not so for
254 * the five variants of put-related operations). The
255 * validation-based approach explained below leads to a lot of
256 * code sprawl because retry-control precludes factoring into
257 * smaller methods.
258 *
259 * The table is lazily initialized to a power-of-two size upon the
260 * first insertion. Each bin in the table normally contains a
261 * list of Nodes (most often, the list has only zero or one Node).
262 * Table accesses require volatile/atomic reads, writes, and
263 * CASes. Because there is no other way to arrange this without
264 * adding further indirections, we use intrinsics
265 * (sun.misc.Unsafe) operations.
266 *
267 * We use the top (sign) bit of Node hash fields for control
268 * purposes -- it is available anyway because of addressing
269 * constraints. Nodes with negative hash fields are forwarding
270 * nodes to either TreeBins or resized tables. The lower 31 bits
271 * of each normal Node's hash field contain a transformation of
272 * the key's hash code.
273 *
274 * Insertion (via put or its variants) of the first node in an
275 * empty bin is performed by just CASing it to the bin. This is
276 * by far the most common case for put operations under most
277 * key/hash distributions. Other update operations (insert,
278 * delete, and replace) require locks. We do not want to waste
279 * the space required to associate a distinct lock object with
280 * each bin, so instead use the first node of a bin list itself as
281 * a lock. Locking support for these locks relies on builtin
282 * "synchronized" monitors.
283 *
284 * Using the first node of a list as a lock does not by itself
285 * suffice though: When a node is locked, any update must first
286 * validate that it is still the first node after locking it, and
287 * retry if not. Because new nodes are always appended to lists,
288 * once a node is first in a bin, it remains first until deleted
289 * or the bin becomes invalidated (upon resizing).
290 *
291 * The main disadvantage of per-bin locks is that other update
292 * operations on other nodes in a bin list protected by the same
293 * lock can stall, for example when user equals() or mapping
294 * functions take a long time. However, statistically, under
295 * random hash codes, this is not a common problem. Ideally, the
296 * frequency of nodes in bins follows a Poisson distribution
297 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
298 * parameter of about 0.5 on average, given the resizing threshold
299 * of 0.75, although with a large variance because of resizing
300 * granularity. Ignoring variance, the expected occurrences of
301 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
302 * first values are:
303 *
304 * 0: 0.60653066
305 * 1: 0.30326533
306 * 2: 0.07581633
307 * 3: 0.01263606
308 * 4: 0.00157952
309 * 5: 0.00015795
310 * 6: 0.00001316
311 * 7: 0.00000094
312 * 8: 0.00000006
313 * more: less than 1 in ten million
314 *
315 * Lock contention probability for two threads accessing distinct
316 * elements is roughly 1 / (8 * #elements) under random hashes.
317 *
318 * Actual hash code distributions encountered in practice
319 * sometimes deviate significantly from uniform randomness. This
320 * includes the case when N > (1<<30), so some keys MUST collide.
321 * Similarly for dumb or hostile usages in which multiple keys are
322 * designed to have identical hash codes. Also, although we guard
323 * against the worst effects of this (see method spread), sets of
324 * hashes may differ only in bits that do not impact their bin
325 * index for a given power-of-two mask. So we use a secondary
326 * strategy that applies when the number of nodes in a bin exceeds
327 * a threshold, and at least one of the keys implements
328 * Comparable. These TreeBins use a balanced tree to hold nodes
329 * (a specialized form of red-black trees), bounding search time
330 * to O(log N). Each search step in a TreeBin is at least twice as
331 * slow as in a regular list, but given that N cannot exceed
332 * (1<<64) (before running out of addresses) this bounds search
333 * steps, lock hold times, etc, to reasonable constants (roughly
334 * 100 nodes inspected per operation worst case) so long as keys
335 * are Comparable (which is very common -- String, Long, etc).
336 * TreeBin nodes (TreeNodes) also maintain the same "next"
337 * traversal pointers as regular nodes, so can be traversed in
338 * iterators in the same way.
339 *
340 * The table is resized when occupancy exceeds a percentage
341 * threshold (nominally, 0.75, but see below). Any thread
342 * noticing an overfull bin may assist in resizing after the
343 * initiating thread allocates and sets up the replacement
344 * array. However, rather than stalling, these other threads may
345 * proceed with insertions etc. The use of TreeBins shields us
346 * from the worst case effects of overfilling while resizes are in
347 * progress. Resizing proceeds by transferring bins, one by one,
348 * from the table to the next table. To enable concurrency, the
349 * next table must be (incrementally) prefilled with place-holders
350 * serving as reverse forwarders to the old table. Because we are
351 * using power-of-two expansion, the elements from each bin must
352 * either stay at same index, or move with a power of two
353 * offset. We eliminate unnecessary node creation by catching
354 * cases where old nodes can be reused because their next fields
355 * won't change. On average, only about one-sixth of them need
356 * cloning when a table doubles. The nodes they replace will be
357 * garbage collectable as soon as they are no longer referenced by
358 * any reader thread that may be in the midst of concurrently
359 * traversing table. Upon transfer, the old table bin contains
360 * only a special forwarding node (with hash field "MOVED") that
361 * contains the next table as its key. On encountering a
362 * forwarding node, access and update operations restart, using
363 * the new table.
364 *
365 * Each bin transfer requires its bin lock, which can stall
366 * waiting for locks while resizing. However, because other
367 * threads can join in and help resize rather than contend for
368 * locks, average aggregate waits become shorter as resizing
369 * progresses. The transfer operation must also ensure that all
370 * accessible bins in both the old and new table are usable by any
371 * traversal. This is arranged by proceeding from the last bin
372 * (table.length - 1) up towards the first. Upon seeing a
373 * forwarding node, traversals (see class Traverser) arrange to
374 * move to the new table without revisiting nodes. However, to
375 * ensure that no intervening nodes are skipped, bin splitting can
376 * only begin after the associated reverse-forwarders are in
377 * place.
378 *
379 * The traversal scheme also applies to partial traversals of
380 * ranges of bins (via an alternate Traverser constructor)
381 * to support partitioned aggregate operations. Also, read-only
382 * operations give up if ever forwarded to a null table, which
383 * provides support for shutdown-style clearing, which is also not
384 * currently implemented.
385 *
386 * Lazy table initialization minimizes footprint until first use,
387 * and also avoids resizings when the first operation is from a
388 * putAll, constructor with map argument, or deserialization.
389 * These cases attempt to override the initial capacity settings,
390 * but harmlessly fail to take effect in cases of races.
391 *
392 * The element count is maintained using a specialization of
393 * LongAdder. We need to incorporate a specialization rather than
394 * just use a LongAdder in order to access implicit
395 * contention-sensing that leads to creation of multiple
396 * Cells. The counter mechanics avoid contention on
397 * updates but can encounter cache thrashing if read too
398 * frequently during concurrent access. To avoid reading so often,
399 * resizing under contention is attempted only upon adding to a
400 * bin already holding two or more nodes. Under uniform hash
401 * distributions, the probability of this occurring at threshold
402 * is around 13%, meaning that only about 1 in 8 puts check
403 * threshold (and after resizing, many fewer do so). The bulk
404 * putAll operation further reduces contention by only committing
405 * count updates upon these size checks.
406 *
407 * Maintaining API and serialization compatibility with previous
408 * versions of this class introduces several oddities. Mainly: We
409 * leave untouched but unused constructor arguments refering to
410 * concurrencyLevel. We accept a loadFactor constructor argument,
411 * but apply it only to initial table capacity (which is the only
412 * time that we can guarantee to honor it.) We also declare an
413 * unused "Segment" class that is instantiated in minimal form
414 * only when serializing.
415 */
416
417 /* ---------------- Constants -------------- */
418
419 /**
420 * The largest possible table capacity. This value must be
421 * exactly 1<<30 to stay within Java array allocation and indexing
422 * bounds for power of two table sizes, and is further required
423 * because the top two bits of 32bit hash fields are used for
424 * control purposes.
425 */
426 private static final int MAXIMUM_CAPACITY = 1 << 30;
427
428 /**
429 * The default initial table capacity. Must be a power of 2
430 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
431 */
432 private static final int DEFAULT_CAPACITY = 16;
433
434 /**
435 * The largest possible (non-power of two) array size.
436 * Needed by toArray and related methods.
437 */
438 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
439
440 /**
441 * The default concurrency level for this table. Unused but
442 * defined for compatibility with previous versions of this class.
443 */
444 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
445
446 /**
447 * The load factor for this table. Overrides of this value in
448 * constructors affect only the initial table capacity. The
449 * actual floating point value isn't normally used -- it is
450 * simpler to use expressions such as {@code n - (n >>> 2)} for
451 * the associated resizing threshold.
452 */
453 private static final float LOAD_FACTOR = 0.75f;
454
455 /**
456 * The bin count threshold for using a tree rather than list for a
457 * bin. The value reflects the approximate break-even point for
458 * using tree-based operations.
459 */
460 private static final int TREE_THRESHOLD = 8;
461
462 /**
463 * Minimum number of rebinnings per transfer step. Ranges are
464 * subdivided to allow multiple resizer threads. This value
465 * serves as a lower bound to avoid resizers encountering
466 * excessive memory contention. The value should be at least
467 * DEFAULT_CAPACITY.
468 */
469 private static final int MIN_TRANSFER_STRIDE = 16;
470
471 /*
472 * Encodings for Node hash fields. See above for explanation.
473 */
474 static final int MOVED = 0x80000000; // hash field for forwarding nodes
475 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
476
477 /** Number of CPUS, to place bounds on some sizings */
478 static final int NCPU = Runtime.getRuntime().availableProcessors();
479
480 /** For serialization compatibility. */
481 private static final ObjectStreamField[] serialPersistentFields = {
482 new ObjectStreamField("segments", Segment[].class),
483 new ObjectStreamField("segmentMask", Integer.TYPE),
484 new ObjectStreamField("segmentShift", Integer.TYPE)
485 };
486
487 /**
488 * A padded cell for distributing counts. Adapted from LongAdder
489 * and Striped64. See their internal docs for explanation.
490 */
491 @sun.misc.Contended static final class Cell {
492 volatile long value;
493 Cell(long x) { value = x; }
494 }
495
496 /* ---------------- Fields -------------- */
497
498 /**
499 * The array of bins. Lazily initialized upon first insertion.
500 * Size is always a power of two. Accessed directly by iterators.
501 */
502 transient volatile Node<K,V>[] table;
503
504 /**
505 * The next table to use; non-null only while resizing.
506 */
507 private transient volatile Node<K,V>[] nextTable;
508
509 /**
510 * Base counter value, used mainly when there is no contention,
511 * but also as a fallback during table initialization
512 * races. Updated via CAS.
513 */
514 private transient volatile long baseCount;
515
516 /**
517 * Table initialization and resizing control. When negative, the
518 * table is being initialized or resized: -1 for initialization,
519 * else -(1 + the number of active resizing threads). Otherwise,
520 * when table is null, holds the initial table size to use upon
521 * creation, or 0 for default. After initialization, holds the
522 * next element count value upon which to resize the table.
523 */
524 private transient volatile int sizeCtl;
525
526 /**
527 * The next table index (plus one) to split while resizing.
528 */
529 private transient volatile int transferIndex;
530
531 /**
532 * The least available table index to split while resizing.
533 */
534 private transient volatile int transferOrigin;
535
536 /**
537 * Spinlock (locked via CAS) used when resizing and/or creating Cells.
538 */
539 private transient volatile int cellsBusy;
540
541 /**
542 * Table of counter cells. When non-null, size is a power of 2.
543 */
544 private transient volatile Cell[] counterCells;
545
546 // views
547 private transient KeySetView<K,V> keySet;
548 private transient ValuesView<K,V> values;
549 private transient EntrySetView<K,V> entrySet;
550
551 /* ---------------- Table element access -------------- */
552
553 /*
554 * Volatile access methods are used for table elements as well as
555 * elements of in-progress next table while resizing. Uses are
556 * null checked by callers, and implicitly bounds-checked, relying
557 * on the invariants that tab arrays have non-zero size, and all
558 * indices are masked with (tab.length - 1) which is never
559 * negative and always less than length. Note that, to be correct
560 * wrt arbitrary concurrency errors by users, bounds checks must
561 * operate on local variables, which accounts for some odd-looking
562 * inline assignments below.
563 */
564
565 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
566 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
567 }
568
569 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
570 Node<K,V> c, Node<K,V> v) {
571 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
572 }
573
574 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
575 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
576 }
577
578 /* ---------------- Nodes -------------- */
579
580 /**
581 * Key-value entry. This class is never exported out as a
582 * user-mutable Map.Entry (i.e., one supporting setValue; see
583 * MapEntry below), but can be used for read-only traversals used
584 * in bulk tasks. Nodes with a hash field of MOVED are special,
585 * and do not contain user keys or values (and are never
586 * exported). Otherwise, keys and vals are never null.
587 */
588 static class Node<K,V> implements Map.Entry<K,V> {
589 final int hash;
590 final Object key;
591 volatile V val;
592 Node<K,V> next;
593
594 Node(int hash, Object key, V val, Node<K,V> next) {
595 this.hash = hash;
596 this.key = key;
597 this.val = val;
598 this.next = next;
599 }
600
601 public final K getKey() { return (K)key; }
602 public final V getValue() { return val; }
603 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
604 public final String toString(){ return key + "=" + val; }
605 public final V setValue(V value) {
606 throw new UnsupportedOperationException();
607 }
608
609 public final boolean equals(Object o) {
610 Object k, v, u; Map.Entry<?,?> e;
611 return ((o instanceof Map.Entry) &&
612 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
613 (v = e.getValue()) != null &&
614 (k == key || k.equals(key)) &&
615 (v == (u = val) || v.equals(u)));
616 }
617 }
618
619 /**
620 * Exported Entry for EntryIterator
621 */
622 static final class MapEntry<K,V> implements Map.Entry<K,V> {
623 final K key; // non-null
624 V val; // non-null
625 final ConcurrentHashMap<K,V> map;
626 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
627 this.key = key;
628 this.val = val;
629 this.map = map;
630 }
631 public K getKey() { return key; }
632 public V getValue() { return val; }
633 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
634 public String toString() { return key + "=" + val; }
635
636 public boolean equals(Object o) {
637 Object k, v; Map.Entry<?,?> e;
638 return ((o instanceof Map.Entry) &&
639 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
640 (v = e.getValue()) != null &&
641 (k == key || k.equals(key)) &&
642 (v == val || v.equals(val)));
643 }
644
645 /**
646 * Sets our entry's value and writes through to the map. The
647 * value to return is somewhat arbitrary here. Since we do not
648 * necessarily track asynchronous changes, the most recent
649 * "previous" value could be different from what we return (or
650 * could even have been removed, in which case the put will
651 * re-establish). We do not and cannot guarantee more.
652 */
653 public V setValue(V value) {
654 if (value == null) throw new NullPointerException();
655 V v = val;
656 val = value;
657 map.put(key, value);
658 return v;
659 }
660 }
661
662
663 /* ---------------- TreeBins -------------- */
664
665 /**
666 * Nodes for use in TreeBins
667 */
668 static final class TreeNode<K,V> extends Node<K,V> {
669 TreeNode<K,V> parent; // red-black tree links
670 TreeNode<K,V> left;
671 TreeNode<K,V> right;
672 TreeNode<K,V> prev; // needed to unlink next upon deletion
673 boolean red;
674
675 TreeNode(int hash, Object key, V val, Node<K,V> next,
676 TreeNode<K,V> parent) {
677 super(hash, key, val, next);
678 this.parent = parent;
679 }
680 }
681
682 /**
683 * Returns a Class for the given object of the form "class C
684 * implements Comparable<C>", if one exists, else null. See below
685 * for explanation.
686 */
687 static Class<?> comparableClassFor(Object x) {
688 Class<?> c, s, cmpc; Type[] ts, as; Type t; ParameterizedType p;
689 if ((c = x.getClass()) == String.class) // bypass checks
690 return c;
691 if ((cmpc = Comparable.class).isAssignableFrom(c)) {
692 while (cmpc.isAssignableFrom(s = c.getSuperclass()))
693 c = s; // find topmost comparable class
694 if ((ts = c.getGenericInterfaces()) != null) {
695 for (int i = 0; i < ts.length; ++i) {
696 if (((t = ts[i]) instanceof ParameterizedType) &&
697 ((p = (ParameterizedType)t).getRawType() == cmpc) &&
698 (as = p.getActualTypeArguments()) != null &&
699 as.length == 1 && as[0] == c) // type arg is c
700 return c;
701 }
702 }
703 }
704 return null;
705 }
706
707 /**
708 * A specialized form of red-black tree for use in bins
709 * whose size exceeds a threshold.
710 *
711 * TreeBins use a special form of comparison for search and
712 * related operations (which is the main reason we cannot use
713 * existing collections such as TreeMaps). TreeBins contain
714 * Comparable elements, but may contain others, as well as
715 * elements that are Comparable but not necessarily Comparable
716 * for the same T, so we cannot invoke compareTo among them. To
717 * handle this, the tree is ordered primarily by hash value, then
718 * by Comparable.compareTo order if applicable. On lookup at a
719 * node, if elements are not comparable or compare as 0 then both
720 * left and right children may need to be searched in the case of
721 * tied hash values. (This corresponds to the full list search
722 * that would be necessary if all elements were non-Comparable and
723 * had tied hashes.) The red-black balancing code is updated from
724 * pre-jdk-collections
725 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
726 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
727 * Algorithms" (CLR).
728 *
729 * TreeBins also maintain a separate locking discipline than
730 * regular bins. Because they are forwarded via special MOVED
731 * nodes at bin heads (which can never change once established),
732 * we cannot use those nodes as locks. Instead, TreeBin extends
733 * StampedLock to support a form of read-write lock. For update
734 * operations and table validation, the exclusive form of lock
735 * behaves in the same way as bin-head locks. However, lookups use
736 * shared read-lock mechanics to allow multiple readers in the
737 * absence of writers. Additionally, these lookups do not ever
738 * block: While the lock is not available, they proceed along the
739 * slow traversal path (via next-pointers) until the lock becomes
740 * available or the list is exhausted, whichever comes
741 * first. These cases are not fast, but maximize aggregate
742 * expected throughput.
743 */
744 static final class TreeBin<K,V> extends StampedLock {
745 private static final long serialVersionUID = 2249069246763182397L;
746 transient TreeNode<K,V> root; // root of tree
747 transient TreeNode<K,V> first; // head of next-pointer list
748
749 /** From CLR */
750 private void rotateLeft(TreeNode<K,V> p) {
751 if (p != null) {
752 TreeNode<K,V> r = p.right, pp, rl;
753 if ((rl = p.right = r.left) != null)
754 rl.parent = p;
755 if ((pp = r.parent = p.parent) == null)
756 root = r;
757 else if (pp.left == p)
758 pp.left = r;
759 else
760 pp.right = r;
761 r.left = p;
762 p.parent = r;
763 }
764 }
765
766 /** From CLR */
767 private void rotateRight(TreeNode<K,V> p) {
768 if (p != null) {
769 TreeNode<K,V> l = p.left, pp, lr;
770 if ((lr = p.left = l.right) != null)
771 lr.parent = p;
772 if ((pp = l.parent = p.parent) == null)
773 root = l;
774 else if (pp.right == p)
775 pp.right = l;
776 else
777 pp.left = l;
778 l.right = p;
779 p.parent = l;
780 }
781 }
782
783 /**
784 * Returns the TreeNode (or null if not found) for the given key
785 * starting at given root.
786 */
787 final TreeNode<K,V> getTreeNode(int h, Object k, TreeNode<K,V> p,
788 Class<?> cc) {
789 while (p != null) {
790 int dir, ph; Object pk;
791 if ((ph = p.hash) != h)
792 dir = (h < ph) ? -1 : 1;
793 else if ((pk = p.key) == k || k.equals(pk))
794 return p;
795 else if (cc == null || comparableClassFor(pk) != cc ||
796 (dir = ((Comparable<Object>)k).compareTo(pk)) == 0) {
797 TreeNode<K,V> r, pr; // check both sides
798 if ((pr = p.right) != null && h >= pr.hash &&
799 (r = getTreeNode(h, k, pr, cc)) != null)
800 return r;
801 else // continue left
802 dir = -1;
803 }
804 p = (dir > 0) ? p.right : p.left;
805 }
806 return null;
807 }
808
809 /**
810 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
811 * read-lock to call getTreeNode, but during failure to get
812 * lock, searches along next links.
813 */
814 final V getValue(int h, Object k) {
815 Class<?> cc = comparableClassFor(k);
816 Node<K,V> r = null;
817 for (Node<K,V> e = first; e != null; e = e.next) {
818 long s;
819 if ((s = tryReadLock()) != 0L) {
820 try {
821 r = getTreeNode(h, k, root, cc);
822 } finally {
823 unlockRead(s);
824 }
825 break;
826 }
827 else if (e.hash == h && k.equals(e.key)) {
828 r = e;
829 break;
830 }
831 }
832 return r == null ? null : r.val;
833 }
834
835 /**
836 * Finds or adds a node.
837 * @return null if added
838 */
839 final TreeNode<K,V> putTreeNode(int h, Object k, V v) {
840 Class<?> cc = comparableClassFor(k);
841 TreeNode<K,V> pp = root, p = null;
842 int dir = 0;
843 while (pp != null) { // find existing node or leaf to insert at
844 int ph; Object pk;
845 p = pp;
846 if ((ph = p.hash) != h)
847 dir = (h < ph) ? -1 : 1;
848 else if ((pk = p.key) == k || k.equals(pk))
849 return p;
850 else if (cc == null || comparableClassFor(pk) != cc ||
851 (dir = ((Comparable<Object>)k).compareTo(pk)) == 0) {
852 TreeNode<K,V> r, pr;
853 if ((pr = p.right) != null && h >= pr.hash &&
854 (r = getTreeNode(h, k, pr, cc)) != null)
855 return r;
856 else // continue left
857 dir = -1;
858 }
859 pp = (dir > 0) ? p.right : p.left;
860 }
861
862 TreeNode<K,V> f = first;
863 TreeNode<K,V> x = first = new TreeNode<K,V>(h, k, v, f, p);
864 if (p == null)
865 root = x;
866 else { // attach and rebalance; adapted from CLR
867 TreeNode<K,V> xp, xpp;
868 if (f != null)
869 f.prev = x;
870 if (dir <= 0)
871 p.left = x;
872 else
873 p.right = x;
874 x.red = true;
875 while (x != null && (xp = x.parent) != null && xp.red &&
876 (xpp = xp.parent) != null) {
877 TreeNode<K,V> xppl = xpp.left;
878 if (xp == xppl) {
879 TreeNode<K,V> y = xpp.right;
880 if (y != null && y.red) {
881 y.red = false;
882 xp.red = false;
883 xpp.red = true;
884 x = xpp;
885 }
886 else {
887 if (x == xp.right) {
888 rotateLeft(x = xp);
889 xpp = (xp = x.parent) == null ? null : xp.parent;
890 }
891 if (xp != null) {
892 xp.red = false;
893 if (xpp != null) {
894 xpp.red = true;
895 rotateRight(xpp);
896 }
897 }
898 }
899 }
900 else {
901 TreeNode<K,V> y = xppl;
902 if (y != null && y.red) {
903 y.red = false;
904 xp.red = false;
905 xpp.red = true;
906 x = xpp;
907 }
908 else {
909 if (x == xp.left) {
910 rotateRight(x = xp);
911 xpp = (xp = x.parent) == null ? null : xp.parent;
912 }
913 if (xp != null) {
914 xp.red = false;
915 if (xpp != null) {
916 xpp.red = true;
917 rotateLeft(xpp);
918 }
919 }
920 }
921 }
922 }
923 TreeNode<K,V> r = root;
924 if (r != null && r.red)
925 r.red = false;
926 }
927 return null;
928 }
929
930 /**
931 * Removes the given node, that must be present before this
932 * call. This is messier than typical red-black deletion code
933 * because we cannot swap the contents of an interior node
934 * with a leaf successor that is pinned by "next" pointers
935 * that are accessible independently of lock. So instead we
936 * swap the tree linkages.
937 */
938 final void deleteTreeNode(TreeNode<K,V> p) {
939 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
940 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
941 if (pred == null)
942 first = next;
943 else
944 pred.next = next;
945 if (next != null)
946 next.prev = pred;
947 TreeNode<K,V> replacement;
948 TreeNode<K,V> pl = p.left;
949 TreeNode<K,V> pr = p.right;
950 if (pl != null && pr != null) {
951 TreeNode<K,V> s = pr, sl;
952 while ((sl = s.left) != null) // find successor
953 s = sl;
954 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
955 TreeNode<K,V> sr = s.right;
956 TreeNode<K,V> pp = p.parent;
957 if (s == pr) { // p was s's direct parent
958 p.parent = s;
959 s.right = p;
960 }
961 else {
962 TreeNode<K,V> sp = s.parent;
963 if ((p.parent = sp) != null) {
964 if (s == sp.left)
965 sp.left = p;
966 else
967 sp.right = p;
968 }
969 if ((s.right = pr) != null)
970 pr.parent = s;
971 }
972 p.left = null;
973 if ((p.right = sr) != null)
974 sr.parent = p;
975 if ((s.left = pl) != null)
976 pl.parent = s;
977 if ((s.parent = pp) == null)
978 root = s;
979 else if (p == pp.left)
980 pp.left = s;
981 else
982 pp.right = s;
983 replacement = sr;
984 }
985 else
986 replacement = (pl != null) ? pl : pr;
987 TreeNode<K,V> pp = p.parent;
988 if (replacement == null) {
989 if (pp == null) {
990 root = null;
991 return;
992 }
993 replacement = p;
994 }
995 else {
996 replacement.parent = pp;
997 if (pp == null)
998 root = replacement;
999 else if (p == pp.left)
1000 pp.left = replacement;
1001 else
1002 pp.right = replacement;
1003 p.left = p.right = p.parent = null;
1004 }
1005 if (!p.red) { // rebalance, from CLR
1006 TreeNode<K,V> x = replacement;
1007 while (x != null) {
1008 TreeNode<K,V> xp, xpl;
1009 if (x.red || (xp = x.parent) == null) {
1010 x.red = false;
1011 break;
1012 }
1013 if (x == (xpl = xp.left)) {
1014 TreeNode<K,V> sib = xp.right;
1015 if (sib != null && sib.red) {
1016 sib.red = false;
1017 xp.red = true;
1018 rotateLeft(xp);
1019 sib = (xp = x.parent) == null ? null : xp.right;
1020 }
1021 if (sib == null)
1022 x = xp;
1023 else {
1024 TreeNode<K,V> sl = sib.left, sr = sib.right;
1025 if ((sr == null || !sr.red) &&
1026 (sl == null || !sl.red)) {
1027 sib.red = true;
1028 x = xp;
1029 }
1030 else {
1031 if (sr == null || !sr.red) {
1032 if (sl != null)
1033 sl.red = false;
1034 sib.red = true;
1035 rotateRight(sib);
1036 sib = (xp = x.parent) == null ?
1037 null : xp.right;
1038 }
1039 if (sib != null) {
1040 sib.red = (xp == null) ? false : xp.red;
1041 if ((sr = sib.right) != null)
1042 sr.red = false;
1043 }
1044 if (xp != null) {
1045 xp.red = false;
1046 rotateLeft(xp);
1047 }
1048 x = root;
1049 }
1050 }
1051 }
1052 else { // symmetric
1053 TreeNode<K,V> sib = xpl;
1054 if (sib != null && sib.red) {
1055 sib.red = false;
1056 xp.red = true;
1057 rotateRight(xp);
1058 sib = (xp = x.parent) == null ? null : xp.left;
1059 }
1060 if (sib == null)
1061 x = xp;
1062 else {
1063 TreeNode<K,V> sl = sib.left, sr = sib.right;
1064 if ((sl == null || !sl.red) &&
1065 (sr == null || !sr.red)) {
1066 sib.red = true;
1067 x = xp;
1068 }
1069 else {
1070 if (sl == null || !sl.red) {
1071 if (sr != null)
1072 sr.red = false;
1073 sib.red = true;
1074 rotateLeft(sib);
1075 sib = (xp = x.parent) == null ?
1076 null : xp.left;
1077 }
1078 if (sib != null) {
1079 sib.red = (xp == null) ? false : xp.red;
1080 if ((sl = sib.left) != null)
1081 sl.red = false;
1082 }
1083 if (xp != null) {
1084 xp.red = false;
1085 rotateRight(xp);
1086 }
1087 x = root;
1088 }
1089 }
1090 }
1091 }
1092 }
1093 if (p == replacement && (pp = p.parent) != null) {
1094 if (p == pp.left) // detach pointers
1095 pp.left = null;
1096 else if (p == pp.right)
1097 pp.right = null;
1098 p.parent = null;
1099 }
1100 }
1101 }
1102
1103 /* ---------------- Collision reduction methods -------------- */
1104
1105 /**
1106 * Spreads higher bits to lower, and also forces top bit to 0.
1107 * Because the table uses power-of-two masking, sets of hashes
1108 * that vary only in bits above the current mask will always
1109 * collide. (Among known examples are sets of Float keys holding
1110 * consecutive whole numbers in small tables.) To counter this,
1111 * we apply a transform that spreads the impact of higher bits
1112 * downward. There is a tradeoff between speed, utility, and
1113 * quality of bit-spreading. Because many common sets of hashes
1114 * are already reasonably distributed across bits (so don't benefit
1115 * from spreading), and because we use trees to handle large sets
1116 * of collisions in bins, we don't need excessively high quality.
1117 */
1118 private static final int spread(int h) {
1119 h ^= (h >>> 18) ^ (h >>> 12);
1120 return (h ^ (h >>> 10)) & HASH_BITS;
1121 }
1122
1123 /**
1124 * Replaces a list bin with a tree bin if key is comparable. Call
1125 * only when locked.
1126 */
1127 private final void replaceWithTreeBin(Node<K,V>[] tab, int index, Object key) {
1128 if (tab != null && comparableClassFor(key) != null) {
1129 TreeBin<K,V> t = new TreeBin<K,V>();
1130 for (Node<K,V> e = tabAt(tab, index); e != null; e = e.next)
1131 t.putTreeNode(e.hash, e.key, e.val);
1132 setTabAt(tab, index, new Node<K,V>(MOVED, t, null, null));
1133 }
1134 }
1135
1136 /* ---------------- Internal access and update methods -------------- */
1137
1138 /** Implementation for get and containsKey */
1139 private final V internalGet(Object k) {
1140 int h = spread(k.hashCode());
1141 V v = null;
1142 Node<K,V>[] tab; Node<K,V> e;
1143 if ((tab = table) != null &&
1144 (e = tabAt(tab, (tab.length - 1) & h)) != null) {
1145 for (;;) {
1146 int eh; Object ek;
1147 if ((eh = e.hash) < 0) {
1148 if ((ek = e.key) instanceof TreeBin) { // search TreeBin
1149 v = ((TreeBin<K,V>)ek).getValue(h, k);
1150 break;
1151 }
1152 else if (!(ek instanceof Node[]) || // try new table
1153 (e = tabAt(tab = (Node<K,V>[])ek,
1154 (tab.length - 1) & h)) == null)
1155 break;
1156 }
1157 else if (eh == h && ((ek = e.key) == k || k.equals(ek))) {
1158 v = e.val;
1159 break;
1160 }
1161 else if ((e = e.next) == null)
1162 break;
1163 }
1164 }
1165 return v;
1166 }
1167
1168 /**
1169 * Implementation for the four public remove/replace methods:
1170 * Replaces node value with v, conditional upon match of cv if
1171 * non-null. If resulting value is null, delete.
1172 */
1173 private final V internalReplace(Object k, V v, Object cv) {
1174 int h = spread(k.hashCode());
1175 V oldVal = null;
1176 for (Node<K,V>[] tab = table;;) {
1177 Node<K,V> f; int i, fh; Object fk;
1178 if (tab == null ||
1179 (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1180 break;
1181 else if ((fh = f.hash) < 0) {
1182 if ((fk = f.key) instanceof TreeBin) {
1183 TreeBin<K,V> t = (TreeBin<K,V>)fk;
1184 long stamp = t.writeLock();
1185 boolean validated = false;
1186 boolean deleted = false;
1187 try {
1188 if (tabAt(tab, i) == f) {
1189 validated = true;
1190 Class<?> cc = comparableClassFor(k);
1191 TreeNode<K,V> p = t.getTreeNode(h, k, t.root, cc);
1192 if (p != null) {
1193 V pv = p.val;
1194 if (cv == null || cv == pv || cv.equals(pv)) {
1195 oldVal = pv;
1196 if (v != null)
1197 p.val = v;
1198 else {
1199 deleted = true;
1200 t.deleteTreeNode(p);
1201 }
1202 }
1203 }
1204 }
1205 } finally {
1206 t.unlockWrite(stamp);
1207 }
1208 if (validated) {
1209 if (deleted)
1210 addCount(-1L, -1);
1211 break;
1212 }
1213 }
1214 else
1215 tab = (Node<K,V>[])fk;
1216 }
1217 else {
1218 boolean validated = false;
1219 boolean deleted = false;
1220 synchronized (f) {
1221 if (tabAt(tab, i) == f) {
1222 validated = true;
1223 for (Node<K,V> e = f, pred = null;;) {
1224 Object ek;
1225 if (e.hash == h &&
1226 ((ek = e.key) == k || k.equals(ek))) {
1227 V ev = e.val;
1228 if (cv == null || cv == ev || cv.equals(ev)) {
1229 oldVal = ev;
1230 if (v != null)
1231 e.val = v;
1232 else {
1233 deleted = true;
1234 Node<K,V> en = e.next;
1235 if (pred != null)
1236 pred.next = en;
1237 else
1238 setTabAt(tab, i, en);
1239 }
1240 }
1241 break;
1242 }
1243 pred = e;
1244 if ((e = e.next) == null)
1245 break;
1246 }
1247 }
1248 }
1249 if (validated) {
1250 if (deleted)
1251 addCount(-1L, -1);
1252 break;
1253 }
1254 }
1255 }
1256 return oldVal;
1257 }
1258
1259 /*
1260 * Internal versions of insertion methods
1261 * All have the same basic structure as the first (internalPut):
1262 * 1. If table uninitialized, create
1263 * 2. If bin empty, try to CAS new node
1264 * 3. If bin stale, use new table
1265 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1266 * 5. Lock and validate; if valid, scan and add or update
1267 *
1268 * The putAll method differs mainly in attempting to pre-allocate
1269 * enough table space, and also more lazily performs count updates
1270 * and checks.
1271 *
1272 * Most of the function-accepting methods can't be factored nicely
1273 * because they require different functional forms, so instead
1274 * sprawl out similar mechanics.
1275 */
1276
1277 /** Implementation for put and putIfAbsent */
1278 private final V internalPut(K k, V v, boolean onlyIfAbsent) {
1279 if (k == null || v == null) throw new NullPointerException();
1280 int h = spread(k.hashCode());
1281 int len = 0;
1282 for (Node<K,V>[] tab = table;;) {
1283 int i, fh; Node<K,V> f; Object fk;
1284 if (tab == null)
1285 tab = initTable();
1286 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1287 if (casTabAt(tab, i, null, new Node<K,V>(h, k, v, null)))
1288 break; // no lock when adding to empty bin
1289 }
1290 else if ((fh = f.hash) < 0) {
1291 if ((fk = f.key) instanceof TreeBin) {
1292 TreeBin<K,V> t = (TreeBin<K,V>)fk;
1293 long stamp = t.writeLock();
1294 V oldVal = null;
1295 try {
1296 if (tabAt(tab, i) == f) {
1297 len = 2;
1298 TreeNode<K,V> p = t.putTreeNode(h, k, v);
1299 if (p != null) {
1300 oldVal = p.val;
1301 if (!onlyIfAbsent)
1302 p.val = v;
1303 }
1304 }
1305 } finally {
1306 t.unlockWrite(stamp);
1307 }
1308 if (len != 0) {
1309 if (oldVal != null)
1310 return oldVal;
1311 break;
1312 }
1313 }
1314 else
1315 tab = (Node<K,V>[])fk;
1316 }
1317 else {
1318 V oldVal = null;
1319 synchronized (f) {
1320 if (tabAt(tab, i) == f) {
1321 len = 1;
1322 for (Node<K,V> e = f;; ++len) {
1323 Object ek;
1324 if (e.hash == h &&
1325 ((ek = e.key) == k || k.equals(ek))) {
1326 oldVal = e.val;
1327 if (!onlyIfAbsent)
1328 e.val = v;
1329 break;
1330 }
1331 Node<K,V> last = e;
1332 if ((e = e.next) == null) {
1333 last.next = new Node<K,V>(h, k, v, null);
1334 if (len > TREE_THRESHOLD)
1335 replaceWithTreeBin(tab, i, k);
1336 break;
1337 }
1338 }
1339 }
1340 }
1341 if (len != 0) {
1342 if (oldVal != null)
1343 return oldVal;
1344 break;
1345 }
1346 }
1347 }
1348 addCount(1L, len);
1349 return null;
1350 }
1351
1352 /** Implementation for computeIfAbsent */
1353 private final V internalComputeIfAbsent(K k, Function<? super K, ? extends V> mf) {
1354 if (k == null || mf == null)
1355 throw new NullPointerException();
1356 int h = spread(k.hashCode());
1357 V val = null;
1358 int len = 0;
1359 for (Node<K,V>[] tab = table;;) {
1360 Node<K,V> f; int i; Object fk;
1361 if (tab == null)
1362 tab = initTable();
1363 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1364 Node<K,V> node = new Node<K,V>(h, k, null, null);
1365 synchronized (node) {
1366 if (casTabAt(tab, i, null, node)) {
1367 len = 1;
1368 try {
1369 if ((val = mf.apply(k)) != null)
1370 node.val = val;
1371 } finally {
1372 if (val == null)
1373 setTabAt(tab, i, null);
1374 }
1375 }
1376 }
1377 if (len != 0)
1378 break;
1379 }
1380 else if (f.hash < 0) {
1381 if ((fk = f.key) instanceof TreeBin) {
1382 TreeBin<K,V> t = (TreeBin<K,V>)fk;
1383 long stamp = t.writeLock();
1384 boolean added = false;
1385 try {
1386 if (tabAt(tab, i) == f) {
1387 len = 2;
1388 Class<?> cc = comparableClassFor(k);
1389 TreeNode<K,V> p = t.getTreeNode(h, k, t.root, cc);
1390 if (p != null)
1391 val = p.val;
1392 else if ((val = mf.apply(k)) != null) {
1393 added = true;
1394 t.putTreeNode(h, k, val);
1395 }
1396 }
1397 } finally {
1398 t.unlockWrite(stamp);
1399 }
1400 if (len != 0) {
1401 if (!added)
1402 return val;
1403 break;
1404 }
1405 }
1406 else
1407 tab = (Node<K,V>[])fk;
1408 }
1409 else {
1410 boolean added = false;
1411 synchronized (f) {
1412 if (tabAt(tab, i) == f) {
1413 len = 1;
1414 for (Node<K,V> e = f;; ++len) {
1415 Object ek; V ev;
1416 if (e.hash == h &&
1417 ((ek = e.key) == k || k.equals(ek))) {
1418 val = e.val;
1419 break;
1420 }
1421 Node<K,V> last = e;
1422 if ((e = e.next) == null) {
1423 if ((val = mf.apply(k)) != null) {
1424 added = true;
1425 last.next = new Node<K,V>(h, k, val, null);
1426 if (len > TREE_THRESHOLD)
1427 replaceWithTreeBin(tab, i, k);
1428 }
1429 break;
1430 }
1431 }
1432 }
1433 }
1434 if (len != 0) {
1435 if (!added)
1436 return val;
1437 break;
1438 }
1439 }
1440 }
1441 if (val != null)
1442 addCount(1L, len);
1443 return val;
1444 }
1445
1446 /** Implementation for compute */
1447 private final V internalCompute(K k, boolean onlyIfPresent,
1448 BiFunction<? super K, ? super V, ? extends V> mf) {
1449 if (k == null || mf == null)
1450 throw new NullPointerException();
1451 int h = spread(k.hashCode());
1452 V val = null;
1453 int delta = 0;
1454 int len = 0;
1455 for (Node<K,V>[] tab = table;;) {
1456 Node<K,V> f; int i, fh; Object fk;
1457 if (tab == null)
1458 tab = initTable();
1459 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1460 if (onlyIfPresent)
1461 break;
1462 Node<K,V> node = new Node<K,V>(h, k, null, null);
1463 synchronized (node) {
1464 if (casTabAt(tab, i, null, node)) {
1465 try {
1466 len = 1;
1467 if ((val = mf.apply(k, null)) != null) {
1468 node.val = val;
1469 delta = 1;
1470 }
1471 } finally {
1472 if (delta == 0)
1473 setTabAt(tab, i, null);
1474 }
1475 }
1476 }
1477 if (len != 0)
1478 break;
1479 }
1480 else if ((fh = f.hash) < 0) {
1481 if ((fk = f.key) instanceof TreeBin) {
1482 TreeBin<K,V> t = (TreeBin<K,V>)fk;
1483 long stamp = t.writeLock();
1484 try {
1485 if (tabAt(tab, i) == f) {
1486 len = 2;
1487 Class<?> cc = comparableClassFor(k);
1488 TreeNode<K,V> p = t.getTreeNode(h, k, t.root, cc);
1489 if (p != null || !onlyIfPresent) {
1490 V pv = (p == null) ? null : p.val;
1491 if ((val = mf.apply(k, pv)) != null) {
1492 if (p != null)
1493 p.val = val;
1494 else {
1495 delta = 1;
1496 t.putTreeNode(h, k, val);
1497 }
1498 }
1499 else if (p != null) {
1500 delta = -1;
1501 t.deleteTreeNode(p);
1502 }
1503 }
1504 }
1505 } finally {
1506 t.unlockWrite(stamp);
1507 }
1508 if (len != 0)
1509 break;
1510 }
1511 else
1512 tab = (Node<K,V>[])fk;
1513 }
1514 else {
1515 synchronized (f) {
1516 if (tabAt(tab, i) == f) {
1517 len = 1;
1518 for (Node<K,V> e = f, pred = null;; ++len) {
1519 Object ek;
1520 if (e.hash == h &&
1521 ((ek = e.key) == k || k.equals(ek))) {
1522 val = mf.apply(k, e.val);
1523 if (val != null)
1524 e.val = val;
1525 else {
1526 delta = -1;
1527 Node<K,V> en = e.next;
1528 if (pred != null)
1529 pred.next = en;
1530 else
1531 setTabAt(tab, i, en);
1532 }
1533 break;
1534 }
1535 pred = e;
1536 if ((e = e.next) == null) {
1537 if (!onlyIfPresent &&
1538 (val = mf.apply(k, null)) != null) {
1539 pred.next = new Node<K,V>(h, k, val, null);
1540 delta = 1;
1541 if (len > TREE_THRESHOLD)
1542 replaceWithTreeBin(tab, i, k);
1543 }
1544 break;
1545 }
1546 }
1547 }
1548 }
1549 if (len != 0)
1550 break;
1551 }
1552 }
1553 if (delta != 0)
1554 addCount((long)delta, len);
1555 return val;
1556 }
1557
1558 /** Implementation for merge */
1559 private final V internalMerge(K k, V v,
1560 BiFunction<? super V, ? super V, ? extends V> mf) {
1561 if (k == null || v == null || mf == null)
1562 throw new NullPointerException();
1563 int h = spread(k.hashCode());
1564 V val = null;
1565 int delta = 0;
1566 int len = 0;
1567 for (Node<K,V>[] tab = table;;) {
1568 int i; Node<K,V> f; Object fk;
1569 if (tab == null)
1570 tab = initTable();
1571 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1572 if (casTabAt(tab, i, null, new Node<K,V>(h, k, v, null))) {
1573 delta = 1;
1574 val = v;
1575 break;
1576 }
1577 }
1578 else if (f.hash < 0) {
1579 if ((fk = f.key) instanceof TreeBin) {
1580 TreeBin<K,V> t = (TreeBin<K,V>)fk;
1581 long stamp = t.writeLock();
1582 try {
1583 if (tabAt(tab, i) == f) {
1584 len = 2;
1585 Class<?> cc = comparableClassFor(k);
1586 TreeNode<K,V> p = t.getTreeNode(h, k, t.root, cc);
1587 val = (p == null) ? v : mf.apply(p.val, v);
1588 if (val != null) {
1589 if (p != null)
1590 p.val = val;
1591 else {
1592 delta = 1;
1593 t.putTreeNode(h, k, val);
1594 }
1595 }
1596 else if (p != null) {
1597 delta = -1;
1598 t.deleteTreeNode(p);
1599 }
1600 }
1601 } finally {
1602 t.unlockWrite(stamp);
1603 }
1604 if (len != 0)
1605 break;
1606 }
1607 else
1608 tab = (Node<K,V>[])fk;
1609 }
1610 else {
1611 synchronized (f) {
1612 if (tabAt(tab, i) == f) {
1613 len = 1;
1614 for (Node<K,V> e = f, pred = null;; ++len) {
1615 Object ek;
1616 if (e.hash == h &&
1617 ((ek = e.key) == k || k.equals(ek))) {
1618 val = mf.apply(e.val, v);
1619 if (val != null)
1620 e.val = val;
1621 else {
1622 delta = -1;
1623 Node<K,V> en = e.next;
1624 if (pred != null)
1625 pred.next = en;
1626 else
1627 setTabAt(tab, i, en);
1628 }
1629 break;
1630 }
1631 pred = e;
1632 if ((e = e.next) == null) {
1633 delta = 1;
1634 val = v;
1635 pred.next = new Node<K,V>(h, k, val, null);
1636 if (len > TREE_THRESHOLD)
1637 replaceWithTreeBin(tab, i, k);
1638 break;
1639 }
1640 }
1641 }
1642 }
1643 if (len != 0)
1644 break;
1645 }
1646 }
1647 if (delta != 0)
1648 addCount((long)delta, len);
1649 return val;
1650 }
1651
1652 /** Implementation for putAll */
1653 private final void internalPutAll(Map<? extends K, ? extends V> m) {
1654 tryPresize(m.size());
1655 long delta = 0L; // number of uncommitted additions
1656 boolean npe = false; // to throw exception on exit for nulls
1657 try { // to clean up counts on other exceptions
1658 for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1659 Object k; V v;
1660 if (entry == null || (k = entry.getKey()) == null ||
1661 (v = entry.getValue()) == null) {
1662 npe = true;
1663 break;
1664 }
1665 int h = spread(k.hashCode());
1666 for (Node<K,V>[] tab = table;;) {
1667 int i; Node<K,V> f; int fh; Object fk;
1668 if (tab == null)
1669 tab = initTable();
1670 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1671 if (casTabAt(tab, i, null, new Node<K,V>(h, k, v, null))) {
1672 ++delta;
1673 break;
1674 }
1675 }
1676 else if ((fh = f.hash) < 0) {
1677 if ((fk = f.key) instanceof TreeBin) {
1678 TreeBin<K,V> t = (TreeBin<K,V>)fk;
1679 long stamp = t.writeLock();
1680 boolean validated = false;
1681 try {
1682 if (tabAt(tab, i) == f) {
1683 validated = true;
1684 Class<?> cc = comparableClassFor(k);
1685 TreeNode<K,V> p = t.getTreeNode(h, k,
1686 t.root, cc);
1687 if (p != null)
1688 p.val = v;
1689 else {
1690 ++delta;
1691 t.putTreeNode(h, k, v);
1692 }
1693 }
1694 } finally {
1695 t.unlockWrite(stamp);
1696 }
1697 if (validated)
1698 break;
1699 }
1700 else
1701 tab = (Node<K,V>[])fk;
1702 }
1703 else {
1704 int len = 0;
1705 synchronized (f) {
1706 if (tabAt(tab, i) == f) {
1707 len = 1;
1708 for (Node<K,V> e = f;; ++len) {
1709 Object ek;
1710 if (e.hash == h &&
1711 ((ek = e.key) == k || k.equals(ek))) {
1712 e.val = v;
1713 break;
1714 }
1715 Node<K,V> last = e;
1716 if ((e = e.next) == null) {
1717 ++delta;
1718 last.next = new Node<K,V>(h, k, v, null);
1719 if (len > TREE_THRESHOLD)
1720 replaceWithTreeBin(tab, i, k);
1721 break;
1722 }
1723 }
1724 }
1725 }
1726 if (len != 0) {
1727 if (len > 1) {
1728 addCount(delta, len);
1729 delta = 0L;
1730 }
1731 break;
1732 }
1733 }
1734 }
1735 }
1736 } finally {
1737 if (delta != 0L)
1738 addCount(delta, 2);
1739 }
1740 if (npe)
1741 throw new NullPointerException();
1742 }
1743
1744 /**
1745 * Implementation for clear. Steps through each bin, removing all
1746 * nodes.
1747 */
1748 private final void internalClear() {
1749 long delta = 0L; // negative number of deletions
1750 int i = 0;
1751 Node<K,V>[] tab = table;
1752 while (tab != null && i < tab.length) {
1753 Node<K,V> f = tabAt(tab, i);
1754 if (f == null)
1755 ++i;
1756 else if (f.hash < 0) {
1757 Object fk;
1758 if ((fk = f.key) instanceof TreeBin) {
1759 TreeBin<K,V> t = (TreeBin<K,V>)fk;
1760 long stamp = t.writeLock();
1761 try {
1762 if (tabAt(tab, i) == f) {
1763 for (Node<K,V> p = t.first; p != null; p = p.next)
1764 --delta;
1765 t.first = null;
1766 t.root = null;
1767 ++i;
1768 }
1769 } finally {
1770 t.unlockWrite(stamp);
1771 }
1772 }
1773 else
1774 tab = (Node<K,V>[])fk;
1775 }
1776 else {
1777 synchronized (f) {
1778 if (tabAt(tab, i) == f) {
1779 for (Node<K,V> e = f; e != null; e = e.next)
1780 --delta;
1781 setTabAt(tab, i, null);
1782 ++i;
1783 }
1784 }
1785 }
1786 }
1787 if (delta != 0L)
1788 addCount(delta, -1);
1789 }
1790
1791 /* ---------------- Table Initialization and Resizing -------------- */
1792
1793 /**
1794 * Returns a power of two table size for the given desired capacity.
1795 * See Hackers Delight, sec 3.2
1796 */
1797 private static final int tableSizeFor(int c) {
1798 int n = c - 1;
1799 n |= n >>> 1;
1800 n |= n >>> 2;
1801 n |= n >>> 4;
1802 n |= n >>> 8;
1803 n |= n >>> 16;
1804 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1805 }
1806
1807 /**
1808 * Initializes table, using the size recorded in sizeCtl.
1809 */
1810 private final Node<K,V>[] initTable() {
1811 Node<K,V>[] tab; int sc;
1812 while ((tab = table) == null) {
1813 if ((sc = sizeCtl) < 0)
1814 Thread.yield(); // lost initialization race; just spin
1815 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1816 try {
1817 if ((tab = table) == null) {
1818 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1819 table = tab = (Node<K,V>[])new Node[n];
1820 sc = n - (n >>> 2);
1821 }
1822 } finally {
1823 sizeCtl = sc;
1824 }
1825 break;
1826 }
1827 }
1828 return tab;
1829 }
1830
1831 /**
1832 * Adds to count, and if table is too small and not already
1833 * resizing, initiates transfer. If already resizing, helps
1834 * perform transfer if work is available. Rechecks occupancy
1835 * after a transfer to see if another resize is already needed
1836 * because resizings are lagging additions.
1837 *
1838 * @param x the count to add
1839 * @param check if <0, don't check resize, if <= 1 only check if uncontended
1840 */
1841 private final void addCount(long x, int check) {
1842 Cell[] as; long b, s;
1843 if ((as = counterCells) != null ||
1844 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1845 Cell a; long v; int m;
1846 boolean uncontended = true;
1847 if (as == null || (m = as.length - 1) < 0 ||
1848 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
1849 !(uncontended =
1850 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1851 fullAddCount(x, uncontended);
1852 return;
1853 }
1854 if (check <= 1)
1855 return;
1856 s = sumCount();
1857 }
1858 if (check >= 0) {
1859 Node<K,V>[] tab, nt; int sc;
1860 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1861 tab.length < MAXIMUM_CAPACITY) {
1862 if (sc < 0) {
1863 if (sc == -1 || transferIndex <= transferOrigin ||
1864 (nt = nextTable) == null)
1865 break;
1866 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1867 transfer(tab, nt);
1868 }
1869 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1870 transfer(tab, null);
1871 s = sumCount();
1872 }
1873 }
1874 }
1875
1876 /**
1877 * Tries to presize table to accommodate the given number of elements.
1878 *
1879 * @param size number of elements (doesn't need to be perfectly accurate)
1880 */
1881 private final void tryPresize(int size) {
1882 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1883 tableSizeFor(size + (size >>> 1) + 1);
1884 int sc;
1885 while ((sc = sizeCtl) >= 0) {
1886 Node<K,V>[] tab = table; int n;
1887 if (tab == null || (n = tab.length) == 0) {
1888 n = (sc > c) ? sc : c;
1889 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1890 try {
1891 if (table == tab) {
1892 table = (Node<K,V>[])new Node[n];
1893 sc = n - (n >>> 2);
1894 }
1895 } finally {
1896 sizeCtl = sc;
1897 }
1898 }
1899 }
1900 else if (c <= sc || n >= MAXIMUM_CAPACITY)
1901 break;
1902 else if (tab == table &&
1903 U.compareAndSwapInt(this, SIZECTL, sc, -2))
1904 transfer(tab, null);
1905 }
1906 }
1907
1908 /**
1909 * Moves and/or copies the nodes in each bin to new table. See
1910 * above for explanation.
1911 */
1912 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
1913 int n = tab.length, stride;
1914 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1915 stride = MIN_TRANSFER_STRIDE; // subdivide range
1916 if (nextTab == null) { // initiating
1917 try {
1918 nextTab = (Node<K,V>[])new Node[n << 1];
1919 } catch (Throwable ex) { // try to cope with OOME
1920 sizeCtl = Integer.MAX_VALUE;
1921 return;
1922 }
1923 nextTable = nextTab;
1924 transferOrigin = n;
1925 transferIndex = n;
1926 Node<K,V> rev = new Node<K,V>(MOVED, tab, null, null);
1927 for (int k = n; k > 0;) { // progressively reveal ready slots
1928 int nextk = (k > stride) ? k - stride : 0;
1929 for (int m = nextk; m < k; ++m)
1930 nextTab[m] = rev;
1931 for (int m = n + nextk; m < n + k; ++m)
1932 nextTab[m] = rev;
1933 U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
1934 }
1935 }
1936 int nextn = nextTab.length;
1937 Node<K,V> fwd = new Node<K,V>(MOVED, nextTab, null, null);
1938 boolean advance = true;
1939 for (int i = 0, bound = 0;;) {
1940 int nextIndex, nextBound; Node<K,V> f; Object fk;
1941 while (advance) {
1942 if (--i >= bound)
1943 advance = false;
1944 else if ((nextIndex = transferIndex) <= transferOrigin) {
1945 i = -1;
1946 advance = false;
1947 }
1948 else if (U.compareAndSwapInt
1949 (this, TRANSFERINDEX, nextIndex,
1950 nextBound = (nextIndex > stride ?
1951 nextIndex - stride : 0))) {
1952 bound = nextBound;
1953 i = nextIndex - 1;
1954 advance = false;
1955 }
1956 }
1957 if (i < 0 || i >= n || i + n >= nextn) {
1958 for (int sc;;) {
1959 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
1960 if (sc == -1) {
1961 nextTable = null;
1962 table = nextTab;
1963 sizeCtl = (n << 1) - (n >>> 1);
1964 }
1965 return;
1966 }
1967 }
1968 }
1969 else if ((f = tabAt(tab, i)) == null) {
1970 if (casTabAt(tab, i, null, fwd)) {
1971 setTabAt(nextTab, i, null);
1972 setTabAt(nextTab, i + n, null);
1973 advance = true;
1974 }
1975 }
1976 else if (f.hash >= 0) {
1977 synchronized (f) {
1978 if (tabAt(tab, i) == f) {
1979 int runBit = f.hash & n;
1980 Node<K,V> lastRun = f, lo = null, hi = null;
1981 for (Node<K,V> p = f.next; p != null; p = p.next) {
1982 int b = p.hash & n;
1983 if (b != runBit) {
1984 runBit = b;
1985 lastRun = p;
1986 }
1987 }
1988 if (runBit == 0)
1989 lo = lastRun;
1990 else
1991 hi = lastRun;
1992 for (Node<K,V> p = f; p != lastRun; p = p.next) {
1993 int ph = p.hash; Object pk = p.key; V pv = p.val;
1994 if ((ph & n) == 0)
1995 lo = new Node<K,V>(ph, pk, pv, lo);
1996 else
1997 hi = new Node<K,V>(ph, pk, pv, hi);
1998 }
1999 setTabAt(nextTab, i, lo);
2000 setTabAt(nextTab, i + n, hi);
2001 setTabAt(tab, i, fwd);
2002 advance = true;
2003 }
2004 }
2005 }
2006 else if ((fk = f.key) instanceof TreeBin) {
2007 TreeBin<K,V> t = (TreeBin<K,V>)fk;
2008 long stamp = t.writeLock();
2009 try {
2010 if (tabAt(tab, i) == f) {
2011 TreeNode<K,V> root;
2012 Node<K,V> ln = null, hn = null;
2013 if ((root = t.root) != null) {
2014 Node<K,V> e, p; TreeNode<K,V> lr, rr; int lh;
2015 TreeBin<K,V> lt = null, ht = null;
2016 for (lr = root; lr.left != null; lr = lr.left);
2017 for (rr = root; rr.right != null; rr = rr.right);
2018 if ((lh = lr.hash) == rr.hash) { // move entire tree
2019 if ((lh & n) == 0)
2020 lt = t;
2021 else
2022 ht = t;
2023 }
2024 else {
2025 lt = new TreeBin<K,V>();
2026 ht = new TreeBin<K,V>();
2027 int lc = 0, hc = 0;
2028 for (e = t.first; e != null; e = e.next) {
2029 int h = e.hash;
2030 Object k = e.key; V v = e.val;
2031 if ((h & n) == 0) {
2032 ++lc;
2033 lt.putTreeNode(h, k, v);
2034 }
2035 else {
2036 ++hc;
2037 ht.putTreeNode(h, k, v);
2038 }
2039 }
2040 if (lc < TREE_THRESHOLD) { // throw away
2041 for (p = lt.first; p != null; p = p.next)
2042 ln = new Node<K,V>(p.hash, p.key,
2043 p.val, ln);
2044 lt = null;
2045 }
2046 if (hc < TREE_THRESHOLD) {
2047 for (p = ht.first; p != null; p = p.next)
2048 hn = new Node<K,V>(p.hash, p.key,
2049 p.val, hn);
2050 ht = null;
2051 }
2052 }
2053 if (ln == null && lt != null)
2054 ln = new Node<K,V>(MOVED, lt, null, null);
2055 if (hn == null && ht != null)
2056 hn = new Node<K,V>(MOVED, ht, null, null);
2057 }
2058 setTabAt(nextTab, i, ln);
2059 setTabAt(nextTab, i + n, hn);
2060 setTabAt(tab, i, fwd);
2061 advance = true;
2062 }
2063 } finally {
2064 t.unlockWrite(stamp);
2065 }
2066 }
2067 else
2068 advance = true; // already processed
2069 }
2070 }
2071
2072 /* ---------------- Counter support -------------- */
2073
2074 final long sumCount() {
2075 Cell[] as = counterCells; Cell a;
2076 long sum = baseCount;
2077 if (as != null) {
2078 for (int i = 0; i < as.length; ++i) {
2079 if ((a = as[i]) != null)
2080 sum += a.value;
2081 }
2082 }
2083 return sum;
2084 }
2085
2086 // See LongAdder version for explanation
2087 private final void fullAddCount(long x, boolean wasUncontended) {
2088 int h;
2089 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2090 ThreadLocalRandom.localInit(); // force initialization
2091 h = ThreadLocalRandom.getProbe();
2092 wasUncontended = true;
2093 }
2094 boolean collide = false; // True if last slot nonempty
2095 for (;;) {
2096 Cell[] as; Cell a; int n; long v;
2097 if ((as = counterCells) != null && (n = as.length) > 0) {
2098 if ((a = as[(n - 1) & h]) == null) {
2099 if (cellsBusy == 0) { // Try to attach new Cell
2100 Cell r = new Cell(x); // Optimistic create
2101 if (cellsBusy == 0 &&
2102 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2103 boolean created = false;
2104 try { // Recheck under lock
2105 Cell[] rs; int m, j;
2106 if ((rs = counterCells) != null &&
2107 (m = rs.length) > 0 &&
2108 rs[j = (m - 1) & h] == null) {
2109 rs[j] = r;
2110 created = true;
2111 }
2112 } finally {
2113 cellsBusy = 0;
2114 }
2115 if (created)
2116 break;
2117 continue; // Slot is now non-empty
2118 }
2119 }
2120 collide = false;
2121 }
2122 else if (!wasUncontended) // CAS already known to fail
2123 wasUncontended = true; // Continue after rehash
2124 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2125 break;
2126 else if (counterCells != as || n >= NCPU)
2127 collide = false; // At max size or stale
2128 else if (!collide)
2129 collide = true;
2130 else if (cellsBusy == 0 &&
2131 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2132 try {
2133 if (counterCells == as) {// Expand table unless stale
2134 Cell[] rs = new Cell[n << 1];
2135 for (int i = 0; i < n; ++i)
2136 rs[i] = as[i];
2137 counterCells = rs;
2138 }
2139 } finally {
2140 cellsBusy = 0;
2141 }
2142 collide = false;
2143 continue; // Retry with expanded table
2144 }
2145 h = ThreadLocalRandom.advanceProbe(h);
2146 }
2147 else if (cellsBusy == 0 && counterCells == as &&
2148 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2149 boolean init = false;
2150 try { // Initialize table
2151 if (counterCells == as) {
2152 Cell[] rs = new Cell[2];
2153 rs[h & 1] = new Cell(x);
2154 counterCells = rs;
2155 init = true;
2156 }
2157 } finally {
2158 cellsBusy = 0;
2159 }
2160 if (init)
2161 break;
2162 }
2163 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2164 break; // Fall back on using base
2165 }
2166 }
2167
2168 /* ----------------Table Traversal -------------- */
2169
2170 /**
2171 * Encapsulates traversal for methods such as containsValue; also
2172 * serves as a base class for other iterators and spliterators.
2173 *
2174 * Method advance visits once each still-valid node that was
2175 * reachable upon iterator construction. It might miss some that
2176 * were added to a bin after the bin was visited, which is OK wrt
2177 * consistency guarantees. Maintaining this property in the face
2178 * of possible ongoing resizes requires a fair amount of
2179 * bookkeeping state that is difficult to optimize away amidst
2180 * volatile accesses. Even so, traversal maintains reasonable
2181 * throughput.
2182 *
2183 * Normally, iteration proceeds bin-by-bin traversing lists.
2184 * However, if the table has been resized, then all future steps
2185 * must traverse both the bin at the current index as well as at
2186 * (index + baseSize); and so on for further resizings. To
2187 * paranoically cope with potential sharing by users of iterators
2188 * across threads, iteration terminates if a bounds checks fails
2189 * for a table read.
2190 */
2191 static class Traverser<K,V> {
2192 Node<K,V>[] tab; // current table; updated if resized
2193 Node<K,V> next; // the next entry to use
2194 int index; // index of bin to use next
2195 int baseIndex; // current index of initial table
2196 int baseLimit; // index bound for initial table
2197 final int baseSize; // initial table size
2198
2199 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
2200 this.tab = tab;
2201 this.baseSize = size;
2202 this.baseIndex = this.index = index;
2203 this.baseLimit = limit;
2204 this.next = null;
2205 }
2206
2207 /**
2208 * Advances if possible, returning next valid node, or null if none.
2209 */
2210 final Node<K,V> advance() {
2211 Node<K,V> e;
2212 if ((e = next) != null)
2213 e = e.next;
2214 for (;;) {
2215 Node<K,V>[] t; int i, n; Object ek; // must use locals in checks
2216 if (e != null)
2217 return next = e;
2218 if (baseIndex >= baseLimit || (t = tab) == null ||
2219 (n = t.length) <= (i = index) || i < 0)
2220 return next = null;
2221 if ((e = tabAt(t, index)) != null && e.hash < 0) {
2222 if ((ek = e.key) instanceof TreeBin)
2223 e = ((TreeBin<K,V>)ek).first;
2224 else {
2225 tab = (Node<K,V>[])ek;
2226 e = null;
2227 continue;
2228 }
2229 }
2230 if ((index += baseSize) >= n)
2231 index = ++baseIndex; // visit upper slots if present
2232 }
2233 }
2234 }
2235
2236 /**
2237 * Base of key, value, and entry Iterators. Adds fields to
2238 * Traverser to support iterator.remove
2239 */
2240 static class BaseIterator<K,V> extends Traverser<K,V> {
2241 final ConcurrentHashMap<K,V> map;
2242 Node<K,V> lastReturned;
2243 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
2244 ConcurrentHashMap<K,V> map) {
2245 super(tab, size, index, limit);
2246 this.map = map;
2247 advance();
2248 }
2249
2250 public final boolean hasNext() { return next != null; }
2251 public final boolean hasMoreElements() { return next != null; }
2252
2253 public final void remove() {
2254 Node<K,V> p;
2255 if ((p = lastReturned) == null)
2256 throw new IllegalStateException();
2257 lastReturned = null;
2258 map.internalReplace((K)p.key, null, null);
2259 }
2260 }
2261
2262 static final class KeyIterator<K,V> extends BaseIterator<K,V>
2263 implements Iterator<K>, Enumeration<K> {
2264 KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
2265 ConcurrentHashMap<K,V> map) {
2266 super(tab, index, size, limit, map);
2267 }
2268
2269 public final K next() {
2270 Node<K,V> p;
2271 if ((p = next) == null)
2272 throw new NoSuchElementException();
2273 K k = (K)p.key;
2274 lastReturned = p;
2275 advance();
2276 return k;
2277 }
2278
2279 public final K nextElement() { return next(); }
2280 }
2281
2282 static final class ValueIterator<K,V> extends BaseIterator<K,V>
2283 implements Iterator<V>, Enumeration<V> {
2284 ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
2285 ConcurrentHashMap<K,V> map) {
2286 super(tab, index, size, limit, map);
2287 }
2288
2289 public final V next() {
2290 Node<K,V> p;
2291 if ((p = next) == null)
2292 throw new NoSuchElementException();
2293 V v = p.val;
2294 lastReturned = p;
2295 advance();
2296 return v;
2297 }
2298
2299 public final V nextElement() { return next(); }
2300 }
2301
2302 static final class EntryIterator<K,V> extends BaseIterator<K,V>
2303 implements Iterator<Map.Entry<K,V>> {
2304 EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
2305 ConcurrentHashMap<K,V> map) {
2306 super(tab, index, size, limit, map);
2307 }
2308
2309 public final Map.Entry<K,V> next() {
2310 Node<K,V> p;
2311 if ((p = next) == null)
2312 throw new NoSuchElementException();
2313 K k = (K)p.key;
2314 V v = p.val;
2315 lastReturned = p;
2316 advance();
2317 return new MapEntry<K,V>(k, v, map);
2318 }
2319 }
2320
2321 static final class KeySpliterator<K,V> extends Traverser<K,V>
2322 implements Spliterator<K> {
2323 long est; // size estimate
2324 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
2325 long est) {
2326 super(tab, size, index, limit);
2327 this.est = est;
2328 }
2329
2330 public Spliterator<K> trySplit() {
2331 int i, f, h;
2332 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
2333 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
2334 f, est >>>= 1);
2335 }
2336
2337 public void forEachRemaining(Consumer<? super K> action) {
2338 if (action == null) throw new NullPointerException();
2339 for (Node<K,V> p; (p = advance()) != null;)
2340 action.accept((K)p.key);
2341 }
2342
2343 public boolean tryAdvance(Consumer<? super K> action) {
2344 if (action == null) throw new NullPointerException();
2345 Node<K,V> p;
2346 if ((p = advance()) == null)
2347 return false;
2348 action.accept((K)p.key);
2349 return true;
2350 }
2351
2352 public long estimateSize() { return est; }
2353
2354 public int characteristics() {
2355 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
2356 Spliterator.NONNULL;
2357 }
2358 }
2359
2360 static final class ValueSpliterator<K,V> extends Traverser<K,V>
2361 implements Spliterator<V> {
2362 long est; // size estimate
2363 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
2364 long est) {
2365 super(tab, size, index, limit);
2366 this.est = est;
2367 }
2368
2369 public Spliterator<V> trySplit() {
2370 int i, f, h;
2371 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
2372 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
2373 f, est >>>= 1);
2374 }
2375
2376 public void forEachRemaining(Consumer<? super V> action) {
2377 if (action == null) throw new NullPointerException();
2378 for (Node<K,V> p; (p = advance()) != null;)
2379 action.accept(p.val);
2380 }
2381
2382 public boolean tryAdvance(Consumer<? super V> action) {
2383 if (action == null) throw new NullPointerException();
2384 Node<K,V> p;
2385 if ((p = advance()) == null)
2386 return false;
2387 action.accept(p.val);
2388 return true;
2389 }
2390
2391 public long estimateSize() { return est; }
2392
2393 public int characteristics() {
2394 return Spliterator.CONCURRENT | Spliterator.NONNULL;
2395 }
2396 }
2397
2398 static final class EntrySpliterator<K,V> extends Traverser<K,V>
2399 implements Spliterator<Map.Entry<K,V>> {
2400 final ConcurrentHashMap<K,V> map; // To export MapEntry
2401 long est; // size estimate
2402 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
2403 long est, ConcurrentHashMap<K,V> map) {
2404 super(tab, size, index, limit);
2405 this.map = map;
2406 this.est = est;
2407 }
2408
2409 public Spliterator<Map.Entry<K,V>> trySplit() {
2410 int i, f, h;
2411 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
2412 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
2413 f, est >>>= 1, map);
2414 }
2415
2416 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
2417 if (action == null) throw new NullPointerException();
2418 for (Node<K,V> p; (p = advance()) != null; )
2419 action.accept(new MapEntry<K,V>((K)p.key, p.val, map));
2420 }
2421
2422 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
2423 if (action == null) throw new NullPointerException();
2424 Node<K,V> p;
2425 if ((p = advance()) == null)
2426 return false;
2427 action.accept(new MapEntry<K,V>((K)p.key, p.val, map));
2428 return true;
2429 }
2430
2431 public long estimateSize() { return est; }
2432
2433 public int characteristics() {
2434 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
2435 Spliterator.NONNULL;
2436 }
2437 }
2438
2439
2440 /* ---------------- Public operations -------------- */
2441
2442 /**
2443 * Creates a new, empty map with the default initial table size (16).
2444 */
2445 public ConcurrentHashMap() {
2446 }
2447
2448 /**
2449 * Creates a new, empty map with an initial table size
2450 * accommodating the specified number of elements without the need
2451 * to dynamically resize.
2452 *
2453 * @param initialCapacity The implementation performs internal
2454 * sizing to accommodate this many elements.
2455 * @throws IllegalArgumentException if the initial capacity of
2456 * elements is negative
2457 */
2458 public ConcurrentHashMap(int initialCapacity) {
2459 if (initialCapacity < 0)
2460 throw new IllegalArgumentException();
2461 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2462 MAXIMUM_CAPACITY :
2463 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2464 this.sizeCtl = cap;
2465 }
2466
2467 /**
2468 * Creates a new map with the same mappings as the given map.
2469 *
2470 * @param m the map
2471 */
2472 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
2473 this.sizeCtl = DEFAULT_CAPACITY;
2474 internalPutAll(m);
2475 }
2476
2477 /**
2478 * Creates a new, empty map with an initial table size based on
2479 * the given number of elements ({@code initialCapacity}) and
2480 * initial table density ({@code loadFactor}).
2481 *
2482 * @param initialCapacity the initial capacity. The implementation
2483 * performs internal sizing to accommodate this many elements,
2484 * given the specified load factor.
2485 * @param loadFactor the load factor (table density) for
2486 * establishing the initial table size
2487 * @throws IllegalArgumentException if the initial capacity of
2488 * elements is negative or the load factor is nonpositive
2489 *
2490 * @since 1.6
2491 */
2492 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
2493 this(initialCapacity, loadFactor, 1);
2494 }
2495
2496 /**
2497 * Creates a new, empty map with an initial table size based on
2498 * the given number of elements ({@code initialCapacity}), table
2499 * density ({@code loadFactor}), and number of concurrently
2500 * updating threads ({@code concurrencyLevel}).
2501 *
2502 * @param initialCapacity the initial capacity. The implementation
2503 * performs internal sizing to accommodate this many elements,
2504 * given the specified load factor.
2505 * @param loadFactor the load factor (table density) for
2506 * establishing the initial table size
2507 * @param concurrencyLevel the estimated number of concurrently
2508 * updating threads. The implementation may use this value as
2509 * a sizing hint.
2510 * @throws IllegalArgumentException if the initial capacity is
2511 * negative or the load factor or concurrencyLevel are
2512 * nonpositive
2513 */
2514 public ConcurrentHashMap(int initialCapacity,
2515 float loadFactor, int concurrencyLevel) {
2516 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2517 throw new IllegalArgumentException();
2518 if (initialCapacity < concurrencyLevel) // Use at least as many bins
2519 initialCapacity = concurrencyLevel; // as estimated threads
2520 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2521 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2522 MAXIMUM_CAPACITY : tableSizeFor((int)size);
2523 this.sizeCtl = cap;
2524 }
2525
2526 /**
2527 * Creates a new {@link Set} backed by a ConcurrentHashMap
2528 * from the given type to {@code Boolean.TRUE}.
2529 *
2530 * @return the new set
2531 */
2532 public static <K> KeySetView<K,Boolean> newKeySet() {
2533 return new KeySetView<K,Boolean>
2534 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2535 }
2536
2537 /**
2538 * Creates a new {@link Set} backed by a ConcurrentHashMap
2539 * from the given type to {@code Boolean.TRUE}.
2540 *
2541 * @param initialCapacity The implementation performs internal
2542 * sizing to accommodate this many elements.
2543 * @throws IllegalArgumentException if the initial capacity of
2544 * elements is negative
2545 * @return the new set
2546 */
2547 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2548 return new KeySetView<K,Boolean>
2549 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2550 }
2551
2552 /**
2553 * {@inheritDoc}
2554 */
2555 public boolean isEmpty() {
2556 return sumCount() <= 0L; // ignore transient negative values
2557 }
2558
2559 /**
2560 * {@inheritDoc}
2561 */
2562 public int size() {
2563 long n = sumCount();
2564 return ((n < 0L) ? 0 :
2565 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2566 (int)n);
2567 }
2568
2569 /**
2570 * Returns the number of mappings. This method should be used
2571 * instead of {@link #size} because a ConcurrentHashMap may
2572 * contain more mappings than can be represented as an int. The
2573 * value returned is an estimate; the actual count may differ if
2574 * there are concurrent insertions or removals.
2575 *
2576 * @return the number of mappings
2577 */
2578 public long mappingCount() {
2579 long n = sumCount();
2580 return (n < 0L) ? 0L : n; // ignore transient negative values
2581 }
2582
2583 /**
2584 * Returns the value to which the specified key is mapped,
2585 * or {@code null} if this map contains no mapping for the key.
2586 *
2587 * <p>More formally, if this map contains a mapping from a key
2588 * {@code k} to a value {@code v} such that {@code key.equals(k)},
2589 * then this method returns {@code v}; otherwise it returns
2590 * {@code null}. (There can be at most one such mapping.)
2591 *
2592 * @throws NullPointerException if the specified key is null
2593 */
2594 public V get(Object key) {
2595 return internalGet(key);
2596 }
2597
2598 /**
2599 * Returns the value to which the specified key is mapped,
2600 * or the given defaultValue if this map contains no mapping for the key.
2601 *
2602 * @param key the key
2603 * @param defaultValue the value to return if this map contains
2604 * no mapping for the given key
2605 * @return the mapping for the key, if present; else the defaultValue
2606 * @throws NullPointerException if the specified key is null
2607 */
2608 public V getOrDefault(Object key, V defaultValue) {
2609 V v;
2610 return (v = internalGet(key)) == null ? defaultValue : v;
2611 }
2612
2613 /**
2614 * Tests if the specified object is a key in this table.
2615 *
2616 * @param key possible key
2617 * @return {@code true} if and only if the specified object
2618 * is a key in this table, as determined by the
2619 * {@code equals} method; {@code false} otherwise
2620 * @throws NullPointerException if the specified key is null
2621 */
2622 public boolean containsKey(Object key) {
2623 return internalGet(key) != null;
2624 }
2625
2626 /**
2627 * Returns {@code true} if this map maps one or more keys to the
2628 * specified value. Note: This method may require a full traversal
2629 * of the map, and is much slower than method {@code containsKey}.
2630 *
2631 * @param value value whose presence in this map is to be tested
2632 * @return {@code true} if this map maps one or more keys to the
2633 * specified value
2634 * @throws NullPointerException if the specified value is null
2635 */
2636 public boolean containsValue(Object value) {
2637 if (value == null)
2638 throw new NullPointerException();
2639 Node<K,V>[] t;
2640 if ((t = table) != null) {
2641 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
2642 for (Node<K,V> p; (p = it.advance()) != null; ) {
2643 V v;
2644 if ((v = p.val) == value || value.equals(v))
2645 return true;
2646 }
2647 }
2648 return false;
2649 }
2650
2651 /**
2652 * Legacy method testing if some key maps into the specified value
2653 * in this table. This method is identical in functionality to
2654 * {@link #containsValue(Object)}, and exists solely to ensure
2655 * full compatibility with class {@link java.util.Hashtable},
2656 * which supported this method prior to introduction of the
2657 * Java Collections framework.
2658 *
2659 * @param value a value to search for
2660 * @return {@code true} if and only if some key maps to the
2661 * {@code value} argument in this table as
2662 * determined by the {@code equals} method;
2663 * {@code false} otherwise
2664 * @throws NullPointerException if the specified value is null
2665 */
2666 @Deprecated public boolean contains(Object value) {
2667 return containsValue(value);
2668 }
2669
2670 /**
2671 * Maps the specified key to the specified value in this table.
2672 * Neither the key nor the value can be null.
2673 *
2674 * <p>The value can be retrieved by calling the {@code get} method
2675 * with a key that is equal to the original key.
2676 *
2677 * @param key key with which the specified value is to be associated
2678 * @param value value to be associated with the specified key
2679 * @return the previous value associated with {@code key}, or
2680 * {@code null} if there was no mapping for {@code key}
2681 * @throws NullPointerException if the specified key or value is null
2682 */
2683 public V put(K key, V value) {
2684 return internalPut(key, value, false);
2685 }
2686
2687 /**
2688 * {@inheritDoc}
2689 *
2690 * @return the previous value associated with the specified key,
2691 * or {@code null} if there was no mapping for the key
2692 * @throws NullPointerException if the specified key or value is null
2693 */
2694 public V putIfAbsent(K key, V value) {
2695 return internalPut(key, value, true);
2696 }
2697
2698 /**
2699 * Copies all of the mappings from the specified map to this one.
2700 * These mappings replace any mappings that this map had for any of the
2701 * keys currently in the specified map.
2702 *
2703 * @param m mappings to be stored in this map
2704 */
2705 public void putAll(Map<? extends K, ? extends V> m) {
2706 internalPutAll(m);
2707 }
2708
2709 /**
2710 * If the specified key is not already associated with a value,
2711 * attempts to compute its value using the given mapping function
2712 * and enters it into this map unless {@code null}. The entire
2713 * method invocation is performed atomically, so the function is
2714 * applied at most once per key. Some attempted update operations
2715 * on this map by other threads may be blocked while computation
2716 * is in progress, so the computation should be short and simple,
2717 * and must not attempt to update any other mappings of this map.
2718 *
2719 * @param key key with which the specified value is to be associated
2720 * @param mappingFunction the function to compute a value
2721 * @return the current (existing or computed) value associated with
2722 * the specified key, or null if the computed value is null
2723 * @throws NullPointerException if the specified key or mappingFunction
2724 * is null
2725 * @throws IllegalStateException if the computation detectably
2726 * attempts a recursive update to this map that would
2727 * otherwise never complete
2728 * @throws RuntimeException or Error if the mappingFunction does so,
2729 * in which case the mapping is left unestablished
2730 */
2731 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
2732 return internalComputeIfAbsent(key, mappingFunction);
2733 }
2734
2735 /**
2736 * If the value for the specified key is present, attempts to
2737 * compute a new mapping given the key and its current mapped
2738 * value. The entire method invocation is performed atomically.
2739 * Some attempted update operations on this map by other threads
2740 * may be blocked while computation is in progress, so the
2741 * computation should be short and simple, and must not attempt to
2742 * update any other mappings of this map.
2743 *
2744 * @param key key with which a value may be associated
2745 * @param remappingFunction the function to compute a value
2746 * @return the new value associated with the specified key, or null if none
2747 * @throws NullPointerException if the specified key or remappingFunction
2748 * is null
2749 * @throws IllegalStateException if the computation detectably
2750 * attempts a recursive update to this map that would
2751 * otherwise never complete
2752 * @throws RuntimeException or Error if the remappingFunction does so,
2753 * in which case the mapping is unchanged
2754 */
2755 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2756 return internalCompute(key, true, remappingFunction);
2757 }
2758
2759 /**
2760 * Attempts to compute a mapping for the specified key and its
2761 * current mapped value (or {@code null} if there is no current
2762 * mapping). The entire method invocation is performed atomically.
2763 * Some attempted update operations on this map by other threads
2764 * may be blocked while computation is in progress, so the
2765 * computation should be short and simple, and must not attempt to
2766 * update any other mappings of this Map.
2767 *
2768 * @param key key with which the specified value is to be associated
2769 * @param remappingFunction the function to compute a value
2770 * @return the new value associated with the specified key, or null if none
2771 * @throws NullPointerException if the specified key or remappingFunction
2772 * is null
2773 * @throws IllegalStateException if the computation detectably
2774 * attempts a recursive update to this map that would
2775 * otherwise never complete
2776 * @throws RuntimeException or Error if the remappingFunction does so,
2777 * in which case the mapping is unchanged
2778 */
2779 public V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
2780 return internalCompute(key, false, remappingFunction);
2781 }
2782
2783 /**
2784 * If the specified key is not already associated with a
2785 * (non-null) value, associates it with the given value.
2786 * Otherwise, replaces the value with the results of the given
2787 * remapping function, or removes if {@code null}. The entire
2788 * method invocation is performed atomically. Some attempted
2789 * update operations on this map by other threads may be blocked
2790 * while computation is in progress, so the computation should be
2791 * short and simple, and must not attempt to update any other
2792 * mappings of this Map.
2793 *
2794 * @param key key with which the specified value is to be associated
2795 * @param value the value to use if absent
2796 * @param remappingFunction the function to recompute a value if present
2797 * @return the new value associated with the specified key, or null if none
2798 * @throws NullPointerException if the specified key or the
2799 * remappingFunction is null
2800 * @throws RuntimeException or Error if the remappingFunction does so,
2801 * in which case the mapping is unchanged
2802 */
2803 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2804 return internalMerge(key, value, remappingFunction);
2805 }
2806
2807 /**
2808 * Removes the key (and its corresponding value) from this map.
2809 * This method does nothing if the key is not in the map.
2810 *
2811 * @param key the key that needs to be removed
2812 * @return the previous value associated with {@code key}, or
2813 * {@code null} if there was no mapping for {@code key}
2814 * @throws NullPointerException if the specified key is null
2815 */
2816 public V remove(Object key) {
2817 return internalReplace(key, null, null);
2818 }
2819
2820 /**
2821 * {@inheritDoc}
2822 *
2823 * @throws NullPointerException if the specified key is null
2824 */
2825 public boolean remove(Object key, Object value) {
2826 if (key == null)
2827 throw new NullPointerException();
2828 return value != null && internalReplace(key, null, value) != null;
2829 }
2830
2831 /**
2832 * {@inheritDoc}
2833 *
2834 * @throws NullPointerException if any of the arguments are null
2835 */
2836 public boolean replace(K key, V oldValue, V newValue) {
2837 if (key == null || oldValue == null || newValue == null)
2838 throw new NullPointerException();
2839 return internalReplace(key, newValue, oldValue) != null;
2840 }
2841
2842 /**
2843 * {@inheritDoc}
2844 *
2845 * @return the previous value associated with the specified key,
2846 * or {@code null} if there was no mapping for the key
2847 * @throws NullPointerException if the specified key or value is null
2848 */
2849 public V replace(K key, V value) {
2850 if (key == null || value == null)
2851 throw new NullPointerException();
2852 return internalReplace(key, value, null);
2853 }
2854
2855 /**
2856 * Removes all of the mappings from this map.
2857 */
2858 public void clear() {
2859 internalClear();
2860 }
2861
2862 /**
2863 * Returns a {@link Set} view of the keys contained in this map.
2864 * The set is backed by the map, so changes to the map are
2865 * reflected in the set, and vice-versa. The set supports element
2866 * removal, which removes the corresponding mapping from this map,
2867 * via the {@code Iterator.remove}, {@code Set.remove},
2868 * {@code removeAll}, {@code retainAll}, and {@code clear}
2869 * operations. It does not support the {@code add} or
2870 * {@code addAll} operations.
2871 *
2872 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2873 * that will never throw {@link ConcurrentModificationException},
2874 * and guarantees to traverse elements as they existed upon
2875 * construction of the iterator, and may (but is not guaranteed to)
2876 * reflect any modifications subsequent to construction.
2877 *
2878 * @return the set view
2879 */
2880 public KeySetView<K,V> keySet() {
2881 KeySetView<K,V> ks = keySet;
2882 return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2883 }
2884
2885 /**
2886 * Returns a {@link Set} view of the keys in this map, using the
2887 * given common mapped value for any additions (i.e., {@link
2888 * Collection#add} and {@link Collection#addAll(Collection)}).
2889 * This is of course only appropriate if it is acceptable to use
2890 * the same value for all additions from this view.
2891 *
2892 * @param mappedValue the mapped value to use for any additions
2893 * @return the set view
2894 * @throws NullPointerException if the mappedValue is null
2895 */
2896 public KeySetView<K,V> keySet(V mappedValue) {
2897 if (mappedValue == null)
2898 throw new NullPointerException();
2899 return new KeySetView<K,V>(this, mappedValue);
2900 }
2901
2902 /**
2903 * Returns a {@link Collection} view of the values contained in this map.
2904 * The collection is backed by the map, so changes to the map are
2905 * reflected in the collection, and vice-versa. The collection
2906 * supports element removal, which removes the corresponding
2907 * mapping from this map, via the {@code Iterator.remove},
2908 * {@code Collection.remove}, {@code removeAll},
2909 * {@code retainAll}, and {@code clear} operations. It does not
2910 * support the {@code add} or {@code addAll} operations.
2911 *
2912 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2913 * that will never throw {@link ConcurrentModificationException},
2914 * and guarantees to traverse elements as they existed upon
2915 * construction of the iterator, and may (but is not guaranteed to)
2916 * reflect any modifications subsequent to construction.
2917 *
2918 * @return the collection view
2919 */
2920 public Collection<V> values() {
2921 ValuesView<K,V> vs = values;
2922 return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2923 }
2924
2925 /**
2926 * Returns a {@link Set} view of the mappings contained in this map.
2927 * The set is backed by the map, so changes to the map are
2928 * reflected in the set, and vice-versa. The set supports element
2929 * removal, which removes the corresponding mapping from the map,
2930 * via the {@code Iterator.remove}, {@code Set.remove},
2931 * {@code removeAll}, {@code retainAll}, and {@code clear}
2932 * operations.
2933 *
2934 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2935 * that will never throw {@link ConcurrentModificationException},
2936 * and guarantees to traverse elements as they existed upon
2937 * construction of the iterator, and may (but is not guaranteed to)
2938 * reflect any modifications subsequent to construction.
2939 *
2940 * @return the set view
2941 */
2942 public Set<Map.Entry<K,V>> entrySet() {
2943 EntrySetView<K,V> es = entrySet;
2944 return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2945 }
2946
2947 /**
2948 * Returns an enumeration of the keys in this table.
2949 *
2950 * @return an enumeration of the keys in this table
2951 * @see #keySet()
2952 */
2953 public Enumeration<K> keys() {
2954 Node<K,V>[] t;
2955 int f = (t = table) == null ? 0 : t.length;
2956 return new KeyIterator<K,V>(t, f, 0, f, this);
2957 }
2958
2959 /**
2960 * Returns an enumeration of the values in this table.
2961 *
2962 * @return an enumeration of the values in this table
2963 * @see #values()
2964 */
2965 public Enumeration<V> elements() {
2966 Node<K,V>[] t;
2967 int f = (t = table) == null ? 0 : t.length;
2968 return new ValueIterator<K,V>(t, f, 0, f, this);
2969 }
2970
2971 /**
2972 * Returns the hash code value for this {@link Map}, i.e.,
2973 * the sum of, for each key-value pair in the map,
2974 * {@code key.hashCode() ^ value.hashCode()}.
2975 *
2976 * @return the hash code value for this map
2977 */
2978 public int hashCode() {
2979 int h = 0;
2980 Node<K,V>[] t;
2981 if ((t = table) != null) {
2982 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
2983 for (Node<K,V> p; (p = it.advance()) != null; )
2984 h += p.key.hashCode() ^ p.val.hashCode();
2985 }
2986 return h;
2987 }
2988
2989 /**
2990 * Returns a string representation of this map. The string
2991 * representation consists of a list of key-value mappings (in no
2992 * particular order) enclosed in braces ("{@code {}}"). Adjacent
2993 * mappings are separated by the characters {@code ", "} (comma
2994 * and space). Each key-value mapping is rendered as the key
2995 * followed by an equals sign ("{@code =}") followed by the
2996 * associated value.
2997 *
2998 * @return a string representation of this map
2999 */
3000 public String toString() {
3001 Node<K,V>[] t;
3002 int f = (t = table) == null ? 0 : t.length;
3003 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
3004 StringBuilder sb = new StringBuilder();
3005 sb.append('{');
3006 Node<K,V> p;
3007 if ((p = it.advance()) != null) {
3008 for (;;) {
3009 K k = (K)p.key;
3010 V v = p.val;
3011 sb.append(k == this ? "(this Map)" : k);
3012 sb.append('=');
3013 sb.append(v == this ? "(this Map)" : v);
3014 if ((p = it.advance()) == null)
3015 break;
3016 sb.append(',').append(' ');
3017 }
3018 }
3019 return sb.append('}').toString();
3020 }
3021
3022 /**
3023 * Compares the specified object with this map for equality.
3024 * Returns {@code true} if the given object is a map with the same
3025 * mappings as this map. This operation may return misleading
3026 * results if either map is concurrently modified during execution
3027 * of this method.
3028 *
3029 * @param o object to be compared for equality with this map
3030 * @return {@code true} if the specified object is equal to this map
3031 */
3032 public boolean equals(Object o) {
3033 if (o != this) {
3034 if (!(o instanceof Map))
3035 return false;
3036 Map<?,?> m = (Map<?,?>) o;
3037 Node<K,V>[] t;
3038 int f = (t = table) == null ? 0 : t.length;
3039 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
3040 for (Node<K,V> p; (p = it.advance()) != null; ) {
3041 V val = p.val;
3042 Object v = m.get(p.key);
3043 if (v == null || (v != val && !v.equals(val)))
3044 return false;
3045 }
3046 for (Map.Entry<?,?> e : m.entrySet()) {
3047 Object mk, mv, v;
3048 if ((mk = e.getKey()) == null ||
3049 (mv = e.getValue()) == null ||
3050 (v = internalGet(mk)) == null ||
3051 (mv != v && !mv.equals(v)))
3052 return false;
3053 }
3054 }
3055 return true;
3056 }
3057
3058 /* ---------------- Serialization Support -------------- */
3059
3060 /**
3061 * Stripped-down version of helper class used in previous version,
3062 * declared for the sake of serialization compatibility
3063 */
3064 static class Segment<K,V> extends ReentrantLock implements Serializable {
3065 private static final long serialVersionUID = 2249069246763182397L;
3066 final float loadFactor;
3067 Segment(float lf) { this.loadFactor = lf; }
3068 }
3069
3070 /**
3071 * Saves the state of the {@code ConcurrentHashMap} instance to a
3072 * stream (i.e., serializes it).
3073 * @param s the stream
3074 * @serialData
3075 * the key (Object) and value (Object)
3076 * for each key-value mapping, followed by a null pair.
3077 * The key-value mappings are emitted in no particular order.
3078 */
3079 private void writeObject(java.io.ObjectOutputStream s)
3080 throws java.io.IOException {
3081 // For serialization compatibility
3082 // Emulate segment calculation from previous version of this class
3083 int sshift = 0;
3084 int ssize = 1;
3085 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
3086 ++sshift;
3087 ssize <<= 1;
3088 }
3089 int segmentShift = 32 - sshift;
3090 int segmentMask = ssize - 1;
3091 Segment<K,V>[] segments = (Segment<K,V>[])
3092 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3093 for (int i = 0; i < segments.length; ++i)
3094 segments[i] = new Segment<K,V>(LOAD_FACTOR);
3095 s.putFields().put("segments", segments);
3096 s.putFields().put("segmentShift", segmentShift);
3097 s.putFields().put("segmentMask", segmentMask);
3098 s.writeFields();
3099
3100 Node<K,V>[] t;
3101 if ((t = table) != null) {
3102 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
3103 for (Node<K,V> p; (p = it.advance()) != null; ) {
3104 s.writeObject(p.key);
3105 s.writeObject(p.val);
3106 }
3107 }
3108 s.writeObject(null);
3109 s.writeObject(null);
3110 segments = null; // throw away
3111 }
3112
3113 /**
3114 * Reconstitutes the instance from a stream (that is, deserializes it).
3115 * @param s the stream
3116 */
3117 private void readObject(java.io.ObjectInputStream s)
3118 throws java.io.IOException, ClassNotFoundException {
3119 s.defaultReadObject();
3120
3121 // Create all nodes, then place in table once size is known
3122 long size = 0L;
3123 Node<K,V> p = null;
3124 for (;;) {
3125 K k = (K) s.readObject();
3126 V v = (V) s.readObject();
3127 if (k != null && v != null) {
3128 int h = spread(k.hashCode());
3129 p = new Node<K,V>(h, k, v, p);
3130 ++size;
3131 }
3132 else
3133 break;
3134 }
3135 if (p != null) {
3136 boolean init = false;
3137 int n;
3138 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3139 n = MAXIMUM_CAPACITY;
3140 else {
3141 int sz = (int)size;
3142 n = tableSizeFor(sz + (sz >>> 1) + 1);
3143 }
3144 int sc = sizeCtl;
3145 boolean collide = false;
3146 if (n > sc &&
3147 U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3148 try {
3149 if (table == null) {
3150 init = true;
3151 Node<K,V>[] tab = (Node<K,V>[])new Node[n];
3152 int mask = n - 1;
3153 while (p != null) {
3154 int j = p.hash & mask;
3155 Node<K,V> next = p.next;
3156 Node<K,V> q = p.next = tabAt(tab, j);
3157 setTabAt(tab, j, p);
3158 if (!collide && q != null && q.hash == p.hash)
3159 collide = true;
3160 p = next;
3161 }
3162 table = tab;
3163 addCount(size, -1);
3164 sc = n - (n >>> 2);
3165 }
3166 } finally {
3167 sizeCtl = sc;
3168 }
3169 if (collide) { // rescan and convert to TreeBins
3170 Node<K,V>[] tab = table;
3171 for (int i = 0; i < tab.length; ++i) {
3172 int c = 0;
3173 for (Node<K,V> e = tabAt(tab, i); e != null; e = e.next) {
3174 if (++c > TREE_THRESHOLD &&
3175 (e.key instanceof Comparable)) {
3176 replaceWithTreeBin(tab, i, e.key);
3177 break;
3178 }
3179 }
3180 }
3181 }
3182 }
3183 if (!init) { // Can only happen if unsafely published.
3184 while (p != null) {
3185 internalPut((K)p.key, p.val, false);
3186 p = p.next;
3187 }
3188 }
3189 }
3190 }
3191
3192 // -------------------------------------------------------
3193
3194 // Overrides of other default Map methods
3195
3196 public void forEach(BiConsumer<? super K, ? super V> action) {
3197 if (action == null) throw new NullPointerException();
3198 Node<K,V>[] t;
3199 if ((t = table) != null) {
3200 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
3201 for (Node<K,V> p; (p = it.advance()) != null; ) {
3202 action.accept((K)p.key, p.val);
3203 }
3204 }
3205 }
3206
3207 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
3208 if (function == null) throw new NullPointerException();
3209 Node<K,V>[] t;
3210 if ((t = table) != null) {
3211 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
3212 for (Node<K,V> p; (p = it.advance()) != null; ) {
3213 K k = (K)p.key;
3214 internalPut(k, function.apply(k, p.val), false);
3215 }
3216 }
3217 }
3218
3219 // -------------------------------------------------------
3220
3221 // Parallel bulk operations
3222
3223 /**
3224 * Computes initial batch value for bulk tasks. The returned value
3225 * is approximately exp2 of the number of times (minus one) to
3226 * split task by two before executing leaf action. This value is
3227 * faster to compute and more convenient to use as a guide to
3228 * splitting than is the depth, since it is used while dividing by
3229 * two anyway.
3230 */
3231 final int batchFor(long b) {
3232 long n;
3233 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3234 return 0;
3235 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3236 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3237 }
3238
3239 /**
3240 * Performs the given action for each (key, value).
3241 *
3242 * @param parallelismThreshold the (estimated) number of elements
3243 * needed for this operation to be executed in parallel
3244 * @param action the action
3245 */
3246 public void forEach(long parallelismThreshold,
3247 BiConsumer<? super K,? super V> action) {
3248 if (action == null) throw new NullPointerException();
3249 new ForEachMappingTask<K,V>
3250 (null, batchFor(parallelismThreshold), 0, 0, table,
3251 action).invoke();
3252 }
3253
3254 /**
3255 * Performs the given action for each non-null transformation
3256 * of each (key, value).
3257 *
3258 * @param parallelismThreshold the (estimated) number of elements
3259 * needed for this operation to be executed in parallel
3260 * @param transformer a function returning the transformation
3261 * for an element, or null if there is no transformation (in
3262 * which case the action is not applied)
3263 * @param action the action
3264 */
3265 public <U> void forEach(long parallelismThreshold,
3266 BiFunction<? super K, ? super V, ? extends U> transformer,
3267 Consumer<? super U> action) {
3268 if (transformer == null || action == null)
3269 throw new NullPointerException();
3270 new ForEachTransformedMappingTask<K,V,U>
3271 (null, batchFor(parallelismThreshold), 0, 0, table,
3272 transformer, action).invoke();
3273 }
3274
3275 /**
3276 * Returns a non-null result from applying the given search
3277 * function on each (key, value), or null if none. Upon
3278 * success, further element processing is suppressed and the
3279 * results of any other parallel invocations of the search
3280 * function are ignored.
3281 *
3282 * @param parallelismThreshold the (estimated) number of elements
3283 * needed for this operation to be executed in parallel
3284 * @param searchFunction a function returning a non-null
3285 * result on success, else null
3286 * @return a non-null result from applying the given search
3287 * function on each (key, value), or null if none
3288 */
3289 public <U> U search(long parallelismThreshold,
3290 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3291 if (searchFunction == null) throw new NullPointerException();
3292 return new SearchMappingsTask<K,V,U>
3293 (null, batchFor(parallelismThreshold), 0, 0, table,
3294 searchFunction, new AtomicReference<U>()).invoke();
3295 }
3296
3297 /**
3298 * Returns the result of accumulating the given transformation
3299 * of all (key, value) pairs using the given reducer to
3300 * combine values, or null if none.
3301 *
3302 * @param parallelismThreshold the (estimated) number of elements
3303 * needed for this operation to be executed in parallel
3304 * @param transformer a function returning the transformation
3305 * for an element, or null if there is no transformation (in
3306 * which case it is not combined)
3307 * @param reducer a commutative associative combining function
3308 * @return the result of accumulating the given transformation
3309 * of all (key, value) pairs
3310 */
3311 public <U> U reduce(long parallelismThreshold,
3312 BiFunction<? super K, ? super V, ? extends U> transformer,
3313 BiFunction<? super U, ? super U, ? extends U> reducer) {
3314 if (transformer == null || reducer == null)
3315 throw new NullPointerException();
3316 return new MapReduceMappingsTask<K,V,U>
3317 (null, batchFor(parallelismThreshold), 0, 0, table,
3318 null, transformer, reducer).invoke();
3319 }
3320
3321 /**
3322 * Returns the result of accumulating the given transformation
3323 * of all (key, value) pairs using the given reducer to
3324 * combine values, and the given basis as an identity value.
3325 *
3326 * @param parallelismThreshold the (estimated) number of elements
3327 * needed for this operation to be executed in parallel
3328 * @param transformer a function returning the transformation
3329 * for an element
3330 * @param basis the identity (initial default value) for the reduction
3331 * @param reducer a commutative associative combining function
3332 * @return the result of accumulating the given transformation
3333 * of all (key, value) pairs
3334 */
3335 public double reduceToDoubleIn(long parallelismThreshold,
3336 ToDoubleBiFunction<? super K, ? super V> transformer,
3337 double basis,
3338 DoubleBinaryOperator reducer) {
3339 if (transformer == null || reducer == null)
3340 throw new NullPointerException();
3341 return new MapReduceMappingsToDoubleTask<K,V>
3342 (null, batchFor(parallelismThreshold), 0, 0, table,
3343 null, transformer, basis, reducer).invoke();
3344 }
3345
3346 /**
3347 * Returns the result of accumulating the given transformation
3348 * of all (key, value) pairs using the given reducer to
3349 * combine values, and the given basis as an identity value.
3350 *
3351 * @param parallelismThreshold the (estimated) number of elements
3352 * needed for this operation to be executed in parallel
3353 * @param transformer a function returning the transformation
3354 * for an element
3355 * @param basis the identity (initial default value) for the reduction
3356 * @param reducer a commutative associative combining function
3357 * @return the result of accumulating the given transformation
3358 * of all (key, value) pairs
3359 */
3360 public long reduceToLong(long parallelismThreshold,
3361 ToLongBiFunction<? super K, ? super V> transformer,
3362 long basis,
3363 LongBinaryOperator reducer) {
3364 if (transformer == null || reducer == null)
3365 throw new NullPointerException();
3366 return new MapReduceMappingsToLongTask<K,V>
3367 (null, batchFor(parallelismThreshold), 0, 0, table,
3368 null, transformer, basis, reducer).invoke();
3369 }
3370
3371 /**
3372 * Returns the result of accumulating the given transformation
3373 * of all (key, value) pairs using the given reducer to
3374 * combine values, and the given basis as an identity value.
3375 *
3376 * @param parallelismThreshold the (estimated) number of elements
3377 * needed for this operation to be executed in parallel
3378 * @param transformer a function returning the transformation
3379 * for an element
3380 * @param basis the identity (initial default value) for the reduction
3381 * @param reducer a commutative associative combining function
3382 * @return the result of accumulating the given transformation
3383 * of all (key, value) pairs
3384 */
3385 public int reduceToInt(long parallelismThreshold,
3386 ToIntBiFunction<? super K, ? super V> transformer,
3387 int basis,
3388 IntBinaryOperator reducer) {
3389 if (transformer == null || reducer == null)
3390 throw new NullPointerException();
3391 return new MapReduceMappingsToIntTask<K,V>
3392 (null, batchFor(parallelismThreshold), 0, 0, table,
3393 null, transformer, basis, reducer).invoke();
3394 }
3395
3396 /**
3397 * Performs the given action for each key.
3398 *
3399 * @param parallelismThreshold the (estimated) number of elements
3400 * needed for this operation to be executed in parallel
3401 * @param action the action
3402 */
3403 public void forEachKey(long parallelismThreshold,
3404 Consumer<? super K> action) {
3405 if (action == null) throw new NullPointerException();
3406 new ForEachKeyTask<K,V>
3407 (null, batchFor(parallelismThreshold), 0, 0, table,
3408 action).invoke();
3409 }
3410
3411 /**
3412 * Performs the given action for each non-null transformation
3413 * of each key.
3414 *
3415 * @param parallelismThreshold the (estimated) number of elements
3416 * needed for this operation to be executed in parallel
3417 * @param transformer a function returning the transformation
3418 * for an element, or null if there is no transformation (in
3419 * which case the action is not applied)
3420 * @param action the action
3421 */
3422 public <U> void forEachKey(long parallelismThreshold,
3423 Function<? super K, ? extends U> transformer,
3424 Consumer<? super U> action) {
3425 if (transformer == null || action == null)
3426 throw new NullPointerException();
3427 new ForEachTransformedKeyTask<K,V,U>
3428 (null, batchFor(parallelismThreshold), 0, 0, table,
3429 transformer, action).invoke();
3430 }
3431
3432 /**
3433 * Returns a non-null result from applying the given search
3434 * function on each key, or null if none. Upon success,
3435 * further element processing is suppressed and the results of
3436 * any other parallel invocations of the search function are
3437 * ignored.
3438 *
3439 * @param parallelismThreshold the (estimated) number of elements
3440 * needed for this operation to be executed in parallel
3441 * @param searchFunction a function returning a non-null
3442 * result on success, else null
3443 * @return a non-null result from applying the given search
3444 * function on each key, or null if none
3445 */
3446 public <U> U searchKeys(long parallelismThreshold,
3447 Function<? super K, ? extends U> searchFunction) {
3448 if (searchFunction == null) throw new NullPointerException();
3449 return new SearchKeysTask<K,V,U>
3450 (null, batchFor(parallelismThreshold), 0, 0, table,
3451 searchFunction, new AtomicReference<U>()).invoke();
3452 }
3453
3454 /**
3455 * Returns the result of accumulating all keys using the given
3456 * reducer to combine values, or null if none.
3457 *
3458 * @param parallelismThreshold the (estimated) number of elements
3459 * needed for this operation to be executed in parallel
3460 * @param reducer a commutative associative combining function
3461 * @return the result of accumulating all keys using the given
3462 * reducer to combine values, or null if none
3463 */
3464 public K reduceKeys(long parallelismThreshold,
3465 BiFunction<? super K, ? super K, ? extends K> reducer) {
3466 if (reducer == null) throw new NullPointerException();
3467 return new ReduceKeysTask<K,V>
3468 (null, batchFor(parallelismThreshold), 0, 0, table,
3469 null, reducer).invoke();
3470 }
3471
3472 /**
3473 * Returns the result of accumulating the given transformation
3474 * of all keys using the given reducer to combine values, or
3475 * null if none.
3476 *
3477 * @param parallelismThreshold the (estimated) number of elements
3478 * needed for this operation to be executed in parallel
3479 * @param transformer a function returning the transformation
3480 * for an element, or null if there is no transformation (in
3481 * which case it is not combined)
3482 * @param reducer a commutative associative combining function
3483 * @return the result of accumulating the given transformation
3484 * of all keys
3485 */
3486 public <U> U reduceKeys(long parallelismThreshold,
3487 Function<? super K, ? extends U> transformer,
3488 BiFunction<? super U, ? super U, ? extends U> reducer) {
3489 if (transformer == null || reducer == null)
3490 throw new NullPointerException();
3491 return new MapReduceKeysTask<K,V,U>
3492 (null, batchFor(parallelismThreshold), 0, 0, table,
3493 null, transformer, reducer).invoke();
3494 }
3495
3496 /**
3497 * Returns the result of accumulating the given transformation
3498 * of all keys using the given reducer to combine values, and
3499 * the given basis as an identity value.
3500 *
3501 * @param parallelismThreshold the (estimated) number of elements
3502 * needed for this operation to be executed in parallel
3503 * @param transformer a function returning the transformation
3504 * for an element
3505 * @param basis the identity (initial default value) for the reduction
3506 * @param reducer a commutative associative combining function
3507 * @return the result of accumulating the given transformation
3508 * of all keys
3509 */
3510 public double reduceKeysToDouble(long parallelismThreshold,
3511 ToDoubleFunction<? super K> transformer,
3512 double basis,
3513 DoubleBinaryOperator reducer) {
3514 if (transformer == null || reducer == null)
3515 throw new NullPointerException();
3516 return new MapReduceKeysToDoubleTask<K,V>
3517 (null, batchFor(parallelismThreshold), 0, 0, table,
3518 null, transformer, basis, reducer).invoke();
3519 }
3520
3521 /**
3522 * Returns the result of accumulating the given transformation
3523 * of all keys using the given reducer to combine values, and
3524 * the given basis as an identity value.
3525 *
3526 * @param parallelismThreshold the (estimated) number of elements
3527 * needed for this operation to be executed in parallel
3528 * @param transformer a function returning the transformation
3529 * for an element
3530 * @param basis the identity (initial default value) for the reduction
3531 * @param reducer a commutative associative combining function
3532 * @return the result of accumulating the given transformation
3533 * of all keys
3534 */
3535 public long reduceKeysToLong(long parallelismThreshold,
3536 ToLongFunction<? super K> transformer,
3537 long basis,
3538 LongBinaryOperator reducer) {
3539 if (transformer == null || reducer == null)
3540 throw new NullPointerException();
3541 return new MapReduceKeysToLongTask<K,V>
3542 (null, batchFor(parallelismThreshold), 0, 0, table,
3543 null, transformer, basis, reducer).invoke();
3544 }
3545
3546 /**
3547 * Returns the result of accumulating the given transformation
3548 * of all keys using the given reducer to combine values, and
3549 * the given basis as an identity value.
3550 *
3551 * @param parallelismThreshold the (estimated) number of elements
3552 * needed for this operation to be executed in parallel
3553 * @param transformer a function returning the transformation
3554 * for an element
3555 * @param basis the identity (initial default value) for the reduction
3556 * @param reducer a commutative associative combining function
3557 * @return the result of accumulating the given transformation
3558 * of all keys
3559 */
3560 public int reduceKeysToInt(long parallelismThreshold,
3561 ToIntFunction<? super K> transformer,
3562 int basis,
3563 IntBinaryOperator reducer) {
3564 if (transformer == null || reducer == null)
3565 throw new NullPointerException();
3566 return new MapReduceKeysToIntTask<K,V>
3567 (null, batchFor(parallelismThreshold), 0, 0, table,
3568 null, transformer, basis, reducer).invoke();
3569 }
3570
3571 /**
3572 * Performs the given action for each value.
3573 *
3574 * @param parallelismThreshold the (estimated) number of elements
3575 * needed for this operation to be executed in parallel
3576 * @param action the action
3577 */
3578 public void forEachValue(long parallelismThreshold,
3579 Consumer<? super V> action) {
3580 if (action == null)
3581 throw new NullPointerException();
3582 new ForEachValueTask<K,V>
3583 (null, batchFor(parallelismThreshold), 0, 0, table,
3584 action).invoke();
3585 }
3586
3587 /**
3588 * Performs the given action for each non-null transformation
3589 * of each value.
3590 *
3591 * @param parallelismThreshold the (estimated) number of elements
3592 * needed for this operation to be executed in parallel
3593 * @param transformer a function returning the transformation
3594 * for an element, or null if there is no transformation (in
3595 * which case the action is not applied)
3596 * @param action the action
3597 */
3598 public <U> void forEachValue(long parallelismThreshold,
3599 Function<? super V, ? extends U> transformer,
3600 Consumer<? super U> action) {
3601 if (transformer == null || action == null)
3602 throw new NullPointerException();
3603 new ForEachTransformedValueTask<K,V,U>
3604 (null, batchFor(parallelismThreshold), 0, 0, table,
3605 transformer, action).invoke();
3606 }
3607
3608 /**
3609 * Returns a non-null result from applying the given search
3610 * function on each value, or null if none. Upon success,
3611 * further element processing is suppressed and the results of
3612 * any other parallel invocations of the search function are
3613 * ignored.
3614 *
3615 * @param parallelismThreshold the (estimated) number of elements
3616 * needed for this operation to be executed in parallel
3617 * @param searchFunction a function returning a non-null
3618 * result on success, else null
3619 * @return a non-null result from applying the given search
3620 * function on each value, or null if none
3621 */
3622 public <U> U searchValues(long parallelismThreshold,
3623 Function<? super V, ? extends U> searchFunction) {
3624 if (searchFunction == null) throw new NullPointerException();
3625 return new SearchValuesTask<K,V,U>
3626 (null, batchFor(parallelismThreshold), 0, 0, table,
3627 searchFunction, new AtomicReference<U>()).invoke();
3628 }
3629
3630 /**
3631 * Returns the result of accumulating all values using the
3632 * given reducer to combine values, or null if none.
3633 *
3634 * @param parallelismThreshold the (estimated) number of elements
3635 * needed for this operation to be executed in parallel
3636 * @param reducer a commutative associative combining function
3637 * @return the result of accumulating all values
3638 */
3639 public V reduceValues(long parallelismThreshold,
3640 BiFunction<? super V, ? super V, ? extends V> reducer) {
3641 if (reducer == null) throw new NullPointerException();
3642 return new ReduceValuesTask<K,V>
3643 (null, batchFor(parallelismThreshold), 0, 0, table,
3644 null, reducer).invoke();
3645 }
3646
3647 /**
3648 * Returns the result of accumulating the given transformation
3649 * of all values using the given reducer to combine values, or
3650 * null if none.
3651 *
3652 * @param parallelismThreshold the (estimated) number of elements
3653 * needed for this operation to be executed in parallel
3654 * @param transformer a function returning the transformation
3655 * for an element, or null if there is no transformation (in
3656 * which case it is not combined)
3657 * @param reducer a commutative associative combining function
3658 * @return the result of accumulating the given transformation
3659 * of all values
3660 */
3661 public <U> U reduceValues(long parallelismThreshold,
3662 Function<? super V, ? extends U> transformer,
3663 BiFunction<? super U, ? super U, ? extends U> reducer) {
3664 if (transformer == null || reducer == null)
3665 throw new NullPointerException();
3666 return new MapReduceValuesTask<K,V,U>
3667 (null, batchFor(parallelismThreshold), 0, 0, table,
3668 null, transformer, reducer).invoke();
3669 }
3670
3671 /**
3672 * Returns the result of accumulating the given transformation
3673 * of all values using the given reducer to combine values,
3674 * and the given basis as an identity value.
3675 *
3676 * @param parallelismThreshold the (estimated) number of elements
3677 * needed for this operation to be executed in parallel
3678 * @param transformer a function returning the transformation
3679 * for an element
3680 * @param basis the identity (initial default value) for the reduction
3681 * @param reducer a commutative associative combining function
3682 * @return the result of accumulating the given transformation
3683 * of all values
3684 */
3685 public double reduceValuesToDouble(long parallelismThreshold,
3686 ToDoubleFunction<? super V> transformer,
3687 double basis,
3688 DoubleBinaryOperator reducer) {
3689 if (transformer == null || reducer == null)
3690 throw new NullPointerException();
3691 return new MapReduceValuesToDoubleTask<K,V>
3692 (null, batchFor(parallelismThreshold), 0, 0, table,
3693 null, transformer, basis, reducer).invoke();
3694 }
3695
3696 /**
3697 * Returns the result of accumulating the given transformation
3698 * of all values using the given reducer to combine values,
3699 * and the given basis as an identity value.
3700 *
3701 * @param parallelismThreshold the (estimated) number of elements
3702 * needed for this operation to be executed in parallel
3703 * @param transformer a function returning the transformation
3704 * for an element
3705 * @param basis the identity (initial default value) for the reduction
3706 * @param reducer a commutative associative combining function
3707 * @return the result of accumulating the given transformation
3708 * of all values
3709 */
3710 public long reduceValuesToLong(long parallelismThreshold,
3711 ToLongFunction<? super V> transformer,
3712 long basis,
3713 LongBinaryOperator reducer) {
3714 if (transformer == null || reducer == null)
3715 throw new NullPointerException();
3716 return new MapReduceValuesToLongTask<K,V>
3717 (null, batchFor(parallelismThreshold), 0, 0, table,
3718 null, transformer, basis, reducer).invoke();
3719 }
3720
3721 /**
3722 * Returns the result of accumulating the given transformation
3723 * of all values using the given reducer to combine values,
3724 * and the given basis as an identity value.
3725 *
3726 * @param parallelismThreshold the (estimated) number of elements
3727 * needed for this operation to be executed in parallel
3728 * @param transformer a function returning the transformation
3729 * for an element
3730 * @param basis the identity (initial default value) for the reduction
3731 * @param reducer a commutative associative combining function
3732 * @return the result of accumulating the given transformation
3733 * of all values
3734 */
3735 public int reduceValuesToInt(long parallelismThreshold,
3736 ToIntFunction<? super V> transformer,
3737 int basis,
3738 IntBinaryOperator reducer) {
3739 if (transformer == null || reducer == null)
3740 throw new NullPointerException();
3741 return new MapReduceValuesToIntTask<K,V>
3742 (null, batchFor(parallelismThreshold), 0, 0, table,
3743 null, transformer, basis, reducer).invoke();
3744 }
3745
3746 /**
3747 * Performs the given action for each entry.
3748 *
3749 * @param parallelismThreshold the (estimated) number of elements
3750 * needed for this operation to be executed in parallel
3751 * @param action the action
3752 */
3753 public void forEachEntry(long parallelismThreshold,
3754 Consumer<? super Map.Entry<K,V>> action) {
3755 if (action == null) throw new NullPointerException();
3756 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
3757 action).invoke();
3758 }
3759
3760 /**
3761 * Performs the given action for each non-null transformation
3762 * of each entry.
3763 *
3764 * @param parallelismThreshold the (estimated) number of elements
3765 * needed for this operation to be executed in parallel
3766 * @param transformer a function returning the transformation
3767 * for an element, or null if there is no transformation (in
3768 * which case the action is not applied)
3769 * @param action the action
3770 */
3771 public <U> void forEachEntry(long parallelismThreshold,
3772 Function<Map.Entry<K,V>, ? extends U> transformer,
3773 Consumer<? super U> action) {
3774 if (transformer == null || action == null)
3775 throw new NullPointerException();
3776 new ForEachTransformedEntryTask<K,V,U>
3777 (null, batchFor(parallelismThreshold), 0, 0, table,
3778 transformer, action).invoke();
3779 }
3780
3781 /**
3782 * Returns a non-null result from applying the given search
3783 * function on each entry, or null if none. Upon success,
3784 * further element processing is suppressed and the results of
3785 * any other parallel invocations of the search function are
3786 * ignored.
3787 *
3788 * @param parallelismThreshold the (estimated) number of elements
3789 * needed for this operation to be executed in parallel
3790 * @param searchFunction a function returning a non-null
3791 * result on success, else null
3792 * @return a non-null result from applying the given search
3793 * function on each entry, or null if none
3794 */
3795 public <U> U searchEntries(long parallelismThreshold,
3796 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
3797 if (searchFunction == null) throw new NullPointerException();
3798 return new SearchEntriesTask<K,V,U>
3799 (null, batchFor(parallelismThreshold), 0, 0, table,
3800 searchFunction, new AtomicReference<U>()).invoke();
3801 }
3802
3803 /**
3804 * Returns the result of accumulating all entries using the
3805 * given reducer to combine values, or null if none.
3806 *
3807 * @param parallelismThreshold the (estimated) number of elements
3808 * needed for this operation to be executed in parallel
3809 * @param reducer a commutative associative combining function
3810 * @return the result of accumulating all entries
3811 */
3812 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
3813 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3814 if (reducer == null) throw new NullPointerException();
3815 return new ReduceEntriesTask<K,V>
3816 (null, batchFor(parallelismThreshold), 0, 0, table,
3817 null, reducer).invoke();
3818 }
3819
3820 /**
3821 * Returns the result of accumulating the given transformation
3822 * of all entries using the given reducer to combine values,
3823 * or null if none.
3824 *
3825 * @param parallelismThreshold the (estimated) number of elements
3826 * needed for this operation to be executed in parallel
3827 * @param transformer a function returning the transformation
3828 * for an element, or null if there is no transformation (in
3829 * which case it is not combined)
3830 * @param reducer a commutative associative combining function
3831 * @return the result of accumulating the given transformation
3832 * of all entries
3833 */
3834 public <U> U reduceEntries(long parallelismThreshold,
3835 Function<Map.Entry<K,V>, ? extends U> transformer,
3836 BiFunction<? super U, ? super U, ? extends U> reducer) {
3837 if (transformer == null || reducer == null)
3838 throw new NullPointerException();
3839 return new MapReduceEntriesTask<K,V,U>
3840 (null, batchFor(parallelismThreshold), 0, 0, table,
3841 null, transformer, reducer).invoke();
3842 }
3843
3844 /**
3845 * Returns the result of accumulating the given transformation
3846 * of all entries using the given reducer to combine values,
3847 * and the given basis as an identity value.
3848 *
3849 * @param parallelismThreshold the (estimated) number of elements
3850 * needed for this operation to be executed in parallel
3851 * @param transformer a function returning the transformation
3852 * for an element
3853 * @param basis the identity (initial default value) for the reduction
3854 * @param reducer a commutative associative combining function
3855 * @return the result of accumulating the given transformation
3856 * of all entries
3857 */
3858 public double reduceEntriesToDouble(long parallelismThreshold,
3859 ToDoubleFunction<Map.Entry<K,V>> transformer,
3860 double basis,
3861 DoubleBinaryOperator reducer) {
3862 if (transformer == null || reducer == null)
3863 throw new NullPointerException();
3864 return new MapReduceEntriesToDoubleTask<K,V>
3865 (null, batchFor(parallelismThreshold), 0, 0, table,
3866 null, transformer, basis, reducer).invoke();
3867 }
3868
3869 /**
3870 * Returns the result of accumulating the given transformation
3871 * of all entries using the given reducer to combine values,
3872 * and the given basis as an identity value.
3873 *
3874 * @param parallelismThreshold the (estimated) number of elements
3875 * needed for this operation to be executed in parallel
3876 * @param transformer a function returning the transformation
3877 * for an element
3878 * @param basis the identity (initial default value) for the reduction
3879 * @param reducer a commutative associative combining function
3880 * @return the result of accumulating the given transformation
3881 * of all entries
3882 */
3883 public long reduceEntriesToLong(long parallelismThreshold,
3884 ToLongFunction<Map.Entry<K,V>> transformer,
3885 long basis,
3886 LongBinaryOperator reducer) {
3887 if (transformer == null || reducer == null)
3888 throw new NullPointerException();
3889 return new MapReduceEntriesToLongTask<K,V>
3890 (null, batchFor(parallelismThreshold), 0, 0, table,
3891 null, transformer, basis, reducer).invoke();
3892 }
3893
3894 /**
3895 * Returns the result of accumulating the given transformation
3896 * of all entries using the given reducer to combine values,
3897 * and the given basis as an identity value.
3898 *
3899 * @param parallelismThreshold the (estimated) number of elements
3900 * needed for this operation to be executed in parallel
3901 * @param transformer a function returning the transformation
3902 * for an element
3903 * @param basis the identity (initial default value) for the reduction
3904 * @param reducer a commutative associative combining function
3905 * @return the result of accumulating the given transformation
3906 * of all entries
3907 */
3908 public int reduceEntriesToInt(long parallelismThreshold,
3909 ToIntFunction<Map.Entry<K,V>> transformer,
3910 int basis,
3911 IntBinaryOperator reducer) {
3912 if (transformer == null || reducer == null)
3913 throw new NullPointerException();
3914 return new MapReduceEntriesToIntTask<K,V>
3915 (null, batchFor(parallelismThreshold), 0, 0, table,
3916 null, transformer, basis, reducer).invoke();
3917 }
3918
3919
3920 /* ----------------Views -------------- */
3921
3922 /**
3923 * Base class for views.
3924 */
3925 abstract static class CollectionView<K,V,E>
3926 implements Collection<E>, java.io.Serializable {
3927 private static final long serialVersionUID = 7249069246763182397L;
3928 final ConcurrentHashMap<K,V> map;
3929 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
3930
3931 /**
3932 * Returns the map backing this view.
3933 *
3934 * @return the map backing this view
3935 */
3936 public ConcurrentHashMap<K,V> getMap() { return map; }
3937
3938 /**
3939 * Removes all of the elements from this view, by removing all
3940 * the mappings from the map backing this view.
3941 */
3942 public final void clear() { map.clear(); }
3943 public final int size() { return map.size(); }
3944 public final boolean isEmpty() { return map.isEmpty(); }
3945
3946 // implementations below rely on concrete classes supplying these
3947 // abstract methods
3948 /**
3949 * Returns a "weakly consistent" iterator that will never
3950 * throw {@link ConcurrentModificationException}, and
3951 * guarantees to traverse elements as they existed upon
3952 * construction of the iterator, and may (but is not
3953 * guaranteed to) reflect any modifications subsequent to
3954 * construction.
3955 */
3956 public abstract Iterator<E> iterator();
3957 public abstract boolean contains(Object o);
3958 public abstract boolean remove(Object o);
3959
3960 private static final String oomeMsg = "Required array size too large";
3961
3962 public final Object[] toArray() {
3963 long sz = map.mappingCount();
3964 if (sz > MAX_ARRAY_SIZE)
3965 throw new OutOfMemoryError(oomeMsg);
3966 int n = (int)sz;
3967 Object[] r = new Object[n];
3968 int i = 0;
3969 for (E e : this) {
3970 if (i == n) {
3971 if (n >= MAX_ARRAY_SIZE)
3972 throw new OutOfMemoryError(oomeMsg);
3973 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3974 n = MAX_ARRAY_SIZE;
3975 else
3976 n += (n >>> 1) + 1;
3977 r = Arrays.copyOf(r, n);
3978 }
3979 r[i++] = e;
3980 }
3981 return (i == n) ? r : Arrays.copyOf(r, i);
3982 }
3983
3984 public final <T> T[] toArray(T[] a) {
3985 long sz = map.mappingCount();
3986 if (sz > MAX_ARRAY_SIZE)
3987 throw new OutOfMemoryError(oomeMsg);
3988 int m = (int)sz;
3989 T[] r = (a.length >= m) ? a :
3990 (T[])java.lang.reflect.Array
3991 .newInstance(a.getClass().getComponentType(), m);
3992 int n = r.length;
3993 int i = 0;
3994 for (E e : this) {
3995 if (i == n) {
3996 if (n >= MAX_ARRAY_SIZE)
3997 throw new OutOfMemoryError(oomeMsg);
3998 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3999 n = MAX_ARRAY_SIZE;
4000 else
4001 n += (n >>> 1) + 1;
4002 r = Arrays.copyOf(r, n);
4003 }
4004 r[i++] = (T)e;
4005 }
4006 if (a == r && i < n) {
4007 r[i] = null; // null-terminate
4008 return r;
4009 }
4010 return (i == n) ? r : Arrays.copyOf(r, i);
4011 }
4012
4013 /**
4014 * Returns a string representation of this collection.
4015 * The string representation consists of the string representations
4016 * of the collection's elements in the order they are returned by
4017 * its iterator, enclosed in square brackets ({@code "[]"}).
4018 * Adjacent elements are separated by the characters {@code ", "}
4019 * (comma and space). Elements are converted to strings as by
4020 * {@link String#valueOf(Object)}.
4021 *
4022 * @return a string representation of this collection
4023 */
4024 public final String toString() {
4025 StringBuilder sb = new StringBuilder();
4026 sb.append('[');
4027 Iterator<E> it = iterator();
4028 if (it.hasNext()) {
4029 for (;;) {
4030 Object e = it.next();
4031 sb.append(e == this ? "(this Collection)" : e);
4032 if (!it.hasNext())
4033 break;
4034 sb.append(',').append(' ');
4035 }
4036 }
4037 return sb.append(']').toString();
4038 }
4039
4040 public final boolean containsAll(Collection<?> c) {
4041 if (c != this) {
4042 for (Object e : c) {
4043 if (e == null || !contains(e))
4044 return false;
4045 }
4046 }
4047 return true;
4048 }
4049
4050 public final boolean removeAll(Collection<?> c) {
4051 boolean modified = false;
4052 for (Iterator<E> it = iterator(); it.hasNext();) {
4053 if (c.contains(it.next())) {
4054 it.remove();
4055 modified = true;
4056 }
4057 }
4058 return modified;
4059 }
4060
4061 public final boolean retainAll(Collection<?> c) {
4062 boolean modified = false;
4063 for (Iterator<E> it = iterator(); it.hasNext();) {
4064 if (!c.contains(it.next())) {
4065 it.remove();
4066 modified = true;
4067 }
4068 }
4069 return modified;
4070 }
4071
4072 }
4073
4074 /**
4075 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4076 * which additions may optionally be enabled by mapping to a
4077 * common value. This class cannot be directly instantiated.
4078 * See {@link #keySet() keySet()},
4079 * {@link #keySet(Object) keySet(V)},
4080 * {@link #newKeySet() newKeySet()},
4081 * {@link #newKeySet(int) newKeySet(int)}.
4082 */
4083 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4084 implements Set<K>, java.io.Serializable {
4085 private static final long serialVersionUID = 7249069246763182397L;
4086 private final V value;
4087 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4088 super(map);
4089 this.value = value;
4090 }
4091
4092 /**
4093 * Returns the default mapped value for additions,
4094 * or {@code null} if additions are not supported.
4095 *
4096 * @return the default mapped value for additions, or {@code null}
4097 * if not supported
4098 */
4099 public V getMappedValue() { return value; }
4100
4101 /**
4102 * {@inheritDoc}
4103 * @throws NullPointerException if the specified key is null
4104 */
4105 public boolean contains(Object o) { return map.containsKey(o); }
4106
4107 /**
4108 * Removes the key from this map view, by removing the key (and its
4109 * corresponding value) from the backing map. This method does
4110 * nothing if the key is not in the map.
4111 *
4112 * @param o the key to be removed from the backing map
4113 * @return {@code true} if the backing map contained the specified key
4114 * @throws NullPointerException if the specified key is null
4115 */
4116 public boolean remove(Object o) { return map.remove(o) != null; }
4117
4118 /**
4119 * @return an iterator over the keys of the backing map
4120 */
4121 public Iterator<K> iterator() {
4122 Node<K,V>[] t;
4123 ConcurrentHashMap<K,V> m = map;
4124 int f = (t = m.table) == null ? 0 : t.length;
4125 return new KeyIterator<K,V>(t, f, 0, f, m);
4126 }
4127
4128 /**
4129 * Adds the specified key to this set view by mapping the key to
4130 * the default mapped value in the backing map, if defined.
4131 *
4132 * @param e key to be added
4133 * @return {@code true} if this set changed as a result of the call
4134 * @throws NullPointerException if the specified key is null
4135 * @throws UnsupportedOperationException if no default mapped value
4136 * for additions was provided
4137 */
4138 public boolean add(K e) {
4139 V v;
4140 if ((v = value) == null)
4141 throw new UnsupportedOperationException();
4142 return map.internalPut(e, v, true) == null;
4143 }
4144
4145 /**
4146 * Adds all of the elements in the specified collection to this set,
4147 * as if by calling {@link #add} on each one.
4148 *
4149 * @param c the elements to be inserted into this set
4150 * @return {@code true} if this set changed as a result of the call
4151 * @throws NullPointerException if the collection or any of its
4152 * elements are {@code null}
4153 * @throws UnsupportedOperationException if no default mapped value
4154 * for additions was provided
4155 */
4156 public boolean addAll(Collection<? extends K> c) {
4157 boolean added = false;
4158 V v;
4159 if ((v = value) == null)
4160 throw new UnsupportedOperationException();
4161 for (K e : c) {
4162 if (map.internalPut(e, v, true) == null)
4163 added = true;
4164 }
4165 return added;
4166 }
4167
4168 public int hashCode() {
4169 int h = 0;
4170 for (K e : this)
4171 h += e.hashCode();
4172 return h;
4173 }
4174
4175 public boolean equals(Object o) {
4176 Set<?> c;
4177 return ((o instanceof Set) &&
4178 ((c = (Set<?>)o) == this ||
4179 (containsAll(c) && c.containsAll(this))));
4180 }
4181
4182 public Spliterator<K> spliterator() {
4183 Node<K,V>[] t;
4184 ConcurrentHashMap<K,V> m = map;
4185 long n = m.sumCount();
4186 int f = (t = m.table) == null ? 0 : t.length;
4187 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4188 }
4189
4190 public void forEach(Consumer<? super K> action) {
4191 if (action == null) throw new NullPointerException();
4192 Node<K,V>[] t;
4193 if ((t = map.table) != null) {
4194 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4195 for (Node<K,V> p; (p = it.advance()) != null; )
4196 action.accept((K)p.key);
4197 }
4198 }
4199 }
4200
4201 /**
4202 * A view of a ConcurrentHashMap as a {@link Collection} of
4203 * values, in which additions are disabled. This class cannot be
4204 * directly instantiated. See {@link #values()}.
4205 */
4206 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4207 implements Collection<V>, java.io.Serializable {
4208 private static final long serialVersionUID = 2249069246763182397L;
4209 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4210 public final boolean contains(Object o) {
4211 return map.containsValue(o);
4212 }
4213
4214 public final boolean remove(Object o) {
4215 if (o != null) {
4216 for (Iterator<V> it = iterator(); it.hasNext();) {
4217 if (o.equals(it.next())) {
4218 it.remove();
4219 return true;
4220 }
4221 }
4222 }
4223 return false;
4224 }
4225
4226 public final Iterator<V> iterator() {
4227 ConcurrentHashMap<K,V> m = map;
4228 Node<K,V>[] t;
4229 int f = (t = m.table) == null ? 0 : t.length;
4230 return new ValueIterator<K,V>(t, f, 0, f, m);
4231 }
4232
4233 public final boolean add(V e) {
4234 throw new UnsupportedOperationException();
4235 }
4236 public final boolean addAll(Collection<? extends V> c) {
4237 throw new UnsupportedOperationException();
4238 }
4239
4240 public Spliterator<V> spliterator() {
4241 Node<K,V>[] t;
4242 ConcurrentHashMap<K,V> m = map;
4243 long n = m.sumCount();
4244 int f = (t = m.table) == null ? 0 : t.length;
4245 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4246 }
4247
4248 public void forEach(Consumer<? super V> action) {
4249 if (action == null) throw new NullPointerException();
4250 Node<K,V>[] t;
4251 if ((t = map.table) != null) {
4252 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4253 for (Node<K,V> p; (p = it.advance()) != null; )
4254 action.accept(p.val);
4255 }
4256 }
4257 }
4258
4259 /**
4260 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4261 * entries. This class cannot be directly instantiated. See
4262 * {@link #entrySet()}.
4263 */
4264 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4265 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4266 private static final long serialVersionUID = 2249069246763182397L;
4267 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4268
4269 public boolean contains(Object o) {
4270 Object k, v, r; Map.Entry<?,?> e;
4271 return ((o instanceof Map.Entry) &&
4272 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4273 (r = map.get(k)) != null &&
4274 (v = e.getValue()) != null &&
4275 (v == r || v.equals(r)));
4276 }
4277
4278 public boolean remove(Object o) {
4279 Object k, v; Map.Entry<?,?> e;
4280 return ((o instanceof Map.Entry) &&
4281 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4282 (v = e.getValue()) != null &&
4283 map.remove(k, v));
4284 }
4285
4286 /**
4287 * @return an iterator over the entries of the backing map
4288 */
4289 public Iterator<Map.Entry<K,V>> iterator() {
4290 ConcurrentHashMap<K,V> m = map;
4291 Node<K,V>[] t;
4292 int f = (t = m.table) == null ? 0 : t.length;
4293 return new EntryIterator<K,V>(t, f, 0, f, m);
4294 }
4295
4296 public boolean add(Entry<K,V> e) {
4297 return map.internalPut(e.getKey(), e.getValue(), false) == null;
4298 }
4299
4300 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4301 boolean added = false;
4302 for (Entry<K,V> e : c) {
4303 if (add(e))
4304 added = true;
4305 }
4306 return added;
4307 }
4308
4309 public final int hashCode() {
4310 int h = 0;
4311 Node<K,V>[] t;
4312 if ((t = map.table) != null) {
4313 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4314 for (Node<K,V> p; (p = it.advance()) != null; ) {
4315 h += p.hashCode();
4316 }
4317 }
4318 return h;
4319 }
4320
4321 public final boolean equals(Object o) {
4322 Set<?> c;
4323 return ((o instanceof Set) &&
4324 ((c = (Set<?>)o) == this ||
4325 (containsAll(c) && c.containsAll(this))));
4326 }
4327
4328 public Spliterator<Map.Entry<K,V>> spliterator() {
4329 Node<K,V>[] t;
4330 ConcurrentHashMap<K,V> m = map;
4331 long n = m.sumCount();
4332 int f = (t = m.table) == null ? 0 : t.length;
4333 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4334 }
4335
4336 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4337 if (action == null) throw new NullPointerException();
4338 Node<K,V>[] t;
4339 if ((t = map.table) != null) {
4340 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4341 for (Node<K,V> p; (p = it.advance()) != null; )
4342 action.accept(new MapEntry<K,V>((K)p.key, p.val, map));
4343 }
4344 }
4345
4346 }
4347
4348 // -------------------------------------------------------
4349
4350 /**
4351 * Base class for bulk tasks. Repeats some fields and code from
4352 * class Traverser, because we need to subclass CountedCompleter.
4353 */
4354 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4355 Node<K,V>[] tab; // same as Traverser
4356 Node<K,V> next;
4357 int index;
4358 int baseIndex;
4359 int baseLimit;
4360 final int baseSize;
4361 int batch; // split control
4362
4363 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4364 super(par);
4365 this.batch = b;
4366 this.index = this.baseIndex = i;
4367 if ((this.tab = t) == null)
4368 this.baseSize = this.baseLimit = 0;
4369 else if (par == null)
4370 this.baseSize = this.baseLimit = t.length;
4371 else {
4372 this.baseLimit = f;
4373 this.baseSize = par.baseSize;
4374 }
4375 }
4376
4377 /**
4378 * Same as Traverser version
4379 */
4380 final Node<K,V> advance() {
4381 Node<K,V> e;
4382 if ((e = next) != null)
4383 e = e.next;
4384 for (;;) {
4385 Node<K,V>[] t; int i, n; Object ek;
4386 if (e != null)
4387 return next = e;
4388 if (baseIndex >= baseLimit || (t = tab) == null ||
4389 (n = t.length) <= (i = index) || i < 0)
4390 return next = null;
4391 if ((e = tabAt(t, index)) != null && e.hash < 0) {
4392 if ((ek = e.key) instanceof TreeBin)
4393 e = ((TreeBin<K,V>)ek).first;
4394 else {
4395 tab = (Node<K,V>[])ek;
4396 e = null;
4397 continue;
4398 }
4399 }
4400 if ((index += baseSize) >= n)
4401 index = ++baseIndex;
4402 }
4403 }
4404 }
4405
4406 /*
4407 * Task classes. Coded in a regular but ugly format/style to
4408 * simplify checks that each variant differs in the right way from
4409 * others. The null screenings exist because compilers cannot tell
4410 * that we've already null-checked task arguments, so we force
4411 * simplest hoisted bypass to help avoid convoluted traps.
4412 */
4413
4414 static final class ForEachKeyTask<K,V>
4415 extends BulkTask<K,V,Void> {
4416 final Consumer<? super K> action;
4417 ForEachKeyTask
4418 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4419 Consumer<? super K> action) {
4420 super(p, b, i, f, t);
4421 this.action = action;
4422 }
4423 public final void compute() {
4424 final Consumer<? super K> action;
4425 if ((action = this.action) != null) {
4426 for (int i = baseIndex, f, h; batch > 0 &&
4427 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4428 addToPendingCount(1);
4429 new ForEachKeyTask<K,V>
4430 (this, batch >>>= 1, baseLimit = h, f, tab,
4431 action).fork();
4432 }
4433 for (Node<K,V> p; (p = advance()) != null;)
4434 action.accept((K)p.key);
4435 propagateCompletion();
4436 }
4437 }
4438 }
4439
4440 static final class ForEachValueTask<K,V>
4441 extends BulkTask<K,V,Void> {
4442 final Consumer<? super V> action;
4443 ForEachValueTask
4444 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4445 Consumer<? super V> action) {
4446 super(p, b, i, f, t);
4447 this.action = action;
4448 }
4449 public final void compute() {
4450 final Consumer<? super V> action;
4451 if ((action = this.action) != null) {
4452 for (int i = baseIndex, f, h; batch > 0 &&
4453 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4454 addToPendingCount(1);
4455 new ForEachValueTask<K,V>
4456 (this, batch >>>= 1, baseLimit = h, f, tab,
4457 action).fork();
4458 }
4459 for (Node<K,V> p; (p = advance()) != null;)
4460 action.accept(p.val);
4461 propagateCompletion();
4462 }
4463 }
4464 }
4465
4466 static final class ForEachEntryTask<K,V>
4467 extends BulkTask<K,V,Void> {
4468 final Consumer<? super Entry<K,V>> action;
4469 ForEachEntryTask
4470 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4471 Consumer<? super Entry<K,V>> action) {
4472 super(p, b, i, f, t);
4473 this.action = action;
4474 }
4475 public final void compute() {
4476 final Consumer<? super Entry<K,V>> action;
4477 if ((action = this.action) != null) {
4478 for (int i = baseIndex, f, h; batch > 0 &&
4479 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4480 addToPendingCount(1);
4481 new ForEachEntryTask<K,V>
4482 (this, batch >>>= 1, baseLimit = h, f, tab,
4483 action).fork();
4484 }
4485 for (Node<K,V> p; (p = advance()) != null; )
4486 action.accept(p);
4487 propagateCompletion();
4488 }
4489 }
4490 }
4491
4492 static final class ForEachMappingTask<K,V>
4493 extends BulkTask<K,V,Void> {
4494 final BiConsumer<? super K, ? super V> action;
4495 ForEachMappingTask
4496 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4497 BiConsumer<? super K,? super V> action) {
4498 super(p, b, i, f, t);
4499 this.action = action;
4500 }
4501 public final void compute() {
4502 final BiConsumer<? super K, ? super V> action;
4503 if ((action = this.action) != null) {
4504 for (int i = baseIndex, f, h; batch > 0 &&
4505 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4506 addToPendingCount(1);
4507 new ForEachMappingTask<K,V>
4508 (this, batch >>>= 1, baseLimit = h, f, tab,
4509 action).fork();
4510 }
4511 for (Node<K,V> p; (p = advance()) != null; )
4512 action.accept((K)p.key, p.val);
4513 propagateCompletion();
4514 }
4515 }
4516 }
4517
4518 static final class ForEachTransformedKeyTask<K,V,U>
4519 extends BulkTask<K,V,Void> {
4520 final Function<? super K, ? extends U> transformer;
4521 final Consumer<? super U> action;
4522 ForEachTransformedKeyTask
4523 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4524 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4525 super(p, b, i, f, t);
4526 this.transformer = transformer; this.action = action;
4527 }
4528 public final void compute() {
4529 final Function<? super K, ? extends U> transformer;
4530 final Consumer<? super U> action;
4531 if ((transformer = this.transformer) != null &&
4532 (action = this.action) != null) {
4533 for (int i = baseIndex, f, h; batch > 0 &&
4534 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4535 addToPendingCount(1);
4536 new ForEachTransformedKeyTask<K,V,U>
4537 (this, batch >>>= 1, baseLimit = h, f, tab,
4538 transformer, action).fork();
4539 }
4540 for (Node<K,V> p; (p = advance()) != null; ) {
4541 U u;
4542 if ((u = transformer.apply((K)p.key)) != null)
4543 action.accept(u);
4544 }
4545 propagateCompletion();
4546 }
4547 }
4548 }
4549
4550 static final class ForEachTransformedValueTask<K,V,U>
4551 extends BulkTask<K,V,Void> {
4552 final Function<? super V, ? extends U> transformer;
4553 final Consumer<? super U> action;
4554 ForEachTransformedValueTask
4555 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4556 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
4557 super(p, b, i, f, t);
4558 this.transformer = transformer; this.action = action;
4559 }
4560 public final void compute() {
4561 final Function<? super V, ? extends U> transformer;
4562 final Consumer<? super U> action;
4563 if ((transformer = this.transformer) != null &&
4564 (action = this.action) != null) {
4565 for (int i = baseIndex, f, h; batch > 0 &&
4566 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4567 addToPendingCount(1);
4568 new ForEachTransformedValueTask<K,V,U>
4569 (this, batch >>>= 1, baseLimit = h, f, tab,
4570 transformer, action).fork();
4571 }
4572 for (Node<K,V> p; (p = advance()) != null; ) {
4573 U u;
4574 if ((u = transformer.apply(p.val)) != null)
4575 action.accept(u);
4576 }
4577 propagateCompletion();
4578 }
4579 }
4580 }
4581
4582 static final class ForEachTransformedEntryTask<K,V,U>
4583 extends BulkTask<K,V,Void> {
4584 final Function<Map.Entry<K,V>, ? extends U> transformer;
4585 final Consumer<? super U> action;
4586 ForEachTransformedEntryTask
4587 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4588 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
4589 super(p, b, i, f, t);
4590 this.transformer = transformer; this.action = action;
4591 }
4592 public final void compute() {
4593 final Function<Map.Entry<K,V>, ? extends U> transformer;
4594 final Consumer<? super U> action;
4595 if ((transformer = this.transformer) != null &&
4596 (action = this.action) != null) {
4597 for (int i = baseIndex, f, h; batch > 0 &&
4598 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4599 addToPendingCount(1);
4600 new ForEachTransformedEntryTask<K,V,U>
4601 (this, batch >>>= 1, baseLimit = h, f, tab,
4602 transformer, action).fork();
4603 }
4604 for (Node<K,V> p; (p = advance()) != null; ) {
4605 U u;
4606 if ((u = transformer.apply(p)) != null)
4607 action.accept(u);
4608 }
4609 propagateCompletion();
4610 }
4611 }
4612 }
4613
4614 static final class ForEachTransformedMappingTask<K,V,U>
4615 extends BulkTask<K,V,Void> {
4616 final BiFunction<? super K, ? super V, ? extends U> transformer;
4617 final Consumer<? super U> action;
4618 ForEachTransformedMappingTask
4619 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4620 BiFunction<? super K, ? super V, ? extends U> transformer,
4621 Consumer<? super U> action) {
4622 super(p, b, i, f, t);
4623 this.transformer = transformer; this.action = action;
4624 }
4625 public final void compute() {
4626 final BiFunction<? super K, ? super V, ? extends U> transformer;
4627 final Consumer<? super U> action;
4628 if ((transformer = this.transformer) != null &&
4629 (action = this.action) != null) {
4630 for (int i = baseIndex, f, h; batch > 0 &&
4631 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4632 addToPendingCount(1);
4633 new ForEachTransformedMappingTask<K,V,U>
4634 (this, batch >>>= 1, baseLimit = h, f, tab,
4635 transformer, action).fork();
4636 }
4637 for (Node<K,V> p; (p = advance()) != null; ) {
4638 U u;
4639 if ((u = transformer.apply((K)p.key, p.val)) != null)
4640 action.accept(u);
4641 }
4642 propagateCompletion();
4643 }
4644 }
4645 }
4646
4647 static final class SearchKeysTask<K,V,U>
4648 extends BulkTask<K,V,U> {
4649 final Function<? super K, ? extends U> searchFunction;
4650 final AtomicReference<U> result;
4651 SearchKeysTask
4652 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4653 Function<? super K, ? extends U> searchFunction,
4654 AtomicReference<U> result) {
4655 super(p, b, i, f, t);
4656 this.searchFunction = searchFunction; this.result = result;
4657 }
4658 public final U getRawResult() { return result.get(); }
4659 public final void compute() {
4660 final Function<? super K, ? extends U> searchFunction;
4661 final AtomicReference<U> result;
4662 if ((searchFunction = this.searchFunction) != null &&
4663 (result = this.result) != null) {
4664 for (int i = baseIndex, f, h; batch > 0 &&
4665 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4666 if (result.get() != null)
4667 return;
4668 addToPendingCount(1);
4669 new SearchKeysTask<K,V,U>
4670 (this, batch >>>= 1, baseLimit = h, f, tab,
4671 searchFunction, result).fork();
4672 }
4673 while (result.get() == null) {
4674 U u;
4675 Node<K,V> p;
4676 if ((p = advance()) == null) {
4677 propagateCompletion();
4678 break;
4679 }
4680 if ((u = searchFunction.apply((K)p.key)) != null) {
4681 if (result.compareAndSet(null, u))
4682 quietlyCompleteRoot();
4683 break;
4684 }
4685 }
4686 }
4687 }
4688 }
4689
4690 static final class SearchValuesTask<K,V,U>
4691 extends BulkTask<K,V,U> {
4692 final Function<? super V, ? extends U> searchFunction;
4693 final AtomicReference<U> result;
4694 SearchValuesTask
4695 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4696 Function<? super V, ? extends U> searchFunction,
4697 AtomicReference<U> result) {
4698 super(p, b, i, f, t);
4699 this.searchFunction = searchFunction; this.result = result;
4700 }
4701 public final U getRawResult() { return result.get(); }
4702 public final void compute() {
4703 final Function<? super V, ? extends U> searchFunction;
4704 final AtomicReference<U> result;
4705 if ((searchFunction = this.searchFunction) != null &&
4706 (result = this.result) != null) {
4707 for (int i = baseIndex, f, h; batch > 0 &&
4708 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4709 if (result.get() != null)
4710 return;
4711 addToPendingCount(1);
4712 new SearchValuesTask<K,V,U>
4713 (this, batch >>>= 1, baseLimit = h, f, tab,
4714 searchFunction, result).fork();
4715 }
4716 while (result.get() == null) {
4717 U u;
4718 Node<K,V> p;
4719 if ((p = advance()) == null) {
4720 propagateCompletion();
4721 break;
4722 }
4723 if ((u = searchFunction.apply(p.val)) != null) {
4724 if (result.compareAndSet(null, u))
4725 quietlyCompleteRoot();
4726 break;
4727 }
4728 }
4729 }
4730 }
4731 }
4732
4733 static final class SearchEntriesTask<K,V,U>
4734 extends BulkTask<K,V,U> {
4735 final Function<Entry<K,V>, ? extends U> searchFunction;
4736 final AtomicReference<U> result;
4737 SearchEntriesTask
4738 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4739 Function<Entry<K,V>, ? extends U> searchFunction,
4740 AtomicReference<U> result) {
4741 super(p, b, i, f, t);
4742 this.searchFunction = searchFunction; this.result = result;
4743 }
4744 public final U getRawResult() { return result.get(); }
4745 public final void compute() {
4746 final Function<Entry<K,V>, ? extends U> searchFunction;
4747 final AtomicReference<U> result;
4748 if ((searchFunction = this.searchFunction) != null &&
4749 (result = this.result) != null) {
4750 for (int i = baseIndex, f, h; batch > 0 &&
4751 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4752 if (result.get() != null)
4753 return;
4754 addToPendingCount(1);
4755 new SearchEntriesTask<K,V,U>
4756 (this, batch >>>= 1, baseLimit = h, f, tab,
4757 searchFunction, result).fork();
4758 }
4759 while (result.get() == null) {
4760 U u;
4761 Node<K,V> p;
4762 if ((p = advance()) == null) {
4763 propagateCompletion();
4764 break;
4765 }
4766 if ((u = searchFunction.apply(p)) != null) {
4767 if (result.compareAndSet(null, u))
4768 quietlyCompleteRoot();
4769 return;
4770 }
4771 }
4772 }
4773 }
4774 }
4775
4776 static final class SearchMappingsTask<K,V,U>
4777 extends BulkTask<K,V,U> {
4778 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
4779 final AtomicReference<U> result;
4780 SearchMappingsTask
4781 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4782 BiFunction<? super K, ? super V, ? extends U> searchFunction,
4783 AtomicReference<U> result) {
4784 super(p, b, i, f, t);
4785 this.searchFunction = searchFunction; this.result = result;
4786 }
4787 public final U getRawResult() { return result.get(); }
4788 public final void compute() {
4789 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
4790 final AtomicReference<U> result;
4791 if ((searchFunction = this.searchFunction) != null &&
4792 (result = this.result) != null) {
4793 for (int i = baseIndex, f, h; batch > 0 &&
4794 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4795 if (result.get() != null)
4796 return;
4797 addToPendingCount(1);
4798 new SearchMappingsTask<K,V,U>
4799 (this, batch >>>= 1, baseLimit = h, f, tab,
4800 searchFunction, result).fork();
4801 }
4802 while (result.get() == null) {
4803 U u;
4804 Node<K,V> p;
4805 if ((p = advance()) == null) {
4806 propagateCompletion();
4807 break;
4808 }
4809 if ((u = searchFunction.apply((K)p.key, p.val)) != null) {
4810 if (result.compareAndSet(null, u))
4811 quietlyCompleteRoot();
4812 break;
4813 }
4814 }
4815 }
4816 }
4817 }
4818
4819 static final class ReduceKeysTask<K,V>
4820 extends BulkTask<K,V,K> {
4821 final BiFunction<? super K, ? super K, ? extends K> reducer;
4822 K result;
4823 ReduceKeysTask<K,V> rights, nextRight;
4824 ReduceKeysTask
4825 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4826 ReduceKeysTask<K,V> nextRight,
4827 BiFunction<? super K, ? super K, ? extends K> reducer) {
4828 super(p, b, i, f, t); this.nextRight = nextRight;
4829 this.reducer = reducer;
4830 }
4831 public final K getRawResult() { return result; }
4832 public final void compute() {
4833 final BiFunction<? super K, ? super K, ? extends K> reducer;
4834 if ((reducer = this.reducer) != null) {
4835 for (int i = baseIndex, f, h; batch > 0 &&
4836 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4837 addToPendingCount(1);
4838 (rights = new ReduceKeysTask<K,V>
4839 (this, batch >>>= 1, baseLimit = h, f, tab,
4840 rights, reducer)).fork();
4841 }
4842 K r = null;
4843 for (Node<K,V> p; (p = advance()) != null; ) {
4844 K u = (K)p.key;
4845 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
4846 }
4847 result = r;
4848 CountedCompleter<?> c;
4849 for (c = firstComplete(); c != null; c = c.nextComplete()) {
4850 ReduceKeysTask<K,V>
4851 t = (ReduceKeysTask<K,V>)c,
4852 s = t.rights;
4853 while (s != null) {
4854 K tr, sr;
4855 if ((sr = s.result) != null)
4856 t.result = (((tr = t.result) == null) ? sr :
4857 reducer.apply(tr, sr));
4858 s = t.rights = s.nextRight;
4859 }
4860 }
4861 }
4862 }
4863 }
4864
4865 static final class ReduceValuesTask<K,V>
4866 extends BulkTask<K,V,V> {
4867 final BiFunction<? super V, ? super V, ? extends V> reducer;
4868 V result;
4869 ReduceValuesTask<K,V> rights, nextRight;
4870 ReduceValuesTask
4871 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4872 ReduceValuesTask<K,V> nextRight,
4873 BiFunction<? super V, ? super V, ? extends V> reducer) {
4874 super(p, b, i, f, t); this.nextRight = nextRight;
4875 this.reducer = reducer;
4876 }
4877 public final V getRawResult() { return result; }
4878 public final void compute() {
4879 final BiFunction<? super V, ? super V, ? extends V> reducer;
4880 if ((reducer = this.reducer) != null) {
4881 for (int i = baseIndex, f, h; batch > 0 &&
4882 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4883 addToPendingCount(1);
4884 (rights = new ReduceValuesTask<K,V>
4885 (this, batch >>>= 1, baseLimit = h, f, tab,
4886 rights, reducer)).fork();
4887 }
4888 V r = null;
4889 for (Node<K,V> p; (p = advance()) != null; ) {
4890 V v = p.val;
4891 r = (r == null) ? v : reducer.apply(r, v);
4892 }
4893 result = r;
4894 CountedCompleter<?> c;
4895 for (c = firstComplete(); c != null; c = c.nextComplete()) {
4896 ReduceValuesTask<K,V>
4897 t = (ReduceValuesTask<K,V>)c,
4898 s = t.rights;
4899 while (s != null) {
4900 V tr, sr;
4901 if ((sr = s.result) != null)
4902 t.result = (((tr = t.result) == null) ? sr :
4903 reducer.apply(tr, sr));
4904 s = t.rights = s.nextRight;
4905 }
4906 }
4907 }
4908 }
4909 }
4910
4911 static final class ReduceEntriesTask<K,V>
4912 extends BulkTask<K,V,Map.Entry<K,V>> {
4913 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
4914 Map.Entry<K,V> result;
4915 ReduceEntriesTask<K,V> rights, nextRight;
4916 ReduceEntriesTask
4917 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4918 ReduceEntriesTask<K,V> nextRight,
4919 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4920 super(p, b, i, f, t); this.nextRight = nextRight;
4921 this.reducer = reducer;
4922 }
4923 public final Map.Entry<K,V> getRawResult() { return result; }
4924 public final void compute() {
4925 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
4926 if ((reducer = this.reducer) != null) {
4927 for (int i = baseIndex, f, h; batch > 0 &&
4928 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4929 addToPendingCount(1);
4930 (rights = new ReduceEntriesTask<K,V>
4931 (this, batch >>>= 1, baseLimit = h, f, tab,
4932 rights, reducer)).fork();
4933 }
4934 Map.Entry<K,V> r = null;
4935 for (Node<K,V> p; (p = advance()) != null; )
4936 r = (r == null) ? p : reducer.apply(r, p);
4937 result = r;
4938 CountedCompleter<?> c;
4939 for (c = firstComplete(); c != null; c = c.nextComplete()) {
4940 ReduceEntriesTask<K,V>
4941 t = (ReduceEntriesTask<K,V>)c,
4942 s = t.rights;
4943 while (s != null) {
4944 Map.Entry<K,V> tr, sr;
4945 if ((sr = s.result) != null)
4946 t.result = (((tr = t.result) == null) ? sr :
4947 reducer.apply(tr, sr));
4948 s = t.rights = s.nextRight;
4949 }
4950 }
4951 }
4952 }
4953 }
4954
4955 static final class MapReduceKeysTask<K,V,U>
4956 extends BulkTask<K,V,U> {
4957 final Function<? super K, ? extends U> transformer;
4958 final BiFunction<? super U, ? super U, ? extends U> reducer;
4959 U result;
4960 MapReduceKeysTask<K,V,U> rights, nextRight;
4961 MapReduceKeysTask
4962 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4963 MapReduceKeysTask<K,V,U> nextRight,
4964 Function<? super K, ? extends U> transformer,
4965 BiFunction<? super U, ? super U, ? extends U> reducer) {
4966 super(p, b, i, f, t); this.nextRight = nextRight;
4967 this.transformer = transformer;
4968 this.reducer = reducer;
4969 }
4970 public final U getRawResult() { return result; }
4971 public final void compute() {
4972 final Function<? super K, ? extends U> transformer;
4973 final BiFunction<? super U, ? super U, ? extends U> reducer;
4974 if ((transformer = this.transformer) != null &&
4975 (reducer = this.reducer) != null) {
4976 for (int i = baseIndex, f, h; batch > 0 &&
4977 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4978 addToPendingCount(1);
4979 (rights = new MapReduceKeysTask<K,V,U>
4980 (this, batch >>>= 1, baseLimit = h, f, tab,
4981 rights, transformer, reducer)).fork();
4982 }
4983 U r = null;
4984 for (Node<K,V> p; (p = advance()) != null; ) {
4985 U u;
4986 if ((u = transformer.apply((K)p.key)) != null)
4987 r = (r == null) ? u : reducer.apply(r, u);
4988 }
4989 result = r;
4990 CountedCompleter<?> c;
4991 for (c = firstComplete(); c != null; c = c.nextComplete()) {
4992 MapReduceKeysTask<K,V,U>
4993 t = (MapReduceKeysTask<K,V,U>)c,
4994 s = t.rights;
4995 while (s != null) {
4996 U tr, sr;
4997 if ((sr = s.result) != null)
4998 t.result = (((tr = t.result) == null) ? sr :
4999 reducer.apply(tr, sr));
5000 s = t.rights = s.nextRight;
5001 }
5002 }
5003 }
5004 }
5005 }
5006
5007 static final class MapReduceValuesTask<K,V,U>
5008 extends BulkTask<K,V,U> {
5009 final Function<? super V, ? extends U> transformer;
5010 final BiFunction<? super U, ? super U, ? extends U> reducer;
5011 U result;
5012 MapReduceValuesTask<K,V,U> rights, nextRight;
5013 MapReduceValuesTask
5014 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5015 MapReduceValuesTask<K,V,U> nextRight,
5016 Function<? super V, ? extends U> transformer,
5017 BiFunction<? super U, ? super U, ? extends U> reducer) {
5018 super(p, b, i, f, t); this.nextRight = nextRight;
5019 this.transformer = transformer;
5020 this.reducer = reducer;
5021 }
5022 public final U getRawResult() { return result; }
5023 public final void compute() {
5024 final Function<? super V, ? extends U> transformer;
5025 final BiFunction<? super U, ? super U, ? extends U> reducer;
5026 if ((transformer = this.transformer) != null &&
5027 (reducer = this.reducer) != null) {
5028 for (int i = baseIndex, f, h; batch > 0 &&
5029 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5030 addToPendingCount(1);
5031 (rights = new MapReduceValuesTask<K,V,U>
5032 (this, batch >>>= 1, baseLimit = h, f, tab,
5033 rights, transformer, reducer)).fork();
5034 }
5035 U r = null;
5036 for (Node<K,V> p; (p = advance()) != null; ) {
5037 U u;
5038 if ((u = transformer.apply(p.val)) != null)
5039 r = (r == null) ? u : reducer.apply(r, u);
5040 }
5041 result = r;
5042 CountedCompleter<?> c;
5043 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5044 MapReduceValuesTask<K,V,U>
5045 t = (MapReduceValuesTask<K,V,U>)c,
5046 s = t.rights;
5047 while (s != null) {
5048 U tr, sr;
5049 if ((sr = s.result) != null)
5050 t.result = (((tr = t.result) == null) ? sr :
5051 reducer.apply(tr, sr));
5052 s = t.rights = s.nextRight;
5053 }
5054 }
5055 }
5056 }
5057 }
5058
5059 static final class MapReduceEntriesTask<K,V,U>
5060 extends BulkTask<K,V,U> {
5061 final Function<Map.Entry<K,V>, ? extends U> transformer;
5062 final BiFunction<? super U, ? super U, ? extends U> reducer;
5063 U result;
5064 MapReduceEntriesTask<K,V,U> rights, nextRight;
5065 MapReduceEntriesTask
5066 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5067 MapReduceEntriesTask<K,V,U> nextRight,
5068 Function<Map.Entry<K,V>, ? extends U> transformer,
5069 BiFunction<? super U, ? super U, ? extends U> reducer) {
5070 super(p, b, i, f, t); this.nextRight = nextRight;
5071 this.transformer = transformer;
5072 this.reducer = reducer;
5073 }
5074 public final U getRawResult() { return result; }
5075 public final void compute() {
5076 final Function<Map.Entry<K,V>, ? extends U> transformer;
5077 final BiFunction<? super U, ? super U, ? extends U> reducer;
5078 if ((transformer = this.transformer) != null &&
5079 (reducer = this.reducer) != null) {
5080 for (int i = baseIndex, f, h; batch > 0 &&
5081 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5082 addToPendingCount(1);
5083 (rights = new MapReduceEntriesTask<K,V,U>
5084 (this, batch >>>= 1, baseLimit = h, f, tab,
5085 rights, transformer, reducer)).fork();
5086 }
5087 U r = null;
5088 for (Node<K,V> p; (p = advance()) != null; ) {
5089 U u;
5090 if ((u = transformer.apply(p)) != null)
5091 r = (r == null) ? u : reducer.apply(r, u);
5092 }
5093 result = r;
5094 CountedCompleter<?> c;
5095 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5096 MapReduceEntriesTask<K,V,U>
5097 t = (MapReduceEntriesTask<K,V,U>)c,
5098 s = t.rights;
5099 while (s != null) {
5100 U tr, sr;
5101 if ((sr = s.result) != null)
5102 t.result = (((tr = t.result) == null) ? sr :
5103 reducer.apply(tr, sr));
5104 s = t.rights = s.nextRight;
5105 }
5106 }
5107 }
5108 }
5109 }
5110
5111 static final class MapReduceMappingsTask<K,V,U>
5112 extends BulkTask<K,V,U> {
5113 final BiFunction<? super K, ? super V, ? extends U> transformer;
5114 final BiFunction<? super U, ? super U, ? extends U> reducer;
5115 U result;
5116 MapReduceMappingsTask<K,V,U> rights, nextRight;
5117 MapReduceMappingsTask
5118 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5119 MapReduceMappingsTask<K,V,U> nextRight,
5120 BiFunction<? super K, ? super V, ? extends U> transformer,
5121 BiFunction<? super U, ? super U, ? extends U> reducer) {
5122 super(p, b, i, f, t); this.nextRight = nextRight;
5123 this.transformer = transformer;
5124 this.reducer = reducer;
5125 }
5126 public final U getRawResult() { return result; }
5127 public final void compute() {
5128 final BiFunction<? super K, ? super V, ? extends U> transformer;
5129 final BiFunction<? super U, ? super U, ? extends U> reducer;
5130 if ((transformer = this.transformer) != null &&
5131 (reducer = this.reducer) != null) {
5132 for (int i = baseIndex, f, h; batch > 0 &&
5133 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5134 addToPendingCount(1);
5135 (rights = new MapReduceMappingsTask<K,V,U>
5136 (this, batch >>>= 1, baseLimit = h, f, tab,
5137 rights, transformer, reducer)).fork();
5138 }
5139 U r = null;
5140 for (Node<K,V> p; (p = advance()) != null; ) {
5141 U u;
5142 if ((u = transformer.apply((K)p.key, p.val)) != null)
5143 r = (r == null) ? u : reducer.apply(r, u);
5144 }
5145 result = r;
5146 CountedCompleter<?> c;
5147 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5148 MapReduceMappingsTask<K,V,U>
5149 t = (MapReduceMappingsTask<K,V,U>)c,
5150 s = t.rights;
5151 while (s != null) {
5152 U tr, sr;
5153 if ((sr = s.result) != null)
5154 t.result = (((tr = t.result) == null) ? sr :
5155 reducer.apply(tr, sr));
5156 s = t.rights = s.nextRight;
5157 }
5158 }
5159 }
5160 }
5161 }
5162
5163 static final class MapReduceKeysToDoubleTask<K,V>
5164 extends BulkTask<K,V,Double> {
5165 final ToDoubleFunction<? super K> transformer;
5166 final DoubleBinaryOperator reducer;
5167 final double basis;
5168 double result;
5169 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5170 MapReduceKeysToDoubleTask
5171 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5172 MapReduceKeysToDoubleTask<K,V> nextRight,
5173 ToDoubleFunction<? super K> transformer,
5174 double basis,
5175 DoubleBinaryOperator reducer) {
5176 super(p, b, i, f, t); this.nextRight = nextRight;
5177 this.transformer = transformer;
5178 this.basis = basis; this.reducer = reducer;
5179 }
5180 public final Double getRawResult() { return result; }
5181 public final void compute() {
5182 final ToDoubleFunction<? super K> transformer;
5183 final DoubleBinaryOperator reducer;
5184 if ((transformer = this.transformer) != null &&
5185 (reducer = this.reducer) != null) {
5186 double r = this.basis;
5187 for (int i = baseIndex, f, h; batch > 0 &&
5188 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5189 addToPendingCount(1);
5190 (rights = new MapReduceKeysToDoubleTask<K,V>
5191 (this, batch >>>= 1, baseLimit = h, f, tab,
5192 rights, transformer, r, reducer)).fork();
5193 }
5194 for (Node<K,V> p; (p = advance()) != null; )
5195 r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)p.key));
5196 result = r;
5197 CountedCompleter<?> c;
5198 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5199 MapReduceKeysToDoubleTask<K,V>
5200 t = (MapReduceKeysToDoubleTask<K,V>)c,
5201 s = t.rights;
5202 while (s != null) {
5203 t.result = reducer.applyAsDouble(t.result, s.result);
5204 s = t.rights = s.nextRight;
5205 }
5206 }
5207 }
5208 }
5209 }
5210
5211 static final class MapReduceValuesToDoubleTask<K,V>
5212 extends BulkTask<K,V,Double> {
5213 final ToDoubleFunction<? super V> transformer;
5214 final DoubleBinaryOperator reducer;
5215 final double basis;
5216 double result;
5217 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5218 MapReduceValuesToDoubleTask
5219 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5220 MapReduceValuesToDoubleTask<K,V> nextRight,
5221 ToDoubleFunction<? super V> transformer,
5222 double basis,
5223 DoubleBinaryOperator reducer) {
5224 super(p, b, i, f, t); this.nextRight = nextRight;
5225 this.transformer = transformer;
5226 this.basis = basis; this.reducer = reducer;
5227 }
5228 public final Double getRawResult() { return result; }
5229 public final void compute() {
5230 final ToDoubleFunction<? super V> transformer;
5231 final DoubleBinaryOperator reducer;
5232 if ((transformer = this.transformer) != null &&
5233 (reducer = this.reducer) != null) {
5234 double r = this.basis;
5235 for (int i = baseIndex, f, h; batch > 0 &&
5236 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5237 addToPendingCount(1);
5238 (rights = new MapReduceValuesToDoubleTask<K,V>
5239 (this, batch >>>= 1, baseLimit = h, f, tab,
5240 rights, transformer, r, reducer)).fork();
5241 }
5242 for (Node<K,V> p; (p = advance()) != null; )
5243 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5244 result = r;
5245 CountedCompleter<?> c;
5246 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5247 MapReduceValuesToDoubleTask<K,V>
5248 t = (MapReduceValuesToDoubleTask<K,V>)c,
5249 s = t.rights;
5250 while (s != null) {
5251 t.result = reducer.applyAsDouble(t.result, s.result);
5252 s = t.rights = s.nextRight;
5253 }
5254 }
5255 }
5256 }
5257 }
5258
5259 static final class MapReduceEntriesToDoubleTask<K,V>
5260 extends BulkTask<K,V,Double> {
5261 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5262 final DoubleBinaryOperator reducer;
5263 final double basis;
5264 double result;
5265 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5266 MapReduceEntriesToDoubleTask
5267 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5268 MapReduceEntriesToDoubleTask<K,V> nextRight,
5269 ToDoubleFunction<Map.Entry<K,V>> transformer,
5270 double basis,
5271 DoubleBinaryOperator reducer) {
5272 super(p, b, i, f, t); this.nextRight = nextRight;
5273 this.transformer = transformer;
5274 this.basis = basis; this.reducer = reducer;
5275 }
5276 public final Double getRawResult() { return result; }
5277 public final void compute() {
5278 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5279 final DoubleBinaryOperator reducer;
5280 if ((transformer = this.transformer) != null &&
5281 (reducer = this.reducer) != null) {
5282 double r = this.basis;
5283 for (int i = baseIndex, f, h; batch > 0 &&
5284 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5285 addToPendingCount(1);
5286 (rights = new MapReduceEntriesToDoubleTask<K,V>
5287 (this, batch >>>= 1, baseLimit = h, f, tab,
5288 rights, transformer, r, reducer)).fork();
5289 }
5290 for (Node<K,V> p; (p = advance()) != null; )
5291 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5292 result = r;
5293 CountedCompleter<?> c;
5294 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5295 MapReduceEntriesToDoubleTask<K,V>
5296 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5297 s = t.rights;
5298 while (s != null) {
5299 t.result = reducer.applyAsDouble(t.result, s.result);
5300 s = t.rights = s.nextRight;
5301 }
5302 }
5303 }
5304 }
5305 }
5306
5307 static final class MapReduceMappingsToDoubleTask<K,V>
5308 extends BulkTask<K,V,Double> {
5309 final ToDoubleBiFunction<? super K, ? super V> transformer;
5310 final DoubleBinaryOperator reducer;
5311 final double basis;
5312 double result;
5313 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5314 MapReduceMappingsToDoubleTask
5315 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5316 MapReduceMappingsToDoubleTask<K,V> nextRight,
5317 ToDoubleBiFunction<? super K, ? super V> transformer,
5318 double basis,
5319 DoubleBinaryOperator reducer) {
5320 super(p, b, i, f, t); this.nextRight = nextRight;
5321 this.transformer = transformer;
5322 this.basis = basis; this.reducer = reducer;
5323 }
5324 public final Double getRawResult() { return result; }
5325 public final void compute() {
5326 final ToDoubleBiFunction<? super K, ? super V> transformer;
5327 final DoubleBinaryOperator reducer;
5328 if ((transformer = this.transformer) != null &&
5329 (reducer = this.reducer) != null) {
5330 double r = this.basis;
5331 for (int i = baseIndex, f, h; batch > 0 &&
5332 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5333 addToPendingCount(1);
5334 (rights = new MapReduceMappingsToDoubleTask<K,V>
5335 (this, batch >>>= 1, baseLimit = h, f, tab,
5336 rights, transformer, r, reducer)).fork();
5337 }
5338 for (Node<K,V> p; (p = advance()) != null; )
5339 r = reducer.applyAsDouble(r, transformer.applyAsDouble((K)p.key, p.val));
5340 result = r;
5341 CountedCompleter<?> c;
5342 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5343 MapReduceMappingsToDoubleTask<K,V>
5344 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5345 s = t.rights;
5346 while (s != null) {
5347 t.result = reducer.applyAsDouble(t.result, s.result);
5348 s = t.rights = s.nextRight;
5349 }
5350 }
5351 }
5352 }
5353 }
5354
5355 static final class MapReduceKeysToLongTask<K,V>
5356 extends BulkTask<K,V,Long> {
5357 final ToLongFunction<? super K> transformer;
5358 final LongBinaryOperator reducer;
5359 final long basis;
5360 long result;
5361 MapReduceKeysToLongTask<K,V> rights, nextRight;
5362 MapReduceKeysToLongTask
5363 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5364 MapReduceKeysToLongTask<K,V> nextRight,
5365 ToLongFunction<? super K> transformer,
5366 long basis,
5367 LongBinaryOperator reducer) {
5368 super(p, b, i, f, t); this.nextRight = nextRight;
5369 this.transformer = transformer;
5370 this.basis = basis; this.reducer = reducer;
5371 }
5372 public final Long getRawResult() { return result; }
5373 public final void compute() {
5374 final ToLongFunction<? super K> transformer;
5375 final LongBinaryOperator reducer;
5376 if ((transformer = this.transformer) != null &&
5377 (reducer = this.reducer) != null) {
5378 long r = this.basis;
5379 for (int i = baseIndex, f, h; batch > 0 &&
5380 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5381 addToPendingCount(1);
5382 (rights = new MapReduceKeysToLongTask<K,V>
5383 (this, batch >>>= 1, baseLimit = h, f, tab,
5384 rights, transformer, r, reducer)).fork();
5385 }
5386 for (Node<K,V> p; (p = advance()) != null; )
5387 r = reducer.applyAsLong(r, transformer.applyAsLong((K)p.key));
5388 result = r;
5389 CountedCompleter<?> c;
5390 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5391 MapReduceKeysToLongTask<K,V>
5392 t = (MapReduceKeysToLongTask<K,V>)c,
5393 s = t.rights;
5394 while (s != null) {
5395 t.result = reducer.applyAsLong(t.result, s.result);
5396 s = t.rights = s.nextRight;
5397 }
5398 }
5399 }
5400 }
5401 }
5402
5403 static final class MapReduceValuesToLongTask<K,V>
5404 extends BulkTask<K,V,Long> {
5405 final ToLongFunction<? super V> transformer;
5406 final LongBinaryOperator reducer;
5407 final long basis;
5408 long result;
5409 MapReduceValuesToLongTask<K,V> rights, nextRight;
5410 MapReduceValuesToLongTask
5411 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5412 MapReduceValuesToLongTask<K,V> nextRight,
5413 ToLongFunction<? super V> transformer,
5414 long basis,
5415 LongBinaryOperator reducer) {
5416 super(p, b, i, f, t); this.nextRight = nextRight;
5417 this.transformer = transformer;
5418 this.basis = basis; this.reducer = reducer;
5419 }
5420 public final Long getRawResult() { return result; }
5421 public final void compute() {
5422 final ToLongFunction<? super V> transformer;
5423 final LongBinaryOperator reducer;
5424 if ((transformer = this.transformer) != null &&
5425 (reducer = this.reducer) != null) {
5426 long r = this.basis;
5427 for (int i = baseIndex, f, h; batch > 0 &&
5428 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5429 addToPendingCount(1);
5430 (rights = new MapReduceValuesToLongTask<K,V>
5431 (this, batch >>>= 1, baseLimit = h, f, tab,
5432 rights, transformer, r, reducer)).fork();
5433 }
5434 for (Node<K,V> p; (p = advance()) != null; )
5435 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5436 result = r;
5437 CountedCompleter<?> c;
5438 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5439 MapReduceValuesToLongTask<K,V>
5440 t = (MapReduceValuesToLongTask<K,V>)c,
5441 s = t.rights;
5442 while (s != null) {
5443 t.result = reducer.applyAsLong(t.result, s.result);
5444 s = t.rights = s.nextRight;
5445 }
5446 }
5447 }
5448 }
5449 }
5450
5451 static final class MapReduceEntriesToLongTask<K,V>
5452 extends BulkTask<K,V,Long> {
5453 final ToLongFunction<Map.Entry<K,V>> transformer;
5454 final LongBinaryOperator reducer;
5455 final long basis;
5456 long result;
5457 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5458 MapReduceEntriesToLongTask
5459 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5460 MapReduceEntriesToLongTask<K,V> nextRight,
5461 ToLongFunction<Map.Entry<K,V>> transformer,
5462 long basis,
5463 LongBinaryOperator reducer) {
5464 super(p, b, i, f, t); this.nextRight = nextRight;
5465 this.transformer = transformer;
5466 this.basis = basis; this.reducer = reducer;
5467 }
5468 public final Long getRawResult() { return result; }
5469 public final void compute() {
5470 final ToLongFunction<Map.Entry<K,V>> transformer;
5471 final LongBinaryOperator reducer;
5472 if ((transformer = this.transformer) != null &&
5473 (reducer = this.reducer) != null) {
5474 long r = this.basis;
5475 for (int i = baseIndex, f, h; batch > 0 &&
5476 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5477 addToPendingCount(1);
5478 (rights = new MapReduceEntriesToLongTask<K,V>
5479 (this, batch >>>= 1, baseLimit = h, f, tab,
5480 rights, transformer, r, reducer)).fork();
5481 }
5482 for (Node<K,V> p; (p = advance()) != null; )
5483 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5484 result = r;
5485 CountedCompleter<?> c;
5486 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5487 MapReduceEntriesToLongTask<K,V>
5488 t = (MapReduceEntriesToLongTask<K,V>)c,
5489 s = t.rights;
5490 while (s != null) {
5491 t.result = reducer.applyAsLong(t.result, s.result);
5492 s = t.rights = s.nextRight;
5493 }
5494 }
5495 }
5496 }
5497 }
5498
5499 static final class MapReduceMappingsToLongTask<K,V>
5500 extends BulkTask<K,V,Long> {
5501 final ToLongBiFunction<? super K, ? super V> transformer;
5502 final LongBinaryOperator reducer;
5503 final long basis;
5504 long result;
5505 MapReduceMappingsToLongTask<K,V> rights, nextRight;
5506 MapReduceMappingsToLongTask
5507 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5508 MapReduceMappingsToLongTask<K,V> nextRight,
5509 ToLongBiFunction<? super K, ? super V> transformer,
5510 long basis,
5511 LongBinaryOperator reducer) {
5512 super(p, b, i, f, t); this.nextRight = nextRight;
5513 this.transformer = transformer;
5514 this.basis = basis; this.reducer = reducer;
5515 }
5516 public final Long getRawResult() { return result; }
5517 public final void compute() {
5518 final ToLongBiFunction<? super K, ? super V> transformer;
5519 final LongBinaryOperator reducer;
5520 if ((transformer = this.transformer) != null &&
5521 (reducer = this.reducer) != null) {
5522 long r = this.basis;
5523 for (int i = baseIndex, f, h; batch > 0 &&
5524 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5525 addToPendingCount(1);
5526 (rights = new MapReduceMappingsToLongTask<K,V>
5527 (this, batch >>>= 1, baseLimit = h, f, tab,
5528 rights, transformer, r, reducer)).fork();
5529 }
5530 for (Node<K,V> p; (p = advance()) != null; )
5531 r = reducer.applyAsLong(r, transformer.applyAsLong((K)p.key, p.val));
5532 result = r;
5533 CountedCompleter<?> c;
5534 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5535 MapReduceMappingsToLongTask<K,V>
5536 t = (MapReduceMappingsToLongTask<K,V>)c,
5537 s = t.rights;
5538 while (s != null) {
5539 t.result = reducer.applyAsLong(t.result, s.result);
5540 s = t.rights = s.nextRight;
5541 }
5542 }
5543 }
5544 }
5545 }
5546
5547 static final class MapReduceKeysToIntTask<K,V>
5548 extends BulkTask<K,V,Integer> {
5549 final ToIntFunction<? super K> transformer;
5550 final IntBinaryOperator reducer;
5551 final int basis;
5552 int result;
5553 MapReduceKeysToIntTask<K,V> rights, nextRight;
5554 MapReduceKeysToIntTask
5555 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5556 MapReduceKeysToIntTask<K,V> nextRight,
5557 ToIntFunction<? super K> transformer,
5558 int basis,
5559 IntBinaryOperator reducer) {
5560 super(p, b, i, f, t); this.nextRight = nextRight;
5561 this.transformer = transformer;
5562 this.basis = basis; this.reducer = reducer;
5563 }
5564 public final Integer getRawResult() { return result; }
5565 public final void compute() {
5566 final ToIntFunction<? super K> transformer;
5567 final IntBinaryOperator reducer;
5568 if ((transformer = this.transformer) != null &&
5569 (reducer = this.reducer) != null) {
5570 int r = this.basis;
5571 for (int i = baseIndex, f, h; batch > 0 &&
5572 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5573 addToPendingCount(1);
5574 (rights = new MapReduceKeysToIntTask<K,V>
5575 (this, batch >>>= 1, baseLimit = h, f, tab,
5576 rights, transformer, r, reducer)).fork();
5577 }
5578 for (Node<K,V> p; (p = advance()) != null; )
5579 r = reducer.applyAsInt(r, transformer.applyAsInt((K)p.key));
5580 result = r;
5581 CountedCompleter<?> c;
5582 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5583 MapReduceKeysToIntTask<K,V>
5584 t = (MapReduceKeysToIntTask<K,V>)c,
5585 s = t.rights;
5586 while (s != null) {
5587 t.result = reducer.applyAsInt(t.result, s.result);
5588 s = t.rights = s.nextRight;
5589 }
5590 }
5591 }
5592 }
5593 }
5594
5595 static final class MapReduceValuesToIntTask<K,V>
5596 extends BulkTask<K,V,Integer> {
5597 final ToIntFunction<? super V> transformer;
5598 final IntBinaryOperator reducer;
5599 final int basis;
5600 int result;
5601 MapReduceValuesToIntTask<K,V> rights, nextRight;
5602 MapReduceValuesToIntTask
5603 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5604 MapReduceValuesToIntTask<K,V> nextRight,
5605 ToIntFunction<? super V> transformer,
5606 int basis,
5607 IntBinaryOperator reducer) {
5608 super(p, b, i, f, t); this.nextRight = nextRight;
5609 this.transformer = transformer;
5610 this.basis = basis; this.reducer = reducer;
5611 }
5612 public final Integer getRawResult() { return result; }
5613 public final void compute() {
5614 final ToIntFunction<? super V> transformer;
5615 final IntBinaryOperator reducer;
5616 if ((transformer = this.transformer) != null &&
5617 (reducer = this.reducer) != null) {
5618 int r = this.basis;
5619 for (int i = baseIndex, f, h; batch > 0 &&
5620 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5621 addToPendingCount(1);
5622 (rights = new MapReduceValuesToIntTask<K,V>
5623 (this, batch >>>= 1, baseLimit = h, f, tab,
5624 rights, transformer, r, reducer)).fork();
5625 }
5626 for (Node<K,V> p; (p = advance()) != null; )
5627 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
5628 result = r;
5629 CountedCompleter<?> c;
5630 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5631 MapReduceValuesToIntTask<K,V>
5632 t = (MapReduceValuesToIntTask<K,V>)c,
5633 s = t.rights;
5634 while (s != null) {
5635 t.result = reducer.applyAsInt(t.result, s.result);
5636 s = t.rights = s.nextRight;
5637 }
5638 }
5639 }
5640 }
5641 }
5642
5643 static final class MapReduceEntriesToIntTask<K,V>
5644 extends BulkTask<K,V,Integer> {
5645 final ToIntFunction<Map.Entry<K,V>> transformer;
5646 final IntBinaryOperator reducer;
5647 final int basis;
5648 int result;
5649 MapReduceEntriesToIntTask<K,V> rights, nextRight;
5650 MapReduceEntriesToIntTask
5651 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5652 MapReduceEntriesToIntTask<K,V> nextRight,
5653 ToIntFunction<Map.Entry<K,V>> transformer,
5654 int basis,
5655 IntBinaryOperator reducer) {
5656 super(p, b, i, f, t); this.nextRight = nextRight;
5657 this.transformer = transformer;
5658 this.basis = basis; this.reducer = reducer;
5659 }
5660 public final Integer getRawResult() { return result; }
5661 public final void compute() {
5662 final ToIntFunction<Map.Entry<K,V>> transformer;
5663 final IntBinaryOperator reducer;
5664 if ((transformer = this.transformer) != null &&
5665 (reducer = this.reducer) != null) {
5666 int r = this.basis;
5667 for (int i = baseIndex, f, h; batch > 0 &&
5668 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5669 addToPendingCount(1);
5670 (rights = new MapReduceEntriesToIntTask<K,V>
5671 (this, batch >>>= 1, baseLimit = h, f, tab,
5672 rights, transformer, r, reducer)).fork();
5673 }
5674 for (Node<K,V> p; (p = advance()) != null; )
5675 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
5676 result = r;
5677 CountedCompleter<?> c;
5678 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5679 MapReduceEntriesToIntTask<K,V>
5680 t = (MapReduceEntriesToIntTask<K,V>)c,
5681 s = t.rights;
5682 while (s != null) {
5683 t.result = reducer.applyAsInt(t.result, s.result);
5684 s = t.rights = s.nextRight;
5685 }
5686 }
5687 }
5688 }
5689 }
5690
5691 static final class MapReduceMappingsToIntTask<K,V>
5692 extends BulkTask<K,V,Integer> {
5693 final ToIntBiFunction<? super K, ? super V> transformer;
5694 final IntBinaryOperator reducer;
5695 final int basis;
5696 int result;
5697 MapReduceMappingsToIntTask<K,V> rights, nextRight;
5698 MapReduceMappingsToIntTask
5699 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5700 MapReduceMappingsToIntTask<K,V> nextRight,
5701 ToIntBiFunction<? super K, ? super V> transformer,
5702 int basis,
5703 IntBinaryOperator reducer) {
5704 super(p, b, i, f, t); this.nextRight = nextRight;
5705 this.transformer = transformer;
5706 this.basis = basis; this.reducer = reducer;
5707 }
5708 public final Integer getRawResult() { return result; }
5709 public final void compute() {
5710 final ToIntBiFunction<? super K, ? super V> transformer;
5711 final IntBinaryOperator reducer;
5712 if ((transformer = this.transformer) != null &&
5713 (reducer = this.reducer) != null) {
5714 int r = this.basis;
5715 for (int i = baseIndex, f, h; batch > 0 &&
5716 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5717 addToPendingCount(1);
5718 (rights = new MapReduceMappingsToIntTask<K,V>
5719 (this, batch >>>= 1, baseLimit = h, f, tab,
5720 rights, transformer, r, reducer)).fork();
5721 }
5722 for (Node<K,V> p; (p = advance()) != null; )
5723 r = reducer.applyAsInt(r, transformer.applyAsInt((K)p.key, p.val));
5724 result = r;
5725 CountedCompleter<?> c;
5726 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5727 MapReduceMappingsToIntTask<K,V>
5728 t = (MapReduceMappingsToIntTask<K,V>)c,
5729 s = t.rights;
5730 while (s != null) {
5731 t.result = reducer.applyAsInt(t.result, s.result);
5732 s = t.rights = s.nextRight;
5733 }
5734 }
5735 }
5736 }
5737 }
5738
5739 // Unsafe mechanics
5740 private static final sun.misc.Unsafe U;
5741 private static final long SIZECTL;
5742 private static final long TRANSFERINDEX;
5743 private static final long TRANSFERORIGIN;
5744 private static final long BASECOUNT;
5745 private static final long CELLSBUSY;
5746 private static final long CELLVALUE;
5747 private static final long ABASE;
5748 private static final int ASHIFT;
5749
5750 static {
5751 try {
5752 U = sun.misc.Unsafe.getUnsafe();
5753 Class<?> k = ConcurrentHashMap.class;
5754 SIZECTL = U.objectFieldOffset
5755 (k.getDeclaredField("sizeCtl"));
5756 TRANSFERINDEX = U.objectFieldOffset
5757 (k.getDeclaredField("transferIndex"));
5758 TRANSFERORIGIN = U.objectFieldOffset
5759 (k.getDeclaredField("transferOrigin"));
5760 BASECOUNT = U.objectFieldOffset
5761 (k.getDeclaredField("baseCount"));
5762 CELLSBUSY = U.objectFieldOffset
5763 (k.getDeclaredField("cellsBusy"));
5764 Class<?> ck = Cell.class;
5765 CELLVALUE = U.objectFieldOffset
5766 (ck.getDeclaredField("value"));
5767 Class<?> sc = Node[].class;
5768 ABASE = U.arrayBaseOffset(sc);
5769 int scale = U.arrayIndexScale(sc);
5770 if ((scale & (scale - 1)) != 0)
5771 throw new Error("data type scale not a power of two");
5772 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
5773 } catch (Exception e) {
5774 throw new Error(e);
5775 }
5776 }
5777 }