ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.228
Committed: Tue Jun 18 18:39:14 2013 UTC (10 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.227: +4 -4 lines
Log Message:
coding style

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.io.Serializable;
11 import java.lang.reflect.ParameterizedType;
12 import java.lang.reflect.Type;
13 import java.util.Arrays;
14 import java.util.Collection;
15 import java.util.Comparator;
16 import java.util.ConcurrentModificationException;
17 import java.util.Enumeration;
18 import java.util.HashMap;
19 import java.util.Hashtable;
20 import java.util.Iterator;
21 import java.util.Map;
22 import java.util.NoSuchElementException;
23 import java.util.Set;
24 import java.util.Spliterator;
25 import java.util.concurrent.ConcurrentMap;
26 import java.util.concurrent.ForkJoinPool;
27 import java.util.concurrent.atomic.AtomicReference;
28 import java.util.concurrent.locks.LockSupport;
29 import java.util.concurrent.locks.ReentrantLock;
30 import java.util.function.BiConsumer;
31 import java.util.function.BiFunction;
32 import java.util.function.BinaryOperator;
33 import java.util.function.Consumer;
34 import java.util.function.DoubleBinaryOperator;
35 import java.util.function.Function;
36 import java.util.function.IntBinaryOperator;
37 import java.util.function.LongBinaryOperator;
38 import java.util.function.ToDoubleBiFunction;
39 import java.util.function.ToDoubleFunction;
40 import java.util.function.ToIntBiFunction;
41 import java.util.function.ToIntFunction;
42 import java.util.function.ToLongBiFunction;
43 import java.util.function.ToLongFunction;
44 import java.util.stream.Stream;
45
46 /**
47 * A hash table supporting full concurrency of retrievals and
48 * high expected concurrency for updates. This class obeys the
49 * same functional specification as {@link java.util.Hashtable}, and
50 * includes versions of methods corresponding to each method of
51 * {@code Hashtable}. However, even though all operations are
52 * thread-safe, retrieval operations do <em>not</em> entail locking,
53 * and there is <em>not</em> any support for locking the entire table
54 * in a way that prevents all access. This class is fully
55 * interoperable with {@code Hashtable} in programs that rely on its
56 * thread safety but not on its synchronization details.
57 *
58 * <p>Retrieval operations (including {@code get}) generally do not
59 * block, so may overlap with update operations (including {@code put}
60 * and {@code remove}). Retrievals reflect the results of the most
61 * recently <em>completed</em> update operations holding upon their
62 * onset. (More formally, an update operation for a given key bears a
63 * <em>happens-before</em> relation with any (non-null) retrieval for
64 * that key reporting the updated value.) For aggregate operations
65 * such as {@code putAll} and {@code clear}, concurrent retrievals may
66 * reflect insertion or removal of only some entries. Similarly,
67 * Iterators and Enumerations return elements reflecting the state of
68 * the hash table at some point at or since the creation of the
69 * iterator/enumeration. They do <em>not</em> throw {@link
70 * ConcurrentModificationException}. However, iterators are designed
71 * to be used by only one thread at a time. Bear in mind that the
72 * results of aggregate status methods including {@code size}, {@code
73 * isEmpty}, and {@code containsValue} are typically useful only when
74 * a map is not undergoing concurrent updates in other threads.
75 * Otherwise the results of these methods reflect transient states
76 * that may be adequate for monitoring or estimation purposes, but not
77 * for program control.
78 *
79 * <p>The table is dynamically expanded when there are too many
80 * collisions (i.e., keys that have distinct hash codes but fall into
81 * the same slot modulo the table size), with the expected average
82 * effect of maintaining roughly two bins per mapping (corresponding
83 * to a 0.75 load factor threshold for resizing). There may be much
84 * variance around this average as mappings are added and removed, but
85 * overall, this maintains a commonly accepted time/space tradeoff for
86 * hash tables. However, resizing this or any other kind of hash
87 * table may be a relatively slow operation. When possible, it is a
88 * good idea to provide a size estimate as an optional {@code
89 * initialCapacity} constructor argument. An additional optional
90 * {@code loadFactor} constructor argument provides a further means of
91 * customizing initial table capacity by specifying the table density
92 * to be used in calculating the amount of space to allocate for the
93 * given number of elements. Also, for compatibility with previous
94 * versions of this class, constructors may optionally specify an
95 * expected {@code concurrencyLevel} as an additional hint for
96 * internal sizing. Note that using many keys with exactly the same
97 * {@code hashCode()} is a sure way to slow down performance of any
98 * hash table. To ameliorate impact, when keys are {@link Comparable},
99 * this class may use comparison order among keys to help break ties.
100 *
101 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
102 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
103 * (using {@link #keySet(Object)} when only keys are of interest, and the
104 * mapped values are (perhaps transiently) not used or all take the
105 * same mapping value.
106 *
107 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
108 * form of histogram or multiset) by using {@link
109 * java.util.concurrent.atomic.LongAdder} values and initializing via
110 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
111 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
112 * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
113 *
114 * <p>This class and its views and iterators implement all of the
115 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
116 * interfaces.
117 *
118 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
119 * does <em>not</em> allow {@code null} to be used as a key or value.
120 *
121 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
122 * operations that, unlike most {@link Stream} methods, are designed
123 * to be safely, and often sensibly, applied even with maps that are
124 * being concurrently updated by other threads; for example, when
125 * computing a snapshot summary of the values in a shared registry.
126 * There are three kinds of operation, each with four forms, accepting
127 * functions with Keys, Values, Entries, and (Key, Value) arguments
128 * and/or return values. Because the elements of a ConcurrentHashMap
129 * are not ordered in any particular way, and may be processed in
130 * different orders in different parallel executions, the correctness
131 * of supplied functions should not depend on any ordering, or on any
132 * other objects or values that may transiently change while
133 * computation is in progress; and except for forEach actions, should
134 * ideally be side-effect-free. Bulk operations on {@link Map.Entry}
135 * objects do not support method {@code setValue}.
136 *
137 * <ul>
138 * <li> forEach: Perform a given action on each element.
139 * A variant form applies a given transformation on each element
140 * before performing the action.</li>
141 *
142 * <li> search: Return the first available non-null result of
143 * applying a given function on each element; skipping further
144 * search when a result is found.</li>
145 *
146 * <li> reduce: Accumulate each element. The supplied reduction
147 * function cannot rely on ordering (more formally, it should be
148 * both associative and commutative). There are five variants:
149 *
150 * <ul>
151 *
152 * <li> Plain reductions. (There is not a form of this method for
153 * (key, value) function arguments since there is no corresponding
154 * return type.)</li>
155 *
156 * <li> Mapped reductions that accumulate the results of a given
157 * function applied to each element.</li>
158 *
159 * <li> Reductions to scalar doubles, longs, and ints, using a
160 * given basis value.</li>
161 *
162 * </ul>
163 * </li>
164 * </ul>
165 *
166 * <p>These bulk operations accept a {@code parallelismThreshold}
167 * argument. Methods proceed sequentially if the current map size is
168 * estimated to be less than the given threshold. Using a value of
169 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
170 * of {@code 1} results in maximal parallelism by partitioning into
171 * enough subtasks to fully utilize the {@link
172 * ForkJoinPool#commonPool()} that is used for all parallel
173 * computations. Normally, you would initially choose one of these
174 * extreme values, and then measure performance of using in-between
175 * values that trade off overhead versus throughput.
176 *
177 * <p>The concurrency properties of bulk operations follow
178 * from those of ConcurrentHashMap: Any non-null result returned
179 * from {@code get(key)} and related access methods bears a
180 * happens-before relation with the associated insertion or
181 * update. The result of any bulk operation reflects the
182 * composition of these per-element relations (but is not
183 * necessarily atomic with respect to the map as a whole unless it
184 * is somehow known to be quiescent). Conversely, because keys
185 * and values in the map are never null, null serves as a reliable
186 * atomic indicator of the current lack of any result. To
187 * maintain this property, null serves as an implicit basis for
188 * all non-scalar reduction operations. For the double, long, and
189 * int versions, the basis should be one that, when combined with
190 * any other value, returns that other value (more formally, it
191 * should be the identity element for the reduction). Most common
192 * reductions have these properties; for example, computing a sum
193 * with basis 0 or a minimum with basis MAX_VALUE.
194 *
195 * <p>Search and transformation functions provided as arguments
196 * should similarly return null to indicate the lack of any result
197 * (in which case it is not used). In the case of mapped
198 * reductions, this also enables transformations to serve as
199 * filters, returning null (or, in the case of primitive
200 * specializations, the identity basis) if the element should not
201 * be combined. You can create compound transformations and
202 * filterings by composing them yourself under this "null means
203 * there is nothing there now" rule before using them in search or
204 * reduce operations.
205 *
206 * <p>Methods accepting and/or returning Entry arguments maintain
207 * key-value associations. They may be useful for example when
208 * finding the key for the greatest value. Note that "plain" Entry
209 * arguments can be supplied using {@code new
210 * AbstractMap.SimpleEntry(k,v)}.
211 *
212 * <p>Bulk operations may complete abruptly, throwing an
213 * exception encountered in the application of a supplied
214 * function. Bear in mind when handling such exceptions that other
215 * concurrently executing functions could also have thrown
216 * exceptions, or would have done so if the first exception had
217 * not occurred.
218 *
219 * <p>Speedups for parallel compared to sequential forms are common
220 * but not guaranteed. Parallel operations involving brief functions
221 * on small maps may execute more slowly than sequential forms if the
222 * underlying work to parallelize the computation is more expensive
223 * than the computation itself. Similarly, parallelization may not
224 * lead to much actual parallelism if all processors are busy
225 * performing unrelated tasks.
226 *
227 * <p>All arguments to all task methods must be non-null.
228 *
229 * <p>This class is a member of the
230 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
231 * Java Collections Framework</a>.
232 *
233 * @since 1.5
234 * @author Doug Lea
235 * @param <K> the type of keys maintained by this map
236 * @param <V> the type of mapped values
237 */
238 public class ConcurrentHashMap<K,V> implements ConcurrentMap<K,V>, Serializable {
239 private static final long serialVersionUID = 7249069246763182397L;
240
241 /*
242 * Overview:
243 *
244 * The primary design goal of this hash table is to maintain
245 * concurrent readability (typically method get(), but also
246 * iterators and related methods) while minimizing update
247 * contention. Secondary goals are to keep space consumption about
248 * the same or better than java.util.HashMap, and to support high
249 * initial insertion rates on an empty table by many threads.
250 *
251 * This map usually acts as a binned (bucketed) hash table. Each
252 * key-value mapping is held in a Node. Most nodes are instances
253 * of the basic Node class with hash, key, value, and next
254 * fields. However, various subclasses exist: TreeNodes are
255 * arranged in balanced trees, not lists. TreeBins hold the roots
256 * of sets of TreeNodes. ForwardingNodes are placed at the heads
257 * of bins during resizing. ReservationNodes are used as
258 * placeholders while establishing values in computeIfAbsent and
259 * related methods. The types TreeBin, ForwardingNode, and
260 * ReservationNode do not hold normal user keys, values, or
261 * hashes, and are readily distinguishable during search etc
262 * because they have negative hash fields and null key and value
263 * fields. (These special nodes are either uncommon or transient,
264 * so the impact of carrying around some unused fields is
265 * insignficant.)
266 *
267 * The table is lazily initialized to a power-of-two size upon the
268 * first insertion. Each bin in the table normally contains a
269 * list of Nodes (most often, the list has only zero or one Node).
270 * Table accesses require volatile/atomic reads, writes, and
271 * CASes. Because there is no other way to arrange this without
272 * adding further indirections, we use intrinsics
273 * (sun.misc.Unsafe) operations.
274 *
275 * We use the top (sign) bit of Node hash fields for control
276 * purposes -- it is available anyway because of addressing
277 * constraints. Nodes with negative hash fields are specially
278 * handled or ignored in map methods.
279 *
280 * Insertion (via put or its variants) of the first node in an
281 * empty bin is performed by just CASing it to the bin. This is
282 * by far the most common case for put operations under most
283 * key/hash distributions. Other update operations (insert,
284 * delete, and replace) require locks. We do not want to waste
285 * the space required to associate a distinct lock object with
286 * each bin, so instead use the first node of a bin list itself as
287 * a lock. Locking support for these locks relies on builtin
288 * "synchronized" monitors.
289 *
290 * Using the first node of a list as a lock does not by itself
291 * suffice though: When a node is locked, any update must first
292 * validate that it is still the first node after locking it, and
293 * retry if not. Because new nodes are always appended to lists,
294 * once a node is first in a bin, it remains first until deleted
295 * or the bin becomes invalidated (upon resizing).
296 *
297 * The main disadvantage of per-bin locks is that other update
298 * operations on other nodes in a bin list protected by the same
299 * lock can stall, for example when user equals() or mapping
300 * functions take a long time. However, statistically, under
301 * random hash codes, this is not a common problem. Ideally, the
302 * frequency of nodes in bins follows a Poisson distribution
303 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
304 * parameter of about 0.5 on average, given the resizing threshold
305 * of 0.75, although with a large variance because of resizing
306 * granularity. Ignoring variance, the expected occurrences of
307 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
308 * first values are:
309 *
310 * 0: 0.60653066
311 * 1: 0.30326533
312 * 2: 0.07581633
313 * 3: 0.01263606
314 * 4: 0.00157952
315 * 5: 0.00015795
316 * 6: 0.00001316
317 * 7: 0.00000094
318 * 8: 0.00000006
319 * more: less than 1 in ten million
320 *
321 * Lock contention probability for two threads accessing distinct
322 * elements is roughly 1 / (8 * #elements) under random hashes.
323 *
324 * Actual hash code distributions encountered in practice
325 * sometimes deviate significantly from uniform randomness. This
326 * includes the case when N > (1<<30), so some keys MUST collide.
327 * Similarly for dumb or hostile usages in which multiple keys are
328 * designed to have identical hash codes or ones that differs only
329 * in masked-out high bits. So we use a secondary strategy that
330 * applies when the number of nodes in a bin exceeds a
331 * threshold. These TreeBins use a balanced tree to hold nodes (a
332 * specialized form of red-black trees), bounding search time to
333 * O(log N). Each search step in a TreeBin is at least twice as
334 * slow as in a regular list, but given that N cannot exceed
335 * (1<<64) (before running out of addresses) this bounds search
336 * steps, lock hold times, etc, to reasonable constants (roughly
337 * 100 nodes inspected per operation worst case) so long as keys
338 * are Comparable (which is very common -- String, Long, etc).
339 * TreeBin nodes (TreeNodes) also maintain the same "next"
340 * traversal pointers as regular nodes, so can be traversed in
341 * iterators in the same way.
342 *
343 * The table is resized when occupancy exceeds a percentage
344 * threshold (nominally, 0.75, but see below). Any thread
345 * noticing an overfull bin may assist in resizing after the
346 * initiating thread allocates and sets up the replacement
347 * array. However, rather than stalling, these other threads may
348 * proceed with insertions etc. The use of TreeBins shields us
349 * from the worst case effects of overfilling while resizes are in
350 * progress. Resizing proceeds by transferring bins, one by one,
351 * from the table to the next table. To enable concurrency, the
352 * next table must be (incrementally) prefilled with place-holders
353 * serving as reverse forwarders to the old table. Because we are
354 * using power-of-two expansion, the elements from each bin must
355 * either stay at same index, or move with a power of two
356 * offset. We eliminate unnecessary node creation by catching
357 * cases where old nodes can be reused because their next fields
358 * won't change. On average, only about one-sixth of them need
359 * cloning when a table doubles. The nodes they replace will be
360 * garbage collectable as soon as they are no longer referenced by
361 * any reader thread that may be in the midst of concurrently
362 * traversing table. Upon transfer, the old table bin contains
363 * only a special forwarding node (with hash field "MOVED") that
364 * contains the next table as its key. On encountering a
365 * forwarding node, access and update operations restart, using
366 * the new table.
367 *
368 * Each bin transfer requires its bin lock, which can stall
369 * waiting for locks while resizing. However, because other
370 * threads can join in and help resize rather than contend for
371 * locks, average aggregate waits become shorter as resizing
372 * progresses. The transfer operation must also ensure that all
373 * accessible bins in both the old and new table are usable by any
374 * traversal. This is arranged by proceeding from the last bin
375 * (table.length - 1) up towards the first. Upon seeing a
376 * forwarding node, traversals (see class Traverser) arrange to
377 * move to the new table without revisiting nodes. However, to
378 * ensure that no intervening nodes are skipped, bin splitting can
379 * only begin after the associated reverse-forwarders are in
380 * place.
381 *
382 * The traversal scheme also applies to partial traversals of
383 * ranges of bins (via an alternate Traverser constructor)
384 * to support partitioned aggregate operations. Also, read-only
385 * operations give up if ever forwarded to a null table, which
386 * provides support for shutdown-style clearing, which is also not
387 * currently implemented.
388 *
389 * Lazy table initialization minimizes footprint until first use,
390 * and also avoids resizings when the first operation is from a
391 * putAll, constructor with map argument, or deserialization.
392 * These cases attempt to override the initial capacity settings,
393 * but harmlessly fail to take effect in cases of races.
394 *
395 * The element count is maintained using a specialization of
396 * LongAdder. We need to incorporate a specialization rather than
397 * just use a LongAdder in order to access implicit
398 * contention-sensing that leads to creation of multiple
399 * CounterCells. The counter mechanics avoid contention on
400 * updates but can encounter cache thrashing if read too
401 * frequently during concurrent access. To avoid reading so often,
402 * resizing under contention is attempted only upon adding to a
403 * bin already holding two or more nodes. Under uniform hash
404 * distributions, the probability of this occurring at threshold
405 * is around 13%, meaning that only about 1 in 8 puts check
406 * threshold (and after resizing, many fewer do so).
407 *
408 * TreeBins use a special form of comparison for search and
409 * related operations (which is the main reason we cannot use
410 * existing collections such as TreeMaps). TreeBins contain
411 * Comparable elements, but may contain others, as well as
412 * elements that are Comparable but not necessarily Comparable
413 * for the same T, so we cannot invoke compareTo among them. To
414 * handle this, the tree is ordered primarily by hash value, then
415 * by Comparable.compareTo order if applicable. On lookup at a
416 * node, if elements are not comparable or compare as 0 then both
417 * left and right children may need to be searched in the case of
418 * tied hash values. (This corresponds to the full list search
419 * that would be necessary if all elements were non-Comparable and
420 * had tied hashes.) The red-black balancing code is updated from
421 * pre-jdk-collections
422 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
423 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
424 * Algorithms" (CLR).
425 *
426 * TreeBins also require an additional locking mechanism. While
427 * list traversal is always possible by readers even during
428 * updates, tree traversal is not, mainly beause of tree-rotations
429 * that may change the root node and/or its linkages. TreeBins
430 * include a simple read-write lock mechanism parasitic on the
431 * main bin-synchronization strategy: Structural adjustments
432 * associated with an insertion or removal are already bin-locked
433 * (and so cannot conflict with other writers) but must wait for
434 * ongoing readers to finish. Since there can be only one such
435 * waiter, we use a simple scheme using a single "waiter" field to
436 * block writers. However, readers need never block. If the root
437 * lock is held, they proceed along the slow traversal path (via
438 * next-pointers) until the lock becomes available or the list is
439 * exhausted, whichever comes first. These cases are not fast, but
440 * maximize aggregate expected throughput.
441 *
442 * Maintaining API and serialization compatibility with previous
443 * versions of this class introduces several oddities. Mainly: We
444 * leave untouched but unused constructor arguments refering to
445 * concurrencyLevel. We accept a loadFactor constructor argument,
446 * but apply it only to initial table capacity (which is the only
447 * time that we can guarantee to honor it.) We also declare an
448 * unused "Segment" class that is instantiated in minimal form
449 * only when serializing.
450 *
451 * This file is organized to make things a little easier to follow
452 * while reading than they might otherwise: First the main static
453 * declarations and utilities, then fields, then main public
454 * methods (with a few factorings of multiple public methods into
455 * internal ones), then sizing methods, trees, traversers, and
456 * bulk operations.
457 */
458
459 /* ---------------- Constants -------------- */
460
461 /**
462 * The largest possible table capacity. This value must be
463 * exactly 1<<30 to stay within Java array allocation and indexing
464 * bounds for power of two table sizes, and is further required
465 * because the top two bits of 32bit hash fields are used for
466 * control purposes.
467 */
468 private static final int MAXIMUM_CAPACITY = 1 << 30;
469
470 /**
471 * The default initial table capacity. Must be a power of 2
472 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
473 */
474 private static final int DEFAULT_CAPACITY = 16;
475
476 /**
477 * The largest possible (non-power of two) array size.
478 * Needed by toArray and related methods.
479 */
480 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
481
482 /**
483 * The default concurrency level for this table. Unused but
484 * defined for compatibility with previous versions of this class.
485 */
486 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
487
488 /**
489 * The load factor for this table. Overrides of this value in
490 * constructors affect only the initial table capacity. The
491 * actual floating point value isn't normally used -- it is
492 * simpler to use expressions such as {@code n - (n >>> 2)} for
493 * the associated resizing threshold.
494 */
495 private static final float LOAD_FACTOR = 0.75f;
496
497 /**
498 * The bin count threshold for using a tree rather than list for a
499 * bin. Bins are converted to trees when adding an element to a
500 * bin with at least this many nodes. The value must be greater
501 * than 2, and should be at least 8 to mesh with assumptions in
502 * tree removal about conversion back to plain bins upon
503 * shrinkage.
504 */
505 static final int TREEIFY_THRESHOLD = 8;
506
507 /**
508 * The bin count threshold for untreeifying a (split) bin during a
509 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
510 * most 6 to mesh with shrinkage detection under removal.
511 */
512 static final int UNTREEIFY_THRESHOLD = 6;
513
514 /**
515 * The smallest table capacity for which bins may be treeified.
516 * (Otherwise the table is resized if too many nodes in a bin.)
517 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
518 * conflicts between resizing and treeification thresholds.
519 */
520 static final int MIN_TREEIFY_CAPACITY = 64;
521
522 /**
523 * Minimum number of rebinnings per transfer step. Ranges are
524 * subdivided to allow multiple resizer threads. This value
525 * serves as a lower bound to avoid resizers encountering
526 * excessive memory contention. The value should be at least
527 * DEFAULT_CAPACITY.
528 */
529 private static final int MIN_TRANSFER_STRIDE = 16;
530
531 /*
532 * Encodings for Node hash fields. See above for explanation.
533 */
534 static final int MOVED = 0x8fffffff; // (-1) hash for forwarding nodes
535 static final int TREEBIN = 0x80000000; // hash for heads of treea
536 static final int RESERVED = 0x80000001; // hash for transient reservations
537 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
538
539 /** Number of CPUS, to place bounds on some sizings */
540 static final int NCPU = Runtime.getRuntime().availableProcessors();
541
542 /** For serialization compatibility. */
543 private static final ObjectStreamField[] serialPersistentFields = {
544 new ObjectStreamField("segments", Segment[].class),
545 new ObjectStreamField("segmentMask", Integer.TYPE),
546 new ObjectStreamField("segmentShift", Integer.TYPE)
547 };
548
549 /* ---------------- Nodes -------------- */
550
551 /**
552 * Key-value entry. This class is never exported out as a
553 * user-mutable Map.Entry (i.e., one supporting setValue; see
554 * MapEntry below), but can be used for read-only traversals used
555 * in bulk tasks. Subclasses of Node with a negativehash field
556 * are special, and contain null keys and values (but are never
557 * exported). Otherwise, keys and vals are never null.
558 */
559 static class Node<K,V> implements Map.Entry<K,V> {
560 final int hash;
561 final K key;
562 volatile V val;
563 Node<K,V> next;
564
565 Node(int hash, K key, V val, Node<K,V> next) {
566 this.hash = hash;
567 this.key = key;
568 this.val = val;
569 this.next = next;
570 }
571
572 public final K getKey() { return key; }
573 public final V getValue() { return val; }
574 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
575 public final String toString(){ return key + "=" + val; }
576 public final V setValue(V value) {
577 throw new UnsupportedOperationException();
578 }
579
580 public final boolean equals(Object o) {
581 Object k, v, u; Map.Entry<?,?> e;
582 return ((o instanceof Map.Entry) &&
583 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
584 (v = e.getValue()) != null &&
585 (k == key || k.equals(key)) &&
586 (v == (u = val) || v.equals(u)));
587 }
588
589 /**
590 * Virtualized support for map.get(); overridden in subclasses.
591 */
592 Node<K,V> find(int h, Object k) {
593 Node<K,V> e = this;
594 if (k != null) {
595 do {
596 K ek;
597 if (e.hash == h &&
598 ((ek = e.key) == k || (ek != null && k.equals(ek))))
599 return e;
600 } while ((e = e.next) != null);
601 }
602 return null;
603 }
604 }
605
606 /* ---------------- Static utilities -------------- */
607
608 /**
609 * Spreads (XORs) higher bits of hash to lower and also forces top
610 * bit to 0. Because the table uses power-of-two masking, sets of
611 * hashes that vary only in bits above the current mask will
612 * always collide. (Among known examples are sets of Float keys
613 * holding consecutive whole numbers in small tables.) So we
614 * apply a transform that spreads the impact of higher bits
615 * downward. There is a tradeoff between speed, utility, and
616 * quality of bit-spreading. Because many common sets of hashes
617 * are already reasonably distributed (so don't benefit from
618 * spreading), and because we use trees to handle large sets of
619 * collisions in bins, we just XOR some shifted bits in the
620 * cheapest possible way to reduce systematic lossage, as well as
621 * to incorporate impact of the highest bits that would otherwise
622 * never be used in index calculations because of table bounds.
623 */
624 static final int spread(int h) {
625 return (h ^ (h >>> 16)) & HASH_BITS;
626 }
627
628 /**
629 * Returns a power of two table size for the given desired capacity.
630 * See Hackers Delight, sec 3.2
631 */
632 private static final int tableSizeFor(int c) {
633 int n = c - 1;
634 n |= n >>> 1;
635 n |= n >>> 2;
636 n |= n >>> 4;
637 n |= n >>> 8;
638 n |= n >>> 16;
639 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
640 }
641
642 /**
643 * Returns x's Class if it is of the form "class C implements
644 * Comparable<C>", else null.
645 */
646 static Class<?> comparableClassFor(Object x) {
647 if (x instanceof Comparable) {
648 Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
649 if ((c = x.getClass()) == String.class) // bypass checks
650 return c;
651 if ((ts = c.getGenericInterfaces()) != null) {
652 for (int i = 0; i < ts.length; ++i) {
653 if (((t = ts[i]) instanceof ParameterizedType) &&
654 ((p = (ParameterizedType)t).getRawType() ==
655 Comparable.class) &&
656 (as = p.getActualTypeArguments()) != null &&
657 as.length == 1 && as[0] == c) // type arg is c
658 return c;
659 }
660 }
661 }
662 return null;
663 }
664
665 /**
666 * Returns k.compareTo(x) if x matches kc (k's screened comparable
667 * class), else 0.
668 */
669 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
670 static int compareComparables(Class<?> kc, Object k, Object x) {
671 return (x == null || x.getClass() != kc ? 0 :
672 ((Comparable)k).compareTo(x));
673 }
674
675 /* ---------------- Table element access -------------- */
676
677 /*
678 * Volatile access methods are used for table elements as well as
679 * elements of in-progress next table while resizing. All uses of
680 * the tab arguments must be null checked by callers. All callers
681 * also paranoically precheck that tab's length is not zero (or an
682 * equivalent check), thus ensuring that any index argument taking
683 * the form of a hash value anded with (length - 1) is a valid
684 * index. Note that, to be correct wrt arbitrary concurrency
685 * errors by users, these checks must operate on local variables,
686 * which accounts for some odd-looking inline assignments below.
687 * Note that calls to setTabAt always occur within locked regions,
688 * and so do not need full volatile semantics, but still require
689 * ordering to maintain concurrent readability.
690 */
691
692 @SuppressWarnings("unchecked")
693 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
694 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
695 }
696
697 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
698 Node<K,V> c, Node<K,V> v) {
699 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
700 }
701
702 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
703 U.putOrderedObject(tab, ((long)i << ASHIFT) + ABASE, v);
704 }
705
706 /* ---------------- Fields -------------- */
707
708 /**
709 * The array of bins. Lazily initialized upon first insertion.
710 * Size is always a power of two. Accessed directly by iterators.
711 */
712 transient volatile Node<K,V>[] table;
713
714 /**
715 * The next table to use; non-null only while resizing.
716 */
717 private transient volatile Node<K,V>[] nextTable;
718
719 /**
720 * Base counter value, used mainly when there is no contention,
721 * but also as a fallback during table initialization
722 * races. Updated via CAS.
723 */
724 private transient volatile long baseCount;
725
726 /**
727 * Table initialization and resizing control. When negative, the
728 * table is being initialized or resized: -1 for initialization,
729 * else -(1 + the number of active resizing threads). Otherwise,
730 * when table is null, holds the initial table size to use upon
731 * creation, or 0 for default. After initialization, holds the
732 * next element count value upon which to resize the table.
733 */
734 private transient volatile int sizeCtl;
735
736 /**
737 * The next table index (plus one) to split while resizing.
738 */
739 private transient volatile int transferIndex;
740
741 /**
742 * The least available table index to split while resizing.
743 */
744 private transient volatile int transferOrigin;
745
746 /**
747 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
748 */
749 private transient volatile int cellsBusy;
750
751 /**
752 * Table of counter cells. When non-null, size is a power of 2.
753 */
754 private transient volatile CounterCell[] counterCells;
755
756 // views
757 private transient KeySetView<K,V> keySet;
758 private transient ValuesView<K,V> values;
759 private transient EntrySetView<K,V> entrySet;
760
761
762 /* ---------------- Public operations -------------- */
763
764 /**
765 * Creates a new, empty map with the default initial table size (16).
766 */
767 public ConcurrentHashMap() {
768 }
769
770 /**
771 * Creates a new, empty map with an initial table size
772 * accommodating the specified number of elements without the need
773 * to dynamically resize.
774 *
775 * @param initialCapacity The implementation performs internal
776 * sizing to accommodate this many elements.
777 * @throws IllegalArgumentException if the initial capacity of
778 * elements is negative
779 */
780 public ConcurrentHashMap(int initialCapacity) {
781 if (initialCapacity < 0)
782 throw new IllegalArgumentException();
783 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
784 MAXIMUM_CAPACITY :
785 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
786 this.sizeCtl = cap;
787 }
788
789 /**
790 * Creates a new map with the same mappings as the given map.
791 *
792 * @param m the map
793 */
794 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
795 this.sizeCtl = DEFAULT_CAPACITY;
796 putAll(m);
797 }
798
799 /**
800 * Creates a new, empty map with an initial table size based on
801 * the given number of elements ({@code initialCapacity}) and
802 * initial table density ({@code loadFactor}).
803 *
804 * @param initialCapacity the initial capacity. The implementation
805 * performs internal sizing to accommodate this many elements,
806 * given the specified load factor.
807 * @param loadFactor the load factor (table density) for
808 * establishing the initial table size
809 * @throws IllegalArgumentException if the initial capacity of
810 * elements is negative or the load factor is nonpositive
811 *
812 * @since 1.6
813 */
814 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
815 this(initialCapacity, loadFactor, 1);
816 }
817
818 /**
819 * Creates a new, empty map with an initial table size based on
820 * the given number of elements ({@code initialCapacity}), table
821 * density ({@code loadFactor}), and number of concurrently
822 * updating threads ({@code concurrencyLevel}).
823 *
824 * @param initialCapacity the initial capacity. The implementation
825 * performs internal sizing to accommodate this many elements,
826 * given the specified load factor.
827 * @param loadFactor the load factor (table density) for
828 * establishing the initial table size
829 * @param concurrencyLevel the estimated number of concurrently
830 * updating threads. The implementation may use this value as
831 * a sizing hint.
832 * @throws IllegalArgumentException if the initial capacity is
833 * negative or the load factor or concurrencyLevel are
834 * nonpositive
835 */
836 public ConcurrentHashMap(int initialCapacity,
837 float loadFactor, int concurrencyLevel) {
838 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
839 throw new IllegalArgumentException();
840 if (initialCapacity < concurrencyLevel) // Use at least as many bins
841 initialCapacity = concurrencyLevel; // as estimated threads
842 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
843 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
844 MAXIMUM_CAPACITY : tableSizeFor((int)size);
845 this.sizeCtl = cap;
846 }
847
848 // Original (since JDK1.2) Map methods
849
850 /**
851 * {@inheritDoc}
852 */
853 public int size() {
854 long n = sumCount();
855 return ((n < 0L) ? 0 :
856 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
857 (int)n);
858 }
859
860 /**
861 * {@inheritDoc}
862 */
863 public boolean isEmpty() {
864 return sumCount() <= 0L; // ignore transient negative values
865 }
866
867 /**
868 * Returns the value to which the specified key is mapped,
869 * or {@code null} if this map contains no mapping for the key.
870 *
871 * <p>More formally, if this map contains a mapping from a key
872 * {@code k} to a value {@code v} such that {@code key.equals(k)},
873 * then this method returns {@code v}; otherwise it returns
874 * {@code null}. (There can be at most one such mapping.)
875 *
876 * @throws NullPointerException if the specified key is null
877 */
878 public V get(Object key) {
879 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
880 int h = spread(key.hashCode());
881 if ((tab = table) != null && (n = tab.length) > 0 &&
882 (e = tabAt(tab, (n - 1) & h)) != null) {
883 if ((eh = e.hash) == h) {
884 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
885 return e.val;
886 }
887 else if (eh < 0)
888 return (p = e.find(h, key)) != null ? p.val : null;
889 while ((e = e.next) != null) {
890 if (e.hash == h &&
891 ((ek = e.key) == key || (ek != null && key.equals(ek))))
892 return e.val;
893 }
894 }
895 return null;
896 }
897
898 /**
899 * Tests if the specified object is a key in this table.
900 *
901 * @param key possible key
902 * @return {@code true} if and only if the specified object
903 * is a key in this table, as determined by the
904 * {@code equals} method; {@code false} otherwise
905 * @throws NullPointerException if the specified key is null
906 */
907 public boolean containsKey(Object key) {
908 return get(key) != null;
909 }
910
911 /**
912 * Returns {@code true} if this map maps one or more keys to the
913 * specified value. Note: This method may require a full traversal
914 * of the map, and is much slower than method {@code containsKey}.
915 *
916 * @param value value whose presence in this map is to be tested
917 * @return {@code true} if this map maps one or more keys to the
918 * specified value
919 * @throws NullPointerException if the specified value is null
920 */
921 public boolean containsValue(Object value) {
922 if (value == null)
923 throw new NullPointerException();
924 Node<K,V>[] t;
925 if ((t = table) != null) {
926 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
927 for (Node<K,V> p; (p = it.advance()) != null; ) {
928 V v;
929 if ((v = p.val) == value || (v != null && value.equals(v)))
930 return true;
931 }
932 }
933 return false;
934 }
935
936 /**
937 * Maps the specified key to the specified value in this table.
938 * Neither the key nor the value can be null.
939 *
940 * <p>The value can be retrieved by calling the {@code get} method
941 * with a key that is equal to the original key.
942 *
943 * @param key key with which the specified value is to be associated
944 * @param value value to be associated with the specified key
945 * @return the previous value associated with {@code key}, or
946 * {@code null} if there was no mapping for {@code key}
947 * @throws NullPointerException if the specified key or value is null
948 */
949 public V put(K key, V value) {
950 return putVal(key, value, false);
951 }
952
953 /** Implementation for put and putIfAbsent */
954 final V putVal(K key, V value, boolean onlyIfAbsent) {
955 if (key == null || value == null) throw new NullPointerException();
956 int hash = spread(key.hashCode());
957 int binCount = 0;
958 for (Node<K,V>[] tab = table;;) {
959 Node<K,V> f; int n, i, fh;
960 if (tab == null || (n = tab.length) == 0)
961 tab = initTable();
962 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
963 if (casTabAt(tab, i, null,
964 new Node<K,V>(hash, key, value, null)))
965 break; // no lock when adding to empty bin
966 }
967 else if ((fh = f.hash) == MOVED)
968 tab = helpTransfer(tab, f);
969 else {
970 V oldVal = null;
971 synchronized (f) {
972 if (tabAt(tab, i) == f) {
973 if (fh >= 0) {
974 binCount = 1;
975 for (Node<K,V> e = f;; ++binCount) {
976 K ek;
977 if (e.hash == hash &&
978 ((ek = e.key) == key ||
979 (ek != null && key.equals(ek)))) {
980 oldVal = e.val;
981 if (!onlyIfAbsent)
982 e.val = value;
983 break;
984 }
985 Node<K,V> pred = e;
986 if ((e = e.next) == null) {
987 pred.next = new Node<K,V>(hash, key,
988 value, null);
989 break;
990 }
991 }
992 }
993 else if (f instanceof TreeBin) {
994 Node<K,V> p;
995 binCount = 2;
996 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
997 value)) != null) {
998 oldVal = p.val;
999 if (!onlyIfAbsent)
1000 p.val = value;
1001 }
1002 }
1003 }
1004 }
1005 if (binCount != 0) {
1006 if (binCount >= TREEIFY_THRESHOLD)
1007 treeifyBin(tab, i);
1008 if (oldVal != null)
1009 return oldVal;
1010 break;
1011 }
1012 }
1013 }
1014 addCount(1L, binCount);
1015 return null;
1016 }
1017
1018 /**
1019 * Copies all of the mappings from the specified map to this one.
1020 * These mappings replace any mappings that this map had for any of the
1021 * keys currently in the specified map.
1022 *
1023 * @param m mappings to be stored in this map
1024 */
1025 public void putAll(Map<? extends K, ? extends V> m) {
1026 tryPresize(m.size());
1027 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1028 putVal(e.getKey(), e.getValue(), false);
1029 }
1030
1031 /**
1032 * Removes the key (and its corresponding value) from this map.
1033 * This method does nothing if the key is not in the map.
1034 *
1035 * @param key the key that needs to be removed
1036 * @return the previous value associated with {@code key}, or
1037 * {@code null} if there was no mapping for {@code key}
1038 * @throws NullPointerException if the specified key is null
1039 */
1040 public V remove(Object key) {
1041 return replaceNode(key, null, null);
1042 }
1043
1044 /**
1045 * Implementation for the four public remove/replace methods:
1046 * Replaces node value with v, conditional upon match of cv if
1047 * non-null. If resulting value is null, delete.
1048 */
1049 final V replaceNode(Object key, V value, Object cv) {
1050 int hash = spread(key.hashCode());
1051 for (Node<K,V>[] tab = table;;) {
1052 Node<K,V> f; int n, i, fh;
1053 if (tab == null || (n = tab.length) == 0 ||
1054 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1055 break;
1056 else if ((fh = f.hash) == MOVED)
1057 tab = helpTransfer(tab, f);
1058 else {
1059 V oldVal = null;
1060 boolean validated = false;
1061 synchronized (f) {
1062 if (tabAt(tab, i) == f) {
1063 if (fh >= 0) {
1064 validated = true;
1065 for (Node<K,V> e = f, pred = null;;) {
1066 K ek;
1067 if (e.hash == hash &&
1068 ((ek = e.key) == key ||
1069 (ek != null && key.equals(ek)))) {
1070 V ev = e.val;
1071 if (cv == null || cv == ev ||
1072 (ev != null && cv.equals(ev))) {
1073 oldVal = ev;
1074 if (value != null)
1075 e.val = value;
1076 else if (pred != null)
1077 pred.next = e.next;
1078 else
1079 setTabAt(tab, i, e.next);
1080 }
1081 break;
1082 }
1083 pred = e;
1084 if ((e = e.next) == null)
1085 break;
1086 }
1087 }
1088 else if (f instanceof TreeBin) {
1089 validated = true;
1090 TreeBin<K,V> t = (TreeBin<K,V>)f;
1091 TreeNode<K,V> r, p;
1092 if ((r = t.root) != null &&
1093 (p = r.findTreeNode(hash, key, null)) != null) {
1094 V pv = p.val;
1095 if (cv == null || cv == pv ||
1096 (pv != null && cv.equals(pv))) {
1097 oldVal = pv;
1098 if (value != null)
1099 p.val = value;
1100 else if (t.removeTreeNode(p))
1101 setTabAt(tab, i, untreeify(t.first));
1102 }
1103 }
1104 }
1105 }
1106 }
1107 if (validated) {
1108 if (oldVal != null) {
1109 if (value == null)
1110 addCount(-1L, -1);
1111 return oldVal;
1112 }
1113 break;
1114 }
1115 }
1116 }
1117 return null;
1118 }
1119
1120 /**
1121 * Removes all of the mappings from this map.
1122 */
1123 public void clear() {
1124 long delta = 0L; // negative number of deletions
1125 int i = 0;
1126 Node<K,V>[] tab = table;
1127 while (tab != null && i < tab.length) {
1128 int fh;
1129 Node<K,V> f = tabAt(tab, i);
1130 if (f == null)
1131 ++i;
1132 else if ((fh = f.hash) == MOVED) {
1133 tab = helpTransfer(tab, f);
1134 i = 0; // restart
1135 }
1136 else {
1137 synchronized (f) {
1138 if (tabAt(tab, i) == f) {
1139 Node<K,V> p = (fh >= 0 ? f :
1140 (f instanceof TreeBin) ?
1141 ((TreeBin<K,V>)f).first : null);
1142 while (p != null) {
1143 --delta;
1144 p = p.next;
1145 }
1146 setTabAt(tab, i++, null);
1147 }
1148 }
1149 }
1150 }
1151 if (delta != 0L)
1152 addCount(delta, -1);
1153 }
1154
1155 /**
1156 * Returns a {@link Set} view of the keys contained in this map.
1157 * The set is backed by the map, so changes to the map are
1158 * reflected in the set, and vice-versa. The set supports element
1159 * removal, which removes the corresponding mapping from this map,
1160 * via the {@code Iterator.remove}, {@code Set.remove},
1161 * {@code removeAll}, {@code retainAll}, and {@code clear}
1162 * operations. It does not support the {@code add} or
1163 * {@code addAll} operations.
1164 *
1165 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1166 * that will never throw {@link ConcurrentModificationException},
1167 * and guarantees to traverse elements as they existed upon
1168 * construction of the iterator, and may (but is not guaranteed to)
1169 * reflect any modifications subsequent to construction.
1170 *
1171 * @return the set view
1172 */
1173 public KeySetView<K,V> keySet() {
1174 KeySetView<K,V> ks;
1175 return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1176 }
1177
1178 /**
1179 * Returns a {@link Collection} view of the values contained in this map.
1180 * The collection is backed by the map, so changes to the map are
1181 * reflected in the collection, and vice-versa. The collection
1182 * supports element removal, which removes the corresponding
1183 * mapping from this map, via the {@code Iterator.remove},
1184 * {@code Collection.remove}, {@code removeAll},
1185 * {@code retainAll}, and {@code clear} operations. It does not
1186 * support the {@code add} or {@code addAll} operations.
1187 *
1188 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1189 * that will never throw {@link ConcurrentModificationException},
1190 * and guarantees to traverse elements as they existed upon
1191 * construction of the iterator, and may (but is not guaranteed to)
1192 * reflect any modifications subsequent to construction.
1193 *
1194 * @return the collection view
1195 */
1196 public Collection<V> values() {
1197 ValuesView<K,V> vs;
1198 return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1199 }
1200
1201 /**
1202 * Returns a {@link Set} view of the mappings contained in this map.
1203 * The set is backed by the map, so changes to the map are
1204 * reflected in the set, and vice-versa. The set supports element
1205 * removal, which removes the corresponding mapping from the map,
1206 * via the {@code Iterator.remove}, {@code Set.remove},
1207 * {@code removeAll}, {@code retainAll}, and {@code clear}
1208 * operations.
1209 *
1210 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1211 * that will never throw {@link ConcurrentModificationException},
1212 * and guarantees to traverse elements as they existed upon
1213 * construction of the iterator, and may (but is not guaranteed to)
1214 * reflect any modifications subsequent to construction.
1215 *
1216 * @return the set view
1217 */
1218 public Set<Map.Entry<K,V>> entrySet() {
1219 EntrySetView<K,V> es;
1220 return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1221 }
1222
1223 /**
1224 * Returns the hash code value for this {@link Map}, i.e.,
1225 * the sum of, for each key-value pair in the map,
1226 * {@code key.hashCode() ^ value.hashCode()}.
1227 *
1228 * @return the hash code value for this map
1229 */
1230 public int hashCode() {
1231 int h = 0;
1232 Node<K,V>[] t;
1233 if ((t = table) != null) {
1234 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1235 for (Node<K,V> p; (p = it.advance()) != null; )
1236 h += p.key.hashCode() ^ p.val.hashCode();
1237 }
1238 return h;
1239 }
1240
1241 /**
1242 * Returns a string representation of this map. The string
1243 * representation consists of a list of key-value mappings (in no
1244 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1245 * mappings are separated by the characters {@code ", "} (comma
1246 * and space). Each key-value mapping is rendered as the key
1247 * followed by an equals sign ("{@code =}") followed by the
1248 * associated value.
1249 *
1250 * @return a string representation of this map
1251 */
1252 public String toString() {
1253 Node<K,V>[] t;
1254 int f = (t = table) == null ? 0 : t.length;
1255 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1256 StringBuilder sb = new StringBuilder();
1257 sb.append('{');
1258 Node<K,V> p;
1259 if ((p = it.advance()) != null) {
1260 for (;;) {
1261 K k = p.key;
1262 V v = p.val;
1263 sb.append(k == this ? "(this Map)" : k);
1264 sb.append('=');
1265 sb.append(v == this ? "(this Map)" : v);
1266 if ((p = it.advance()) == null)
1267 break;
1268 sb.append(',').append(' ');
1269 }
1270 }
1271 return sb.append('}').toString();
1272 }
1273
1274 /**
1275 * Compares the specified object with this map for equality.
1276 * Returns {@code true} if the given object is a map with the same
1277 * mappings as this map. This operation may return misleading
1278 * results if either map is concurrently modified during execution
1279 * of this method.
1280 *
1281 * @param o object to be compared for equality with this map
1282 * @return {@code true} if the specified object is equal to this map
1283 */
1284 public boolean equals(Object o) {
1285 if (o != this) {
1286 if (!(o instanceof Map))
1287 return false;
1288 Map<?,?> m = (Map<?,?>) o;
1289 Node<K,V>[] t;
1290 int f = (t = table) == null ? 0 : t.length;
1291 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1292 for (Node<K,V> p; (p = it.advance()) != null; ) {
1293 V val = p.val;
1294 Object v = m.get(p.key);
1295 if (v == null || (v != val && !v.equals(val)))
1296 return false;
1297 }
1298 for (Map.Entry<?,?> e : m.entrySet()) {
1299 Object mk, mv, v;
1300 if ((mk = e.getKey()) == null ||
1301 (mv = e.getValue()) == null ||
1302 (v = get(mk)) == null ||
1303 (mv != v && !mv.equals(v)))
1304 return false;
1305 }
1306 }
1307 return true;
1308 }
1309
1310 /**
1311 * Stripped-down version of helper class used in previous version,
1312 * declared for the sake of serialization compatibility
1313 */
1314 static class Segment<K,V> extends ReentrantLock implements Serializable {
1315 private static final long serialVersionUID = 2249069246763182397L;
1316 final float loadFactor;
1317 Segment(float lf) { this.loadFactor = lf; }
1318 }
1319
1320 /**
1321 * Saves the state of the {@code ConcurrentHashMap} instance to a
1322 * stream (i.e., serializes it).
1323 * @param s the stream
1324 * @serialData
1325 * the key (Object) and value (Object)
1326 * for each key-value mapping, followed by a null pair.
1327 * The key-value mappings are emitted in no particular order.
1328 */
1329 private void writeObject(java.io.ObjectOutputStream s)
1330 throws java.io.IOException {
1331 // For serialization compatibility
1332 // Emulate segment calculation from previous version of this class
1333 int sshift = 0;
1334 int ssize = 1;
1335 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1336 ++sshift;
1337 ssize <<= 1;
1338 }
1339 int segmentShift = 32 - sshift;
1340 int segmentMask = ssize - 1;
1341 @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1342 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1343 for (int i = 0; i < segments.length; ++i)
1344 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1345 s.putFields().put("segments", segments);
1346 s.putFields().put("segmentShift", segmentShift);
1347 s.putFields().put("segmentMask", segmentMask);
1348 s.writeFields();
1349
1350 Node<K,V>[] t;
1351 if ((t = table) != null) {
1352 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1353 for (Node<K,V> p; (p = it.advance()) != null; ) {
1354 s.writeObject(p.key);
1355 s.writeObject(p.val);
1356 }
1357 }
1358 s.writeObject(null);
1359 s.writeObject(null);
1360 segments = null; // throw away
1361 }
1362
1363 /**
1364 * Reconstitutes the instance from a stream (that is, deserializes it).
1365 * @param s the stream
1366 */
1367 private void readObject(java.io.ObjectInputStream s)
1368 throws java.io.IOException, ClassNotFoundException {
1369 /*
1370 * To improve performance in typical cases, we create nodes
1371 * while reading, then place in table once size is known.
1372 * However, we must also validate uniqueness and deal with
1373 * overpopulated bins while doing so, which requires
1374 * specialized versions of putVal mechanics.
1375 */
1376 sizeCtl = -1; // force exclusion for table construction
1377 s.defaultReadObject();
1378 long size = 0L;
1379 Node<K,V> p = null;
1380 for (;;) {
1381 @SuppressWarnings("unchecked") K k = (K) s.readObject();
1382 @SuppressWarnings("unchecked") V v = (V) s.readObject();
1383 if (k != null && v != null) {
1384 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1385 ++size;
1386 }
1387 else
1388 break;
1389 }
1390 if (size == 0L)
1391 sizeCtl = 0;
1392 else {
1393 int n;
1394 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1395 n = MAXIMUM_CAPACITY;
1396 else {
1397 int sz = (int)size;
1398 n = tableSizeFor(sz + (sz >>> 1) + 1);
1399 }
1400 @SuppressWarnings({"rawtypes","unchecked"})
1401 Node<K,V>[] tab = (Node<K,V>[])new Node[n];
1402 int mask = n - 1;
1403 long added = 0L;
1404 while (p != null) {
1405 boolean insertAtFront;
1406 Node<K,V> next = p.next, first;
1407 int h = p.hash, j = h & mask;
1408 if ((first = tabAt(tab, j)) == null)
1409 insertAtFront = true;
1410 else {
1411 K k = p.key;
1412 if (first.hash < 0) {
1413 TreeBin<K,V> t = (TreeBin<K,V>)first;
1414 if (t.putTreeVal(h, k, p.val) == null)
1415 ++added;
1416 insertAtFront = false;
1417 }
1418 else {
1419 int binCount = 0;
1420 insertAtFront = true;
1421 Node<K,V> q; K qk;
1422 for (q = first; q != null; q = q.next) {
1423 if (q.hash == h &&
1424 ((qk = q.key) == k ||
1425 (qk != null && k.equals(qk)))) {
1426 insertAtFront = false;
1427 break;
1428 }
1429 ++binCount;
1430 }
1431 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1432 insertAtFront = false;
1433 ++added;
1434 p.next = first;
1435 TreeNode<K,V> hd = null, tl = null;
1436 for (q = p; q != null; q = q.next) {
1437 TreeNode<K,V> t = new TreeNode<K,V>
1438 (q.hash, q.key, q.val, null, null);
1439 if ((t.prev = tl) == null)
1440 hd = t;
1441 else
1442 tl.next = t;
1443 tl = t;
1444 }
1445 setTabAt(tab, j, new TreeBin<K,V>(hd));
1446 }
1447 }
1448 }
1449 if (insertAtFront) {
1450 ++added;
1451 p.next = first;
1452 setTabAt(tab, j, p);
1453 }
1454 p = next;
1455 }
1456 table = tab;
1457 sizeCtl = n - (n >>> 2);
1458 baseCount = added;
1459 }
1460 }
1461
1462 // ConcurrentMap methods
1463
1464 /**
1465 * {@inheritDoc}
1466 *
1467 * @return the previous value associated with the specified key,
1468 * or {@code null} if there was no mapping for the key
1469 * @throws NullPointerException if the specified key or value is null
1470 */
1471 public V putIfAbsent(K key, V value) {
1472 return putVal(key, value, true);
1473 }
1474
1475 /**
1476 * {@inheritDoc}
1477 *
1478 * @throws NullPointerException if the specified key is null
1479 */
1480 public boolean remove(Object key, Object value) {
1481 if (key == null)
1482 throw new NullPointerException();
1483 return value != null && replaceNode(key, null, value) != null;
1484 }
1485
1486 /**
1487 * {@inheritDoc}
1488 *
1489 * @throws NullPointerException if any of the arguments are null
1490 */
1491 public boolean replace(K key, V oldValue, V newValue) {
1492 if (key == null || oldValue == null || newValue == null)
1493 throw new NullPointerException();
1494 return replaceNode(key, newValue, oldValue) != null;
1495 }
1496
1497 /**
1498 * {@inheritDoc}
1499 *
1500 * @return the previous value associated with the specified key,
1501 * or {@code null} if there was no mapping for the key
1502 * @throws NullPointerException if the specified key or value is null
1503 */
1504 public V replace(K key, V value) {
1505 if (key == null || value == null)
1506 throw new NullPointerException();
1507 return replaceNode(key, value, null);
1508 }
1509
1510 // Overrides of JDK8+ Map extension method defaults
1511
1512 /**
1513 * Returns the value to which the specified key is mapped, or the
1514 * given default value if this map contains no mapping for the
1515 * key.
1516 *
1517 * @param key the key whose associated value is to be returned
1518 * @param defaultValue the value to return if this map contains
1519 * no mapping for the given key
1520 * @return the mapping for the key, if present; else the default value
1521 * @throws NullPointerException if the specified key is null
1522 */
1523 public V getOrDefault(Object key, V defaultValue) {
1524 V v;
1525 return (v = get(key)) == null ? defaultValue : v;
1526 }
1527
1528 public void forEach(BiConsumer<? super K, ? super V> action) {
1529 if (action == null) throw new NullPointerException();
1530 Node<K,V>[] t;
1531 if ((t = table) != null) {
1532 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1533 for (Node<K,V> p; (p = it.advance()) != null; ) {
1534 action.accept(p.key, p.val);
1535 }
1536 }
1537 }
1538
1539 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1540 if (function == null) throw new NullPointerException();
1541 Node<K,V>[] t;
1542 if ((t = table) != null) {
1543 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1544 for (Node<K,V> p; (p = it.advance()) != null; ) {
1545 V oldValue = p.val;
1546 for (K key = p.key;;) {
1547 V newValue = function.apply(key, oldValue);
1548 if (newValue == null)
1549 throw new NullPointerException();
1550 if (replaceNode(key, newValue, oldValue) != null ||
1551 (oldValue = get(key)) == null)
1552 break;
1553 }
1554 }
1555 }
1556 }
1557
1558 /**
1559 * If the specified key is not already associated with a value,
1560 * attempts to compute its value using the given mapping function
1561 * and enters it into this map unless {@code null}. The entire
1562 * method invocation is performed atomically, so the function is
1563 * applied at most once per key. Some attempted update operations
1564 * on this map by other threads may be blocked while computation
1565 * is in progress, so the computation should be short and simple,
1566 * and must not attempt to update any other mappings of this map.
1567 *
1568 * @param key key with which the specified value is to be associated
1569 * @param mappingFunction the function to compute a value
1570 * @return the current (existing or computed) value associated with
1571 * the specified key, or null if the computed value is null
1572 * @throws NullPointerException if the specified key or mappingFunction
1573 * is null
1574 * @throws IllegalStateException if the computation detectably
1575 * attempts a recursive update to this map that would
1576 * otherwise never complete
1577 * @throws RuntimeException or Error if the mappingFunction does so,
1578 * in which case the mapping is left unestablished
1579 */
1580 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1581 if (key == null || mappingFunction == null)
1582 throw new NullPointerException();
1583 int h = spread(key.hashCode());
1584 V val = null;
1585 int binCount = 0;
1586 for (Node<K,V>[] tab = table;;) {
1587 Node<K,V> f; int n, i, fh;
1588 if (tab == null || (n = tab.length) == 0)
1589 tab = initTable();
1590 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1591 Node<K,V> r = new ReservationNode<K,V>();
1592 synchronized (r) {
1593 if (casTabAt(tab, i, null, r)) {
1594 binCount = 1;
1595 Node<K,V> node = null;
1596 try {
1597 if ((val = mappingFunction.apply(key)) != null)
1598 node = new Node<K,V>(h, key, val, null);
1599 } finally {
1600 setTabAt(tab, i, node);
1601 }
1602 }
1603 }
1604 if (binCount != 0)
1605 break;
1606 }
1607 else if ((fh = f.hash) == MOVED)
1608 tab = helpTransfer(tab, f);
1609 else {
1610 boolean added = false;
1611 synchronized (f) {
1612 if (tabAt(tab, i) == f) {
1613 if (fh >= 0) {
1614 binCount = 1;
1615 for (Node<K,V> e = f;; ++binCount) {
1616 K ek; V ev;
1617 if (e.hash == h &&
1618 ((ek = e.key) == key ||
1619 (ek != null && key.equals(ek)))) {
1620 val = e.val;
1621 break;
1622 }
1623 Node<K,V> pred = e;
1624 if ((e = e.next) == null) {
1625 if ((val = mappingFunction.apply(key)) != null) {
1626 added = true;
1627 pred.next = new Node<K,V>(h, key, val, null);
1628 }
1629 break;
1630 }
1631 }
1632 }
1633 else if (f instanceof TreeBin) {
1634 binCount = 2;
1635 TreeBin<K,V> t = (TreeBin<K,V>)f;
1636 TreeNode<K,V> r, p;
1637 if ((r = t.root) != null &&
1638 (p = r.findTreeNode(h, key, null)) != null)
1639 val = p.val;
1640 else if ((val = mappingFunction.apply(key)) != null) {
1641 added = true;
1642 t.putTreeVal(h, key, val);
1643 }
1644 }
1645 }
1646 }
1647 if (binCount != 0) {
1648 if (binCount >= TREEIFY_THRESHOLD)
1649 treeifyBin(tab, i);
1650 if (!added)
1651 return val;
1652 break;
1653 }
1654 }
1655 }
1656 if (val != null)
1657 addCount(1L, binCount);
1658 return val;
1659 }
1660
1661 /**
1662 * If the value for the specified key is present, attempts to
1663 * compute a new mapping given the key and its current mapped
1664 * value. The entire method invocation is performed atomically.
1665 * Some attempted update operations on this map by other threads
1666 * may be blocked while computation is in progress, so the
1667 * computation should be short and simple, and must not attempt to
1668 * update any other mappings of this map.
1669 *
1670 * @param key key with which a value may be associated
1671 * @param remappingFunction the function to compute a value
1672 * @return the new value associated with the specified key, or null if none
1673 * @throws NullPointerException if the specified key or remappingFunction
1674 * is null
1675 * @throws IllegalStateException if the computation detectably
1676 * attempts a recursive update to this map that would
1677 * otherwise never complete
1678 * @throws RuntimeException or Error if the remappingFunction does so,
1679 * in which case the mapping is unchanged
1680 */
1681 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1682 if (key == null || remappingFunction == null)
1683 throw new NullPointerException();
1684 int h = spread(key.hashCode());
1685 V val = null;
1686 int delta = 0;
1687 int binCount = 0;
1688 for (Node<K,V>[] tab = table;;) {
1689 Node<K,V> f; int n, i, fh;
1690 if (tab == null || (n = tab.length) == 0)
1691 tab = initTable();
1692 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1693 break;
1694 else if ((fh = f.hash) == MOVED)
1695 tab = helpTransfer(tab, f);
1696 else {
1697 synchronized (f) {
1698 if (tabAt(tab, i) == f) {
1699 if (fh >= 0) {
1700 binCount = 1;
1701 for (Node<K,V> e = f, pred = null;; ++binCount) {
1702 K ek;
1703 if (e.hash == h &&
1704 ((ek = e.key) == key ||
1705 (ek != null && key.equals(ek)))) {
1706 val = remappingFunction.apply(key, e.val);
1707 if (val != null)
1708 e.val = val;
1709 else {
1710 delta = -1;
1711 Node<K,V> en = e.next;
1712 if (pred != null)
1713 pred.next = en;
1714 else
1715 setTabAt(tab, i, en);
1716 }
1717 break;
1718 }
1719 pred = e;
1720 if ((e = e.next) == null)
1721 break;
1722 }
1723 }
1724 else if (f instanceof TreeBin) {
1725 binCount = 2;
1726 TreeBin<K,V> t = (TreeBin<K,V>)f;
1727 TreeNode<K,V> r, p;
1728 if ((r = t.root) != null &&
1729 (p = r.findTreeNode(h, key, null)) != null) {
1730 val = remappingFunction.apply(key, p.val);
1731 if (val != null)
1732 p.val = val;
1733 else {
1734 delta = -1;
1735 if (t.removeTreeNode(p))
1736 setTabAt(tab, i, untreeify(t.first));
1737 }
1738 }
1739 }
1740 }
1741 }
1742 if (binCount != 0)
1743 break;
1744 }
1745 }
1746 if (delta != 0)
1747 addCount((long)delta, binCount);
1748 return val;
1749 }
1750
1751 /**
1752 * Attempts to compute a mapping for the specified key and its
1753 * current mapped value (or {@code null} if there is no current
1754 * mapping). The entire method invocation is performed atomically.
1755 * Some attempted update operations on this map by other threads
1756 * may be blocked while computation is in progress, so the
1757 * computation should be short and simple, and must not attempt to
1758 * update any other mappings of this Map.
1759 *
1760 * @param key key with which the specified value is to be associated
1761 * @param remappingFunction the function to compute a value
1762 * @return the new value associated with the specified key, or null if none
1763 * @throws NullPointerException if the specified key or remappingFunction
1764 * is null
1765 * @throws IllegalStateException if the computation detectably
1766 * attempts a recursive update to this map that would
1767 * otherwise never complete
1768 * @throws RuntimeException or Error if the remappingFunction does so,
1769 * in which case the mapping is unchanged
1770 */
1771 public V compute(K key,
1772 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1773 if (key == null || remappingFunction == null)
1774 throw new NullPointerException();
1775 int h = spread(key.hashCode());
1776 V val = null;
1777 int delta = 0;
1778 int binCount = 0;
1779 for (Node<K,V>[] tab = table;;) {
1780 Node<K,V> f; int n, i, fh;
1781 if (tab == null || (n = tab.length) == 0)
1782 tab = initTable();
1783 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1784 Node<K,V> r = new ReservationNode<K,V>();
1785 synchronized (r) {
1786 if (casTabAt(tab, i, null, r)) {
1787 binCount = 1;
1788 Node<K,V> node = null;
1789 try {
1790 if ((val = remappingFunction.apply(key, null)) != null) {
1791 delta = 1;
1792 node = new Node<K,V>(h, key, val, null);
1793 }
1794 } finally {
1795 setTabAt(tab, i, node);
1796 }
1797 }
1798 }
1799 if (binCount != 0)
1800 break;
1801 }
1802 else if ((fh = f.hash) == MOVED)
1803 tab = helpTransfer(tab, f);
1804 else {
1805 synchronized (f) {
1806 if (tabAt(tab, i) == f) {
1807 if (fh >= 0) {
1808 binCount = 1;
1809 for (Node<K,V> e = f, pred = null;; ++binCount) {
1810 K ek;
1811 if (e.hash == h &&
1812 ((ek = e.key) == key ||
1813 (ek != null && key.equals(ek)))) {
1814 val = remappingFunction.apply(key, e.val);
1815 if (val != null)
1816 e.val = val;
1817 else {
1818 delta = -1;
1819 Node<K,V> en = e.next;
1820 if (pred != null)
1821 pred.next = en;
1822 else
1823 setTabAt(tab, i, en);
1824 }
1825 break;
1826 }
1827 pred = e;
1828 if ((e = e.next) == null) {
1829 val = remappingFunction.apply(key, null);
1830 if (val != null) {
1831 delta = 1;
1832 pred.next =
1833 new Node<K,V>(h, key, val, null);
1834 }
1835 break;
1836 }
1837 }
1838 }
1839 else if (f instanceof TreeBin) {
1840 binCount = 1;
1841 TreeBin<K,V> t = (TreeBin<K,V>)f;
1842 TreeNode<K,V> r, p;
1843 if ((r = t.root) != null)
1844 p = r.findTreeNode(h, key, null);
1845 else
1846 p = null;
1847 V pv = (p == null) ? null : p.val;
1848 val = remappingFunction.apply(key, pv);
1849 if (val != null) {
1850 if (p != null)
1851 p.val = val;
1852 else {
1853 delta = 1;
1854 t.putTreeVal(h, key, val);
1855 }
1856 }
1857 else if (p != null) {
1858 delta = -1;
1859 if (t.removeTreeNode(p))
1860 setTabAt(tab, i, untreeify(t.first));
1861 }
1862 }
1863 }
1864 }
1865 if (binCount != 0) {
1866 if (binCount >= TREEIFY_THRESHOLD)
1867 treeifyBin(tab, i);
1868 break;
1869 }
1870 }
1871 }
1872 if (delta != 0)
1873 addCount((long)delta, binCount);
1874 return val;
1875 }
1876
1877 /**
1878 * If the specified key is not already associated with a
1879 * (non-null) value, associates it with the given value.
1880 * Otherwise, replaces the value with the results of the given
1881 * remapping function, or removes if {@code null}. The entire
1882 * method invocation is performed atomically. Some attempted
1883 * update operations on this map by other threads may be blocked
1884 * while computation is in progress, so the computation should be
1885 * short and simple, and must not attempt to update any other
1886 * mappings of this Map.
1887 *
1888 * @param key key with which the specified value is to be associated
1889 * @param value the value to use if absent
1890 * @param remappingFunction the function to recompute a value if present
1891 * @return the new value associated with the specified key, or null if none
1892 * @throws NullPointerException if the specified key or the
1893 * remappingFunction is null
1894 * @throws RuntimeException or Error if the remappingFunction does so,
1895 * in which case the mapping is unchanged
1896 */
1897 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1898 if (key == null || value == null || remappingFunction == null)
1899 throw new NullPointerException();
1900 int h = spread(key.hashCode());
1901 V val = null;
1902 int delta = 0;
1903 int binCount = 0;
1904 for (Node<K,V>[] tab = table;;) {
1905 Node<K,V> f; int n, i, fh;
1906 if (tab == null || (n = tab.length) == 0)
1907 tab = initTable();
1908 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1909 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1910 delta = 1;
1911 val = value;
1912 break;
1913 }
1914 }
1915 else if ((fh = f.hash) == MOVED)
1916 tab = helpTransfer(tab, f);
1917 else {
1918 synchronized (f) {
1919 if (tabAt(tab, i) == f) {
1920 if (fh >= 0) {
1921 binCount = 1;
1922 for (Node<K,V> e = f, pred = null;; ++binCount) {
1923 K ek;
1924 if (e.hash == h &&
1925 ((ek = e.key) == key ||
1926 (ek != null && key.equals(ek)))) {
1927 val = remappingFunction.apply(e.val, value);
1928 if (val != null)
1929 e.val = val;
1930 else {
1931 delta = -1;
1932 Node<K,V> en = e.next;
1933 if (pred != null)
1934 pred.next = en;
1935 else
1936 setTabAt(tab, i, en);
1937 }
1938 break;
1939 }
1940 pred = e;
1941 if ((e = e.next) == null) {
1942 delta = 1;
1943 val = value;
1944 pred.next =
1945 new Node<K,V>(h, key, val, null);
1946 break;
1947 }
1948 }
1949 }
1950 else if (f instanceof TreeBin) {
1951 binCount = 2;
1952 TreeBin<K,V> t = (TreeBin<K,V>)f;
1953 TreeNode<K,V> r = t.root;
1954 TreeNode<K,V> p = (r == null) ? null :
1955 r.findTreeNode(h, key, null);
1956 val = (p == null) ? value :
1957 remappingFunction.apply(p.val, value);
1958 if (val != null) {
1959 if (p != null)
1960 p.val = val;
1961 else {
1962 delta = 1;
1963 t.putTreeVal(h, key, val);
1964 }
1965 }
1966 else if (p != null) {
1967 delta = -1;
1968 if (t.removeTreeNode(p))
1969 setTabAt(tab, i, untreeify(t.first));
1970 }
1971 }
1972 }
1973 }
1974 if (binCount != 0) {
1975 if (binCount >= TREEIFY_THRESHOLD)
1976 treeifyBin(tab, i);
1977 break;
1978 }
1979 }
1980 }
1981 if (delta != 0)
1982 addCount((long)delta, binCount);
1983 return val;
1984 }
1985
1986 // Hashtable legacy methods
1987
1988 /**
1989 * Legacy method testing if some key maps into the specified value
1990 * in this table. This method is identical in functionality to
1991 * {@link #containsValue(Object)}, and exists solely to ensure
1992 * full compatibility with class {@link java.util.Hashtable},
1993 * which supported this method prior to introduction of the
1994 * Java Collections framework.
1995 *
1996 * @param value a value to search for
1997 * @return {@code true} if and only if some key maps to the
1998 * {@code value} argument in this table as
1999 * determined by the {@code equals} method;
2000 * {@code false} otherwise
2001 * @throws NullPointerException if the specified value is null
2002 */
2003 @Deprecated public boolean contains(Object value) {
2004 return containsValue(value);
2005 }
2006
2007 /**
2008 * Returns an enumeration of the keys in this table.
2009 *
2010 * @return an enumeration of the keys in this table
2011 * @see #keySet()
2012 */
2013 public Enumeration<K> keys() {
2014 Node<K,V>[] t;
2015 int f = (t = table) == null ? 0 : t.length;
2016 return new KeyIterator<K,V>(t, f, 0, f, this);
2017 }
2018
2019 /**
2020 * Returns an enumeration of the values in this table.
2021 *
2022 * @return an enumeration of the values in this table
2023 * @see #values()
2024 */
2025 public Enumeration<V> elements() {
2026 Node<K,V>[] t;
2027 int f = (t = table) == null ? 0 : t.length;
2028 return new ValueIterator<K,V>(t, f, 0, f, this);
2029 }
2030
2031 // ConcurrentHashMap-only methods
2032
2033 /**
2034 * Returns the number of mappings. This method should be used
2035 * instead of {@link #size} because a ConcurrentHashMap may
2036 * contain more mappings than can be represented as an int. The
2037 * value returned is an estimate; the actual count may differ if
2038 * there are concurrent insertions or removals.
2039 *
2040 * @return the number of mappings
2041 * @since 1.8
2042 */
2043 public long mappingCount() {
2044 long n = sumCount();
2045 return (n < 0L) ? 0L : n; // ignore transient negative values
2046 }
2047
2048 /**
2049 * Creates a new {@link Set} backed by a ConcurrentHashMap
2050 * from the given type to {@code Boolean.TRUE}.
2051 *
2052 * @return the new set
2053 * @since 1.8
2054 */
2055 public static <K> KeySetView<K,Boolean> newKeySet() {
2056 return new KeySetView<K,Boolean>
2057 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2058 }
2059
2060 /**
2061 * Creates a new {@link Set} backed by a ConcurrentHashMap
2062 * from the given type to {@code Boolean.TRUE}.
2063 *
2064 * @param initialCapacity The implementation performs internal
2065 * sizing to accommodate this many elements.
2066 * @throws IllegalArgumentException if the initial capacity of
2067 * elements is negative
2068 * @return the new set
2069 * @since 1.8
2070 */
2071 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2072 return new KeySetView<K,Boolean>
2073 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2074 }
2075
2076 /**
2077 * Returns a {@link Set} view of the keys in this map, using the
2078 * given common mapped value for any additions (i.e., {@link
2079 * Collection#add} and {@link Collection#addAll(Collection)}).
2080 * This is of course only appropriate if it is acceptable to use
2081 * the same value for all additions from this view.
2082 *
2083 * @param mappedValue the mapped value to use for any additions
2084 * @return the set view
2085 * @throws NullPointerException if the mappedValue is null
2086 */
2087 public KeySetView<K,V> keySet(V mappedValue) {
2088 if (mappedValue == null)
2089 throw new NullPointerException();
2090 return new KeySetView<K,V>(this, mappedValue);
2091 }
2092
2093 /* ---------------- Special Nodes -------------- */
2094
2095 /**
2096 * A node inserted at head of bins during transfer operations.
2097 */
2098 static final class ForwardingNode<K,V> extends Node<K,V> {
2099 final Node<K,V>[] nextTable;
2100 ForwardingNode(Node<K,V>[] tab) {
2101 super(MOVED, null, null, null);
2102 this.nextTable = tab;
2103 }
2104
2105 Node<K,V> find(int h, Object k) {
2106 Node<K,V> e; int n;
2107 Node<K,V>[] tab = nextTable;
2108 if (k != null && tab != null && (n = tab.length) > 0 &&
2109 (e = tabAt(tab, (n - 1) & h)) != null) {
2110 do {
2111 int eh; K ek;
2112 if ((eh = e.hash) == h &&
2113 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2114 return e;
2115 if (eh < 0)
2116 return e.find(h, k);
2117 } while ((e = e.next) != null);
2118 }
2119 return null;
2120 }
2121 }
2122
2123 /**
2124 * A place-holder node used in computeIfAbsent and compute
2125 */
2126 static final class ReservationNode<K,V> extends Node<K,V> {
2127 ReservationNode() {
2128 super(RESERVED, null, null, null);
2129 }
2130
2131 Node<K,V> find(int h, Object k) {
2132 return null;
2133 }
2134 }
2135
2136 /* ---------------- Table Initialization and Resizing -------------- */
2137
2138 /**
2139 * Initializes table, using the size recorded in sizeCtl.
2140 */
2141 private final Node<K,V>[] initTable() {
2142 Node<K,V>[] tab; int sc;
2143 while ((tab = table) == null || tab.length == 0) {
2144 if ((sc = sizeCtl) < 0)
2145 Thread.yield(); // lost initialization race; just spin
2146 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2147 try {
2148 if ((tab = table) == null || tab.length == 0) {
2149 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2150 @SuppressWarnings({"rawtypes","unchecked"})
2151 Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2152 table = tab = nt;
2153 sc = n - (n >>> 2);
2154 }
2155 } finally {
2156 sizeCtl = sc;
2157 }
2158 break;
2159 }
2160 }
2161 return tab;
2162 }
2163
2164 /**
2165 * Adds to count, and if table is too small and not already
2166 * resizing, initiates transfer. If already resizing, helps
2167 * perform transfer if work is available. Rechecks occupancy
2168 * after a transfer to see if another resize is already needed
2169 * because resizings are lagging additions.
2170 *
2171 * @param x the count to add
2172 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2173 */
2174 private final void addCount(long x, int check) {
2175 CounterCell[] as; long b, s;
2176 if ((as = counterCells) != null ||
2177 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2178 CounterCell a; long v; int m;
2179 boolean uncontended = true;
2180 if (as == null || (m = as.length - 1) < 0 ||
2181 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2182 !(uncontended =
2183 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2184 fullAddCount(x, uncontended);
2185 return;
2186 }
2187 if (check <= 1)
2188 return;
2189 s = sumCount();
2190 }
2191 if (check >= 0) {
2192 Node<K,V>[] tab, nt; int sc;
2193 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2194 tab.length < MAXIMUM_CAPACITY) {
2195 if (sc < 0) {
2196 if (sc == -1 || transferIndex <= transferOrigin ||
2197 (nt = nextTable) == null)
2198 break;
2199 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2200 transfer(tab, nt);
2201 }
2202 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2203 transfer(tab, null);
2204 s = sumCount();
2205 }
2206 }
2207 }
2208
2209 /**
2210 * Helps transfer if a resize is in progress.
2211 */
2212 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2213 Node<K,V>[] nextTab; int sc;
2214 if ((f instanceof ForwardingNode) &&
2215 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2216 if (nextTab == nextTable && tab == table &&
2217 transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
2218 U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2219 transfer(tab, nextTab);
2220 return nextTab;
2221 }
2222 return table;
2223 }
2224
2225 /**
2226 * Tries to presize table to accommodate the given number of elements.
2227 *
2228 * @param size number of elements (doesn't need to be perfectly accurate)
2229 */
2230 private final void tryPresize(int size) {
2231 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2232 tableSizeFor(size + (size >>> 1) + 1);
2233 int sc;
2234 while ((sc = sizeCtl) >= 0) {
2235 Node<K,V>[] tab = table; int n;
2236 if (tab == null || (n = tab.length) == 0) {
2237 n = (sc > c) ? sc : c;
2238 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2239 try {
2240 if (table == tab) {
2241 @SuppressWarnings({"rawtypes","unchecked"})
2242 Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2243 table = nt;
2244 sc = n - (n >>> 2);
2245 }
2246 } finally {
2247 sizeCtl = sc;
2248 }
2249 }
2250 }
2251 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2252 break;
2253 else if (tab == table &&
2254 U.compareAndSwapInt(this, SIZECTL, sc, -2))
2255 transfer(tab, null);
2256 }
2257 }
2258
2259 /**
2260 * Moves and/or copies the nodes in each bin to new table. See
2261 * above for explanation.
2262 */
2263 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2264 int n = tab.length, stride;
2265 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2266 stride = MIN_TRANSFER_STRIDE; // subdivide range
2267 if (nextTab == null) { // initiating
2268 try {
2269 @SuppressWarnings({"rawtypes","unchecked"})
2270 Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
2271 nextTab = nt;
2272 } catch (Throwable ex) { // try to cope with OOME
2273 sizeCtl = Integer.MAX_VALUE;
2274 return;
2275 }
2276 nextTable = nextTab;
2277 transferOrigin = n;
2278 transferIndex = n;
2279 ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
2280 for (int k = n; k > 0;) { // progressively reveal ready slots
2281 int nextk = (k > stride) ? k - stride : 0;
2282 for (int m = nextk; m < k; ++m)
2283 nextTab[m] = rev;
2284 for (int m = n + nextk; m < n + k; ++m)
2285 nextTab[m] = rev;
2286 U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2287 }
2288 }
2289 int nextn = nextTab.length;
2290 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2291 boolean advance = true;
2292 for (int i = 0, bound = 0;;) {
2293 int nextIndex, nextBound, fh; Node<K,V> f;
2294 while (advance) {
2295 if (--i >= bound)
2296 advance = false;
2297 else if ((nextIndex = transferIndex) <= transferOrigin) {
2298 i = -1;
2299 advance = false;
2300 }
2301 else if (U.compareAndSwapInt
2302 (this, TRANSFERINDEX, nextIndex,
2303 nextBound = (nextIndex > stride ?
2304 nextIndex - stride : 0))) {
2305 bound = nextBound;
2306 i = nextIndex - 1;
2307 advance = false;
2308 }
2309 }
2310 if (i < 0 || i >= n || i + n >= nextn) {
2311 for (int sc;;) {
2312 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2313 if (sc == -1) {
2314 nextTable = null;
2315 table = nextTab;
2316 sizeCtl = (n << 1) - (n >>> 1);
2317 }
2318 return;
2319 }
2320 }
2321 }
2322 else if ((f = tabAt(tab, i)) == null) {
2323 if (casTabAt(tab, i, null, fwd)) {
2324 setTabAt(nextTab, i, null);
2325 setTabAt(nextTab, i + n, null);
2326 advance = true;
2327 }
2328 }
2329 else if ((fh = f.hash) == MOVED)
2330 advance = true; // already processed
2331 else {
2332 synchronized (f) {
2333 if (tabAt(tab, i) == f) {
2334 Node<K,V> ln, hn;
2335 if (fh >= 0) {
2336 int runBit = fh & n;
2337 Node<K,V> lastRun = f;
2338 for (Node<K,V> p = f.next; p != null; p = p.next) {
2339 int b = p.hash & n;
2340 if (b != runBit) {
2341 runBit = b;
2342 lastRun = p;
2343 }
2344 }
2345 if (runBit == 0) {
2346 ln = lastRun;
2347 hn = null;
2348 }
2349 else {
2350 hn = lastRun;
2351 ln = null;
2352 }
2353 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2354 int ph = p.hash; K pk = p.key; V pv = p.val;
2355 if ((ph & n) == 0)
2356 ln = new Node<K,V>(ph, pk, pv, ln);
2357 else
2358 hn = new Node<K,V>(ph, pk, pv, hn);
2359 }
2360 }
2361 else if (f instanceof TreeBin) {
2362 TreeBin<K,V> t = (TreeBin<K,V>)f;
2363 TreeNode<K,V> lo = null, loTail = null;
2364 TreeNode<K,V> hi = null, hiTail = null;
2365 int lc = 0, hc = 0;
2366 for (Node<K,V> e = t.first; e != null; e = e.next) {
2367 int h = e.hash;
2368 TreeNode<K,V> p = new TreeNode<K,V>
2369 (h, e.key, e.val, null, null);
2370 if ((h & n) == 0) {
2371 if ((p.prev = loTail) == null)
2372 lo = p;
2373 else
2374 loTail.next = p;
2375 loTail = p;
2376 ++lc;
2377 }
2378 else {
2379 if ((p.prev = hiTail) == null)
2380 hi = p;
2381 else
2382 hiTail.next = p;
2383 hiTail = p;
2384 ++hc;
2385 }
2386 }
2387 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2388 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2389 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2390 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2391 }
2392 else
2393 ln = hn = null;
2394 setTabAt(nextTab, i, ln);
2395 setTabAt(nextTab, i + n, hn);
2396 setTabAt(tab, i, fwd);
2397 advance = true;
2398 }
2399 }
2400 }
2401 }
2402 }
2403
2404 /* ---------------- Counter support -------------- */
2405
2406 /**
2407 * A padded cell for distributing counts. Adapted from LongAdder
2408 * and Striped64. See their internal docs for explanation.
2409 */
2410 @sun.misc.Contended static final class CounterCell {
2411 volatile long value;
2412 CounterCell(long x) { value = x; }
2413 }
2414
2415 final long sumCount() {
2416 CounterCell[] as = counterCells; CounterCell a;
2417 long sum = baseCount;
2418 if (as != null) {
2419 for (int i = 0; i < as.length; ++i) {
2420 if ((a = as[i]) != null)
2421 sum += a.value;
2422 }
2423 }
2424 return sum;
2425 }
2426
2427 // See LongAdder version for explanation
2428 private final void fullAddCount(long x, boolean wasUncontended) {
2429 int h;
2430 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2431 ThreadLocalRandom.localInit(); // force initialization
2432 h = ThreadLocalRandom.getProbe();
2433 wasUncontended = true;
2434 }
2435 boolean collide = false; // True if last slot nonempty
2436 for (;;) {
2437 CounterCell[] as; CounterCell a; int n; long v;
2438 if ((as = counterCells) != null && (n = as.length) > 0) {
2439 if ((a = as[(n - 1) & h]) == null) {
2440 if (cellsBusy == 0) { // Try to attach new Cell
2441 CounterCell r = new CounterCell(x); // Optimistic create
2442 if (cellsBusy == 0 &&
2443 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2444 boolean created = false;
2445 try { // Recheck under lock
2446 CounterCell[] rs; int m, j;
2447 if ((rs = counterCells) != null &&
2448 (m = rs.length) > 0 &&
2449 rs[j = (m - 1) & h] == null) {
2450 rs[j] = r;
2451 created = true;
2452 }
2453 } finally {
2454 cellsBusy = 0;
2455 }
2456 if (created)
2457 break;
2458 continue; // Slot is now non-empty
2459 }
2460 }
2461 collide = false;
2462 }
2463 else if (!wasUncontended) // CAS already known to fail
2464 wasUncontended = true; // Continue after rehash
2465 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2466 break;
2467 else if (counterCells != as || n >= NCPU)
2468 collide = false; // At max size or stale
2469 else if (!collide)
2470 collide = true;
2471 else if (cellsBusy == 0 &&
2472 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2473 try {
2474 if (counterCells == as) {// Expand table unless stale
2475 CounterCell[] rs = new CounterCell[n << 1];
2476 for (int i = 0; i < n; ++i)
2477 rs[i] = as[i];
2478 counterCells = rs;
2479 }
2480 } finally {
2481 cellsBusy = 0;
2482 }
2483 collide = false;
2484 continue; // Retry with expanded table
2485 }
2486 h = ThreadLocalRandom.advanceProbe(h);
2487 }
2488 else if (cellsBusy == 0 && counterCells == as &&
2489 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2490 boolean init = false;
2491 try { // Initialize table
2492 if (counterCells == as) {
2493 CounterCell[] rs = new CounterCell[2];
2494 rs[h & 1] = new CounterCell(x);
2495 counterCells = rs;
2496 init = true;
2497 }
2498 } finally {
2499 cellsBusy = 0;
2500 }
2501 if (init)
2502 break;
2503 }
2504 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2505 break; // Fall back on using base
2506 }
2507 }
2508
2509 /* ---------------- Conversion from/to TreeBins -------------- */
2510
2511 /**
2512 * Replaces all linked nodes in bin at given index unless table is
2513 * too small, in which case resizes instead.
2514 */
2515 private final void treeifyBin(Node<K,V>[] tab, int index) {
2516 Node<K,V> b; int n, sc;
2517 if (tab != null) {
2518 if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2519 if (tab == table && (sc = sizeCtl) >= 0 &&
2520 U.compareAndSwapInt(this, SIZECTL, sc, -2))
2521 transfer(tab, null);
2522 }
2523 else if ((b = tabAt(tab, index)) != null) {
2524 synchronized (b) {
2525 if (tabAt(tab, index) == b) {
2526 TreeNode<K,V> hd = null, tl = null;
2527 for (Node<K,V> e = b; e != null; e = e.next) {
2528 TreeNode<K,V> p =
2529 new TreeNode<K,V>(e.hash, e.key, e.val,
2530 null, null);
2531 if ((p.prev = tl) == null)
2532 hd = p;
2533 else
2534 tl.next = p;
2535 tl = p;
2536 }
2537 setTabAt(tab, index, new TreeBin<K,V>(hd));
2538 }
2539 }
2540 }
2541 }
2542 }
2543
2544 /**
2545 * Returns a list on non-TreeNodes replacing those in given list
2546 */
2547 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2548 Node<K,V> hd = null, tl = null;
2549 for (Node<K,V> q = b; q != null; q = q.next) {
2550 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2551 if (tl == null)
2552 hd = p;
2553 else
2554 tl.next = p;
2555 tl = p;
2556 }
2557 return hd;
2558 }
2559
2560 /* ---------------- TreeNodes -------------- */
2561
2562 /**
2563 * Nodes for use in TreeBins
2564 */
2565 static final class TreeNode<K,V> extends Node<K,V> {
2566 TreeNode<K,V> parent; // red-black tree links
2567 TreeNode<K,V> left;
2568 TreeNode<K,V> right;
2569 TreeNode<K,V> prev; // needed to unlink next upon deletion
2570 boolean red;
2571
2572 TreeNode(int hash, K key, V val, Node<K,V> next,
2573 TreeNode<K,V> parent) {
2574 super(hash, key, val, next);
2575 this.parent = parent;
2576 }
2577
2578 Node<K,V> find(int h, Object k) {
2579 return findTreeNode(h, k, null);
2580 }
2581
2582 /**
2583 * Returns the TreeNode (or null if not found) for the given key
2584 * starting at given root.
2585 */
2586 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2587 if (k != null) {
2588 TreeNode<K,V> p = this;
2589 do {
2590 int ph, dir; K pk; TreeNode<K,V> q;
2591 TreeNode<K,V> pl = p.left, pr = p.right;
2592 if ((ph = p.hash) > h)
2593 p = pl;
2594 else if (ph < h)
2595 p = pr;
2596 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2597 return p;
2598 else if (pl == null && pr == null)
2599 break;
2600 else if ((kc != null ||
2601 (kc = comparableClassFor(k)) != null) &&
2602 (dir = compareComparables(kc, k, pk)) != 0)
2603 p = (dir < 0) ? pl : pr;
2604 else if (pl == null)
2605 p = pr;
2606 else if (pr == null ||
2607 (q = pr.findTreeNode(h, k, kc)) == null)
2608 p = pl;
2609 else
2610 return q;
2611 } while (p != null);
2612 }
2613 return null;
2614 }
2615 }
2616
2617 /* ---------------- TreeBins -------------- */
2618
2619 /**
2620 * TreeNodes used at the heads of bins. TreeBins do not hold user
2621 * keys or values, but instead point to list of TreeNodes and
2622 * their root. They also maintain a parasitic read-write lock
2623 * forcing writers (who hold bin lock) to wait for readers (who do
2624 * not) to complete before tree restructuring operations.
2625 */
2626 static final class TreeBin<K,V> extends Node<K,V> {
2627 TreeNode<K,V> root;
2628 volatile TreeNode<K,V> first;
2629 volatile Thread waiter;
2630 volatile int lockState;
2631 // values for lockState
2632 static final int WRITER = 1; // set while holding write lock
2633 static final int WAITER = 2; // set when waiting for write lock
2634 static final int READER = 4; // increment value for setting read lock
2635
2636 /**
2637 * Creates bin with initial set of nodes headed by b.
2638 */
2639 TreeBin(TreeNode<K,V> b) {
2640 super(TREEBIN, null, null, null);
2641 this.first = b;
2642 TreeNode<K,V> r = null;
2643 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2644 next = (TreeNode<K,V>)x.next;
2645 x.left = x.right = null;
2646 if (r == null) {
2647 x.parent = null;
2648 x.red = false;
2649 r = x;
2650 }
2651 else {
2652 Object key = x.key;
2653 int hash = x.hash;
2654 Class<?> kc = null;
2655 for (TreeNode<K,V> p = r;;) {
2656 int dir, ph;
2657 if ((ph = p.hash) > hash)
2658 dir = -1;
2659 else if (ph < hash)
2660 dir = 1;
2661 else if ((kc != null ||
2662 (kc = comparableClassFor(key)) != null))
2663 dir = compareComparables(kc, key, p.key);
2664 else
2665 dir = 0;
2666 TreeNode<K,V> xp = p;
2667 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2668 x.parent = xp;
2669 if (dir <= 0)
2670 xp.left = x;
2671 else
2672 xp.right = x;
2673 r = balanceInsertion(r, x);
2674 break;
2675 }
2676 }
2677 }
2678 }
2679 this.root = r;
2680 }
2681
2682 /**
2683 * Acquires write lock for tree restructuring
2684 */
2685 private final void lockRoot() {
2686 if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2687 contendedLock(); // offload to separate method
2688 }
2689
2690 /**
2691 * Releases write lock for tree restructuring
2692 */
2693 private final void unlockRoot() {
2694 lockState = 0;
2695 }
2696
2697 /**
2698 * Possibly blocks awaiting root lock
2699 */
2700 private final void contendedLock() {
2701 boolean waiting = false;
2702 for (int s;;) {
2703 if (((s = lockState) & WRITER) == 0) {
2704 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2705 if (waiting)
2706 waiter = null;
2707 return;
2708 }
2709 }
2710 else if ((s | WAITER) == 0) {
2711 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2712 waiting = true;
2713 waiter = Thread.currentThread();
2714 }
2715 }
2716 else if (waiting)
2717 LockSupport.park(this);
2718 }
2719 }
2720
2721 /**
2722 * Returns matching node or null if none. Tries to search
2723 * using tree compareisons from root, but continues linear
2724 * search when lock not available.
2725 */
2726 final Node<K,V> find(int h, Object k) {
2727 if (k != null) {
2728 for (Node<K,V> e = first; e != null; e = e.next) {
2729 int s; K ek;
2730 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2731 if (e.hash == h &&
2732 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2733 return e;
2734 }
2735 else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2736 s + READER)) {
2737 TreeNode<K,V> r, p;
2738 try {
2739 p = ((r = root) == null ? null :
2740 r.findTreeNode(h, k, null));
2741 } finally {
2742 Thread w;
2743 if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2744 (READER|WAITER) && (w = waiter) != null)
2745 LockSupport.unpark(w);
2746 }
2747 return p;
2748 }
2749 }
2750 }
2751 return null;
2752 }
2753
2754 /**
2755 * Finds or adds a node.
2756 * @return null if added
2757 */
2758 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2759 Class<?> kc = null;
2760 for (TreeNode<K,V> p = root;;) {
2761 int dir, ph; K pk; TreeNode<K,V> q, pr;
2762 if (p == null) {
2763 first = root = new TreeNode<K,V>(h, k, v, null, null);
2764 break;
2765 }
2766 else if ((ph = p.hash) > h)
2767 dir = -1;
2768 else if (ph < h)
2769 dir = 1;
2770 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2771 return p;
2772 else if ((kc == null &&
2773 (kc = comparableClassFor(k)) == null) ||
2774 (dir = compareComparables(kc, k, pk)) == 0) {
2775 if (p.left == null)
2776 dir = 1;
2777 else if ((pr = p.right) == null ||
2778 (q = pr.findTreeNode(h, k, kc)) == null)
2779 dir = -1;
2780 else
2781 return q;
2782 }
2783 TreeNode<K,V> xp = p;
2784 if ((p = (dir < 0) ? p.left : p.right) == null) {
2785 TreeNode<K,V> x, f = first;
2786 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2787 if (f != null)
2788 f.prev = x;
2789 if (dir < 0)
2790 xp.left = x;
2791 else
2792 xp.right = x;
2793 if (!xp.red)
2794 x.red = true;
2795 else {
2796 lockRoot();
2797 try {
2798 root = balanceInsertion(root, x);
2799 } finally {
2800 unlockRoot();
2801 }
2802 }
2803 break;
2804 }
2805 }
2806 assert checkInvariants(root);
2807 return null;
2808 }
2809
2810 /**
2811 * Removes the given node, that must be present before this
2812 * call. This is messier than typical red-black deletion code
2813 * because we cannot swap the contents of an interior node
2814 * with a leaf successor that is pinned by "next" pointers
2815 * that are accessible independently of lock. So instead we
2816 * swap the tree linkages.
2817 *
2818 * @return true if now too small so should be untreeified.
2819 */
2820 final boolean removeTreeNode(TreeNode<K,V> p) {
2821 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2822 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2823 TreeNode<K,V> r, rl;
2824 if (pred == null)
2825 first = next;
2826 else
2827 pred.next = next;
2828 if (next != null)
2829 next.prev = pred;
2830 if (first == null) {
2831 root = null;
2832 return true;
2833 }
2834 if ((r = root) == null || r.right == null || // too small
2835 (rl = r.left) == null || rl.left == null)
2836 return true;
2837 lockRoot();
2838 try {
2839 TreeNode<K,V> replacement;
2840 TreeNode<K,V> pl = p.left;
2841 TreeNode<K,V> pr = p.right;
2842 if (pl != null && pr != null) {
2843 TreeNode<K,V> s = pr, sl;
2844 while ((sl = s.left) != null) // find successor
2845 s = sl;
2846 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2847 TreeNode<K,V> sr = s.right;
2848 TreeNode<K,V> pp = p.parent;
2849 if (s == pr) { // p was s's direct parent
2850 p.parent = s;
2851 s.right = p;
2852 }
2853 else {
2854 TreeNode<K,V> sp = s.parent;
2855 if ((p.parent = sp) != null) {
2856 if (s == sp.left)
2857 sp.left = p;
2858 else
2859 sp.right = p;
2860 }
2861 if ((s.right = pr) != null)
2862 pr.parent = s;
2863 }
2864 p.left = null;
2865 if ((p.right = sr) != null)
2866 sr.parent = p;
2867 if ((s.left = pl) != null)
2868 pl.parent = s;
2869 if ((s.parent = pp) == null)
2870 r = s;
2871 else if (p == pp.left)
2872 pp.left = s;
2873 else
2874 pp.right = s;
2875 if (sr != null)
2876 replacement = sr;
2877 else
2878 replacement = p;
2879 }
2880 else if (pl != null)
2881 replacement = pl;
2882 else if (pr != null)
2883 replacement = pr;
2884 else
2885 replacement = p;
2886 if (replacement != p) {
2887 TreeNode<K,V> pp = replacement.parent = p.parent;
2888 if (pp == null)
2889 r = replacement;
2890 else if (p == pp.left)
2891 pp.left = replacement;
2892 else
2893 pp.right = replacement;
2894 p.left = p.right = p.parent = null;
2895 }
2896
2897 root = (p.red) ? r : balanceDeletion(r, replacement);
2898
2899 if (p == replacement) { // detach pointers
2900 TreeNode<K,V> pp;
2901 if ((pp = p.parent) != null) {
2902 if (p == pp.left)
2903 pp.left = null;
2904 else if (p == pp.right)
2905 pp.right = null;
2906 p.parent = null;
2907 }
2908 }
2909 } finally {
2910 unlockRoot();
2911 }
2912 assert checkInvariants(root);
2913 return false;
2914 }
2915
2916 /* ------------------------------------------------------------ */
2917 // Red-black tree methods, all adapted from CLR
2918
2919 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2920 TreeNode<K,V> p) {
2921 TreeNode<K,V> r, pp, rl;
2922 if (p != null && (r = p.right) != null) {
2923 if ((rl = p.right = r.left) != null)
2924 rl.parent = p;
2925 if ((pp = r.parent = p.parent) == null)
2926 (root = r).red = false;
2927 else if (pp.left == p)
2928 pp.left = r;
2929 else
2930 pp.right = r;
2931 r.left = p;
2932 p.parent = r;
2933 }
2934 return root;
2935 }
2936
2937 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2938 TreeNode<K,V> p) {
2939 TreeNode<K,V> l, pp, lr;
2940 if (p != null && (l = p.left) != null) {
2941 if ((lr = p.left = l.right) != null)
2942 lr.parent = p;
2943 if ((pp = l.parent = p.parent) == null)
2944 (root = l).red = false;
2945 else if (pp.right == p)
2946 pp.right = l;
2947 else
2948 pp.left = l;
2949 l.right = p;
2950 p.parent = l;
2951 }
2952 return root;
2953 }
2954
2955 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2956 TreeNode<K,V> x) {
2957 x.red = true;
2958 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2959 if ((xp = x.parent) == null) {
2960 x.red = false;
2961 return x;
2962 }
2963 else if (!xp.red || (xpp = xp.parent) == null)
2964 return root;
2965 if (xp == (xppl = xpp.left)) {
2966 if ((xppr = xpp.right) != null && xppr.red) {
2967 xppr.red = false;
2968 xp.red = false;
2969 xpp.red = true;
2970 x = xpp;
2971 }
2972 else {
2973 if (x == xp.right) {
2974 root = rotateLeft(root, x = xp);
2975 xpp = (xp = x.parent) == null ? null : xp.parent;
2976 }
2977 if (xp != null) {
2978 xp.red = false;
2979 if (xpp != null) {
2980 xpp.red = true;
2981 root = rotateRight(root, xpp);
2982 }
2983 }
2984 }
2985 }
2986 else {
2987 if (xppl != null && xppl.red) {
2988 xppl.red = false;
2989 xp.red = false;
2990 xpp.red = true;
2991 x = xpp;
2992 }
2993 else {
2994 if (x == xp.left) {
2995 root = rotateRight(root, x = xp);
2996 xpp = (xp = x.parent) == null ? null : xp.parent;
2997 }
2998 if (xp != null) {
2999 xp.red = false;
3000 if (xpp != null) {
3001 xpp.red = true;
3002 root = rotateLeft(root, xpp);
3003 }
3004 }
3005 }
3006 }
3007 }
3008 }
3009
3010 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3011 TreeNode<K,V> x) {
3012 for (TreeNode<K,V> xp, xpl, xpr;;) {
3013 if (x == null || x == root)
3014 return root;
3015 else if ((xp = x.parent) == null) {
3016 x.red = false;
3017 return x;
3018 }
3019 else if (x.red) {
3020 x.red = false;
3021 return root;
3022 }
3023 else if ((xpl = xp.left) == x) {
3024 if ((xpr = xp.right) != null && xpr.red) {
3025 xpr.red = false;
3026 xp.red = true;
3027 root = rotateLeft(root, xp);
3028 xpr = (xp = x.parent) == null ? null : xp.right;
3029 }
3030 if (xpr == null)
3031 x = xp;
3032 else {
3033 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3034 if ((sr == null || !sr.red) &&
3035 (sl == null || !sl.red)) {
3036 xpr.red = true;
3037 x = xp;
3038 }
3039 else {
3040 if (sr == null || !sr.red) {
3041 if (sl != null)
3042 sl.red = false;
3043 xpr.red = true;
3044 root = rotateRight(root, xpr);
3045 xpr = (xp = x.parent) == null ?
3046 null : xp.right;
3047 }
3048 if (xpr != null) {
3049 xpr.red = (xp == null) ? false : xp.red;
3050 if ((sr = xpr.right) != null)
3051 sr.red = false;
3052 }
3053 if (xp != null) {
3054 xp.red = false;
3055 root = rotateLeft(root, xp);
3056 }
3057 x = root;
3058 }
3059 }
3060 }
3061 else { // symmetric
3062 if (xpl != null && xpl.red) {
3063 xpl.red = false;
3064 xp.red = true;
3065 root = rotateRight(root, xp);
3066 xpl = (xp = x.parent) == null ? null : xp.left;
3067 }
3068 if (xpl == null)
3069 x = xp;
3070 else {
3071 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3072 if ((sl == null || !sl.red) &&
3073 (sr == null || !sr.red)) {
3074 xpl.red = true;
3075 x = xp;
3076 }
3077 else {
3078 if (sl == null || !sl.red) {
3079 if (sr != null)
3080 sr.red = false;
3081 xpl.red = true;
3082 root = rotateLeft(root, xpl);
3083 xpl = (xp = x.parent) == null ?
3084 null : xp.left;
3085 }
3086 if (xpl != null) {
3087 xpl.red = (xp == null) ? false : xp.red;
3088 if ((sl = xpl.left) != null)
3089 sl.red = false;
3090 }
3091 if (xp != null) {
3092 xp.red = false;
3093 root = rotateRight(root, xp);
3094 }
3095 x = root;
3096 }
3097 }
3098 }
3099 }
3100 }
3101
3102 /**
3103 * Recursive invariant check
3104 */
3105 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3106 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3107 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3108 if (tb != null && tb.next != t)
3109 return false;
3110 if (tn != null && tn.prev != t)
3111 return false;
3112 if (tp != null && t != tp.left && t != tp.right)
3113 return false;
3114 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3115 return false;
3116 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3117 return false;
3118 if (t.red && tl != null && tl.red && tr != null && tr.red)
3119 return false;
3120 if (tl != null && !checkInvariants(tl))
3121 return false;
3122 if (tr != null && !checkInvariants(tr))
3123 return false;
3124 return true;
3125 }
3126
3127 private static final sun.misc.Unsafe U;
3128 private static final long LOCKSTATE;
3129 static {
3130 try {
3131 U = sun.misc.Unsafe.getUnsafe();
3132 Class<?> k = TreeBin.class;
3133 LOCKSTATE = U.objectFieldOffset
3134 (k.getDeclaredField("lockState"));
3135 } catch (Exception e) {
3136 throw new Error(e);
3137 }
3138 }
3139 }
3140
3141 /* ----------------Table Traversal -------------- */
3142
3143 /**
3144 * Encapsulates traversal for methods such as containsValue; also
3145 * serves as a base class for other iterators and spliterators.
3146 *
3147 * Method advance visits once each still-valid node that was
3148 * reachable upon iterator construction. It might miss some that
3149 * were added to a bin after the bin was visited, which is OK wrt
3150 * consistency guarantees. Maintaining this property in the face
3151 * of possible ongoing resizes requires a fair amount of
3152 * bookkeeping state that is difficult to optimize away amidst
3153 * volatile accesses. Even so, traversal maintains reasonable
3154 * throughput.
3155 *
3156 * Normally, iteration proceeds bin-by-bin traversing lists.
3157 * However, if the table has been resized, then all future steps
3158 * must traverse both the bin at the current index as well as at
3159 * (index + baseSize); and so on for further resizings. To
3160 * paranoically cope with potential sharing by users of iterators
3161 * across threads, iteration terminates if a bounds checks fails
3162 * for a table read.
3163 */
3164 static class Traverser<K,V> {
3165 Node<K,V>[] tab; // current table; updated if resized
3166 Node<K,V> next; // the next entry to use
3167 int index; // index of bin to use next
3168 int baseIndex; // current index of initial table
3169 int baseLimit; // index bound for initial table
3170 final int baseSize; // initial table size
3171
3172 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3173 this.tab = tab;
3174 this.baseSize = size;
3175 this.baseIndex = this.index = index;
3176 this.baseLimit = limit;
3177 this.next = null;
3178 }
3179
3180 /**
3181 * Advances if possible, returning next valid node, or null if none.
3182 */
3183 final Node<K,V> advance() {
3184 Node<K,V> e;
3185 if ((e = next) != null)
3186 e = e.next;
3187 for (;;) {
3188 Node<K,V>[] t; int i, n; K ek; // must use locals in checks
3189 if (e != null)
3190 return next = e;
3191 if (baseIndex >= baseLimit || (t = tab) == null ||
3192 (n = t.length) <= (i = index) || i < 0)
3193 return next = null;
3194 if ((e = tabAt(t, index)) != null && e.hash < 0) {
3195 if (e instanceof ForwardingNode) {
3196 tab = ((ForwardingNode<K,V>)e).nextTable;
3197 e = null;
3198 continue;
3199 }
3200 else if (e instanceof TreeBin)
3201 e = ((TreeBin<K,V>)e).first;
3202 else
3203 e = null;
3204 }
3205 if ((index += baseSize) >= n)
3206 index = ++baseIndex; // visit upper slots if present
3207 }
3208 }
3209 }
3210
3211 /**
3212 * Base of key, value, and entry Iterators. Adds fields to
3213 * Traverser to support iterator.remove
3214 */
3215 static class BaseIterator<K,V> extends Traverser<K,V> {
3216 final ConcurrentHashMap<K,V> map;
3217 Node<K,V> lastReturned;
3218 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3219 ConcurrentHashMap<K,V> map) {
3220 super(tab, size, index, limit);
3221 this.map = map;
3222 advance();
3223 }
3224
3225 public final boolean hasNext() { return next != null; }
3226 public final boolean hasMoreElements() { return next != null; }
3227
3228 public final void remove() {
3229 Node<K,V> p;
3230 if ((p = lastReturned) == null)
3231 throw new IllegalStateException();
3232 lastReturned = null;
3233 map.replaceNode(p.key, null, null);
3234 }
3235 }
3236
3237 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3238 implements Iterator<K>, Enumeration<K> {
3239 KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3240 ConcurrentHashMap<K,V> map) {
3241 super(tab, index, size, limit, map);
3242 }
3243
3244 public final K next() {
3245 Node<K,V> p;
3246 if ((p = next) == null)
3247 throw new NoSuchElementException();
3248 K k = p.key;
3249 lastReturned = p;
3250 advance();
3251 return k;
3252 }
3253
3254 public final K nextElement() { return next(); }
3255 }
3256
3257 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3258 implements Iterator<V>, Enumeration<V> {
3259 ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3260 ConcurrentHashMap<K,V> map) {
3261 super(tab, index, size, limit, map);
3262 }
3263
3264 public final V next() {
3265 Node<K,V> p;
3266 if ((p = next) == null)
3267 throw new NoSuchElementException();
3268 V v = p.val;
3269 lastReturned = p;
3270 advance();
3271 return v;
3272 }
3273
3274 public final V nextElement() { return next(); }
3275 }
3276
3277 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3278 implements Iterator<Map.Entry<K,V>> {
3279 EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3280 ConcurrentHashMap<K,V> map) {
3281 super(tab, index, size, limit, map);
3282 }
3283
3284 public final Map.Entry<K,V> next() {
3285 Node<K,V> p;
3286 if ((p = next) == null)
3287 throw new NoSuchElementException();
3288 K k = p.key;
3289 V v = p.val;
3290 lastReturned = p;
3291 advance();
3292 return new MapEntry<K,V>(k, v, map);
3293 }
3294 }
3295
3296 /**
3297 * Exported Entry for EntryIterator
3298 */
3299 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3300 final K key; // non-null
3301 V val; // non-null
3302 final ConcurrentHashMap<K,V> map;
3303 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3304 this.key = key;
3305 this.val = val;
3306 this.map = map;
3307 }
3308 public K getKey() { return key; }
3309 public V getValue() { return val; }
3310 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3311 public String toString() { return key + "=" + val; }
3312
3313 public boolean equals(Object o) {
3314 Object k, v; Map.Entry<?,?> e;
3315 return ((o instanceof Map.Entry) &&
3316 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3317 (v = e.getValue()) != null &&
3318 (k == key || k.equals(key)) &&
3319 (v == val || v.equals(val)));
3320 }
3321
3322 /**
3323 * Sets our entry's value and writes through to the map. The
3324 * value to return is somewhat arbitrary here. Since we do not
3325 * necessarily track asynchronous changes, the most recent
3326 * "previous" value could be different from what we return (or
3327 * could even have been removed, in which case the put will
3328 * re-establish). We do not and cannot guarantee more.
3329 */
3330 public V setValue(V value) {
3331 if (value == null) throw new NullPointerException();
3332 V v = val;
3333 val = value;
3334 map.put(key, value);
3335 return v;
3336 }
3337 }
3338
3339 static final class KeySpliterator<K,V> extends Traverser<K,V>
3340 implements Spliterator<K> {
3341 long est; // size estimate
3342 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3343 long est) {
3344 super(tab, size, index, limit);
3345 this.est = est;
3346 }
3347
3348 public Spliterator<K> trySplit() {
3349 int i, f, h;
3350 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3351 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3352 f, est >>>= 1);
3353 }
3354
3355 public void forEachRemaining(Consumer<? super K> action) {
3356 if (action == null) throw new NullPointerException();
3357 for (Node<K,V> p; (p = advance()) != null;)
3358 action.accept(p.key);
3359 }
3360
3361 public boolean tryAdvance(Consumer<? super K> action) {
3362 if (action == null) throw new NullPointerException();
3363 Node<K,V> p;
3364 if ((p = advance()) == null)
3365 return false;
3366 action.accept(p.key);
3367 return true;
3368 }
3369
3370 public long estimateSize() { return est; }
3371
3372 public int characteristics() {
3373 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3374 Spliterator.NONNULL;
3375 }
3376 }
3377
3378 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3379 implements Spliterator<V> {
3380 long est; // size estimate
3381 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3382 long est) {
3383 super(tab, size, index, limit);
3384 this.est = est;
3385 }
3386
3387 public Spliterator<V> trySplit() {
3388 int i, f, h;
3389 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3390 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3391 f, est >>>= 1);
3392 }
3393
3394 public void forEachRemaining(Consumer<? super V> action) {
3395 if (action == null) throw new NullPointerException();
3396 for (Node<K,V> p; (p = advance()) != null;)
3397 action.accept(p.val);
3398 }
3399
3400 public boolean tryAdvance(Consumer<? super V> action) {
3401 if (action == null) throw new NullPointerException();
3402 Node<K,V> p;
3403 if ((p = advance()) == null)
3404 return false;
3405 action.accept(p.val);
3406 return true;
3407 }
3408
3409 public long estimateSize() { return est; }
3410
3411 public int characteristics() {
3412 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3413 }
3414 }
3415
3416 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3417 implements Spliterator<Map.Entry<K,V>> {
3418 final ConcurrentHashMap<K,V> map; // To export MapEntry
3419 long est; // size estimate
3420 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3421 long est, ConcurrentHashMap<K,V> map) {
3422 super(tab, size, index, limit);
3423 this.map = map;
3424 this.est = est;
3425 }
3426
3427 public Spliterator<Map.Entry<K,V>> trySplit() {
3428 int i, f, h;
3429 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3430 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3431 f, est >>>= 1, map);
3432 }
3433
3434 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3435 if (action == null) throw new NullPointerException();
3436 for (Node<K,V> p; (p = advance()) != null; )
3437 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3438 }
3439
3440 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3441 if (action == null) throw new NullPointerException();
3442 Node<K,V> p;
3443 if ((p = advance()) == null)
3444 return false;
3445 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3446 return true;
3447 }
3448
3449 public long estimateSize() { return est; }
3450
3451 public int characteristics() {
3452 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3453 Spliterator.NONNULL;
3454 }
3455 }
3456
3457 // Parallel bulk operations
3458
3459 /**
3460 * Computes initial batch value for bulk tasks. The returned value
3461 * is approximately exp2 of the number of times (minus one) to
3462 * split task by two before executing leaf action. This value is
3463 * faster to compute and more convenient to use as a guide to
3464 * splitting than is the depth, since it is used while dividing by
3465 * two anyway.
3466 */
3467 final int batchFor(long b) {
3468 long n;
3469 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3470 return 0;
3471 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3472 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3473 }
3474
3475 /**
3476 * Performs the given action for each (key, value).
3477 *
3478 * @param parallelismThreshold the (estimated) number of elements
3479 * needed for this operation to be executed in parallel
3480 * @param action the action
3481 * @since 1.8
3482 */
3483 public void forEach(long parallelismThreshold,
3484 BiConsumer<? super K,? super V> action) {
3485 if (action == null) throw new NullPointerException();
3486 new ForEachMappingTask<K,V>
3487 (null, batchFor(parallelismThreshold), 0, 0, table,
3488 action).invoke();
3489 }
3490
3491 /**
3492 * Performs the given action for each non-null transformation
3493 * of each (key, value).
3494 *
3495 * @param parallelismThreshold the (estimated) number of elements
3496 * needed for this operation to be executed in parallel
3497 * @param transformer a function returning the transformation
3498 * for an element, or null if there is no transformation (in
3499 * which case the action is not applied)
3500 * @param action the action
3501 * @since 1.8
3502 */
3503 public <U> void forEach(long parallelismThreshold,
3504 BiFunction<? super K, ? super V, ? extends U> transformer,
3505 Consumer<? super U> action) {
3506 if (transformer == null || action == null)
3507 throw new NullPointerException();
3508 new ForEachTransformedMappingTask<K,V,U>
3509 (null, batchFor(parallelismThreshold), 0, 0, table,
3510 transformer, action).invoke();
3511 }
3512
3513 /**
3514 * Returns a non-null result from applying the given search
3515 * function on each (key, value), or null if none. Upon
3516 * success, further element processing is suppressed and the
3517 * results of any other parallel invocations of the search
3518 * function are ignored.
3519 *
3520 * @param parallelismThreshold the (estimated) number of elements
3521 * needed for this operation to be executed in parallel
3522 * @param searchFunction a function returning a non-null
3523 * result on success, else null
3524 * @return a non-null result from applying the given search
3525 * function on each (key, value), or null if none
3526 * @since 1.8
3527 */
3528 public <U> U search(long parallelismThreshold,
3529 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3530 if (searchFunction == null) throw new NullPointerException();
3531 return new SearchMappingsTask<K,V,U>
3532 (null, batchFor(parallelismThreshold), 0, 0, table,
3533 searchFunction, new AtomicReference<U>()).invoke();
3534 }
3535
3536 /**
3537 * Returns the result of accumulating the given transformation
3538 * of all (key, value) pairs using the given reducer to
3539 * combine values, or null if none.
3540 *
3541 * @param parallelismThreshold the (estimated) number of elements
3542 * needed for this operation to be executed in parallel
3543 * @param transformer a function returning the transformation
3544 * for an element, or null if there is no transformation (in
3545 * which case it is not combined)
3546 * @param reducer a commutative associative combining function
3547 * @return the result of accumulating the given transformation
3548 * of all (key, value) pairs
3549 * @since 1.8
3550 */
3551 public <U> U reduce(long parallelismThreshold,
3552 BiFunction<? super K, ? super V, ? extends U> transformer,
3553 BiFunction<? super U, ? super U, ? extends U> reducer) {
3554 if (transformer == null || reducer == null)
3555 throw new NullPointerException();
3556 return new MapReduceMappingsTask<K,V,U>
3557 (null, batchFor(parallelismThreshold), 0, 0, table,
3558 null, transformer, reducer).invoke();
3559 }
3560
3561 /**
3562 * Returns the result of accumulating the given transformation
3563 * of all (key, value) pairs using the given reducer to
3564 * combine values, and the given basis as an identity value.
3565 *
3566 * @param parallelismThreshold the (estimated) number of elements
3567 * needed for this operation to be executed in parallel
3568 * @param transformer a function returning the transformation
3569 * for an element
3570 * @param basis the identity (initial default value) for the reduction
3571 * @param reducer a commutative associative combining function
3572 * @return the result of accumulating the given transformation
3573 * of all (key, value) pairs
3574 * @since 1.8
3575 */
3576 public double reduceToDoubleIn(long parallelismThreshold,
3577 ToDoubleBiFunction<? super K, ? super V> transformer,
3578 double basis,
3579 DoubleBinaryOperator reducer) {
3580 if (transformer == null || reducer == null)
3581 throw new NullPointerException();
3582 return new MapReduceMappingsToDoubleTask<K,V>
3583 (null, batchFor(parallelismThreshold), 0, 0, table,
3584 null, transformer, basis, reducer).invoke();
3585 }
3586
3587 /**
3588 * Returns the result of accumulating the given transformation
3589 * of all (key, value) pairs using the given reducer to
3590 * combine values, and the given basis as an identity value.
3591 *
3592 * @param parallelismThreshold the (estimated) number of elements
3593 * needed for this operation to be executed in parallel
3594 * @param transformer a function returning the transformation
3595 * for an element
3596 * @param basis the identity (initial default value) for the reduction
3597 * @param reducer a commutative associative combining function
3598 * @return the result of accumulating the given transformation
3599 * of all (key, value) pairs
3600 * @since 1.8
3601 */
3602 public long reduceToLong(long parallelismThreshold,
3603 ToLongBiFunction<? super K, ? super V> transformer,
3604 long basis,
3605 LongBinaryOperator reducer) {
3606 if (transformer == null || reducer == null)
3607 throw new NullPointerException();
3608 return new MapReduceMappingsToLongTask<K,V>
3609 (null, batchFor(parallelismThreshold), 0, 0, table,
3610 null, transformer, basis, reducer).invoke();
3611 }
3612
3613 /**
3614 * Returns the result of accumulating the given transformation
3615 * of all (key, value) pairs using the given reducer to
3616 * combine values, and the given basis as an identity value.
3617 *
3618 * @param parallelismThreshold the (estimated) number of elements
3619 * needed for this operation to be executed in parallel
3620 * @param transformer a function returning the transformation
3621 * for an element
3622 * @param basis the identity (initial default value) for the reduction
3623 * @param reducer a commutative associative combining function
3624 * @return the result of accumulating the given transformation
3625 * of all (key, value) pairs
3626 * @since 1.8
3627 */
3628 public int reduceToInt(long parallelismThreshold,
3629 ToIntBiFunction<? super K, ? super V> transformer,
3630 int basis,
3631 IntBinaryOperator reducer) {
3632 if (transformer == null || reducer == null)
3633 throw new NullPointerException();
3634 return new MapReduceMappingsToIntTask<K,V>
3635 (null, batchFor(parallelismThreshold), 0, 0, table,
3636 null, transformer, basis, reducer).invoke();
3637 }
3638
3639 /**
3640 * Performs the given action for each key.
3641 *
3642 * @param parallelismThreshold the (estimated) number of elements
3643 * needed for this operation to be executed in parallel
3644 * @param action the action
3645 * @since 1.8
3646 */
3647 public void forEachKey(long parallelismThreshold,
3648 Consumer<? super K> action) {
3649 if (action == null) throw new NullPointerException();
3650 new ForEachKeyTask<K,V>
3651 (null, batchFor(parallelismThreshold), 0, 0, table,
3652 action).invoke();
3653 }
3654
3655 /**
3656 * Performs the given action for each non-null transformation
3657 * of each key.
3658 *
3659 * @param parallelismThreshold the (estimated) number of elements
3660 * needed for this operation to be executed in parallel
3661 * @param transformer a function returning the transformation
3662 * for an element, or null if there is no transformation (in
3663 * which case the action is not applied)
3664 * @param action the action
3665 * @since 1.8
3666 */
3667 public <U> void forEachKey(long parallelismThreshold,
3668 Function<? super K, ? extends U> transformer,
3669 Consumer<? super U> action) {
3670 if (transformer == null || action == null)
3671 throw new NullPointerException();
3672 new ForEachTransformedKeyTask<K,V,U>
3673 (null, batchFor(parallelismThreshold), 0, 0, table,
3674 transformer, action).invoke();
3675 }
3676
3677 /**
3678 * Returns a non-null result from applying the given search
3679 * function on each key, or null if none. Upon success,
3680 * further element processing is suppressed and the results of
3681 * any other parallel invocations of the search function are
3682 * ignored.
3683 *
3684 * @param parallelismThreshold the (estimated) number of elements
3685 * needed for this operation to be executed in parallel
3686 * @param searchFunction a function returning a non-null
3687 * result on success, else null
3688 * @return a non-null result from applying the given search
3689 * function on each key, or null if none
3690 * @since 1.8
3691 */
3692 public <U> U searchKeys(long parallelismThreshold,
3693 Function<? super K, ? extends U> searchFunction) {
3694 if (searchFunction == null) throw new NullPointerException();
3695 return new SearchKeysTask<K,V,U>
3696 (null, batchFor(parallelismThreshold), 0, 0, table,
3697 searchFunction, new AtomicReference<U>()).invoke();
3698 }
3699
3700 /**
3701 * Returns the result of accumulating all keys using the given
3702 * reducer to combine values, or null if none.
3703 *
3704 * @param parallelismThreshold the (estimated) number of elements
3705 * needed for this operation to be executed in parallel
3706 * @param reducer a commutative associative combining function
3707 * @return the result of accumulating all keys using the given
3708 * reducer to combine values, or null if none
3709 * @since 1.8
3710 */
3711 public K reduceKeys(long parallelismThreshold,
3712 BiFunction<? super K, ? super K, ? extends K> reducer) {
3713 if (reducer == null) throw new NullPointerException();
3714 return new ReduceKeysTask<K,V>
3715 (null, batchFor(parallelismThreshold), 0, 0, table,
3716 null, reducer).invoke();
3717 }
3718
3719 /**
3720 * Returns the result of accumulating the given transformation
3721 * of all keys using the given reducer to combine values, or
3722 * null if none.
3723 *
3724 * @param parallelismThreshold the (estimated) number of elements
3725 * needed for this operation to be executed in parallel
3726 * @param transformer a function returning the transformation
3727 * for an element, or null if there is no transformation (in
3728 * which case it is not combined)
3729 * @param reducer a commutative associative combining function
3730 * @return the result of accumulating the given transformation
3731 * of all keys
3732 * @since 1.8
3733 */
3734 public <U> U reduceKeys(long parallelismThreshold,
3735 Function<? super K, ? extends U> transformer,
3736 BiFunction<? super U, ? super U, ? extends U> reducer) {
3737 if (transformer == null || reducer == null)
3738 throw new NullPointerException();
3739 return new MapReduceKeysTask<K,V,U>
3740 (null, batchFor(parallelismThreshold), 0, 0, table,
3741 null, transformer, reducer).invoke();
3742 }
3743
3744 /**
3745 * Returns the result of accumulating the given transformation
3746 * of all keys using the given reducer to combine values, and
3747 * the given basis as an identity value.
3748 *
3749 * @param parallelismThreshold the (estimated) number of elements
3750 * needed for this operation to be executed in parallel
3751 * @param transformer a function returning the transformation
3752 * for an element
3753 * @param basis the identity (initial default value) for the reduction
3754 * @param reducer a commutative associative combining function
3755 * @return the result of accumulating the given transformation
3756 * of all keys
3757 * @since 1.8
3758 */
3759 public double reduceKeysToDouble(long parallelismThreshold,
3760 ToDoubleFunction<? super K> transformer,
3761 double basis,
3762 DoubleBinaryOperator reducer) {
3763 if (transformer == null || reducer == null)
3764 throw new NullPointerException();
3765 return new MapReduceKeysToDoubleTask<K,V>
3766 (null, batchFor(parallelismThreshold), 0, 0, table,
3767 null, transformer, basis, reducer).invoke();
3768 }
3769
3770 /**
3771 * Returns the result of accumulating the given transformation
3772 * of all keys using the given reducer to combine values, and
3773 * the given basis as an identity value.
3774 *
3775 * @param parallelismThreshold the (estimated) number of elements
3776 * needed for this operation to be executed in parallel
3777 * @param transformer a function returning the transformation
3778 * for an element
3779 * @param basis the identity (initial default value) for the reduction
3780 * @param reducer a commutative associative combining function
3781 * @return the result of accumulating the given transformation
3782 * of all keys
3783 * @since 1.8
3784 */
3785 public long reduceKeysToLong(long parallelismThreshold,
3786 ToLongFunction<? super K> transformer,
3787 long basis,
3788 LongBinaryOperator reducer) {
3789 if (transformer == null || reducer == null)
3790 throw new NullPointerException();
3791 return new MapReduceKeysToLongTask<K,V>
3792 (null, batchFor(parallelismThreshold), 0, 0, table,
3793 null, transformer, basis, reducer).invoke();
3794 }
3795
3796 /**
3797 * Returns the result of accumulating the given transformation
3798 * of all keys using the given reducer to combine values, and
3799 * the given basis as an identity value.
3800 *
3801 * @param parallelismThreshold the (estimated) number of elements
3802 * needed for this operation to be executed in parallel
3803 * @param transformer a function returning the transformation
3804 * for an element
3805 * @param basis the identity (initial default value) for the reduction
3806 * @param reducer a commutative associative combining function
3807 * @return the result of accumulating the given transformation
3808 * of all keys
3809 * @since 1.8
3810 */
3811 public int reduceKeysToInt(long parallelismThreshold,
3812 ToIntFunction<? super K> transformer,
3813 int basis,
3814 IntBinaryOperator reducer) {
3815 if (transformer == null || reducer == null)
3816 throw new NullPointerException();
3817 return new MapReduceKeysToIntTask<K,V>
3818 (null, batchFor(parallelismThreshold), 0, 0, table,
3819 null, transformer, basis, reducer).invoke();
3820 }
3821
3822 /**
3823 * Performs the given action for each value.
3824 *
3825 * @param parallelismThreshold the (estimated) number of elements
3826 * needed for this operation to be executed in parallel
3827 * @param action the action
3828 * @since 1.8
3829 */
3830 public void forEachValue(long parallelismThreshold,
3831 Consumer<? super V> action) {
3832 if (action == null)
3833 throw new NullPointerException();
3834 new ForEachValueTask<K,V>
3835 (null, batchFor(parallelismThreshold), 0, 0, table,
3836 action).invoke();
3837 }
3838
3839 /**
3840 * Performs the given action for each non-null transformation
3841 * of each value.
3842 *
3843 * @param parallelismThreshold the (estimated) number of elements
3844 * needed for this operation to be executed in parallel
3845 * @param transformer a function returning the transformation
3846 * for an element, or null if there is no transformation (in
3847 * which case the action is not applied)
3848 * @param action the action
3849 * @since 1.8
3850 */
3851 public <U> void forEachValue(long parallelismThreshold,
3852 Function<? super V, ? extends U> transformer,
3853 Consumer<? super U> action) {
3854 if (transformer == null || action == null)
3855 throw new NullPointerException();
3856 new ForEachTransformedValueTask<K,V,U>
3857 (null, batchFor(parallelismThreshold), 0, 0, table,
3858 transformer, action).invoke();
3859 }
3860
3861 /**
3862 * Returns a non-null result from applying the given search
3863 * function on each value, or null if none. Upon success,
3864 * further element processing is suppressed and the results of
3865 * any other parallel invocations of the search function are
3866 * ignored.
3867 *
3868 * @param parallelismThreshold the (estimated) number of elements
3869 * needed for this operation to be executed in parallel
3870 * @param searchFunction a function returning a non-null
3871 * result on success, else null
3872 * @return a non-null result from applying the given search
3873 * function on each value, or null if none
3874 * @since 1.8
3875 */
3876 public <U> U searchValues(long parallelismThreshold,
3877 Function<? super V, ? extends U> searchFunction) {
3878 if (searchFunction == null) throw new NullPointerException();
3879 return new SearchValuesTask<K,V,U>
3880 (null, batchFor(parallelismThreshold), 0, 0, table,
3881 searchFunction, new AtomicReference<U>()).invoke();
3882 }
3883
3884 /**
3885 * Returns the result of accumulating all values using the
3886 * given reducer to combine values, or null if none.
3887 *
3888 * @param parallelismThreshold the (estimated) number of elements
3889 * needed for this operation to be executed in parallel
3890 * @param reducer a commutative associative combining function
3891 * @return the result of accumulating all values
3892 * @since 1.8
3893 */
3894 public V reduceValues(long parallelismThreshold,
3895 BiFunction<? super V, ? super V, ? extends V> reducer) {
3896 if (reducer == null) throw new NullPointerException();
3897 return new ReduceValuesTask<K,V>
3898 (null, batchFor(parallelismThreshold), 0, 0, table,
3899 null, reducer).invoke();
3900 }
3901
3902 /**
3903 * Returns the result of accumulating the given transformation
3904 * of all values using the given reducer to combine values, or
3905 * null if none.
3906 *
3907 * @param parallelismThreshold the (estimated) number of elements
3908 * needed for this operation to be executed in parallel
3909 * @param transformer a function returning the transformation
3910 * for an element, or null if there is no transformation (in
3911 * which case it is not combined)
3912 * @param reducer a commutative associative combining function
3913 * @return the result of accumulating the given transformation
3914 * of all values
3915 * @since 1.8
3916 */
3917 public <U> U reduceValues(long parallelismThreshold,
3918 Function<? super V, ? extends U> transformer,
3919 BiFunction<? super U, ? super U, ? extends U> reducer) {
3920 if (transformer == null || reducer == null)
3921 throw new NullPointerException();
3922 return new MapReduceValuesTask<K,V,U>
3923 (null, batchFor(parallelismThreshold), 0, 0, table,
3924 null, transformer, reducer).invoke();
3925 }
3926
3927 /**
3928 * Returns the result of accumulating the given transformation
3929 * of all values using the given reducer to combine values,
3930 * and the given basis as an identity value.
3931 *
3932 * @param parallelismThreshold the (estimated) number of elements
3933 * needed for this operation to be executed in parallel
3934 * @param transformer a function returning the transformation
3935 * for an element
3936 * @param basis the identity (initial default value) for the reduction
3937 * @param reducer a commutative associative combining function
3938 * @return the result of accumulating the given transformation
3939 * of all values
3940 * @since 1.8
3941 */
3942 public double reduceValuesToDouble(long parallelismThreshold,
3943 ToDoubleFunction<? super V> transformer,
3944 double basis,
3945 DoubleBinaryOperator reducer) {
3946 if (transformer == null || reducer == null)
3947 throw new NullPointerException();
3948 return new MapReduceValuesToDoubleTask<K,V>
3949 (null, batchFor(parallelismThreshold), 0, 0, table,
3950 null, transformer, basis, reducer).invoke();
3951 }
3952
3953 /**
3954 * Returns the result of accumulating the given transformation
3955 * of all values using the given reducer to combine values,
3956 * and the given basis as an identity value.
3957 *
3958 * @param parallelismThreshold the (estimated) number of elements
3959 * needed for this operation to be executed in parallel
3960 * @param transformer a function returning the transformation
3961 * for an element
3962 * @param basis the identity (initial default value) for the reduction
3963 * @param reducer a commutative associative combining function
3964 * @return the result of accumulating the given transformation
3965 * of all values
3966 * @since 1.8
3967 */
3968 public long reduceValuesToLong(long parallelismThreshold,
3969 ToLongFunction<? super V> transformer,
3970 long basis,
3971 LongBinaryOperator reducer) {
3972 if (transformer == null || reducer == null)
3973 throw new NullPointerException();
3974 return new MapReduceValuesToLongTask<K,V>
3975 (null, batchFor(parallelismThreshold), 0, 0, table,
3976 null, transformer, basis, reducer).invoke();
3977 }
3978
3979 /**
3980 * Returns the result of accumulating the given transformation
3981 * of all values using the given reducer to combine values,
3982 * and the given basis as an identity value.
3983 *
3984 * @param parallelismThreshold the (estimated) number of elements
3985 * needed for this operation to be executed in parallel
3986 * @param transformer a function returning the transformation
3987 * for an element
3988 * @param basis the identity (initial default value) for the reduction
3989 * @param reducer a commutative associative combining function
3990 * @return the result of accumulating the given transformation
3991 * of all values
3992 * @since 1.8
3993 */
3994 public int reduceValuesToInt(long parallelismThreshold,
3995 ToIntFunction<? super V> transformer,
3996 int basis,
3997 IntBinaryOperator reducer) {
3998 if (transformer == null || reducer == null)
3999 throw new NullPointerException();
4000 return new MapReduceValuesToIntTask<K,V>
4001 (null, batchFor(parallelismThreshold), 0, 0, table,
4002 null, transformer, basis, reducer).invoke();
4003 }
4004
4005 /**
4006 * Performs the given action for each entry.
4007 *
4008 * @param parallelismThreshold the (estimated) number of elements
4009 * needed for this operation to be executed in parallel
4010 * @param action the action
4011 * @since 1.8
4012 */
4013 public void forEachEntry(long parallelismThreshold,
4014 Consumer<? super Map.Entry<K,V>> action) {
4015 if (action == null) throw new NullPointerException();
4016 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4017 action).invoke();
4018 }
4019
4020 /**
4021 * Performs the given action for each non-null transformation
4022 * of each entry.
4023 *
4024 * @param parallelismThreshold the (estimated) number of elements
4025 * needed for this operation to be executed in parallel
4026 * @param transformer a function returning the transformation
4027 * for an element, or null if there is no transformation (in
4028 * which case the action is not applied)
4029 * @param action the action
4030 * @since 1.8
4031 */
4032 public <U> void forEachEntry(long parallelismThreshold,
4033 Function<Map.Entry<K,V>, ? extends U> transformer,
4034 Consumer<? super U> action) {
4035 if (transformer == null || action == null)
4036 throw new NullPointerException();
4037 new ForEachTransformedEntryTask<K,V,U>
4038 (null, batchFor(parallelismThreshold), 0, 0, table,
4039 transformer, action).invoke();
4040 }
4041
4042 /**
4043 * Returns a non-null result from applying the given search
4044 * function on each entry, or null if none. Upon success,
4045 * further element processing is suppressed and the results of
4046 * any other parallel invocations of the search function are
4047 * ignored.
4048 *
4049 * @param parallelismThreshold the (estimated) number of elements
4050 * needed for this operation to be executed in parallel
4051 * @param searchFunction a function returning a non-null
4052 * result on success, else null
4053 * @return a non-null result from applying the given search
4054 * function on each entry, or null if none
4055 * @since 1.8
4056 */
4057 public <U> U searchEntries(long parallelismThreshold,
4058 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4059 if (searchFunction == null) throw new NullPointerException();
4060 return new SearchEntriesTask<K,V,U>
4061 (null, batchFor(parallelismThreshold), 0, 0, table,
4062 searchFunction, new AtomicReference<U>()).invoke();
4063 }
4064
4065 /**
4066 * Returns the result of accumulating all entries using the
4067 * given reducer to combine values, or null if none.
4068 *
4069 * @param parallelismThreshold the (estimated) number of elements
4070 * needed for this operation to be executed in parallel
4071 * @param reducer a commutative associative combining function
4072 * @return the result of accumulating all entries
4073 * @since 1.8
4074 */
4075 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4076 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4077 if (reducer == null) throw new NullPointerException();
4078 return new ReduceEntriesTask<K,V>
4079 (null, batchFor(parallelismThreshold), 0, 0, table,
4080 null, reducer).invoke();
4081 }
4082
4083 /**
4084 * Returns the result of accumulating the given transformation
4085 * of all entries using the given reducer to combine values,
4086 * or null if none.
4087 *
4088 * @param parallelismThreshold the (estimated) number of elements
4089 * needed for this operation to be executed in parallel
4090 * @param transformer a function returning the transformation
4091 * for an element, or null if there is no transformation (in
4092 * which case it is not combined)
4093 * @param reducer a commutative associative combining function
4094 * @return the result of accumulating the given transformation
4095 * of all entries
4096 * @since 1.8
4097 */
4098 public <U> U reduceEntries(long parallelismThreshold,
4099 Function<Map.Entry<K,V>, ? extends U> transformer,
4100 BiFunction<? super U, ? super U, ? extends U> reducer) {
4101 if (transformer == null || reducer == null)
4102 throw new NullPointerException();
4103 return new MapReduceEntriesTask<K,V,U>
4104 (null, batchFor(parallelismThreshold), 0, 0, table,
4105 null, transformer, reducer).invoke();
4106 }
4107
4108 /**
4109 * Returns the result of accumulating the given transformation
4110 * of all entries using the given reducer to combine values,
4111 * and the given basis as an identity value.
4112 *
4113 * @param parallelismThreshold the (estimated) number of elements
4114 * needed for this operation to be executed in parallel
4115 * @param transformer a function returning the transformation
4116 * for an element
4117 * @param basis the identity (initial default value) for the reduction
4118 * @param reducer a commutative associative combining function
4119 * @return the result of accumulating the given transformation
4120 * of all entries
4121 * @since 1.8
4122 */
4123 public double reduceEntriesToDouble(long parallelismThreshold,
4124 ToDoubleFunction<Map.Entry<K,V>> transformer,
4125 double basis,
4126 DoubleBinaryOperator reducer) {
4127 if (transformer == null || reducer == null)
4128 throw new NullPointerException();
4129 return new MapReduceEntriesToDoubleTask<K,V>
4130 (null, batchFor(parallelismThreshold), 0, 0, table,
4131 null, transformer, basis, reducer).invoke();
4132 }
4133
4134 /**
4135 * Returns the result of accumulating the given transformation
4136 * of all entries using the given reducer to combine values,
4137 * and the given basis as an identity value.
4138 *
4139 * @param parallelismThreshold the (estimated) number of elements
4140 * needed for this operation to be executed in parallel
4141 * @param transformer a function returning the transformation
4142 * for an element
4143 * @param basis the identity (initial default value) for the reduction
4144 * @param reducer a commutative associative combining function
4145 * @return the result of accumulating the given transformation
4146 * of all entries
4147 * @since 1.8
4148 */
4149 public long reduceEntriesToLong(long parallelismThreshold,
4150 ToLongFunction<Map.Entry<K,V>> transformer,
4151 long basis,
4152 LongBinaryOperator reducer) {
4153 if (transformer == null || reducer == null)
4154 throw new NullPointerException();
4155 return new MapReduceEntriesToLongTask<K,V>
4156 (null, batchFor(parallelismThreshold), 0, 0, table,
4157 null, transformer, basis, reducer).invoke();
4158 }
4159
4160 /**
4161 * Returns the result of accumulating the given transformation
4162 * of all entries using the given reducer to combine values,
4163 * and the given basis as an identity value.
4164 *
4165 * @param parallelismThreshold the (estimated) number of elements
4166 * needed for this operation to be executed in parallel
4167 * @param transformer a function returning the transformation
4168 * for an element
4169 * @param basis the identity (initial default value) for the reduction
4170 * @param reducer a commutative associative combining function
4171 * @return the result of accumulating the given transformation
4172 * of all entries
4173 * @since 1.8
4174 */
4175 public int reduceEntriesToInt(long parallelismThreshold,
4176 ToIntFunction<Map.Entry<K,V>> transformer,
4177 int basis,
4178 IntBinaryOperator reducer) {
4179 if (transformer == null || reducer == null)
4180 throw new NullPointerException();
4181 return new MapReduceEntriesToIntTask<K,V>
4182 (null, batchFor(parallelismThreshold), 0, 0, table,
4183 null, transformer, basis, reducer).invoke();
4184 }
4185
4186
4187 /* ----------------Views -------------- */
4188
4189 /**
4190 * Base class for views.
4191 */
4192 abstract static class CollectionView<K,V,E>
4193 implements Collection<E>, java.io.Serializable {
4194 private static final long serialVersionUID = 7249069246763182397L;
4195 final ConcurrentHashMap<K,V> map;
4196 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4197
4198 /**
4199 * Returns the map backing this view.
4200 *
4201 * @return the map backing this view
4202 */
4203 public ConcurrentHashMap<K,V> getMap() { return map; }
4204
4205 /**
4206 * Removes all of the elements from this view, by removing all
4207 * the mappings from the map backing this view.
4208 */
4209 public final void clear() { map.clear(); }
4210 public final int size() { return map.size(); }
4211 public final boolean isEmpty() { return map.isEmpty(); }
4212
4213 // implementations below rely on concrete classes supplying these
4214 // abstract methods
4215 /**
4216 * Returns a "weakly consistent" iterator that will never
4217 * throw {@link ConcurrentModificationException}, and
4218 * guarantees to traverse elements as they existed upon
4219 * construction of the iterator, and may (but is not
4220 * guaranteed to) reflect any modifications subsequent to
4221 * construction.
4222 */
4223 public abstract Iterator<E> iterator();
4224 public abstract boolean contains(Object o);
4225 public abstract boolean remove(Object o);
4226
4227 private static final String oomeMsg = "Required array size too large";
4228
4229 public final Object[] toArray() {
4230 long sz = map.mappingCount();
4231 if (sz > MAX_ARRAY_SIZE)
4232 throw new OutOfMemoryError(oomeMsg);
4233 int n = (int)sz;
4234 Object[] r = new Object[n];
4235 int i = 0;
4236 for (E e : this) {
4237 if (i == n) {
4238 if (n >= MAX_ARRAY_SIZE)
4239 throw new OutOfMemoryError(oomeMsg);
4240 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4241 n = MAX_ARRAY_SIZE;
4242 else
4243 n += (n >>> 1) + 1;
4244 r = Arrays.copyOf(r, n);
4245 }
4246 r[i++] = e;
4247 }
4248 return (i == n) ? r : Arrays.copyOf(r, i);
4249 }
4250
4251 @SuppressWarnings("unchecked")
4252 public final <T> T[] toArray(T[] a) {
4253 long sz = map.mappingCount();
4254 if (sz > MAX_ARRAY_SIZE)
4255 throw new OutOfMemoryError(oomeMsg);
4256 int m = (int)sz;
4257 T[] r = (a.length >= m) ? a :
4258 (T[])java.lang.reflect.Array
4259 .newInstance(a.getClass().getComponentType(), m);
4260 int n = r.length;
4261 int i = 0;
4262 for (E e : this) {
4263 if (i == n) {
4264 if (n >= MAX_ARRAY_SIZE)
4265 throw new OutOfMemoryError(oomeMsg);
4266 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4267 n = MAX_ARRAY_SIZE;
4268 else
4269 n += (n >>> 1) + 1;
4270 r = Arrays.copyOf(r, n);
4271 }
4272 r[i++] = (T)e;
4273 }
4274 if (a == r && i < n) {
4275 r[i] = null; // null-terminate
4276 return r;
4277 }
4278 return (i == n) ? r : Arrays.copyOf(r, i);
4279 }
4280
4281 /**
4282 * Returns a string representation of this collection.
4283 * The string representation consists of the string representations
4284 * of the collection's elements in the order they are returned by
4285 * its iterator, enclosed in square brackets ({@code "[]"}).
4286 * Adjacent elements are separated by the characters {@code ", "}
4287 * (comma and space). Elements are converted to strings as by
4288 * {@link String#valueOf(Object)}.
4289 *
4290 * @return a string representation of this collection
4291 */
4292 public final String toString() {
4293 StringBuilder sb = new StringBuilder();
4294 sb.append('[');
4295 Iterator<E> it = iterator();
4296 if (it.hasNext()) {
4297 for (;;) {
4298 Object e = it.next();
4299 sb.append(e == this ? "(this Collection)" : e);
4300 if (!it.hasNext())
4301 break;
4302 sb.append(',').append(' ');
4303 }
4304 }
4305 return sb.append(']').toString();
4306 }
4307
4308 public final boolean containsAll(Collection<?> c) {
4309 if (c != this) {
4310 for (Object e : c) {
4311 if (e == null || !contains(e))
4312 return false;
4313 }
4314 }
4315 return true;
4316 }
4317
4318 public final boolean removeAll(Collection<?> c) {
4319 boolean modified = false;
4320 for (Iterator<E> it = iterator(); it.hasNext();) {
4321 if (c.contains(it.next())) {
4322 it.remove();
4323 modified = true;
4324 }
4325 }
4326 return modified;
4327 }
4328
4329 public final boolean retainAll(Collection<?> c) {
4330 boolean modified = false;
4331 for (Iterator<E> it = iterator(); it.hasNext();) {
4332 if (!c.contains(it.next())) {
4333 it.remove();
4334 modified = true;
4335 }
4336 }
4337 return modified;
4338 }
4339
4340 }
4341
4342 /**
4343 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4344 * which additions may optionally be enabled by mapping to a
4345 * common value. This class cannot be directly instantiated.
4346 * See {@link #keySet() keySet()},
4347 * {@link #keySet(Object) keySet(V)},
4348 * {@link #newKeySet() newKeySet()},
4349 * {@link #newKeySet(int) newKeySet(int)}.
4350 *
4351 * @since 1.8
4352 */
4353 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4354 implements Set<K>, java.io.Serializable {
4355 private static final long serialVersionUID = 7249069246763182397L;
4356 private final V value;
4357 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4358 super(map);
4359 this.value = value;
4360 }
4361
4362 /**
4363 * Returns the default mapped value for additions,
4364 * or {@code null} if additions are not supported.
4365 *
4366 * @return the default mapped value for additions, or {@code null}
4367 * if not supported
4368 */
4369 public V getMappedValue() { return value; }
4370
4371 /**
4372 * {@inheritDoc}
4373 * @throws NullPointerException if the specified key is null
4374 */
4375 public boolean contains(Object o) { return map.containsKey(o); }
4376
4377 /**
4378 * Removes the key from this map view, by removing the key (and its
4379 * corresponding value) from the backing map. This method does
4380 * nothing if the key is not in the map.
4381 *
4382 * @param o the key to be removed from the backing map
4383 * @return {@code true} if the backing map contained the specified key
4384 * @throws NullPointerException if the specified key is null
4385 */
4386 public boolean remove(Object o) { return map.remove(o) != null; }
4387
4388 /**
4389 * @return an iterator over the keys of the backing map
4390 */
4391 public Iterator<K> iterator() {
4392 Node<K,V>[] t;
4393 ConcurrentHashMap<K,V> m = map;
4394 int f = (t = m.table) == null ? 0 : t.length;
4395 return new KeyIterator<K,V>(t, f, 0, f, m);
4396 }
4397
4398 /**
4399 * Adds the specified key to this set view by mapping the key to
4400 * the default mapped value in the backing map, if defined.
4401 *
4402 * @param e key to be added
4403 * @return {@code true} if this set changed as a result of the call
4404 * @throws NullPointerException if the specified key is null
4405 * @throws UnsupportedOperationException if no default mapped value
4406 * for additions was provided
4407 */
4408 public boolean add(K e) {
4409 V v;
4410 if ((v = value) == null)
4411 throw new UnsupportedOperationException();
4412 return map.putVal(e, v, true) == null;
4413 }
4414
4415 /**
4416 * Adds all of the elements in the specified collection to this set,
4417 * as if by calling {@link #add} on each one.
4418 *
4419 * @param c the elements to be inserted into this set
4420 * @return {@code true} if this set changed as a result of the call
4421 * @throws NullPointerException if the collection or any of its
4422 * elements are {@code null}
4423 * @throws UnsupportedOperationException if no default mapped value
4424 * for additions was provided
4425 */
4426 public boolean addAll(Collection<? extends K> c) {
4427 boolean added = false;
4428 V v;
4429 if ((v = value) == null)
4430 throw new UnsupportedOperationException();
4431 for (K e : c) {
4432 if (map.putVal(e, v, true) == null)
4433 added = true;
4434 }
4435 return added;
4436 }
4437
4438 public int hashCode() {
4439 int h = 0;
4440 for (K e : this)
4441 h += e.hashCode();
4442 return h;
4443 }
4444
4445 public boolean equals(Object o) {
4446 Set<?> c;
4447 return ((o instanceof Set) &&
4448 ((c = (Set<?>)o) == this ||
4449 (containsAll(c) && c.containsAll(this))));
4450 }
4451
4452 public Spliterator<K> spliterator() {
4453 Node<K,V>[] t;
4454 ConcurrentHashMap<K,V> m = map;
4455 long n = m.sumCount();
4456 int f = (t = m.table) == null ? 0 : t.length;
4457 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4458 }
4459
4460 public void forEach(Consumer<? super K> action) {
4461 if (action == null) throw new NullPointerException();
4462 Node<K,V>[] t;
4463 if ((t = map.table) != null) {
4464 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4465 for (Node<K,V> p; (p = it.advance()) != null; )
4466 action.accept(p.key);
4467 }
4468 }
4469 }
4470
4471 /**
4472 * A view of a ConcurrentHashMap as a {@link Collection} of
4473 * values, in which additions are disabled. This class cannot be
4474 * directly instantiated. See {@link #values()}.
4475 */
4476 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4477 implements Collection<V>, java.io.Serializable {
4478 private static final long serialVersionUID = 2249069246763182397L;
4479 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4480 public final boolean contains(Object o) {
4481 return map.containsValue(o);
4482 }
4483
4484 public final boolean remove(Object o) {
4485 if (o != null) {
4486 for (Iterator<V> it = iterator(); it.hasNext();) {
4487 if (o.equals(it.next())) {
4488 it.remove();
4489 return true;
4490 }
4491 }
4492 }
4493 return false;
4494 }
4495
4496 public final Iterator<V> iterator() {
4497 ConcurrentHashMap<K,V> m = map;
4498 Node<K,V>[] t;
4499 int f = (t = m.table) == null ? 0 : t.length;
4500 return new ValueIterator<K,V>(t, f, 0, f, m);
4501 }
4502
4503 public final boolean add(V e) {
4504 throw new UnsupportedOperationException();
4505 }
4506 public final boolean addAll(Collection<? extends V> c) {
4507 throw new UnsupportedOperationException();
4508 }
4509
4510 public Spliterator<V> spliterator() {
4511 Node<K,V>[] t;
4512 ConcurrentHashMap<K,V> m = map;
4513 long n = m.sumCount();
4514 int f = (t = m.table) == null ? 0 : t.length;
4515 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4516 }
4517
4518 public void forEach(Consumer<? super V> action) {
4519 if (action == null) throw new NullPointerException();
4520 Node<K,V>[] t;
4521 if ((t = map.table) != null) {
4522 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4523 for (Node<K,V> p; (p = it.advance()) != null; )
4524 action.accept(p.val);
4525 }
4526 }
4527 }
4528
4529 /**
4530 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4531 * entries. This class cannot be directly instantiated. See
4532 * {@link #entrySet()}.
4533 */
4534 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4535 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4536 private static final long serialVersionUID = 2249069246763182397L;
4537 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4538
4539 public boolean contains(Object o) {
4540 Object k, v, r; Map.Entry<?,?> e;
4541 return ((o instanceof Map.Entry) &&
4542 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4543 (r = map.get(k)) != null &&
4544 (v = e.getValue()) != null &&
4545 (v == r || v.equals(r)));
4546 }
4547
4548 public boolean remove(Object o) {
4549 Object k, v; Map.Entry<?,?> e;
4550 return ((o instanceof Map.Entry) &&
4551 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4552 (v = e.getValue()) != null &&
4553 map.remove(k, v));
4554 }
4555
4556 /**
4557 * @return an iterator over the entries of the backing map
4558 */
4559 public Iterator<Map.Entry<K,V>> iterator() {
4560 ConcurrentHashMap<K,V> m = map;
4561 Node<K,V>[] t;
4562 int f = (t = m.table) == null ? 0 : t.length;
4563 return new EntryIterator<K,V>(t, f, 0, f, m);
4564 }
4565
4566 public boolean add(Entry<K,V> e) {
4567 return map.putVal(e.getKey(), e.getValue(), false) == null;
4568 }
4569
4570 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4571 boolean added = false;
4572 for (Entry<K,V> e : c) {
4573 if (add(e))
4574 added = true;
4575 }
4576 return added;
4577 }
4578
4579 public final int hashCode() {
4580 int h = 0;
4581 Node<K,V>[] t;
4582 if ((t = map.table) != null) {
4583 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4584 for (Node<K,V> p; (p = it.advance()) != null; ) {
4585 h += p.hashCode();
4586 }
4587 }
4588 return h;
4589 }
4590
4591 public final boolean equals(Object o) {
4592 Set<?> c;
4593 return ((o instanceof Set) &&
4594 ((c = (Set<?>)o) == this ||
4595 (containsAll(c) && c.containsAll(this))));
4596 }
4597
4598 public Spliterator<Map.Entry<K,V>> spliterator() {
4599 Node<K,V>[] t;
4600 ConcurrentHashMap<K,V> m = map;
4601 long n = m.sumCount();
4602 int f = (t = m.table) == null ? 0 : t.length;
4603 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4604 }
4605
4606 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4607 if (action == null) throw new NullPointerException();
4608 Node<K,V>[] t;
4609 if ((t = map.table) != null) {
4610 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4611 for (Node<K,V> p; (p = it.advance()) != null; )
4612 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4613 }
4614 }
4615
4616 }
4617
4618 // -------------------------------------------------------
4619
4620 /**
4621 * Base class for bulk tasks. Repeats some fields and code from
4622 * class Traverser, because we need to subclass CountedCompleter.
4623 */
4624 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4625 Node<K,V>[] tab; // same as Traverser
4626 Node<K,V> next;
4627 int index;
4628 int baseIndex;
4629 int baseLimit;
4630 final int baseSize;
4631 int batch; // split control
4632
4633 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4634 super(par);
4635 this.batch = b;
4636 this.index = this.baseIndex = i;
4637 if ((this.tab = t) == null)
4638 this.baseSize = this.baseLimit = 0;
4639 else if (par == null)
4640 this.baseSize = this.baseLimit = t.length;
4641 else {
4642 this.baseLimit = f;
4643 this.baseSize = par.baseSize;
4644 }
4645 }
4646
4647 /**
4648 * Same as Traverser version
4649 */
4650 final Node<K,V> advance() {
4651 Node<K,V> e;
4652 if ((e = next) != null)
4653 e = e.next;
4654 for (;;) {
4655 Node<K,V>[] t; int i, n; K ek; // must use locals in checks
4656 if (e != null)
4657 return next = e;
4658 if (baseIndex >= baseLimit || (t = tab) == null ||
4659 (n = t.length) <= (i = index) || i < 0)
4660 return next = null;
4661 if ((e = tabAt(t, index)) != null && e.hash < 0) {
4662 if (e instanceof ForwardingNode) {
4663 tab = ((ForwardingNode<K,V>)e).nextTable;
4664 e = null;
4665 continue;
4666 }
4667 else if (e instanceof TreeBin)
4668 e = ((TreeBin<K,V>)e).first;
4669 else
4670 e = null;
4671 }
4672 if ((index += baseSize) >= n)
4673 index = ++baseIndex; // visit upper slots if present
4674 }
4675 }
4676 }
4677
4678 /*
4679 * Task classes. Coded in a regular but ugly format/style to
4680 * simplify checks that each variant differs in the right way from
4681 * others. The null screenings exist because compilers cannot tell
4682 * that we've already null-checked task arguments, so we force
4683 * simplest hoisted bypass to help avoid convoluted traps.
4684 */
4685 @SuppressWarnings("serial")
4686 static final class ForEachKeyTask<K,V>
4687 extends BulkTask<K,V,Void> {
4688 final Consumer<? super K> action;
4689 ForEachKeyTask
4690 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4691 Consumer<? super K> action) {
4692 super(p, b, i, f, t);
4693 this.action = action;
4694 }
4695 public final void compute() {
4696 final Consumer<? super K> action;
4697 if ((action = this.action) != null) {
4698 for (int i = baseIndex, f, h; batch > 0 &&
4699 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4700 addToPendingCount(1);
4701 new ForEachKeyTask<K,V>
4702 (this, batch >>>= 1, baseLimit = h, f, tab,
4703 action).fork();
4704 }
4705 for (Node<K,V> p; (p = advance()) != null;)
4706 action.accept(p.key);
4707 propagateCompletion();
4708 }
4709 }
4710 }
4711
4712 @SuppressWarnings("serial")
4713 static final class ForEachValueTask<K,V>
4714 extends BulkTask<K,V,Void> {
4715 final Consumer<? super V> action;
4716 ForEachValueTask
4717 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4718 Consumer<? super V> action) {
4719 super(p, b, i, f, t);
4720 this.action = action;
4721 }
4722 public final void compute() {
4723 final Consumer<? super V> action;
4724 if ((action = this.action) != null) {
4725 for (int i = baseIndex, f, h; batch > 0 &&
4726 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4727 addToPendingCount(1);
4728 new ForEachValueTask<K,V>
4729 (this, batch >>>= 1, baseLimit = h, f, tab,
4730 action).fork();
4731 }
4732 for (Node<K,V> p; (p = advance()) != null;)
4733 action.accept(p.val);
4734 propagateCompletion();
4735 }
4736 }
4737 }
4738
4739 @SuppressWarnings("serial")
4740 static final class ForEachEntryTask<K,V>
4741 extends BulkTask<K,V,Void> {
4742 final Consumer<? super Entry<K,V>> action;
4743 ForEachEntryTask
4744 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4745 Consumer<? super Entry<K,V>> action) {
4746 super(p, b, i, f, t);
4747 this.action = action;
4748 }
4749 public final void compute() {
4750 final Consumer<? super Entry<K,V>> action;
4751 if ((action = this.action) != null) {
4752 for (int i = baseIndex, f, h; batch > 0 &&
4753 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4754 addToPendingCount(1);
4755 new ForEachEntryTask<K,V>
4756 (this, batch >>>= 1, baseLimit = h, f, tab,
4757 action).fork();
4758 }
4759 for (Node<K,V> p; (p = advance()) != null; )
4760 action.accept(p);
4761 propagateCompletion();
4762 }
4763 }
4764 }
4765
4766 @SuppressWarnings("serial")
4767 static final class ForEachMappingTask<K,V>
4768 extends BulkTask<K,V,Void> {
4769 final BiConsumer<? super K, ? super V> action;
4770 ForEachMappingTask
4771 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4772 BiConsumer<? super K,? super V> action) {
4773 super(p, b, i, f, t);
4774 this.action = action;
4775 }
4776 public final void compute() {
4777 final BiConsumer<? super K, ? super V> action;
4778 if ((action = this.action) != null) {
4779 for (int i = baseIndex, f, h; batch > 0 &&
4780 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4781 addToPendingCount(1);
4782 new ForEachMappingTask<K,V>
4783 (this, batch >>>= 1, baseLimit = h, f, tab,
4784 action).fork();
4785 }
4786 for (Node<K,V> p; (p = advance()) != null; )
4787 action.accept(p.key, p.val);
4788 propagateCompletion();
4789 }
4790 }
4791 }
4792
4793 @SuppressWarnings("serial")
4794 static final class ForEachTransformedKeyTask<K,V,U>
4795 extends BulkTask<K,V,Void> {
4796 final Function<? super K, ? extends U> transformer;
4797 final Consumer<? super U> action;
4798 ForEachTransformedKeyTask
4799 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4800 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4801 super(p, b, i, f, t);
4802 this.transformer = transformer; this.action = action;
4803 }
4804 public final void compute() {
4805 final Function<? super K, ? extends U> transformer;
4806 final Consumer<? super U> action;
4807 if ((transformer = this.transformer) != null &&
4808 (action = this.action) != null) {
4809 for (int i = baseIndex, f, h; batch > 0 &&
4810 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4811 addToPendingCount(1);
4812 new ForEachTransformedKeyTask<K,V,U>
4813 (this, batch >>>= 1, baseLimit = h, f, tab,
4814 transformer, action).fork();
4815 }
4816 for (Node<K,V> p; (p = advance()) != null; ) {
4817 U u;
4818 if ((u = transformer.apply(p.key)) != null)
4819 action.accept(u);
4820 }
4821 propagateCompletion();
4822 }
4823 }
4824 }
4825
4826 @SuppressWarnings("serial")
4827 static final class ForEachTransformedValueTask<K,V,U>
4828 extends BulkTask<K,V,Void> {
4829 final Function<? super V, ? extends U> transformer;
4830 final Consumer<? super U> action;
4831 ForEachTransformedValueTask
4832 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4833 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
4834 super(p, b, i, f, t);
4835 this.transformer = transformer; this.action = action;
4836 }
4837 public final void compute() {
4838 final Function<? super V, ? extends U> transformer;
4839 final Consumer<? super U> action;
4840 if ((transformer = this.transformer) != null &&
4841 (action = this.action) != null) {
4842 for (int i = baseIndex, f, h; batch > 0 &&
4843 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4844 addToPendingCount(1);
4845 new ForEachTransformedValueTask<K,V,U>
4846 (this, batch >>>= 1, baseLimit = h, f, tab,
4847 transformer, action).fork();
4848 }
4849 for (Node<K,V> p; (p = advance()) != null; ) {
4850 U u;
4851 if ((u = transformer.apply(p.val)) != null)
4852 action.accept(u);
4853 }
4854 propagateCompletion();
4855 }
4856 }
4857 }
4858
4859 @SuppressWarnings("serial")
4860 static final class ForEachTransformedEntryTask<K,V,U>
4861 extends BulkTask<K,V,Void> {
4862 final Function<Map.Entry<K,V>, ? extends U> transformer;
4863 final Consumer<? super U> action;
4864 ForEachTransformedEntryTask
4865 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4866 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
4867 super(p, b, i, f, t);
4868 this.transformer = transformer; this.action = action;
4869 }
4870 public final void compute() {
4871 final Function<Map.Entry<K,V>, ? extends U> transformer;
4872 final Consumer<? super U> action;
4873 if ((transformer = this.transformer) != null &&
4874 (action = this.action) != null) {
4875 for (int i = baseIndex, f, h; batch > 0 &&
4876 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4877 addToPendingCount(1);
4878 new ForEachTransformedEntryTask<K,V,U>
4879 (this, batch >>>= 1, baseLimit = h, f, tab,
4880 transformer, action).fork();
4881 }
4882 for (Node<K,V> p; (p = advance()) != null; ) {
4883 U u;
4884 if ((u = transformer.apply(p)) != null)
4885 action.accept(u);
4886 }
4887 propagateCompletion();
4888 }
4889 }
4890 }
4891
4892 @SuppressWarnings("serial")
4893 static final class ForEachTransformedMappingTask<K,V,U>
4894 extends BulkTask<K,V,Void> {
4895 final BiFunction<? super K, ? super V, ? extends U> transformer;
4896 final Consumer<? super U> action;
4897 ForEachTransformedMappingTask
4898 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4899 BiFunction<? super K, ? super V, ? extends U> transformer,
4900 Consumer<? super U> action) {
4901 super(p, b, i, f, t);
4902 this.transformer = transformer; this.action = action;
4903 }
4904 public final void compute() {
4905 final BiFunction<? super K, ? super V, ? extends U> transformer;
4906 final Consumer<? super U> action;
4907 if ((transformer = this.transformer) != null &&
4908 (action = this.action) != null) {
4909 for (int i = baseIndex, f, h; batch > 0 &&
4910 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4911 addToPendingCount(1);
4912 new ForEachTransformedMappingTask<K,V,U>
4913 (this, batch >>>= 1, baseLimit = h, f, tab,
4914 transformer, action).fork();
4915 }
4916 for (Node<K,V> p; (p = advance()) != null; ) {
4917 U u;
4918 if ((u = transformer.apply(p.key, p.val)) != null)
4919 action.accept(u);
4920 }
4921 propagateCompletion();
4922 }
4923 }
4924 }
4925
4926 @SuppressWarnings("serial")
4927 static final class SearchKeysTask<K,V,U>
4928 extends BulkTask<K,V,U> {
4929 final Function<? super K, ? extends U> searchFunction;
4930 final AtomicReference<U> result;
4931 SearchKeysTask
4932 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4933 Function<? super K, ? extends U> searchFunction,
4934 AtomicReference<U> result) {
4935 super(p, b, i, f, t);
4936 this.searchFunction = searchFunction; this.result = result;
4937 }
4938 public final U getRawResult() { return result.get(); }
4939 public final void compute() {
4940 final Function<? super K, ? extends U> searchFunction;
4941 final AtomicReference<U> result;
4942 if ((searchFunction = this.searchFunction) != null &&
4943 (result = this.result) != null) {
4944 for (int i = baseIndex, f, h; batch > 0 &&
4945 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4946 if (result.get() != null)
4947 return;
4948 addToPendingCount(1);
4949 new SearchKeysTask<K,V,U>
4950 (this, batch >>>= 1, baseLimit = h, f, tab,
4951 searchFunction, result).fork();
4952 }
4953 while (result.get() == null) {
4954 U u;
4955 Node<K,V> p;
4956 if ((p = advance()) == null) {
4957 propagateCompletion();
4958 break;
4959 }
4960 if ((u = searchFunction.apply(p.key)) != null) {
4961 if (result.compareAndSet(null, u))
4962 quietlyCompleteRoot();
4963 break;
4964 }
4965 }
4966 }
4967 }
4968 }
4969
4970 @SuppressWarnings("serial")
4971 static final class SearchValuesTask<K,V,U>
4972 extends BulkTask<K,V,U> {
4973 final Function<? super V, ? extends U> searchFunction;
4974 final AtomicReference<U> result;
4975 SearchValuesTask
4976 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4977 Function<? super V, ? extends U> searchFunction,
4978 AtomicReference<U> result) {
4979 super(p, b, i, f, t);
4980 this.searchFunction = searchFunction; this.result = result;
4981 }
4982 public final U getRawResult() { return result.get(); }
4983 public final void compute() {
4984 final Function<? super V, ? extends U> searchFunction;
4985 final AtomicReference<U> result;
4986 if ((searchFunction = this.searchFunction) != null &&
4987 (result = this.result) != null) {
4988 for (int i = baseIndex, f, h; batch > 0 &&
4989 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4990 if (result.get() != null)
4991 return;
4992 addToPendingCount(1);
4993 new SearchValuesTask<K,V,U>
4994 (this, batch >>>= 1, baseLimit = h, f, tab,
4995 searchFunction, result).fork();
4996 }
4997 while (result.get() == null) {
4998 U u;
4999 Node<K,V> p;
5000 if ((p = advance()) == null) {
5001 propagateCompletion();
5002 break;
5003 }
5004 if ((u = searchFunction.apply(p.val)) != null) {
5005 if (result.compareAndSet(null, u))
5006 quietlyCompleteRoot();
5007 break;
5008 }
5009 }
5010 }
5011 }
5012 }
5013
5014 @SuppressWarnings("serial")
5015 static final class SearchEntriesTask<K,V,U>
5016 extends BulkTask<K,V,U> {
5017 final Function<Entry<K,V>, ? extends U> searchFunction;
5018 final AtomicReference<U> result;
5019 SearchEntriesTask
5020 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5021 Function<Entry<K,V>, ? extends U> searchFunction,
5022 AtomicReference<U> result) {
5023 super(p, b, i, f, t);
5024 this.searchFunction = searchFunction; this.result = result;
5025 }
5026 public final U getRawResult() { return result.get(); }
5027 public final void compute() {
5028 final Function<Entry<K,V>, ? extends U> searchFunction;
5029 final AtomicReference<U> result;
5030 if ((searchFunction = this.searchFunction) != null &&
5031 (result = this.result) != null) {
5032 for (int i = baseIndex, f, h; batch > 0 &&
5033 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5034 if (result.get() != null)
5035 return;
5036 addToPendingCount(1);
5037 new SearchEntriesTask<K,V,U>
5038 (this, batch >>>= 1, baseLimit = h, f, tab,
5039 searchFunction, result).fork();
5040 }
5041 while (result.get() == null) {
5042 U u;
5043 Node<K,V> p;
5044 if ((p = advance()) == null) {
5045 propagateCompletion();
5046 break;
5047 }
5048 if ((u = searchFunction.apply(p)) != null) {
5049 if (result.compareAndSet(null, u))
5050 quietlyCompleteRoot();
5051 return;
5052 }
5053 }
5054 }
5055 }
5056 }
5057
5058 @SuppressWarnings("serial")
5059 static final class SearchMappingsTask<K,V,U>
5060 extends BulkTask<K,V,U> {
5061 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5062 final AtomicReference<U> result;
5063 SearchMappingsTask
5064 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5065 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5066 AtomicReference<U> result) {
5067 super(p, b, i, f, t);
5068 this.searchFunction = searchFunction; this.result = result;
5069 }
5070 public final U getRawResult() { return result.get(); }
5071 public final void compute() {
5072 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5073 final AtomicReference<U> result;
5074 if ((searchFunction = this.searchFunction) != null &&
5075 (result = this.result) != null) {
5076 for (int i = baseIndex, f, h; batch > 0 &&
5077 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5078 if (result.get() != null)
5079 return;
5080 addToPendingCount(1);
5081 new SearchMappingsTask<K,V,U>
5082 (this, batch >>>= 1, baseLimit = h, f, tab,
5083 searchFunction, result).fork();
5084 }
5085 while (result.get() == null) {
5086 U u;
5087 Node<K,V> p;
5088 if ((p = advance()) == null) {
5089 propagateCompletion();
5090 break;
5091 }
5092 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5093 if (result.compareAndSet(null, u))
5094 quietlyCompleteRoot();
5095 break;
5096 }
5097 }
5098 }
5099 }
5100 }
5101
5102 @SuppressWarnings("serial")
5103 static final class ReduceKeysTask<K,V>
5104 extends BulkTask<K,V,K> {
5105 final BiFunction<? super K, ? super K, ? extends K> reducer;
5106 K result;
5107 ReduceKeysTask<K,V> rights, nextRight;
5108 ReduceKeysTask
5109 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5110 ReduceKeysTask<K,V> nextRight,
5111 BiFunction<? super K, ? super K, ? extends K> reducer) {
5112 super(p, b, i, f, t); this.nextRight = nextRight;
5113 this.reducer = reducer;
5114 }
5115 public final K getRawResult() { return result; }
5116 public final void compute() {
5117 final BiFunction<? super K, ? super K, ? extends K> reducer;
5118 if ((reducer = this.reducer) != null) {
5119 for (int i = baseIndex, f, h; batch > 0 &&
5120 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5121 addToPendingCount(1);
5122 (rights = new ReduceKeysTask<K,V>
5123 (this, batch >>>= 1, baseLimit = h, f, tab,
5124 rights, reducer)).fork();
5125 }
5126 K r = null;
5127 for (Node<K,V> p; (p = advance()) != null; ) {
5128 K u = p.key;
5129 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5130 }
5131 result = r;
5132 CountedCompleter<?> c;
5133 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5134 @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5135 t = (ReduceKeysTask<K,V>)c,
5136 s = t.rights;
5137 while (s != null) {
5138 K tr, sr;
5139 if ((sr = s.result) != null)
5140 t.result = (((tr = t.result) == null) ? sr :
5141 reducer.apply(tr, sr));
5142 s = t.rights = s.nextRight;
5143 }
5144 }
5145 }
5146 }
5147 }
5148
5149 @SuppressWarnings("serial")
5150 static final class ReduceValuesTask<K,V>
5151 extends BulkTask<K,V,V> {
5152 final BiFunction<? super V, ? super V, ? extends V> reducer;
5153 V result;
5154 ReduceValuesTask<K,V> rights, nextRight;
5155 ReduceValuesTask
5156 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5157 ReduceValuesTask<K,V> nextRight,
5158 BiFunction<? super V, ? super V, ? extends V> reducer) {
5159 super(p, b, i, f, t); this.nextRight = nextRight;
5160 this.reducer = reducer;
5161 }
5162 public final V getRawResult() { return result; }
5163 public final void compute() {
5164 final BiFunction<? super V, ? super V, ? extends V> reducer;
5165 if ((reducer = this.reducer) != null) {
5166 for (int i = baseIndex, f, h; batch > 0 &&
5167 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5168 addToPendingCount(1);
5169 (rights = new ReduceValuesTask<K,V>
5170 (this, batch >>>= 1, baseLimit = h, f, tab,
5171 rights, reducer)).fork();
5172 }
5173 V r = null;
5174 for (Node<K,V> p; (p = advance()) != null; ) {
5175 V v = p.val;
5176 r = (r == null) ? v : reducer.apply(r, v);
5177 }
5178 result = r;
5179 CountedCompleter<?> c;
5180 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5181 @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5182 t = (ReduceValuesTask<K,V>)c,
5183 s = t.rights;
5184 while (s != null) {
5185 V tr, sr;
5186 if ((sr = s.result) != null)
5187 t.result = (((tr = t.result) == null) ? sr :
5188 reducer.apply(tr, sr));
5189 s = t.rights = s.nextRight;
5190 }
5191 }
5192 }
5193 }
5194 }
5195
5196 @SuppressWarnings("serial")
5197 static final class ReduceEntriesTask<K,V>
5198 extends BulkTask<K,V,Map.Entry<K,V>> {
5199 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5200 Map.Entry<K,V> result;
5201 ReduceEntriesTask<K,V> rights, nextRight;
5202 ReduceEntriesTask
5203 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5204 ReduceEntriesTask<K,V> nextRight,
5205 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5206 super(p, b, i, f, t); this.nextRight = nextRight;
5207 this.reducer = reducer;
5208 }
5209 public final Map.Entry<K,V> getRawResult() { return result; }
5210 public final void compute() {
5211 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5212 if ((reducer = this.reducer) != null) {
5213 for (int i = baseIndex, f, h; batch > 0 &&
5214 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5215 addToPendingCount(1);
5216 (rights = new ReduceEntriesTask<K,V>
5217 (this, batch >>>= 1, baseLimit = h, f, tab,
5218 rights, reducer)).fork();
5219 }
5220 Map.Entry<K,V> r = null;
5221 for (Node<K,V> p; (p = advance()) != null; )
5222 r = (r == null) ? p : reducer.apply(r, p);
5223 result = r;
5224 CountedCompleter<?> c;
5225 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5226 @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5227 t = (ReduceEntriesTask<K,V>)c,
5228 s = t.rights;
5229 while (s != null) {
5230 Map.Entry<K,V> tr, sr;
5231 if ((sr = s.result) != null)
5232 t.result = (((tr = t.result) == null) ? sr :
5233 reducer.apply(tr, sr));
5234 s = t.rights = s.nextRight;
5235 }
5236 }
5237 }
5238 }
5239 }
5240
5241 @SuppressWarnings("serial")
5242 static final class MapReduceKeysTask<K,V,U>
5243 extends BulkTask<K,V,U> {
5244 final Function<? super K, ? extends U> transformer;
5245 final BiFunction<? super U, ? super U, ? extends U> reducer;
5246 U result;
5247 MapReduceKeysTask<K,V,U> rights, nextRight;
5248 MapReduceKeysTask
5249 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5250 MapReduceKeysTask<K,V,U> nextRight,
5251 Function<? super K, ? extends U> transformer,
5252 BiFunction<? super U, ? super U, ? extends U> reducer) {
5253 super(p, b, i, f, t); this.nextRight = nextRight;
5254 this.transformer = transformer;
5255 this.reducer = reducer;
5256 }
5257 public final U getRawResult() { return result; }
5258 public final void compute() {
5259 final Function<? super K, ? extends U> transformer;
5260 final BiFunction<? super U, ? super U, ? extends U> reducer;
5261 if ((transformer = this.transformer) != null &&
5262 (reducer = this.reducer) != null) {
5263 for (int i = baseIndex, f, h; batch > 0 &&
5264 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5265 addToPendingCount(1);
5266 (rights = new MapReduceKeysTask<K,V,U>
5267 (this, batch >>>= 1, baseLimit = h, f, tab,
5268 rights, transformer, reducer)).fork();
5269 }
5270 U r = null;
5271 for (Node<K,V> p; (p = advance()) != null; ) {
5272 U u;
5273 if ((u = transformer.apply(p.key)) != null)
5274 r = (r == null) ? u : reducer.apply(r, u);
5275 }
5276 result = r;
5277 CountedCompleter<?> c;
5278 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5279 @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5280 t = (MapReduceKeysTask<K,V,U>)c,
5281 s = t.rights;
5282 while (s != null) {
5283 U tr, sr;
5284 if ((sr = s.result) != null)
5285 t.result = (((tr = t.result) == null) ? sr :
5286 reducer.apply(tr, sr));
5287 s = t.rights = s.nextRight;
5288 }
5289 }
5290 }
5291 }
5292 }
5293
5294 @SuppressWarnings("serial")
5295 static final class MapReduceValuesTask<K,V,U>
5296 extends BulkTask<K,V,U> {
5297 final Function<? super V, ? extends U> transformer;
5298 final BiFunction<? super U, ? super U, ? extends U> reducer;
5299 U result;
5300 MapReduceValuesTask<K,V,U> rights, nextRight;
5301 MapReduceValuesTask
5302 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5303 MapReduceValuesTask<K,V,U> nextRight,
5304 Function<? super V, ? extends U> transformer,
5305 BiFunction<? super U, ? super U, ? extends U> reducer) {
5306 super(p, b, i, f, t); this.nextRight = nextRight;
5307 this.transformer = transformer;
5308 this.reducer = reducer;
5309 }
5310 public final U getRawResult() { return result; }
5311 public final void compute() {
5312 final Function<? super V, ? extends U> transformer;
5313 final BiFunction<? super U, ? super U, ? extends U> reducer;
5314 if ((transformer = this.transformer) != null &&
5315 (reducer = this.reducer) != null) {
5316 for (int i = baseIndex, f, h; batch > 0 &&
5317 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5318 addToPendingCount(1);
5319 (rights = new MapReduceValuesTask<K,V,U>
5320 (this, batch >>>= 1, baseLimit = h, f, tab,
5321 rights, transformer, reducer)).fork();
5322 }
5323 U r = null;
5324 for (Node<K,V> p; (p = advance()) != null; ) {
5325 U u;
5326 if ((u = transformer.apply(p.val)) != null)
5327 r = (r == null) ? u : reducer.apply(r, u);
5328 }
5329 result = r;
5330 CountedCompleter<?> c;
5331 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5332 @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5333 t = (MapReduceValuesTask<K,V,U>)c,
5334 s = t.rights;
5335 while (s != null) {
5336 U tr, sr;
5337 if ((sr = s.result) != null)
5338 t.result = (((tr = t.result) == null) ? sr :
5339 reducer.apply(tr, sr));
5340 s = t.rights = s.nextRight;
5341 }
5342 }
5343 }
5344 }
5345 }
5346
5347 @SuppressWarnings("serial")
5348 static final class MapReduceEntriesTask<K,V,U>
5349 extends BulkTask<K,V,U> {
5350 final Function<Map.Entry<K,V>, ? extends U> transformer;
5351 final BiFunction<? super U, ? super U, ? extends U> reducer;
5352 U result;
5353 MapReduceEntriesTask<K,V,U> rights, nextRight;
5354 MapReduceEntriesTask
5355 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5356 MapReduceEntriesTask<K,V,U> nextRight,
5357 Function<Map.Entry<K,V>, ? extends U> transformer,
5358 BiFunction<? super U, ? super U, ? extends U> reducer) {
5359 super(p, b, i, f, t); this.nextRight = nextRight;
5360 this.transformer = transformer;
5361 this.reducer = reducer;
5362 }
5363 public final U getRawResult() { return result; }
5364 public final void compute() {
5365 final Function<Map.Entry<K,V>, ? extends U> transformer;
5366 final BiFunction<? super U, ? super U, ? extends U> reducer;
5367 if ((transformer = this.transformer) != null &&
5368 (reducer = this.reducer) != null) {
5369 for (int i = baseIndex, f, h; batch > 0 &&
5370 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5371 addToPendingCount(1);
5372 (rights = new MapReduceEntriesTask<K,V,U>
5373 (this, batch >>>= 1, baseLimit = h, f, tab,
5374 rights, transformer, reducer)).fork();
5375 }
5376 U r = null;
5377 for (Node<K,V> p; (p = advance()) != null; ) {
5378 U u;
5379 if ((u = transformer.apply(p)) != null)
5380 r = (r == null) ? u : reducer.apply(r, u);
5381 }
5382 result = r;
5383 CountedCompleter<?> c;
5384 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5385 @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5386 t = (MapReduceEntriesTask<K,V,U>)c,
5387 s = t.rights;
5388 while (s != null) {
5389 U tr, sr;
5390 if ((sr = s.result) != null)
5391 t.result = (((tr = t.result) == null) ? sr :
5392 reducer.apply(tr, sr));
5393 s = t.rights = s.nextRight;
5394 }
5395 }
5396 }
5397 }
5398 }
5399
5400 @SuppressWarnings("serial")
5401 static final class MapReduceMappingsTask<K,V,U>
5402 extends BulkTask<K,V,U> {
5403 final BiFunction<? super K, ? super V, ? extends U> transformer;
5404 final BiFunction<? super U, ? super U, ? extends U> reducer;
5405 U result;
5406 MapReduceMappingsTask<K,V,U> rights, nextRight;
5407 MapReduceMappingsTask
5408 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5409 MapReduceMappingsTask<K,V,U> nextRight,
5410 BiFunction<? super K, ? super V, ? extends U> transformer,
5411 BiFunction<? super U, ? super U, ? extends U> reducer) {
5412 super(p, b, i, f, t); this.nextRight = nextRight;
5413 this.transformer = transformer;
5414 this.reducer = reducer;
5415 }
5416 public final U getRawResult() { return result; }
5417 public final void compute() {
5418 final BiFunction<? super K, ? super V, ? extends U> transformer;
5419 final BiFunction<? super U, ? super U, ? extends U> reducer;
5420 if ((transformer = this.transformer) != null &&
5421 (reducer = this.reducer) != null) {
5422 for (int i = baseIndex, f, h; batch > 0 &&
5423 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5424 addToPendingCount(1);
5425 (rights = new MapReduceMappingsTask<K,V,U>
5426 (this, batch >>>= 1, baseLimit = h, f, tab,
5427 rights, transformer, reducer)).fork();
5428 }
5429 U r = null;
5430 for (Node<K,V> p; (p = advance()) != null; ) {
5431 U u;
5432 if ((u = transformer.apply(p.key, p.val)) != null)
5433 r = (r == null) ? u : reducer.apply(r, u);
5434 }
5435 result = r;
5436 CountedCompleter<?> c;
5437 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5438 @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5439 t = (MapReduceMappingsTask<K,V,U>)c,
5440 s = t.rights;
5441 while (s != null) {
5442 U tr, sr;
5443 if ((sr = s.result) != null)
5444 t.result = (((tr = t.result) == null) ? sr :
5445 reducer.apply(tr, sr));
5446 s = t.rights = s.nextRight;
5447 }
5448 }
5449 }
5450 }
5451 }
5452
5453 @SuppressWarnings("serial")
5454 static final class MapReduceKeysToDoubleTask<K,V>
5455 extends BulkTask<K,V,Double> {
5456 final ToDoubleFunction<? super K> transformer;
5457 final DoubleBinaryOperator reducer;
5458 final double basis;
5459 double result;
5460 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5461 MapReduceKeysToDoubleTask
5462 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5463 MapReduceKeysToDoubleTask<K,V> nextRight,
5464 ToDoubleFunction<? super K> transformer,
5465 double basis,
5466 DoubleBinaryOperator reducer) {
5467 super(p, b, i, f, t); this.nextRight = nextRight;
5468 this.transformer = transformer;
5469 this.basis = basis; this.reducer = reducer;
5470 }
5471 public final Double getRawResult() { return result; }
5472 public final void compute() {
5473 final ToDoubleFunction<? super K> transformer;
5474 final DoubleBinaryOperator reducer;
5475 if ((transformer = this.transformer) != null &&
5476 (reducer = this.reducer) != null) {
5477 double r = this.basis;
5478 for (int i = baseIndex, f, h; batch > 0 &&
5479 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5480 addToPendingCount(1);
5481 (rights = new MapReduceKeysToDoubleTask<K,V>
5482 (this, batch >>>= 1, baseLimit = h, f, tab,
5483 rights, transformer, r, reducer)).fork();
5484 }
5485 for (Node<K,V> p; (p = advance()) != null; )
5486 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5487 result = r;
5488 CountedCompleter<?> c;
5489 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5490 @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5491 t = (MapReduceKeysToDoubleTask<K,V>)c,
5492 s = t.rights;
5493 while (s != null) {
5494 t.result = reducer.applyAsDouble(t.result, s.result);
5495 s = t.rights = s.nextRight;
5496 }
5497 }
5498 }
5499 }
5500 }
5501
5502 @SuppressWarnings("serial")
5503 static final class MapReduceValuesToDoubleTask<K,V>
5504 extends BulkTask<K,V,Double> {
5505 final ToDoubleFunction<? super V> transformer;
5506 final DoubleBinaryOperator reducer;
5507 final double basis;
5508 double result;
5509 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5510 MapReduceValuesToDoubleTask
5511 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5512 MapReduceValuesToDoubleTask<K,V> nextRight,
5513 ToDoubleFunction<? super V> transformer,
5514 double basis,
5515 DoubleBinaryOperator reducer) {
5516 super(p, b, i, f, t); this.nextRight = nextRight;
5517 this.transformer = transformer;
5518 this.basis = basis; this.reducer = reducer;
5519 }
5520 public final Double getRawResult() { return result; }
5521 public final void compute() {
5522 final ToDoubleFunction<? super V> transformer;
5523 final DoubleBinaryOperator reducer;
5524 if ((transformer = this.transformer) != null &&
5525 (reducer = this.reducer) != null) {
5526 double r = this.basis;
5527 for (int i = baseIndex, f, h; batch > 0 &&
5528 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5529 addToPendingCount(1);
5530 (rights = new MapReduceValuesToDoubleTask<K,V>
5531 (this, batch >>>= 1, baseLimit = h, f, tab,
5532 rights, transformer, r, reducer)).fork();
5533 }
5534 for (Node<K,V> p; (p = advance()) != null; )
5535 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5536 result = r;
5537 CountedCompleter<?> c;
5538 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5539 @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5540 t = (MapReduceValuesToDoubleTask<K,V>)c,
5541 s = t.rights;
5542 while (s != null) {
5543 t.result = reducer.applyAsDouble(t.result, s.result);
5544 s = t.rights = s.nextRight;
5545 }
5546 }
5547 }
5548 }
5549 }
5550
5551 @SuppressWarnings("serial")
5552 static final class MapReduceEntriesToDoubleTask<K,V>
5553 extends BulkTask<K,V,Double> {
5554 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5555 final DoubleBinaryOperator reducer;
5556 final double basis;
5557 double result;
5558 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5559 MapReduceEntriesToDoubleTask
5560 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5561 MapReduceEntriesToDoubleTask<K,V> nextRight,
5562 ToDoubleFunction<Map.Entry<K,V>> transformer,
5563 double basis,
5564 DoubleBinaryOperator reducer) {
5565 super(p, b, i, f, t); this.nextRight = nextRight;
5566 this.transformer = transformer;
5567 this.basis = basis; this.reducer = reducer;
5568 }
5569 public final Double getRawResult() { return result; }
5570 public final void compute() {
5571 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5572 final DoubleBinaryOperator reducer;
5573 if ((transformer = this.transformer) != null &&
5574 (reducer = this.reducer) != null) {
5575 double r = this.basis;
5576 for (int i = baseIndex, f, h; batch > 0 &&
5577 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5578 addToPendingCount(1);
5579 (rights = new MapReduceEntriesToDoubleTask<K,V>
5580 (this, batch >>>= 1, baseLimit = h, f, tab,
5581 rights, transformer, r, reducer)).fork();
5582 }
5583 for (Node<K,V> p; (p = advance()) != null; )
5584 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5585 result = r;
5586 CountedCompleter<?> c;
5587 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5588 @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5589 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5590 s = t.rights;
5591 while (s != null) {
5592 t.result = reducer.applyAsDouble(t.result, s.result);
5593 s = t.rights = s.nextRight;
5594 }
5595 }
5596 }
5597 }
5598 }
5599
5600 @SuppressWarnings("serial")
5601 static final class MapReduceMappingsToDoubleTask<K,V>
5602 extends BulkTask<K,V,Double> {
5603 final ToDoubleBiFunction<? super K, ? super V> transformer;
5604 final DoubleBinaryOperator reducer;
5605 final double basis;
5606 double result;
5607 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5608 MapReduceMappingsToDoubleTask
5609 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5610 MapReduceMappingsToDoubleTask<K,V> nextRight,
5611 ToDoubleBiFunction<? super K, ? super V> transformer,
5612 double basis,
5613 DoubleBinaryOperator reducer) {
5614 super(p, b, i, f, t); this.nextRight = nextRight;
5615 this.transformer = transformer;
5616 this.basis = basis; this.reducer = reducer;
5617 }
5618 public final Double getRawResult() { return result; }
5619 public final void compute() {
5620 final ToDoubleBiFunction<? super K, ? super V> transformer;
5621 final DoubleBinaryOperator reducer;
5622 if ((transformer = this.transformer) != null &&
5623 (reducer = this.reducer) != null) {
5624 double r = this.basis;
5625 for (int i = baseIndex, f, h; batch > 0 &&
5626 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5627 addToPendingCount(1);
5628 (rights = new MapReduceMappingsToDoubleTask<K,V>
5629 (this, batch >>>= 1, baseLimit = h, f, tab,
5630 rights, transformer, r, reducer)).fork();
5631 }
5632 for (Node<K,V> p; (p = advance()) != null; )
5633 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5634 result = r;
5635 CountedCompleter<?> c;
5636 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5637 @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5638 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5639 s = t.rights;
5640 while (s != null) {
5641 t.result = reducer.applyAsDouble(t.result, s.result);
5642 s = t.rights = s.nextRight;
5643 }
5644 }
5645 }
5646 }
5647 }
5648
5649 @SuppressWarnings("serial")
5650 static final class MapReduceKeysToLongTask<K,V>
5651 extends BulkTask<K,V,Long> {
5652 final ToLongFunction<? super K> transformer;
5653 final LongBinaryOperator reducer;
5654 final long basis;
5655 long result;
5656 MapReduceKeysToLongTask<K,V> rights, nextRight;
5657 MapReduceKeysToLongTask
5658 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5659 MapReduceKeysToLongTask<K,V> nextRight,
5660 ToLongFunction<? super K> transformer,
5661 long basis,
5662 LongBinaryOperator reducer) {
5663 super(p, b, i, f, t); this.nextRight = nextRight;
5664 this.transformer = transformer;
5665 this.basis = basis; this.reducer = reducer;
5666 }
5667 public final Long getRawResult() { return result; }
5668 public final void compute() {
5669 final ToLongFunction<? super K> transformer;
5670 final LongBinaryOperator reducer;
5671 if ((transformer = this.transformer) != null &&
5672 (reducer = this.reducer) != null) {
5673 long r = this.basis;
5674 for (int i = baseIndex, f, h; batch > 0 &&
5675 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5676 addToPendingCount(1);
5677 (rights = new MapReduceKeysToLongTask<K,V>
5678 (this, batch >>>= 1, baseLimit = h, f, tab,
5679 rights, transformer, r, reducer)).fork();
5680 }
5681 for (Node<K,V> p; (p = advance()) != null; )
5682 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5683 result = r;
5684 CountedCompleter<?> c;
5685 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5686 @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5687 t = (MapReduceKeysToLongTask<K,V>)c,
5688 s = t.rights;
5689 while (s != null) {
5690 t.result = reducer.applyAsLong(t.result, s.result);
5691 s = t.rights = s.nextRight;
5692 }
5693 }
5694 }
5695 }
5696 }
5697
5698 @SuppressWarnings("serial")
5699 static final class MapReduceValuesToLongTask<K,V>
5700 extends BulkTask<K,V,Long> {
5701 final ToLongFunction<? super V> transformer;
5702 final LongBinaryOperator reducer;
5703 final long basis;
5704 long result;
5705 MapReduceValuesToLongTask<K,V> rights, nextRight;
5706 MapReduceValuesToLongTask
5707 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5708 MapReduceValuesToLongTask<K,V> nextRight,
5709 ToLongFunction<? super V> transformer,
5710 long basis,
5711 LongBinaryOperator reducer) {
5712 super(p, b, i, f, t); this.nextRight = nextRight;
5713 this.transformer = transformer;
5714 this.basis = basis; this.reducer = reducer;
5715 }
5716 public final Long getRawResult() { return result; }
5717 public final void compute() {
5718 final ToLongFunction<? super V> transformer;
5719 final LongBinaryOperator reducer;
5720 if ((transformer = this.transformer) != null &&
5721 (reducer = this.reducer) != null) {
5722 long r = this.basis;
5723 for (int i = baseIndex, f, h; batch > 0 &&
5724 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5725 addToPendingCount(1);
5726 (rights = new MapReduceValuesToLongTask<K,V>
5727 (this, batch >>>= 1, baseLimit = h, f, tab,
5728 rights, transformer, r, reducer)).fork();
5729 }
5730 for (Node<K,V> p; (p = advance()) != null; )
5731 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5732 result = r;
5733 CountedCompleter<?> c;
5734 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5735 @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5736 t = (MapReduceValuesToLongTask<K,V>)c,
5737 s = t.rights;
5738 while (s != null) {
5739 t.result = reducer.applyAsLong(t.result, s.result);
5740 s = t.rights = s.nextRight;
5741 }
5742 }
5743 }
5744 }
5745 }
5746
5747 @SuppressWarnings("serial")
5748 static final class MapReduceEntriesToLongTask<K,V>
5749 extends BulkTask<K,V,Long> {
5750 final ToLongFunction<Map.Entry<K,V>> transformer;
5751 final LongBinaryOperator reducer;
5752 final long basis;
5753 long result;
5754 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5755 MapReduceEntriesToLongTask
5756 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5757 MapReduceEntriesToLongTask<K,V> nextRight,
5758 ToLongFunction<Map.Entry<K,V>> transformer,
5759 long basis,
5760 LongBinaryOperator reducer) {
5761 super(p, b, i, f, t); this.nextRight = nextRight;
5762 this.transformer = transformer;
5763 this.basis = basis; this.reducer = reducer;
5764 }
5765 public final Long getRawResult() { return result; }
5766 public final void compute() {
5767 final ToLongFunction<Map.Entry<K,V>> transformer;
5768 final LongBinaryOperator reducer;
5769 if ((transformer = this.transformer) != null &&
5770 (reducer = this.reducer) != null) {
5771 long r = this.basis;
5772 for (int i = baseIndex, f, h; batch > 0 &&
5773 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5774 addToPendingCount(1);
5775 (rights = new MapReduceEntriesToLongTask<K,V>
5776 (this, batch >>>= 1, baseLimit = h, f, tab,
5777 rights, transformer, r, reducer)).fork();
5778 }
5779 for (Node<K,V> p; (p = advance()) != null; )
5780 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5781 result = r;
5782 CountedCompleter<?> c;
5783 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5784 @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5785 t = (MapReduceEntriesToLongTask<K,V>)c,
5786 s = t.rights;
5787 while (s != null) {
5788 t.result = reducer.applyAsLong(t.result, s.result);
5789 s = t.rights = s.nextRight;
5790 }
5791 }
5792 }
5793 }
5794 }
5795
5796 @SuppressWarnings("serial")
5797 static final class MapReduceMappingsToLongTask<K,V>
5798 extends BulkTask<K,V,Long> {
5799 final ToLongBiFunction<? super K, ? super V> transformer;
5800 final LongBinaryOperator reducer;
5801 final long basis;
5802 long result;
5803 MapReduceMappingsToLongTask<K,V> rights, nextRight;
5804 MapReduceMappingsToLongTask
5805 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5806 MapReduceMappingsToLongTask<K,V> nextRight,
5807 ToLongBiFunction<? super K, ? super V> transformer,
5808 long basis,
5809 LongBinaryOperator reducer) {
5810 super(p, b, i, f, t); this.nextRight = nextRight;
5811 this.transformer = transformer;
5812 this.basis = basis; this.reducer = reducer;
5813 }
5814 public final Long getRawResult() { return result; }
5815 public final void compute() {
5816 final ToLongBiFunction<? super K, ? super V> transformer;
5817 final LongBinaryOperator reducer;
5818 if ((transformer = this.transformer) != null &&
5819 (reducer = this.reducer) != null) {
5820 long r = this.basis;
5821 for (int i = baseIndex, f, h; batch > 0 &&
5822 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5823 addToPendingCount(1);
5824 (rights = new MapReduceMappingsToLongTask<K,V>
5825 (this, batch >>>= 1, baseLimit = h, f, tab,
5826 rights, transformer, r, reducer)).fork();
5827 }
5828 for (Node<K,V> p; (p = advance()) != null; )
5829 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
5830 result = r;
5831 CountedCompleter<?> c;
5832 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5833 @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5834 t = (MapReduceMappingsToLongTask<K,V>)c,
5835 s = t.rights;
5836 while (s != null) {
5837 t.result = reducer.applyAsLong(t.result, s.result);
5838 s = t.rights = s.nextRight;
5839 }
5840 }
5841 }
5842 }
5843 }
5844
5845 @SuppressWarnings("serial")
5846 static final class MapReduceKeysToIntTask<K,V>
5847 extends BulkTask<K,V,Integer> {
5848 final ToIntFunction<? super K> transformer;
5849 final IntBinaryOperator reducer;
5850 final int basis;
5851 int result;
5852 MapReduceKeysToIntTask<K,V> rights, nextRight;
5853 MapReduceKeysToIntTask
5854 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5855 MapReduceKeysToIntTask<K,V> nextRight,
5856 ToIntFunction<? super K> transformer,
5857 int basis,
5858 IntBinaryOperator reducer) {
5859 super(p, b, i, f, t); this.nextRight = nextRight;
5860 this.transformer = transformer;
5861 this.basis = basis; this.reducer = reducer;
5862 }
5863 public final Integer getRawResult() { return result; }
5864 public final void compute() {
5865 final ToIntFunction<? super K> transformer;
5866 final IntBinaryOperator reducer;
5867 if ((transformer = this.transformer) != null &&
5868 (reducer = this.reducer) != null) {
5869 int r = this.basis;
5870 for (int i = baseIndex, f, h; batch > 0 &&
5871 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5872 addToPendingCount(1);
5873 (rights = new MapReduceKeysToIntTask<K,V>
5874 (this, batch >>>= 1, baseLimit = h, f, tab,
5875 rights, transformer, r, reducer)).fork();
5876 }
5877 for (Node<K,V> p; (p = advance()) != null; )
5878 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
5879 result = r;
5880 CountedCompleter<?> c;
5881 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5882 @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5883 t = (MapReduceKeysToIntTask<K,V>)c,
5884 s = t.rights;
5885 while (s != null) {
5886 t.result = reducer.applyAsInt(t.result, s.result);
5887 s = t.rights = s.nextRight;
5888 }
5889 }
5890 }
5891 }
5892 }
5893
5894 @SuppressWarnings("serial")
5895 static final class MapReduceValuesToIntTask<K,V>
5896 extends BulkTask<K,V,Integer> {
5897 final ToIntFunction<? super V> transformer;
5898 final IntBinaryOperator reducer;
5899 final int basis;
5900 int result;
5901 MapReduceValuesToIntTask<K,V> rights, nextRight;
5902 MapReduceValuesToIntTask
5903 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5904 MapReduceValuesToIntTask<K,V> nextRight,
5905 ToIntFunction<? super V> transformer,
5906 int basis,
5907 IntBinaryOperator reducer) {
5908 super(p, b, i, f, t); this.nextRight = nextRight;
5909 this.transformer = transformer;
5910 this.basis = basis; this.reducer = reducer;
5911 }
5912 public final Integer getRawResult() { return result; }
5913 public final void compute() {
5914 final ToIntFunction<? super V> transformer;
5915 final IntBinaryOperator reducer;
5916 if ((transformer = this.transformer) != null &&
5917 (reducer = this.reducer) != null) {
5918 int r = this.basis;
5919 for (int i = baseIndex, f, h; batch > 0 &&
5920 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5921 addToPendingCount(1);
5922 (rights = new MapReduceValuesToIntTask<K,V>
5923 (this, batch >>>= 1, baseLimit = h, f, tab,
5924 rights, transformer, r, reducer)).fork();
5925 }
5926 for (Node<K,V> p; (p = advance()) != null; )
5927 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
5928 result = r;
5929 CountedCompleter<?> c;
5930 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5931 @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5932 t = (MapReduceValuesToIntTask<K,V>)c,
5933 s = t.rights;
5934 while (s != null) {
5935 t.result = reducer.applyAsInt(t.result, s.result);
5936 s = t.rights = s.nextRight;
5937 }
5938 }
5939 }
5940 }
5941 }
5942
5943 @SuppressWarnings("serial")
5944 static final class MapReduceEntriesToIntTask<K,V>
5945 extends BulkTask<K,V,Integer> {
5946 final ToIntFunction<Map.Entry<K,V>> transformer;
5947 final IntBinaryOperator reducer;
5948 final int basis;
5949 int result;
5950 MapReduceEntriesToIntTask<K,V> rights, nextRight;
5951 MapReduceEntriesToIntTask
5952 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5953 MapReduceEntriesToIntTask<K,V> nextRight,
5954 ToIntFunction<Map.Entry<K,V>> transformer,
5955 int basis,
5956 IntBinaryOperator reducer) {
5957 super(p, b, i, f, t); this.nextRight = nextRight;
5958 this.transformer = transformer;
5959 this.basis = basis; this.reducer = reducer;
5960 }
5961 public final Integer getRawResult() { return result; }
5962 public final void compute() {
5963 final ToIntFunction<Map.Entry<K,V>> transformer;
5964 final IntBinaryOperator reducer;
5965 if ((transformer = this.transformer) != null &&
5966 (reducer = this.reducer) != null) {
5967 int r = this.basis;
5968 for (int i = baseIndex, f, h; batch > 0 &&
5969 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5970 addToPendingCount(1);
5971 (rights = new MapReduceEntriesToIntTask<K,V>
5972 (this, batch >>>= 1, baseLimit = h, f, tab,
5973 rights, transformer, r, reducer)).fork();
5974 }
5975 for (Node<K,V> p; (p = advance()) != null; )
5976 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
5977 result = r;
5978 CountedCompleter<?> c;
5979 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5980 @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
5981 t = (MapReduceEntriesToIntTask<K,V>)c,
5982 s = t.rights;
5983 while (s != null) {
5984 t.result = reducer.applyAsInt(t.result, s.result);
5985 s = t.rights = s.nextRight;
5986 }
5987 }
5988 }
5989 }
5990 }
5991
5992 @SuppressWarnings("serial")
5993 static final class MapReduceMappingsToIntTask<K,V>
5994 extends BulkTask<K,V,Integer> {
5995 final ToIntBiFunction<? super K, ? super V> transformer;
5996 final IntBinaryOperator reducer;
5997 final int basis;
5998 int result;
5999 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6000 MapReduceMappingsToIntTask
6001 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6002 MapReduceMappingsToIntTask<K,V> nextRight,
6003 ToIntBiFunction<? super K, ? super V> transformer,
6004 int basis,
6005 IntBinaryOperator reducer) {
6006 super(p, b, i, f, t); this.nextRight = nextRight;
6007 this.transformer = transformer;
6008 this.basis = basis; this.reducer = reducer;
6009 }
6010 public final Integer getRawResult() { return result; }
6011 public final void compute() {
6012 final ToIntBiFunction<? super K, ? super V> transformer;
6013 final IntBinaryOperator reducer;
6014 if ((transformer = this.transformer) != null &&
6015 (reducer = this.reducer) != null) {
6016 int r = this.basis;
6017 for (int i = baseIndex, f, h; batch > 0 &&
6018 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6019 addToPendingCount(1);
6020 (rights = new MapReduceMappingsToIntTask<K,V>
6021 (this, batch >>>= 1, baseLimit = h, f, tab,
6022 rights, transformer, r, reducer)).fork();
6023 }
6024 for (Node<K,V> p; (p = advance()) != null; )
6025 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6026 result = r;
6027 CountedCompleter<?> c;
6028 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6029 @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6030 t = (MapReduceMappingsToIntTask<K,V>)c,
6031 s = t.rights;
6032 while (s != null) {
6033 t.result = reducer.applyAsInt(t.result, s.result);
6034 s = t.rights = s.nextRight;
6035 }
6036 }
6037 }
6038 }
6039 }
6040
6041 // Unsafe mechanics
6042 private static final sun.misc.Unsafe U;
6043 private static final long SIZECTL;
6044 private static final long TRANSFERINDEX;
6045 private static final long TRANSFERORIGIN;
6046 private static final long BASECOUNT;
6047 private static final long CELLSBUSY;
6048 private static final long CELLVALUE;
6049 private static final long ABASE;
6050 private static final int ASHIFT;
6051
6052 static {
6053 try {
6054 U = sun.misc.Unsafe.getUnsafe();
6055 Class<?> k = ConcurrentHashMap.class;
6056 SIZECTL = U.objectFieldOffset
6057 (k.getDeclaredField("sizeCtl"));
6058 TRANSFERINDEX = U.objectFieldOffset
6059 (k.getDeclaredField("transferIndex"));
6060 TRANSFERORIGIN = U.objectFieldOffset
6061 (k.getDeclaredField("transferOrigin"));
6062 BASECOUNT = U.objectFieldOffset
6063 (k.getDeclaredField("baseCount"));
6064 CELLSBUSY = U.objectFieldOffset
6065 (k.getDeclaredField("cellsBusy"));
6066 Class<?> ck = CounterCell.class;
6067 CELLVALUE = U.objectFieldOffset
6068 (ck.getDeclaredField("value"));
6069 Class<?> ak = Node[].class;
6070 ABASE = U.arrayBaseOffset(ak);
6071 int scale = U.arrayIndexScale(ak);
6072 if ((scale & (scale - 1)) != 0)
6073 throw new Error("data type scale not a power of two");
6074 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6075 } catch (Exception e) {
6076 throw new Error(e);
6077 }
6078 }
6079 }