ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.233
Committed: Wed Jul 3 18:16:08 2013 UTC (10 years, 11 months ago) by dl
Branch: MAIN
Changes since 1.232: +17 -14 lines
Log Message:
More conservative use of volatiles

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.io.Serializable;
11 import java.lang.reflect.ParameterizedType;
12 import java.lang.reflect.Type;
13 import java.util.Arrays;
14 import java.util.Collection;
15 import java.util.Comparator;
16 import java.util.ConcurrentModificationException;
17 import java.util.Enumeration;
18 import java.util.HashMap;
19 import java.util.Hashtable;
20 import java.util.Iterator;
21 import java.util.Map;
22 import java.util.NoSuchElementException;
23 import java.util.Set;
24 import java.util.Spliterator;
25 import java.util.concurrent.ConcurrentMap;
26 import java.util.concurrent.ForkJoinPool;
27 import java.util.concurrent.atomic.AtomicReference;
28 import java.util.concurrent.locks.LockSupport;
29 import java.util.concurrent.locks.ReentrantLock;
30 import java.util.function.BiConsumer;
31 import java.util.function.BiFunction;
32 import java.util.function.BinaryOperator;
33 import java.util.function.Consumer;
34 import java.util.function.DoubleBinaryOperator;
35 import java.util.function.Function;
36 import java.util.function.IntBinaryOperator;
37 import java.util.function.LongBinaryOperator;
38 import java.util.function.ToDoubleBiFunction;
39 import java.util.function.ToDoubleFunction;
40 import java.util.function.ToIntBiFunction;
41 import java.util.function.ToIntFunction;
42 import java.util.function.ToLongBiFunction;
43 import java.util.function.ToLongFunction;
44 import java.util.stream.Stream;
45
46 /**
47 * A hash table supporting full concurrency of retrievals and
48 * high expected concurrency for updates. This class obeys the
49 * same functional specification as {@link java.util.Hashtable}, and
50 * includes versions of methods corresponding to each method of
51 * {@code Hashtable}. However, even though all operations are
52 * thread-safe, retrieval operations do <em>not</em> entail locking,
53 * and there is <em>not</em> any support for locking the entire table
54 * in a way that prevents all access. This class is fully
55 * interoperable with {@code Hashtable} in programs that rely on its
56 * thread safety but not on its synchronization details.
57 *
58 * <p>Retrieval operations (including {@code get}) generally do not
59 * block, so may overlap with update operations (including {@code put}
60 * and {@code remove}). Retrievals reflect the results of the most
61 * recently <em>completed</em> update operations holding upon their
62 * onset. (More formally, an update operation for a given key bears a
63 * <em>happens-before</em> relation with any (non-null) retrieval for
64 * that key reporting the updated value.) For aggregate operations
65 * such as {@code putAll} and {@code clear}, concurrent retrievals may
66 * reflect insertion or removal of only some entries. Similarly,
67 * Iterators and Enumerations return elements reflecting the state of
68 * the hash table at some point at or since the creation of the
69 * iterator/enumeration. They do <em>not</em> throw {@link
70 * ConcurrentModificationException}. However, iterators are designed
71 * to be used by only one thread at a time. Bear in mind that the
72 * results of aggregate status methods including {@code size}, {@code
73 * isEmpty}, and {@code containsValue} are typically useful only when
74 * a map is not undergoing concurrent updates in other threads.
75 * Otherwise the results of these methods reflect transient states
76 * that may be adequate for monitoring or estimation purposes, but not
77 * for program control.
78 *
79 * <p>The table is dynamically expanded when there are too many
80 * collisions (i.e., keys that have distinct hash codes but fall into
81 * the same slot modulo the table size), with the expected average
82 * effect of maintaining roughly two bins per mapping (corresponding
83 * to a 0.75 load factor threshold for resizing). There may be much
84 * variance around this average as mappings are added and removed, but
85 * overall, this maintains a commonly accepted time/space tradeoff for
86 * hash tables. However, resizing this or any other kind of hash
87 * table may be a relatively slow operation. When possible, it is a
88 * good idea to provide a size estimate as an optional {@code
89 * initialCapacity} constructor argument. An additional optional
90 * {@code loadFactor} constructor argument provides a further means of
91 * customizing initial table capacity by specifying the table density
92 * to be used in calculating the amount of space to allocate for the
93 * given number of elements. Also, for compatibility with previous
94 * versions of this class, constructors may optionally specify an
95 * expected {@code concurrencyLevel} as an additional hint for
96 * internal sizing. Note that using many keys with exactly the same
97 * {@code hashCode()} is a sure way to slow down performance of any
98 * hash table. To ameliorate impact, when keys are {@link Comparable},
99 * this class may use comparison order among keys to help break ties.
100 *
101 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
102 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
103 * (using {@link #keySet(Object)} when only keys are of interest, and the
104 * mapped values are (perhaps transiently) not used or all take the
105 * same mapping value.
106 *
107 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
108 * form of histogram or multiset) by using {@link
109 * java.util.concurrent.atomic.LongAdder} values and initializing via
110 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
111 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
112 * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
113 *
114 * <p>This class and its views and iterators implement all of the
115 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
116 * interfaces.
117 *
118 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
119 * does <em>not</em> allow {@code null} to be used as a key or value.
120 *
121 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
122 * operations that, unlike most {@link Stream} methods, are designed
123 * to be safely, and often sensibly, applied even with maps that are
124 * being concurrently updated by other threads; for example, when
125 * computing a snapshot summary of the values in a shared registry.
126 * There are three kinds of operation, each with four forms, accepting
127 * functions with Keys, Values, Entries, and (Key, Value) arguments
128 * and/or return values. Because the elements of a ConcurrentHashMap
129 * are not ordered in any particular way, and may be processed in
130 * different orders in different parallel executions, the correctness
131 * of supplied functions should not depend on any ordering, or on any
132 * other objects or values that may transiently change while
133 * computation is in progress; and except for forEach actions, should
134 * ideally be side-effect-free. Bulk operations on {@link Map.Entry}
135 * objects do not support method {@code setValue}.
136 *
137 * <ul>
138 * <li> forEach: Perform a given action on each element.
139 * A variant form applies a given transformation on each element
140 * before performing the action.</li>
141 *
142 * <li> search: Return the first available non-null result of
143 * applying a given function on each element; skipping further
144 * search when a result is found.</li>
145 *
146 * <li> reduce: Accumulate each element. The supplied reduction
147 * function cannot rely on ordering (more formally, it should be
148 * both associative and commutative). There are five variants:
149 *
150 * <ul>
151 *
152 * <li> Plain reductions. (There is not a form of this method for
153 * (key, value) function arguments since there is no corresponding
154 * return type.)</li>
155 *
156 * <li> Mapped reductions that accumulate the results of a given
157 * function applied to each element.</li>
158 *
159 * <li> Reductions to scalar doubles, longs, and ints, using a
160 * given basis value.</li>
161 *
162 * </ul>
163 * </li>
164 * </ul>
165 *
166 * <p>These bulk operations accept a {@code parallelismThreshold}
167 * argument. Methods proceed sequentially if the current map size is
168 * estimated to be less than the given threshold. Using a value of
169 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
170 * of {@code 1} results in maximal parallelism by partitioning into
171 * enough subtasks to fully utilize the {@link
172 * ForkJoinPool#commonPool()} that is used for all parallel
173 * computations. Normally, you would initially choose one of these
174 * extreme values, and then measure performance of using in-between
175 * values that trade off overhead versus throughput.
176 *
177 * <p>The concurrency properties of bulk operations follow
178 * from those of ConcurrentHashMap: Any non-null result returned
179 * from {@code get(key)} and related access methods bears a
180 * happens-before relation with the associated insertion or
181 * update. The result of any bulk operation reflects the
182 * composition of these per-element relations (but is not
183 * necessarily atomic with respect to the map as a whole unless it
184 * is somehow known to be quiescent). Conversely, because keys
185 * and values in the map are never null, null serves as a reliable
186 * atomic indicator of the current lack of any result. To
187 * maintain this property, null serves as an implicit basis for
188 * all non-scalar reduction operations. For the double, long, and
189 * int versions, the basis should be one that, when combined with
190 * any other value, returns that other value (more formally, it
191 * should be the identity element for the reduction). Most common
192 * reductions have these properties; for example, computing a sum
193 * with basis 0 or a minimum with basis MAX_VALUE.
194 *
195 * <p>Search and transformation functions provided as arguments
196 * should similarly return null to indicate the lack of any result
197 * (in which case it is not used). In the case of mapped
198 * reductions, this also enables transformations to serve as
199 * filters, returning null (or, in the case of primitive
200 * specializations, the identity basis) if the element should not
201 * be combined. You can create compound transformations and
202 * filterings by composing them yourself under this "null means
203 * there is nothing there now" rule before using them in search or
204 * reduce operations.
205 *
206 * <p>Methods accepting and/or returning Entry arguments maintain
207 * key-value associations. They may be useful for example when
208 * finding the key for the greatest value. Note that "plain" Entry
209 * arguments can be supplied using {@code new
210 * AbstractMap.SimpleEntry(k,v)}.
211 *
212 * <p>Bulk operations may complete abruptly, throwing an
213 * exception encountered in the application of a supplied
214 * function. Bear in mind when handling such exceptions that other
215 * concurrently executing functions could also have thrown
216 * exceptions, or would have done so if the first exception had
217 * not occurred.
218 *
219 * <p>Speedups for parallel compared to sequential forms are common
220 * but not guaranteed. Parallel operations involving brief functions
221 * on small maps may execute more slowly than sequential forms if the
222 * underlying work to parallelize the computation is more expensive
223 * than the computation itself. Similarly, parallelization may not
224 * lead to much actual parallelism if all processors are busy
225 * performing unrelated tasks.
226 *
227 * <p>All arguments to all task methods must be non-null.
228 *
229 * <p>This class is a member of the
230 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
231 * Java Collections Framework</a>.
232 *
233 * @since 1.5
234 * @author Doug Lea
235 * @param <K> the type of keys maintained by this map
236 * @param <V> the type of mapped values
237 */
238 public class ConcurrentHashMap<K,V> implements ConcurrentMap<K,V>, Serializable {
239 private static final long serialVersionUID = 7249069246763182397L;
240
241 /*
242 * Overview:
243 *
244 * The primary design goal of this hash table is to maintain
245 * concurrent readability (typically method get(), but also
246 * iterators and related methods) while minimizing update
247 * contention. Secondary goals are to keep space consumption about
248 * the same or better than java.util.HashMap, and to support high
249 * initial insertion rates on an empty table by many threads.
250 *
251 * This map usually acts as a binned (bucketed) hash table. Each
252 * key-value mapping is held in a Node. Most nodes are instances
253 * of the basic Node class with hash, key, value, and next
254 * fields. However, various subclasses exist: TreeNodes are
255 * arranged in balanced trees, not lists. TreeBins hold the roots
256 * of sets of TreeNodes. ForwardingNodes are placed at the heads
257 * of bins during resizing. ReservationNodes are used as
258 * placeholders while establishing values in computeIfAbsent and
259 * related methods. The types TreeBin, ForwardingNode, and
260 * ReservationNode do not hold normal user keys, values, or
261 * hashes, and are readily distinguishable during search etc
262 * because they have negative hash fields and null key and value
263 * fields. (These special nodes are either uncommon or transient,
264 * so the impact of carrying around some unused fields is
265 * insignificant.)
266 *
267 * The table is lazily initialized to a power-of-two size upon the
268 * first insertion. Each bin in the table normally contains a
269 * list of Nodes (most often, the list has only zero or one Node).
270 * Table accesses require volatile/atomic reads, writes, and
271 * CASes. Because there is no other way to arrange this without
272 * adding further indirections, we use intrinsics
273 * (sun.misc.Unsafe) operations.
274 *
275 * We use the top (sign) bit of Node hash fields for control
276 * purposes -- it is available anyway because of addressing
277 * constraints. Nodes with negative hash fields are specially
278 * handled or ignored in map methods.
279 *
280 * Insertion (via put or its variants) of the first node in an
281 * empty bin is performed by just CASing it to the bin. This is
282 * by far the most common case for put operations under most
283 * key/hash distributions. Other update operations (insert,
284 * delete, and replace) require locks. We do not want to waste
285 * the space required to associate a distinct lock object with
286 * each bin, so instead use the first node of a bin list itself as
287 * a lock. Locking support for these locks relies on builtin
288 * "synchronized" monitors.
289 *
290 * Using the first node of a list as a lock does not by itself
291 * suffice though: When a node is locked, any update must first
292 * validate that it is still the first node after locking it, and
293 * retry if not. Because new nodes are always appended to lists,
294 * once a node is first in a bin, it remains first until deleted
295 * or the bin becomes invalidated (upon resizing).
296 *
297 * The main disadvantage of per-bin locks is that other update
298 * operations on other nodes in a bin list protected by the same
299 * lock can stall, for example when user equals() or mapping
300 * functions take a long time. However, statistically, under
301 * random hash codes, this is not a common problem. Ideally, the
302 * frequency of nodes in bins follows a Poisson distribution
303 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
304 * parameter of about 0.5 on average, given the resizing threshold
305 * of 0.75, although with a large variance because of resizing
306 * granularity. Ignoring variance, the expected occurrences of
307 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
308 * first values are:
309 *
310 * 0: 0.60653066
311 * 1: 0.30326533
312 * 2: 0.07581633
313 * 3: 0.01263606
314 * 4: 0.00157952
315 * 5: 0.00015795
316 * 6: 0.00001316
317 * 7: 0.00000094
318 * 8: 0.00000006
319 * more: less than 1 in ten million
320 *
321 * Lock contention probability for two threads accessing distinct
322 * elements is roughly 1 / (8 * #elements) under random hashes.
323 *
324 * Actual hash code distributions encountered in practice
325 * sometimes deviate significantly from uniform randomness. This
326 * includes the case when N > (1<<30), so some keys MUST collide.
327 * Similarly for dumb or hostile usages in which multiple keys are
328 * designed to have identical hash codes or ones that differs only
329 * in masked-out high bits. So we use a secondary strategy that
330 * applies when the number of nodes in a bin exceeds a
331 * threshold. These TreeBins use a balanced tree to hold nodes (a
332 * specialized form of red-black trees), bounding search time to
333 * O(log N). Each search step in a TreeBin is at least twice as
334 * slow as in a regular list, but given that N cannot exceed
335 * (1<<64) (before running out of addresses) this bounds search
336 * steps, lock hold times, etc, to reasonable constants (roughly
337 * 100 nodes inspected per operation worst case) so long as keys
338 * are Comparable (which is very common -- String, Long, etc).
339 * TreeBin nodes (TreeNodes) also maintain the same "next"
340 * traversal pointers as regular nodes, so can be traversed in
341 * iterators in the same way.
342 *
343 * The table is resized when occupancy exceeds a percentage
344 * threshold (nominally, 0.75, but see below). Any thread
345 * noticing an overfull bin may assist in resizing after the
346 * initiating thread allocates and sets up the replacement
347 * array. However, rather than stalling, these other threads may
348 * proceed with insertions etc. The use of TreeBins shields us
349 * from the worst case effects of overfilling while resizes are in
350 * progress. Resizing proceeds by transferring bins, one by one,
351 * from the table to the next table. To enable concurrency, the
352 * next table must be (incrementally) prefilled with place-holders
353 * serving as reverse forwarders to the old table. Because we are
354 * using power-of-two expansion, the elements from each bin must
355 * either stay at same index, or move with a power of two
356 * offset. We eliminate unnecessary node creation by catching
357 * cases where old nodes can be reused because their next fields
358 * won't change. On average, only about one-sixth of them need
359 * cloning when a table doubles. The nodes they replace will be
360 * garbage collectable as soon as they are no longer referenced by
361 * any reader thread that may be in the midst of concurrently
362 * traversing table. Upon transfer, the old table bin contains
363 * only a special forwarding node (with hash field "MOVED") that
364 * contains the next table as its key. On encountering a
365 * forwarding node, access and update operations restart, using
366 * the new table.
367 *
368 * Each bin transfer requires its bin lock, which can stall
369 * waiting for locks while resizing. However, because other
370 * threads can join in and help resize rather than contend for
371 * locks, average aggregate waits become shorter as resizing
372 * progresses. The transfer operation must also ensure that all
373 * accessible bins in both the old and new table are usable by any
374 * traversal. This is arranged by proceeding from the last bin
375 * (table.length - 1) up towards the first. Upon seeing a
376 * forwarding node, traversals (see class Traverser) arrange to
377 * move to the new table without revisiting nodes. However, to
378 * ensure that no intervening nodes are skipped, bin splitting can
379 * only begin after the associated reverse-forwarders are in
380 * place.
381 *
382 * The traversal scheme also applies to partial traversals of
383 * ranges of bins (via an alternate Traverser constructor)
384 * to support partitioned aggregate operations. Also, read-only
385 * operations give up if ever forwarded to a null table, which
386 * provides support for shutdown-style clearing, which is also not
387 * currently implemented.
388 *
389 * Lazy table initialization minimizes footprint until first use,
390 * and also avoids resizings when the first operation is from a
391 * putAll, constructor with map argument, or deserialization.
392 * These cases attempt to override the initial capacity settings,
393 * but harmlessly fail to take effect in cases of races.
394 *
395 * The element count is maintained using a specialization of
396 * LongAdder. We need to incorporate a specialization rather than
397 * just use a LongAdder in order to access implicit
398 * contention-sensing that leads to creation of multiple
399 * CounterCells. The counter mechanics avoid contention on
400 * updates but can encounter cache thrashing if read too
401 * frequently during concurrent access. To avoid reading so often,
402 * resizing under contention is attempted only upon adding to a
403 * bin already holding two or more nodes. Under uniform hash
404 * distributions, the probability of this occurring at threshold
405 * is around 13%, meaning that only about 1 in 8 puts check
406 * threshold (and after resizing, many fewer do so).
407 *
408 * TreeBins use a special form of comparison for search and
409 * related operations (which is the main reason we cannot use
410 * existing collections such as TreeMaps). TreeBins contain
411 * Comparable elements, but may contain others, as well as
412 * elements that are Comparable but not necessarily Comparable
413 * for the same T, so we cannot invoke compareTo among them. To
414 * handle this, the tree is ordered primarily by hash value, then
415 * by Comparable.compareTo order if applicable. On lookup at a
416 * node, if elements are not comparable or compare as 0 then both
417 * left and right children may need to be searched in the case of
418 * tied hash values. (This corresponds to the full list search
419 * that would be necessary if all elements were non-Comparable and
420 * had tied hashes.) The red-black balancing code is updated from
421 * pre-jdk-collections
422 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
423 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
424 * Algorithms" (CLR).
425 *
426 * TreeBins also require an additional locking mechanism. While
427 * list traversal is always possible by readers even during
428 * updates, tree traversal is not, mainly because of tree-rotations
429 * that may change the root node and/or its linkages. TreeBins
430 * include a simple read-write lock mechanism parasitic on the
431 * main bin-synchronization strategy: Structural adjustments
432 * associated with an insertion or removal are already bin-locked
433 * (and so cannot conflict with other writers) but must wait for
434 * ongoing readers to finish. Since there can be only one such
435 * waiter, we use a simple scheme using a single "waiter" field to
436 * block writers. However, readers need never block. If the root
437 * lock is held, they proceed along the slow traversal path (via
438 * next-pointers) until the lock becomes available or the list is
439 * exhausted, whichever comes first. These cases are not fast, but
440 * maximize aggregate expected throughput.
441 *
442 * Maintaining API and serialization compatibility with previous
443 * versions of this class introduces several oddities. Mainly: We
444 * leave untouched but unused constructor arguments refering to
445 * concurrencyLevel. We accept a loadFactor constructor argument,
446 * but apply it only to initial table capacity (which is the only
447 * time that we can guarantee to honor it.) We also declare an
448 * unused "Segment" class that is instantiated in minimal form
449 * only when serializing.
450 *
451 * This file is organized to make things a little easier to follow
452 * while reading than they might otherwise: First the main static
453 * declarations and utilities, then fields, then main public
454 * methods (with a few factorings of multiple public methods into
455 * internal ones), then sizing methods, trees, traversers, and
456 * bulk operations.
457 */
458
459 /* ---------------- Constants -------------- */
460
461 /**
462 * The largest possible table capacity. This value must be
463 * exactly 1<<30 to stay within Java array allocation and indexing
464 * bounds for power of two table sizes, and is further required
465 * because the top two bits of 32bit hash fields are used for
466 * control purposes.
467 */
468 private static final int MAXIMUM_CAPACITY = 1 << 30;
469
470 /**
471 * The default initial table capacity. Must be a power of 2
472 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
473 */
474 private static final int DEFAULT_CAPACITY = 16;
475
476 /**
477 * The largest possible (non-power of two) array size.
478 * Needed by toArray and related methods.
479 */
480 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
481
482 /**
483 * The default concurrency level for this table. Unused but
484 * defined for compatibility with previous versions of this class.
485 */
486 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
487
488 /**
489 * The load factor for this table. Overrides of this value in
490 * constructors affect only the initial table capacity. The
491 * actual floating point value isn't normally used -- it is
492 * simpler to use expressions such as {@code n - (n >>> 2)} for
493 * the associated resizing threshold.
494 */
495 private static final float LOAD_FACTOR = 0.75f;
496
497 /**
498 * The bin count threshold for using a tree rather than list for a
499 * bin. Bins are converted to trees when adding an element to a
500 * bin with at least this many nodes. The value must be greater
501 * than 2, and should be at least 8 to mesh with assumptions in
502 * tree removal about conversion back to plain bins upon
503 * shrinkage.
504 */
505 static final int TREEIFY_THRESHOLD = 8;
506
507 /**
508 * The bin count threshold for untreeifying a (split) bin during a
509 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
510 * most 6 to mesh with shrinkage detection under removal.
511 */
512 static final int UNTREEIFY_THRESHOLD = 6;
513
514 /**
515 * The smallest table capacity for which bins may be treeified.
516 * (Otherwise the table is resized if too many nodes in a bin.)
517 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
518 * conflicts between resizing and treeification thresholds.
519 */
520 static final int MIN_TREEIFY_CAPACITY = 64;
521
522 /**
523 * Minimum number of rebinnings per transfer step. Ranges are
524 * subdivided to allow multiple resizer threads. This value
525 * serves as a lower bound to avoid resizers encountering
526 * excessive memory contention. The value should be at least
527 * DEFAULT_CAPACITY.
528 */
529 private static final int MIN_TRANSFER_STRIDE = 16;
530
531 /*
532 * Encodings for Node hash fields. See above for explanation.
533 */
534 static final int MOVED = -1; // hash for forwarding nodes
535 static final int TREEBIN = -2; // hash for roots of trees
536 static final int RESERVED = -3; // hash for transient reservations
537 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
538
539 /** Number of CPUS, to place bounds on some sizings */
540 static final int NCPU = Runtime.getRuntime().availableProcessors();
541
542 /** For serialization compatibility. */
543 private static final ObjectStreamField[] serialPersistentFields = {
544 new ObjectStreamField("segments", Segment[].class),
545 new ObjectStreamField("segmentMask", Integer.TYPE),
546 new ObjectStreamField("segmentShift", Integer.TYPE)
547 };
548
549 /* ---------------- Nodes -------------- */
550
551 /**
552 * Key-value entry. This class is never exported out as a
553 * user-mutable Map.Entry (i.e., one supporting setValue; see
554 * MapEntry below), but can be used for read-only traversals used
555 * in bulk tasks. Subclasses of Node with a negative hash field
556 * are special, and contain null keys and values (but are never
557 * exported). Otherwise, keys and vals are never null.
558 */
559 static class Node<K,V> implements Map.Entry<K,V> {
560 final int hash;
561 final K key;
562 volatile V val;
563 volatile Node<K,V> next;
564
565 Node(int hash, K key, V val, Node<K,V> next) {
566 this.hash = hash;
567 this.key = key;
568 this.val = val;
569 this.next = next;
570 }
571
572 public final K getKey() { return key; }
573 public final V getValue() { return val; }
574 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
575 public final String toString(){ return key + "=" + val; }
576 public final V setValue(V value) {
577 throw new UnsupportedOperationException();
578 }
579
580 public final boolean equals(Object o) {
581 Object k, v, u; Map.Entry<?,?> e;
582 return ((o instanceof Map.Entry) &&
583 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
584 (v = e.getValue()) != null &&
585 (k == key || k.equals(key)) &&
586 (v == (u = val) || v.equals(u)));
587 }
588
589 /**
590 * Virtualized support for map.get(); overridden in subclasses.
591 */
592 Node<K,V> find(int h, Object k) {
593 Node<K,V> e = this;
594 if (k != null) {
595 do {
596 K ek;
597 if (e.hash == h &&
598 ((ek = e.key) == k || (ek != null && k.equals(ek))))
599 return e;
600 } while ((e = e.next) != null);
601 }
602 return null;
603 }
604 }
605
606 /* ---------------- Static utilities -------------- */
607
608 /**
609 * Spreads (XORs) higher bits of hash to lower and also forces top
610 * bit to 0. Because the table uses power-of-two masking, sets of
611 * hashes that vary only in bits above the current mask will
612 * always collide. (Among known examples are sets of Float keys
613 * holding consecutive whole numbers in small tables.) So we
614 * apply a transform that spreads the impact of higher bits
615 * downward. There is a tradeoff between speed, utility, and
616 * quality of bit-spreading. Because many common sets of hashes
617 * are already reasonably distributed (so don't benefit from
618 * spreading), and because we use trees to handle large sets of
619 * collisions in bins, we just XOR some shifted bits in the
620 * cheapest possible way to reduce systematic lossage, as well as
621 * to incorporate impact of the highest bits that would otherwise
622 * never be used in index calculations because of table bounds.
623 */
624 static final int spread(int h) {
625 return (h ^ (h >>> 16)) & HASH_BITS;
626 }
627
628 /**
629 * Returns a power of two table size for the given desired capacity.
630 * See Hackers Delight, sec 3.2
631 */
632 private static final int tableSizeFor(int c) {
633 int n = c - 1;
634 n |= n >>> 1;
635 n |= n >>> 2;
636 n |= n >>> 4;
637 n |= n >>> 8;
638 n |= n >>> 16;
639 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
640 }
641
642 /**
643 * Returns x's Class if it is of the form "class C implements
644 * Comparable<C>", else null.
645 */
646 static Class<?> comparableClassFor(Object x) {
647 if (x instanceof Comparable) {
648 Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
649 if ((c = x.getClass()) == String.class) // bypass checks
650 return c;
651 if ((ts = c.getGenericInterfaces()) != null) {
652 for (int i = 0; i < ts.length; ++i) {
653 if (((t = ts[i]) instanceof ParameterizedType) &&
654 ((p = (ParameterizedType)t).getRawType() ==
655 Comparable.class) &&
656 (as = p.getActualTypeArguments()) != null &&
657 as.length == 1 && as[0] == c) // type arg is c
658 return c;
659 }
660 }
661 }
662 return null;
663 }
664
665 /**
666 * Returns k.compareTo(x) if x matches kc (k's screened comparable
667 * class), else 0.
668 */
669 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
670 static int compareComparables(Class<?> kc, Object k, Object x) {
671 return (x == null || x.getClass() != kc ? 0 :
672 ((Comparable)k).compareTo(x));
673 }
674
675 /* ---------------- Table element access -------------- */
676
677 /*
678 * Volatile access methods are used for table elements as well as
679 * elements of in-progress next table while resizing. All uses of
680 * the tab arguments must be null checked by callers. All callers
681 * also paranoically precheck that tab's length is not zero (or an
682 * equivalent check), thus ensuring that any index argument taking
683 * the form of a hash value anded with (length - 1) is a valid
684 * index. Note that, to be correct wrt arbitrary concurrency
685 * errors by users, these checks must operate on local variables,
686 * which accounts for some odd-looking inline assignments below.
687 * Note that calls to setTabAt always occur within locked regions,
688 * and so in principle require only release ordering, not need
689 * full volatile semantics, but are currently coded as volatile
690 * writes to be conservative.
691 */
692
693 @SuppressWarnings("unchecked")
694 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
695 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
696 }
697
698 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
699 Node<K,V> c, Node<K,V> v) {
700 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
701 }
702
703 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
704 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
705 }
706
707 /* ---------------- Fields -------------- */
708
709 /**
710 * The array of bins. Lazily initialized upon first insertion.
711 * Size is always a power of two. Accessed directly by iterators.
712 */
713 transient volatile Node<K,V>[] table;
714
715 /**
716 * The next table to use; non-null only while resizing.
717 */
718 private transient volatile Node<K,V>[] nextTable;
719
720 /**
721 * Base counter value, used mainly when there is no contention,
722 * but also as a fallback during table initialization
723 * races. Updated via CAS.
724 */
725 private transient volatile long baseCount;
726
727 /**
728 * Table initialization and resizing control. When negative, the
729 * table is being initialized or resized: -1 for initialization,
730 * else -(1 + the number of active resizing threads). Otherwise,
731 * when table is null, holds the initial table size to use upon
732 * creation, or 0 for default. After initialization, holds the
733 * next element count value upon which to resize the table.
734 */
735 private transient volatile int sizeCtl;
736
737 /**
738 * The next table index (plus one) to split while resizing.
739 */
740 private transient volatile int transferIndex;
741
742 /**
743 * The least available table index to split while resizing.
744 */
745 private transient volatile int transferOrigin;
746
747 /**
748 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
749 */
750 private transient volatile int cellsBusy;
751
752 /**
753 * Table of counter cells. When non-null, size is a power of 2.
754 */
755 private transient volatile CounterCell[] counterCells;
756
757 // views
758 private transient KeySetView<K,V> keySet;
759 private transient ValuesView<K,V> values;
760 private transient EntrySetView<K,V> entrySet;
761
762
763 /* ---------------- Public operations -------------- */
764
765 /**
766 * Creates a new, empty map with the default initial table size (16).
767 */
768 public ConcurrentHashMap() {
769 }
770
771 /**
772 * Creates a new, empty map with an initial table size
773 * accommodating the specified number of elements without the need
774 * to dynamically resize.
775 *
776 * @param initialCapacity The implementation performs internal
777 * sizing to accommodate this many elements.
778 * @throws IllegalArgumentException if the initial capacity of
779 * elements is negative
780 */
781 public ConcurrentHashMap(int initialCapacity) {
782 if (initialCapacity < 0)
783 throw new IllegalArgumentException();
784 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
785 MAXIMUM_CAPACITY :
786 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
787 this.sizeCtl = cap;
788 }
789
790 /**
791 * Creates a new map with the same mappings as the given map.
792 *
793 * @param m the map
794 */
795 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
796 this.sizeCtl = DEFAULT_CAPACITY;
797 putAll(m);
798 }
799
800 /**
801 * Creates a new, empty map with an initial table size based on
802 * the given number of elements ({@code initialCapacity}) and
803 * initial table density ({@code loadFactor}).
804 *
805 * @param initialCapacity the initial capacity. The implementation
806 * performs internal sizing to accommodate this many elements,
807 * given the specified load factor.
808 * @param loadFactor the load factor (table density) for
809 * establishing the initial table size
810 * @throws IllegalArgumentException if the initial capacity of
811 * elements is negative or the load factor is nonpositive
812 *
813 * @since 1.6
814 */
815 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
816 this(initialCapacity, loadFactor, 1);
817 }
818
819 /**
820 * Creates a new, empty map with an initial table size based on
821 * the given number of elements ({@code initialCapacity}), table
822 * density ({@code loadFactor}), and number of concurrently
823 * updating threads ({@code concurrencyLevel}).
824 *
825 * @param initialCapacity the initial capacity. The implementation
826 * performs internal sizing to accommodate this many elements,
827 * given the specified load factor.
828 * @param loadFactor the load factor (table density) for
829 * establishing the initial table size
830 * @param concurrencyLevel the estimated number of concurrently
831 * updating threads. The implementation may use this value as
832 * a sizing hint.
833 * @throws IllegalArgumentException if the initial capacity is
834 * negative or the load factor or concurrencyLevel are
835 * nonpositive
836 */
837 public ConcurrentHashMap(int initialCapacity,
838 float loadFactor, int concurrencyLevel) {
839 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
840 throw new IllegalArgumentException();
841 if (initialCapacity < concurrencyLevel) // Use at least as many bins
842 initialCapacity = concurrencyLevel; // as estimated threads
843 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
844 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
845 MAXIMUM_CAPACITY : tableSizeFor((int)size);
846 this.sizeCtl = cap;
847 }
848
849 // Original (since JDK1.2) Map methods
850
851 /**
852 * {@inheritDoc}
853 */
854 public int size() {
855 long n = sumCount();
856 return ((n < 0L) ? 0 :
857 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
858 (int)n);
859 }
860
861 /**
862 * {@inheritDoc}
863 */
864 public boolean isEmpty() {
865 return sumCount() <= 0L; // ignore transient negative values
866 }
867
868 /**
869 * Returns the value to which the specified key is mapped,
870 * or {@code null} if this map contains no mapping for the key.
871 *
872 * <p>More formally, if this map contains a mapping from a key
873 * {@code k} to a value {@code v} such that {@code key.equals(k)},
874 * then this method returns {@code v}; otherwise it returns
875 * {@code null}. (There can be at most one such mapping.)
876 *
877 * @throws NullPointerException if the specified key is null
878 */
879 public V get(Object key) {
880 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
881 int h = spread(key.hashCode());
882 if ((tab = table) != null && (n = tab.length) > 0 &&
883 (e = tabAt(tab, (n - 1) & h)) != null) {
884 if ((eh = e.hash) == h) {
885 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
886 return e.val;
887 }
888 else if (eh < 0)
889 return (p = e.find(h, key)) != null ? p.val : null;
890 while ((e = e.next) != null) {
891 if (e.hash == h &&
892 ((ek = e.key) == key || (ek != null && key.equals(ek))))
893 return e.val;
894 }
895 }
896 return null;
897 }
898
899 /**
900 * Tests if the specified object is a key in this table.
901 *
902 * @param key possible key
903 * @return {@code true} if and only if the specified object
904 * is a key in this table, as determined by the
905 * {@code equals} method; {@code false} otherwise
906 * @throws NullPointerException if the specified key is null
907 */
908 public boolean containsKey(Object key) {
909 return get(key) != null;
910 }
911
912 /**
913 * Returns {@code true} if this map maps one or more keys to the
914 * specified value. Note: This method may require a full traversal
915 * of the map, and is much slower than method {@code containsKey}.
916 *
917 * @param value value whose presence in this map is to be tested
918 * @return {@code true} if this map maps one or more keys to the
919 * specified value
920 * @throws NullPointerException if the specified value is null
921 */
922 public boolean containsValue(Object value) {
923 if (value == null)
924 throw new NullPointerException();
925 Node<K,V>[] t;
926 if ((t = table) != null) {
927 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
928 for (Node<K,V> p; (p = it.advance()) != null; ) {
929 V v;
930 if ((v = p.val) == value || (v != null && value.equals(v)))
931 return true;
932 }
933 }
934 return false;
935 }
936
937 /**
938 * Maps the specified key to the specified value in this table.
939 * Neither the key nor the value can be null.
940 *
941 * <p>The value can be retrieved by calling the {@code get} method
942 * with a key that is equal to the original key.
943 *
944 * @param key key with which the specified value is to be associated
945 * @param value value to be associated with the specified key
946 * @return the previous value associated with {@code key}, or
947 * {@code null} if there was no mapping for {@code key}
948 * @throws NullPointerException if the specified key or value is null
949 */
950 public V put(K key, V value) {
951 return putVal(key, value, false);
952 }
953
954 /** Implementation for put and putIfAbsent */
955 final V putVal(K key, V value, boolean onlyIfAbsent) {
956 if (key == null || value == null) throw new NullPointerException();
957 int hash = spread(key.hashCode());
958 int binCount = 0;
959 for (Node<K,V>[] tab = table;;) {
960 Node<K,V> f; int n, i, fh;
961 if (tab == null || (n = tab.length) == 0)
962 tab = initTable();
963 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
964 if (casTabAt(tab, i, null,
965 new Node<K,V>(hash, key, value, null)))
966 break; // no lock when adding to empty bin
967 }
968 else if ((fh = f.hash) == MOVED)
969 tab = helpTransfer(tab, f);
970 else {
971 V oldVal = null;
972 synchronized (f) {
973 if (tabAt(tab, i) == f) {
974 if (fh >= 0) {
975 binCount = 1;
976 for (Node<K,V> e = f;; ++binCount) {
977 K ek;
978 if (e.hash == hash &&
979 ((ek = e.key) == key ||
980 (ek != null && key.equals(ek)))) {
981 oldVal = e.val;
982 if (!onlyIfAbsent)
983 e.val = value;
984 break;
985 }
986 Node<K,V> pred = e;
987 if ((e = e.next) == null) {
988 pred.next = new Node<K,V>(hash, key,
989 value, null);
990 break;
991 }
992 }
993 }
994 else if (f instanceof TreeBin) {
995 Node<K,V> p;
996 binCount = 2;
997 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
998 value)) != null) {
999 oldVal = p.val;
1000 if (!onlyIfAbsent)
1001 p.val = value;
1002 }
1003 }
1004 }
1005 }
1006 if (binCount != 0) {
1007 if (binCount >= TREEIFY_THRESHOLD)
1008 treeifyBin(tab, i);
1009 if (oldVal != null)
1010 return oldVal;
1011 break;
1012 }
1013 }
1014 }
1015 addCount(1L, binCount);
1016 return null;
1017 }
1018
1019 /**
1020 * Copies all of the mappings from the specified map to this one.
1021 * These mappings replace any mappings that this map had for any of the
1022 * keys currently in the specified map.
1023 *
1024 * @param m mappings to be stored in this map
1025 */
1026 public void putAll(Map<? extends K, ? extends V> m) {
1027 tryPresize(m.size());
1028 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1029 putVal(e.getKey(), e.getValue(), false);
1030 }
1031
1032 /**
1033 * Removes the key (and its corresponding value) from this map.
1034 * This method does nothing if the key is not in the map.
1035 *
1036 * @param key the key that needs to be removed
1037 * @return the previous value associated with {@code key}, or
1038 * {@code null} if there was no mapping for {@code key}
1039 * @throws NullPointerException if the specified key is null
1040 */
1041 public V remove(Object key) {
1042 return replaceNode(key, null, null);
1043 }
1044
1045 /**
1046 * Implementation for the four public remove/replace methods:
1047 * Replaces node value with v, conditional upon match of cv if
1048 * non-null. If resulting value is null, delete.
1049 */
1050 final V replaceNode(Object key, V value, Object cv) {
1051 int hash = spread(key.hashCode());
1052 for (Node<K,V>[] tab = table;;) {
1053 Node<K,V> f; int n, i, fh;
1054 if (tab == null || (n = tab.length) == 0 ||
1055 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1056 break;
1057 else if ((fh = f.hash) == MOVED)
1058 tab = helpTransfer(tab, f);
1059 else {
1060 V oldVal = null;
1061 boolean validated = false;
1062 synchronized (f) {
1063 if (tabAt(tab, i) == f) {
1064 if (fh >= 0) {
1065 validated = true;
1066 for (Node<K,V> e = f, pred = null;;) {
1067 K ek;
1068 if (e.hash == hash &&
1069 ((ek = e.key) == key ||
1070 (ek != null && key.equals(ek)))) {
1071 V ev = e.val;
1072 if (cv == null || cv == ev ||
1073 (ev != null && cv.equals(ev))) {
1074 oldVal = ev;
1075 if (value != null)
1076 e.val = value;
1077 else if (pred != null)
1078 pred.next = e.next;
1079 else
1080 setTabAt(tab, i, e.next);
1081 }
1082 break;
1083 }
1084 pred = e;
1085 if ((e = e.next) == null)
1086 break;
1087 }
1088 }
1089 else if (f instanceof TreeBin) {
1090 validated = true;
1091 TreeBin<K,V> t = (TreeBin<K,V>)f;
1092 TreeNode<K,V> r, p;
1093 if ((r = t.root) != null &&
1094 (p = r.findTreeNode(hash, key, null)) != null) {
1095 V pv = p.val;
1096 if (cv == null || cv == pv ||
1097 (pv != null && cv.equals(pv))) {
1098 oldVal = pv;
1099 if (value != null)
1100 p.val = value;
1101 else if (t.removeTreeNode(p))
1102 setTabAt(tab, i, untreeify(t.first));
1103 }
1104 }
1105 }
1106 }
1107 }
1108 if (validated) {
1109 if (oldVal != null) {
1110 if (value == null)
1111 addCount(-1L, -1);
1112 return oldVal;
1113 }
1114 break;
1115 }
1116 }
1117 }
1118 return null;
1119 }
1120
1121 /**
1122 * Removes all of the mappings from this map.
1123 */
1124 public void clear() {
1125 long delta = 0L; // negative number of deletions
1126 int i = 0;
1127 Node<K,V>[] tab = table;
1128 while (tab != null && i < tab.length) {
1129 int fh;
1130 Node<K,V> f = tabAt(tab, i);
1131 if (f == null)
1132 ++i;
1133 else if ((fh = f.hash) == MOVED) {
1134 tab = helpTransfer(tab, f);
1135 i = 0; // restart
1136 }
1137 else {
1138 synchronized (f) {
1139 if (tabAt(tab, i) == f) {
1140 Node<K,V> p = (fh >= 0 ? f :
1141 (f instanceof TreeBin) ?
1142 ((TreeBin<K,V>)f).first : null);
1143 while (p != null) {
1144 --delta;
1145 p = p.next;
1146 }
1147 setTabAt(tab, i++, null);
1148 }
1149 }
1150 }
1151 }
1152 if (delta != 0L)
1153 addCount(delta, -1);
1154 }
1155
1156 /**
1157 * Returns a {@link Set} view of the keys contained in this map.
1158 * The set is backed by the map, so changes to the map are
1159 * reflected in the set, and vice-versa. The set supports element
1160 * removal, which removes the corresponding mapping from this map,
1161 * via the {@code Iterator.remove}, {@code Set.remove},
1162 * {@code removeAll}, {@code retainAll}, and {@code clear}
1163 * operations. It does not support the {@code add} or
1164 * {@code addAll} operations.
1165 *
1166 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1167 * that will never throw {@link ConcurrentModificationException},
1168 * and guarantees to traverse elements as they existed upon
1169 * construction of the iterator, and may (but is not guaranteed to)
1170 * reflect any modifications subsequent to construction.
1171 *
1172 * @return the set view
1173 */
1174 public KeySetView<K,V> keySet() {
1175 KeySetView<K,V> ks;
1176 return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1177 }
1178
1179 /**
1180 * Returns a {@link Collection} view of the values contained in this map.
1181 * The collection is backed by the map, so changes to the map are
1182 * reflected in the collection, and vice-versa. The collection
1183 * supports element removal, which removes the corresponding
1184 * mapping from this map, via the {@code Iterator.remove},
1185 * {@code Collection.remove}, {@code removeAll},
1186 * {@code retainAll}, and {@code clear} operations. It does not
1187 * support the {@code add} or {@code addAll} operations.
1188 *
1189 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1190 * that will never throw {@link ConcurrentModificationException},
1191 * and guarantees to traverse elements as they existed upon
1192 * construction of the iterator, and may (but is not guaranteed to)
1193 * reflect any modifications subsequent to construction.
1194 *
1195 * @return the collection view
1196 */
1197 public Collection<V> values() {
1198 ValuesView<K,V> vs;
1199 return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1200 }
1201
1202 /**
1203 * Returns a {@link Set} view of the mappings contained in this map.
1204 * The set is backed by the map, so changes to the map are
1205 * reflected in the set, and vice-versa. The set supports element
1206 * removal, which removes the corresponding mapping from the map,
1207 * via the {@code Iterator.remove}, {@code Set.remove},
1208 * {@code removeAll}, {@code retainAll}, and {@code clear}
1209 * operations.
1210 *
1211 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1212 * that will never throw {@link ConcurrentModificationException},
1213 * and guarantees to traverse elements as they existed upon
1214 * construction of the iterator, and may (but is not guaranteed to)
1215 * reflect any modifications subsequent to construction.
1216 *
1217 * @return the set view
1218 */
1219 public Set<Map.Entry<K,V>> entrySet() {
1220 EntrySetView<K,V> es;
1221 return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1222 }
1223
1224 /**
1225 * Returns the hash code value for this {@link Map}, i.e.,
1226 * the sum of, for each key-value pair in the map,
1227 * {@code key.hashCode() ^ value.hashCode()}.
1228 *
1229 * @return the hash code value for this map
1230 */
1231 public int hashCode() {
1232 int h = 0;
1233 Node<K,V>[] t;
1234 if ((t = table) != null) {
1235 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1236 for (Node<K,V> p; (p = it.advance()) != null; )
1237 h += p.key.hashCode() ^ p.val.hashCode();
1238 }
1239 return h;
1240 }
1241
1242 /**
1243 * Returns a string representation of this map. The string
1244 * representation consists of a list of key-value mappings (in no
1245 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1246 * mappings are separated by the characters {@code ", "} (comma
1247 * and space). Each key-value mapping is rendered as the key
1248 * followed by an equals sign ("{@code =}") followed by the
1249 * associated value.
1250 *
1251 * @return a string representation of this map
1252 */
1253 public String toString() {
1254 Node<K,V>[] t;
1255 int f = (t = table) == null ? 0 : t.length;
1256 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1257 StringBuilder sb = new StringBuilder();
1258 sb.append('{');
1259 Node<K,V> p;
1260 if ((p = it.advance()) != null) {
1261 for (;;) {
1262 K k = p.key;
1263 V v = p.val;
1264 sb.append(k == this ? "(this Map)" : k);
1265 sb.append('=');
1266 sb.append(v == this ? "(this Map)" : v);
1267 if ((p = it.advance()) == null)
1268 break;
1269 sb.append(',').append(' ');
1270 }
1271 }
1272 return sb.append('}').toString();
1273 }
1274
1275 /**
1276 * Compares the specified object with this map for equality.
1277 * Returns {@code true} if the given object is a map with the same
1278 * mappings as this map. This operation may return misleading
1279 * results if either map is concurrently modified during execution
1280 * of this method.
1281 *
1282 * @param o object to be compared for equality with this map
1283 * @return {@code true} if the specified object is equal to this map
1284 */
1285 public boolean equals(Object o) {
1286 if (o != this) {
1287 if (!(o instanceof Map))
1288 return false;
1289 Map<?,?> m = (Map<?,?>) o;
1290 Node<K,V>[] t;
1291 int f = (t = table) == null ? 0 : t.length;
1292 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1293 for (Node<K,V> p; (p = it.advance()) != null; ) {
1294 V val = p.val;
1295 Object v = m.get(p.key);
1296 if (v == null || (v != val && !v.equals(val)))
1297 return false;
1298 }
1299 for (Map.Entry<?,?> e : m.entrySet()) {
1300 Object mk, mv, v;
1301 if ((mk = e.getKey()) == null ||
1302 (mv = e.getValue()) == null ||
1303 (v = get(mk)) == null ||
1304 (mv != v && !mv.equals(v)))
1305 return false;
1306 }
1307 }
1308 return true;
1309 }
1310
1311 /**
1312 * Stripped-down version of helper class used in previous version,
1313 * declared for the sake of serialization compatibility
1314 */
1315 static class Segment<K,V> extends ReentrantLock implements Serializable {
1316 private static final long serialVersionUID = 2249069246763182397L;
1317 final float loadFactor;
1318 Segment(float lf) { this.loadFactor = lf; }
1319 }
1320
1321 /**
1322 * Saves the state of the {@code ConcurrentHashMap} instance to a
1323 * stream (i.e., serializes it).
1324 * @param s the stream
1325 * @serialData
1326 * the key (Object) and value (Object)
1327 * for each key-value mapping, followed by a null pair.
1328 * The key-value mappings are emitted in no particular order.
1329 */
1330 private void writeObject(java.io.ObjectOutputStream s)
1331 throws java.io.IOException {
1332 // For serialization compatibility
1333 // Emulate segment calculation from previous version of this class
1334 int sshift = 0;
1335 int ssize = 1;
1336 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1337 ++sshift;
1338 ssize <<= 1;
1339 }
1340 int segmentShift = 32 - sshift;
1341 int segmentMask = ssize - 1;
1342 @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1343 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1344 for (int i = 0; i < segments.length; ++i)
1345 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1346 s.putFields().put("segments", segments);
1347 s.putFields().put("segmentShift", segmentShift);
1348 s.putFields().put("segmentMask", segmentMask);
1349 s.writeFields();
1350
1351 Node<K,V>[] t;
1352 if ((t = table) != null) {
1353 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1354 for (Node<K,V> p; (p = it.advance()) != null; ) {
1355 s.writeObject(p.key);
1356 s.writeObject(p.val);
1357 }
1358 }
1359 s.writeObject(null);
1360 s.writeObject(null);
1361 segments = null; // throw away
1362 }
1363
1364 /**
1365 * Reconstitutes the instance from a stream (that is, deserializes it).
1366 * @param s the stream
1367 */
1368 private void readObject(java.io.ObjectInputStream s)
1369 throws java.io.IOException, ClassNotFoundException {
1370 /*
1371 * To improve performance in typical cases, we create nodes
1372 * while reading, then place in table once size is known.
1373 * However, we must also validate uniqueness and deal with
1374 * overpopulated bins while doing so, which requires
1375 * specialized versions of putVal mechanics.
1376 */
1377 sizeCtl = -1; // force exclusion for table construction
1378 s.defaultReadObject();
1379 long size = 0L;
1380 Node<K,V> p = null;
1381 for (;;) {
1382 @SuppressWarnings("unchecked") K k = (K) s.readObject();
1383 @SuppressWarnings("unchecked") V v = (V) s.readObject();
1384 if (k != null && v != null) {
1385 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1386 ++size;
1387 }
1388 else
1389 break;
1390 }
1391 if (size == 0L)
1392 sizeCtl = 0;
1393 else {
1394 int n;
1395 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1396 n = MAXIMUM_CAPACITY;
1397 else {
1398 int sz = (int)size;
1399 n = tableSizeFor(sz + (sz >>> 1) + 1);
1400 }
1401 @SuppressWarnings({"rawtypes","unchecked"})
1402 Node<K,V>[] tab = (Node<K,V>[])new Node[n];
1403 int mask = n - 1;
1404 long added = 0L;
1405 while (p != null) {
1406 boolean insertAtFront;
1407 Node<K,V> next = p.next, first;
1408 int h = p.hash, j = h & mask;
1409 if ((first = tabAt(tab, j)) == null)
1410 insertAtFront = true;
1411 else {
1412 K k = p.key;
1413 if (first.hash < 0) {
1414 TreeBin<K,V> t = (TreeBin<K,V>)first;
1415 if (t.putTreeVal(h, k, p.val) == null)
1416 ++added;
1417 insertAtFront = false;
1418 }
1419 else {
1420 int binCount = 0;
1421 insertAtFront = true;
1422 Node<K,V> q; K qk;
1423 for (q = first; q != null; q = q.next) {
1424 if (q.hash == h &&
1425 ((qk = q.key) == k ||
1426 (qk != null && k.equals(qk)))) {
1427 insertAtFront = false;
1428 break;
1429 }
1430 ++binCount;
1431 }
1432 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1433 insertAtFront = false;
1434 ++added;
1435 p.next = first;
1436 TreeNode<K,V> hd = null, tl = null;
1437 for (q = p; q != null; q = q.next) {
1438 TreeNode<K,V> t = new TreeNode<K,V>
1439 (q.hash, q.key, q.val, null, null);
1440 if ((t.prev = tl) == null)
1441 hd = t;
1442 else
1443 tl.next = t;
1444 tl = t;
1445 }
1446 setTabAt(tab, j, new TreeBin<K,V>(hd));
1447 }
1448 }
1449 }
1450 if (insertAtFront) {
1451 ++added;
1452 p.next = first;
1453 setTabAt(tab, j, p);
1454 }
1455 p = next;
1456 }
1457 table = tab;
1458 sizeCtl = n - (n >>> 2);
1459 baseCount = added;
1460 }
1461 }
1462
1463 // ConcurrentMap methods
1464
1465 /**
1466 * {@inheritDoc}
1467 *
1468 * @return the previous value associated with the specified key,
1469 * or {@code null} if there was no mapping for the key
1470 * @throws NullPointerException if the specified key or value is null
1471 */
1472 public V putIfAbsent(K key, V value) {
1473 return putVal(key, value, true);
1474 }
1475
1476 /**
1477 * {@inheritDoc}
1478 *
1479 * @throws NullPointerException if the specified key is null
1480 */
1481 public boolean remove(Object key, Object value) {
1482 if (key == null)
1483 throw new NullPointerException();
1484 return value != null && replaceNode(key, null, value) != null;
1485 }
1486
1487 /**
1488 * {@inheritDoc}
1489 *
1490 * @throws NullPointerException if any of the arguments are null
1491 */
1492 public boolean replace(K key, V oldValue, V newValue) {
1493 if (key == null || oldValue == null || newValue == null)
1494 throw new NullPointerException();
1495 return replaceNode(key, newValue, oldValue) != null;
1496 }
1497
1498 /**
1499 * {@inheritDoc}
1500 *
1501 * @return the previous value associated with the specified key,
1502 * or {@code null} if there was no mapping for the key
1503 * @throws NullPointerException if the specified key or value is null
1504 */
1505 public V replace(K key, V value) {
1506 if (key == null || value == null)
1507 throw new NullPointerException();
1508 return replaceNode(key, value, null);
1509 }
1510
1511 // Overrides of JDK8+ Map extension method defaults
1512
1513 /**
1514 * Returns the value to which the specified key is mapped, or the
1515 * given default value if this map contains no mapping for the
1516 * key.
1517 *
1518 * @param key the key whose associated value is to be returned
1519 * @param defaultValue the value to return if this map contains
1520 * no mapping for the given key
1521 * @return the mapping for the key, if present; else the default value
1522 * @throws NullPointerException if the specified key is null
1523 */
1524 public V getOrDefault(Object key, V defaultValue) {
1525 V v;
1526 return (v = get(key)) == null ? defaultValue : v;
1527 }
1528
1529 public void forEach(BiConsumer<? super K, ? super V> action) {
1530 if (action == null) throw new NullPointerException();
1531 Node<K,V>[] t;
1532 if ((t = table) != null) {
1533 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1534 for (Node<K,V> p; (p = it.advance()) != null; ) {
1535 action.accept(p.key, p.val);
1536 }
1537 }
1538 }
1539
1540 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1541 if (function == null) throw new NullPointerException();
1542 Node<K,V>[] t;
1543 if ((t = table) != null) {
1544 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1545 for (Node<K,V> p; (p = it.advance()) != null; ) {
1546 V oldValue = p.val;
1547 for (K key = p.key;;) {
1548 V newValue = function.apply(key, oldValue);
1549 if (newValue == null)
1550 throw new NullPointerException();
1551 if (replaceNode(key, newValue, oldValue) != null ||
1552 (oldValue = get(key)) == null)
1553 break;
1554 }
1555 }
1556 }
1557 }
1558
1559 /**
1560 * If the specified key is not already associated with a value,
1561 * attempts to compute its value using the given mapping function
1562 * and enters it into this map unless {@code null}. The entire
1563 * method invocation is performed atomically, so the function is
1564 * applied at most once per key. Some attempted update operations
1565 * on this map by other threads may be blocked while computation
1566 * is in progress, so the computation should be short and simple,
1567 * and must not attempt to update any other mappings of this map.
1568 *
1569 * @param key key with which the specified value is to be associated
1570 * @param mappingFunction the function to compute a value
1571 * @return the current (existing or computed) value associated with
1572 * the specified key, or null if the computed value is null
1573 * @throws NullPointerException if the specified key or mappingFunction
1574 * is null
1575 * @throws IllegalStateException if the computation detectably
1576 * attempts a recursive update to this map that would
1577 * otherwise never complete
1578 * @throws RuntimeException or Error if the mappingFunction does so,
1579 * in which case the mapping is left unestablished
1580 */
1581 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1582 if (key == null || mappingFunction == null)
1583 throw new NullPointerException();
1584 int h = spread(key.hashCode());
1585 V val = null;
1586 int binCount = 0;
1587 for (Node<K,V>[] tab = table;;) {
1588 Node<K,V> f; int n, i, fh;
1589 if (tab == null || (n = tab.length) == 0)
1590 tab = initTable();
1591 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1592 Node<K,V> r = new ReservationNode<K,V>();
1593 synchronized (r) {
1594 if (casTabAt(tab, i, null, r)) {
1595 binCount = 1;
1596 Node<K,V> node = null;
1597 try {
1598 if ((val = mappingFunction.apply(key)) != null)
1599 node = new Node<K,V>(h, key, val, null);
1600 } finally {
1601 setTabAt(tab, i, node);
1602 }
1603 }
1604 }
1605 if (binCount != 0)
1606 break;
1607 }
1608 else if ((fh = f.hash) == MOVED)
1609 tab = helpTransfer(tab, f);
1610 else {
1611 boolean added = false;
1612 synchronized (f) {
1613 if (tabAt(tab, i) == f) {
1614 if (fh >= 0) {
1615 binCount = 1;
1616 for (Node<K,V> e = f;; ++binCount) {
1617 K ek; V ev;
1618 if (e.hash == h &&
1619 ((ek = e.key) == key ||
1620 (ek != null && key.equals(ek)))) {
1621 val = e.val;
1622 break;
1623 }
1624 Node<K,V> pred = e;
1625 if ((e = e.next) == null) {
1626 if ((val = mappingFunction.apply(key)) != null) {
1627 added = true;
1628 pred.next = new Node<K,V>(h, key, val, null);
1629 }
1630 break;
1631 }
1632 }
1633 }
1634 else if (f instanceof TreeBin) {
1635 binCount = 2;
1636 TreeBin<K,V> t = (TreeBin<K,V>)f;
1637 TreeNode<K,V> r, p;
1638 if ((r = t.root) != null &&
1639 (p = r.findTreeNode(h, key, null)) != null)
1640 val = p.val;
1641 else if ((val = mappingFunction.apply(key)) != null) {
1642 added = true;
1643 t.putTreeVal(h, key, val);
1644 }
1645 }
1646 }
1647 }
1648 if (binCount != 0) {
1649 if (binCount >= TREEIFY_THRESHOLD)
1650 treeifyBin(tab, i);
1651 if (!added)
1652 return val;
1653 break;
1654 }
1655 }
1656 }
1657 if (val != null)
1658 addCount(1L, binCount);
1659 return val;
1660 }
1661
1662 /**
1663 * If the value for the specified key is present, attempts to
1664 * compute a new mapping given the key and its current mapped
1665 * value. The entire method invocation is performed atomically.
1666 * Some attempted update operations on this map by other threads
1667 * may be blocked while computation is in progress, so the
1668 * computation should be short and simple, and must not attempt to
1669 * update any other mappings of this map.
1670 *
1671 * @param key key with which a value may be associated
1672 * @param remappingFunction the function to compute a value
1673 * @return the new value associated with the specified key, or null if none
1674 * @throws NullPointerException if the specified key or remappingFunction
1675 * is null
1676 * @throws IllegalStateException if the computation detectably
1677 * attempts a recursive update to this map that would
1678 * otherwise never complete
1679 * @throws RuntimeException or Error if the remappingFunction does so,
1680 * in which case the mapping is unchanged
1681 */
1682 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1683 if (key == null || remappingFunction == null)
1684 throw new NullPointerException();
1685 int h = spread(key.hashCode());
1686 V val = null;
1687 int delta = 0;
1688 int binCount = 0;
1689 for (Node<K,V>[] tab = table;;) {
1690 Node<K,V> f; int n, i, fh;
1691 if (tab == null || (n = tab.length) == 0)
1692 tab = initTable();
1693 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1694 break;
1695 else if ((fh = f.hash) == MOVED)
1696 tab = helpTransfer(tab, f);
1697 else {
1698 synchronized (f) {
1699 if (tabAt(tab, i) == f) {
1700 if (fh >= 0) {
1701 binCount = 1;
1702 for (Node<K,V> e = f, pred = null;; ++binCount) {
1703 K ek;
1704 if (e.hash == h &&
1705 ((ek = e.key) == key ||
1706 (ek != null && key.equals(ek)))) {
1707 val = remappingFunction.apply(key, e.val);
1708 if (val != null)
1709 e.val = val;
1710 else {
1711 delta = -1;
1712 Node<K,V> en = e.next;
1713 if (pred != null)
1714 pred.next = en;
1715 else
1716 setTabAt(tab, i, en);
1717 }
1718 break;
1719 }
1720 pred = e;
1721 if ((e = e.next) == null)
1722 break;
1723 }
1724 }
1725 else if (f instanceof TreeBin) {
1726 binCount = 2;
1727 TreeBin<K,V> t = (TreeBin<K,V>)f;
1728 TreeNode<K,V> r, p;
1729 if ((r = t.root) != null &&
1730 (p = r.findTreeNode(h, key, null)) != null) {
1731 val = remappingFunction.apply(key, p.val);
1732 if (val != null)
1733 p.val = val;
1734 else {
1735 delta = -1;
1736 if (t.removeTreeNode(p))
1737 setTabAt(tab, i, untreeify(t.first));
1738 }
1739 }
1740 }
1741 }
1742 }
1743 if (binCount != 0)
1744 break;
1745 }
1746 }
1747 if (delta != 0)
1748 addCount((long)delta, binCount);
1749 return val;
1750 }
1751
1752 /**
1753 * Attempts to compute a mapping for the specified key and its
1754 * current mapped value (or {@code null} if there is no current
1755 * mapping). The entire method invocation is performed atomically.
1756 * Some attempted update operations on this map by other threads
1757 * may be blocked while computation is in progress, so the
1758 * computation should be short and simple, and must not attempt to
1759 * update any other mappings of this Map.
1760 *
1761 * @param key key with which the specified value is to be associated
1762 * @param remappingFunction the function to compute a value
1763 * @return the new value associated with the specified key, or null if none
1764 * @throws NullPointerException if the specified key or remappingFunction
1765 * is null
1766 * @throws IllegalStateException if the computation detectably
1767 * attempts a recursive update to this map that would
1768 * otherwise never complete
1769 * @throws RuntimeException or Error if the remappingFunction does so,
1770 * in which case the mapping is unchanged
1771 */
1772 public V compute(K key,
1773 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1774 if (key == null || remappingFunction == null)
1775 throw new NullPointerException();
1776 int h = spread(key.hashCode());
1777 V val = null;
1778 int delta = 0;
1779 int binCount = 0;
1780 for (Node<K,V>[] tab = table;;) {
1781 Node<K,V> f; int n, i, fh;
1782 if (tab == null || (n = tab.length) == 0)
1783 tab = initTable();
1784 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1785 Node<K,V> r = new ReservationNode<K,V>();
1786 synchronized (r) {
1787 if (casTabAt(tab, i, null, r)) {
1788 binCount = 1;
1789 Node<K,V> node = null;
1790 try {
1791 if ((val = remappingFunction.apply(key, null)) != null) {
1792 delta = 1;
1793 node = new Node<K,V>(h, key, val, null);
1794 }
1795 } finally {
1796 setTabAt(tab, i, node);
1797 }
1798 }
1799 }
1800 if (binCount != 0)
1801 break;
1802 }
1803 else if ((fh = f.hash) == MOVED)
1804 tab = helpTransfer(tab, f);
1805 else {
1806 synchronized (f) {
1807 if (tabAt(tab, i) == f) {
1808 if (fh >= 0) {
1809 binCount = 1;
1810 for (Node<K,V> e = f, pred = null;; ++binCount) {
1811 K ek;
1812 if (e.hash == h &&
1813 ((ek = e.key) == key ||
1814 (ek != null && key.equals(ek)))) {
1815 val = remappingFunction.apply(key, e.val);
1816 if (val != null)
1817 e.val = val;
1818 else {
1819 delta = -1;
1820 Node<K,V> en = e.next;
1821 if (pred != null)
1822 pred.next = en;
1823 else
1824 setTabAt(tab, i, en);
1825 }
1826 break;
1827 }
1828 pred = e;
1829 if ((e = e.next) == null) {
1830 val = remappingFunction.apply(key, null);
1831 if (val != null) {
1832 delta = 1;
1833 pred.next =
1834 new Node<K,V>(h, key, val, null);
1835 }
1836 break;
1837 }
1838 }
1839 }
1840 else if (f instanceof TreeBin) {
1841 binCount = 1;
1842 TreeBin<K,V> t = (TreeBin<K,V>)f;
1843 TreeNode<K,V> r, p;
1844 if ((r = t.root) != null)
1845 p = r.findTreeNode(h, key, null);
1846 else
1847 p = null;
1848 V pv = (p == null) ? null : p.val;
1849 val = remappingFunction.apply(key, pv);
1850 if (val != null) {
1851 if (p != null)
1852 p.val = val;
1853 else {
1854 delta = 1;
1855 t.putTreeVal(h, key, val);
1856 }
1857 }
1858 else if (p != null) {
1859 delta = -1;
1860 if (t.removeTreeNode(p))
1861 setTabAt(tab, i, untreeify(t.first));
1862 }
1863 }
1864 }
1865 }
1866 if (binCount != 0) {
1867 if (binCount >= TREEIFY_THRESHOLD)
1868 treeifyBin(tab, i);
1869 break;
1870 }
1871 }
1872 }
1873 if (delta != 0)
1874 addCount((long)delta, binCount);
1875 return val;
1876 }
1877
1878 /**
1879 * If the specified key is not already associated with a
1880 * (non-null) value, associates it with the given value.
1881 * Otherwise, replaces the value with the results of the given
1882 * remapping function, or removes if {@code null}. The entire
1883 * method invocation is performed atomically. Some attempted
1884 * update operations on this map by other threads may be blocked
1885 * while computation is in progress, so the computation should be
1886 * short and simple, and must not attempt to update any other
1887 * mappings of this Map.
1888 *
1889 * @param key key with which the specified value is to be associated
1890 * @param value the value to use if absent
1891 * @param remappingFunction the function to recompute a value if present
1892 * @return the new value associated with the specified key, or null if none
1893 * @throws NullPointerException if the specified key or the
1894 * remappingFunction is null
1895 * @throws RuntimeException or Error if the remappingFunction does so,
1896 * in which case the mapping is unchanged
1897 */
1898 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1899 if (key == null || value == null || remappingFunction == null)
1900 throw new NullPointerException();
1901 int h = spread(key.hashCode());
1902 V val = null;
1903 int delta = 0;
1904 int binCount = 0;
1905 for (Node<K,V>[] tab = table;;) {
1906 Node<K,V> f; int n, i, fh;
1907 if (tab == null || (n = tab.length) == 0)
1908 tab = initTable();
1909 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1910 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1911 delta = 1;
1912 val = value;
1913 break;
1914 }
1915 }
1916 else if ((fh = f.hash) == MOVED)
1917 tab = helpTransfer(tab, f);
1918 else {
1919 synchronized (f) {
1920 if (tabAt(tab, i) == f) {
1921 if (fh >= 0) {
1922 binCount = 1;
1923 for (Node<K,V> e = f, pred = null;; ++binCount) {
1924 K ek;
1925 if (e.hash == h &&
1926 ((ek = e.key) == key ||
1927 (ek != null && key.equals(ek)))) {
1928 val = remappingFunction.apply(e.val, value);
1929 if (val != null)
1930 e.val = val;
1931 else {
1932 delta = -1;
1933 Node<K,V> en = e.next;
1934 if (pred != null)
1935 pred.next = en;
1936 else
1937 setTabAt(tab, i, en);
1938 }
1939 break;
1940 }
1941 pred = e;
1942 if ((e = e.next) == null) {
1943 delta = 1;
1944 val = value;
1945 pred.next =
1946 new Node<K,V>(h, key, val, null);
1947 break;
1948 }
1949 }
1950 }
1951 else if (f instanceof TreeBin) {
1952 binCount = 2;
1953 TreeBin<K,V> t = (TreeBin<K,V>)f;
1954 TreeNode<K,V> r = t.root;
1955 TreeNode<K,V> p = (r == null) ? null :
1956 r.findTreeNode(h, key, null);
1957 val = (p == null) ? value :
1958 remappingFunction.apply(p.val, value);
1959 if (val != null) {
1960 if (p != null)
1961 p.val = val;
1962 else {
1963 delta = 1;
1964 t.putTreeVal(h, key, val);
1965 }
1966 }
1967 else if (p != null) {
1968 delta = -1;
1969 if (t.removeTreeNode(p))
1970 setTabAt(tab, i, untreeify(t.first));
1971 }
1972 }
1973 }
1974 }
1975 if (binCount != 0) {
1976 if (binCount >= TREEIFY_THRESHOLD)
1977 treeifyBin(tab, i);
1978 break;
1979 }
1980 }
1981 }
1982 if (delta != 0)
1983 addCount((long)delta, binCount);
1984 return val;
1985 }
1986
1987 // Hashtable legacy methods
1988
1989 /**
1990 * Legacy method testing if some key maps into the specified value
1991 * in this table. This method is identical in functionality to
1992 * {@link #containsValue(Object)}, and exists solely to ensure
1993 * full compatibility with class {@link java.util.Hashtable},
1994 * which supported this method prior to introduction of the
1995 * Java Collections framework.
1996 *
1997 * @param value a value to search for
1998 * @return {@code true} if and only if some key maps to the
1999 * {@code value} argument in this table as
2000 * determined by the {@code equals} method;
2001 * {@code false} otherwise
2002 * @throws NullPointerException if the specified value is null
2003 */
2004 @Deprecated public boolean contains(Object value) {
2005 return containsValue(value);
2006 }
2007
2008 /**
2009 * Returns an enumeration of the keys in this table.
2010 *
2011 * @return an enumeration of the keys in this table
2012 * @see #keySet()
2013 */
2014 public Enumeration<K> keys() {
2015 Node<K,V>[] t;
2016 int f = (t = table) == null ? 0 : t.length;
2017 return new KeyIterator<K,V>(t, f, 0, f, this);
2018 }
2019
2020 /**
2021 * Returns an enumeration of the values in this table.
2022 *
2023 * @return an enumeration of the values in this table
2024 * @see #values()
2025 */
2026 public Enumeration<V> elements() {
2027 Node<K,V>[] t;
2028 int f = (t = table) == null ? 0 : t.length;
2029 return new ValueIterator<K,V>(t, f, 0, f, this);
2030 }
2031
2032 // ConcurrentHashMap-only methods
2033
2034 /**
2035 * Returns the number of mappings. This method should be used
2036 * instead of {@link #size} because a ConcurrentHashMap may
2037 * contain more mappings than can be represented as an int. The
2038 * value returned is an estimate; the actual count may differ if
2039 * there are concurrent insertions or removals.
2040 *
2041 * @return the number of mappings
2042 * @since 1.8
2043 */
2044 public long mappingCount() {
2045 long n = sumCount();
2046 return (n < 0L) ? 0L : n; // ignore transient negative values
2047 }
2048
2049 /**
2050 * Creates a new {@link Set} backed by a ConcurrentHashMap
2051 * from the given type to {@code Boolean.TRUE}.
2052 *
2053 * @return the new set
2054 * @since 1.8
2055 */
2056 public static <K> KeySetView<K,Boolean> newKeySet() {
2057 return new KeySetView<K,Boolean>
2058 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2059 }
2060
2061 /**
2062 * Creates a new {@link Set} backed by a ConcurrentHashMap
2063 * from the given type to {@code Boolean.TRUE}.
2064 *
2065 * @param initialCapacity The implementation performs internal
2066 * sizing to accommodate this many elements.
2067 * @throws IllegalArgumentException if the initial capacity of
2068 * elements is negative
2069 * @return the new set
2070 * @since 1.8
2071 */
2072 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2073 return new KeySetView<K,Boolean>
2074 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2075 }
2076
2077 /**
2078 * Returns a {@link Set} view of the keys in this map, using the
2079 * given common mapped value for any additions (i.e., {@link
2080 * Collection#add} and {@link Collection#addAll(Collection)}).
2081 * This is of course only appropriate if it is acceptable to use
2082 * the same value for all additions from this view.
2083 *
2084 * @param mappedValue the mapped value to use for any additions
2085 * @return the set view
2086 * @throws NullPointerException if the mappedValue is null
2087 */
2088 public KeySetView<K,V> keySet(V mappedValue) {
2089 if (mappedValue == null)
2090 throw new NullPointerException();
2091 return new KeySetView<K,V>(this, mappedValue);
2092 }
2093
2094 /* ---------------- Special Nodes -------------- */
2095
2096 /**
2097 * A node inserted at head of bins during transfer operations.
2098 */
2099 static final class ForwardingNode<K,V> extends Node<K,V> {
2100 final Node<K,V>[] nextTable;
2101 ForwardingNode(Node<K,V>[] tab) {
2102 super(MOVED, null, null, null);
2103 this.nextTable = tab;
2104 }
2105
2106 Node<K,V> find(int h, Object k) {
2107 Node<K,V> e; int n;
2108 Node<K,V>[] tab = nextTable;
2109 if (k != null && tab != null && (n = tab.length) > 0 &&
2110 (e = tabAt(tab, (n - 1) & h)) != null) {
2111 do {
2112 int eh; K ek;
2113 if ((eh = e.hash) == h &&
2114 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2115 return e;
2116 if (eh < 0)
2117 return e.find(h, k);
2118 } while ((e = e.next) != null);
2119 }
2120 return null;
2121 }
2122 }
2123
2124 /**
2125 * A place-holder node used in computeIfAbsent and compute
2126 */
2127 static final class ReservationNode<K,V> extends Node<K,V> {
2128 ReservationNode() {
2129 super(RESERVED, null, null, null);
2130 }
2131
2132 Node<K,V> find(int h, Object k) {
2133 return null;
2134 }
2135 }
2136
2137 /* ---------------- Table Initialization and Resizing -------------- */
2138
2139 /**
2140 * Initializes table, using the size recorded in sizeCtl.
2141 */
2142 private final Node<K,V>[] initTable() {
2143 Node<K,V>[] tab; int sc;
2144 while ((tab = table) == null || tab.length == 0) {
2145 if ((sc = sizeCtl) < 0)
2146 Thread.yield(); // lost initialization race; just spin
2147 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2148 try {
2149 if ((tab = table) == null || tab.length == 0) {
2150 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2151 @SuppressWarnings({"rawtypes","unchecked"})
2152 Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2153 table = tab = nt;
2154 sc = n - (n >>> 2);
2155 }
2156 } finally {
2157 sizeCtl = sc;
2158 }
2159 break;
2160 }
2161 }
2162 return tab;
2163 }
2164
2165 /**
2166 * Adds to count, and if table is too small and not already
2167 * resizing, initiates transfer. If already resizing, helps
2168 * perform transfer if work is available. Rechecks occupancy
2169 * after a transfer to see if another resize is already needed
2170 * because resizings are lagging additions.
2171 *
2172 * @param x the count to add
2173 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2174 */
2175 private final void addCount(long x, int check) {
2176 CounterCell[] as; long b, s;
2177 if ((as = counterCells) != null ||
2178 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2179 CounterCell a; long v; int m;
2180 boolean uncontended = true;
2181 if (as == null || (m = as.length - 1) < 0 ||
2182 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2183 !(uncontended =
2184 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2185 fullAddCount(x, uncontended);
2186 return;
2187 }
2188 if (check <= 1)
2189 return;
2190 s = sumCount();
2191 }
2192 if (check >= 0) {
2193 Node<K,V>[] tab, nt; int sc;
2194 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2195 tab.length < MAXIMUM_CAPACITY) {
2196 if (sc < 0) {
2197 if (sc == -1 || transferIndex <= transferOrigin ||
2198 (nt = nextTable) == null)
2199 break;
2200 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2201 transfer(tab, nt);
2202 }
2203 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2204 transfer(tab, null);
2205 s = sumCount();
2206 }
2207 }
2208 }
2209
2210 /**
2211 * Helps transfer if a resize is in progress.
2212 */
2213 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2214 Node<K,V>[] nextTab; int sc;
2215 if ((f instanceof ForwardingNode) &&
2216 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2217 if (nextTab == nextTable && tab == table &&
2218 transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
2219 U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2220 transfer(tab, nextTab);
2221 return nextTab;
2222 }
2223 return table;
2224 }
2225
2226 /**
2227 * Tries to presize table to accommodate the given number of elements.
2228 *
2229 * @param size number of elements (doesn't need to be perfectly accurate)
2230 */
2231 private final void tryPresize(int size) {
2232 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2233 tableSizeFor(size + (size >>> 1) + 1);
2234 int sc;
2235 while ((sc = sizeCtl) >= 0) {
2236 Node<K,V>[] tab = table; int n;
2237 if (tab == null || (n = tab.length) == 0) {
2238 n = (sc > c) ? sc : c;
2239 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2240 try {
2241 if (table == tab) {
2242 @SuppressWarnings({"rawtypes","unchecked"})
2243 Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2244 table = nt;
2245 sc = n - (n >>> 2);
2246 }
2247 } finally {
2248 sizeCtl = sc;
2249 }
2250 }
2251 }
2252 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2253 break;
2254 else if (tab == table &&
2255 U.compareAndSwapInt(this, SIZECTL, sc, -2))
2256 transfer(tab, null);
2257 }
2258 }
2259
2260 /**
2261 * Moves and/or copies the nodes in each bin to new table. See
2262 * above for explanation.
2263 */
2264 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2265 int n = tab.length, stride;
2266 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2267 stride = MIN_TRANSFER_STRIDE; // subdivide range
2268 if (nextTab == null) { // initiating
2269 try {
2270 @SuppressWarnings({"rawtypes","unchecked"})
2271 Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
2272 nextTab = nt;
2273 } catch (Throwable ex) { // try to cope with OOME
2274 sizeCtl = Integer.MAX_VALUE;
2275 return;
2276 }
2277 nextTable = nextTab;
2278 transferOrigin = n;
2279 transferIndex = n;
2280 ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
2281 for (int k = n; k > 0;) { // progressively reveal ready slots
2282 int nextk = (k > stride) ? k - stride : 0;
2283 for (int m = nextk; m < k; ++m)
2284 nextTab[m] = rev;
2285 for (int m = n + nextk; m < n + k; ++m)
2286 nextTab[m] = rev;
2287 U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2288 }
2289 }
2290 int nextn = nextTab.length;
2291 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2292 boolean advance = true;
2293 for (int i = 0, bound = 0;;) {
2294 int nextIndex, nextBound, fh; Node<K,V> f;
2295 while (advance) {
2296 if (--i >= bound)
2297 advance = false;
2298 else if ((nextIndex = transferIndex) <= transferOrigin) {
2299 i = -1;
2300 advance = false;
2301 }
2302 else if (U.compareAndSwapInt
2303 (this, TRANSFERINDEX, nextIndex,
2304 nextBound = (nextIndex > stride ?
2305 nextIndex - stride : 0))) {
2306 bound = nextBound;
2307 i = nextIndex - 1;
2308 advance = false;
2309 }
2310 }
2311 if (i < 0 || i >= n || i + n >= nextn) {
2312 for (int sc;;) {
2313 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2314 if (sc == -1) {
2315 nextTable = null;
2316 table = nextTab;
2317 sizeCtl = (n << 1) - (n >>> 1);
2318 }
2319 return;
2320 }
2321 }
2322 }
2323 else if ((f = tabAt(tab, i)) == null) {
2324 if (casTabAt(tab, i, null, fwd)) {
2325 setTabAt(nextTab, i, null);
2326 setTabAt(nextTab, i + n, null);
2327 advance = true;
2328 }
2329 }
2330 else if ((fh = f.hash) == MOVED)
2331 advance = true; // already processed
2332 else {
2333 synchronized (f) {
2334 if (tabAt(tab, i) == f) {
2335 Node<K,V> ln, hn;
2336 if (fh >= 0) {
2337 int runBit = fh & n;
2338 Node<K,V> lastRun = f;
2339 for (Node<K,V> p = f.next; p != null; p = p.next) {
2340 int b = p.hash & n;
2341 if (b != runBit) {
2342 runBit = b;
2343 lastRun = p;
2344 }
2345 }
2346 if (runBit == 0) {
2347 ln = lastRun;
2348 hn = null;
2349 }
2350 else {
2351 hn = lastRun;
2352 ln = null;
2353 }
2354 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2355 int ph = p.hash; K pk = p.key; V pv = p.val;
2356 if ((ph & n) == 0)
2357 ln = new Node<K,V>(ph, pk, pv, ln);
2358 else
2359 hn = new Node<K,V>(ph, pk, pv, hn);
2360 }
2361 setTabAt(nextTab, i, ln);
2362 setTabAt(nextTab, i + n, hn);
2363 setTabAt(tab, i, fwd);
2364 advance = true;
2365 }
2366 else if (f instanceof TreeBin) {
2367 TreeBin<K,V> t = (TreeBin<K,V>)f;
2368 TreeNode<K,V> lo = null, loTail = null;
2369 TreeNode<K,V> hi = null, hiTail = null;
2370 int lc = 0, hc = 0;
2371 for (Node<K,V> e = t.first; e != null; e = e.next) {
2372 int h = e.hash;
2373 TreeNode<K,V> p = new TreeNode<K,V>
2374 (h, e.key, e.val, null, null);
2375 if ((h & n) == 0) {
2376 if ((p.prev = loTail) == null)
2377 lo = p;
2378 else
2379 loTail.next = p;
2380 loTail = p;
2381 ++lc;
2382 }
2383 else {
2384 if ((p.prev = hiTail) == null)
2385 hi = p;
2386 else
2387 hiTail.next = p;
2388 hiTail = p;
2389 ++hc;
2390 }
2391 }
2392 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2393 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2394 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2395 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2396 setTabAt(nextTab, i, ln);
2397 setTabAt(nextTab, i + n, hn);
2398 setTabAt(tab, i, fwd);
2399 advance = true;
2400 }
2401 }
2402 }
2403 }
2404 }
2405 }
2406
2407 /* ---------------- Counter support -------------- */
2408
2409 /**
2410 * A padded cell for distributing counts. Adapted from LongAdder
2411 * and Striped64. See their internal docs for explanation.
2412 */
2413 @sun.misc.Contended static final class CounterCell {
2414 volatile long value;
2415 CounterCell(long x) { value = x; }
2416 }
2417
2418 final long sumCount() {
2419 CounterCell[] as = counterCells; CounterCell a;
2420 long sum = baseCount;
2421 if (as != null) {
2422 for (int i = 0; i < as.length; ++i) {
2423 if ((a = as[i]) != null)
2424 sum += a.value;
2425 }
2426 }
2427 return sum;
2428 }
2429
2430 // See LongAdder version for explanation
2431 private final void fullAddCount(long x, boolean wasUncontended) {
2432 int h;
2433 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2434 ThreadLocalRandom.localInit(); // force initialization
2435 h = ThreadLocalRandom.getProbe();
2436 wasUncontended = true;
2437 }
2438 boolean collide = false; // True if last slot nonempty
2439 for (;;) {
2440 CounterCell[] as; CounterCell a; int n; long v;
2441 if ((as = counterCells) != null && (n = as.length) > 0) {
2442 if ((a = as[(n - 1) & h]) == null) {
2443 if (cellsBusy == 0) { // Try to attach new Cell
2444 CounterCell r = new CounterCell(x); // Optimistic create
2445 if (cellsBusy == 0 &&
2446 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2447 boolean created = false;
2448 try { // Recheck under lock
2449 CounterCell[] rs; int m, j;
2450 if ((rs = counterCells) != null &&
2451 (m = rs.length) > 0 &&
2452 rs[j = (m - 1) & h] == null) {
2453 rs[j] = r;
2454 created = true;
2455 }
2456 } finally {
2457 cellsBusy = 0;
2458 }
2459 if (created)
2460 break;
2461 continue; // Slot is now non-empty
2462 }
2463 }
2464 collide = false;
2465 }
2466 else if (!wasUncontended) // CAS already known to fail
2467 wasUncontended = true; // Continue after rehash
2468 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2469 break;
2470 else if (counterCells != as || n >= NCPU)
2471 collide = false; // At max size or stale
2472 else if (!collide)
2473 collide = true;
2474 else if (cellsBusy == 0 &&
2475 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2476 try {
2477 if (counterCells == as) {// Expand table unless stale
2478 CounterCell[] rs = new CounterCell[n << 1];
2479 for (int i = 0; i < n; ++i)
2480 rs[i] = as[i];
2481 counterCells = rs;
2482 }
2483 } finally {
2484 cellsBusy = 0;
2485 }
2486 collide = false;
2487 continue; // Retry with expanded table
2488 }
2489 h = ThreadLocalRandom.advanceProbe(h);
2490 }
2491 else if (cellsBusy == 0 && counterCells == as &&
2492 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2493 boolean init = false;
2494 try { // Initialize table
2495 if (counterCells == as) {
2496 CounterCell[] rs = new CounterCell[2];
2497 rs[h & 1] = new CounterCell(x);
2498 counterCells = rs;
2499 init = true;
2500 }
2501 } finally {
2502 cellsBusy = 0;
2503 }
2504 if (init)
2505 break;
2506 }
2507 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2508 break; // Fall back on using base
2509 }
2510 }
2511
2512 /* ---------------- Conversion from/to TreeBins -------------- */
2513
2514 /**
2515 * Replaces all linked nodes in bin at given index unless table is
2516 * too small, in which case resizes instead.
2517 */
2518 private final void treeifyBin(Node<K,V>[] tab, int index) {
2519 Node<K,V> b; int n, sc;
2520 if (tab != null) {
2521 if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2522 if (tab == table && (sc = sizeCtl) >= 0 &&
2523 U.compareAndSwapInt(this, SIZECTL, sc, -2))
2524 transfer(tab, null);
2525 }
2526 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2527 synchronized (b) {
2528 if (tabAt(tab, index) == b) {
2529 TreeNode<K,V> hd = null, tl = null;
2530 for (Node<K,V> e = b; e != null; e = e.next) {
2531 TreeNode<K,V> p =
2532 new TreeNode<K,V>(e.hash, e.key, e.val,
2533 null, null);
2534 if ((p.prev = tl) == null)
2535 hd = p;
2536 else
2537 tl.next = p;
2538 tl = p;
2539 }
2540 setTabAt(tab, index, new TreeBin<K,V>(hd));
2541 }
2542 }
2543 }
2544 }
2545 }
2546
2547 /**
2548 * Returns a list on non-TreeNodes replacing those in given list.
2549 */
2550 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2551 Node<K,V> hd = null, tl = null;
2552 for (Node<K,V> q = b; q != null; q = q.next) {
2553 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2554 if (tl == null)
2555 hd = p;
2556 else
2557 tl.next = p;
2558 tl = p;
2559 }
2560 return hd;
2561 }
2562
2563 /* ---------------- TreeNodes -------------- */
2564
2565 /**
2566 * Nodes for use in TreeBins
2567 */
2568 static final class TreeNode<K,V> extends Node<K,V> {
2569 TreeNode<K,V> parent; // red-black tree links
2570 TreeNode<K,V> left;
2571 TreeNode<K,V> right;
2572 TreeNode<K,V> prev; // needed to unlink next upon deletion
2573 boolean red;
2574
2575 TreeNode(int hash, K key, V val, Node<K,V> next,
2576 TreeNode<K,V> parent) {
2577 super(hash, key, val, next);
2578 this.parent = parent;
2579 }
2580
2581 Node<K,V> find(int h, Object k) {
2582 return findTreeNode(h, k, null);
2583 }
2584
2585 /**
2586 * Returns the TreeNode (or null if not found) for the given key
2587 * starting at given root.
2588 */
2589 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2590 if (k != null) {
2591 TreeNode<K,V> p = this;
2592 do {
2593 int ph, dir; K pk; TreeNode<K,V> q;
2594 TreeNode<K,V> pl = p.left, pr = p.right;
2595 if ((ph = p.hash) > h)
2596 p = pl;
2597 else if (ph < h)
2598 p = pr;
2599 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2600 return p;
2601 else if (pl == null && pr == null)
2602 break;
2603 else if ((kc != null ||
2604 (kc = comparableClassFor(k)) != null) &&
2605 (dir = compareComparables(kc, k, pk)) != 0)
2606 p = (dir < 0) ? pl : pr;
2607 else if (pl == null)
2608 p = pr;
2609 else if (pr == null ||
2610 (q = pr.findTreeNode(h, k, kc)) == null)
2611 p = pl;
2612 else
2613 return q;
2614 } while (p != null);
2615 }
2616 return null;
2617 }
2618 }
2619
2620 /* ---------------- TreeBins -------------- */
2621
2622 /**
2623 * TreeNodes used at the heads of bins. TreeBins do not hold user
2624 * keys or values, but instead point to list of TreeNodes and
2625 * their root. They also maintain a parasitic read-write lock
2626 * forcing writers (who hold bin lock) to wait for readers (who do
2627 * not) to complete before tree restructuring operations.
2628 */
2629 static final class TreeBin<K,V> extends Node<K,V> {
2630 TreeNode<K,V> root;
2631 volatile TreeNode<K,V> first;
2632 volatile Thread waiter;
2633 volatile int lockState;
2634 // values for lockState
2635 static final int WRITER = 1; // set while holding write lock
2636 static final int WAITER = 2; // set when waiting for write lock
2637 static final int READER = 4; // increment value for setting read lock
2638
2639 /**
2640 * Creates bin with initial set of nodes headed by b.
2641 */
2642 TreeBin(TreeNode<K,V> b) {
2643 super(TREEBIN, null, null, null);
2644 this.first = b;
2645 TreeNode<K,V> r = null;
2646 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2647 next = (TreeNode<K,V>)x.next;
2648 x.left = x.right = null;
2649 if (r == null) {
2650 x.parent = null;
2651 x.red = false;
2652 r = x;
2653 }
2654 else {
2655 Object key = x.key;
2656 int hash = x.hash;
2657 Class<?> kc = null;
2658 for (TreeNode<K,V> p = r;;) {
2659 int dir, ph;
2660 if ((ph = p.hash) > hash)
2661 dir = -1;
2662 else if (ph < hash)
2663 dir = 1;
2664 else if ((kc != null ||
2665 (kc = comparableClassFor(key)) != null))
2666 dir = compareComparables(kc, key, p.key);
2667 else
2668 dir = 0;
2669 TreeNode<K,V> xp = p;
2670 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2671 x.parent = xp;
2672 if (dir <= 0)
2673 xp.left = x;
2674 else
2675 xp.right = x;
2676 r = balanceInsertion(r, x);
2677 break;
2678 }
2679 }
2680 }
2681 }
2682 this.root = r;
2683 }
2684
2685 /**
2686 * Acquires write lock for tree restructuring.
2687 */
2688 private final void lockRoot() {
2689 if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2690 contendedLock(); // offload to separate method
2691 }
2692
2693 /**
2694 * Releases write lock for tree restructuring.
2695 */
2696 private final void unlockRoot() {
2697 lockState = 0;
2698 }
2699
2700 /**
2701 * Possibly blocks awaiting root lock.
2702 */
2703 private final void contendedLock() {
2704 boolean waiting = false;
2705 for (int s;;) {
2706 if (((s = lockState) & WRITER) == 0) {
2707 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2708 if (waiting)
2709 waiter = null;
2710 return;
2711 }
2712 }
2713 else if ((s | WAITER) == 0) {
2714 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2715 waiting = true;
2716 waiter = Thread.currentThread();
2717 }
2718 }
2719 else if (waiting)
2720 LockSupport.park(this);
2721 }
2722 }
2723
2724 /**
2725 * Returns matching node or null if none. Tries to search
2726 * using tree comparisons from root, but continues linear
2727 * search when lock not available.
2728 */
2729 final Node<K,V> find(int h, Object k) {
2730 if (k != null) {
2731 for (Node<K,V> e = first; e != null; e = e.next) {
2732 int s; K ek;
2733 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2734 if (e.hash == h &&
2735 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2736 return e;
2737 }
2738 else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2739 s + READER)) {
2740 TreeNode<K,V> r, p;
2741 try {
2742 p = ((r = root) == null ? null :
2743 r.findTreeNode(h, k, null));
2744 } finally {
2745 Thread w;
2746 if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2747 (READER|WAITER) && (w = waiter) != null)
2748 LockSupport.unpark(w);
2749 }
2750 return p;
2751 }
2752 }
2753 }
2754 return null;
2755 }
2756
2757 /**
2758 * Finds or adds a node.
2759 * @return null if added
2760 */
2761 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2762 Class<?> kc = null;
2763 for (TreeNode<K,V> p = root;;) {
2764 int dir, ph; K pk; TreeNode<K,V> q, pr;
2765 if (p == null) {
2766 first = root = new TreeNode<K,V>(h, k, v, null, null);
2767 break;
2768 }
2769 else if ((ph = p.hash) > h)
2770 dir = -1;
2771 else if (ph < h)
2772 dir = 1;
2773 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2774 return p;
2775 else if ((kc == null &&
2776 (kc = comparableClassFor(k)) == null) ||
2777 (dir = compareComparables(kc, k, pk)) == 0) {
2778 if (p.left == null)
2779 dir = 1;
2780 else if ((pr = p.right) == null ||
2781 (q = pr.findTreeNode(h, k, kc)) == null)
2782 dir = -1;
2783 else
2784 return q;
2785 }
2786 TreeNode<K,V> xp = p;
2787 if ((p = (dir < 0) ? p.left : p.right) == null) {
2788 TreeNode<K,V> x, f = first;
2789 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2790 if (f != null)
2791 f.prev = x;
2792 if (dir < 0)
2793 xp.left = x;
2794 else
2795 xp.right = x;
2796 if (!xp.red)
2797 x.red = true;
2798 else {
2799 lockRoot();
2800 try {
2801 root = balanceInsertion(root, x);
2802 } finally {
2803 unlockRoot();
2804 }
2805 }
2806 break;
2807 }
2808 }
2809 assert checkInvariants(root);
2810 return null;
2811 }
2812
2813 /**
2814 * Removes the given node, that must be present before this
2815 * call. This is messier than typical red-black deletion code
2816 * because we cannot swap the contents of an interior node
2817 * with a leaf successor that is pinned by "next" pointers
2818 * that are accessible independently of lock. So instead we
2819 * swap the tree linkages.
2820 *
2821 * @return true if now too small, so should be untreeified
2822 */
2823 final boolean removeTreeNode(TreeNode<K,V> p) {
2824 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2825 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2826 TreeNode<K,V> r, rl;
2827 if (pred == null)
2828 first = next;
2829 else
2830 pred.next = next;
2831 if (next != null)
2832 next.prev = pred;
2833 if (first == null) {
2834 root = null;
2835 return true;
2836 }
2837 if ((r = root) == null || r.right == null || // too small
2838 (rl = r.left) == null || rl.left == null)
2839 return true;
2840 lockRoot();
2841 try {
2842 TreeNode<K,V> replacement;
2843 TreeNode<K,V> pl = p.left;
2844 TreeNode<K,V> pr = p.right;
2845 if (pl != null && pr != null) {
2846 TreeNode<K,V> s = pr, sl;
2847 while ((sl = s.left) != null) // find successor
2848 s = sl;
2849 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2850 TreeNode<K,V> sr = s.right;
2851 TreeNode<K,V> pp = p.parent;
2852 if (s == pr) { // p was s's direct parent
2853 p.parent = s;
2854 s.right = p;
2855 }
2856 else {
2857 TreeNode<K,V> sp = s.parent;
2858 if ((p.parent = sp) != null) {
2859 if (s == sp.left)
2860 sp.left = p;
2861 else
2862 sp.right = p;
2863 }
2864 if ((s.right = pr) != null)
2865 pr.parent = s;
2866 }
2867 p.left = null;
2868 if ((p.right = sr) != null)
2869 sr.parent = p;
2870 if ((s.left = pl) != null)
2871 pl.parent = s;
2872 if ((s.parent = pp) == null)
2873 r = s;
2874 else if (p == pp.left)
2875 pp.left = s;
2876 else
2877 pp.right = s;
2878 if (sr != null)
2879 replacement = sr;
2880 else
2881 replacement = p;
2882 }
2883 else if (pl != null)
2884 replacement = pl;
2885 else if (pr != null)
2886 replacement = pr;
2887 else
2888 replacement = p;
2889 if (replacement != p) {
2890 TreeNode<K,V> pp = replacement.parent = p.parent;
2891 if (pp == null)
2892 r = replacement;
2893 else if (p == pp.left)
2894 pp.left = replacement;
2895 else
2896 pp.right = replacement;
2897 p.left = p.right = p.parent = null;
2898 }
2899
2900 root = (p.red) ? r : balanceDeletion(r, replacement);
2901
2902 if (p == replacement) { // detach pointers
2903 TreeNode<K,V> pp;
2904 if ((pp = p.parent) != null) {
2905 if (p == pp.left)
2906 pp.left = null;
2907 else if (p == pp.right)
2908 pp.right = null;
2909 p.parent = null;
2910 }
2911 }
2912 } finally {
2913 unlockRoot();
2914 }
2915 assert checkInvariants(root);
2916 return false;
2917 }
2918
2919 /* ------------------------------------------------------------ */
2920 // Red-black tree methods, all adapted from CLR
2921
2922 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2923 TreeNode<K,V> p) {
2924 TreeNode<K,V> r, pp, rl;
2925 if (p != null && (r = p.right) != null) {
2926 if ((rl = p.right = r.left) != null)
2927 rl.parent = p;
2928 if ((pp = r.parent = p.parent) == null)
2929 (root = r).red = false;
2930 else if (pp.left == p)
2931 pp.left = r;
2932 else
2933 pp.right = r;
2934 r.left = p;
2935 p.parent = r;
2936 }
2937 return root;
2938 }
2939
2940 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2941 TreeNode<K,V> p) {
2942 TreeNode<K,V> l, pp, lr;
2943 if (p != null && (l = p.left) != null) {
2944 if ((lr = p.left = l.right) != null)
2945 lr.parent = p;
2946 if ((pp = l.parent = p.parent) == null)
2947 (root = l).red = false;
2948 else if (pp.right == p)
2949 pp.right = l;
2950 else
2951 pp.left = l;
2952 l.right = p;
2953 p.parent = l;
2954 }
2955 return root;
2956 }
2957
2958 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2959 TreeNode<K,V> x) {
2960 x.red = true;
2961 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2962 if ((xp = x.parent) == null) {
2963 x.red = false;
2964 return x;
2965 }
2966 else if (!xp.red || (xpp = xp.parent) == null)
2967 return root;
2968 if (xp == (xppl = xpp.left)) {
2969 if ((xppr = xpp.right) != null && xppr.red) {
2970 xppr.red = false;
2971 xp.red = false;
2972 xpp.red = true;
2973 x = xpp;
2974 }
2975 else {
2976 if (x == xp.right) {
2977 root = rotateLeft(root, x = xp);
2978 xpp = (xp = x.parent) == null ? null : xp.parent;
2979 }
2980 if (xp != null) {
2981 xp.red = false;
2982 if (xpp != null) {
2983 xpp.red = true;
2984 root = rotateRight(root, xpp);
2985 }
2986 }
2987 }
2988 }
2989 else {
2990 if (xppl != null && xppl.red) {
2991 xppl.red = false;
2992 xp.red = false;
2993 xpp.red = true;
2994 x = xpp;
2995 }
2996 else {
2997 if (x == xp.left) {
2998 root = rotateRight(root, x = xp);
2999 xpp = (xp = x.parent) == null ? null : xp.parent;
3000 }
3001 if (xp != null) {
3002 xp.red = false;
3003 if (xpp != null) {
3004 xpp.red = true;
3005 root = rotateLeft(root, xpp);
3006 }
3007 }
3008 }
3009 }
3010 }
3011 }
3012
3013 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3014 TreeNode<K,V> x) {
3015 for (TreeNode<K,V> xp, xpl, xpr;;) {
3016 if (x == null || x == root)
3017 return root;
3018 else if ((xp = x.parent) == null) {
3019 x.red = false;
3020 return x;
3021 }
3022 else if (x.red) {
3023 x.red = false;
3024 return root;
3025 }
3026 else if ((xpl = xp.left) == x) {
3027 if ((xpr = xp.right) != null && xpr.red) {
3028 xpr.red = false;
3029 xp.red = true;
3030 root = rotateLeft(root, xp);
3031 xpr = (xp = x.parent) == null ? null : xp.right;
3032 }
3033 if (xpr == null)
3034 x = xp;
3035 else {
3036 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3037 if ((sr == null || !sr.red) &&
3038 (sl == null || !sl.red)) {
3039 xpr.red = true;
3040 x = xp;
3041 }
3042 else {
3043 if (sr == null || !sr.red) {
3044 if (sl != null)
3045 sl.red = false;
3046 xpr.red = true;
3047 root = rotateRight(root, xpr);
3048 xpr = (xp = x.parent) == null ?
3049 null : xp.right;
3050 }
3051 if (xpr != null) {
3052 xpr.red = (xp == null) ? false : xp.red;
3053 if ((sr = xpr.right) != null)
3054 sr.red = false;
3055 }
3056 if (xp != null) {
3057 xp.red = false;
3058 root = rotateLeft(root, xp);
3059 }
3060 x = root;
3061 }
3062 }
3063 }
3064 else { // symmetric
3065 if (xpl != null && xpl.red) {
3066 xpl.red = false;
3067 xp.red = true;
3068 root = rotateRight(root, xp);
3069 xpl = (xp = x.parent) == null ? null : xp.left;
3070 }
3071 if (xpl == null)
3072 x = xp;
3073 else {
3074 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3075 if ((sl == null || !sl.red) &&
3076 (sr == null || !sr.red)) {
3077 xpl.red = true;
3078 x = xp;
3079 }
3080 else {
3081 if (sl == null || !sl.red) {
3082 if (sr != null)
3083 sr.red = false;
3084 xpl.red = true;
3085 root = rotateLeft(root, xpl);
3086 xpl = (xp = x.parent) == null ?
3087 null : xp.left;
3088 }
3089 if (xpl != null) {
3090 xpl.red = (xp == null) ? false : xp.red;
3091 if ((sl = xpl.left) != null)
3092 sl.red = false;
3093 }
3094 if (xp != null) {
3095 xp.red = false;
3096 root = rotateRight(root, xp);
3097 }
3098 x = root;
3099 }
3100 }
3101 }
3102 }
3103 }
3104
3105 /**
3106 * Recursive invariant check
3107 */
3108 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3109 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3110 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3111 if (tb != null && tb.next != t)
3112 return false;
3113 if (tn != null && tn.prev != t)
3114 return false;
3115 if (tp != null && t != tp.left && t != tp.right)
3116 return false;
3117 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3118 return false;
3119 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3120 return false;
3121 if (t.red && tl != null && tl.red && tr != null && tr.red)
3122 return false;
3123 if (tl != null && !checkInvariants(tl))
3124 return false;
3125 if (tr != null && !checkInvariants(tr))
3126 return false;
3127 return true;
3128 }
3129
3130 private static final sun.misc.Unsafe U;
3131 private static final long LOCKSTATE;
3132 static {
3133 try {
3134 U = sun.misc.Unsafe.getUnsafe();
3135 Class<?> k = TreeBin.class;
3136 LOCKSTATE = U.objectFieldOffset
3137 (k.getDeclaredField("lockState"));
3138 } catch (Exception e) {
3139 throw new Error(e);
3140 }
3141 }
3142 }
3143
3144 /* ----------------Table Traversal -------------- */
3145
3146 /**
3147 * Encapsulates traversal for methods such as containsValue; also
3148 * serves as a base class for other iterators and spliterators.
3149 *
3150 * Method advance visits once each still-valid node that was
3151 * reachable upon iterator construction. It might miss some that
3152 * were added to a bin after the bin was visited, which is OK wrt
3153 * consistency guarantees. Maintaining this property in the face
3154 * of possible ongoing resizes requires a fair amount of
3155 * bookkeeping state that is difficult to optimize away amidst
3156 * volatile accesses. Even so, traversal maintains reasonable
3157 * throughput.
3158 *
3159 * Normally, iteration proceeds bin-by-bin traversing lists.
3160 * However, if the table has been resized, then all future steps
3161 * must traverse both the bin at the current index as well as at
3162 * (index + baseSize); and so on for further resizings. To
3163 * paranoically cope with potential sharing by users of iterators
3164 * across threads, iteration terminates if a bounds checks fails
3165 * for a table read.
3166 */
3167 static class Traverser<K,V> {
3168 Node<K,V>[] tab; // current table; updated if resized
3169 Node<K,V> next; // the next entry to use
3170 int index; // index of bin to use next
3171 int baseIndex; // current index of initial table
3172 int baseLimit; // index bound for initial table
3173 final int baseSize; // initial table size
3174
3175 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3176 this.tab = tab;
3177 this.baseSize = size;
3178 this.baseIndex = this.index = index;
3179 this.baseLimit = limit;
3180 this.next = null;
3181 }
3182
3183 /**
3184 * Advances if possible, returning next valid node, or null if none.
3185 */
3186 final Node<K,V> advance() {
3187 Node<K,V> e;
3188 if ((e = next) != null)
3189 e = e.next;
3190 for (;;) {
3191 Node<K,V>[] t; int i, n; K ek; // must use locals in checks
3192 if (e != null)
3193 return next = e;
3194 if (baseIndex >= baseLimit || (t = tab) == null ||
3195 (n = t.length) <= (i = index) || i < 0)
3196 return next = null;
3197 if ((e = tabAt(t, index)) != null && e.hash < 0) {
3198 if (e instanceof ForwardingNode) {
3199 tab = ((ForwardingNode<K,V>)e).nextTable;
3200 e = null;
3201 continue;
3202 }
3203 else if (e instanceof TreeBin)
3204 e = ((TreeBin<K,V>)e).first;
3205 else
3206 e = null;
3207 }
3208 if ((index += baseSize) >= n)
3209 index = ++baseIndex; // visit upper slots if present
3210 }
3211 }
3212 }
3213
3214 /**
3215 * Base of key, value, and entry Iterators. Adds fields to
3216 * Traverser to support iterator.remove.
3217 */
3218 static class BaseIterator<K,V> extends Traverser<K,V> {
3219 final ConcurrentHashMap<K,V> map;
3220 Node<K,V> lastReturned;
3221 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3222 ConcurrentHashMap<K,V> map) {
3223 super(tab, size, index, limit);
3224 this.map = map;
3225 advance();
3226 }
3227
3228 public final boolean hasNext() { return next != null; }
3229 public final boolean hasMoreElements() { return next != null; }
3230
3231 public final void remove() {
3232 Node<K,V> p;
3233 if ((p = lastReturned) == null)
3234 throw new IllegalStateException();
3235 lastReturned = null;
3236 map.replaceNode(p.key, null, null);
3237 }
3238 }
3239
3240 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3241 implements Iterator<K>, Enumeration<K> {
3242 KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3243 ConcurrentHashMap<K,V> map) {
3244 super(tab, index, size, limit, map);
3245 }
3246
3247 public final K next() {
3248 Node<K,V> p;
3249 if ((p = next) == null)
3250 throw new NoSuchElementException();
3251 K k = p.key;
3252 lastReturned = p;
3253 advance();
3254 return k;
3255 }
3256
3257 public final K nextElement() { return next(); }
3258 }
3259
3260 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3261 implements Iterator<V>, Enumeration<V> {
3262 ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3263 ConcurrentHashMap<K,V> map) {
3264 super(tab, index, size, limit, map);
3265 }
3266
3267 public final V next() {
3268 Node<K,V> p;
3269 if ((p = next) == null)
3270 throw new NoSuchElementException();
3271 V v = p.val;
3272 lastReturned = p;
3273 advance();
3274 return v;
3275 }
3276
3277 public final V nextElement() { return next(); }
3278 }
3279
3280 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3281 implements Iterator<Map.Entry<K,V>> {
3282 EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3283 ConcurrentHashMap<K,V> map) {
3284 super(tab, index, size, limit, map);
3285 }
3286
3287 public final Map.Entry<K,V> next() {
3288 Node<K,V> p;
3289 if ((p = next) == null)
3290 throw new NoSuchElementException();
3291 K k = p.key;
3292 V v = p.val;
3293 lastReturned = p;
3294 advance();
3295 return new MapEntry<K,V>(k, v, map);
3296 }
3297 }
3298
3299 /**
3300 * Exported Entry for EntryIterator
3301 */
3302 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3303 final K key; // non-null
3304 V val; // non-null
3305 final ConcurrentHashMap<K,V> map;
3306 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3307 this.key = key;
3308 this.val = val;
3309 this.map = map;
3310 }
3311 public K getKey() { return key; }
3312 public V getValue() { return val; }
3313 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3314 public String toString() { return key + "=" + val; }
3315
3316 public boolean equals(Object o) {
3317 Object k, v; Map.Entry<?,?> e;
3318 return ((o instanceof Map.Entry) &&
3319 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3320 (v = e.getValue()) != null &&
3321 (k == key || k.equals(key)) &&
3322 (v == val || v.equals(val)));
3323 }
3324
3325 /**
3326 * Sets our entry's value and writes through to the map. The
3327 * value to return is somewhat arbitrary here. Since we do not
3328 * necessarily track asynchronous changes, the most recent
3329 * "previous" value could be different from what we return (or
3330 * could even have been removed, in which case the put will
3331 * re-establish). We do not and cannot guarantee more.
3332 */
3333 public V setValue(V value) {
3334 if (value == null) throw new NullPointerException();
3335 V v = val;
3336 val = value;
3337 map.put(key, value);
3338 return v;
3339 }
3340 }
3341
3342 static final class KeySpliterator<K,V> extends Traverser<K,V>
3343 implements Spliterator<K> {
3344 long est; // size estimate
3345 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3346 long est) {
3347 super(tab, size, index, limit);
3348 this.est = est;
3349 }
3350
3351 public Spliterator<K> trySplit() {
3352 int i, f, h;
3353 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3354 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3355 f, est >>>= 1);
3356 }
3357
3358 public void forEachRemaining(Consumer<? super K> action) {
3359 if (action == null) throw new NullPointerException();
3360 for (Node<K,V> p; (p = advance()) != null;)
3361 action.accept(p.key);
3362 }
3363
3364 public boolean tryAdvance(Consumer<? super K> action) {
3365 if (action == null) throw new NullPointerException();
3366 Node<K,V> p;
3367 if ((p = advance()) == null)
3368 return false;
3369 action.accept(p.key);
3370 return true;
3371 }
3372
3373 public long estimateSize() { return est; }
3374
3375 public int characteristics() {
3376 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3377 Spliterator.NONNULL;
3378 }
3379 }
3380
3381 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3382 implements Spliterator<V> {
3383 long est; // size estimate
3384 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3385 long est) {
3386 super(tab, size, index, limit);
3387 this.est = est;
3388 }
3389
3390 public Spliterator<V> trySplit() {
3391 int i, f, h;
3392 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3393 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3394 f, est >>>= 1);
3395 }
3396
3397 public void forEachRemaining(Consumer<? super V> action) {
3398 if (action == null) throw new NullPointerException();
3399 for (Node<K,V> p; (p = advance()) != null;)
3400 action.accept(p.val);
3401 }
3402
3403 public boolean tryAdvance(Consumer<? super V> action) {
3404 if (action == null) throw new NullPointerException();
3405 Node<K,V> p;
3406 if ((p = advance()) == null)
3407 return false;
3408 action.accept(p.val);
3409 return true;
3410 }
3411
3412 public long estimateSize() { return est; }
3413
3414 public int characteristics() {
3415 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3416 }
3417 }
3418
3419 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3420 implements Spliterator<Map.Entry<K,V>> {
3421 final ConcurrentHashMap<K,V> map; // To export MapEntry
3422 long est; // size estimate
3423 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3424 long est, ConcurrentHashMap<K,V> map) {
3425 super(tab, size, index, limit);
3426 this.map = map;
3427 this.est = est;
3428 }
3429
3430 public Spliterator<Map.Entry<K,V>> trySplit() {
3431 int i, f, h;
3432 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3433 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3434 f, est >>>= 1, map);
3435 }
3436
3437 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3438 if (action == null) throw new NullPointerException();
3439 for (Node<K,V> p; (p = advance()) != null; )
3440 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3441 }
3442
3443 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3444 if (action == null) throw new NullPointerException();
3445 Node<K,V> p;
3446 if ((p = advance()) == null)
3447 return false;
3448 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3449 return true;
3450 }
3451
3452 public long estimateSize() { return est; }
3453
3454 public int characteristics() {
3455 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3456 Spliterator.NONNULL;
3457 }
3458 }
3459
3460 // Parallel bulk operations
3461
3462 /**
3463 * Computes initial batch value for bulk tasks. The returned value
3464 * is approximately exp2 of the number of times (minus one) to
3465 * split task by two before executing leaf action. This value is
3466 * faster to compute and more convenient to use as a guide to
3467 * splitting than is the depth, since it is used while dividing by
3468 * two anyway.
3469 */
3470 final int batchFor(long b) {
3471 long n;
3472 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3473 return 0;
3474 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3475 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3476 }
3477
3478 /**
3479 * Performs the given action for each (key, value).
3480 *
3481 * @param parallelismThreshold the (estimated) number of elements
3482 * needed for this operation to be executed in parallel
3483 * @param action the action
3484 * @since 1.8
3485 */
3486 public void forEach(long parallelismThreshold,
3487 BiConsumer<? super K,? super V> action) {
3488 if (action == null) throw new NullPointerException();
3489 new ForEachMappingTask<K,V>
3490 (null, batchFor(parallelismThreshold), 0, 0, table,
3491 action).invoke();
3492 }
3493
3494 /**
3495 * Performs the given action for each non-null transformation
3496 * of each (key, value).
3497 *
3498 * @param parallelismThreshold the (estimated) number of elements
3499 * needed for this operation to be executed in parallel
3500 * @param transformer a function returning the transformation
3501 * for an element, or null if there is no transformation (in
3502 * which case the action is not applied)
3503 * @param action the action
3504 * @since 1.8
3505 */
3506 public <U> void forEach(long parallelismThreshold,
3507 BiFunction<? super K, ? super V, ? extends U> transformer,
3508 Consumer<? super U> action) {
3509 if (transformer == null || action == null)
3510 throw new NullPointerException();
3511 new ForEachTransformedMappingTask<K,V,U>
3512 (null, batchFor(parallelismThreshold), 0, 0, table,
3513 transformer, action).invoke();
3514 }
3515
3516 /**
3517 * Returns a non-null result from applying the given search
3518 * function on each (key, value), or null if none. Upon
3519 * success, further element processing is suppressed and the
3520 * results of any other parallel invocations of the search
3521 * function are ignored.
3522 *
3523 * @param parallelismThreshold the (estimated) number of elements
3524 * needed for this operation to be executed in parallel
3525 * @param searchFunction a function returning a non-null
3526 * result on success, else null
3527 * @return a non-null result from applying the given search
3528 * function on each (key, value), or null if none
3529 * @since 1.8
3530 */
3531 public <U> U search(long parallelismThreshold,
3532 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3533 if (searchFunction == null) throw new NullPointerException();
3534 return new SearchMappingsTask<K,V,U>
3535 (null, batchFor(parallelismThreshold), 0, 0, table,
3536 searchFunction, new AtomicReference<U>()).invoke();
3537 }
3538
3539 /**
3540 * Returns the result of accumulating the given transformation
3541 * of all (key, value) pairs using the given reducer to
3542 * combine values, or null if none.
3543 *
3544 * @param parallelismThreshold the (estimated) number of elements
3545 * needed for this operation to be executed in parallel
3546 * @param transformer a function returning the transformation
3547 * for an element, or null if there is no transformation (in
3548 * which case it is not combined)
3549 * @param reducer a commutative associative combining function
3550 * @return the result of accumulating the given transformation
3551 * of all (key, value) pairs
3552 * @since 1.8
3553 */
3554 public <U> U reduce(long parallelismThreshold,
3555 BiFunction<? super K, ? super V, ? extends U> transformer,
3556 BiFunction<? super U, ? super U, ? extends U> reducer) {
3557 if (transformer == null || reducer == null)
3558 throw new NullPointerException();
3559 return new MapReduceMappingsTask<K,V,U>
3560 (null, batchFor(parallelismThreshold), 0, 0, table,
3561 null, transformer, reducer).invoke();
3562 }
3563
3564 /**
3565 * Returns the result of accumulating the given transformation
3566 * of all (key, value) pairs using the given reducer to
3567 * combine values, and the given basis as an identity value.
3568 *
3569 * @param parallelismThreshold the (estimated) number of elements
3570 * needed for this operation to be executed in parallel
3571 * @param transformer a function returning the transformation
3572 * for an element
3573 * @param basis the identity (initial default value) for the reduction
3574 * @param reducer a commutative associative combining function
3575 * @return the result of accumulating the given transformation
3576 * of all (key, value) pairs
3577 * @since 1.8
3578 */
3579 public double reduceToDouble(long parallelismThreshold,
3580 ToDoubleBiFunction<? super K, ? super V> transformer,
3581 double basis,
3582 DoubleBinaryOperator reducer) {
3583 if (transformer == null || reducer == null)
3584 throw new NullPointerException();
3585 return new MapReduceMappingsToDoubleTask<K,V>
3586 (null, batchFor(parallelismThreshold), 0, 0, table,
3587 null, transformer, basis, reducer).invoke();
3588 }
3589
3590 /**
3591 * Returns the result of accumulating the given transformation
3592 * of all (key, value) pairs using the given reducer to
3593 * combine values, and the given basis as an identity value.
3594 *
3595 * @param parallelismThreshold the (estimated) number of elements
3596 * needed for this operation to be executed in parallel
3597 * @param transformer a function returning the transformation
3598 * for an element
3599 * @param basis the identity (initial default value) for the reduction
3600 * @param reducer a commutative associative combining function
3601 * @return the result of accumulating the given transformation
3602 * of all (key, value) pairs
3603 * @since 1.8
3604 */
3605 public long reduceToLong(long parallelismThreshold,
3606 ToLongBiFunction<? super K, ? super V> transformer,
3607 long basis,
3608 LongBinaryOperator reducer) {
3609 if (transformer == null || reducer == null)
3610 throw new NullPointerException();
3611 return new MapReduceMappingsToLongTask<K,V>
3612 (null, batchFor(parallelismThreshold), 0, 0, table,
3613 null, transformer, basis, reducer).invoke();
3614 }
3615
3616 /**
3617 * Returns the result of accumulating the given transformation
3618 * of all (key, value) pairs using the given reducer to
3619 * combine values, and the given basis as an identity value.
3620 *
3621 * @param parallelismThreshold the (estimated) number of elements
3622 * needed for this operation to be executed in parallel
3623 * @param transformer a function returning the transformation
3624 * for an element
3625 * @param basis the identity (initial default value) for the reduction
3626 * @param reducer a commutative associative combining function
3627 * @return the result of accumulating the given transformation
3628 * of all (key, value) pairs
3629 * @since 1.8
3630 */
3631 public int reduceToInt(long parallelismThreshold,
3632 ToIntBiFunction<? super K, ? super V> transformer,
3633 int basis,
3634 IntBinaryOperator reducer) {
3635 if (transformer == null || reducer == null)
3636 throw new NullPointerException();
3637 return new MapReduceMappingsToIntTask<K,V>
3638 (null, batchFor(parallelismThreshold), 0, 0, table,
3639 null, transformer, basis, reducer).invoke();
3640 }
3641
3642 /**
3643 * Performs the given action for each key.
3644 *
3645 * @param parallelismThreshold the (estimated) number of elements
3646 * needed for this operation to be executed in parallel
3647 * @param action the action
3648 * @since 1.8
3649 */
3650 public void forEachKey(long parallelismThreshold,
3651 Consumer<? super K> action) {
3652 if (action == null) throw new NullPointerException();
3653 new ForEachKeyTask<K,V>
3654 (null, batchFor(parallelismThreshold), 0, 0, table,
3655 action).invoke();
3656 }
3657
3658 /**
3659 * Performs the given action for each non-null transformation
3660 * of each key.
3661 *
3662 * @param parallelismThreshold the (estimated) number of elements
3663 * needed for this operation to be executed in parallel
3664 * @param transformer a function returning the transformation
3665 * for an element, or null if there is no transformation (in
3666 * which case the action is not applied)
3667 * @param action the action
3668 * @since 1.8
3669 */
3670 public <U> void forEachKey(long parallelismThreshold,
3671 Function<? super K, ? extends U> transformer,
3672 Consumer<? super U> action) {
3673 if (transformer == null || action == null)
3674 throw new NullPointerException();
3675 new ForEachTransformedKeyTask<K,V,U>
3676 (null, batchFor(parallelismThreshold), 0, 0, table,
3677 transformer, action).invoke();
3678 }
3679
3680 /**
3681 * Returns a non-null result from applying the given search
3682 * function on each key, or null if none. Upon success,
3683 * further element processing is suppressed and the results of
3684 * any other parallel invocations of the search function are
3685 * ignored.
3686 *
3687 * @param parallelismThreshold the (estimated) number of elements
3688 * needed for this operation to be executed in parallel
3689 * @param searchFunction a function returning a non-null
3690 * result on success, else null
3691 * @return a non-null result from applying the given search
3692 * function on each key, or null if none
3693 * @since 1.8
3694 */
3695 public <U> U searchKeys(long parallelismThreshold,
3696 Function<? super K, ? extends U> searchFunction) {
3697 if (searchFunction == null) throw new NullPointerException();
3698 return new SearchKeysTask<K,V,U>
3699 (null, batchFor(parallelismThreshold), 0, 0, table,
3700 searchFunction, new AtomicReference<U>()).invoke();
3701 }
3702
3703 /**
3704 * Returns the result of accumulating all keys using the given
3705 * reducer to combine values, or null if none.
3706 *
3707 * @param parallelismThreshold the (estimated) number of elements
3708 * needed for this operation to be executed in parallel
3709 * @param reducer a commutative associative combining function
3710 * @return the result of accumulating all keys using the given
3711 * reducer to combine values, or null if none
3712 * @since 1.8
3713 */
3714 public K reduceKeys(long parallelismThreshold,
3715 BiFunction<? super K, ? super K, ? extends K> reducer) {
3716 if (reducer == null) throw new NullPointerException();
3717 return new ReduceKeysTask<K,V>
3718 (null, batchFor(parallelismThreshold), 0, 0, table,
3719 null, reducer).invoke();
3720 }
3721
3722 /**
3723 * Returns the result of accumulating the given transformation
3724 * of all keys using the given reducer to combine values, or
3725 * null if none.
3726 *
3727 * @param parallelismThreshold the (estimated) number of elements
3728 * needed for this operation to be executed in parallel
3729 * @param transformer a function returning the transformation
3730 * for an element, or null if there is no transformation (in
3731 * which case it is not combined)
3732 * @param reducer a commutative associative combining function
3733 * @return the result of accumulating the given transformation
3734 * of all keys
3735 * @since 1.8
3736 */
3737 public <U> U reduceKeys(long parallelismThreshold,
3738 Function<? super K, ? extends U> transformer,
3739 BiFunction<? super U, ? super U, ? extends U> reducer) {
3740 if (transformer == null || reducer == null)
3741 throw new NullPointerException();
3742 return new MapReduceKeysTask<K,V,U>
3743 (null, batchFor(parallelismThreshold), 0, 0, table,
3744 null, transformer, reducer).invoke();
3745 }
3746
3747 /**
3748 * Returns the result of accumulating the given transformation
3749 * of all keys using the given reducer to combine values, and
3750 * the given basis as an identity value.
3751 *
3752 * @param parallelismThreshold the (estimated) number of elements
3753 * needed for this operation to be executed in parallel
3754 * @param transformer a function returning the transformation
3755 * for an element
3756 * @param basis the identity (initial default value) for the reduction
3757 * @param reducer a commutative associative combining function
3758 * @return the result of accumulating the given transformation
3759 * of all keys
3760 * @since 1.8
3761 */
3762 public double reduceKeysToDouble(long parallelismThreshold,
3763 ToDoubleFunction<? super K> transformer,
3764 double basis,
3765 DoubleBinaryOperator reducer) {
3766 if (transformer == null || reducer == null)
3767 throw new NullPointerException();
3768 return new MapReduceKeysToDoubleTask<K,V>
3769 (null, batchFor(parallelismThreshold), 0, 0, table,
3770 null, transformer, basis, reducer).invoke();
3771 }
3772
3773 /**
3774 * Returns the result of accumulating the given transformation
3775 * of all keys using the given reducer to combine values, and
3776 * the given basis as an identity value.
3777 *
3778 * @param parallelismThreshold the (estimated) number of elements
3779 * needed for this operation to be executed in parallel
3780 * @param transformer a function returning the transformation
3781 * for an element
3782 * @param basis the identity (initial default value) for the reduction
3783 * @param reducer a commutative associative combining function
3784 * @return the result of accumulating the given transformation
3785 * of all keys
3786 * @since 1.8
3787 */
3788 public long reduceKeysToLong(long parallelismThreshold,
3789 ToLongFunction<? super K> transformer,
3790 long basis,
3791 LongBinaryOperator reducer) {
3792 if (transformer == null || reducer == null)
3793 throw new NullPointerException();
3794 return new MapReduceKeysToLongTask<K,V>
3795 (null, batchFor(parallelismThreshold), 0, 0, table,
3796 null, transformer, basis, reducer).invoke();
3797 }
3798
3799 /**
3800 * Returns the result of accumulating the given transformation
3801 * of all keys using the given reducer to combine values, and
3802 * the given basis as an identity value.
3803 *
3804 * @param parallelismThreshold the (estimated) number of elements
3805 * needed for this operation to be executed in parallel
3806 * @param transformer a function returning the transformation
3807 * for an element
3808 * @param basis the identity (initial default value) for the reduction
3809 * @param reducer a commutative associative combining function
3810 * @return the result of accumulating the given transformation
3811 * of all keys
3812 * @since 1.8
3813 */
3814 public int reduceKeysToInt(long parallelismThreshold,
3815 ToIntFunction<? super K> transformer,
3816 int basis,
3817 IntBinaryOperator reducer) {
3818 if (transformer == null || reducer == null)
3819 throw new NullPointerException();
3820 return new MapReduceKeysToIntTask<K,V>
3821 (null, batchFor(parallelismThreshold), 0, 0, table,
3822 null, transformer, basis, reducer).invoke();
3823 }
3824
3825 /**
3826 * Performs the given action for each value.
3827 *
3828 * @param parallelismThreshold the (estimated) number of elements
3829 * needed for this operation to be executed in parallel
3830 * @param action the action
3831 * @since 1.8
3832 */
3833 public void forEachValue(long parallelismThreshold,
3834 Consumer<? super V> action) {
3835 if (action == null)
3836 throw new NullPointerException();
3837 new ForEachValueTask<K,V>
3838 (null, batchFor(parallelismThreshold), 0, 0, table,
3839 action).invoke();
3840 }
3841
3842 /**
3843 * Performs the given action for each non-null transformation
3844 * of each value.
3845 *
3846 * @param parallelismThreshold the (estimated) number of elements
3847 * needed for this operation to be executed in parallel
3848 * @param transformer a function returning the transformation
3849 * for an element, or null if there is no transformation (in
3850 * which case the action is not applied)
3851 * @param action the action
3852 * @since 1.8
3853 */
3854 public <U> void forEachValue(long parallelismThreshold,
3855 Function<? super V, ? extends U> transformer,
3856 Consumer<? super U> action) {
3857 if (transformer == null || action == null)
3858 throw new NullPointerException();
3859 new ForEachTransformedValueTask<K,V,U>
3860 (null, batchFor(parallelismThreshold), 0, 0, table,
3861 transformer, action).invoke();
3862 }
3863
3864 /**
3865 * Returns a non-null result from applying the given search
3866 * function on each value, or null if none. Upon success,
3867 * further element processing is suppressed and the results of
3868 * any other parallel invocations of the search function are
3869 * ignored.
3870 *
3871 * @param parallelismThreshold the (estimated) number of elements
3872 * needed for this operation to be executed in parallel
3873 * @param searchFunction a function returning a non-null
3874 * result on success, else null
3875 * @return a non-null result from applying the given search
3876 * function on each value, or null if none
3877 * @since 1.8
3878 */
3879 public <U> U searchValues(long parallelismThreshold,
3880 Function<? super V, ? extends U> searchFunction) {
3881 if (searchFunction == null) throw new NullPointerException();
3882 return new SearchValuesTask<K,V,U>
3883 (null, batchFor(parallelismThreshold), 0, 0, table,
3884 searchFunction, new AtomicReference<U>()).invoke();
3885 }
3886
3887 /**
3888 * Returns the result of accumulating all values using the
3889 * given reducer to combine values, or null if none.
3890 *
3891 * @param parallelismThreshold the (estimated) number of elements
3892 * needed for this operation to be executed in parallel
3893 * @param reducer a commutative associative combining function
3894 * @return the result of accumulating all values
3895 * @since 1.8
3896 */
3897 public V reduceValues(long parallelismThreshold,
3898 BiFunction<? super V, ? super V, ? extends V> reducer) {
3899 if (reducer == null) throw new NullPointerException();
3900 return new ReduceValuesTask<K,V>
3901 (null, batchFor(parallelismThreshold), 0, 0, table,
3902 null, reducer).invoke();
3903 }
3904
3905 /**
3906 * Returns the result of accumulating the given transformation
3907 * of all values using the given reducer to combine values, or
3908 * null if none.
3909 *
3910 * @param parallelismThreshold the (estimated) number of elements
3911 * needed for this operation to be executed in parallel
3912 * @param transformer a function returning the transformation
3913 * for an element, or null if there is no transformation (in
3914 * which case it is not combined)
3915 * @param reducer a commutative associative combining function
3916 * @return the result of accumulating the given transformation
3917 * of all values
3918 * @since 1.8
3919 */
3920 public <U> U reduceValues(long parallelismThreshold,
3921 Function<? super V, ? extends U> transformer,
3922 BiFunction<? super U, ? super U, ? extends U> reducer) {
3923 if (transformer == null || reducer == null)
3924 throw new NullPointerException();
3925 return new MapReduceValuesTask<K,V,U>
3926 (null, batchFor(parallelismThreshold), 0, 0, table,
3927 null, transformer, reducer).invoke();
3928 }
3929
3930 /**
3931 * Returns the result of accumulating the given transformation
3932 * of all values using the given reducer to combine values,
3933 * and the given basis as an identity value.
3934 *
3935 * @param parallelismThreshold the (estimated) number of elements
3936 * needed for this operation to be executed in parallel
3937 * @param transformer a function returning the transformation
3938 * for an element
3939 * @param basis the identity (initial default value) for the reduction
3940 * @param reducer a commutative associative combining function
3941 * @return the result of accumulating the given transformation
3942 * of all values
3943 * @since 1.8
3944 */
3945 public double reduceValuesToDouble(long parallelismThreshold,
3946 ToDoubleFunction<? super V> transformer,
3947 double basis,
3948 DoubleBinaryOperator reducer) {
3949 if (transformer == null || reducer == null)
3950 throw new NullPointerException();
3951 return new MapReduceValuesToDoubleTask<K,V>
3952 (null, batchFor(parallelismThreshold), 0, 0, table,
3953 null, transformer, basis, reducer).invoke();
3954 }
3955
3956 /**
3957 * Returns the result of accumulating the given transformation
3958 * of all values using the given reducer to combine values,
3959 * and the given basis as an identity value.
3960 *
3961 * @param parallelismThreshold the (estimated) number of elements
3962 * needed for this operation to be executed in parallel
3963 * @param transformer a function returning the transformation
3964 * for an element
3965 * @param basis the identity (initial default value) for the reduction
3966 * @param reducer a commutative associative combining function
3967 * @return the result of accumulating the given transformation
3968 * of all values
3969 * @since 1.8
3970 */
3971 public long reduceValuesToLong(long parallelismThreshold,
3972 ToLongFunction<? super V> transformer,
3973 long basis,
3974 LongBinaryOperator reducer) {
3975 if (transformer == null || reducer == null)
3976 throw new NullPointerException();
3977 return new MapReduceValuesToLongTask<K,V>
3978 (null, batchFor(parallelismThreshold), 0, 0, table,
3979 null, transformer, basis, reducer).invoke();
3980 }
3981
3982 /**
3983 * Returns the result of accumulating the given transformation
3984 * of all values using the given reducer to combine values,
3985 * and the given basis as an identity value.
3986 *
3987 * @param parallelismThreshold the (estimated) number of elements
3988 * needed for this operation to be executed in parallel
3989 * @param transformer a function returning the transformation
3990 * for an element
3991 * @param basis the identity (initial default value) for the reduction
3992 * @param reducer a commutative associative combining function
3993 * @return the result of accumulating the given transformation
3994 * of all values
3995 * @since 1.8
3996 */
3997 public int reduceValuesToInt(long parallelismThreshold,
3998 ToIntFunction<? super V> transformer,
3999 int basis,
4000 IntBinaryOperator reducer) {
4001 if (transformer == null || reducer == null)
4002 throw new NullPointerException();
4003 return new MapReduceValuesToIntTask<K,V>
4004 (null, batchFor(parallelismThreshold), 0, 0, table,
4005 null, transformer, basis, reducer).invoke();
4006 }
4007
4008 /**
4009 * Performs the given action for each entry.
4010 *
4011 * @param parallelismThreshold the (estimated) number of elements
4012 * needed for this operation to be executed in parallel
4013 * @param action the action
4014 * @since 1.8
4015 */
4016 public void forEachEntry(long parallelismThreshold,
4017 Consumer<? super Map.Entry<K,V>> action) {
4018 if (action == null) throw new NullPointerException();
4019 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4020 action).invoke();
4021 }
4022
4023 /**
4024 * Performs the given action for each non-null transformation
4025 * of each entry.
4026 *
4027 * @param parallelismThreshold the (estimated) number of elements
4028 * needed for this operation to be executed in parallel
4029 * @param transformer a function returning the transformation
4030 * for an element, or null if there is no transformation (in
4031 * which case the action is not applied)
4032 * @param action the action
4033 * @since 1.8
4034 */
4035 public <U> void forEachEntry(long parallelismThreshold,
4036 Function<Map.Entry<K,V>, ? extends U> transformer,
4037 Consumer<? super U> action) {
4038 if (transformer == null || action == null)
4039 throw new NullPointerException();
4040 new ForEachTransformedEntryTask<K,V,U>
4041 (null, batchFor(parallelismThreshold), 0, 0, table,
4042 transformer, action).invoke();
4043 }
4044
4045 /**
4046 * Returns a non-null result from applying the given search
4047 * function on each entry, or null if none. Upon success,
4048 * further element processing is suppressed and the results of
4049 * any other parallel invocations of the search function are
4050 * ignored.
4051 *
4052 * @param parallelismThreshold the (estimated) number of elements
4053 * needed for this operation to be executed in parallel
4054 * @param searchFunction a function returning a non-null
4055 * result on success, else null
4056 * @return a non-null result from applying the given search
4057 * function on each entry, or null if none
4058 * @since 1.8
4059 */
4060 public <U> U searchEntries(long parallelismThreshold,
4061 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4062 if (searchFunction == null) throw new NullPointerException();
4063 return new SearchEntriesTask<K,V,U>
4064 (null, batchFor(parallelismThreshold), 0, 0, table,
4065 searchFunction, new AtomicReference<U>()).invoke();
4066 }
4067
4068 /**
4069 * Returns the result of accumulating all entries using the
4070 * given reducer to combine values, or null if none.
4071 *
4072 * @param parallelismThreshold the (estimated) number of elements
4073 * needed for this operation to be executed in parallel
4074 * @param reducer a commutative associative combining function
4075 * @return the result of accumulating all entries
4076 * @since 1.8
4077 */
4078 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4079 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4080 if (reducer == null) throw new NullPointerException();
4081 return new ReduceEntriesTask<K,V>
4082 (null, batchFor(parallelismThreshold), 0, 0, table,
4083 null, reducer).invoke();
4084 }
4085
4086 /**
4087 * Returns the result of accumulating the given transformation
4088 * of all entries using the given reducer to combine values,
4089 * or null if none.
4090 *
4091 * @param parallelismThreshold the (estimated) number of elements
4092 * needed for this operation to be executed in parallel
4093 * @param transformer a function returning the transformation
4094 * for an element, or null if there is no transformation (in
4095 * which case it is not combined)
4096 * @param reducer a commutative associative combining function
4097 * @return the result of accumulating the given transformation
4098 * of all entries
4099 * @since 1.8
4100 */
4101 public <U> U reduceEntries(long parallelismThreshold,
4102 Function<Map.Entry<K,V>, ? extends U> transformer,
4103 BiFunction<? super U, ? super U, ? extends U> reducer) {
4104 if (transformer == null || reducer == null)
4105 throw new NullPointerException();
4106 return new MapReduceEntriesTask<K,V,U>
4107 (null, batchFor(parallelismThreshold), 0, 0, table,
4108 null, transformer, reducer).invoke();
4109 }
4110
4111 /**
4112 * Returns the result of accumulating the given transformation
4113 * of all entries using the given reducer to combine values,
4114 * and the given basis as an identity value.
4115 *
4116 * @param parallelismThreshold the (estimated) number of elements
4117 * needed for this operation to be executed in parallel
4118 * @param transformer a function returning the transformation
4119 * for an element
4120 * @param basis the identity (initial default value) for the reduction
4121 * @param reducer a commutative associative combining function
4122 * @return the result of accumulating the given transformation
4123 * of all entries
4124 * @since 1.8
4125 */
4126 public double reduceEntriesToDouble(long parallelismThreshold,
4127 ToDoubleFunction<Map.Entry<K,V>> transformer,
4128 double basis,
4129 DoubleBinaryOperator reducer) {
4130 if (transformer == null || reducer == null)
4131 throw new NullPointerException();
4132 return new MapReduceEntriesToDoubleTask<K,V>
4133 (null, batchFor(parallelismThreshold), 0, 0, table,
4134 null, transformer, basis, reducer).invoke();
4135 }
4136
4137 /**
4138 * Returns the result of accumulating the given transformation
4139 * of all entries using the given reducer to combine values,
4140 * and the given basis as an identity value.
4141 *
4142 * @param parallelismThreshold the (estimated) number of elements
4143 * needed for this operation to be executed in parallel
4144 * @param transformer a function returning the transformation
4145 * for an element
4146 * @param basis the identity (initial default value) for the reduction
4147 * @param reducer a commutative associative combining function
4148 * @return the result of accumulating the given transformation
4149 * of all entries
4150 * @since 1.8
4151 */
4152 public long reduceEntriesToLong(long parallelismThreshold,
4153 ToLongFunction<Map.Entry<K,V>> transformer,
4154 long basis,
4155 LongBinaryOperator reducer) {
4156 if (transformer == null || reducer == null)
4157 throw new NullPointerException();
4158 return new MapReduceEntriesToLongTask<K,V>
4159 (null, batchFor(parallelismThreshold), 0, 0, table,
4160 null, transformer, basis, reducer).invoke();
4161 }
4162
4163 /**
4164 * Returns the result of accumulating the given transformation
4165 * of all entries using the given reducer to combine values,
4166 * and the given basis as an identity value.
4167 *
4168 * @param parallelismThreshold the (estimated) number of elements
4169 * needed for this operation to be executed in parallel
4170 * @param transformer a function returning the transformation
4171 * for an element
4172 * @param basis the identity (initial default value) for the reduction
4173 * @param reducer a commutative associative combining function
4174 * @return the result of accumulating the given transformation
4175 * of all entries
4176 * @since 1.8
4177 */
4178 public int reduceEntriesToInt(long parallelismThreshold,
4179 ToIntFunction<Map.Entry<K,V>> transformer,
4180 int basis,
4181 IntBinaryOperator reducer) {
4182 if (transformer == null || reducer == null)
4183 throw new NullPointerException();
4184 return new MapReduceEntriesToIntTask<K,V>
4185 (null, batchFor(parallelismThreshold), 0, 0, table,
4186 null, transformer, basis, reducer).invoke();
4187 }
4188
4189
4190 /* ----------------Views -------------- */
4191
4192 /**
4193 * Base class for views.
4194 */
4195 abstract static class CollectionView<K,V,E>
4196 implements Collection<E>, java.io.Serializable {
4197 private static final long serialVersionUID = 7249069246763182397L;
4198 final ConcurrentHashMap<K,V> map;
4199 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4200
4201 /**
4202 * Returns the map backing this view.
4203 *
4204 * @return the map backing this view
4205 */
4206 public ConcurrentHashMap<K,V> getMap() { return map; }
4207
4208 /**
4209 * Removes all of the elements from this view, by removing all
4210 * the mappings from the map backing this view.
4211 */
4212 public final void clear() { map.clear(); }
4213 public final int size() { return map.size(); }
4214 public final boolean isEmpty() { return map.isEmpty(); }
4215
4216 // implementations below rely on concrete classes supplying these
4217 // abstract methods
4218 /**
4219 * Returns a "weakly consistent" iterator that will never
4220 * throw {@link ConcurrentModificationException}, and
4221 * guarantees to traverse elements as they existed upon
4222 * construction of the iterator, and may (but is not
4223 * guaranteed to) reflect any modifications subsequent to
4224 * construction.
4225 */
4226 public abstract Iterator<E> iterator();
4227 public abstract boolean contains(Object o);
4228 public abstract boolean remove(Object o);
4229
4230 private static final String oomeMsg = "Required array size too large";
4231
4232 public final Object[] toArray() {
4233 long sz = map.mappingCount();
4234 if (sz > MAX_ARRAY_SIZE)
4235 throw new OutOfMemoryError(oomeMsg);
4236 int n = (int)sz;
4237 Object[] r = new Object[n];
4238 int i = 0;
4239 for (E e : this) {
4240 if (i == n) {
4241 if (n >= MAX_ARRAY_SIZE)
4242 throw new OutOfMemoryError(oomeMsg);
4243 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4244 n = MAX_ARRAY_SIZE;
4245 else
4246 n += (n >>> 1) + 1;
4247 r = Arrays.copyOf(r, n);
4248 }
4249 r[i++] = e;
4250 }
4251 return (i == n) ? r : Arrays.copyOf(r, i);
4252 }
4253
4254 @SuppressWarnings("unchecked")
4255 public final <T> T[] toArray(T[] a) {
4256 long sz = map.mappingCount();
4257 if (sz > MAX_ARRAY_SIZE)
4258 throw new OutOfMemoryError(oomeMsg);
4259 int m = (int)sz;
4260 T[] r = (a.length >= m) ? a :
4261 (T[])java.lang.reflect.Array
4262 .newInstance(a.getClass().getComponentType(), m);
4263 int n = r.length;
4264 int i = 0;
4265 for (E e : this) {
4266 if (i == n) {
4267 if (n >= MAX_ARRAY_SIZE)
4268 throw new OutOfMemoryError(oomeMsg);
4269 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4270 n = MAX_ARRAY_SIZE;
4271 else
4272 n += (n >>> 1) + 1;
4273 r = Arrays.copyOf(r, n);
4274 }
4275 r[i++] = (T)e;
4276 }
4277 if (a == r && i < n) {
4278 r[i] = null; // null-terminate
4279 return r;
4280 }
4281 return (i == n) ? r : Arrays.copyOf(r, i);
4282 }
4283
4284 /**
4285 * Returns a string representation of this collection.
4286 * The string representation consists of the string representations
4287 * of the collection's elements in the order they are returned by
4288 * its iterator, enclosed in square brackets ({@code "[]"}).
4289 * Adjacent elements are separated by the characters {@code ", "}
4290 * (comma and space). Elements are converted to strings as by
4291 * {@link String#valueOf(Object)}.
4292 *
4293 * @return a string representation of this collection
4294 */
4295 public final String toString() {
4296 StringBuilder sb = new StringBuilder();
4297 sb.append('[');
4298 Iterator<E> it = iterator();
4299 if (it.hasNext()) {
4300 for (;;) {
4301 Object e = it.next();
4302 sb.append(e == this ? "(this Collection)" : e);
4303 if (!it.hasNext())
4304 break;
4305 sb.append(',').append(' ');
4306 }
4307 }
4308 return sb.append(']').toString();
4309 }
4310
4311 public final boolean containsAll(Collection<?> c) {
4312 if (c != this) {
4313 for (Object e : c) {
4314 if (e == null || !contains(e))
4315 return false;
4316 }
4317 }
4318 return true;
4319 }
4320
4321 public final boolean removeAll(Collection<?> c) {
4322 boolean modified = false;
4323 for (Iterator<E> it = iterator(); it.hasNext();) {
4324 if (c.contains(it.next())) {
4325 it.remove();
4326 modified = true;
4327 }
4328 }
4329 return modified;
4330 }
4331
4332 public final boolean retainAll(Collection<?> c) {
4333 boolean modified = false;
4334 for (Iterator<E> it = iterator(); it.hasNext();) {
4335 if (!c.contains(it.next())) {
4336 it.remove();
4337 modified = true;
4338 }
4339 }
4340 return modified;
4341 }
4342
4343 }
4344
4345 /**
4346 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4347 * which additions may optionally be enabled by mapping to a
4348 * common value. This class cannot be directly instantiated.
4349 * See {@link #keySet() keySet()},
4350 * {@link #keySet(Object) keySet(V)},
4351 * {@link #newKeySet() newKeySet()},
4352 * {@link #newKeySet(int) newKeySet(int)}.
4353 *
4354 * @since 1.8
4355 */
4356 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4357 implements Set<K>, java.io.Serializable {
4358 private static final long serialVersionUID = 7249069246763182397L;
4359 private final V value;
4360 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4361 super(map);
4362 this.value = value;
4363 }
4364
4365 /**
4366 * Returns the default mapped value for additions,
4367 * or {@code null} if additions are not supported.
4368 *
4369 * @return the default mapped value for additions, or {@code null}
4370 * if not supported
4371 */
4372 public V getMappedValue() { return value; }
4373
4374 /**
4375 * {@inheritDoc}
4376 * @throws NullPointerException if the specified key is null
4377 */
4378 public boolean contains(Object o) { return map.containsKey(o); }
4379
4380 /**
4381 * Removes the key from this map view, by removing the key (and its
4382 * corresponding value) from the backing map. This method does
4383 * nothing if the key is not in the map.
4384 *
4385 * @param o the key to be removed from the backing map
4386 * @return {@code true} if the backing map contained the specified key
4387 * @throws NullPointerException if the specified key is null
4388 */
4389 public boolean remove(Object o) { return map.remove(o) != null; }
4390
4391 /**
4392 * @return an iterator over the keys of the backing map
4393 */
4394 public Iterator<K> iterator() {
4395 Node<K,V>[] t;
4396 ConcurrentHashMap<K,V> m = map;
4397 int f = (t = m.table) == null ? 0 : t.length;
4398 return new KeyIterator<K,V>(t, f, 0, f, m);
4399 }
4400
4401 /**
4402 * Adds the specified key to this set view by mapping the key to
4403 * the default mapped value in the backing map, if defined.
4404 *
4405 * @param e key to be added
4406 * @return {@code true} if this set changed as a result of the call
4407 * @throws NullPointerException if the specified key is null
4408 * @throws UnsupportedOperationException if no default mapped value
4409 * for additions was provided
4410 */
4411 public boolean add(K e) {
4412 V v;
4413 if ((v = value) == null)
4414 throw new UnsupportedOperationException();
4415 return map.putVal(e, v, true) == null;
4416 }
4417
4418 /**
4419 * Adds all of the elements in the specified collection to this set,
4420 * as if by calling {@link #add} on each one.
4421 *
4422 * @param c the elements to be inserted into this set
4423 * @return {@code true} if this set changed as a result of the call
4424 * @throws NullPointerException if the collection or any of its
4425 * elements are {@code null}
4426 * @throws UnsupportedOperationException if no default mapped value
4427 * for additions was provided
4428 */
4429 public boolean addAll(Collection<? extends K> c) {
4430 boolean added = false;
4431 V v;
4432 if ((v = value) == null)
4433 throw new UnsupportedOperationException();
4434 for (K e : c) {
4435 if (map.putVal(e, v, true) == null)
4436 added = true;
4437 }
4438 return added;
4439 }
4440
4441 public int hashCode() {
4442 int h = 0;
4443 for (K e : this)
4444 h += e.hashCode();
4445 return h;
4446 }
4447
4448 public boolean equals(Object o) {
4449 Set<?> c;
4450 return ((o instanceof Set) &&
4451 ((c = (Set<?>)o) == this ||
4452 (containsAll(c) && c.containsAll(this))));
4453 }
4454
4455 public Spliterator<K> spliterator() {
4456 Node<K,V>[] t;
4457 ConcurrentHashMap<K,V> m = map;
4458 long n = m.sumCount();
4459 int f = (t = m.table) == null ? 0 : t.length;
4460 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4461 }
4462
4463 public void forEach(Consumer<? super K> action) {
4464 if (action == null) throw new NullPointerException();
4465 Node<K,V>[] t;
4466 if ((t = map.table) != null) {
4467 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4468 for (Node<K,V> p; (p = it.advance()) != null; )
4469 action.accept(p.key);
4470 }
4471 }
4472 }
4473
4474 /**
4475 * A view of a ConcurrentHashMap as a {@link Collection} of
4476 * values, in which additions are disabled. This class cannot be
4477 * directly instantiated. See {@link #values()}.
4478 */
4479 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4480 implements Collection<V>, java.io.Serializable {
4481 private static final long serialVersionUID = 2249069246763182397L;
4482 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4483 public final boolean contains(Object o) {
4484 return map.containsValue(o);
4485 }
4486
4487 public final boolean remove(Object o) {
4488 if (o != null) {
4489 for (Iterator<V> it = iterator(); it.hasNext();) {
4490 if (o.equals(it.next())) {
4491 it.remove();
4492 return true;
4493 }
4494 }
4495 }
4496 return false;
4497 }
4498
4499 public final Iterator<V> iterator() {
4500 ConcurrentHashMap<K,V> m = map;
4501 Node<K,V>[] t;
4502 int f = (t = m.table) == null ? 0 : t.length;
4503 return new ValueIterator<K,V>(t, f, 0, f, m);
4504 }
4505
4506 public final boolean add(V e) {
4507 throw new UnsupportedOperationException();
4508 }
4509 public final boolean addAll(Collection<? extends V> c) {
4510 throw new UnsupportedOperationException();
4511 }
4512
4513 public Spliterator<V> spliterator() {
4514 Node<K,V>[] t;
4515 ConcurrentHashMap<K,V> m = map;
4516 long n = m.sumCount();
4517 int f = (t = m.table) == null ? 0 : t.length;
4518 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4519 }
4520
4521 public void forEach(Consumer<? super V> action) {
4522 if (action == null) throw new NullPointerException();
4523 Node<K,V>[] t;
4524 if ((t = map.table) != null) {
4525 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4526 for (Node<K,V> p; (p = it.advance()) != null; )
4527 action.accept(p.val);
4528 }
4529 }
4530 }
4531
4532 /**
4533 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4534 * entries. This class cannot be directly instantiated. See
4535 * {@link #entrySet()}.
4536 */
4537 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4538 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4539 private static final long serialVersionUID = 2249069246763182397L;
4540 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4541
4542 public boolean contains(Object o) {
4543 Object k, v, r; Map.Entry<?,?> e;
4544 return ((o instanceof Map.Entry) &&
4545 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4546 (r = map.get(k)) != null &&
4547 (v = e.getValue()) != null &&
4548 (v == r || v.equals(r)));
4549 }
4550
4551 public boolean remove(Object o) {
4552 Object k, v; Map.Entry<?,?> e;
4553 return ((o instanceof Map.Entry) &&
4554 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4555 (v = e.getValue()) != null &&
4556 map.remove(k, v));
4557 }
4558
4559 /**
4560 * @return an iterator over the entries of the backing map
4561 */
4562 public Iterator<Map.Entry<K,V>> iterator() {
4563 ConcurrentHashMap<K,V> m = map;
4564 Node<K,V>[] t;
4565 int f = (t = m.table) == null ? 0 : t.length;
4566 return new EntryIterator<K,V>(t, f, 0, f, m);
4567 }
4568
4569 public boolean add(Entry<K,V> e) {
4570 return map.putVal(e.getKey(), e.getValue(), false) == null;
4571 }
4572
4573 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4574 boolean added = false;
4575 for (Entry<K,V> e : c) {
4576 if (add(e))
4577 added = true;
4578 }
4579 return added;
4580 }
4581
4582 public final int hashCode() {
4583 int h = 0;
4584 Node<K,V>[] t;
4585 if ((t = map.table) != null) {
4586 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4587 for (Node<K,V> p; (p = it.advance()) != null; ) {
4588 h += p.hashCode();
4589 }
4590 }
4591 return h;
4592 }
4593
4594 public final boolean equals(Object o) {
4595 Set<?> c;
4596 return ((o instanceof Set) &&
4597 ((c = (Set<?>)o) == this ||
4598 (containsAll(c) && c.containsAll(this))));
4599 }
4600
4601 public Spliterator<Map.Entry<K,V>> spliterator() {
4602 Node<K,V>[] t;
4603 ConcurrentHashMap<K,V> m = map;
4604 long n = m.sumCount();
4605 int f = (t = m.table) == null ? 0 : t.length;
4606 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4607 }
4608
4609 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4610 if (action == null) throw new NullPointerException();
4611 Node<K,V>[] t;
4612 if ((t = map.table) != null) {
4613 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4614 for (Node<K,V> p; (p = it.advance()) != null; )
4615 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4616 }
4617 }
4618
4619 }
4620
4621 // -------------------------------------------------------
4622
4623 /**
4624 * Base class for bulk tasks. Repeats some fields and code from
4625 * class Traverser, because we need to subclass CountedCompleter.
4626 */
4627 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4628 Node<K,V>[] tab; // same as Traverser
4629 Node<K,V> next;
4630 int index;
4631 int baseIndex;
4632 int baseLimit;
4633 final int baseSize;
4634 int batch; // split control
4635
4636 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4637 super(par);
4638 this.batch = b;
4639 this.index = this.baseIndex = i;
4640 if ((this.tab = t) == null)
4641 this.baseSize = this.baseLimit = 0;
4642 else if (par == null)
4643 this.baseSize = this.baseLimit = t.length;
4644 else {
4645 this.baseLimit = f;
4646 this.baseSize = par.baseSize;
4647 }
4648 }
4649
4650 /**
4651 * Same as Traverser version
4652 */
4653 final Node<K,V> advance() {
4654 Node<K,V> e;
4655 if ((e = next) != null)
4656 e = e.next;
4657 for (;;) {
4658 Node<K,V>[] t; int i, n; K ek; // must use locals in checks
4659 if (e != null)
4660 return next = e;
4661 if (baseIndex >= baseLimit || (t = tab) == null ||
4662 (n = t.length) <= (i = index) || i < 0)
4663 return next = null;
4664 if ((e = tabAt(t, index)) != null && e.hash < 0) {
4665 if (e instanceof ForwardingNode) {
4666 tab = ((ForwardingNode<K,V>)e).nextTable;
4667 e = null;
4668 continue;
4669 }
4670 else if (e instanceof TreeBin)
4671 e = ((TreeBin<K,V>)e).first;
4672 else
4673 e = null;
4674 }
4675 if ((index += baseSize) >= n)
4676 index = ++baseIndex; // visit upper slots if present
4677 }
4678 }
4679 }
4680
4681 /*
4682 * Task classes. Coded in a regular but ugly format/style to
4683 * simplify checks that each variant differs in the right way from
4684 * others. The null screenings exist because compilers cannot tell
4685 * that we've already null-checked task arguments, so we force
4686 * simplest hoisted bypass to help avoid convoluted traps.
4687 */
4688 @SuppressWarnings("serial")
4689 static final class ForEachKeyTask<K,V>
4690 extends BulkTask<K,V,Void> {
4691 final Consumer<? super K> action;
4692 ForEachKeyTask
4693 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4694 Consumer<? super K> action) {
4695 super(p, b, i, f, t);
4696 this.action = action;
4697 }
4698 public final void compute() {
4699 final Consumer<? super K> action;
4700 if ((action = this.action) != null) {
4701 for (int i = baseIndex, f, h; batch > 0 &&
4702 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4703 addToPendingCount(1);
4704 new ForEachKeyTask<K,V>
4705 (this, batch >>>= 1, baseLimit = h, f, tab,
4706 action).fork();
4707 }
4708 for (Node<K,V> p; (p = advance()) != null;)
4709 action.accept(p.key);
4710 propagateCompletion();
4711 }
4712 }
4713 }
4714
4715 @SuppressWarnings("serial")
4716 static final class ForEachValueTask<K,V>
4717 extends BulkTask<K,V,Void> {
4718 final Consumer<? super V> action;
4719 ForEachValueTask
4720 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4721 Consumer<? super V> action) {
4722 super(p, b, i, f, t);
4723 this.action = action;
4724 }
4725 public final void compute() {
4726 final Consumer<? super V> action;
4727 if ((action = this.action) != null) {
4728 for (int i = baseIndex, f, h; batch > 0 &&
4729 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4730 addToPendingCount(1);
4731 new ForEachValueTask<K,V>
4732 (this, batch >>>= 1, baseLimit = h, f, tab,
4733 action).fork();
4734 }
4735 for (Node<K,V> p; (p = advance()) != null;)
4736 action.accept(p.val);
4737 propagateCompletion();
4738 }
4739 }
4740 }
4741
4742 @SuppressWarnings("serial")
4743 static final class ForEachEntryTask<K,V>
4744 extends BulkTask<K,V,Void> {
4745 final Consumer<? super Entry<K,V>> action;
4746 ForEachEntryTask
4747 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4748 Consumer<? super Entry<K,V>> action) {
4749 super(p, b, i, f, t);
4750 this.action = action;
4751 }
4752 public final void compute() {
4753 final Consumer<? super Entry<K,V>> action;
4754 if ((action = this.action) != null) {
4755 for (int i = baseIndex, f, h; batch > 0 &&
4756 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4757 addToPendingCount(1);
4758 new ForEachEntryTask<K,V>
4759 (this, batch >>>= 1, baseLimit = h, f, tab,
4760 action).fork();
4761 }
4762 for (Node<K,V> p; (p = advance()) != null; )
4763 action.accept(p);
4764 propagateCompletion();
4765 }
4766 }
4767 }
4768
4769 @SuppressWarnings("serial")
4770 static final class ForEachMappingTask<K,V>
4771 extends BulkTask<K,V,Void> {
4772 final BiConsumer<? super K, ? super V> action;
4773 ForEachMappingTask
4774 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4775 BiConsumer<? super K,? super V> action) {
4776 super(p, b, i, f, t);
4777 this.action = action;
4778 }
4779 public final void compute() {
4780 final BiConsumer<? super K, ? super V> action;
4781 if ((action = this.action) != null) {
4782 for (int i = baseIndex, f, h; batch > 0 &&
4783 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4784 addToPendingCount(1);
4785 new ForEachMappingTask<K,V>
4786 (this, batch >>>= 1, baseLimit = h, f, tab,
4787 action).fork();
4788 }
4789 for (Node<K,V> p; (p = advance()) != null; )
4790 action.accept(p.key, p.val);
4791 propagateCompletion();
4792 }
4793 }
4794 }
4795
4796 @SuppressWarnings("serial")
4797 static final class ForEachTransformedKeyTask<K,V,U>
4798 extends BulkTask<K,V,Void> {
4799 final Function<? super K, ? extends U> transformer;
4800 final Consumer<? super U> action;
4801 ForEachTransformedKeyTask
4802 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4803 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4804 super(p, b, i, f, t);
4805 this.transformer = transformer; this.action = action;
4806 }
4807 public final void compute() {
4808 final Function<? super K, ? extends U> transformer;
4809 final Consumer<? super U> action;
4810 if ((transformer = this.transformer) != null &&
4811 (action = this.action) != null) {
4812 for (int i = baseIndex, f, h; batch > 0 &&
4813 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4814 addToPendingCount(1);
4815 new ForEachTransformedKeyTask<K,V,U>
4816 (this, batch >>>= 1, baseLimit = h, f, tab,
4817 transformer, action).fork();
4818 }
4819 for (Node<K,V> p; (p = advance()) != null; ) {
4820 U u;
4821 if ((u = transformer.apply(p.key)) != null)
4822 action.accept(u);
4823 }
4824 propagateCompletion();
4825 }
4826 }
4827 }
4828
4829 @SuppressWarnings("serial")
4830 static final class ForEachTransformedValueTask<K,V,U>
4831 extends BulkTask<K,V,Void> {
4832 final Function<? super V, ? extends U> transformer;
4833 final Consumer<? super U> action;
4834 ForEachTransformedValueTask
4835 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4836 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
4837 super(p, b, i, f, t);
4838 this.transformer = transformer; this.action = action;
4839 }
4840 public final void compute() {
4841 final Function<? super V, ? extends U> transformer;
4842 final Consumer<? super U> action;
4843 if ((transformer = this.transformer) != null &&
4844 (action = this.action) != null) {
4845 for (int i = baseIndex, f, h; batch > 0 &&
4846 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4847 addToPendingCount(1);
4848 new ForEachTransformedValueTask<K,V,U>
4849 (this, batch >>>= 1, baseLimit = h, f, tab,
4850 transformer, action).fork();
4851 }
4852 for (Node<K,V> p; (p = advance()) != null; ) {
4853 U u;
4854 if ((u = transformer.apply(p.val)) != null)
4855 action.accept(u);
4856 }
4857 propagateCompletion();
4858 }
4859 }
4860 }
4861
4862 @SuppressWarnings("serial")
4863 static final class ForEachTransformedEntryTask<K,V,U>
4864 extends BulkTask<K,V,Void> {
4865 final Function<Map.Entry<K,V>, ? extends U> transformer;
4866 final Consumer<? super U> action;
4867 ForEachTransformedEntryTask
4868 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4869 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
4870 super(p, b, i, f, t);
4871 this.transformer = transformer; this.action = action;
4872 }
4873 public final void compute() {
4874 final Function<Map.Entry<K,V>, ? extends U> transformer;
4875 final Consumer<? super U> action;
4876 if ((transformer = this.transformer) != null &&
4877 (action = this.action) != null) {
4878 for (int i = baseIndex, f, h; batch > 0 &&
4879 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4880 addToPendingCount(1);
4881 new ForEachTransformedEntryTask<K,V,U>
4882 (this, batch >>>= 1, baseLimit = h, f, tab,
4883 transformer, action).fork();
4884 }
4885 for (Node<K,V> p; (p = advance()) != null; ) {
4886 U u;
4887 if ((u = transformer.apply(p)) != null)
4888 action.accept(u);
4889 }
4890 propagateCompletion();
4891 }
4892 }
4893 }
4894
4895 @SuppressWarnings("serial")
4896 static final class ForEachTransformedMappingTask<K,V,U>
4897 extends BulkTask<K,V,Void> {
4898 final BiFunction<? super K, ? super V, ? extends U> transformer;
4899 final Consumer<? super U> action;
4900 ForEachTransformedMappingTask
4901 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4902 BiFunction<? super K, ? super V, ? extends U> transformer,
4903 Consumer<? super U> action) {
4904 super(p, b, i, f, t);
4905 this.transformer = transformer; this.action = action;
4906 }
4907 public final void compute() {
4908 final BiFunction<? super K, ? super V, ? extends U> transformer;
4909 final Consumer<? super U> action;
4910 if ((transformer = this.transformer) != null &&
4911 (action = this.action) != null) {
4912 for (int i = baseIndex, f, h; batch > 0 &&
4913 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4914 addToPendingCount(1);
4915 new ForEachTransformedMappingTask<K,V,U>
4916 (this, batch >>>= 1, baseLimit = h, f, tab,
4917 transformer, action).fork();
4918 }
4919 for (Node<K,V> p; (p = advance()) != null; ) {
4920 U u;
4921 if ((u = transformer.apply(p.key, p.val)) != null)
4922 action.accept(u);
4923 }
4924 propagateCompletion();
4925 }
4926 }
4927 }
4928
4929 @SuppressWarnings("serial")
4930 static final class SearchKeysTask<K,V,U>
4931 extends BulkTask<K,V,U> {
4932 final Function<? super K, ? extends U> searchFunction;
4933 final AtomicReference<U> result;
4934 SearchKeysTask
4935 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4936 Function<? super K, ? extends U> searchFunction,
4937 AtomicReference<U> result) {
4938 super(p, b, i, f, t);
4939 this.searchFunction = searchFunction; this.result = result;
4940 }
4941 public final U getRawResult() { return result.get(); }
4942 public final void compute() {
4943 final Function<? super K, ? extends U> searchFunction;
4944 final AtomicReference<U> result;
4945 if ((searchFunction = this.searchFunction) != null &&
4946 (result = this.result) != null) {
4947 for (int i = baseIndex, f, h; batch > 0 &&
4948 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4949 if (result.get() != null)
4950 return;
4951 addToPendingCount(1);
4952 new SearchKeysTask<K,V,U>
4953 (this, batch >>>= 1, baseLimit = h, f, tab,
4954 searchFunction, result).fork();
4955 }
4956 while (result.get() == null) {
4957 U u;
4958 Node<K,V> p;
4959 if ((p = advance()) == null) {
4960 propagateCompletion();
4961 break;
4962 }
4963 if ((u = searchFunction.apply(p.key)) != null) {
4964 if (result.compareAndSet(null, u))
4965 quietlyCompleteRoot();
4966 break;
4967 }
4968 }
4969 }
4970 }
4971 }
4972
4973 @SuppressWarnings("serial")
4974 static final class SearchValuesTask<K,V,U>
4975 extends BulkTask<K,V,U> {
4976 final Function<? super V, ? extends U> searchFunction;
4977 final AtomicReference<U> result;
4978 SearchValuesTask
4979 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4980 Function<? super V, ? extends U> searchFunction,
4981 AtomicReference<U> result) {
4982 super(p, b, i, f, t);
4983 this.searchFunction = searchFunction; this.result = result;
4984 }
4985 public final U getRawResult() { return result.get(); }
4986 public final void compute() {
4987 final Function<? super V, ? extends U> searchFunction;
4988 final AtomicReference<U> result;
4989 if ((searchFunction = this.searchFunction) != null &&
4990 (result = this.result) != null) {
4991 for (int i = baseIndex, f, h; batch > 0 &&
4992 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4993 if (result.get() != null)
4994 return;
4995 addToPendingCount(1);
4996 new SearchValuesTask<K,V,U>
4997 (this, batch >>>= 1, baseLimit = h, f, tab,
4998 searchFunction, result).fork();
4999 }
5000 while (result.get() == null) {
5001 U u;
5002 Node<K,V> p;
5003 if ((p = advance()) == null) {
5004 propagateCompletion();
5005 break;
5006 }
5007 if ((u = searchFunction.apply(p.val)) != null) {
5008 if (result.compareAndSet(null, u))
5009 quietlyCompleteRoot();
5010 break;
5011 }
5012 }
5013 }
5014 }
5015 }
5016
5017 @SuppressWarnings("serial")
5018 static final class SearchEntriesTask<K,V,U>
5019 extends BulkTask<K,V,U> {
5020 final Function<Entry<K,V>, ? extends U> searchFunction;
5021 final AtomicReference<U> result;
5022 SearchEntriesTask
5023 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5024 Function<Entry<K,V>, ? extends U> searchFunction,
5025 AtomicReference<U> result) {
5026 super(p, b, i, f, t);
5027 this.searchFunction = searchFunction; this.result = result;
5028 }
5029 public final U getRawResult() { return result.get(); }
5030 public final void compute() {
5031 final Function<Entry<K,V>, ? extends U> searchFunction;
5032 final AtomicReference<U> result;
5033 if ((searchFunction = this.searchFunction) != null &&
5034 (result = this.result) != null) {
5035 for (int i = baseIndex, f, h; batch > 0 &&
5036 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5037 if (result.get() != null)
5038 return;
5039 addToPendingCount(1);
5040 new SearchEntriesTask<K,V,U>
5041 (this, batch >>>= 1, baseLimit = h, f, tab,
5042 searchFunction, result).fork();
5043 }
5044 while (result.get() == null) {
5045 U u;
5046 Node<K,V> p;
5047 if ((p = advance()) == null) {
5048 propagateCompletion();
5049 break;
5050 }
5051 if ((u = searchFunction.apply(p)) != null) {
5052 if (result.compareAndSet(null, u))
5053 quietlyCompleteRoot();
5054 return;
5055 }
5056 }
5057 }
5058 }
5059 }
5060
5061 @SuppressWarnings("serial")
5062 static final class SearchMappingsTask<K,V,U>
5063 extends BulkTask<K,V,U> {
5064 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5065 final AtomicReference<U> result;
5066 SearchMappingsTask
5067 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5068 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5069 AtomicReference<U> result) {
5070 super(p, b, i, f, t);
5071 this.searchFunction = searchFunction; this.result = result;
5072 }
5073 public final U getRawResult() { return result.get(); }
5074 public final void compute() {
5075 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5076 final AtomicReference<U> result;
5077 if ((searchFunction = this.searchFunction) != null &&
5078 (result = this.result) != null) {
5079 for (int i = baseIndex, f, h; batch > 0 &&
5080 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5081 if (result.get() != null)
5082 return;
5083 addToPendingCount(1);
5084 new SearchMappingsTask<K,V,U>
5085 (this, batch >>>= 1, baseLimit = h, f, tab,
5086 searchFunction, result).fork();
5087 }
5088 while (result.get() == null) {
5089 U u;
5090 Node<K,V> p;
5091 if ((p = advance()) == null) {
5092 propagateCompletion();
5093 break;
5094 }
5095 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5096 if (result.compareAndSet(null, u))
5097 quietlyCompleteRoot();
5098 break;
5099 }
5100 }
5101 }
5102 }
5103 }
5104
5105 @SuppressWarnings("serial")
5106 static final class ReduceKeysTask<K,V>
5107 extends BulkTask<K,V,K> {
5108 final BiFunction<? super K, ? super K, ? extends K> reducer;
5109 K result;
5110 ReduceKeysTask<K,V> rights, nextRight;
5111 ReduceKeysTask
5112 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5113 ReduceKeysTask<K,V> nextRight,
5114 BiFunction<? super K, ? super K, ? extends K> reducer) {
5115 super(p, b, i, f, t); this.nextRight = nextRight;
5116 this.reducer = reducer;
5117 }
5118 public final K getRawResult() { return result; }
5119 public final void compute() {
5120 final BiFunction<? super K, ? super K, ? extends K> reducer;
5121 if ((reducer = this.reducer) != null) {
5122 for (int i = baseIndex, f, h; batch > 0 &&
5123 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5124 addToPendingCount(1);
5125 (rights = new ReduceKeysTask<K,V>
5126 (this, batch >>>= 1, baseLimit = h, f, tab,
5127 rights, reducer)).fork();
5128 }
5129 K r = null;
5130 for (Node<K,V> p; (p = advance()) != null; ) {
5131 K u = p.key;
5132 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5133 }
5134 result = r;
5135 CountedCompleter<?> c;
5136 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5137 @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5138 t = (ReduceKeysTask<K,V>)c,
5139 s = t.rights;
5140 while (s != null) {
5141 K tr, sr;
5142 if ((sr = s.result) != null)
5143 t.result = (((tr = t.result) == null) ? sr :
5144 reducer.apply(tr, sr));
5145 s = t.rights = s.nextRight;
5146 }
5147 }
5148 }
5149 }
5150 }
5151
5152 @SuppressWarnings("serial")
5153 static final class ReduceValuesTask<K,V>
5154 extends BulkTask<K,V,V> {
5155 final BiFunction<? super V, ? super V, ? extends V> reducer;
5156 V result;
5157 ReduceValuesTask<K,V> rights, nextRight;
5158 ReduceValuesTask
5159 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5160 ReduceValuesTask<K,V> nextRight,
5161 BiFunction<? super V, ? super V, ? extends V> reducer) {
5162 super(p, b, i, f, t); this.nextRight = nextRight;
5163 this.reducer = reducer;
5164 }
5165 public final V getRawResult() { return result; }
5166 public final void compute() {
5167 final BiFunction<? super V, ? super V, ? extends V> reducer;
5168 if ((reducer = this.reducer) != null) {
5169 for (int i = baseIndex, f, h; batch > 0 &&
5170 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5171 addToPendingCount(1);
5172 (rights = new ReduceValuesTask<K,V>
5173 (this, batch >>>= 1, baseLimit = h, f, tab,
5174 rights, reducer)).fork();
5175 }
5176 V r = null;
5177 for (Node<K,V> p; (p = advance()) != null; ) {
5178 V v = p.val;
5179 r = (r == null) ? v : reducer.apply(r, v);
5180 }
5181 result = r;
5182 CountedCompleter<?> c;
5183 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5184 @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5185 t = (ReduceValuesTask<K,V>)c,
5186 s = t.rights;
5187 while (s != null) {
5188 V tr, sr;
5189 if ((sr = s.result) != null)
5190 t.result = (((tr = t.result) == null) ? sr :
5191 reducer.apply(tr, sr));
5192 s = t.rights = s.nextRight;
5193 }
5194 }
5195 }
5196 }
5197 }
5198
5199 @SuppressWarnings("serial")
5200 static final class ReduceEntriesTask<K,V>
5201 extends BulkTask<K,V,Map.Entry<K,V>> {
5202 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5203 Map.Entry<K,V> result;
5204 ReduceEntriesTask<K,V> rights, nextRight;
5205 ReduceEntriesTask
5206 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5207 ReduceEntriesTask<K,V> nextRight,
5208 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5209 super(p, b, i, f, t); this.nextRight = nextRight;
5210 this.reducer = reducer;
5211 }
5212 public final Map.Entry<K,V> getRawResult() { return result; }
5213 public final void compute() {
5214 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5215 if ((reducer = this.reducer) != null) {
5216 for (int i = baseIndex, f, h; batch > 0 &&
5217 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5218 addToPendingCount(1);
5219 (rights = new ReduceEntriesTask<K,V>
5220 (this, batch >>>= 1, baseLimit = h, f, tab,
5221 rights, reducer)).fork();
5222 }
5223 Map.Entry<K,V> r = null;
5224 for (Node<K,V> p; (p = advance()) != null; )
5225 r = (r == null) ? p : reducer.apply(r, p);
5226 result = r;
5227 CountedCompleter<?> c;
5228 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5229 @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5230 t = (ReduceEntriesTask<K,V>)c,
5231 s = t.rights;
5232 while (s != null) {
5233 Map.Entry<K,V> tr, sr;
5234 if ((sr = s.result) != null)
5235 t.result = (((tr = t.result) == null) ? sr :
5236 reducer.apply(tr, sr));
5237 s = t.rights = s.nextRight;
5238 }
5239 }
5240 }
5241 }
5242 }
5243
5244 @SuppressWarnings("serial")
5245 static final class MapReduceKeysTask<K,V,U>
5246 extends BulkTask<K,V,U> {
5247 final Function<? super K, ? extends U> transformer;
5248 final BiFunction<? super U, ? super U, ? extends U> reducer;
5249 U result;
5250 MapReduceKeysTask<K,V,U> rights, nextRight;
5251 MapReduceKeysTask
5252 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5253 MapReduceKeysTask<K,V,U> nextRight,
5254 Function<? super K, ? extends U> transformer,
5255 BiFunction<? super U, ? super U, ? extends U> reducer) {
5256 super(p, b, i, f, t); this.nextRight = nextRight;
5257 this.transformer = transformer;
5258 this.reducer = reducer;
5259 }
5260 public final U getRawResult() { return result; }
5261 public final void compute() {
5262 final Function<? super K, ? extends U> transformer;
5263 final BiFunction<? super U, ? super U, ? extends U> reducer;
5264 if ((transformer = this.transformer) != null &&
5265 (reducer = this.reducer) != null) {
5266 for (int i = baseIndex, f, h; batch > 0 &&
5267 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5268 addToPendingCount(1);
5269 (rights = new MapReduceKeysTask<K,V,U>
5270 (this, batch >>>= 1, baseLimit = h, f, tab,
5271 rights, transformer, reducer)).fork();
5272 }
5273 U r = null;
5274 for (Node<K,V> p; (p = advance()) != null; ) {
5275 U u;
5276 if ((u = transformer.apply(p.key)) != null)
5277 r = (r == null) ? u : reducer.apply(r, u);
5278 }
5279 result = r;
5280 CountedCompleter<?> c;
5281 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5282 @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5283 t = (MapReduceKeysTask<K,V,U>)c,
5284 s = t.rights;
5285 while (s != null) {
5286 U tr, sr;
5287 if ((sr = s.result) != null)
5288 t.result = (((tr = t.result) == null) ? sr :
5289 reducer.apply(tr, sr));
5290 s = t.rights = s.nextRight;
5291 }
5292 }
5293 }
5294 }
5295 }
5296
5297 @SuppressWarnings("serial")
5298 static final class MapReduceValuesTask<K,V,U>
5299 extends BulkTask<K,V,U> {
5300 final Function<? super V, ? extends U> transformer;
5301 final BiFunction<? super U, ? super U, ? extends U> reducer;
5302 U result;
5303 MapReduceValuesTask<K,V,U> rights, nextRight;
5304 MapReduceValuesTask
5305 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5306 MapReduceValuesTask<K,V,U> nextRight,
5307 Function<? super V, ? extends U> transformer,
5308 BiFunction<? super U, ? super U, ? extends U> reducer) {
5309 super(p, b, i, f, t); this.nextRight = nextRight;
5310 this.transformer = transformer;
5311 this.reducer = reducer;
5312 }
5313 public final U getRawResult() { return result; }
5314 public final void compute() {
5315 final Function<? super V, ? extends U> transformer;
5316 final BiFunction<? super U, ? super U, ? extends U> reducer;
5317 if ((transformer = this.transformer) != null &&
5318 (reducer = this.reducer) != null) {
5319 for (int i = baseIndex, f, h; batch > 0 &&
5320 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5321 addToPendingCount(1);
5322 (rights = new MapReduceValuesTask<K,V,U>
5323 (this, batch >>>= 1, baseLimit = h, f, tab,
5324 rights, transformer, reducer)).fork();
5325 }
5326 U r = null;
5327 for (Node<K,V> p; (p = advance()) != null; ) {
5328 U u;
5329 if ((u = transformer.apply(p.val)) != null)
5330 r = (r == null) ? u : reducer.apply(r, u);
5331 }
5332 result = r;
5333 CountedCompleter<?> c;
5334 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5335 @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5336 t = (MapReduceValuesTask<K,V,U>)c,
5337 s = t.rights;
5338 while (s != null) {
5339 U tr, sr;
5340 if ((sr = s.result) != null)
5341 t.result = (((tr = t.result) == null) ? sr :
5342 reducer.apply(tr, sr));
5343 s = t.rights = s.nextRight;
5344 }
5345 }
5346 }
5347 }
5348 }
5349
5350 @SuppressWarnings("serial")
5351 static final class MapReduceEntriesTask<K,V,U>
5352 extends BulkTask<K,V,U> {
5353 final Function<Map.Entry<K,V>, ? extends U> transformer;
5354 final BiFunction<? super U, ? super U, ? extends U> reducer;
5355 U result;
5356 MapReduceEntriesTask<K,V,U> rights, nextRight;
5357 MapReduceEntriesTask
5358 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5359 MapReduceEntriesTask<K,V,U> nextRight,
5360 Function<Map.Entry<K,V>, ? extends U> transformer,
5361 BiFunction<? super U, ? super U, ? extends U> reducer) {
5362 super(p, b, i, f, t); this.nextRight = nextRight;
5363 this.transformer = transformer;
5364 this.reducer = reducer;
5365 }
5366 public final U getRawResult() { return result; }
5367 public final void compute() {
5368 final Function<Map.Entry<K,V>, ? extends U> transformer;
5369 final BiFunction<? super U, ? super U, ? extends U> reducer;
5370 if ((transformer = this.transformer) != null &&
5371 (reducer = this.reducer) != null) {
5372 for (int i = baseIndex, f, h; batch > 0 &&
5373 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5374 addToPendingCount(1);
5375 (rights = new MapReduceEntriesTask<K,V,U>
5376 (this, batch >>>= 1, baseLimit = h, f, tab,
5377 rights, transformer, reducer)).fork();
5378 }
5379 U r = null;
5380 for (Node<K,V> p; (p = advance()) != null; ) {
5381 U u;
5382 if ((u = transformer.apply(p)) != null)
5383 r = (r == null) ? u : reducer.apply(r, u);
5384 }
5385 result = r;
5386 CountedCompleter<?> c;
5387 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5388 @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5389 t = (MapReduceEntriesTask<K,V,U>)c,
5390 s = t.rights;
5391 while (s != null) {
5392 U tr, sr;
5393 if ((sr = s.result) != null)
5394 t.result = (((tr = t.result) == null) ? sr :
5395 reducer.apply(tr, sr));
5396 s = t.rights = s.nextRight;
5397 }
5398 }
5399 }
5400 }
5401 }
5402
5403 @SuppressWarnings("serial")
5404 static final class MapReduceMappingsTask<K,V,U>
5405 extends BulkTask<K,V,U> {
5406 final BiFunction<? super K, ? super V, ? extends U> transformer;
5407 final BiFunction<? super U, ? super U, ? extends U> reducer;
5408 U result;
5409 MapReduceMappingsTask<K,V,U> rights, nextRight;
5410 MapReduceMappingsTask
5411 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5412 MapReduceMappingsTask<K,V,U> nextRight,
5413 BiFunction<? super K, ? super V, ? extends U> transformer,
5414 BiFunction<? super U, ? super U, ? extends U> reducer) {
5415 super(p, b, i, f, t); this.nextRight = nextRight;
5416 this.transformer = transformer;
5417 this.reducer = reducer;
5418 }
5419 public final U getRawResult() { return result; }
5420 public final void compute() {
5421 final BiFunction<? super K, ? super V, ? extends U> transformer;
5422 final BiFunction<? super U, ? super U, ? extends U> reducer;
5423 if ((transformer = this.transformer) != null &&
5424 (reducer = this.reducer) != null) {
5425 for (int i = baseIndex, f, h; batch > 0 &&
5426 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5427 addToPendingCount(1);
5428 (rights = new MapReduceMappingsTask<K,V,U>
5429 (this, batch >>>= 1, baseLimit = h, f, tab,
5430 rights, transformer, reducer)).fork();
5431 }
5432 U r = null;
5433 for (Node<K,V> p; (p = advance()) != null; ) {
5434 U u;
5435 if ((u = transformer.apply(p.key, p.val)) != null)
5436 r = (r == null) ? u : reducer.apply(r, u);
5437 }
5438 result = r;
5439 CountedCompleter<?> c;
5440 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5441 @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5442 t = (MapReduceMappingsTask<K,V,U>)c,
5443 s = t.rights;
5444 while (s != null) {
5445 U tr, sr;
5446 if ((sr = s.result) != null)
5447 t.result = (((tr = t.result) == null) ? sr :
5448 reducer.apply(tr, sr));
5449 s = t.rights = s.nextRight;
5450 }
5451 }
5452 }
5453 }
5454 }
5455
5456 @SuppressWarnings("serial")
5457 static final class MapReduceKeysToDoubleTask<K,V>
5458 extends BulkTask<K,V,Double> {
5459 final ToDoubleFunction<? super K> transformer;
5460 final DoubleBinaryOperator reducer;
5461 final double basis;
5462 double result;
5463 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5464 MapReduceKeysToDoubleTask
5465 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5466 MapReduceKeysToDoubleTask<K,V> nextRight,
5467 ToDoubleFunction<? super K> transformer,
5468 double basis,
5469 DoubleBinaryOperator reducer) {
5470 super(p, b, i, f, t); this.nextRight = nextRight;
5471 this.transformer = transformer;
5472 this.basis = basis; this.reducer = reducer;
5473 }
5474 public final Double getRawResult() { return result; }
5475 public final void compute() {
5476 final ToDoubleFunction<? super K> transformer;
5477 final DoubleBinaryOperator reducer;
5478 if ((transformer = this.transformer) != null &&
5479 (reducer = this.reducer) != null) {
5480 double r = this.basis;
5481 for (int i = baseIndex, f, h; batch > 0 &&
5482 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5483 addToPendingCount(1);
5484 (rights = new MapReduceKeysToDoubleTask<K,V>
5485 (this, batch >>>= 1, baseLimit = h, f, tab,
5486 rights, transformer, r, reducer)).fork();
5487 }
5488 for (Node<K,V> p; (p = advance()) != null; )
5489 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5490 result = r;
5491 CountedCompleter<?> c;
5492 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5493 @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5494 t = (MapReduceKeysToDoubleTask<K,V>)c,
5495 s = t.rights;
5496 while (s != null) {
5497 t.result = reducer.applyAsDouble(t.result, s.result);
5498 s = t.rights = s.nextRight;
5499 }
5500 }
5501 }
5502 }
5503 }
5504
5505 @SuppressWarnings("serial")
5506 static final class MapReduceValuesToDoubleTask<K,V>
5507 extends BulkTask<K,V,Double> {
5508 final ToDoubleFunction<? super V> transformer;
5509 final DoubleBinaryOperator reducer;
5510 final double basis;
5511 double result;
5512 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5513 MapReduceValuesToDoubleTask
5514 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5515 MapReduceValuesToDoubleTask<K,V> nextRight,
5516 ToDoubleFunction<? super V> transformer,
5517 double basis,
5518 DoubleBinaryOperator reducer) {
5519 super(p, b, i, f, t); this.nextRight = nextRight;
5520 this.transformer = transformer;
5521 this.basis = basis; this.reducer = reducer;
5522 }
5523 public final Double getRawResult() { return result; }
5524 public final void compute() {
5525 final ToDoubleFunction<? super V> transformer;
5526 final DoubleBinaryOperator reducer;
5527 if ((transformer = this.transformer) != null &&
5528 (reducer = this.reducer) != null) {
5529 double r = this.basis;
5530 for (int i = baseIndex, f, h; batch > 0 &&
5531 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5532 addToPendingCount(1);
5533 (rights = new MapReduceValuesToDoubleTask<K,V>
5534 (this, batch >>>= 1, baseLimit = h, f, tab,
5535 rights, transformer, r, reducer)).fork();
5536 }
5537 for (Node<K,V> p; (p = advance()) != null; )
5538 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5539 result = r;
5540 CountedCompleter<?> c;
5541 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5542 @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5543 t = (MapReduceValuesToDoubleTask<K,V>)c,
5544 s = t.rights;
5545 while (s != null) {
5546 t.result = reducer.applyAsDouble(t.result, s.result);
5547 s = t.rights = s.nextRight;
5548 }
5549 }
5550 }
5551 }
5552 }
5553
5554 @SuppressWarnings("serial")
5555 static final class MapReduceEntriesToDoubleTask<K,V>
5556 extends BulkTask<K,V,Double> {
5557 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5558 final DoubleBinaryOperator reducer;
5559 final double basis;
5560 double result;
5561 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5562 MapReduceEntriesToDoubleTask
5563 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5564 MapReduceEntriesToDoubleTask<K,V> nextRight,
5565 ToDoubleFunction<Map.Entry<K,V>> transformer,
5566 double basis,
5567 DoubleBinaryOperator reducer) {
5568 super(p, b, i, f, t); this.nextRight = nextRight;
5569 this.transformer = transformer;
5570 this.basis = basis; this.reducer = reducer;
5571 }
5572 public final Double getRawResult() { return result; }
5573 public final void compute() {
5574 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5575 final DoubleBinaryOperator reducer;
5576 if ((transformer = this.transformer) != null &&
5577 (reducer = this.reducer) != null) {
5578 double r = this.basis;
5579 for (int i = baseIndex, f, h; batch > 0 &&
5580 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5581 addToPendingCount(1);
5582 (rights = new MapReduceEntriesToDoubleTask<K,V>
5583 (this, batch >>>= 1, baseLimit = h, f, tab,
5584 rights, transformer, r, reducer)).fork();
5585 }
5586 for (Node<K,V> p; (p = advance()) != null; )
5587 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5588 result = r;
5589 CountedCompleter<?> c;
5590 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5591 @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5592 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5593 s = t.rights;
5594 while (s != null) {
5595 t.result = reducer.applyAsDouble(t.result, s.result);
5596 s = t.rights = s.nextRight;
5597 }
5598 }
5599 }
5600 }
5601 }
5602
5603 @SuppressWarnings("serial")
5604 static final class MapReduceMappingsToDoubleTask<K,V>
5605 extends BulkTask<K,V,Double> {
5606 final ToDoubleBiFunction<? super K, ? super V> transformer;
5607 final DoubleBinaryOperator reducer;
5608 final double basis;
5609 double result;
5610 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5611 MapReduceMappingsToDoubleTask
5612 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5613 MapReduceMappingsToDoubleTask<K,V> nextRight,
5614 ToDoubleBiFunction<? super K, ? super V> transformer,
5615 double basis,
5616 DoubleBinaryOperator reducer) {
5617 super(p, b, i, f, t); this.nextRight = nextRight;
5618 this.transformer = transformer;
5619 this.basis = basis; this.reducer = reducer;
5620 }
5621 public final Double getRawResult() { return result; }
5622 public final void compute() {
5623 final ToDoubleBiFunction<? super K, ? super V> transformer;
5624 final DoubleBinaryOperator reducer;
5625 if ((transformer = this.transformer) != null &&
5626 (reducer = this.reducer) != null) {
5627 double r = this.basis;
5628 for (int i = baseIndex, f, h; batch > 0 &&
5629 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5630 addToPendingCount(1);
5631 (rights = new MapReduceMappingsToDoubleTask<K,V>
5632 (this, batch >>>= 1, baseLimit = h, f, tab,
5633 rights, transformer, r, reducer)).fork();
5634 }
5635 for (Node<K,V> p; (p = advance()) != null; )
5636 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5637 result = r;
5638 CountedCompleter<?> c;
5639 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5640 @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5641 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5642 s = t.rights;
5643 while (s != null) {
5644 t.result = reducer.applyAsDouble(t.result, s.result);
5645 s = t.rights = s.nextRight;
5646 }
5647 }
5648 }
5649 }
5650 }
5651
5652 @SuppressWarnings("serial")
5653 static final class MapReduceKeysToLongTask<K,V>
5654 extends BulkTask<K,V,Long> {
5655 final ToLongFunction<? super K> transformer;
5656 final LongBinaryOperator reducer;
5657 final long basis;
5658 long result;
5659 MapReduceKeysToLongTask<K,V> rights, nextRight;
5660 MapReduceKeysToLongTask
5661 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5662 MapReduceKeysToLongTask<K,V> nextRight,
5663 ToLongFunction<? super K> transformer,
5664 long basis,
5665 LongBinaryOperator reducer) {
5666 super(p, b, i, f, t); this.nextRight = nextRight;
5667 this.transformer = transformer;
5668 this.basis = basis; this.reducer = reducer;
5669 }
5670 public final Long getRawResult() { return result; }
5671 public final void compute() {
5672 final ToLongFunction<? super K> transformer;
5673 final LongBinaryOperator reducer;
5674 if ((transformer = this.transformer) != null &&
5675 (reducer = this.reducer) != null) {
5676 long r = this.basis;
5677 for (int i = baseIndex, f, h; batch > 0 &&
5678 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5679 addToPendingCount(1);
5680 (rights = new MapReduceKeysToLongTask<K,V>
5681 (this, batch >>>= 1, baseLimit = h, f, tab,
5682 rights, transformer, r, reducer)).fork();
5683 }
5684 for (Node<K,V> p; (p = advance()) != null; )
5685 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5686 result = r;
5687 CountedCompleter<?> c;
5688 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5689 @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5690 t = (MapReduceKeysToLongTask<K,V>)c,
5691 s = t.rights;
5692 while (s != null) {
5693 t.result = reducer.applyAsLong(t.result, s.result);
5694 s = t.rights = s.nextRight;
5695 }
5696 }
5697 }
5698 }
5699 }
5700
5701 @SuppressWarnings("serial")
5702 static final class MapReduceValuesToLongTask<K,V>
5703 extends BulkTask<K,V,Long> {
5704 final ToLongFunction<? super V> transformer;
5705 final LongBinaryOperator reducer;
5706 final long basis;
5707 long result;
5708 MapReduceValuesToLongTask<K,V> rights, nextRight;
5709 MapReduceValuesToLongTask
5710 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5711 MapReduceValuesToLongTask<K,V> nextRight,
5712 ToLongFunction<? super V> transformer,
5713 long basis,
5714 LongBinaryOperator reducer) {
5715 super(p, b, i, f, t); this.nextRight = nextRight;
5716 this.transformer = transformer;
5717 this.basis = basis; this.reducer = reducer;
5718 }
5719 public final Long getRawResult() { return result; }
5720 public final void compute() {
5721 final ToLongFunction<? super V> transformer;
5722 final LongBinaryOperator reducer;
5723 if ((transformer = this.transformer) != null &&
5724 (reducer = this.reducer) != null) {
5725 long r = this.basis;
5726 for (int i = baseIndex, f, h; batch > 0 &&
5727 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5728 addToPendingCount(1);
5729 (rights = new MapReduceValuesToLongTask<K,V>
5730 (this, batch >>>= 1, baseLimit = h, f, tab,
5731 rights, transformer, r, reducer)).fork();
5732 }
5733 for (Node<K,V> p; (p = advance()) != null; )
5734 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5735 result = r;
5736 CountedCompleter<?> c;
5737 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5738 @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5739 t = (MapReduceValuesToLongTask<K,V>)c,
5740 s = t.rights;
5741 while (s != null) {
5742 t.result = reducer.applyAsLong(t.result, s.result);
5743 s = t.rights = s.nextRight;
5744 }
5745 }
5746 }
5747 }
5748 }
5749
5750 @SuppressWarnings("serial")
5751 static final class MapReduceEntriesToLongTask<K,V>
5752 extends BulkTask<K,V,Long> {
5753 final ToLongFunction<Map.Entry<K,V>> transformer;
5754 final LongBinaryOperator reducer;
5755 final long basis;
5756 long result;
5757 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5758 MapReduceEntriesToLongTask
5759 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5760 MapReduceEntriesToLongTask<K,V> nextRight,
5761 ToLongFunction<Map.Entry<K,V>> transformer,
5762 long basis,
5763 LongBinaryOperator reducer) {
5764 super(p, b, i, f, t); this.nextRight = nextRight;
5765 this.transformer = transformer;
5766 this.basis = basis; this.reducer = reducer;
5767 }
5768 public final Long getRawResult() { return result; }
5769 public final void compute() {
5770 final ToLongFunction<Map.Entry<K,V>> transformer;
5771 final LongBinaryOperator reducer;
5772 if ((transformer = this.transformer) != null &&
5773 (reducer = this.reducer) != null) {
5774 long r = this.basis;
5775 for (int i = baseIndex, f, h; batch > 0 &&
5776 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5777 addToPendingCount(1);
5778 (rights = new MapReduceEntriesToLongTask<K,V>
5779 (this, batch >>>= 1, baseLimit = h, f, tab,
5780 rights, transformer, r, reducer)).fork();
5781 }
5782 for (Node<K,V> p; (p = advance()) != null; )
5783 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5784 result = r;
5785 CountedCompleter<?> c;
5786 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5787 @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5788 t = (MapReduceEntriesToLongTask<K,V>)c,
5789 s = t.rights;
5790 while (s != null) {
5791 t.result = reducer.applyAsLong(t.result, s.result);
5792 s = t.rights = s.nextRight;
5793 }
5794 }
5795 }
5796 }
5797 }
5798
5799 @SuppressWarnings("serial")
5800 static final class MapReduceMappingsToLongTask<K,V>
5801 extends BulkTask<K,V,Long> {
5802 final ToLongBiFunction<? super K, ? super V> transformer;
5803 final LongBinaryOperator reducer;
5804 final long basis;
5805 long result;
5806 MapReduceMappingsToLongTask<K,V> rights, nextRight;
5807 MapReduceMappingsToLongTask
5808 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5809 MapReduceMappingsToLongTask<K,V> nextRight,
5810 ToLongBiFunction<? super K, ? super V> transformer,
5811 long basis,
5812 LongBinaryOperator reducer) {
5813 super(p, b, i, f, t); this.nextRight = nextRight;
5814 this.transformer = transformer;
5815 this.basis = basis; this.reducer = reducer;
5816 }
5817 public final Long getRawResult() { return result; }
5818 public final void compute() {
5819 final ToLongBiFunction<? super K, ? super V> transformer;
5820 final LongBinaryOperator reducer;
5821 if ((transformer = this.transformer) != null &&
5822 (reducer = this.reducer) != null) {
5823 long r = this.basis;
5824 for (int i = baseIndex, f, h; batch > 0 &&
5825 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5826 addToPendingCount(1);
5827 (rights = new MapReduceMappingsToLongTask<K,V>
5828 (this, batch >>>= 1, baseLimit = h, f, tab,
5829 rights, transformer, r, reducer)).fork();
5830 }
5831 for (Node<K,V> p; (p = advance()) != null; )
5832 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
5833 result = r;
5834 CountedCompleter<?> c;
5835 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5836 @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5837 t = (MapReduceMappingsToLongTask<K,V>)c,
5838 s = t.rights;
5839 while (s != null) {
5840 t.result = reducer.applyAsLong(t.result, s.result);
5841 s = t.rights = s.nextRight;
5842 }
5843 }
5844 }
5845 }
5846 }
5847
5848 @SuppressWarnings("serial")
5849 static final class MapReduceKeysToIntTask<K,V>
5850 extends BulkTask<K,V,Integer> {
5851 final ToIntFunction<? super K> transformer;
5852 final IntBinaryOperator reducer;
5853 final int basis;
5854 int result;
5855 MapReduceKeysToIntTask<K,V> rights, nextRight;
5856 MapReduceKeysToIntTask
5857 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5858 MapReduceKeysToIntTask<K,V> nextRight,
5859 ToIntFunction<? super K> transformer,
5860 int basis,
5861 IntBinaryOperator reducer) {
5862 super(p, b, i, f, t); this.nextRight = nextRight;
5863 this.transformer = transformer;
5864 this.basis = basis; this.reducer = reducer;
5865 }
5866 public final Integer getRawResult() { return result; }
5867 public final void compute() {
5868 final ToIntFunction<? super K> transformer;
5869 final IntBinaryOperator reducer;
5870 if ((transformer = this.transformer) != null &&
5871 (reducer = this.reducer) != null) {
5872 int r = this.basis;
5873 for (int i = baseIndex, f, h; batch > 0 &&
5874 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5875 addToPendingCount(1);
5876 (rights = new MapReduceKeysToIntTask<K,V>
5877 (this, batch >>>= 1, baseLimit = h, f, tab,
5878 rights, transformer, r, reducer)).fork();
5879 }
5880 for (Node<K,V> p; (p = advance()) != null; )
5881 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
5882 result = r;
5883 CountedCompleter<?> c;
5884 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5885 @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5886 t = (MapReduceKeysToIntTask<K,V>)c,
5887 s = t.rights;
5888 while (s != null) {
5889 t.result = reducer.applyAsInt(t.result, s.result);
5890 s = t.rights = s.nextRight;
5891 }
5892 }
5893 }
5894 }
5895 }
5896
5897 @SuppressWarnings("serial")
5898 static final class MapReduceValuesToIntTask<K,V>
5899 extends BulkTask<K,V,Integer> {
5900 final ToIntFunction<? super V> transformer;
5901 final IntBinaryOperator reducer;
5902 final int basis;
5903 int result;
5904 MapReduceValuesToIntTask<K,V> rights, nextRight;
5905 MapReduceValuesToIntTask
5906 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5907 MapReduceValuesToIntTask<K,V> nextRight,
5908 ToIntFunction<? super V> transformer,
5909 int basis,
5910 IntBinaryOperator reducer) {
5911 super(p, b, i, f, t); this.nextRight = nextRight;
5912 this.transformer = transformer;
5913 this.basis = basis; this.reducer = reducer;
5914 }
5915 public final Integer getRawResult() { return result; }
5916 public final void compute() {
5917 final ToIntFunction<? super V> transformer;
5918 final IntBinaryOperator reducer;
5919 if ((transformer = this.transformer) != null &&
5920 (reducer = this.reducer) != null) {
5921 int r = this.basis;
5922 for (int i = baseIndex, f, h; batch > 0 &&
5923 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5924 addToPendingCount(1);
5925 (rights = new MapReduceValuesToIntTask<K,V>
5926 (this, batch >>>= 1, baseLimit = h, f, tab,
5927 rights, transformer, r, reducer)).fork();
5928 }
5929 for (Node<K,V> p; (p = advance()) != null; )
5930 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
5931 result = r;
5932 CountedCompleter<?> c;
5933 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5934 @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5935 t = (MapReduceValuesToIntTask<K,V>)c,
5936 s = t.rights;
5937 while (s != null) {
5938 t.result = reducer.applyAsInt(t.result, s.result);
5939 s = t.rights = s.nextRight;
5940 }
5941 }
5942 }
5943 }
5944 }
5945
5946 @SuppressWarnings("serial")
5947 static final class MapReduceEntriesToIntTask<K,V>
5948 extends BulkTask<K,V,Integer> {
5949 final ToIntFunction<Map.Entry<K,V>> transformer;
5950 final IntBinaryOperator reducer;
5951 final int basis;
5952 int result;
5953 MapReduceEntriesToIntTask<K,V> rights, nextRight;
5954 MapReduceEntriesToIntTask
5955 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5956 MapReduceEntriesToIntTask<K,V> nextRight,
5957 ToIntFunction<Map.Entry<K,V>> transformer,
5958 int basis,
5959 IntBinaryOperator reducer) {
5960 super(p, b, i, f, t); this.nextRight = nextRight;
5961 this.transformer = transformer;
5962 this.basis = basis; this.reducer = reducer;
5963 }
5964 public final Integer getRawResult() { return result; }
5965 public final void compute() {
5966 final ToIntFunction<Map.Entry<K,V>> transformer;
5967 final IntBinaryOperator reducer;
5968 if ((transformer = this.transformer) != null &&
5969 (reducer = this.reducer) != null) {
5970 int r = this.basis;
5971 for (int i = baseIndex, f, h; batch > 0 &&
5972 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5973 addToPendingCount(1);
5974 (rights = new MapReduceEntriesToIntTask<K,V>
5975 (this, batch >>>= 1, baseLimit = h, f, tab,
5976 rights, transformer, r, reducer)).fork();
5977 }
5978 for (Node<K,V> p; (p = advance()) != null; )
5979 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
5980 result = r;
5981 CountedCompleter<?> c;
5982 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5983 @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
5984 t = (MapReduceEntriesToIntTask<K,V>)c,
5985 s = t.rights;
5986 while (s != null) {
5987 t.result = reducer.applyAsInt(t.result, s.result);
5988 s = t.rights = s.nextRight;
5989 }
5990 }
5991 }
5992 }
5993 }
5994
5995 @SuppressWarnings("serial")
5996 static final class MapReduceMappingsToIntTask<K,V>
5997 extends BulkTask<K,V,Integer> {
5998 final ToIntBiFunction<? super K, ? super V> transformer;
5999 final IntBinaryOperator reducer;
6000 final int basis;
6001 int result;
6002 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6003 MapReduceMappingsToIntTask
6004 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6005 MapReduceMappingsToIntTask<K,V> nextRight,
6006 ToIntBiFunction<? super K, ? super V> transformer,
6007 int basis,
6008 IntBinaryOperator reducer) {
6009 super(p, b, i, f, t); this.nextRight = nextRight;
6010 this.transformer = transformer;
6011 this.basis = basis; this.reducer = reducer;
6012 }
6013 public final Integer getRawResult() { return result; }
6014 public final void compute() {
6015 final ToIntBiFunction<? super K, ? super V> transformer;
6016 final IntBinaryOperator reducer;
6017 if ((transformer = this.transformer) != null &&
6018 (reducer = this.reducer) != null) {
6019 int r = this.basis;
6020 for (int i = baseIndex, f, h; batch > 0 &&
6021 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6022 addToPendingCount(1);
6023 (rights = new MapReduceMappingsToIntTask<K,V>
6024 (this, batch >>>= 1, baseLimit = h, f, tab,
6025 rights, transformer, r, reducer)).fork();
6026 }
6027 for (Node<K,V> p; (p = advance()) != null; )
6028 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6029 result = r;
6030 CountedCompleter<?> c;
6031 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6032 @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6033 t = (MapReduceMappingsToIntTask<K,V>)c,
6034 s = t.rights;
6035 while (s != null) {
6036 t.result = reducer.applyAsInt(t.result, s.result);
6037 s = t.rights = s.nextRight;
6038 }
6039 }
6040 }
6041 }
6042 }
6043
6044 // Unsafe mechanics
6045 private static final sun.misc.Unsafe U;
6046 private static final long SIZECTL;
6047 private static final long TRANSFERINDEX;
6048 private static final long TRANSFERORIGIN;
6049 private static final long BASECOUNT;
6050 private static final long CELLSBUSY;
6051 private static final long CELLVALUE;
6052 private static final long ABASE;
6053 private static final int ASHIFT;
6054
6055 static {
6056 try {
6057 U = sun.misc.Unsafe.getUnsafe();
6058 Class<?> k = ConcurrentHashMap.class;
6059 SIZECTL = U.objectFieldOffset
6060 (k.getDeclaredField("sizeCtl"));
6061 TRANSFERINDEX = U.objectFieldOffset
6062 (k.getDeclaredField("transferIndex"));
6063 TRANSFERORIGIN = U.objectFieldOffset
6064 (k.getDeclaredField("transferOrigin"));
6065 BASECOUNT = U.objectFieldOffset
6066 (k.getDeclaredField("baseCount"));
6067 CELLSBUSY = U.objectFieldOffset
6068 (k.getDeclaredField("cellsBusy"));
6069 Class<?> ck = CounterCell.class;
6070 CELLVALUE = U.objectFieldOffset
6071 (ck.getDeclaredField("value"));
6072 Class<?> ak = Node[].class;
6073 ABASE = U.arrayBaseOffset(ak);
6074 int scale = U.arrayIndexScale(ak);
6075 if ((scale & (scale - 1)) != 0)
6076 throw new Error("data type scale not a power of two");
6077 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6078 } catch (Exception e) {
6079 throw new Error(e);
6080 }
6081 }
6082 }