ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.234
Committed: Thu Jul 4 18:33:59 2013 UTC (10 years, 11 months ago) by dl
Branch: MAIN
Changes since 1.233: +31 -16 lines
Log Message:
Avoid unbounded recursion

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.io.Serializable;
11 import java.lang.reflect.ParameterizedType;
12 import java.lang.reflect.Type;
13 import java.util.Arrays;
14 import java.util.Collection;
15 import java.util.Comparator;
16 import java.util.ConcurrentModificationException;
17 import java.util.Enumeration;
18 import java.util.HashMap;
19 import java.util.Hashtable;
20 import java.util.Iterator;
21 import java.util.Map;
22 import java.util.NoSuchElementException;
23 import java.util.Set;
24 import java.util.Spliterator;
25 import java.util.concurrent.ConcurrentMap;
26 import java.util.concurrent.ForkJoinPool;
27 import java.util.concurrent.atomic.AtomicReference;
28 import java.util.concurrent.locks.LockSupport;
29 import java.util.concurrent.locks.ReentrantLock;
30 import java.util.function.BiConsumer;
31 import java.util.function.BiFunction;
32 import java.util.function.BinaryOperator;
33 import java.util.function.Consumer;
34 import java.util.function.DoubleBinaryOperator;
35 import java.util.function.Function;
36 import java.util.function.IntBinaryOperator;
37 import java.util.function.LongBinaryOperator;
38 import java.util.function.ToDoubleBiFunction;
39 import java.util.function.ToDoubleFunction;
40 import java.util.function.ToIntBiFunction;
41 import java.util.function.ToIntFunction;
42 import java.util.function.ToLongBiFunction;
43 import java.util.function.ToLongFunction;
44 import java.util.stream.Stream;
45
46 /**
47 * A hash table supporting full concurrency of retrievals and
48 * high expected concurrency for updates. This class obeys the
49 * same functional specification as {@link java.util.Hashtable}, and
50 * includes versions of methods corresponding to each method of
51 * {@code Hashtable}. However, even though all operations are
52 * thread-safe, retrieval operations do <em>not</em> entail locking,
53 * and there is <em>not</em> any support for locking the entire table
54 * in a way that prevents all access. This class is fully
55 * interoperable with {@code Hashtable} in programs that rely on its
56 * thread safety but not on its synchronization details.
57 *
58 * <p>Retrieval operations (including {@code get}) generally do not
59 * block, so may overlap with update operations (including {@code put}
60 * and {@code remove}). Retrievals reflect the results of the most
61 * recently <em>completed</em> update operations holding upon their
62 * onset. (More formally, an update operation for a given key bears a
63 * <em>happens-before</em> relation with any (non-null) retrieval for
64 * that key reporting the updated value.) For aggregate operations
65 * such as {@code putAll} and {@code clear}, concurrent retrievals may
66 * reflect insertion or removal of only some entries. Similarly,
67 * Iterators and Enumerations return elements reflecting the state of
68 * the hash table at some point at or since the creation of the
69 * iterator/enumeration. They do <em>not</em> throw {@link
70 * ConcurrentModificationException}. However, iterators are designed
71 * to be used by only one thread at a time. Bear in mind that the
72 * results of aggregate status methods including {@code size}, {@code
73 * isEmpty}, and {@code containsValue} are typically useful only when
74 * a map is not undergoing concurrent updates in other threads.
75 * Otherwise the results of these methods reflect transient states
76 * that may be adequate for monitoring or estimation purposes, but not
77 * for program control.
78 *
79 * <p>The table is dynamically expanded when there are too many
80 * collisions (i.e., keys that have distinct hash codes but fall into
81 * the same slot modulo the table size), with the expected average
82 * effect of maintaining roughly two bins per mapping (corresponding
83 * to a 0.75 load factor threshold for resizing). There may be much
84 * variance around this average as mappings are added and removed, but
85 * overall, this maintains a commonly accepted time/space tradeoff for
86 * hash tables. However, resizing this or any other kind of hash
87 * table may be a relatively slow operation. When possible, it is a
88 * good idea to provide a size estimate as an optional {@code
89 * initialCapacity} constructor argument. An additional optional
90 * {@code loadFactor} constructor argument provides a further means of
91 * customizing initial table capacity by specifying the table density
92 * to be used in calculating the amount of space to allocate for the
93 * given number of elements. Also, for compatibility with previous
94 * versions of this class, constructors may optionally specify an
95 * expected {@code concurrencyLevel} as an additional hint for
96 * internal sizing. Note that using many keys with exactly the same
97 * {@code hashCode()} is a sure way to slow down performance of any
98 * hash table. To ameliorate impact, when keys are {@link Comparable},
99 * this class may use comparison order among keys to help break ties.
100 *
101 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
102 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
103 * (using {@link #keySet(Object)} when only keys are of interest, and the
104 * mapped values are (perhaps transiently) not used or all take the
105 * same mapping value.
106 *
107 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
108 * form of histogram or multiset) by using {@link
109 * java.util.concurrent.atomic.LongAdder} values and initializing via
110 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
111 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
112 * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
113 *
114 * <p>This class and its views and iterators implement all of the
115 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
116 * interfaces.
117 *
118 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
119 * does <em>not</em> allow {@code null} to be used as a key or value.
120 *
121 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
122 * operations that, unlike most {@link Stream} methods, are designed
123 * to be safely, and often sensibly, applied even with maps that are
124 * being concurrently updated by other threads; for example, when
125 * computing a snapshot summary of the values in a shared registry.
126 * There are three kinds of operation, each with four forms, accepting
127 * functions with Keys, Values, Entries, and (Key, Value) arguments
128 * and/or return values. Because the elements of a ConcurrentHashMap
129 * are not ordered in any particular way, and may be processed in
130 * different orders in different parallel executions, the correctness
131 * of supplied functions should not depend on any ordering, or on any
132 * other objects or values that may transiently change while
133 * computation is in progress; and except for forEach actions, should
134 * ideally be side-effect-free. Bulk operations on {@link Map.Entry}
135 * objects do not support method {@code setValue}.
136 *
137 * <ul>
138 * <li> forEach: Perform a given action on each element.
139 * A variant form applies a given transformation on each element
140 * before performing the action.</li>
141 *
142 * <li> search: Return the first available non-null result of
143 * applying a given function on each element; skipping further
144 * search when a result is found.</li>
145 *
146 * <li> reduce: Accumulate each element. The supplied reduction
147 * function cannot rely on ordering (more formally, it should be
148 * both associative and commutative). There are five variants:
149 *
150 * <ul>
151 *
152 * <li> Plain reductions. (There is not a form of this method for
153 * (key, value) function arguments since there is no corresponding
154 * return type.)</li>
155 *
156 * <li> Mapped reductions that accumulate the results of a given
157 * function applied to each element.</li>
158 *
159 * <li> Reductions to scalar doubles, longs, and ints, using a
160 * given basis value.</li>
161 *
162 * </ul>
163 * </li>
164 * </ul>
165 *
166 * <p>These bulk operations accept a {@code parallelismThreshold}
167 * argument. Methods proceed sequentially if the current map size is
168 * estimated to be less than the given threshold. Using a value of
169 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
170 * of {@code 1} results in maximal parallelism by partitioning into
171 * enough subtasks to fully utilize the {@link
172 * ForkJoinPool#commonPool()} that is used for all parallel
173 * computations. Normally, you would initially choose one of these
174 * extreme values, and then measure performance of using in-between
175 * values that trade off overhead versus throughput.
176 *
177 * <p>The concurrency properties of bulk operations follow
178 * from those of ConcurrentHashMap: Any non-null result returned
179 * from {@code get(key)} and related access methods bears a
180 * happens-before relation with the associated insertion or
181 * update. The result of any bulk operation reflects the
182 * composition of these per-element relations (but is not
183 * necessarily atomic with respect to the map as a whole unless it
184 * is somehow known to be quiescent). Conversely, because keys
185 * and values in the map are never null, null serves as a reliable
186 * atomic indicator of the current lack of any result. To
187 * maintain this property, null serves as an implicit basis for
188 * all non-scalar reduction operations. For the double, long, and
189 * int versions, the basis should be one that, when combined with
190 * any other value, returns that other value (more formally, it
191 * should be the identity element for the reduction). Most common
192 * reductions have these properties; for example, computing a sum
193 * with basis 0 or a minimum with basis MAX_VALUE.
194 *
195 * <p>Search and transformation functions provided as arguments
196 * should similarly return null to indicate the lack of any result
197 * (in which case it is not used). In the case of mapped
198 * reductions, this also enables transformations to serve as
199 * filters, returning null (or, in the case of primitive
200 * specializations, the identity basis) if the element should not
201 * be combined. You can create compound transformations and
202 * filterings by composing them yourself under this "null means
203 * there is nothing there now" rule before using them in search or
204 * reduce operations.
205 *
206 * <p>Methods accepting and/or returning Entry arguments maintain
207 * key-value associations. They may be useful for example when
208 * finding the key for the greatest value. Note that "plain" Entry
209 * arguments can be supplied using {@code new
210 * AbstractMap.SimpleEntry(k,v)}.
211 *
212 * <p>Bulk operations may complete abruptly, throwing an
213 * exception encountered in the application of a supplied
214 * function. Bear in mind when handling such exceptions that other
215 * concurrently executing functions could also have thrown
216 * exceptions, or would have done so if the first exception had
217 * not occurred.
218 *
219 * <p>Speedups for parallel compared to sequential forms are common
220 * but not guaranteed. Parallel operations involving brief functions
221 * on small maps may execute more slowly than sequential forms if the
222 * underlying work to parallelize the computation is more expensive
223 * than the computation itself. Similarly, parallelization may not
224 * lead to much actual parallelism if all processors are busy
225 * performing unrelated tasks.
226 *
227 * <p>All arguments to all task methods must be non-null.
228 *
229 * <p>This class is a member of the
230 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
231 * Java Collections Framework</a>.
232 *
233 * @since 1.5
234 * @author Doug Lea
235 * @param <K> the type of keys maintained by this map
236 * @param <V> the type of mapped values
237 */
238 public class ConcurrentHashMap<K,V> implements ConcurrentMap<K,V>, Serializable {
239 private static final long serialVersionUID = 7249069246763182397L;
240
241 /*
242 * Overview:
243 *
244 * The primary design goal of this hash table is to maintain
245 * concurrent readability (typically method get(), but also
246 * iterators and related methods) while minimizing update
247 * contention. Secondary goals are to keep space consumption about
248 * the same or better than java.util.HashMap, and to support high
249 * initial insertion rates on an empty table by many threads.
250 *
251 * This map usually acts as a binned (bucketed) hash table. Each
252 * key-value mapping is held in a Node. Most nodes are instances
253 * of the basic Node class with hash, key, value, and next
254 * fields. However, various subclasses exist: TreeNodes are
255 * arranged in balanced trees, not lists. TreeBins hold the roots
256 * of sets of TreeNodes. ForwardingNodes are placed at the heads
257 * of bins during resizing. ReservationNodes are used as
258 * placeholders while establishing values in computeIfAbsent and
259 * related methods. The types TreeBin, ForwardingNode, and
260 * ReservationNode do not hold normal user keys, values, or
261 * hashes, and are readily distinguishable during search etc
262 * because they have negative hash fields and null key and value
263 * fields. (These special nodes are either uncommon or transient,
264 * so the impact of carrying around some unused fields is
265 * insignificant.)
266 *
267 * The table is lazily initialized to a power-of-two size upon the
268 * first insertion. Each bin in the table normally contains a
269 * list of Nodes (most often, the list has only zero or one Node).
270 * Table accesses require volatile/atomic reads, writes, and
271 * CASes. Because there is no other way to arrange this without
272 * adding further indirections, we use intrinsics
273 * (sun.misc.Unsafe) operations.
274 *
275 * We use the top (sign) bit of Node hash fields for control
276 * purposes -- it is available anyway because of addressing
277 * constraints. Nodes with negative hash fields are specially
278 * handled or ignored in map methods.
279 *
280 * Insertion (via put or its variants) of the first node in an
281 * empty bin is performed by just CASing it to the bin. This is
282 * by far the most common case for put operations under most
283 * key/hash distributions. Other update operations (insert,
284 * delete, and replace) require locks. We do not want to waste
285 * the space required to associate a distinct lock object with
286 * each bin, so instead use the first node of a bin list itself as
287 * a lock. Locking support for these locks relies on builtin
288 * "synchronized" monitors.
289 *
290 * Using the first node of a list as a lock does not by itself
291 * suffice though: When a node is locked, any update must first
292 * validate that it is still the first node after locking it, and
293 * retry if not. Because new nodes are always appended to lists,
294 * once a node is first in a bin, it remains first until deleted
295 * or the bin becomes invalidated (upon resizing).
296 *
297 * The main disadvantage of per-bin locks is that other update
298 * operations on other nodes in a bin list protected by the same
299 * lock can stall, for example when user equals() or mapping
300 * functions take a long time. However, statistically, under
301 * random hash codes, this is not a common problem. Ideally, the
302 * frequency of nodes in bins follows a Poisson distribution
303 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
304 * parameter of about 0.5 on average, given the resizing threshold
305 * of 0.75, although with a large variance because of resizing
306 * granularity. Ignoring variance, the expected occurrences of
307 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
308 * first values are:
309 *
310 * 0: 0.60653066
311 * 1: 0.30326533
312 * 2: 0.07581633
313 * 3: 0.01263606
314 * 4: 0.00157952
315 * 5: 0.00015795
316 * 6: 0.00001316
317 * 7: 0.00000094
318 * 8: 0.00000006
319 * more: less than 1 in ten million
320 *
321 * Lock contention probability for two threads accessing distinct
322 * elements is roughly 1 / (8 * #elements) under random hashes.
323 *
324 * Actual hash code distributions encountered in practice
325 * sometimes deviate significantly from uniform randomness. This
326 * includes the case when N > (1<<30), so some keys MUST collide.
327 * Similarly for dumb or hostile usages in which multiple keys are
328 * designed to have identical hash codes or ones that differs only
329 * in masked-out high bits. So we use a secondary strategy that
330 * applies when the number of nodes in a bin exceeds a
331 * threshold. These TreeBins use a balanced tree to hold nodes (a
332 * specialized form of red-black trees), bounding search time to
333 * O(log N). Each search step in a TreeBin is at least twice as
334 * slow as in a regular list, but given that N cannot exceed
335 * (1<<64) (before running out of addresses) this bounds search
336 * steps, lock hold times, etc, to reasonable constants (roughly
337 * 100 nodes inspected per operation worst case) so long as keys
338 * are Comparable (which is very common -- String, Long, etc).
339 * TreeBin nodes (TreeNodes) also maintain the same "next"
340 * traversal pointers as regular nodes, so can be traversed in
341 * iterators in the same way.
342 *
343 * The table is resized when occupancy exceeds a percentage
344 * threshold (nominally, 0.75, but see below). Any thread
345 * noticing an overfull bin may assist in resizing after the
346 * initiating thread allocates and sets up the replacement
347 * array. However, rather than stalling, these other threads may
348 * proceed with insertions etc. The use of TreeBins shields us
349 * from the worst case effects of overfilling while resizes are in
350 * progress. Resizing proceeds by transferring bins, one by one,
351 * from the table to the next table. To enable concurrency, the
352 * next table must be (incrementally) prefilled with place-holders
353 * serving as reverse forwarders to the old table. Because we are
354 * using power-of-two expansion, the elements from each bin must
355 * either stay at same index, or move with a power of two
356 * offset. We eliminate unnecessary node creation by catching
357 * cases where old nodes can be reused because their next fields
358 * won't change. On average, only about one-sixth of them need
359 * cloning when a table doubles. The nodes they replace will be
360 * garbage collectable as soon as they are no longer referenced by
361 * any reader thread that may be in the midst of concurrently
362 * traversing table. Upon transfer, the old table bin contains
363 * only a special forwarding node (with hash field "MOVED") that
364 * contains the next table as its key. On encountering a
365 * forwarding node, access and update operations restart, using
366 * the new table.
367 *
368 * Each bin transfer requires its bin lock, which can stall
369 * waiting for locks while resizing. However, because other
370 * threads can join in and help resize rather than contend for
371 * locks, average aggregate waits become shorter as resizing
372 * progresses. The transfer operation must also ensure that all
373 * accessible bins in both the old and new table are usable by any
374 * traversal. This is arranged by proceeding from the last bin
375 * (table.length - 1) up towards the first. Upon seeing a
376 * forwarding node, traversals (see class Traverser) arrange to
377 * move to the new table without revisiting nodes. However, to
378 * ensure that no intervening nodes are skipped, bin splitting can
379 * only begin after the associated reverse-forwarders are in
380 * place.
381 *
382 * The traversal scheme also applies to partial traversals of
383 * ranges of bins (via an alternate Traverser constructor)
384 * to support partitioned aggregate operations. Also, read-only
385 * operations give up if ever forwarded to a null table, which
386 * provides support for shutdown-style clearing, which is also not
387 * currently implemented.
388 *
389 * Lazy table initialization minimizes footprint until first use,
390 * and also avoids resizings when the first operation is from a
391 * putAll, constructor with map argument, or deserialization.
392 * These cases attempt to override the initial capacity settings,
393 * but harmlessly fail to take effect in cases of races.
394 *
395 * The element count is maintained using a specialization of
396 * LongAdder. We need to incorporate a specialization rather than
397 * just use a LongAdder in order to access implicit
398 * contention-sensing that leads to creation of multiple
399 * CounterCells. The counter mechanics avoid contention on
400 * updates but can encounter cache thrashing if read too
401 * frequently during concurrent access. To avoid reading so often,
402 * resizing under contention is attempted only upon adding to a
403 * bin already holding two or more nodes. Under uniform hash
404 * distributions, the probability of this occurring at threshold
405 * is around 13%, meaning that only about 1 in 8 puts check
406 * threshold (and after resizing, many fewer do so).
407 *
408 * TreeBins use a special form of comparison for search and
409 * related operations (which is the main reason we cannot use
410 * existing collections such as TreeMaps). TreeBins contain
411 * Comparable elements, but may contain others, as well as
412 * elements that are Comparable but not necessarily Comparable
413 * for the same T, so we cannot invoke compareTo among them. To
414 * handle this, the tree is ordered primarily by hash value, then
415 * by Comparable.compareTo order if applicable. On lookup at a
416 * node, if elements are not comparable or compare as 0 then both
417 * left and right children may need to be searched in the case of
418 * tied hash values. (This corresponds to the full list search
419 * that would be necessary if all elements were non-Comparable and
420 * had tied hashes.) The red-black balancing code is updated from
421 * pre-jdk-collections
422 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
423 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
424 * Algorithms" (CLR).
425 *
426 * TreeBins also require an additional locking mechanism. While
427 * list traversal is always possible by readers even during
428 * updates, tree traversal is not, mainly because of tree-rotations
429 * that may change the root node and/or its linkages. TreeBins
430 * include a simple read-write lock mechanism parasitic on the
431 * main bin-synchronization strategy: Structural adjustments
432 * associated with an insertion or removal are already bin-locked
433 * (and so cannot conflict with other writers) but must wait for
434 * ongoing readers to finish. Since there can be only one such
435 * waiter, we use a simple scheme using a single "waiter" field to
436 * block writers. However, readers need never block. If the root
437 * lock is held, they proceed along the slow traversal path (via
438 * next-pointers) until the lock becomes available or the list is
439 * exhausted, whichever comes first. These cases are not fast, but
440 * maximize aggregate expected throughput.
441 *
442 * Maintaining API and serialization compatibility with previous
443 * versions of this class introduces several oddities. Mainly: We
444 * leave untouched but unused constructor arguments refering to
445 * concurrencyLevel. We accept a loadFactor constructor argument,
446 * but apply it only to initial table capacity (which is the only
447 * time that we can guarantee to honor it.) We also declare an
448 * unused "Segment" class that is instantiated in minimal form
449 * only when serializing.
450 *
451 * This file is organized to make things a little easier to follow
452 * while reading than they might otherwise: First the main static
453 * declarations and utilities, then fields, then main public
454 * methods (with a few factorings of multiple public methods into
455 * internal ones), then sizing methods, trees, traversers, and
456 * bulk operations.
457 */
458
459 /* ---------------- Constants -------------- */
460
461 /**
462 * The largest possible table capacity. This value must be
463 * exactly 1<<30 to stay within Java array allocation and indexing
464 * bounds for power of two table sizes, and is further required
465 * because the top two bits of 32bit hash fields are used for
466 * control purposes.
467 */
468 private static final int MAXIMUM_CAPACITY = 1 << 30;
469
470 /**
471 * The default initial table capacity. Must be a power of 2
472 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
473 */
474 private static final int DEFAULT_CAPACITY = 16;
475
476 /**
477 * The largest possible (non-power of two) array size.
478 * Needed by toArray and related methods.
479 */
480 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
481
482 /**
483 * The default concurrency level for this table. Unused but
484 * defined for compatibility with previous versions of this class.
485 */
486 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
487
488 /**
489 * The load factor for this table. Overrides of this value in
490 * constructors affect only the initial table capacity. The
491 * actual floating point value isn't normally used -- it is
492 * simpler to use expressions such as {@code n - (n >>> 2)} for
493 * the associated resizing threshold.
494 */
495 private static final float LOAD_FACTOR = 0.75f;
496
497 /**
498 * The bin count threshold for using a tree rather than list for a
499 * bin. Bins are converted to trees when adding an element to a
500 * bin with at least this many nodes. The value must be greater
501 * than 2, and should be at least 8 to mesh with assumptions in
502 * tree removal about conversion back to plain bins upon
503 * shrinkage.
504 */
505 static final int TREEIFY_THRESHOLD = 8;
506
507 /**
508 * The bin count threshold for untreeifying a (split) bin during a
509 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
510 * most 6 to mesh with shrinkage detection under removal.
511 */
512 static final int UNTREEIFY_THRESHOLD = 6;
513
514 /**
515 * The smallest table capacity for which bins may be treeified.
516 * (Otherwise the table is resized if too many nodes in a bin.)
517 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
518 * conflicts between resizing and treeification thresholds.
519 */
520 static final int MIN_TREEIFY_CAPACITY = 64;
521
522 /**
523 * Minimum number of rebinnings per transfer step. Ranges are
524 * subdivided to allow multiple resizer threads. This value
525 * serves as a lower bound to avoid resizers encountering
526 * excessive memory contention. The value should be at least
527 * DEFAULT_CAPACITY.
528 */
529 private static final int MIN_TRANSFER_STRIDE = 16;
530
531 /*
532 * Encodings for Node hash fields. See above for explanation.
533 */
534 static final int MOVED = -1; // hash for forwarding nodes
535 static final int TREEBIN = -2; // hash for roots of trees
536 static final int RESERVED = -3; // hash for transient reservations
537 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
538
539 /** Number of CPUS, to place bounds on some sizings */
540 static final int NCPU = Runtime.getRuntime().availableProcessors();
541
542 /** For serialization compatibility. */
543 private static final ObjectStreamField[] serialPersistentFields = {
544 new ObjectStreamField("segments", Segment[].class),
545 new ObjectStreamField("segmentMask", Integer.TYPE),
546 new ObjectStreamField("segmentShift", Integer.TYPE)
547 };
548
549 /* ---------------- Nodes -------------- */
550
551 /**
552 * Key-value entry. This class is never exported out as a
553 * user-mutable Map.Entry (i.e., one supporting setValue; see
554 * MapEntry below), but can be used for read-only traversals used
555 * in bulk tasks. Subclasses of Node with a negative hash field
556 * are special, and contain null keys and values (but are never
557 * exported). Otherwise, keys and vals are never null.
558 */
559 static class Node<K,V> implements Map.Entry<K,V> {
560 final int hash;
561 final K key;
562 volatile V val;
563 volatile Node<K,V> next;
564
565 Node(int hash, K key, V val, Node<K,V> next) {
566 this.hash = hash;
567 this.key = key;
568 this.val = val;
569 this.next = next;
570 }
571
572 public final K getKey() { return key; }
573 public final V getValue() { return val; }
574 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
575 public final String toString(){ return key + "=" + val; }
576 public final V setValue(V value) {
577 throw new UnsupportedOperationException();
578 }
579
580 public final boolean equals(Object o) {
581 Object k, v, u; Map.Entry<?,?> e;
582 return ((o instanceof Map.Entry) &&
583 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
584 (v = e.getValue()) != null &&
585 (k == key || k.equals(key)) &&
586 (v == (u = val) || v.equals(u)));
587 }
588
589 /**
590 * Virtualized support for map.get(); overridden in subclasses.
591 */
592 Node<K,V> find(int h, Object k) {
593 Node<K,V> e = this;
594 if (k != null) {
595 do {
596 K ek;
597 if (e.hash == h &&
598 ((ek = e.key) == k || (ek != null && k.equals(ek))))
599 return e;
600 } while ((e = e.next) != null);
601 }
602 return null;
603 }
604 }
605
606 /* ---------------- Static utilities -------------- */
607
608 /**
609 * Spreads (XORs) higher bits of hash to lower and also forces top
610 * bit to 0. Because the table uses power-of-two masking, sets of
611 * hashes that vary only in bits above the current mask will
612 * always collide. (Among known examples are sets of Float keys
613 * holding consecutive whole numbers in small tables.) So we
614 * apply a transform that spreads the impact of higher bits
615 * downward. There is a tradeoff between speed, utility, and
616 * quality of bit-spreading. Because many common sets of hashes
617 * are already reasonably distributed (so don't benefit from
618 * spreading), and because we use trees to handle large sets of
619 * collisions in bins, we just XOR some shifted bits in the
620 * cheapest possible way to reduce systematic lossage, as well as
621 * to incorporate impact of the highest bits that would otherwise
622 * never be used in index calculations because of table bounds.
623 */
624 static final int spread(int h) {
625 return (h ^ (h >>> 16)) & HASH_BITS;
626 }
627
628 /**
629 * Returns a power of two table size for the given desired capacity.
630 * See Hackers Delight, sec 3.2
631 */
632 private static final int tableSizeFor(int c) {
633 int n = c - 1;
634 n |= n >>> 1;
635 n |= n >>> 2;
636 n |= n >>> 4;
637 n |= n >>> 8;
638 n |= n >>> 16;
639 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
640 }
641
642 /**
643 * Returns x's Class if it is of the form "class C implements
644 * Comparable<C>", else null.
645 */
646 static Class<?> comparableClassFor(Object x) {
647 if (x instanceof Comparable) {
648 Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
649 if ((c = x.getClass()) == String.class) // bypass checks
650 return c;
651 if ((ts = c.getGenericInterfaces()) != null) {
652 for (int i = 0; i < ts.length; ++i) {
653 if (((t = ts[i]) instanceof ParameterizedType) &&
654 ((p = (ParameterizedType)t).getRawType() ==
655 Comparable.class) &&
656 (as = p.getActualTypeArguments()) != null &&
657 as.length == 1 && as[0] == c) // type arg is c
658 return c;
659 }
660 }
661 }
662 return null;
663 }
664
665 /**
666 * Returns k.compareTo(x) if x matches kc (k's screened comparable
667 * class), else 0.
668 */
669 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
670 static int compareComparables(Class<?> kc, Object k, Object x) {
671 return (x == null || x.getClass() != kc ? 0 :
672 ((Comparable)k).compareTo(x));
673 }
674
675 /* ---------------- Table element access -------------- */
676
677 /*
678 * Volatile access methods are used for table elements as well as
679 * elements of in-progress next table while resizing. All uses of
680 * the tab arguments must be null checked by callers. All callers
681 * also paranoically precheck that tab's length is not zero (or an
682 * equivalent check), thus ensuring that any index argument taking
683 * the form of a hash value anded with (length - 1) is a valid
684 * index. Note that, to be correct wrt arbitrary concurrency
685 * errors by users, these checks must operate on local variables,
686 * which accounts for some odd-looking inline assignments below.
687 * Note that calls to setTabAt always occur within locked regions,
688 * and so in principle require only release ordering, not need
689 * full volatile semantics, but are currently coded as volatile
690 * writes to be conservative.
691 */
692
693 @SuppressWarnings("unchecked")
694 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
695 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
696 }
697
698 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
699 Node<K,V> c, Node<K,V> v) {
700 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
701 }
702
703 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
704 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
705 }
706
707 /* ---------------- Fields -------------- */
708
709 /**
710 * The array of bins. Lazily initialized upon first insertion.
711 * Size is always a power of two. Accessed directly by iterators.
712 */
713 transient volatile Node<K,V>[] table;
714
715 /**
716 * The next table to use; non-null only while resizing.
717 */
718 private transient volatile Node<K,V>[] nextTable;
719
720 /**
721 * Base counter value, used mainly when there is no contention,
722 * but also as a fallback during table initialization
723 * races. Updated via CAS.
724 */
725 private transient volatile long baseCount;
726
727 /**
728 * Table initialization and resizing control. When negative, the
729 * table is being initialized or resized: -1 for initialization,
730 * else -(1 + the number of active resizing threads). Otherwise,
731 * when table is null, holds the initial table size to use upon
732 * creation, or 0 for default. After initialization, holds the
733 * next element count value upon which to resize the table.
734 */
735 private transient volatile int sizeCtl;
736
737 /**
738 * The next table index (plus one) to split while resizing.
739 */
740 private transient volatile int transferIndex;
741
742 /**
743 * The least available table index to split while resizing.
744 */
745 private transient volatile int transferOrigin;
746
747 /**
748 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
749 */
750 private transient volatile int cellsBusy;
751
752 /**
753 * Table of counter cells. When non-null, size is a power of 2.
754 */
755 private transient volatile CounterCell[] counterCells;
756
757 // views
758 private transient KeySetView<K,V> keySet;
759 private transient ValuesView<K,V> values;
760 private transient EntrySetView<K,V> entrySet;
761
762
763 /* ---------------- Public operations -------------- */
764
765 /**
766 * Creates a new, empty map with the default initial table size (16).
767 */
768 public ConcurrentHashMap() {
769 }
770
771 /**
772 * Creates a new, empty map with an initial table size
773 * accommodating the specified number of elements without the need
774 * to dynamically resize.
775 *
776 * @param initialCapacity The implementation performs internal
777 * sizing to accommodate this many elements.
778 * @throws IllegalArgumentException if the initial capacity of
779 * elements is negative
780 */
781 public ConcurrentHashMap(int initialCapacity) {
782 if (initialCapacity < 0)
783 throw new IllegalArgumentException();
784 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
785 MAXIMUM_CAPACITY :
786 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
787 this.sizeCtl = cap;
788 }
789
790 /**
791 * Creates a new map with the same mappings as the given map.
792 *
793 * @param m the map
794 */
795 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
796 this.sizeCtl = DEFAULT_CAPACITY;
797 putAll(m);
798 }
799
800 /**
801 * Creates a new, empty map with an initial table size based on
802 * the given number of elements ({@code initialCapacity}) and
803 * initial table density ({@code loadFactor}).
804 *
805 * @param initialCapacity the initial capacity. The implementation
806 * performs internal sizing to accommodate this many elements,
807 * given the specified load factor.
808 * @param loadFactor the load factor (table density) for
809 * establishing the initial table size
810 * @throws IllegalArgumentException if the initial capacity of
811 * elements is negative or the load factor is nonpositive
812 *
813 * @since 1.6
814 */
815 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
816 this(initialCapacity, loadFactor, 1);
817 }
818
819 /**
820 * Creates a new, empty map with an initial table size based on
821 * the given number of elements ({@code initialCapacity}), table
822 * density ({@code loadFactor}), and number of concurrently
823 * updating threads ({@code concurrencyLevel}).
824 *
825 * @param initialCapacity the initial capacity. The implementation
826 * performs internal sizing to accommodate this many elements,
827 * given the specified load factor.
828 * @param loadFactor the load factor (table density) for
829 * establishing the initial table size
830 * @param concurrencyLevel the estimated number of concurrently
831 * updating threads. The implementation may use this value as
832 * a sizing hint.
833 * @throws IllegalArgumentException if the initial capacity is
834 * negative or the load factor or concurrencyLevel are
835 * nonpositive
836 */
837 public ConcurrentHashMap(int initialCapacity,
838 float loadFactor, int concurrencyLevel) {
839 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
840 throw new IllegalArgumentException();
841 if (initialCapacity < concurrencyLevel) // Use at least as many bins
842 initialCapacity = concurrencyLevel; // as estimated threads
843 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
844 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
845 MAXIMUM_CAPACITY : tableSizeFor((int)size);
846 this.sizeCtl = cap;
847 }
848
849 // Original (since JDK1.2) Map methods
850
851 /**
852 * {@inheritDoc}
853 */
854 public int size() {
855 long n = sumCount();
856 return ((n < 0L) ? 0 :
857 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
858 (int)n);
859 }
860
861 /**
862 * {@inheritDoc}
863 */
864 public boolean isEmpty() {
865 return sumCount() <= 0L; // ignore transient negative values
866 }
867
868 /**
869 * Returns the value to which the specified key is mapped,
870 * or {@code null} if this map contains no mapping for the key.
871 *
872 * <p>More formally, if this map contains a mapping from a key
873 * {@code k} to a value {@code v} such that {@code key.equals(k)},
874 * then this method returns {@code v}; otherwise it returns
875 * {@code null}. (There can be at most one such mapping.)
876 *
877 * @throws NullPointerException if the specified key is null
878 */
879 public V get(Object key) {
880 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
881 int h = spread(key.hashCode());
882 if ((tab = table) != null && (n = tab.length) > 0 &&
883 (e = tabAt(tab, (n - 1) & h)) != null) {
884 if ((eh = e.hash) == h) {
885 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
886 return e.val;
887 }
888 else if (eh < 0)
889 return (p = e.find(h, key)) != null ? p.val : null;
890 while ((e = e.next) != null) {
891 if (e.hash == h &&
892 ((ek = e.key) == key || (ek != null && key.equals(ek))))
893 return e.val;
894 }
895 }
896 return null;
897 }
898
899 /**
900 * Tests if the specified object is a key in this table.
901 *
902 * @param key possible key
903 * @return {@code true} if and only if the specified object
904 * is a key in this table, as determined by the
905 * {@code equals} method; {@code false} otherwise
906 * @throws NullPointerException if the specified key is null
907 */
908 public boolean containsKey(Object key) {
909 return get(key) != null;
910 }
911
912 /**
913 * Returns {@code true} if this map maps one or more keys to the
914 * specified value. Note: This method may require a full traversal
915 * of the map, and is much slower than method {@code containsKey}.
916 *
917 * @param value value whose presence in this map is to be tested
918 * @return {@code true} if this map maps one or more keys to the
919 * specified value
920 * @throws NullPointerException if the specified value is null
921 */
922 public boolean containsValue(Object value) {
923 if (value == null)
924 throw new NullPointerException();
925 Node<K,V>[] t;
926 if ((t = table) != null) {
927 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
928 for (Node<K,V> p; (p = it.advance()) != null; ) {
929 V v;
930 if ((v = p.val) == value || (v != null && value.equals(v)))
931 return true;
932 }
933 }
934 return false;
935 }
936
937 /**
938 * Maps the specified key to the specified value in this table.
939 * Neither the key nor the value can be null.
940 *
941 * <p>The value can be retrieved by calling the {@code get} method
942 * with a key that is equal to the original key.
943 *
944 * @param key key with which the specified value is to be associated
945 * @param value value to be associated with the specified key
946 * @return the previous value associated with {@code key}, or
947 * {@code null} if there was no mapping for {@code key}
948 * @throws NullPointerException if the specified key or value is null
949 */
950 public V put(K key, V value) {
951 return putVal(key, value, false);
952 }
953
954 /** Implementation for put and putIfAbsent */
955 final V putVal(K key, V value, boolean onlyIfAbsent) {
956 if (key == null || value == null) throw new NullPointerException();
957 int hash = spread(key.hashCode());
958 int binCount = 0;
959 for (Node<K,V>[] tab = table;;) {
960 Node<K,V> f; int n, i, fh;
961 if (tab == null || (n = tab.length) == 0)
962 tab = initTable();
963 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
964 if (casTabAt(tab, i, null,
965 new Node<K,V>(hash, key, value, null)))
966 break; // no lock when adding to empty bin
967 }
968 else if ((fh = f.hash) == MOVED)
969 tab = helpTransfer(tab, f);
970 else {
971 V oldVal = null;
972 synchronized (f) {
973 if (tabAt(tab, i) == f) {
974 if (fh >= 0) {
975 binCount = 1;
976 for (Node<K,V> e = f;; ++binCount) {
977 K ek;
978 if (e.hash == hash &&
979 ((ek = e.key) == key ||
980 (ek != null && key.equals(ek)))) {
981 oldVal = e.val;
982 if (!onlyIfAbsent)
983 e.val = value;
984 break;
985 }
986 Node<K,V> pred = e;
987 if ((e = e.next) == null) {
988 pred.next = new Node<K,V>(hash, key,
989 value, null);
990 break;
991 }
992 }
993 }
994 else if (f instanceof TreeBin) {
995 Node<K,V> p;
996 binCount = 2;
997 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
998 value)) != null) {
999 oldVal = p.val;
1000 if (!onlyIfAbsent)
1001 p.val = value;
1002 }
1003 }
1004 }
1005 }
1006 if (binCount != 0) {
1007 if (binCount >= TREEIFY_THRESHOLD)
1008 treeifyBin(tab, i);
1009 if (oldVal != null)
1010 return oldVal;
1011 break;
1012 }
1013 }
1014 }
1015 addCount(1L, binCount);
1016 return null;
1017 }
1018
1019 /**
1020 * Copies all of the mappings from the specified map to this one.
1021 * These mappings replace any mappings that this map had for any of the
1022 * keys currently in the specified map.
1023 *
1024 * @param m mappings to be stored in this map
1025 */
1026 public void putAll(Map<? extends K, ? extends V> m) {
1027 tryPresize(m.size());
1028 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1029 putVal(e.getKey(), e.getValue(), false);
1030 }
1031
1032 /**
1033 * Removes the key (and its corresponding value) from this map.
1034 * This method does nothing if the key is not in the map.
1035 *
1036 * @param key the key that needs to be removed
1037 * @return the previous value associated with {@code key}, or
1038 * {@code null} if there was no mapping for {@code key}
1039 * @throws NullPointerException if the specified key is null
1040 */
1041 public V remove(Object key) {
1042 return replaceNode(key, null, null);
1043 }
1044
1045 /**
1046 * Implementation for the four public remove/replace methods:
1047 * Replaces node value with v, conditional upon match of cv if
1048 * non-null. If resulting value is null, delete.
1049 */
1050 final V replaceNode(Object key, V value, Object cv) {
1051 int hash = spread(key.hashCode());
1052 for (Node<K,V>[] tab = table;;) {
1053 Node<K,V> f; int n, i, fh;
1054 if (tab == null || (n = tab.length) == 0 ||
1055 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1056 break;
1057 else if ((fh = f.hash) == MOVED)
1058 tab = helpTransfer(tab, f);
1059 else {
1060 V oldVal = null;
1061 boolean validated = false;
1062 synchronized (f) {
1063 if (tabAt(tab, i) == f) {
1064 if (fh >= 0) {
1065 validated = true;
1066 for (Node<K,V> e = f, pred = null;;) {
1067 K ek;
1068 if (e.hash == hash &&
1069 ((ek = e.key) == key ||
1070 (ek != null && key.equals(ek)))) {
1071 V ev = e.val;
1072 if (cv == null || cv == ev ||
1073 (ev != null && cv.equals(ev))) {
1074 oldVal = ev;
1075 if (value != null)
1076 e.val = value;
1077 else if (pred != null)
1078 pred.next = e.next;
1079 else
1080 setTabAt(tab, i, e.next);
1081 }
1082 break;
1083 }
1084 pred = e;
1085 if ((e = e.next) == null)
1086 break;
1087 }
1088 }
1089 else if (f instanceof TreeBin) {
1090 validated = true;
1091 TreeBin<K,V> t = (TreeBin<K,V>)f;
1092 TreeNode<K,V> r, p;
1093 if ((r = t.root) != null &&
1094 (p = r.findTreeNode(hash, key, null)) != null) {
1095 V pv = p.val;
1096 if (cv == null || cv == pv ||
1097 (pv != null && cv.equals(pv))) {
1098 oldVal = pv;
1099 if (value != null)
1100 p.val = value;
1101 else if (t.removeTreeNode(p))
1102 setTabAt(tab, i, untreeify(t.first));
1103 }
1104 }
1105 }
1106 }
1107 }
1108 if (validated) {
1109 if (oldVal != null) {
1110 if (value == null)
1111 addCount(-1L, -1);
1112 return oldVal;
1113 }
1114 break;
1115 }
1116 }
1117 }
1118 return null;
1119 }
1120
1121 /**
1122 * Removes all of the mappings from this map.
1123 */
1124 public void clear() {
1125 long delta = 0L; // negative number of deletions
1126 int i = 0;
1127 Node<K,V>[] tab = table;
1128 while (tab != null && i < tab.length) {
1129 int fh;
1130 Node<K,V> f = tabAt(tab, i);
1131 if (f == null)
1132 ++i;
1133 else if ((fh = f.hash) == MOVED) {
1134 tab = helpTransfer(tab, f);
1135 i = 0; // restart
1136 }
1137 else {
1138 synchronized (f) {
1139 if (tabAt(tab, i) == f) {
1140 Node<K,V> p = (fh >= 0 ? f :
1141 (f instanceof TreeBin) ?
1142 ((TreeBin<K,V>)f).first : null);
1143 while (p != null) {
1144 --delta;
1145 p = p.next;
1146 }
1147 setTabAt(tab, i++, null);
1148 }
1149 }
1150 }
1151 }
1152 if (delta != 0L)
1153 addCount(delta, -1);
1154 }
1155
1156 /**
1157 * Returns a {@link Set} view of the keys contained in this map.
1158 * The set is backed by the map, so changes to the map are
1159 * reflected in the set, and vice-versa. The set supports element
1160 * removal, which removes the corresponding mapping from this map,
1161 * via the {@code Iterator.remove}, {@code Set.remove},
1162 * {@code removeAll}, {@code retainAll}, and {@code clear}
1163 * operations. It does not support the {@code add} or
1164 * {@code addAll} operations.
1165 *
1166 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1167 * that will never throw {@link ConcurrentModificationException},
1168 * and guarantees to traverse elements as they existed upon
1169 * construction of the iterator, and may (but is not guaranteed to)
1170 * reflect any modifications subsequent to construction.
1171 *
1172 * @return the set view
1173 */
1174 public KeySetView<K,V> keySet() {
1175 KeySetView<K,V> ks;
1176 return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1177 }
1178
1179 /**
1180 * Returns a {@link Collection} view of the values contained in this map.
1181 * The collection is backed by the map, so changes to the map are
1182 * reflected in the collection, and vice-versa. The collection
1183 * supports element removal, which removes the corresponding
1184 * mapping from this map, via the {@code Iterator.remove},
1185 * {@code Collection.remove}, {@code removeAll},
1186 * {@code retainAll}, and {@code clear} operations. It does not
1187 * support the {@code add} or {@code addAll} operations.
1188 *
1189 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1190 * that will never throw {@link ConcurrentModificationException},
1191 * and guarantees to traverse elements as they existed upon
1192 * construction of the iterator, and may (but is not guaranteed to)
1193 * reflect any modifications subsequent to construction.
1194 *
1195 * @return the collection view
1196 */
1197 public Collection<V> values() {
1198 ValuesView<K,V> vs;
1199 return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1200 }
1201
1202 /**
1203 * Returns a {@link Set} view of the mappings contained in this map.
1204 * The set is backed by the map, so changes to the map are
1205 * reflected in the set, and vice-versa. The set supports element
1206 * removal, which removes the corresponding mapping from the map,
1207 * via the {@code Iterator.remove}, {@code Set.remove},
1208 * {@code removeAll}, {@code retainAll}, and {@code clear}
1209 * operations.
1210 *
1211 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1212 * that will never throw {@link ConcurrentModificationException},
1213 * and guarantees to traverse elements as they existed upon
1214 * construction of the iterator, and may (but is not guaranteed to)
1215 * reflect any modifications subsequent to construction.
1216 *
1217 * @return the set view
1218 */
1219 public Set<Map.Entry<K,V>> entrySet() {
1220 EntrySetView<K,V> es;
1221 return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1222 }
1223
1224 /**
1225 * Returns the hash code value for this {@link Map}, i.e.,
1226 * the sum of, for each key-value pair in the map,
1227 * {@code key.hashCode() ^ value.hashCode()}.
1228 *
1229 * @return the hash code value for this map
1230 */
1231 public int hashCode() {
1232 int h = 0;
1233 Node<K,V>[] t;
1234 if ((t = table) != null) {
1235 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1236 for (Node<K,V> p; (p = it.advance()) != null; )
1237 h += p.key.hashCode() ^ p.val.hashCode();
1238 }
1239 return h;
1240 }
1241
1242 /**
1243 * Returns a string representation of this map. The string
1244 * representation consists of a list of key-value mappings (in no
1245 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1246 * mappings are separated by the characters {@code ", "} (comma
1247 * and space). Each key-value mapping is rendered as the key
1248 * followed by an equals sign ("{@code =}") followed by the
1249 * associated value.
1250 *
1251 * @return a string representation of this map
1252 */
1253 public String toString() {
1254 Node<K,V>[] t;
1255 int f = (t = table) == null ? 0 : t.length;
1256 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1257 StringBuilder sb = new StringBuilder();
1258 sb.append('{');
1259 Node<K,V> p;
1260 if ((p = it.advance()) != null) {
1261 for (;;) {
1262 K k = p.key;
1263 V v = p.val;
1264 sb.append(k == this ? "(this Map)" : k);
1265 sb.append('=');
1266 sb.append(v == this ? "(this Map)" : v);
1267 if ((p = it.advance()) == null)
1268 break;
1269 sb.append(',').append(' ');
1270 }
1271 }
1272 return sb.append('}').toString();
1273 }
1274
1275 /**
1276 * Compares the specified object with this map for equality.
1277 * Returns {@code true} if the given object is a map with the same
1278 * mappings as this map. This operation may return misleading
1279 * results if either map is concurrently modified during execution
1280 * of this method.
1281 *
1282 * @param o object to be compared for equality with this map
1283 * @return {@code true} if the specified object is equal to this map
1284 */
1285 public boolean equals(Object o) {
1286 if (o != this) {
1287 if (!(o instanceof Map))
1288 return false;
1289 Map<?,?> m = (Map<?,?>) o;
1290 Node<K,V>[] t;
1291 int f = (t = table) == null ? 0 : t.length;
1292 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1293 for (Node<K,V> p; (p = it.advance()) != null; ) {
1294 V val = p.val;
1295 Object v = m.get(p.key);
1296 if (v == null || (v != val && !v.equals(val)))
1297 return false;
1298 }
1299 for (Map.Entry<?,?> e : m.entrySet()) {
1300 Object mk, mv, v;
1301 if ((mk = e.getKey()) == null ||
1302 (mv = e.getValue()) == null ||
1303 (v = get(mk)) == null ||
1304 (mv != v && !mv.equals(v)))
1305 return false;
1306 }
1307 }
1308 return true;
1309 }
1310
1311 /**
1312 * Stripped-down version of helper class used in previous version,
1313 * declared for the sake of serialization compatibility
1314 */
1315 static class Segment<K,V> extends ReentrantLock implements Serializable {
1316 private static final long serialVersionUID = 2249069246763182397L;
1317 final float loadFactor;
1318 Segment(float lf) { this.loadFactor = lf; }
1319 }
1320
1321 /**
1322 * Saves the state of the {@code ConcurrentHashMap} instance to a
1323 * stream (i.e., serializes it).
1324 * @param s the stream
1325 * @serialData
1326 * the key (Object) and value (Object)
1327 * for each key-value mapping, followed by a null pair.
1328 * The key-value mappings are emitted in no particular order.
1329 */
1330 private void writeObject(java.io.ObjectOutputStream s)
1331 throws java.io.IOException {
1332 // For serialization compatibility
1333 // Emulate segment calculation from previous version of this class
1334 int sshift = 0;
1335 int ssize = 1;
1336 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1337 ++sshift;
1338 ssize <<= 1;
1339 }
1340 int segmentShift = 32 - sshift;
1341 int segmentMask = ssize - 1;
1342 @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1343 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1344 for (int i = 0; i < segments.length; ++i)
1345 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1346 s.putFields().put("segments", segments);
1347 s.putFields().put("segmentShift", segmentShift);
1348 s.putFields().put("segmentMask", segmentMask);
1349 s.writeFields();
1350
1351 Node<K,V>[] t;
1352 if ((t = table) != null) {
1353 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1354 for (Node<K,V> p; (p = it.advance()) != null; ) {
1355 s.writeObject(p.key);
1356 s.writeObject(p.val);
1357 }
1358 }
1359 s.writeObject(null);
1360 s.writeObject(null);
1361 segments = null; // throw away
1362 }
1363
1364 /**
1365 * Reconstitutes the instance from a stream (that is, deserializes it).
1366 * @param s the stream
1367 */
1368 private void readObject(java.io.ObjectInputStream s)
1369 throws java.io.IOException, ClassNotFoundException {
1370 /*
1371 * To improve performance in typical cases, we create nodes
1372 * while reading, then place in table once size is known.
1373 * However, we must also validate uniqueness and deal with
1374 * overpopulated bins while doing so, which requires
1375 * specialized versions of putVal mechanics.
1376 */
1377 sizeCtl = -1; // force exclusion for table construction
1378 s.defaultReadObject();
1379 long size = 0L;
1380 Node<K,V> p = null;
1381 for (;;) {
1382 @SuppressWarnings("unchecked") K k = (K) s.readObject();
1383 @SuppressWarnings("unchecked") V v = (V) s.readObject();
1384 if (k != null && v != null) {
1385 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1386 ++size;
1387 }
1388 else
1389 break;
1390 }
1391 if (size == 0L)
1392 sizeCtl = 0;
1393 else {
1394 int n;
1395 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1396 n = MAXIMUM_CAPACITY;
1397 else {
1398 int sz = (int)size;
1399 n = tableSizeFor(sz + (sz >>> 1) + 1);
1400 }
1401 @SuppressWarnings({"rawtypes","unchecked"})
1402 Node<K,V>[] tab = (Node<K,V>[])new Node[n];
1403 int mask = n - 1;
1404 long added = 0L;
1405 while (p != null) {
1406 boolean insertAtFront;
1407 Node<K,V> next = p.next, first;
1408 int h = p.hash, j = h & mask;
1409 if ((first = tabAt(tab, j)) == null)
1410 insertAtFront = true;
1411 else {
1412 K k = p.key;
1413 if (first.hash < 0) {
1414 TreeBin<K,V> t = (TreeBin<K,V>)first;
1415 if (t.putTreeVal(h, k, p.val) == null)
1416 ++added;
1417 insertAtFront = false;
1418 }
1419 else {
1420 int binCount = 0;
1421 insertAtFront = true;
1422 Node<K,V> q; K qk;
1423 for (q = first; q != null; q = q.next) {
1424 if (q.hash == h &&
1425 ((qk = q.key) == k ||
1426 (qk != null && k.equals(qk)))) {
1427 insertAtFront = false;
1428 break;
1429 }
1430 ++binCount;
1431 }
1432 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1433 insertAtFront = false;
1434 ++added;
1435 p.next = first;
1436 TreeNode<K,V> hd = null, tl = null;
1437 for (q = p; q != null; q = q.next) {
1438 TreeNode<K,V> t = new TreeNode<K,V>
1439 (q.hash, q.key, q.val, null, null);
1440 if ((t.prev = tl) == null)
1441 hd = t;
1442 else
1443 tl.next = t;
1444 tl = t;
1445 }
1446 setTabAt(tab, j, new TreeBin<K,V>(hd));
1447 }
1448 }
1449 }
1450 if (insertAtFront) {
1451 ++added;
1452 p.next = first;
1453 setTabAt(tab, j, p);
1454 }
1455 p = next;
1456 }
1457 table = tab;
1458 sizeCtl = n - (n >>> 2);
1459 baseCount = added;
1460 }
1461 }
1462
1463 // ConcurrentMap methods
1464
1465 /**
1466 * {@inheritDoc}
1467 *
1468 * @return the previous value associated with the specified key,
1469 * or {@code null} if there was no mapping for the key
1470 * @throws NullPointerException if the specified key or value is null
1471 */
1472 public V putIfAbsent(K key, V value) {
1473 return putVal(key, value, true);
1474 }
1475
1476 /**
1477 * {@inheritDoc}
1478 *
1479 * @throws NullPointerException if the specified key is null
1480 */
1481 public boolean remove(Object key, Object value) {
1482 if (key == null)
1483 throw new NullPointerException();
1484 return value != null && replaceNode(key, null, value) != null;
1485 }
1486
1487 /**
1488 * {@inheritDoc}
1489 *
1490 * @throws NullPointerException if any of the arguments are null
1491 */
1492 public boolean replace(K key, V oldValue, V newValue) {
1493 if (key == null || oldValue == null || newValue == null)
1494 throw new NullPointerException();
1495 return replaceNode(key, newValue, oldValue) != null;
1496 }
1497
1498 /**
1499 * {@inheritDoc}
1500 *
1501 * @return the previous value associated with the specified key,
1502 * or {@code null} if there was no mapping for the key
1503 * @throws NullPointerException if the specified key or value is null
1504 */
1505 public V replace(K key, V value) {
1506 if (key == null || value == null)
1507 throw new NullPointerException();
1508 return replaceNode(key, value, null);
1509 }
1510
1511 // Overrides of JDK8+ Map extension method defaults
1512
1513 /**
1514 * Returns the value to which the specified key is mapped, or the
1515 * given default value if this map contains no mapping for the
1516 * key.
1517 *
1518 * @param key the key whose associated value is to be returned
1519 * @param defaultValue the value to return if this map contains
1520 * no mapping for the given key
1521 * @return the mapping for the key, if present; else the default value
1522 * @throws NullPointerException if the specified key is null
1523 */
1524 public V getOrDefault(Object key, V defaultValue) {
1525 V v;
1526 return (v = get(key)) == null ? defaultValue : v;
1527 }
1528
1529 public void forEach(BiConsumer<? super K, ? super V> action) {
1530 if (action == null) throw new NullPointerException();
1531 Node<K,V>[] t;
1532 if ((t = table) != null) {
1533 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1534 for (Node<K,V> p; (p = it.advance()) != null; ) {
1535 action.accept(p.key, p.val);
1536 }
1537 }
1538 }
1539
1540 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1541 if (function == null) throw new NullPointerException();
1542 Node<K,V>[] t;
1543 if ((t = table) != null) {
1544 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1545 for (Node<K,V> p; (p = it.advance()) != null; ) {
1546 V oldValue = p.val;
1547 for (K key = p.key;;) {
1548 V newValue = function.apply(key, oldValue);
1549 if (newValue == null)
1550 throw new NullPointerException();
1551 if (replaceNode(key, newValue, oldValue) != null ||
1552 (oldValue = get(key)) == null)
1553 break;
1554 }
1555 }
1556 }
1557 }
1558
1559 /**
1560 * If the specified key is not already associated with a value,
1561 * attempts to compute its value using the given mapping function
1562 * and enters it into this map unless {@code null}. The entire
1563 * method invocation is performed atomically, so the function is
1564 * applied at most once per key. Some attempted update operations
1565 * on this map by other threads may be blocked while computation
1566 * is in progress, so the computation should be short and simple,
1567 * and must not attempt to update any other mappings of this map.
1568 *
1569 * @param key key with which the specified value is to be associated
1570 * @param mappingFunction the function to compute a value
1571 * @return the current (existing or computed) value associated with
1572 * the specified key, or null if the computed value is null
1573 * @throws NullPointerException if the specified key or mappingFunction
1574 * is null
1575 * @throws IllegalStateException if the computation detectably
1576 * attempts a recursive update to this map that would
1577 * otherwise never complete
1578 * @throws RuntimeException or Error if the mappingFunction does so,
1579 * in which case the mapping is left unestablished
1580 */
1581 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1582 if (key == null || mappingFunction == null)
1583 throw new NullPointerException();
1584 int h = spread(key.hashCode());
1585 V val = null;
1586 int binCount = 0;
1587 for (Node<K,V>[] tab = table;;) {
1588 Node<K,V> f; int n, i, fh;
1589 if (tab == null || (n = tab.length) == 0)
1590 tab = initTable();
1591 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1592 Node<K,V> r = new ReservationNode<K,V>();
1593 synchronized (r) {
1594 if (casTabAt(tab, i, null, r)) {
1595 binCount = 1;
1596 Node<K,V> node = null;
1597 try {
1598 if ((val = mappingFunction.apply(key)) != null)
1599 node = new Node<K,V>(h, key, val, null);
1600 } finally {
1601 setTabAt(tab, i, node);
1602 }
1603 }
1604 }
1605 if (binCount != 0)
1606 break;
1607 }
1608 else if ((fh = f.hash) == MOVED)
1609 tab = helpTransfer(tab, f);
1610 else {
1611 boolean added = false;
1612 synchronized (f) {
1613 if (tabAt(tab, i) == f) {
1614 if (fh >= 0) {
1615 binCount = 1;
1616 for (Node<K,V> e = f;; ++binCount) {
1617 K ek; V ev;
1618 if (e.hash == h &&
1619 ((ek = e.key) == key ||
1620 (ek != null && key.equals(ek)))) {
1621 val = e.val;
1622 break;
1623 }
1624 Node<K,V> pred = e;
1625 if ((e = e.next) == null) {
1626 if ((val = mappingFunction.apply(key)) != null) {
1627 added = true;
1628 pred.next = new Node<K,V>(h, key, val, null);
1629 }
1630 break;
1631 }
1632 }
1633 }
1634 else if (f instanceof TreeBin) {
1635 binCount = 2;
1636 TreeBin<K,V> t = (TreeBin<K,V>)f;
1637 TreeNode<K,V> r, p;
1638 if ((r = t.root) != null &&
1639 (p = r.findTreeNode(h, key, null)) != null)
1640 val = p.val;
1641 else if ((val = mappingFunction.apply(key)) != null) {
1642 added = true;
1643 t.putTreeVal(h, key, val);
1644 }
1645 }
1646 }
1647 }
1648 if (binCount != 0) {
1649 if (binCount >= TREEIFY_THRESHOLD)
1650 treeifyBin(tab, i);
1651 if (!added)
1652 return val;
1653 break;
1654 }
1655 }
1656 }
1657 if (val != null)
1658 addCount(1L, binCount);
1659 return val;
1660 }
1661
1662 /**
1663 * If the value for the specified key is present, attempts to
1664 * compute a new mapping given the key and its current mapped
1665 * value. The entire method invocation is performed atomically.
1666 * Some attempted update operations on this map by other threads
1667 * may be blocked while computation is in progress, so the
1668 * computation should be short and simple, and must not attempt to
1669 * update any other mappings of this map.
1670 *
1671 * @param key key with which a value may be associated
1672 * @param remappingFunction the function to compute a value
1673 * @return the new value associated with the specified key, or null if none
1674 * @throws NullPointerException if the specified key or remappingFunction
1675 * is null
1676 * @throws IllegalStateException if the computation detectably
1677 * attempts a recursive update to this map that would
1678 * otherwise never complete
1679 * @throws RuntimeException or Error if the remappingFunction does so,
1680 * in which case the mapping is unchanged
1681 */
1682 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1683 if (key == null || remappingFunction == null)
1684 throw new NullPointerException();
1685 int h = spread(key.hashCode());
1686 V val = null;
1687 int delta = 0;
1688 int binCount = 0;
1689 for (Node<K,V>[] tab = table;;) {
1690 Node<K,V> f; int n, i, fh;
1691 if (tab == null || (n = tab.length) == 0)
1692 tab = initTable();
1693 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1694 break;
1695 else if ((fh = f.hash) == MOVED)
1696 tab = helpTransfer(tab, f);
1697 else {
1698 synchronized (f) {
1699 if (tabAt(tab, i) == f) {
1700 if (fh >= 0) {
1701 binCount = 1;
1702 for (Node<K,V> e = f, pred = null;; ++binCount) {
1703 K ek;
1704 if (e.hash == h &&
1705 ((ek = e.key) == key ||
1706 (ek != null && key.equals(ek)))) {
1707 val = remappingFunction.apply(key, e.val);
1708 if (val != null)
1709 e.val = val;
1710 else {
1711 delta = -1;
1712 Node<K,V> en = e.next;
1713 if (pred != null)
1714 pred.next = en;
1715 else
1716 setTabAt(tab, i, en);
1717 }
1718 break;
1719 }
1720 pred = e;
1721 if ((e = e.next) == null)
1722 break;
1723 }
1724 }
1725 else if (f instanceof TreeBin) {
1726 binCount = 2;
1727 TreeBin<K,V> t = (TreeBin<K,V>)f;
1728 TreeNode<K,V> r, p;
1729 if ((r = t.root) != null &&
1730 (p = r.findTreeNode(h, key, null)) != null) {
1731 val = remappingFunction.apply(key, p.val);
1732 if (val != null)
1733 p.val = val;
1734 else {
1735 delta = -1;
1736 if (t.removeTreeNode(p))
1737 setTabAt(tab, i, untreeify(t.first));
1738 }
1739 }
1740 }
1741 }
1742 }
1743 if (binCount != 0)
1744 break;
1745 }
1746 }
1747 if (delta != 0)
1748 addCount((long)delta, binCount);
1749 return val;
1750 }
1751
1752 /**
1753 * Attempts to compute a mapping for the specified key and its
1754 * current mapped value (or {@code null} if there is no current
1755 * mapping). The entire method invocation is performed atomically.
1756 * Some attempted update operations on this map by other threads
1757 * may be blocked while computation is in progress, so the
1758 * computation should be short and simple, and must not attempt to
1759 * update any other mappings of this Map.
1760 *
1761 * @param key key with which the specified value is to be associated
1762 * @param remappingFunction the function to compute a value
1763 * @return the new value associated with the specified key, or null if none
1764 * @throws NullPointerException if the specified key or remappingFunction
1765 * is null
1766 * @throws IllegalStateException if the computation detectably
1767 * attempts a recursive update to this map that would
1768 * otherwise never complete
1769 * @throws RuntimeException or Error if the remappingFunction does so,
1770 * in which case the mapping is unchanged
1771 */
1772 public V compute(K key,
1773 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1774 if (key == null || remappingFunction == null)
1775 throw new NullPointerException();
1776 int h = spread(key.hashCode());
1777 V val = null;
1778 int delta = 0;
1779 int binCount = 0;
1780 for (Node<K,V>[] tab = table;;) {
1781 Node<K,V> f; int n, i, fh;
1782 if (tab == null || (n = tab.length) == 0)
1783 tab = initTable();
1784 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1785 Node<K,V> r = new ReservationNode<K,V>();
1786 synchronized (r) {
1787 if (casTabAt(tab, i, null, r)) {
1788 binCount = 1;
1789 Node<K,V> node = null;
1790 try {
1791 if ((val = remappingFunction.apply(key, null)) != null) {
1792 delta = 1;
1793 node = new Node<K,V>(h, key, val, null);
1794 }
1795 } finally {
1796 setTabAt(tab, i, node);
1797 }
1798 }
1799 }
1800 if (binCount != 0)
1801 break;
1802 }
1803 else if ((fh = f.hash) == MOVED)
1804 tab = helpTransfer(tab, f);
1805 else {
1806 synchronized (f) {
1807 if (tabAt(tab, i) == f) {
1808 if (fh >= 0) {
1809 binCount = 1;
1810 for (Node<K,V> e = f, pred = null;; ++binCount) {
1811 K ek;
1812 if (e.hash == h &&
1813 ((ek = e.key) == key ||
1814 (ek != null && key.equals(ek)))) {
1815 val = remappingFunction.apply(key, e.val);
1816 if (val != null)
1817 e.val = val;
1818 else {
1819 delta = -1;
1820 Node<K,V> en = e.next;
1821 if (pred != null)
1822 pred.next = en;
1823 else
1824 setTabAt(tab, i, en);
1825 }
1826 break;
1827 }
1828 pred = e;
1829 if ((e = e.next) == null) {
1830 val = remappingFunction.apply(key, null);
1831 if (val != null) {
1832 delta = 1;
1833 pred.next =
1834 new Node<K,V>(h, key, val, null);
1835 }
1836 break;
1837 }
1838 }
1839 }
1840 else if (f instanceof TreeBin) {
1841 binCount = 1;
1842 TreeBin<K,V> t = (TreeBin<K,V>)f;
1843 TreeNode<K,V> r, p;
1844 if ((r = t.root) != null)
1845 p = r.findTreeNode(h, key, null);
1846 else
1847 p = null;
1848 V pv = (p == null) ? null : p.val;
1849 val = remappingFunction.apply(key, pv);
1850 if (val != null) {
1851 if (p != null)
1852 p.val = val;
1853 else {
1854 delta = 1;
1855 t.putTreeVal(h, key, val);
1856 }
1857 }
1858 else if (p != null) {
1859 delta = -1;
1860 if (t.removeTreeNode(p))
1861 setTabAt(tab, i, untreeify(t.first));
1862 }
1863 }
1864 }
1865 }
1866 if (binCount != 0) {
1867 if (binCount >= TREEIFY_THRESHOLD)
1868 treeifyBin(tab, i);
1869 break;
1870 }
1871 }
1872 }
1873 if (delta != 0)
1874 addCount((long)delta, binCount);
1875 return val;
1876 }
1877
1878 /**
1879 * If the specified key is not already associated with a
1880 * (non-null) value, associates it with the given value.
1881 * Otherwise, replaces the value with the results of the given
1882 * remapping function, or removes if {@code null}. The entire
1883 * method invocation is performed atomically. Some attempted
1884 * update operations on this map by other threads may be blocked
1885 * while computation is in progress, so the computation should be
1886 * short and simple, and must not attempt to update any other
1887 * mappings of this Map.
1888 *
1889 * @param key key with which the specified value is to be associated
1890 * @param value the value to use if absent
1891 * @param remappingFunction the function to recompute a value if present
1892 * @return the new value associated with the specified key, or null if none
1893 * @throws NullPointerException if the specified key or the
1894 * remappingFunction is null
1895 * @throws RuntimeException or Error if the remappingFunction does so,
1896 * in which case the mapping is unchanged
1897 */
1898 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1899 if (key == null || value == null || remappingFunction == null)
1900 throw new NullPointerException();
1901 int h = spread(key.hashCode());
1902 V val = null;
1903 int delta = 0;
1904 int binCount = 0;
1905 for (Node<K,V>[] tab = table;;) {
1906 Node<K,V> f; int n, i, fh;
1907 if (tab == null || (n = tab.length) == 0)
1908 tab = initTable();
1909 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1910 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1911 delta = 1;
1912 val = value;
1913 break;
1914 }
1915 }
1916 else if ((fh = f.hash) == MOVED)
1917 tab = helpTransfer(tab, f);
1918 else {
1919 synchronized (f) {
1920 if (tabAt(tab, i) == f) {
1921 if (fh >= 0) {
1922 binCount = 1;
1923 for (Node<K,V> e = f, pred = null;; ++binCount) {
1924 K ek;
1925 if (e.hash == h &&
1926 ((ek = e.key) == key ||
1927 (ek != null && key.equals(ek)))) {
1928 val = remappingFunction.apply(e.val, value);
1929 if (val != null)
1930 e.val = val;
1931 else {
1932 delta = -1;
1933 Node<K,V> en = e.next;
1934 if (pred != null)
1935 pred.next = en;
1936 else
1937 setTabAt(tab, i, en);
1938 }
1939 break;
1940 }
1941 pred = e;
1942 if ((e = e.next) == null) {
1943 delta = 1;
1944 val = value;
1945 pred.next =
1946 new Node<K,V>(h, key, val, null);
1947 break;
1948 }
1949 }
1950 }
1951 else if (f instanceof TreeBin) {
1952 binCount = 2;
1953 TreeBin<K,V> t = (TreeBin<K,V>)f;
1954 TreeNode<K,V> r = t.root;
1955 TreeNode<K,V> p = (r == null) ? null :
1956 r.findTreeNode(h, key, null);
1957 val = (p == null) ? value :
1958 remappingFunction.apply(p.val, value);
1959 if (val != null) {
1960 if (p != null)
1961 p.val = val;
1962 else {
1963 delta = 1;
1964 t.putTreeVal(h, key, val);
1965 }
1966 }
1967 else if (p != null) {
1968 delta = -1;
1969 if (t.removeTreeNode(p))
1970 setTabAt(tab, i, untreeify(t.first));
1971 }
1972 }
1973 }
1974 }
1975 if (binCount != 0) {
1976 if (binCount >= TREEIFY_THRESHOLD)
1977 treeifyBin(tab, i);
1978 break;
1979 }
1980 }
1981 }
1982 if (delta != 0)
1983 addCount((long)delta, binCount);
1984 return val;
1985 }
1986
1987 // Hashtable legacy methods
1988
1989 /**
1990 * Legacy method testing if some key maps into the specified value
1991 * in this table. This method is identical in functionality to
1992 * {@link #containsValue(Object)}, and exists solely to ensure
1993 * full compatibility with class {@link java.util.Hashtable},
1994 * which supported this method prior to introduction of the
1995 * Java Collections framework.
1996 *
1997 * @param value a value to search for
1998 * @return {@code true} if and only if some key maps to the
1999 * {@code value} argument in this table as
2000 * determined by the {@code equals} method;
2001 * {@code false} otherwise
2002 * @throws NullPointerException if the specified value is null
2003 */
2004 @Deprecated public boolean contains(Object value) {
2005 return containsValue(value);
2006 }
2007
2008 /**
2009 * Returns an enumeration of the keys in this table.
2010 *
2011 * @return an enumeration of the keys in this table
2012 * @see #keySet()
2013 */
2014 public Enumeration<K> keys() {
2015 Node<K,V>[] t;
2016 int f = (t = table) == null ? 0 : t.length;
2017 return new KeyIterator<K,V>(t, f, 0, f, this);
2018 }
2019
2020 /**
2021 * Returns an enumeration of the values in this table.
2022 *
2023 * @return an enumeration of the values in this table
2024 * @see #values()
2025 */
2026 public Enumeration<V> elements() {
2027 Node<K,V>[] t;
2028 int f = (t = table) == null ? 0 : t.length;
2029 return new ValueIterator<K,V>(t, f, 0, f, this);
2030 }
2031
2032 // ConcurrentHashMap-only methods
2033
2034 /**
2035 * Returns the number of mappings. This method should be used
2036 * instead of {@link #size} because a ConcurrentHashMap may
2037 * contain more mappings than can be represented as an int. The
2038 * value returned is an estimate; the actual count may differ if
2039 * there are concurrent insertions or removals.
2040 *
2041 * @return the number of mappings
2042 * @since 1.8
2043 */
2044 public long mappingCount() {
2045 long n = sumCount();
2046 return (n < 0L) ? 0L : n; // ignore transient negative values
2047 }
2048
2049 /**
2050 * Creates a new {@link Set} backed by a ConcurrentHashMap
2051 * from the given type to {@code Boolean.TRUE}.
2052 *
2053 * @return the new set
2054 * @since 1.8
2055 */
2056 public static <K> KeySetView<K,Boolean> newKeySet() {
2057 return new KeySetView<K,Boolean>
2058 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2059 }
2060
2061 /**
2062 * Creates a new {@link Set} backed by a ConcurrentHashMap
2063 * from the given type to {@code Boolean.TRUE}.
2064 *
2065 * @param initialCapacity The implementation performs internal
2066 * sizing to accommodate this many elements.
2067 * @throws IllegalArgumentException if the initial capacity of
2068 * elements is negative
2069 * @return the new set
2070 * @since 1.8
2071 */
2072 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2073 return new KeySetView<K,Boolean>
2074 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2075 }
2076
2077 /**
2078 * Returns a {@link Set} view of the keys in this map, using the
2079 * given common mapped value for any additions (i.e., {@link
2080 * Collection#add} and {@link Collection#addAll(Collection)}).
2081 * This is of course only appropriate if it is acceptable to use
2082 * the same value for all additions from this view.
2083 *
2084 * @param mappedValue the mapped value to use for any additions
2085 * @return the set view
2086 * @throws NullPointerException if the mappedValue is null
2087 */
2088 public KeySetView<K,V> keySet(V mappedValue) {
2089 if (mappedValue == null)
2090 throw new NullPointerException();
2091 return new KeySetView<K,V>(this, mappedValue);
2092 }
2093
2094 /* ---------------- Special Nodes -------------- */
2095
2096 /**
2097 * A node inserted at head of bins during transfer operations.
2098 */
2099 static final class ForwardingNode<K,V> extends Node<K,V> {
2100 final Node<K,V>[] nextTable;
2101 ForwardingNode(Node<K,V>[] tab) {
2102 super(MOVED, null, null, null);
2103 this.nextTable = tab;
2104 }
2105
2106 Node<K,V> find(int h, Object k) {
2107 // loop to avoid arbitrarily deep recursion on forwarding nodes
2108 outer: for (Node<K,V>[] tab = nextTable;;) {
2109 Node<K,V> e; int n;
2110 if (k == null || tab == null || (n = tab.length) == 0 ||
2111 (e = tabAt(tab, (n - 1) & h)) == null)
2112 return null;
2113 for (;;) {
2114 int eh; K ek;
2115 if ((eh = e.hash) == h &&
2116 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2117 return e;
2118 if (eh < 0) {
2119 if (e instanceof ForwardingNode) {
2120 tab = ((ForwardingNode<K,V>)e).nextTable;
2121 continue outer;
2122 }
2123 else
2124 return e.find(h, k);
2125 }
2126 if ((e = e.next) == null)
2127 return null;
2128 }
2129 }
2130 }
2131 }
2132
2133 /**
2134 * A place-holder node used in computeIfAbsent and compute
2135 */
2136 static final class ReservationNode<K,V> extends Node<K,V> {
2137 ReservationNode() {
2138 super(RESERVED, null, null, null);
2139 }
2140
2141 Node<K,V> find(int h, Object k) {
2142 return null;
2143 }
2144 }
2145
2146 /* ---------------- Table Initialization and Resizing -------------- */
2147
2148 /**
2149 * Initializes table, using the size recorded in sizeCtl.
2150 */
2151 private final Node<K,V>[] initTable() {
2152 Node<K,V>[] tab; int sc;
2153 while ((tab = table) == null || tab.length == 0) {
2154 if ((sc = sizeCtl) < 0)
2155 Thread.yield(); // lost initialization race; just spin
2156 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2157 try {
2158 if ((tab = table) == null || tab.length == 0) {
2159 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2160 @SuppressWarnings({"rawtypes","unchecked"})
2161 Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2162 table = tab = nt;
2163 sc = n - (n >>> 2);
2164 }
2165 } finally {
2166 sizeCtl = sc;
2167 }
2168 break;
2169 }
2170 }
2171 return tab;
2172 }
2173
2174 /**
2175 * Adds to count, and if table is too small and not already
2176 * resizing, initiates transfer. If already resizing, helps
2177 * perform transfer if work is available. Rechecks occupancy
2178 * after a transfer to see if another resize is already needed
2179 * because resizings are lagging additions.
2180 *
2181 * @param x the count to add
2182 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2183 */
2184 private final void addCount(long x, int check) {
2185 CounterCell[] as; long b, s;
2186 if ((as = counterCells) != null ||
2187 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2188 CounterCell a; long v; int m;
2189 boolean uncontended = true;
2190 if (as == null || (m = as.length - 1) < 0 ||
2191 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2192 !(uncontended =
2193 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2194 fullAddCount(x, uncontended);
2195 return;
2196 }
2197 if (check <= 1)
2198 return;
2199 s = sumCount();
2200 }
2201 if (check >= 0) {
2202 Node<K,V>[] tab, nt; int sc;
2203 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2204 tab.length < MAXIMUM_CAPACITY) {
2205 if (sc < 0) {
2206 if (sc == -1 || transferIndex <= transferOrigin ||
2207 (nt = nextTable) == null)
2208 break;
2209 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2210 transfer(tab, nt);
2211 }
2212 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2213 transfer(tab, null);
2214 s = sumCount();
2215 }
2216 }
2217 }
2218
2219 /**
2220 * Helps transfer if a resize is in progress.
2221 */
2222 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2223 Node<K,V>[] nextTab; int sc;
2224 if ((f instanceof ForwardingNode) &&
2225 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2226 if (nextTab == nextTable && tab == table &&
2227 transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
2228 U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2229 transfer(tab, nextTab);
2230 return nextTab;
2231 }
2232 return table;
2233 }
2234
2235 /**
2236 * Tries to presize table to accommodate the given number of elements.
2237 *
2238 * @param size number of elements (doesn't need to be perfectly accurate)
2239 */
2240 private final void tryPresize(int size) {
2241 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2242 tableSizeFor(size + (size >>> 1) + 1);
2243 int sc;
2244 while ((sc = sizeCtl) >= 0) {
2245 Node<K,V>[] tab = table; int n;
2246 if (tab == null || (n = tab.length) == 0) {
2247 n = (sc > c) ? sc : c;
2248 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2249 try {
2250 if (table == tab) {
2251 @SuppressWarnings({"rawtypes","unchecked"})
2252 Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2253 table = nt;
2254 sc = n - (n >>> 2);
2255 }
2256 } finally {
2257 sizeCtl = sc;
2258 }
2259 }
2260 }
2261 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2262 break;
2263 else if (tab == table &&
2264 U.compareAndSwapInt(this, SIZECTL, sc, -2))
2265 transfer(tab, null);
2266 }
2267 }
2268
2269 /**
2270 * Moves and/or copies the nodes in each bin to new table. See
2271 * above for explanation.
2272 */
2273 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2274 int n = tab.length, stride;
2275 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2276 stride = MIN_TRANSFER_STRIDE; // subdivide range
2277 if (nextTab == null) { // initiating
2278 try {
2279 @SuppressWarnings({"rawtypes","unchecked"})
2280 Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
2281 nextTab = nt;
2282 } catch (Throwable ex) { // try to cope with OOME
2283 sizeCtl = Integer.MAX_VALUE;
2284 return;
2285 }
2286 nextTable = nextTab;
2287 transferOrigin = n;
2288 transferIndex = n;
2289 ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
2290 for (int k = n; k > 0;) { // progressively reveal ready slots
2291 int nextk = (k > stride) ? k - stride : 0;
2292 for (int m = nextk; m < k; ++m)
2293 nextTab[m] = rev;
2294 for (int m = n + nextk; m < n + k; ++m)
2295 nextTab[m] = rev;
2296 U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2297 }
2298 }
2299 int nextn = nextTab.length;
2300 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2301 boolean advance = true;
2302 boolean finishing = false; // to ensure sweep before committing nextTab
2303 for (int i = 0, bound = 0;;) {
2304 int nextIndex, nextBound, fh; Node<K,V> f;
2305 while (advance) {
2306 if (--i >= bound || finishing)
2307 advance = false;
2308 else if ((nextIndex = transferIndex) <= transferOrigin) {
2309 i = -1;
2310 advance = false;
2311 }
2312 else if (U.compareAndSwapInt
2313 (this, TRANSFERINDEX, nextIndex,
2314 nextBound = (nextIndex > stride ?
2315 nextIndex - stride : 0))) {
2316 bound = nextBound;
2317 i = nextIndex - 1;
2318 advance = false;
2319 }
2320 }
2321 if (i < 0 || i >= n || i + n >= nextn) {
2322 if (finishing) {
2323 nextTable = null;
2324 table = nextTab;
2325 sizeCtl = (n << 1) - (n >>> 1);
2326 return;
2327 }
2328 for (int sc;;) {
2329 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2330 if (sc != -1)
2331 return;
2332 finishing = advance = true;
2333 i = n; // recheck before commit
2334 break;
2335 }
2336 }
2337 }
2338 else if ((f = tabAt(tab, i)) == null) {
2339 if (casTabAt(tab, i, null, fwd)) {
2340 setTabAt(nextTab, i, null);
2341 setTabAt(nextTab, i + n, null);
2342 advance = true;
2343 }
2344 }
2345 else if ((fh = f.hash) == MOVED)
2346 advance = true; // already processed
2347 else {
2348 synchronized (f) {
2349 if (tabAt(tab, i) == f) {
2350 Node<K,V> ln, hn;
2351 if (fh >= 0) {
2352 int runBit = fh & n;
2353 Node<K,V> lastRun = f;
2354 for (Node<K,V> p = f.next; p != null; p = p.next) {
2355 int b = p.hash & n;
2356 if (b != runBit) {
2357 runBit = b;
2358 lastRun = p;
2359 }
2360 }
2361 if (runBit == 0) {
2362 ln = lastRun;
2363 hn = null;
2364 }
2365 else {
2366 hn = lastRun;
2367 ln = null;
2368 }
2369 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2370 int ph = p.hash; K pk = p.key; V pv = p.val;
2371 if ((ph & n) == 0)
2372 ln = new Node<K,V>(ph, pk, pv, ln);
2373 else
2374 hn = new Node<K,V>(ph, pk, pv, hn);
2375 }
2376 setTabAt(nextTab, i, ln);
2377 setTabAt(nextTab, i + n, hn);
2378 setTabAt(tab, i, fwd);
2379 advance = true;
2380 }
2381 else if (f instanceof TreeBin) {
2382 TreeBin<K,V> t = (TreeBin<K,V>)f;
2383 TreeNode<K,V> lo = null, loTail = null;
2384 TreeNode<K,V> hi = null, hiTail = null;
2385 int lc = 0, hc = 0;
2386 for (Node<K,V> e = t.first; e != null; e = e.next) {
2387 int h = e.hash;
2388 TreeNode<K,V> p = new TreeNode<K,V>
2389 (h, e.key, e.val, null, null);
2390 if ((h & n) == 0) {
2391 if ((p.prev = loTail) == null)
2392 lo = p;
2393 else
2394 loTail.next = p;
2395 loTail = p;
2396 ++lc;
2397 }
2398 else {
2399 if ((p.prev = hiTail) == null)
2400 hi = p;
2401 else
2402 hiTail.next = p;
2403 hiTail = p;
2404 ++hc;
2405 }
2406 }
2407 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2408 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2409 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2410 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2411 setTabAt(nextTab, i, ln);
2412 setTabAt(nextTab, i + n, hn);
2413 setTabAt(tab, i, fwd);
2414 advance = true;
2415 }
2416 }
2417 }
2418 }
2419 }
2420 }
2421
2422 /* ---------------- Counter support -------------- */
2423
2424 /**
2425 * A padded cell for distributing counts. Adapted from LongAdder
2426 * and Striped64. See their internal docs for explanation.
2427 */
2428 @sun.misc.Contended static final class CounterCell {
2429 volatile long value;
2430 CounterCell(long x) { value = x; }
2431 }
2432
2433 final long sumCount() {
2434 CounterCell[] as = counterCells; CounterCell a;
2435 long sum = baseCount;
2436 if (as != null) {
2437 for (int i = 0; i < as.length; ++i) {
2438 if ((a = as[i]) != null)
2439 sum += a.value;
2440 }
2441 }
2442 return sum;
2443 }
2444
2445 // See LongAdder version for explanation
2446 private final void fullAddCount(long x, boolean wasUncontended) {
2447 int h;
2448 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2449 ThreadLocalRandom.localInit(); // force initialization
2450 h = ThreadLocalRandom.getProbe();
2451 wasUncontended = true;
2452 }
2453 boolean collide = false; // True if last slot nonempty
2454 for (;;) {
2455 CounterCell[] as; CounterCell a; int n; long v;
2456 if ((as = counterCells) != null && (n = as.length) > 0) {
2457 if ((a = as[(n - 1) & h]) == null) {
2458 if (cellsBusy == 0) { // Try to attach new Cell
2459 CounterCell r = new CounterCell(x); // Optimistic create
2460 if (cellsBusy == 0 &&
2461 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2462 boolean created = false;
2463 try { // Recheck under lock
2464 CounterCell[] rs; int m, j;
2465 if ((rs = counterCells) != null &&
2466 (m = rs.length) > 0 &&
2467 rs[j = (m - 1) & h] == null) {
2468 rs[j] = r;
2469 created = true;
2470 }
2471 } finally {
2472 cellsBusy = 0;
2473 }
2474 if (created)
2475 break;
2476 continue; // Slot is now non-empty
2477 }
2478 }
2479 collide = false;
2480 }
2481 else if (!wasUncontended) // CAS already known to fail
2482 wasUncontended = true; // Continue after rehash
2483 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2484 break;
2485 else if (counterCells != as || n >= NCPU)
2486 collide = false; // At max size or stale
2487 else if (!collide)
2488 collide = true;
2489 else if (cellsBusy == 0 &&
2490 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2491 try {
2492 if (counterCells == as) {// Expand table unless stale
2493 CounterCell[] rs = new CounterCell[n << 1];
2494 for (int i = 0; i < n; ++i)
2495 rs[i] = as[i];
2496 counterCells = rs;
2497 }
2498 } finally {
2499 cellsBusy = 0;
2500 }
2501 collide = false;
2502 continue; // Retry with expanded table
2503 }
2504 h = ThreadLocalRandom.advanceProbe(h);
2505 }
2506 else if (cellsBusy == 0 && counterCells == as &&
2507 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2508 boolean init = false;
2509 try { // Initialize table
2510 if (counterCells == as) {
2511 CounterCell[] rs = new CounterCell[2];
2512 rs[h & 1] = new CounterCell(x);
2513 counterCells = rs;
2514 init = true;
2515 }
2516 } finally {
2517 cellsBusy = 0;
2518 }
2519 if (init)
2520 break;
2521 }
2522 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2523 break; // Fall back on using base
2524 }
2525 }
2526
2527 /* ---------------- Conversion from/to TreeBins -------------- */
2528
2529 /**
2530 * Replaces all linked nodes in bin at given index unless table is
2531 * too small, in which case resizes instead.
2532 */
2533 private final void treeifyBin(Node<K,V>[] tab, int index) {
2534 Node<K,V> b; int n, sc;
2535 if (tab != null) {
2536 if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2537 if (tab == table && (sc = sizeCtl) >= 0 &&
2538 U.compareAndSwapInt(this, SIZECTL, sc, -2))
2539 transfer(tab, null);
2540 }
2541 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2542 synchronized (b) {
2543 if (tabAt(tab, index) == b) {
2544 TreeNode<K,V> hd = null, tl = null;
2545 for (Node<K,V> e = b; e != null; e = e.next) {
2546 TreeNode<K,V> p =
2547 new TreeNode<K,V>(e.hash, e.key, e.val,
2548 null, null);
2549 if ((p.prev = tl) == null)
2550 hd = p;
2551 else
2552 tl.next = p;
2553 tl = p;
2554 }
2555 setTabAt(tab, index, new TreeBin<K,V>(hd));
2556 }
2557 }
2558 }
2559 }
2560 }
2561
2562 /**
2563 * Returns a list on non-TreeNodes replacing those in given list.
2564 */
2565 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2566 Node<K,V> hd = null, tl = null;
2567 for (Node<K,V> q = b; q != null; q = q.next) {
2568 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2569 if (tl == null)
2570 hd = p;
2571 else
2572 tl.next = p;
2573 tl = p;
2574 }
2575 return hd;
2576 }
2577
2578 /* ---------------- TreeNodes -------------- */
2579
2580 /**
2581 * Nodes for use in TreeBins
2582 */
2583 static final class TreeNode<K,V> extends Node<K,V> {
2584 TreeNode<K,V> parent; // red-black tree links
2585 TreeNode<K,V> left;
2586 TreeNode<K,V> right;
2587 TreeNode<K,V> prev; // needed to unlink next upon deletion
2588 boolean red;
2589
2590 TreeNode(int hash, K key, V val, Node<K,V> next,
2591 TreeNode<K,V> parent) {
2592 super(hash, key, val, next);
2593 this.parent = parent;
2594 }
2595
2596 Node<K,V> find(int h, Object k) {
2597 return findTreeNode(h, k, null);
2598 }
2599
2600 /**
2601 * Returns the TreeNode (or null if not found) for the given key
2602 * starting at given root.
2603 */
2604 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2605 if (k != null) {
2606 TreeNode<K,V> p = this;
2607 do {
2608 int ph, dir; K pk; TreeNode<K,V> q;
2609 TreeNode<K,V> pl = p.left, pr = p.right;
2610 if ((ph = p.hash) > h)
2611 p = pl;
2612 else if (ph < h)
2613 p = pr;
2614 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2615 return p;
2616 else if (pl == null && pr == null)
2617 break;
2618 else if ((kc != null ||
2619 (kc = comparableClassFor(k)) != null) &&
2620 (dir = compareComparables(kc, k, pk)) != 0)
2621 p = (dir < 0) ? pl : pr;
2622 else if (pl == null)
2623 p = pr;
2624 else if (pr == null ||
2625 (q = pr.findTreeNode(h, k, kc)) == null)
2626 p = pl;
2627 else
2628 return q;
2629 } while (p != null);
2630 }
2631 return null;
2632 }
2633 }
2634
2635 /* ---------------- TreeBins -------------- */
2636
2637 /**
2638 * TreeNodes used at the heads of bins. TreeBins do not hold user
2639 * keys or values, but instead point to list of TreeNodes and
2640 * their root. They also maintain a parasitic read-write lock
2641 * forcing writers (who hold bin lock) to wait for readers (who do
2642 * not) to complete before tree restructuring operations.
2643 */
2644 static final class TreeBin<K,V> extends Node<K,V> {
2645 TreeNode<K,V> root;
2646 volatile TreeNode<K,V> first;
2647 volatile Thread waiter;
2648 volatile int lockState;
2649 // values for lockState
2650 static final int WRITER = 1; // set while holding write lock
2651 static final int WAITER = 2; // set when waiting for write lock
2652 static final int READER = 4; // increment value for setting read lock
2653
2654 /**
2655 * Creates bin with initial set of nodes headed by b.
2656 */
2657 TreeBin(TreeNode<K,V> b) {
2658 super(TREEBIN, null, null, null);
2659 this.first = b;
2660 TreeNode<K,V> r = null;
2661 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2662 next = (TreeNode<K,V>)x.next;
2663 x.left = x.right = null;
2664 if (r == null) {
2665 x.parent = null;
2666 x.red = false;
2667 r = x;
2668 }
2669 else {
2670 Object key = x.key;
2671 int hash = x.hash;
2672 Class<?> kc = null;
2673 for (TreeNode<K,V> p = r;;) {
2674 int dir, ph;
2675 if ((ph = p.hash) > hash)
2676 dir = -1;
2677 else if (ph < hash)
2678 dir = 1;
2679 else if ((kc != null ||
2680 (kc = comparableClassFor(key)) != null))
2681 dir = compareComparables(kc, key, p.key);
2682 else
2683 dir = 0;
2684 TreeNode<K,V> xp = p;
2685 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2686 x.parent = xp;
2687 if (dir <= 0)
2688 xp.left = x;
2689 else
2690 xp.right = x;
2691 r = balanceInsertion(r, x);
2692 break;
2693 }
2694 }
2695 }
2696 }
2697 this.root = r;
2698 }
2699
2700 /**
2701 * Acquires write lock for tree restructuring.
2702 */
2703 private final void lockRoot() {
2704 if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2705 contendedLock(); // offload to separate method
2706 }
2707
2708 /**
2709 * Releases write lock for tree restructuring.
2710 */
2711 private final void unlockRoot() {
2712 lockState = 0;
2713 }
2714
2715 /**
2716 * Possibly blocks awaiting root lock.
2717 */
2718 private final void contendedLock() {
2719 boolean waiting = false;
2720 for (int s;;) {
2721 if (((s = lockState) & WRITER) == 0) {
2722 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2723 if (waiting)
2724 waiter = null;
2725 return;
2726 }
2727 }
2728 else if ((s | WAITER) == 0) {
2729 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2730 waiting = true;
2731 waiter = Thread.currentThread();
2732 }
2733 }
2734 else if (waiting)
2735 LockSupport.park(this);
2736 }
2737 }
2738
2739 /**
2740 * Returns matching node or null if none. Tries to search
2741 * using tree comparisons from root, but continues linear
2742 * search when lock not available.
2743 */
2744 final Node<K,V> find(int h, Object k) {
2745 if (k != null) {
2746 for (Node<K,V> e = first; e != null; e = e.next) {
2747 int s; K ek;
2748 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2749 if (e.hash == h &&
2750 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2751 return e;
2752 }
2753 else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2754 s + READER)) {
2755 TreeNode<K,V> r, p;
2756 try {
2757 p = ((r = root) == null ? null :
2758 r.findTreeNode(h, k, null));
2759 } finally {
2760 Thread w;
2761 if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2762 (READER|WAITER) && (w = waiter) != null)
2763 LockSupport.unpark(w);
2764 }
2765 return p;
2766 }
2767 }
2768 }
2769 return null;
2770 }
2771
2772 /**
2773 * Finds or adds a node.
2774 * @return null if added
2775 */
2776 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2777 Class<?> kc = null;
2778 for (TreeNode<K,V> p = root;;) {
2779 int dir, ph; K pk; TreeNode<K,V> q, pr;
2780 if (p == null) {
2781 first = root = new TreeNode<K,V>(h, k, v, null, null);
2782 break;
2783 }
2784 else if ((ph = p.hash) > h)
2785 dir = -1;
2786 else if (ph < h)
2787 dir = 1;
2788 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2789 return p;
2790 else if ((kc == null &&
2791 (kc = comparableClassFor(k)) == null) ||
2792 (dir = compareComparables(kc, k, pk)) == 0) {
2793 if (p.left == null)
2794 dir = 1;
2795 else if ((pr = p.right) == null ||
2796 (q = pr.findTreeNode(h, k, kc)) == null)
2797 dir = -1;
2798 else
2799 return q;
2800 }
2801 TreeNode<K,V> xp = p;
2802 if ((p = (dir < 0) ? p.left : p.right) == null) {
2803 TreeNode<K,V> x, f = first;
2804 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2805 if (f != null)
2806 f.prev = x;
2807 if (dir < 0)
2808 xp.left = x;
2809 else
2810 xp.right = x;
2811 if (!xp.red)
2812 x.red = true;
2813 else {
2814 lockRoot();
2815 try {
2816 root = balanceInsertion(root, x);
2817 } finally {
2818 unlockRoot();
2819 }
2820 }
2821 break;
2822 }
2823 }
2824 assert checkInvariants(root);
2825 return null;
2826 }
2827
2828 /**
2829 * Removes the given node, that must be present before this
2830 * call. This is messier than typical red-black deletion code
2831 * because we cannot swap the contents of an interior node
2832 * with a leaf successor that is pinned by "next" pointers
2833 * that are accessible independently of lock. So instead we
2834 * swap the tree linkages.
2835 *
2836 * @return true if now too small, so should be untreeified
2837 */
2838 final boolean removeTreeNode(TreeNode<K,V> p) {
2839 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2840 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2841 TreeNode<K,V> r, rl;
2842 if (pred == null)
2843 first = next;
2844 else
2845 pred.next = next;
2846 if (next != null)
2847 next.prev = pred;
2848 if (first == null) {
2849 root = null;
2850 return true;
2851 }
2852 if ((r = root) == null || r.right == null || // too small
2853 (rl = r.left) == null || rl.left == null)
2854 return true;
2855 lockRoot();
2856 try {
2857 TreeNode<K,V> replacement;
2858 TreeNode<K,V> pl = p.left;
2859 TreeNode<K,V> pr = p.right;
2860 if (pl != null && pr != null) {
2861 TreeNode<K,V> s = pr, sl;
2862 while ((sl = s.left) != null) // find successor
2863 s = sl;
2864 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2865 TreeNode<K,V> sr = s.right;
2866 TreeNode<K,V> pp = p.parent;
2867 if (s == pr) { // p was s's direct parent
2868 p.parent = s;
2869 s.right = p;
2870 }
2871 else {
2872 TreeNode<K,V> sp = s.parent;
2873 if ((p.parent = sp) != null) {
2874 if (s == sp.left)
2875 sp.left = p;
2876 else
2877 sp.right = p;
2878 }
2879 if ((s.right = pr) != null)
2880 pr.parent = s;
2881 }
2882 p.left = null;
2883 if ((p.right = sr) != null)
2884 sr.parent = p;
2885 if ((s.left = pl) != null)
2886 pl.parent = s;
2887 if ((s.parent = pp) == null)
2888 r = s;
2889 else if (p == pp.left)
2890 pp.left = s;
2891 else
2892 pp.right = s;
2893 if (sr != null)
2894 replacement = sr;
2895 else
2896 replacement = p;
2897 }
2898 else if (pl != null)
2899 replacement = pl;
2900 else if (pr != null)
2901 replacement = pr;
2902 else
2903 replacement = p;
2904 if (replacement != p) {
2905 TreeNode<K,V> pp = replacement.parent = p.parent;
2906 if (pp == null)
2907 r = replacement;
2908 else if (p == pp.left)
2909 pp.left = replacement;
2910 else
2911 pp.right = replacement;
2912 p.left = p.right = p.parent = null;
2913 }
2914
2915 root = (p.red) ? r : balanceDeletion(r, replacement);
2916
2917 if (p == replacement) { // detach pointers
2918 TreeNode<K,V> pp;
2919 if ((pp = p.parent) != null) {
2920 if (p == pp.left)
2921 pp.left = null;
2922 else if (p == pp.right)
2923 pp.right = null;
2924 p.parent = null;
2925 }
2926 }
2927 } finally {
2928 unlockRoot();
2929 }
2930 assert checkInvariants(root);
2931 return false;
2932 }
2933
2934 /* ------------------------------------------------------------ */
2935 // Red-black tree methods, all adapted from CLR
2936
2937 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2938 TreeNode<K,V> p) {
2939 TreeNode<K,V> r, pp, rl;
2940 if (p != null && (r = p.right) != null) {
2941 if ((rl = p.right = r.left) != null)
2942 rl.parent = p;
2943 if ((pp = r.parent = p.parent) == null)
2944 (root = r).red = false;
2945 else if (pp.left == p)
2946 pp.left = r;
2947 else
2948 pp.right = r;
2949 r.left = p;
2950 p.parent = r;
2951 }
2952 return root;
2953 }
2954
2955 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2956 TreeNode<K,V> p) {
2957 TreeNode<K,V> l, pp, lr;
2958 if (p != null && (l = p.left) != null) {
2959 if ((lr = p.left = l.right) != null)
2960 lr.parent = p;
2961 if ((pp = l.parent = p.parent) == null)
2962 (root = l).red = false;
2963 else if (pp.right == p)
2964 pp.right = l;
2965 else
2966 pp.left = l;
2967 l.right = p;
2968 p.parent = l;
2969 }
2970 return root;
2971 }
2972
2973 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2974 TreeNode<K,V> x) {
2975 x.red = true;
2976 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2977 if ((xp = x.parent) == null) {
2978 x.red = false;
2979 return x;
2980 }
2981 else if (!xp.red || (xpp = xp.parent) == null)
2982 return root;
2983 if (xp == (xppl = xpp.left)) {
2984 if ((xppr = xpp.right) != null && xppr.red) {
2985 xppr.red = false;
2986 xp.red = false;
2987 xpp.red = true;
2988 x = xpp;
2989 }
2990 else {
2991 if (x == xp.right) {
2992 root = rotateLeft(root, x = xp);
2993 xpp = (xp = x.parent) == null ? null : xp.parent;
2994 }
2995 if (xp != null) {
2996 xp.red = false;
2997 if (xpp != null) {
2998 xpp.red = true;
2999 root = rotateRight(root, xpp);
3000 }
3001 }
3002 }
3003 }
3004 else {
3005 if (xppl != null && xppl.red) {
3006 xppl.red = false;
3007 xp.red = false;
3008 xpp.red = true;
3009 x = xpp;
3010 }
3011 else {
3012 if (x == xp.left) {
3013 root = rotateRight(root, x = xp);
3014 xpp = (xp = x.parent) == null ? null : xp.parent;
3015 }
3016 if (xp != null) {
3017 xp.red = false;
3018 if (xpp != null) {
3019 xpp.red = true;
3020 root = rotateLeft(root, xpp);
3021 }
3022 }
3023 }
3024 }
3025 }
3026 }
3027
3028 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3029 TreeNode<K,V> x) {
3030 for (TreeNode<K,V> xp, xpl, xpr;;) {
3031 if (x == null || x == root)
3032 return root;
3033 else if ((xp = x.parent) == null) {
3034 x.red = false;
3035 return x;
3036 }
3037 else if (x.red) {
3038 x.red = false;
3039 return root;
3040 }
3041 else if ((xpl = xp.left) == x) {
3042 if ((xpr = xp.right) != null && xpr.red) {
3043 xpr.red = false;
3044 xp.red = true;
3045 root = rotateLeft(root, xp);
3046 xpr = (xp = x.parent) == null ? null : xp.right;
3047 }
3048 if (xpr == null)
3049 x = xp;
3050 else {
3051 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3052 if ((sr == null || !sr.red) &&
3053 (sl == null || !sl.red)) {
3054 xpr.red = true;
3055 x = xp;
3056 }
3057 else {
3058 if (sr == null || !sr.red) {
3059 if (sl != null)
3060 sl.red = false;
3061 xpr.red = true;
3062 root = rotateRight(root, xpr);
3063 xpr = (xp = x.parent) == null ?
3064 null : xp.right;
3065 }
3066 if (xpr != null) {
3067 xpr.red = (xp == null) ? false : xp.red;
3068 if ((sr = xpr.right) != null)
3069 sr.red = false;
3070 }
3071 if (xp != null) {
3072 xp.red = false;
3073 root = rotateLeft(root, xp);
3074 }
3075 x = root;
3076 }
3077 }
3078 }
3079 else { // symmetric
3080 if (xpl != null && xpl.red) {
3081 xpl.red = false;
3082 xp.red = true;
3083 root = rotateRight(root, xp);
3084 xpl = (xp = x.parent) == null ? null : xp.left;
3085 }
3086 if (xpl == null)
3087 x = xp;
3088 else {
3089 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3090 if ((sl == null || !sl.red) &&
3091 (sr == null || !sr.red)) {
3092 xpl.red = true;
3093 x = xp;
3094 }
3095 else {
3096 if (sl == null || !sl.red) {
3097 if (sr != null)
3098 sr.red = false;
3099 xpl.red = true;
3100 root = rotateLeft(root, xpl);
3101 xpl = (xp = x.parent) == null ?
3102 null : xp.left;
3103 }
3104 if (xpl != null) {
3105 xpl.red = (xp == null) ? false : xp.red;
3106 if ((sl = xpl.left) != null)
3107 sl.red = false;
3108 }
3109 if (xp != null) {
3110 xp.red = false;
3111 root = rotateRight(root, xp);
3112 }
3113 x = root;
3114 }
3115 }
3116 }
3117 }
3118 }
3119
3120 /**
3121 * Recursive invariant check
3122 */
3123 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3124 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3125 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3126 if (tb != null && tb.next != t)
3127 return false;
3128 if (tn != null && tn.prev != t)
3129 return false;
3130 if (tp != null && t != tp.left && t != tp.right)
3131 return false;
3132 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3133 return false;
3134 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3135 return false;
3136 if (t.red && tl != null && tl.red && tr != null && tr.red)
3137 return false;
3138 if (tl != null && !checkInvariants(tl))
3139 return false;
3140 if (tr != null && !checkInvariants(tr))
3141 return false;
3142 return true;
3143 }
3144
3145 private static final sun.misc.Unsafe U;
3146 private static final long LOCKSTATE;
3147 static {
3148 try {
3149 U = sun.misc.Unsafe.getUnsafe();
3150 Class<?> k = TreeBin.class;
3151 LOCKSTATE = U.objectFieldOffset
3152 (k.getDeclaredField("lockState"));
3153 } catch (Exception e) {
3154 throw new Error(e);
3155 }
3156 }
3157 }
3158
3159 /* ----------------Table Traversal -------------- */
3160
3161 /**
3162 * Encapsulates traversal for methods such as containsValue; also
3163 * serves as a base class for other iterators and spliterators.
3164 *
3165 * Method advance visits once each still-valid node that was
3166 * reachable upon iterator construction. It might miss some that
3167 * were added to a bin after the bin was visited, which is OK wrt
3168 * consistency guarantees. Maintaining this property in the face
3169 * of possible ongoing resizes requires a fair amount of
3170 * bookkeeping state that is difficult to optimize away amidst
3171 * volatile accesses. Even so, traversal maintains reasonable
3172 * throughput.
3173 *
3174 * Normally, iteration proceeds bin-by-bin traversing lists.
3175 * However, if the table has been resized, then all future steps
3176 * must traverse both the bin at the current index as well as at
3177 * (index + baseSize); and so on for further resizings. To
3178 * paranoically cope with potential sharing by users of iterators
3179 * across threads, iteration terminates if a bounds checks fails
3180 * for a table read.
3181 */
3182 static class Traverser<K,V> {
3183 Node<K,V>[] tab; // current table; updated if resized
3184 Node<K,V> next; // the next entry to use
3185 int index; // index of bin to use next
3186 int baseIndex; // current index of initial table
3187 int baseLimit; // index bound for initial table
3188 final int baseSize; // initial table size
3189
3190 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3191 this.tab = tab;
3192 this.baseSize = size;
3193 this.baseIndex = this.index = index;
3194 this.baseLimit = limit;
3195 this.next = null;
3196 }
3197
3198 /**
3199 * Advances if possible, returning next valid node, or null if none.
3200 */
3201 final Node<K,V> advance() {
3202 Node<K,V> e;
3203 if ((e = next) != null)
3204 e = e.next;
3205 for (;;) {
3206 Node<K,V>[] t; int i, n; K ek; // must use locals in checks
3207 if (e != null)
3208 return next = e;
3209 if (baseIndex >= baseLimit || (t = tab) == null ||
3210 (n = t.length) <= (i = index) || i < 0)
3211 return next = null;
3212 if ((e = tabAt(t, index)) != null && e.hash < 0) {
3213 if (e instanceof ForwardingNode) {
3214 tab = ((ForwardingNode<K,V>)e).nextTable;
3215 e = null;
3216 continue;
3217 }
3218 else if (e instanceof TreeBin)
3219 e = ((TreeBin<K,V>)e).first;
3220 else
3221 e = null;
3222 }
3223 if ((index += baseSize) >= n)
3224 index = ++baseIndex; // visit upper slots if present
3225 }
3226 }
3227 }
3228
3229 /**
3230 * Base of key, value, and entry Iterators. Adds fields to
3231 * Traverser to support iterator.remove.
3232 */
3233 static class BaseIterator<K,V> extends Traverser<K,V> {
3234 final ConcurrentHashMap<K,V> map;
3235 Node<K,V> lastReturned;
3236 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3237 ConcurrentHashMap<K,V> map) {
3238 super(tab, size, index, limit);
3239 this.map = map;
3240 advance();
3241 }
3242
3243 public final boolean hasNext() { return next != null; }
3244 public final boolean hasMoreElements() { return next != null; }
3245
3246 public final void remove() {
3247 Node<K,V> p;
3248 if ((p = lastReturned) == null)
3249 throw new IllegalStateException();
3250 lastReturned = null;
3251 map.replaceNode(p.key, null, null);
3252 }
3253 }
3254
3255 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3256 implements Iterator<K>, Enumeration<K> {
3257 KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3258 ConcurrentHashMap<K,V> map) {
3259 super(tab, index, size, limit, map);
3260 }
3261
3262 public final K next() {
3263 Node<K,V> p;
3264 if ((p = next) == null)
3265 throw new NoSuchElementException();
3266 K k = p.key;
3267 lastReturned = p;
3268 advance();
3269 return k;
3270 }
3271
3272 public final K nextElement() { return next(); }
3273 }
3274
3275 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3276 implements Iterator<V>, Enumeration<V> {
3277 ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3278 ConcurrentHashMap<K,V> map) {
3279 super(tab, index, size, limit, map);
3280 }
3281
3282 public final V next() {
3283 Node<K,V> p;
3284 if ((p = next) == null)
3285 throw new NoSuchElementException();
3286 V v = p.val;
3287 lastReturned = p;
3288 advance();
3289 return v;
3290 }
3291
3292 public final V nextElement() { return next(); }
3293 }
3294
3295 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3296 implements Iterator<Map.Entry<K,V>> {
3297 EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3298 ConcurrentHashMap<K,V> map) {
3299 super(tab, index, size, limit, map);
3300 }
3301
3302 public final Map.Entry<K,V> next() {
3303 Node<K,V> p;
3304 if ((p = next) == null)
3305 throw new NoSuchElementException();
3306 K k = p.key;
3307 V v = p.val;
3308 lastReturned = p;
3309 advance();
3310 return new MapEntry<K,V>(k, v, map);
3311 }
3312 }
3313
3314 /**
3315 * Exported Entry for EntryIterator
3316 */
3317 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3318 final K key; // non-null
3319 V val; // non-null
3320 final ConcurrentHashMap<K,V> map;
3321 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3322 this.key = key;
3323 this.val = val;
3324 this.map = map;
3325 }
3326 public K getKey() { return key; }
3327 public V getValue() { return val; }
3328 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3329 public String toString() { return key + "=" + val; }
3330
3331 public boolean equals(Object o) {
3332 Object k, v; Map.Entry<?,?> e;
3333 return ((o instanceof Map.Entry) &&
3334 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3335 (v = e.getValue()) != null &&
3336 (k == key || k.equals(key)) &&
3337 (v == val || v.equals(val)));
3338 }
3339
3340 /**
3341 * Sets our entry's value and writes through to the map. The
3342 * value to return is somewhat arbitrary here. Since we do not
3343 * necessarily track asynchronous changes, the most recent
3344 * "previous" value could be different from what we return (or
3345 * could even have been removed, in which case the put will
3346 * re-establish). We do not and cannot guarantee more.
3347 */
3348 public V setValue(V value) {
3349 if (value == null) throw new NullPointerException();
3350 V v = val;
3351 val = value;
3352 map.put(key, value);
3353 return v;
3354 }
3355 }
3356
3357 static final class KeySpliterator<K,V> extends Traverser<K,V>
3358 implements Spliterator<K> {
3359 long est; // size estimate
3360 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3361 long est) {
3362 super(tab, size, index, limit);
3363 this.est = est;
3364 }
3365
3366 public Spliterator<K> trySplit() {
3367 int i, f, h;
3368 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3369 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3370 f, est >>>= 1);
3371 }
3372
3373 public void forEachRemaining(Consumer<? super K> action) {
3374 if (action == null) throw new NullPointerException();
3375 for (Node<K,V> p; (p = advance()) != null;)
3376 action.accept(p.key);
3377 }
3378
3379 public boolean tryAdvance(Consumer<? super K> action) {
3380 if (action == null) throw new NullPointerException();
3381 Node<K,V> p;
3382 if ((p = advance()) == null)
3383 return false;
3384 action.accept(p.key);
3385 return true;
3386 }
3387
3388 public long estimateSize() { return est; }
3389
3390 public int characteristics() {
3391 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3392 Spliterator.NONNULL;
3393 }
3394 }
3395
3396 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3397 implements Spliterator<V> {
3398 long est; // size estimate
3399 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3400 long est) {
3401 super(tab, size, index, limit);
3402 this.est = est;
3403 }
3404
3405 public Spliterator<V> trySplit() {
3406 int i, f, h;
3407 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3408 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3409 f, est >>>= 1);
3410 }
3411
3412 public void forEachRemaining(Consumer<? super V> action) {
3413 if (action == null) throw new NullPointerException();
3414 for (Node<K,V> p; (p = advance()) != null;)
3415 action.accept(p.val);
3416 }
3417
3418 public boolean tryAdvance(Consumer<? super V> action) {
3419 if (action == null) throw new NullPointerException();
3420 Node<K,V> p;
3421 if ((p = advance()) == null)
3422 return false;
3423 action.accept(p.val);
3424 return true;
3425 }
3426
3427 public long estimateSize() { return est; }
3428
3429 public int characteristics() {
3430 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3431 }
3432 }
3433
3434 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3435 implements Spliterator<Map.Entry<K,V>> {
3436 final ConcurrentHashMap<K,V> map; // To export MapEntry
3437 long est; // size estimate
3438 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3439 long est, ConcurrentHashMap<K,V> map) {
3440 super(tab, size, index, limit);
3441 this.map = map;
3442 this.est = est;
3443 }
3444
3445 public Spliterator<Map.Entry<K,V>> trySplit() {
3446 int i, f, h;
3447 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3448 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3449 f, est >>>= 1, map);
3450 }
3451
3452 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3453 if (action == null) throw new NullPointerException();
3454 for (Node<K,V> p; (p = advance()) != null; )
3455 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3456 }
3457
3458 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3459 if (action == null) throw new NullPointerException();
3460 Node<K,V> p;
3461 if ((p = advance()) == null)
3462 return false;
3463 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3464 return true;
3465 }
3466
3467 public long estimateSize() { return est; }
3468
3469 public int characteristics() {
3470 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3471 Spliterator.NONNULL;
3472 }
3473 }
3474
3475 // Parallel bulk operations
3476
3477 /**
3478 * Computes initial batch value for bulk tasks. The returned value
3479 * is approximately exp2 of the number of times (minus one) to
3480 * split task by two before executing leaf action. This value is
3481 * faster to compute and more convenient to use as a guide to
3482 * splitting than is the depth, since it is used while dividing by
3483 * two anyway.
3484 */
3485 final int batchFor(long b) {
3486 long n;
3487 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3488 return 0;
3489 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3490 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3491 }
3492
3493 /**
3494 * Performs the given action for each (key, value).
3495 *
3496 * @param parallelismThreshold the (estimated) number of elements
3497 * needed for this operation to be executed in parallel
3498 * @param action the action
3499 * @since 1.8
3500 */
3501 public void forEach(long parallelismThreshold,
3502 BiConsumer<? super K,? super V> action) {
3503 if (action == null) throw new NullPointerException();
3504 new ForEachMappingTask<K,V>
3505 (null, batchFor(parallelismThreshold), 0, 0, table,
3506 action).invoke();
3507 }
3508
3509 /**
3510 * Performs the given action for each non-null transformation
3511 * of each (key, value).
3512 *
3513 * @param parallelismThreshold the (estimated) number of elements
3514 * needed for this operation to be executed in parallel
3515 * @param transformer a function returning the transformation
3516 * for an element, or null if there is no transformation (in
3517 * which case the action is not applied)
3518 * @param action the action
3519 * @since 1.8
3520 */
3521 public <U> void forEach(long parallelismThreshold,
3522 BiFunction<? super K, ? super V, ? extends U> transformer,
3523 Consumer<? super U> action) {
3524 if (transformer == null || action == null)
3525 throw new NullPointerException();
3526 new ForEachTransformedMappingTask<K,V,U>
3527 (null, batchFor(parallelismThreshold), 0, 0, table,
3528 transformer, action).invoke();
3529 }
3530
3531 /**
3532 * Returns a non-null result from applying the given search
3533 * function on each (key, value), or null if none. Upon
3534 * success, further element processing is suppressed and the
3535 * results of any other parallel invocations of the search
3536 * function are ignored.
3537 *
3538 * @param parallelismThreshold the (estimated) number of elements
3539 * needed for this operation to be executed in parallel
3540 * @param searchFunction a function returning a non-null
3541 * result on success, else null
3542 * @return a non-null result from applying the given search
3543 * function on each (key, value), or null if none
3544 * @since 1.8
3545 */
3546 public <U> U search(long parallelismThreshold,
3547 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3548 if (searchFunction == null) throw new NullPointerException();
3549 return new SearchMappingsTask<K,V,U>
3550 (null, batchFor(parallelismThreshold), 0, 0, table,
3551 searchFunction, new AtomicReference<U>()).invoke();
3552 }
3553
3554 /**
3555 * Returns the result of accumulating the given transformation
3556 * of all (key, value) pairs using the given reducer to
3557 * combine values, or null if none.
3558 *
3559 * @param parallelismThreshold the (estimated) number of elements
3560 * needed for this operation to be executed in parallel
3561 * @param transformer a function returning the transformation
3562 * for an element, or null if there is no transformation (in
3563 * which case it is not combined)
3564 * @param reducer a commutative associative combining function
3565 * @return the result of accumulating the given transformation
3566 * of all (key, value) pairs
3567 * @since 1.8
3568 */
3569 public <U> U reduce(long parallelismThreshold,
3570 BiFunction<? super K, ? super V, ? extends U> transformer,
3571 BiFunction<? super U, ? super U, ? extends U> reducer) {
3572 if (transformer == null || reducer == null)
3573 throw new NullPointerException();
3574 return new MapReduceMappingsTask<K,V,U>
3575 (null, batchFor(parallelismThreshold), 0, 0, table,
3576 null, transformer, reducer).invoke();
3577 }
3578
3579 /**
3580 * Returns the result of accumulating the given transformation
3581 * of all (key, value) pairs using the given reducer to
3582 * combine values, and the given basis as an identity value.
3583 *
3584 * @param parallelismThreshold the (estimated) number of elements
3585 * needed for this operation to be executed in parallel
3586 * @param transformer a function returning the transformation
3587 * for an element
3588 * @param basis the identity (initial default value) for the reduction
3589 * @param reducer a commutative associative combining function
3590 * @return the result of accumulating the given transformation
3591 * of all (key, value) pairs
3592 * @since 1.8
3593 */
3594 public double reduceToDouble(long parallelismThreshold,
3595 ToDoubleBiFunction<? super K, ? super V> transformer,
3596 double basis,
3597 DoubleBinaryOperator reducer) {
3598 if (transformer == null || reducer == null)
3599 throw new NullPointerException();
3600 return new MapReduceMappingsToDoubleTask<K,V>
3601 (null, batchFor(parallelismThreshold), 0, 0, table,
3602 null, transformer, basis, reducer).invoke();
3603 }
3604
3605 /**
3606 * Returns the result of accumulating the given transformation
3607 * of all (key, value) pairs using the given reducer to
3608 * combine values, and the given basis as an identity value.
3609 *
3610 * @param parallelismThreshold the (estimated) number of elements
3611 * needed for this operation to be executed in parallel
3612 * @param transformer a function returning the transformation
3613 * for an element
3614 * @param basis the identity (initial default value) for the reduction
3615 * @param reducer a commutative associative combining function
3616 * @return the result of accumulating the given transformation
3617 * of all (key, value) pairs
3618 * @since 1.8
3619 */
3620 public long reduceToLong(long parallelismThreshold,
3621 ToLongBiFunction<? super K, ? super V> transformer,
3622 long basis,
3623 LongBinaryOperator reducer) {
3624 if (transformer == null || reducer == null)
3625 throw new NullPointerException();
3626 return new MapReduceMappingsToLongTask<K,V>
3627 (null, batchFor(parallelismThreshold), 0, 0, table,
3628 null, transformer, basis, reducer).invoke();
3629 }
3630
3631 /**
3632 * Returns the result of accumulating the given transformation
3633 * of all (key, value) pairs using the given reducer to
3634 * combine values, and the given basis as an identity value.
3635 *
3636 * @param parallelismThreshold the (estimated) number of elements
3637 * needed for this operation to be executed in parallel
3638 * @param transformer a function returning the transformation
3639 * for an element
3640 * @param basis the identity (initial default value) for the reduction
3641 * @param reducer a commutative associative combining function
3642 * @return the result of accumulating the given transformation
3643 * of all (key, value) pairs
3644 * @since 1.8
3645 */
3646 public int reduceToInt(long parallelismThreshold,
3647 ToIntBiFunction<? super K, ? super V> transformer,
3648 int basis,
3649 IntBinaryOperator reducer) {
3650 if (transformer == null || reducer == null)
3651 throw new NullPointerException();
3652 return new MapReduceMappingsToIntTask<K,V>
3653 (null, batchFor(parallelismThreshold), 0, 0, table,
3654 null, transformer, basis, reducer).invoke();
3655 }
3656
3657 /**
3658 * Performs the given action for each key.
3659 *
3660 * @param parallelismThreshold the (estimated) number of elements
3661 * needed for this operation to be executed in parallel
3662 * @param action the action
3663 * @since 1.8
3664 */
3665 public void forEachKey(long parallelismThreshold,
3666 Consumer<? super K> action) {
3667 if (action == null) throw new NullPointerException();
3668 new ForEachKeyTask<K,V>
3669 (null, batchFor(parallelismThreshold), 0, 0, table,
3670 action).invoke();
3671 }
3672
3673 /**
3674 * Performs the given action for each non-null transformation
3675 * of each key.
3676 *
3677 * @param parallelismThreshold the (estimated) number of elements
3678 * needed for this operation to be executed in parallel
3679 * @param transformer a function returning the transformation
3680 * for an element, or null if there is no transformation (in
3681 * which case the action is not applied)
3682 * @param action the action
3683 * @since 1.8
3684 */
3685 public <U> void forEachKey(long parallelismThreshold,
3686 Function<? super K, ? extends U> transformer,
3687 Consumer<? super U> action) {
3688 if (transformer == null || action == null)
3689 throw new NullPointerException();
3690 new ForEachTransformedKeyTask<K,V,U>
3691 (null, batchFor(parallelismThreshold), 0, 0, table,
3692 transformer, action).invoke();
3693 }
3694
3695 /**
3696 * Returns a non-null result from applying the given search
3697 * function on each key, or null if none. Upon success,
3698 * further element processing is suppressed and the results of
3699 * any other parallel invocations of the search function are
3700 * ignored.
3701 *
3702 * @param parallelismThreshold the (estimated) number of elements
3703 * needed for this operation to be executed in parallel
3704 * @param searchFunction a function returning a non-null
3705 * result on success, else null
3706 * @return a non-null result from applying the given search
3707 * function on each key, or null if none
3708 * @since 1.8
3709 */
3710 public <U> U searchKeys(long parallelismThreshold,
3711 Function<? super K, ? extends U> searchFunction) {
3712 if (searchFunction == null) throw new NullPointerException();
3713 return new SearchKeysTask<K,V,U>
3714 (null, batchFor(parallelismThreshold), 0, 0, table,
3715 searchFunction, new AtomicReference<U>()).invoke();
3716 }
3717
3718 /**
3719 * Returns the result of accumulating all keys using the given
3720 * reducer to combine values, or null if none.
3721 *
3722 * @param parallelismThreshold the (estimated) number of elements
3723 * needed for this operation to be executed in parallel
3724 * @param reducer a commutative associative combining function
3725 * @return the result of accumulating all keys using the given
3726 * reducer to combine values, or null if none
3727 * @since 1.8
3728 */
3729 public K reduceKeys(long parallelismThreshold,
3730 BiFunction<? super K, ? super K, ? extends K> reducer) {
3731 if (reducer == null) throw new NullPointerException();
3732 return new ReduceKeysTask<K,V>
3733 (null, batchFor(parallelismThreshold), 0, 0, table,
3734 null, reducer).invoke();
3735 }
3736
3737 /**
3738 * Returns the result of accumulating the given transformation
3739 * of all keys using the given reducer to combine values, or
3740 * null if none.
3741 *
3742 * @param parallelismThreshold the (estimated) number of elements
3743 * needed for this operation to be executed in parallel
3744 * @param transformer a function returning the transformation
3745 * for an element, or null if there is no transformation (in
3746 * which case it is not combined)
3747 * @param reducer a commutative associative combining function
3748 * @return the result of accumulating the given transformation
3749 * of all keys
3750 * @since 1.8
3751 */
3752 public <U> U reduceKeys(long parallelismThreshold,
3753 Function<? super K, ? extends U> transformer,
3754 BiFunction<? super U, ? super U, ? extends U> reducer) {
3755 if (transformer == null || reducer == null)
3756 throw new NullPointerException();
3757 return new MapReduceKeysTask<K,V,U>
3758 (null, batchFor(parallelismThreshold), 0, 0, table,
3759 null, transformer, reducer).invoke();
3760 }
3761
3762 /**
3763 * Returns the result of accumulating the given transformation
3764 * of all keys using the given reducer to combine values, and
3765 * the given basis as an identity value.
3766 *
3767 * @param parallelismThreshold the (estimated) number of elements
3768 * needed for this operation to be executed in parallel
3769 * @param transformer a function returning the transformation
3770 * for an element
3771 * @param basis the identity (initial default value) for the reduction
3772 * @param reducer a commutative associative combining function
3773 * @return the result of accumulating the given transformation
3774 * of all keys
3775 * @since 1.8
3776 */
3777 public double reduceKeysToDouble(long parallelismThreshold,
3778 ToDoubleFunction<? super K> transformer,
3779 double basis,
3780 DoubleBinaryOperator reducer) {
3781 if (transformer == null || reducer == null)
3782 throw new NullPointerException();
3783 return new MapReduceKeysToDoubleTask<K,V>
3784 (null, batchFor(parallelismThreshold), 0, 0, table,
3785 null, transformer, basis, reducer).invoke();
3786 }
3787
3788 /**
3789 * Returns the result of accumulating the given transformation
3790 * of all keys using the given reducer to combine values, and
3791 * the given basis as an identity value.
3792 *
3793 * @param parallelismThreshold the (estimated) number of elements
3794 * needed for this operation to be executed in parallel
3795 * @param transformer a function returning the transformation
3796 * for an element
3797 * @param basis the identity (initial default value) for the reduction
3798 * @param reducer a commutative associative combining function
3799 * @return the result of accumulating the given transformation
3800 * of all keys
3801 * @since 1.8
3802 */
3803 public long reduceKeysToLong(long parallelismThreshold,
3804 ToLongFunction<? super K> transformer,
3805 long basis,
3806 LongBinaryOperator reducer) {
3807 if (transformer == null || reducer == null)
3808 throw new NullPointerException();
3809 return new MapReduceKeysToLongTask<K,V>
3810 (null, batchFor(parallelismThreshold), 0, 0, table,
3811 null, transformer, basis, reducer).invoke();
3812 }
3813
3814 /**
3815 * Returns the result of accumulating the given transformation
3816 * of all keys using the given reducer to combine values, and
3817 * the given basis as an identity value.
3818 *
3819 * @param parallelismThreshold the (estimated) number of elements
3820 * needed for this operation to be executed in parallel
3821 * @param transformer a function returning the transformation
3822 * for an element
3823 * @param basis the identity (initial default value) for the reduction
3824 * @param reducer a commutative associative combining function
3825 * @return the result of accumulating the given transformation
3826 * of all keys
3827 * @since 1.8
3828 */
3829 public int reduceKeysToInt(long parallelismThreshold,
3830 ToIntFunction<? super K> transformer,
3831 int basis,
3832 IntBinaryOperator reducer) {
3833 if (transformer == null || reducer == null)
3834 throw new NullPointerException();
3835 return new MapReduceKeysToIntTask<K,V>
3836 (null, batchFor(parallelismThreshold), 0, 0, table,
3837 null, transformer, basis, reducer).invoke();
3838 }
3839
3840 /**
3841 * Performs the given action for each value.
3842 *
3843 * @param parallelismThreshold the (estimated) number of elements
3844 * needed for this operation to be executed in parallel
3845 * @param action the action
3846 * @since 1.8
3847 */
3848 public void forEachValue(long parallelismThreshold,
3849 Consumer<? super V> action) {
3850 if (action == null)
3851 throw new NullPointerException();
3852 new ForEachValueTask<K,V>
3853 (null, batchFor(parallelismThreshold), 0, 0, table,
3854 action).invoke();
3855 }
3856
3857 /**
3858 * Performs the given action for each non-null transformation
3859 * of each value.
3860 *
3861 * @param parallelismThreshold the (estimated) number of elements
3862 * needed for this operation to be executed in parallel
3863 * @param transformer a function returning the transformation
3864 * for an element, or null if there is no transformation (in
3865 * which case the action is not applied)
3866 * @param action the action
3867 * @since 1.8
3868 */
3869 public <U> void forEachValue(long parallelismThreshold,
3870 Function<? super V, ? extends U> transformer,
3871 Consumer<? super U> action) {
3872 if (transformer == null || action == null)
3873 throw new NullPointerException();
3874 new ForEachTransformedValueTask<K,V,U>
3875 (null, batchFor(parallelismThreshold), 0, 0, table,
3876 transformer, action).invoke();
3877 }
3878
3879 /**
3880 * Returns a non-null result from applying the given search
3881 * function on each value, or null if none. Upon success,
3882 * further element processing is suppressed and the results of
3883 * any other parallel invocations of the search function are
3884 * ignored.
3885 *
3886 * @param parallelismThreshold the (estimated) number of elements
3887 * needed for this operation to be executed in parallel
3888 * @param searchFunction a function returning a non-null
3889 * result on success, else null
3890 * @return a non-null result from applying the given search
3891 * function on each value, or null if none
3892 * @since 1.8
3893 */
3894 public <U> U searchValues(long parallelismThreshold,
3895 Function<? super V, ? extends U> searchFunction) {
3896 if (searchFunction == null) throw new NullPointerException();
3897 return new SearchValuesTask<K,V,U>
3898 (null, batchFor(parallelismThreshold), 0, 0, table,
3899 searchFunction, new AtomicReference<U>()).invoke();
3900 }
3901
3902 /**
3903 * Returns the result of accumulating all values using the
3904 * given reducer to combine values, or null if none.
3905 *
3906 * @param parallelismThreshold the (estimated) number of elements
3907 * needed for this operation to be executed in parallel
3908 * @param reducer a commutative associative combining function
3909 * @return the result of accumulating all values
3910 * @since 1.8
3911 */
3912 public V reduceValues(long parallelismThreshold,
3913 BiFunction<? super V, ? super V, ? extends V> reducer) {
3914 if (reducer == null) throw new NullPointerException();
3915 return new ReduceValuesTask<K,V>
3916 (null, batchFor(parallelismThreshold), 0, 0, table,
3917 null, reducer).invoke();
3918 }
3919
3920 /**
3921 * Returns the result of accumulating the given transformation
3922 * of all values using the given reducer to combine values, or
3923 * null if none.
3924 *
3925 * @param parallelismThreshold the (estimated) number of elements
3926 * needed for this operation to be executed in parallel
3927 * @param transformer a function returning the transformation
3928 * for an element, or null if there is no transformation (in
3929 * which case it is not combined)
3930 * @param reducer a commutative associative combining function
3931 * @return the result of accumulating the given transformation
3932 * of all values
3933 * @since 1.8
3934 */
3935 public <U> U reduceValues(long parallelismThreshold,
3936 Function<? super V, ? extends U> transformer,
3937 BiFunction<? super U, ? super U, ? extends U> reducer) {
3938 if (transformer == null || reducer == null)
3939 throw new NullPointerException();
3940 return new MapReduceValuesTask<K,V,U>
3941 (null, batchFor(parallelismThreshold), 0, 0, table,
3942 null, transformer, reducer).invoke();
3943 }
3944
3945 /**
3946 * Returns the result of accumulating the given transformation
3947 * of all values using the given reducer to combine values,
3948 * and the given basis as an identity value.
3949 *
3950 * @param parallelismThreshold the (estimated) number of elements
3951 * needed for this operation to be executed in parallel
3952 * @param transformer a function returning the transformation
3953 * for an element
3954 * @param basis the identity (initial default value) for the reduction
3955 * @param reducer a commutative associative combining function
3956 * @return the result of accumulating the given transformation
3957 * of all values
3958 * @since 1.8
3959 */
3960 public double reduceValuesToDouble(long parallelismThreshold,
3961 ToDoubleFunction<? super V> transformer,
3962 double basis,
3963 DoubleBinaryOperator reducer) {
3964 if (transformer == null || reducer == null)
3965 throw new NullPointerException();
3966 return new MapReduceValuesToDoubleTask<K,V>
3967 (null, batchFor(parallelismThreshold), 0, 0, table,
3968 null, transformer, basis, reducer).invoke();
3969 }
3970
3971 /**
3972 * Returns the result of accumulating the given transformation
3973 * of all values using the given reducer to combine values,
3974 * and the given basis as an identity value.
3975 *
3976 * @param parallelismThreshold the (estimated) number of elements
3977 * needed for this operation to be executed in parallel
3978 * @param transformer a function returning the transformation
3979 * for an element
3980 * @param basis the identity (initial default value) for the reduction
3981 * @param reducer a commutative associative combining function
3982 * @return the result of accumulating the given transformation
3983 * of all values
3984 * @since 1.8
3985 */
3986 public long reduceValuesToLong(long parallelismThreshold,
3987 ToLongFunction<? super V> transformer,
3988 long basis,
3989 LongBinaryOperator reducer) {
3990 if (transformer == null || reducer == null)
3991 throw new NullPointerException();
3992 return new MapReduceValuesToLongTask<K,V>
3993 (null, batchFor(parallelismThreshold), 0, 0, table,
3994 null, transformer, basis, reducer).invoke();
3995 }
3996
3997 /**
3998 * Returns the result of accumulating the given transformation
3999 * of all values using the given reducer to combine values,
4000 * and the given basis as an identity value.
4001 *
4002 * @param parallelismThreshold the (estimated) number of elements
4003 * needed for this operation to be executed in parallel
4004 * @param transformer a function returning the transformation
4005 * for an element
4006 * @param basis the identity (initial default value) for the reduction
4007 * @param reducer a commutative associative combining function
4008 * @return the result of accumulating the given transformation
4009 * of all values
4010 * @since 1.8
4011 */
4012 public int reduceValuesToInt(long parallelismThreshold,
4013 ToIntFunction<? super V> transformer,
4014 int basis,
4015 IntBinaryOperator reducer) {
4016 if (transformer == null || reducer == null)
4017 throw new NullPointerException();
4018 return new MapReduceValuesToIntTask<K,V>
4019 (null, batchFor(parallelismThreshold), 0, 0, table,
4020 null, transformer, basis, reducer).invoke();
4021 }
4022
4023 /**
4024 * Performs the given action for each entry.
4025 *
4026 * @param parallelismThreshold the (estimated) number of elements
4027 * needed for this operation to be executed in parallel
4028 * @param action the action
4029 * @since 1.8
4030 */
4031 public void forEachEntry(long parallelismThreshold,
4032 Consumer<? super Map.Entry<K,V>> action) {
4033 if (action == null) throw new NullPointerException();
4034 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4035 action).invoke();
4036 }
4037
4038 /**
4039 * Performs the given action for each non-null transformation
4040 * of each entry.
4041 *
4042 * @param parallelismThreshold the (estimated) number of elements
4043 * needed for this operation to be executed in parallel
4044 * @param transformer a function returning the transformation
4045 * for an element, or null if there is no transformation (in
4046 * which case the action is not applied)
4047 * @param action the action
4048 * @since 1.8
4049 */
4050 public <U> void forEachEntry(long parallelismThreshold,
4051 Function<Map.Entry<K,V>, ? extends U> transformer,
4052 Consumer<? super U> action) {
4053 if (transformer == null || action == null)
4054 throw new NullPointerException();
4055 new ForEachTransformedEntryTask<K,V,U>
4056 (null, batchFor(parallelismThreshold), 0, 0, table,
4057 transformer, action).invoke();
4058 }
4059
4060 /**
4061 * Returns a non-null result from applying the given search
4062 * function on each entry, or null if none. Upon success,
4063 * further element processing is suppressed and the results of
4064 * any other parallel invocations of the search function are
4065 * ignored.
4066 *
4067 * @param parallelismThreshold the (estimated) number of elements
4068 * needed for this operation to be executed in parallel
4069 * @param searchFunction a function returning a non-null
4070 * result on success, else null
4071 * @return a non-null result from applying the given search
4072 * function on each entry, or null if none
4073 * @since 1.8
4074 */
4075 public <U> U searchEntries(long parallelismThreshold,
4076 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4077 if (searchFunction == null) throw new NullPointerException();
4078 return new SearchEntriesTask<K,V,U>
4079 (null, batchFor(parallelismThreshold), 0, 0, table,
4080 searchFunction, new AtomicReference<U>()).invoke();
4081 }
4082
4083 /**
4084 * Returns the result of accumulating all entries using the
4085 * given reducer to combine values, or null if none.
4086 *
4087 * @param parallelismThreshold the (estimated) number of elements
4088 * needed for this operation to be executed in parallel
4089 * @param reducer a commutative associative combining function
4090 * @return the result of accumulating all entries
4091 * @since 1.8
4092 */
4093 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4094 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4095 if (reducer == null) throw new NullPointerException();
4096 return new ReduceEntriesTask<K,V>
4097 (null, batchFor(parallelismThreshold), 0, 0, table,
4098 null, reducer).invoke();
4099 }
4100
4101 /**
4102 * Returns the result of accumulating the given transformation
4103 * of all entries using the given reducer to combine values,
4104 * or null if none.
4105 *
4106 * @param parallelismThreshold the (estimated) number of elements
4107 * needed for this operation to be executed in parallel
4108 * @param transformer a function returning the transformation
4109 * for an element, or null if there is no transformation (in
4110 * which case it is not combined)
4111 * @param reducer a commutative associative combining function
4112 * @return the result of accumulating the given transformation
4113 * of all entries
4114 * @since 1.8
4115 */
4116 public <U> U reduceEntries(long parallelismThreshold,
4117 Function<Map.Entry<K,V>, ? extends U> transformer,
4118 BiFunction<? super U, ? super U, ? extends U> reducer) {
4119 if (transformer == null || reducer == null)
4120 throw new NullPointerException();
4121 return new MapReduceEntriesTask<K,V,U>
4122 (null, batchFor(parallelismThreshold), 0, 0, table,
4123 null, transformer, reducer).invoke();
4124 }
4125
4126 /**
4127 * Returns the result of accumulating the given transformation
4128 * of all entries using the given reducer to combine values,
4129 * and the given basis as an identity value.
4130 *
4131 * @param parallelismThreshold the (estimated) number of elements
4132 * needed for this operation to be executed in parallel
4133 * @param transformer a function returning the transformation
4134 * for an element
4135 * @param basis the identity (initial default value) for the reduction
4136 * @param reducer a commutative associative combining function
4137 * @return the result of accumulating the given transformation
4138 * of all entries
4139 * @since 1.8
4140 */
4141 public double reduceEntriesToDouble(long parallelismThreshold,
4142 ToDoubleFunction<Map.Entry<K,V>> transformer,
4143 double basis,
4144 DoubleBinaryOperator reducer) {
4145 if (transformer == null || reducer == null)
4146 throw new NullPointerException();
4147 return new MapReduceEntriesToDoubleTask<K,V>
4148 (null, batchFor(parallelismThreshold), 0, 0, table,
4149 null, transformer, basis, reducer).invoke();
4150 }
4151
4152 /**
4153 * Returns the result of accumulating the given transformation
4154 * of all entries using the given reducer to combine values,
4155 * and the given basis as an identity value.
4156 *
4157 * @param parallelismThreshold the (estimated) number of elements
4158 * needed for this operation to be executed in parallel
4159 * @param transformer a function returning the transformation
4160 * for an element
4161 * @param basis the identity (initial default value) for the reduction
4162 * @param reducer a commutative associative combining function
4163 * @return the result of accumulating the given transformation
4164 * of all entries
4165 * @since 1.8
4166 */
4167 public long reduceEntriesToLong(long parallelismThreshold,
4168 ToLongFunction<Map.Entry<K,V>> transformer,
4169 long basis,
4170 LongBinaryOperator reducer) {
4171 if (transformer == null || reducer == null)
4172 throw new NullPointerException();
4173 return new MapReduceEntriesToLongTask<K,V>
4174 (null, batchFor(parallelismThreshold), 0, 0, table,
4175 null, transformer, basis, reducer).invoke();
4176 }
4177
4178 /**
4179 * Returns the result of accumulating the given transformation
4180 * of all entries using the given reducer to combine values,
4181 * and the given basis as an identity value.
4182 *
4183 * @param parallelismThreshold the (estimated) number of elements
4184 * needed for this operation to be executed in parallel
4185 * @param transformer a function returning the transformation
4186 * for an element
4187 * @param basis the identity (initial default value) for the reduction
4188 * @param reducer a commutative associative combining function
4189 * @return the result of accumulating the given transformation
4190 * of all entries
4191 * @since 1.8
4192 */
4193 public int reduceEntriesToInt(long parallelismThreshold,
4194 ToIntFunction<Map.Entry<K,V>> transformer,
4195 int basis,
4196 IntBinaryOperator reducer) {
4197 if (transformer == null || reducer == null)
4198 throw new NullPointerException();
4199 return new MapReduceEntriesToIntTask<K,V>
4200 (null, batchFor(parallelismThreshold), 0, 0, table,
4201 null, transformer, basis, reducer).invoke();
4202 }
4203
4204
4205 /* ----------------Views -------------- */
4206
4207 /**
4208 * Base class for views.
4209 */
4210 abstract static class CollectionView<K,V,E>
4211 implements Collection<E>, java.io.Serializable {
4212 private static final long serialVersionUID = 7249069246763182397L;
4213 final ConcurrentHashMap<K,V> map;
4214 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4215
4216 /**
4217 * Returns the map backing this view.
4218 *
4219 * @return the map backing this view
4220 */
4221 public ConcurrentHashMap<K,V> getMap() { return map; }
4222
4223 /**
4224 * Removes all of the elements from this view, by removing all
4225 * the mappings from the map backing this view.
4226 */
4227 public final void clear() { map.clear(); }
4228 public final int size() { return map.size(); }
4229 public final boolean isEmpty() { return map.isEmpty(); }
4230
4231 // implementations below rely on concrete classes supplying these
4232 // abstract methods
4233 /**
4234 * Returns a "weakly consistent" iterator that will never
4235 * throw {@link ConcurrentModificationException}, and
4236 * guarantees to traverse elements as they existed upon
4237 * construction of the iterator, and may (but is not
4238 * guaranteed to) reflect any modifications subsequent to
4239 * construction.
4240 */
4241 public abstract Iterator<E> iterator();
4242 public abstract boolean contains(Object o);
4243 public abstract boolean remove(Object o);
4244
4245 private static final String oomeMsg = "Required array size too large";
4246
4247 public final Object[] toArray() {
4248 long sz = map.mappingCount();
4249 if (sz > MAX_ARRAY_SIZE)
4250 throw new OutOfMemoryError(oomeMsg);
4251 int n = (int)sz;
4252 Object[] r = new Object[n];
4253 int i = 0;
4254 for (E e : this) {
4255 if (i == n) {
4256 if (n >= MAX_ARRAY_SIZE)
4257 throw new OutOfMemoryError(oomeMsg);
4258 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4259 n = MAX_ARRAY_SIZE;
4260 else
4261 n += (n >>> 1) + 1;
4262 r = Arrays.copyOf(r, n);
4263 }
4264 r[i++] = e;
4265 }
4266 return (i == n) ? r : Arrays.copyOf(r, i);
4267 }
4268
4269 @SuppressWarnings("unchecked")
4270 public final <T> T[] toArray(T[] a) {
4271 long sz = map.mappingCount();
4272 if (sz > MAX_ARRAY_SIZE)
4273 throw new OutOfMemoryError(oomeMsg);
4274 int m = (int)sz;
4275 T[] r = (a.length >= m) ? a :
4276 (T[])java.lang.reflect.Array
4277 .newInstance(a.getClass().getComponentType(), m);
4278 int n = r.length;
4279 int i = 0;
4280 for (E e : this) {
4281 if (i == n) {
4282 if (n >= MAX_ARRAY_SIZE)
4283 throw new OutOfMemoryError(oomeMsg);
4284 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4285 n = MAX_ARRAY_SIZE;
4286 else
4287 n += (n >>> 1) + 1;
4288 r = Arrays.copyOf(r, n);
4289 }
4290 r[i++] = (T)e;
4291 }
4292 if (a == r && i < n) {
4293 r[i] = null; // null-terminate
4294 return r;
4295 }
4296 return (i == n) ? r : Arrays.copyOf(r, i);
4297 }
4298
4299 /**
4300 * Returns a string representation of this collection.
4301 * The string representation consists of the string representations
4302 * of the collection's elements in the order they are returned by
4303 * its iterator, enclosed in square brackets ({@code "[]"}).
4304 * Adjacent elements are separated by the characters {@code ", "}
4305 * (comma and space). Elements are converted to strings as by
4306 * {@link String#valueOf(Object)}.
4307 *
4308 * @return a string representation of this collection
4309 */
4310 public final String toString() {
4311 StringBuilder sb = new StringBuilder();
4312 sb.append('[');
4313 Iterator<E> it = iterator();
4314 if (it.hasNext()) {
4315 for (;;) {
4316 Object e = it.next();
4317 sb.append(e == this ? "(this Collection)" : e);
4318 if (!it.hasNext())
4319 break;
4320 sb.append(',').append(' ');
4321 }
4322 }
4323 return sb.append(']').toString();
4324 }
4325
4326 public final boolean containsAll(Collection<?> c) {
4327 if (c != this) {
4328 for (Object e : c) {
4329 if (e == null || !contains(e))
4330 return false;
4331 }
4332 }
4333 return true;
4334 }
4335
4336 public final boolean removeAll(Collection<?> c) {
4337 boolean modified = false;
4338 for (Iterator<E> it = iterator(); it.hasNext();) {
4339 if (c.contains(it.next())) {
4340 it.remove();
4341 modified = true;
4342 }
4343 }
4344 return modified;
4345 }
4346
4347 public final boolean retainAll(Collection<?> c) {
4348 boolean modified = false;
4349 for (Iterator<E> it = iterator(); it.hasNext();) {
4350 if (!c.contains(it.next())) {
4351 it.remove();
4352 modified = true;
4353 }
4354 }
4355 return modified;
4356 }
4357
4358 }
4359
4360 /**
4361 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4362 * which additions may optionally be enabled by mapping to a
4363 * common value. This class cannot be directly instantiated.
4364 * See {@link #keySet() keySet()},
4365 * {@link #keySet(Object) keySet(V)},
4366 * {@link #newKeySet() newKeySet()},
4367 * {@link #newKeySet(int) newKeySet(int)}.
4368 *
4369 * @since 1.8
4370 */
4371 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4372 implements Set<K>, java.io.Serializable {
4373 private static final long serialVersionUID = 7249069246763182397L;
4374 private final V value;
4375 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4376 super(map);
4377 this.value = value;
4378 }
4379
4380 /**
4381 * Returns the default mapped value for additions,
4382 * or {@code null} if additions are not supported.
4383 *
4384 * @return the default mapped value for additions, or {@code null}
4385 * if not supported
4386 */
4387 public V getMappedValue() { return value; }
4388
4389 /**
4390 * {@inheritDoc}
4391 * @throws NullPointerException if the specified key is null
4392 */
4393 public boolean contains(Object o) { return map.containsKey(o); }
4394
4395 /**
4396 * Removes the key from this map view, by removing the key (and its
4397 * corresponding value) from the backing map. This method does
4398 * nothing if the key is not in the map.
4399 *
4400 * @param o the key to be removed from the backing map
4401 * @return {@code true} if the backing map contained the specified key
4402 * @throws NullPointerException if the specified key is null
4403 */
4404 public boolean remove(Object o) { return map.remove(o) != null; }
4405
4406 /**
4407 * @return an iterator over the keys of the backing map
4408 */
4409 public Iterator<K> iterator() {
4410 Node<K,V>[] t;
4411 ConcurrentHashMap<K,V> m = map;
4412 int f = (t = m.table) == null ? 0 : t.length;
4413 return new KeyIterator<K,V>(t, f, 0, f, m);
4414 }
4415
4416 /**
4417 * Adds the specified key to this set view by mapping the key to
4418 * the default mapped value in the backing map, if defined.
4419 *
4420 * @param e key to be added
4421 * @return {@code true} if this set changed as a result of the call
4422 * @throws NullPointerException if the specified key is null
4423 * @throws UnsupportedOperationException if no default mapped value
4424 * for additions was provided
4425 */
4426 public boolean add(K e) {
4427 V v;
4428 if ((v = value) == null)
4429 throw new UnsupportedOperationException();
4430 return map.putVal(e, v, true) == null;
4431 }
4432
4433 /**
4434 * Adds all of the elements in the specified collection to this set,
4435 * as if by calling {@link #add} on each one.
4436 *
4437 * @param c the elements to be inserted into this set
4438 * @return {@code true} if this set changed as a result of the call
4439 * @throws NullPointerException if the collection or any of its
4440 * elements are {@code null}
4441 * @throws UnsupportedOperationException if no default mapped value
4442 * for additions was provided
4443 */
4444 public boolean addAll(Collection<? extends K> c) {
4445 boolean added = false;
4446 V v;
4447 if ((v = value) == null)
4448 throw new UnsupportedOperationException();
4449 for (K e : c) {
4450 if (map.putVal(e, v, true) == null)
4451 added = true;
4452 }
4453 return added;
4454 }
4455
4456 public int hashCode() {
4457 int h = 0;
4458 for (K e : this)
4459 h += e.hashCode();
4460 return h;
4461 }
4462
4463 public boolean equals(Object o) {
4464 Set<?> c;
4465 return ((o instanceof Set) &&
4466 ((c = (Set<?>)o) == this ||
4467 (containsAll(c) && c.containsAll(this))));
4468 }
4469
4470 public Spliterator<K> spliterator() {
4471 Node<K,V>[] t;
4472 ConcurrentHashMap<K,V> m = map;
4473 long n = m.sumCount();
4474 int f = (t = m.table) == null ? 0 : t.length;
4475 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4476 }
4477
4478 public void forEach(Consumer<? super K> action) {
4479 if (action == null) throw new NullPointerException();
4480 Node<K,V>[] t;
4481 if ((t = map.table) != null) {
4482 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4483 for (Node<K,V> p; (p = it.advance()) != null; )
4484 action.accept(p.key);
4485 }
4486 }
4487 }
4488
4489 /**
4490 * A view of a ConcurrentHashMap as a {@link Collection} of
4491 * values, in which additions are disabled. This class cannot be
4492 * directly instantiated. See {@link #values()}.
4493 */
4494 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4495 implements Collection<V>, java.io.Serializable {
4496 private static final long serialVersionUID = 2249069246763182397L;
4497 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4498 public final boolean contains(Object o) {
4499 return map.containsValue(o);
4500 }
4501
4502 public final boolean remove(Object o) {
4503 if (o != null) {
4504 for (Iterator<V> it = iterator(); it.hasNext();) {
4505 if (o.equals(it.next())) {
4506 it.remove();
4507 return true;
4508 }
4509 }
4510 }
4511 return false;
4512 }
4513
4514 public final Iterator<V> iterator() {
4515 ConcurrentHashMap<K,V> m = map;
4516 Node<K,V>[] t;
4517 int f = (t = m.table) == null ? 0 : t.length;
4518 return new ValueIterator<K,V>(t, f, 0, f, m);
4519 }
4520
4521 public final boolean add(V e) {
4522 throw new UnsupportedOperationException();
4523 }
4524 public final boolean addAll(Collection<? extends V> c) {
4525 throw new UnsupportedOperationException();
4526 }
4527
4528 public Spliterator<V> spliterator() {
4529 Node<K,V>[] t;
4530 ConcurrentHashMap<K,V> m = map;
4531 long n = m.sumCount();
4532 int f = (t = m.table) == null ? 0 : t.length;
4533 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4534 }
4535
4536 public void forEach(Consumer<? super V> action) {
4537 if (action == null) throw new NullPointerException();
4538 Node<K,V>[] t;
4539 if ((t = map.table) != null) {
4540 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4541 for (Node<K,V> p; (p = it.advance()) != null; )
4542 action.accept(p.val);
4543 }
4544 }
4545 }
4546
4547 /**
4548 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4549 * entries. This class cannot be directly instantiated. See
4550 * {@link #entrySet()}.
4551 */
4552 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4553 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4554 private static final long serialVersionUID = 2249069246763182397L;
4555 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4556
4557 public boolean contains(Object o) {
4558 Object k, v, r; Map.Entry<?,?> e;
4559 return ((o instanceof Map.Entry) &&
4560 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4561 (r = map.get(k)) != null &&
4562 (v = e.getValue()) != null &&
4563 (v == r || v.equals(r)));
4564 }
4565
4566 public boolean remove(Object o) {
4567 Object k, v; Map.Entry<?,?> e;
4568 return ((o instanceof Map.Entry) &&
4569 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4570 (v = e.getValue()) != null &&
4571 map.remove(k, v));
4572 }
4573
4574 /**
4575 * @return an iterator over the entries of the backing map
4576 */
4577 public Iterator<Map.Entry<K,V>> iterator() {
4578 ConcurrentHashMap<K,V> m = map;
4579 Node<K,V>[] t;
4580 int f = (t = m.table) == null ? 0 : t.length;
4581 return new EntryIterator<K,V>(t, f, 0, f, m);
4582 }
4583
4584 public boolean add(Entry<K,V> e) {
4585 return map.putVal(e.getKey(), e.getValue(), false) == null;
4586 }
4587
4588 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4589 boolean added = false;
4590 for (Entry<K,V> e : c) {
4591 if (add(e))
4592 added = true;
4593 }
4594 return added;
4595 }
4596
4597 public final int hashCode() {
4598 int h = 0;
4599 Node<K,V>[] t;
4600 if ((t = map.table) != null) {
4601 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4602 for (Node<K,V> p; (p = it.advance()) != null; ) {
4603 h += p.hashCode();
4604 }
4605 }
4606 return h;
4607 }
4608
4609 public final boolean equals(Object o) {
4610 Set<?> c;
4611 return ((o instanceof Set) &&
4612 ((c = (Set<?>)o) == this ||
4613 (containsAll(c) && c.containsAll(this))));
4614 }
4615
4616 public Spliterator<Map.Entry<K,V>> spliterator() {
4617 Node<K,V>[] t;
4618 ConcurrentHashMap<K,V> m = map;
4619 long n = m.sumCount();
4620 int f = (t = m.table) == null ? 0 : t.length;
4621 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4622 }
4623
4624 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4625 if (action == null) throw new NullPointerException();
4626 Node<K,V>[] t;
4627 if ((t = map.table) != null) {
4628 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4629 for (Node<K,V> p; (p = it.advance()) != null; )
4630 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4631 }
4632 }
4633
4634 }
4635
4636 // -------------------------------------------------------
4637
4638 /**
4639 * Base class for bulk tasks. Repeats some fields and code from
4640 * class Traverser, because we need to subclass CountedCompleter.
4641 */
4642 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4643 Node<K,V>[] tab; // same as Traverser
4644 Node<K,V> next;
4645 int index;
4646 int baseIndex;
4647 int baseLimit;
4648 final int baseSize;
4649 int batch; // split control
4650
4651 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4652 super(par);
4653 this.batch = b;
4654 this.index = this.baseIndex = i;
4655 if ((this.tab = t) == null)
4656 this.baseSize = this.baseLimit = 0;
4657 else if (par == null)
4658 this.baseSize = this.baseLimit = t.length;
4659 else {
4660 this.baseLimit = f;
4661 this.baseSize = par.baseSize;
4662 }
4663 }
4664
4665 /**
4666 * Same as Traverser version
4667 */
4668 final Node<K,V> advance() {
4669 Node<K,V> e;
4670 if ((e = next) != null)
4671 e = e.next;
4672 for (;;) {
4673 Node<K,V>[] t; int i, n; K ek; // must use locals in checks
4674 if (e != null)
4675 return next = e;
4676 if (baseIndex >= baseLimit || (t = tab) == null ||
4677 (n = t.length) <= (i = index) || i < 0)
4678 return next = null;
4679 if ((e = tabAt(t, index)) != null && e.hash < 0) {
4680 if (e instanceof ForwardingNode) {
4681 tab = ((ForwardingNode<K,V>)e).nextTable;
4682 e = null;
4683 continue;
4684 }
4685 else if (e instanceof TreeBin)
4686 e = ((TreeBin<K,V>)e).first;
4687 else
4688 e = null;
4689 }
4690 if ((index += baseSize) >= n)
4691 index = ++baseIndex; // visit upper slots if present
4692 }
4693 }
4694 }
4695
4696 /*
4697 * Task classes. Coded in a regular but ugly format/style to
4698 * simplify checks that each variant differs in the right way from
4699 * others. The null screenings exist because compilers cannot tell
4700 * that we've already null-checked task arguments, so we force
4701 * simplest hoisted bypass to help avoid convoluted traps.
4702 */
4703 @SuppressWarnings("serial")
4704 static final class ForEachKeyTask<K,V>
4705 extends BulkTask<K,V,Void> {
4706 final Consumer<? super K> action;
4707 ForEachKeyTask
4708 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4709 Consumer<? super K> action) {
4710 super(p, b, i, f, t);
4711 this.action = action;
4712 }
4713 public final void compute() {
4714 final Consumer<? super K> action;
4715 if ((action = this.action) != null) {
4716 for (int i = baseIndex, f, h; batch > 0 &&
4717 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4718 addToPendingCount(1);
4719 new ForEachKeyTask<K,V>
4720 (this, batch >>>= 1, baseLimit = h, f, tab,
4721 action).fork();
4722 }
4723 for (Node<K,V> p; (p = advance()) != null;)
4724 action.accept(p.key);
4725 propagateCompletion();
4726 }
4727 }
4728 }
4729
4730 @SuppressWarnings("serial")
4731 static final class ForEachValueTask<K,V>
4732 extends BulkTask<K,V,Void> {
4733 final Consumer<? super V> action;
4734 ForEachValueTask
4735 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4736 Consumer<? super V> action) {
4737 super(p, b, i, f, t);
4738 this.action = action;
4739 }
4740 public final void compute() {
4741 final Consumer<? super V> action;
4742 if ((action = this.action) != null) {
4743 for (int i = baseIndex, f, h; batch > 0 &&
4744 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4745 addToPendingCount(1);
4746 new ForEachValueTask<K,V>
4747 (this, batch >>>= 1, baseLimit = h, f, tab,
4748 action).fork();
4749 }
4750 for (Node<K,V> p; (p = advance()) != null;)
4751 action.accept(p.val);
4752 propagateCompletion();
4753 }
4754 }
4755 }
4756
4757 @SuppressWarnings("serial")
4758 static final class ForEachEntryTask<K,V>
4759 extends BulkTask<K,V,Void> {
4760 final Consumer<? super Entry<K,V>> action;
4761 ForEachEntryTask
4762 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4763 Consumer<? super Entry<K,V>> action) {
4764 super(p, b, i, f, t);
4765 this.action = action;
4766 }
4767 public final void compute() {
4768 final Consumer<? super Entry<K,V>> action;
4769 if ((action = this.action) != null) {
4770 for (int i = baseIndex, f, h; batch > 0 &&
4771 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4772 addToPendingCount(1);
4773 new ForEachEntryTask<K,V>
4774 (this, batch >>>= 1, baseLimit = h, f, tab,
4775 action).fork();
4776 }
4777 for (Node<K,V> p; (p = advance()) != null; )
4778 action.accept(p);
4779 propagateCompletion();
4780 }
4781 }
4782 }
4783
4784 @SuppressWarnings("serial")
4785 static final class ForEachMappingTask<K,V>
4786 extends BulkTask<K,V,Void> {
4787 final BiConsumer<? super K, ? super V> action;
4788 ForEachMappingTask
4789 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4790 BiConsumer<? super K,? super V> action) {
4791 super(p, b, i, f, t);
4792 this.action = action;
4793 }
4794 public final void compute() {
4795 final BiConsumer<? super K, ? super V> action;
4796 if ((action = this.action) != null) {
4797 for (int i = baseIndex, f, h; batch > 0 &&
4798 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4799 addToPendingCount(1);
4800 new ForEachMappingTask<K,V>
4801 (this, batch >>>= 1, baseLimit = h, f, tab,
4802 action).fork();
4803 }
4804 for (Node<K,V> p; (p = advance()) != null; )
4805 action.accept(p.key, p.val);
4806 propagateCompletion();
4807 }
4808 }
4809 }
4810
4811 @SuppressWarnings("serial")
4812 static final class ForEachTransformedKeyTask<K,V,U>
4813 extends BulkTask<K,V,Void> {
4814 final Function<? super K, ? extends U> transformer;
4815 final Consumer<? super U> action;
4816 ForEachTransformedKeyTask
4817 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4818 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4819 super(p, b, i, f, t);
4820 this.transformer = transformer; this.action = action;
4821 }
4822 public final void compute() {
4823 final Function<? super K, ? extends U> transformer;
4824 final Consumer<? super U> action;
4825 if ((transformer = this.transformer) != null &&
4826 (action = this.action) != null) {
4827 for (int i = baseIndex, f, h; batch > 0 &&
4828 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4829 addToPendingCount(1);
4830 new ForEachTransformedKeyTask<K,V,U>
4831 (this, batch >>>= 1, baseLimit = h, f, tab,
4832 transformer, action).fork();
4833 }
4834 for (Node<K,V> p; (p = advance()) != null; ) {
4835 U u;
4836 if ((u = transformer.apply(p.key)) != null)
4837 action.accept(u);
4838 }
4839 propagateCompletion();
4840 }
4841 }
4842 }
4843
4844 @SuppressWarnings("serial")
4845 static final class ForEachTransformedValueTask<K,V,U>
4846 extends BulkTask<K,V,Void> {
4847 final Function<? super V, ? extends U> transformer;
4848 final Consumer<? super U> action;
4849 ForEachTransformedValueTask
4850 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4851 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
4852 super(p, b, i, f, t);
4853 this.transformer = transformer; this.action = action;
4854 }
4855 public final void compute() {
4856 final Function<? super V, ? extends U> transformer;
4857 final Consumer<? super U> action;
4858 if ((transformer = this.transformer) != null &&
4859 (action = this.action) != null) {
4860 for (int i = baseIndex, f, h; batch > 0 &&
4861 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4862 addToPendingCount(1);
4863 new ForEachTransformedValueTask<K,V,U>
4864 (this, batch >>>= 1, baseLimit = h, f, tab,
4865 transformer, action).fork();
4866 }
4867 for (Node<K,V> p; (p = advance()) != null; ) {
4868 U u;
4869 if ((u = transformer.apply(p.val)) != null)
4870 action.accept(u);
4871 }
4872 propagateCompletion();
4873 }
4874 }
4875 }
4876
4877 @SuppressWarnings("serial")
4878 static final class ForEachTransformedEntryTask<K,V,U>
4879 extends BulkTask<K,V,Void> {
4880 final Function<Map.Entry<K,V>, ? extends U> transformer;
4881 final Consumer<? super U> action;
4882 ForEachTransformedEntryTask
4883 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4884 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
4885 super(p, b, i, f, t);
4886 this.transformer = transformer; this.action = action;
4887 }
4888 public final void compute() {
4889 final Function<Map.Entry<K,V>, ? extends U> transformer;
4890 final Consumer<? super U> action;
4891 if ((transformer = this.transformer) != null &&
4892 (action = this.action) != null) {
4893 for (int i = baseIndex, f, h; batch > 0 &&
4894 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4895 addToPendingCount(1);
4896 new ForEachTransformedEntryTask<K,V,U>
4897 (this, batch >>>= 1, baseLimit = h, f, tab,
4898 transformer, action).fork();
4899 }
4900 for (Node<K,V> p; (p = advance()) != null; ) {
4901 U u;
4902 if ((u = transformer.apply(p)) != null)
4903 action.accept(u);
4904 }
4905 propagateCompletion();
4906 }
4907 }
4908 }
4909
4910 @SuppressWarnings("serial")
4911 static final class ForEachTransformedMappingTask<K,V,U>
4912 extends BulkTask<K,V,Void> {
4913 final BiFunction<? super K, ? super V, ? extends U> transformer;
4914 final Consumer<? super U> action;
4915 ForEachTransformedMappingTask
4916 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4917 BiFunction<? super K, ? super V, ? extends U> transformer,
4918 Consumer<? super U> action) {
4919 super(p, b, i, f, t);
4920 this.transformer = transformer; this.action = action;
4921 }
4922 public final void compute() {
4923 final BiFunction<? super K, ? super V, ? extends U> transformer;
4924 final Consumer<? super U> action;
4925 if ((transformer = this.transformer) != null &&
4926 (action = this.action) != null) {
4927 for (int i = baseIndex, f, h; batch > 0 &&
4928 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4929 addToPendingCount(1);
4930 new ForEachTransformedMappingTask<K,V,U>
4931 (this, batch >>>= 1, baseLimit = h, f, tab,
4932 transformer, action).fork();
4933 }
4934 for (Node<K,V> p; (p = advance()) != null; ) {
4935 U u;
4936 if ((u = transformer.apply(p.key, p.val)) != null)
4937 action.accept(u);
4938 }
4939 propagateCompletion();
4940 }
4941 }
4942 }
4943
4944 @SuppressWarnings("serial")
4945 static final class SearchKeysTask<K,V,U>
4946 extends BulkTask<K,V,U> {
4947 final Function<? super K, ? extends U> searchFunction;
4948 final AtomicReference<U> result;
4949 SearchKeysTask
4950 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4951 Function<? super K, ? extends U> searchFunction,
4952 AtomicReference<U> result) {
4953 super(p, b, i, f, t);
4954 this.searchFunction = searchFunction; this.result = result;
4955 }
4956 public final U getRawResult() { return result.get(); }
4957 public final void compute() {
4958 final Function<? super K, ? extends U> searchFunction;
4959 final AtomicReference<U> result;
4960 if ((searchFunction = this.searchFunction) != null &&
4961 (result = this.result) != null) {
4962 for (int i = baseIndex, f, h; batch > 0 &&
4963 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4964 if (result.get() != null)
4965 return;
4966 addToPendingCount(1);
4967 new SearchKeysTask<K,V,U>
4968 (this, batch >>>= 1, baseLimit = h, f, tab,
4969 searchFunction, result).fork();
4970 }
4971 while (result.get() == null) {
4972 U u;
4973 Node<K,V> p;
4974 if ((p = advance()) == null) {
4975 propagateCompletion();
4976 break;
4977 }
4978 if ((u = searchFunction.apply(p.key)) != null) {
4979 if (result.compareAndSet(null, u))
4980 quietlyCompleteRoot();
4981 break;
4982 }
4983 }
4984 }
4985 }
4986 }
4987
4988 @SuppressWarnings("serial")
4989 static final class SearchValuesTask<K,V,U>
4990 extends BulkTask<K,V,U> {
4991 final Function<? super V, ? extends U> searchFunction;
4992 final AtomicReference<U> result;
4993 SearchValuesTask
4994 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4995 Function<? super V, ? extends U> searchFunction,
4996 AtomicReference<U> result) {
4997 super(p, b, i, f, t);
4998 this.searchFunction = searchFunction; this.result = result;
4999 }
5000 public final U getRawResult() { return result.get(); }
5001 public final void compute() {
5002 final Function<? super V, ? extends U> searchFunction;
5003 final AtomicReference<U> result;
5004 if ((searchFunction = this.searchFunction) != null &&
5005 (result = this.result) != null) {
5006 for (int i = baseIndex, f, h; batch > 0 &&
5007 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5008 if (result.get() != null)
5009 return;
5010 addToPendingCount(1);
5011 new SearchValuesTask<K,V,U>
5012 (this, batch >>>= 1, baseLimit = h, f, tab,
5013 searchFunction, result).fork();
5014 }
5015 while (result.get() == null) {
5016 U u;
5017 Node<K,V> p;
5018 if ((p = advance()) == null) {
5019 propagateCompletion();
5020 break;
5021 }
5022 if ((u = searchFunction.apply(p.val)) != null) {
5023 if (result.compareAndSet(null, u))
5024 quietlyCompleteRoot();
5025 break;
5026 }
5027 }
5028 }
5029 }
5030 }
5031
5032 @SuppressWarnings("serial")
5033 static final class SearchEntriesTask<K,V,U>
5034 extends BulkTask<K,V,U> {
5035 final Function<Entry<K,V>, ? extends U> searchFunction;
5036 final AtomicReference<U> result;
5037 SearchEntriesTask
5038 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5039 Function<Entry<K,V>, ? extends U> searchFunction,
5040 AtomicReference<U> result) {
5041 super(p, b, i, f, t);
5042 this.searchFunction = searchFunction; this.result = result;
5043 }
5044 public final U getRawResult() { return result.get(); }
5045 public final void compute() {
5046 final Function<Entry<K,V>, ? extends U> searchFunction;
5047 final AtomicReference<U> result;
5048 if ((searchFunction = this.searchFunction) != null &&
5049 (result = this.result) != null) {
5050 for (int i = baseIndex, f, h; batch > 0 &&
5051 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5052 if (result.get() != null)
5053 return;
5054 addToPendingCount(1);
5055 new SearchEntriesTask<K,V,U>
5056 (this, batch >>>= 1, baseLimit = h, f, tab,
5057 searchFunction, result).fork();
5058 }
5059 while (result.get() == null) {
5060 U u;
5061 Node<K,V> p;
5062 if ((p = advance()) == null) {
5063 propagateCompletion();
5064 break;
5065 }
5066 if ((u = searchFunction.apply(p)) != null) {
5067 if (result.compareAndSet(null, u))
5068 quietlyCompleteRoot();
5069 return;
5070 }
5071 }
5072 }
5073 }
5074 }
5075
5076 @SuppressWarnings("serial")
5077 static final class SearchMappingsTask<K,V,U>
5078 extends BulkTask<K,V,U> {
5079 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5080 final AtomicReference<U> result;
5081 SearchMappingsTask
5082 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5083 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5084 AtomicReference<U> result) {
5085 super(p, b, i, f, t);
5086 this.searchFunction = searchFunction; this.result = result;
5087 }
5088 public final U getRawResult() { return result.get(); }
5089 public final void compute() {
5090 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5091 final AtomicReference<U> result;
5092 if ((searchFunction = this.searchFunction) != null &&
5093 (result = this.result) != null) {
5094 for (int i = baseIndex, f, h; batch > 0 &&
5095 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5096 if (result.get() != null)
5097 return;
5098 addToPendingCount(1);
5099 new SearchMappingsTask<K,V,U>
5100 (this, batch >>>= 1, baseLimit = h, f, tab,
5101 searchFunction, result).fork();
5102 }
5103 while (result.get() == null) {
5104 U u;
5105 Node<K,V> p;
5106 if ((p = advance()) == null) {
5107 propagateCompletion();
5108 break;
5109 }
5110 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5111 if (result.compareAndSet(null, u))
5112 quietlyCompleteRoot();
5113 break;
5114 }
5115 }
5116 }
5117 }
5118 }
5119
5120 @SuppressWarnings("serial")
5121 static final class ReduceKeysTask<K,V>
5122 extends BulkTask<K,V,K> {
5123 final BiFunction<? super K, ? super K, ? extends K> reducer;
5124 K result;
5125 ReduceKeysTask<K,V> rights, nextRight;
5126 ReduceKeysTask
5127 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5128 ReduceKeysTask<K,V> nextRight,
5129 BiFunction<? super K, ? super K, ? extends K> reducer) {
5130 super(p, b, i, f, t); this.nextRight = nextRight;
5131 this.reducer = reducer;
5132 }
5133 public final K getRawResult() { return result; }
5134 public final void compute() {
5135 final BiFunction<? super K, ? super K, ? extends K> reducer;
5136 if ((reducer = this.reducer) != null) {
5137 for (int i = baseIndex, f, h; batch > 0 &&
5138 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5139 addToPendingCount(1);
5140 (rights = new ReduceKeysTask<K,V>
5141 (this, batch >>>= 1, baseLimit = h, f, tab,
5142 rights, reducer)).fork();
5143 }
5144 K r = null;
5145 for (Node<K,V> p; (p = advance()) != null; ) {
5146 K u = p.key;
5147 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5148 }
5149 result = r;
5150 CountedCompleter<?> c;
5151 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5152 @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5153 t = (ReduceKeysTask<K,V>)c,
5154 s = t.rights;
5155 while (s != null) {
5156 K tr, sr;
5157 if ((sr = s.result) != null)
5158 t.result = (((tr = t.result) == null) ? sr :
5159 reducer.apply(tr, sr));
5160 s = t.rights = s.nextRight;
5161 }
5162 }
5163 }
5164 }
5165 }
5166
5167 @SuppressWarnings("serial")
5168 static final class ReduceValuesTask<K,V>
5169 extends BulkTask<K,V,V> {
5170 final BiFunction<? super V, ? super V, ? extends V> reducer;
5171 V result;
5172 ReduceValuesTask<K,V> rights, nextRight;
5173 ReduceValuesTask
5174 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5175 ReduceValuesTask<K,V> nextRight,
5176 BiFunction<? super V, ? super V, ? extends V> reducer) {
5177 super(p, b, i, f, t); this.nextRight = nextRight;
5178 this.reducer = reducer;
5179 }
5180 public final V getRawResult() { return result; }
5181 public final void compute() {
5182 final BiFunction<? super V, ? super V, ? extends V> reducer;
5183 if ((reducer = this.reducer) != null) {
5184 for (int i = baseIndex, f, h; batch > 0 &&
5185 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5186 addToPendingCount(1);
5187 (rights = new ReduceValuesTask<K,V>
5188 (this, batch >>>= 1, baseLimit = h, f, tab,
5189 rights, reducer)).fork();
5190 }
5191 V r = null;
5192 for (Node<K,V> p; (p = advance()) != null; ) {
5193 V v = p.val;
5194 r = (r == null) ? v : reducer.apply(r, v);
5195 }
5196 result = r;
5197 CountedCompleter<?> c;
5198 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5199 @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5200 t = (ReduceValuesTask<K,V>)c,
5201 s = t.rights;
5202 while (s != null) {
5203 V tr, sr;
5204 if ((sr = s.result) != null)
5205 t.result = (((tr = t.result) == null) ? sr :
5206 reducer.apply(tr, sr));
5207 s = t.rights = s.nextRight;
5208 }
5209 }
5210 }
5211 }
5212 }
5213
5214 @SuppressWarnings("serial")
5215 static final class ReduceEntriesTask<K,V>
5216 extends BulkTask<K,V,Map.Entry<K,V>> {
5217 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5218 Map.Entry<K,V> result;
5219 ReduceEntriesTask<K,V> rights, nextRight;
5220 ReduceEntriesTask
5221 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5222 ReduceEntriesTask<K,V> nextRight,
5223 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5224 super(p, b, i, f, t); this.nextRight = nextRight;
5225 this.reducer = reducer;
5226 }
5227 public final Map.Entry<K,V> getRawResult() { return result; }
5228 public final void compute() {
5229 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5230 if ((reducer = this.reducer) != null) {
5231 for (int i = baseIndex, f, h; batch > 0 &&
5232 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5233 addToPendingCount(1);
5234 (rights = new ReduceEntriesTask<K,V>
5235 (this, batch >>>= 1, baseLimit = h, f, tab,
5236 rights, reducer)).fork();
5237 }
5238 Map.Entry<K,V> r = null;
5239 for (Node<K,V> p; (p = advance()) != null; )
5240 r = (r == null) ? p : reducer.apply(r, p);
5241 result = r;
5242 CountedCompleter<?> c;
5243 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5244 @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5245 t = (ReduceEntriesTask<K,V>)c,
5246 s = t.rights;
5247 while (s != null) {
5248 Map.Entry<K,V> tr, sr;
5249 if ((sr = s.result) != null)
5250 t.result = (((tr = t.result) == null) ? sr :
5251 reducer.apply(tr, sr));
5252 s = t.rights = s.nextRight;
5253 }
5254 }
5255 }
5256 }
5257 }
5258
5259 @SuppressWarnings("serial")
5260 static final class MapReduceKeysTask<K,V,U>
5261 extends BulkTask<K,V,U> {
5262 final Function<? super K, ? extends U> transformer;
5263 final BiFunction<? super U, ? super U, ? extends U> reducer;
5264 U result;
5265 MapReduceKeysTask<K,V,U> rights, nextRight;
5266 MapReduceKeysTask
5267 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5268 MapReduceKeysTask<K,V,U> nextRight,
5269 Function<? super K, ? extends U> transformer,
5270 BiFunction<? super U, ? super U, ? extends U> reducer) {
5271 super(p, b, i, f, t); this.nextRight = nextRight;
5272 this.transformer = transformer;
5273 this.reducer = reducer;
5274 }
5275 public final U getRawResult() { return result; }
5276 public final void compute() {
5277 final Function<? super K, ? extends U> transformer;
5278 final BiFunction<? super U, ? super U, ? extends U> reducer;
5279 if ((transformer = this.transformer) != null &&
5280 (reducer = this.reducer) != null) {
5281 for (int i = baseIndex, f, h; batch > 0 &&
5282 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5283 addToPendingCount(1);
5284 (rights = new MapReduceKeysTask<K,V,U>
5285 (this, batch >>>= 1, baseLimit = h, f, tab,
5286 rights, transformer, reducer)).fork();
5287 }
5288 U r = null;
5289 for (Node<K,V> p; (p = advance()) != null; ) {
5290 U u;
5291 if ((u = transformer.apply(p.key)) != null)
5292 r = (r == null) ? u : reducer.apply(r, u);
5293 }
5294 result = r;
5295 CountedCompleter<?> c;
5296 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5297 @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5298 t = (MapReduceKeysTask<K,V,U>)c,
5299 s = t.rights;
5300 while (s != null) {
5301 U tr, sr;
5302 if ((sr = s.result) != null)
5303 t.result = (((tr = t.result) == null) ? sr :
5304 reducer.apply(tr, sr));
5305 s = t.rights = s.nextRight;
5306 }
5307 }
5308 }
5309 }
5310 }
5311
5312 @SuppressWarnings("serial")
5313 static final class MapReduceValuesTask<K,V,U>
5314 extends BulkTask<K,V,U> {
5315 final Function<? super V, ? extends U> transformer;
5316 final BiFunction<? super U, ? super U, ? extends U> reducer;
5317 U result;
5318 MapReduceValuesTask<K,V,U> rights, nextRight;
5319 MapReduceValuesTask
5320 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5321 MapReduceValuesTask<K,V,U> nextRight,
5322 Function<? super V, ? extends U> transformer,
5323 BiFunction<? super U, ? super U, ? extends U> reducer) {
5324 super(p, b, i, f, t); this.nextRight = nextRight;
5325 this.transformer = transformer;
5326 this.reducer = reducer;
5327 }
5328 public final U getRawResult() { return result; }
5329 public final void compute() {
5330 final Function<? super V, ? extends U> transformer;
5331 final BiFunction<? super U, ? super U, ? extends U> reducer;
5332 if ((transformer = this.transformer) != null &&
5333 (reducer = this.reducer) != null) {
5334 for (int i = baseIndex, f, h; batch > 0 &&
5335 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5336 addToPendingCount(1);
5337 (rights = new MapReduceValuesTask<K,V,U>
5338 (this, batch >>>= 1, baseLimit = h, f, tab,
5339 rights, transformer, reducer)).fork();
5340 }
5341 U r = null;
5342 for (Node<K,V> p; (p = advance()) != null; ) {
5343 U u;
5344 if ((u = transformer.apply(p.val)) != null)
5345 r = (r == null) ? u : reducer.apply(r, u);
5346 }
5347 result = r;
5348 CountedCompleter<?> c;
5349 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5350 @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5351 t = (MapReduceValuesTask<K,V,U>)c,
5352 s = t.rights;
5353 while (s != null) {
5354 U tr, sr;
5355 if ((sr = s.result) != null)
5356 t.result = (((tr = t.result) == null) ? sr :
5357 reducer.apply(tr, sr));
5358 s = t.rights = s.nextRight;
5359 }
5360 }
5361 }
5362 }
5363 }
5364
5365 @SuppressWarnings("serial")
5366 static final class MapReduceEntriesTask<K,V,U>
5367 extends BulkTask<K,V,U> {
5368 final Function<Map.Entry<K,V>, ? extends U> transformer;
5369 final BiFunction<? super U, ? super U, ? extends U> reducer;
5370 U result;
5371 MapReduceEntriesTask<K,V,U> rights, nextRight;
5372 MapReduceEntriesTask
5373 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5374 MapReduceEntriesTask<K,V,U> nextRight,
5375 Function<Map.Entry<K,V>, ? extends U> transformer,
5376 BiFunction<? super U, ? super U, ? extends U> reducer) {
5377 super(p, b, i, f, t); this.nextRight = nextRight;
5378 this.transformer = transformer;
5379 this.reducer = reducer;
5380 }
5381 public final U getRawResult() { return result; }
5382 public final void compute() {
5383 final Function<Map.Entry<K,V>, ? extends U> transformer;
5384 final BiFunction<? super U, ? super U, ? extends U> reducer;
5385 if ((transformer = this.transformer) != null &&
5386 (reducer = this.reducer) != null) {
5387 for (int i = baseIndex, f, h; batch > 0 &&
5388 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5389 addToPendingCount(1);
5390 (rights = new MapReduceEntriesTask<K,V,U>
5391 (this, batch >>>= 1, baseLimit = h, f, tab,
5392 rights, transformer, reducer)).fork();
5393 }
5394 U r = null;
5395 for (Node<K,V> p; (p = advance()) != null; ) {
5396 U u;
5397 if ((u = transformer.apply(p)) != null)
5398 r = (r == null) ? u : reducer.apply(r, u);
5399 }
5400 result = r;
5401 CountedCompleter<?> c;
5402 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5403 @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5404 t = (MapReduceEntriesTask<K,V,U>)c,
5405 s = t.rights;
5406 while (s != null) {
5407 U tr, sr;
5408 if ((sr = s.result) != null)
5409 t.result = (((tr = t.result) == null) ? sr :
5410 reducer.apply(tr, sr));
5411 s = t.rights = s.nextRight;
5412 }
5413 }
5414 }
5415 }
5416 }
5417
5418 @SuppressWarnings("serial")
5419 static final class MapReduceMappingsTask<K,V,U>
5420 extends BulkTask<K,V,U> {
5421 final BiFunction<? super K, ? super V, ? extends U> transformer;
5422 final BiFunction<? super U, ? super U, ? extends U> reducer;
5423 U result;
5424 MapReduceMappingsTask<K,V,U> rights, nextRight;
5425 MapReduceMappingsTask
5426 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5427 MapReduceMappingsTask<K,V,U> nextRight,
5428 BiFunction<? super K, ? super V, ? extends U> transformer,
5429 BiFunction<? super U, ? super U, ? extends U> reducer) {
5430 super(p, b, i, f, t); this.nextRight = nextRight;
5431 this.transformer = transformer;
5432 this.reducer = reducer;
5433 }
5434 public final U getRawResult() { return result; }
5435 public final void compute() {
5436 final BiFunction<? super K, ? super V, ? extends U> transformer;
5437 final BiFunction<? super U, ? super U, ? extends U> reducer;
5438 if ((transformer = this.transformer) != null &&
5439 (reducer = this.reducer) != null) {
5440 for (int i = baseIndex, f, h; batch > 0 &&
5441 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5442 addToPendingCount(1);
5443 (rights = new MapReduceMappingsTask<K,V,U>
5444 (this, batch >>>= 1, baseLimit = h, f, tab,
5445 rights, transformer, reducer)).fork();
5446 }
5447 U r = null;
5448 for (Node<K,V> p; (p = advance()) != null; ) {
5449 U u;
5450 if ((u = transformer.apply(p.key, p.val)) != null)
5451 r = (r == null) ? u : reducer.apply(r, u);
5452 }
5453 result = r;
5454 CountedCompleter<?> c;
5455 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5456 @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5457 t = (MapReduceMappingsTask<K,V,U>)c,
5458 s = t.rights;
5459 while (s != null) {
5460 U tr, sr;
5461 if ((sr = s.result) != null)
5462 t.result = (((tr = t.result) == null) ? sr :
5463 reducer.apply(tr, sr));
5464 s = t.rights = s.nextRight;
5465 }
5466 }
5467 }
5468 }
5469 }
5470
5471 @SuppressWarnings("serial")
5472 static final class MapReduceKeysToDoubleTask<K,V>
5473 extends BulkTask<K,V,Double> {
5474 final ToDoubleFunction<? super K> transformer;
5475 final DoubleBinaryOperator reducer;
5476 final double basis;
5477 double result;
5478 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5479 MapReduceKeysToDoubleTask
5480 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5481 MapReduceKeysToDoubleTask<K,V> nextRight,
5482 ToDoubleFunction<? super K> transformer,
5483 double basis,
5484 DoubleBinaryOperator reducer) {
5485 super(p, b, i, f, t); this.nextRight = nextRight;
5486 this.transformer = transformer;
5487 this.basis = basis; this.reducer = reducer;
5488 }
5489 public final Double getRawResult() { return result; }
5490 public final void compute() {
5491 final ToDoubleFunction<? super K> transformer;
5492 final DoubleBinaryOperator reducer;
5493 if ((transformer = this.transformer) != null &&
5494 (reducer = this.reducer) != null) {
5495 double r = this.basis;
5496 for (int i = baseIndex, f, h; batch > 0 &&
5497 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5498 addToPendingCount(1);
5499 (rights = new MapReduceKeysToDoubleTask<K,V>
5500 (this, batch >>>= 1, baseLimit = h, f, tab,
5501 rights, transformer, r, reducer)).fork();
5502 }
5503 for (Node<K,V> p; (p = advance()) != null; )
5504 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5505 result = r;
5506 CountedCompleter<?> c;
5507 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5508 @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5509 t = (MapReduceKeysToDoubleTask<K,V>)c,
5510 s = t.rights;
5511 while (s != null) {
5512 t.result = reducer.applyAsDouble(t.result, s.result);
5513 s = t.rights = s.nextRight;
5514 }
5515 }
5516 }
5517 }
5518 }
5519
5520 @SuppressWarnings("serial")
5521 static final class MapReduceValuesToDoubleTask<K,V>
5522 extends BulkTask<K,V,Double> {
5523 final ToDoubleFunction<? super V> transformer;
5524 final DoubleBinaryOperator reducer;
5525 final double basis;
5526 double result;
5527 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5528 MapReduceValuesToDoubleTask
5529 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5530 MapReduceValuesToDoubleTask<K,V> nextRight,
5531 ToDoubleFunction<? super V> transformer,
5532 double basis,
5533 DoubleBinaryOperator reducer) {
5534 super(p, b, i, f, t); this.nextRight = nextRight;
5535 this.transformer = transformer;
5536 this.basis = basis; this.reducer = reducer;
5537 }
5538 public final Double getRawResult() { return result; }
5539 public final void compute() {
5540 final ToDoubleFunction<? super V> transformer;
5541 final DoubleBinaryOperator reducer;
5542 if ((transformer = this.transformer) != null &&
5543 (reducer = this.reducer) != null) {
5544 double r = this.basis;
5545 for (int i = baseIndex, f, h; batch > 0 &&
5546 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5547 addToPendingCount(1);
5548 (rights = new MapReduceValuesToDoubleTask<K,V>
5549 (this, batch >>>= 1, baseLimit = h, f, tab,
5550 rights, transformer, r, reducer)).fork();
5551 }
5552 for (Node<K,V> p; (p = advance()) != null; )
5553 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5554 result = r;
5555 CountedCompleter<?> c;
5556 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5557 @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5558 t = (MapReduceValuesToDoubleTask<K,V>)c,
5559 s = t.rights;
5560 while (s != null) {
5561 t.result = reducer.applyAsDouble(t.result, s.result);
5562 s = t.rights = s.nextRight;
5563 }
5564 }
5565 }
5566 }
5567 }
5568
5569 @SuppressWarnings("serial")
5570 static final class MapReduceEntriesToDoubleTask<K,V>
5571 extends BulkTask<K,V,Double> {
5572 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5573 final DoubleBinaryOperator reducer;
5574 final double basis;
5575 double result;
5576 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5577 MapReduceEntriesToDoubleTask
5578 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5579 MapReduceEntriesToDoubleTask<K,V> nextRight,
5580 ToDoubleFunction<Map.Entry<K,V>> transformer,
5581 double basis,
5582 DoubleBinaryOperator reducer) {
5583 super(p, b, i, f, t); this.nextRight = nextRight;
5584 this.transformer = transformer;
5585 this.basis = basis; this.reducer = reducer;
5586 }
5587 public final Double getRawResult() { return result; }
5588 public final void compute() {
5589 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5590 final DoubleBinaryOperator reducer;
5591 if ((transformer = this.transformer) != null &&
5592 (reducer = this.reducer) != null) {
5593 double r = this.basis;
5594 for (int i = baseIndex, f, h; batch > 0 &&
5595 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5596 addToPendingCount(1);
5597 (rights = new MapReduceEntriesToDoubleTask<K,V>
5598 (this, batch >>>= 1, baseLimit = h, f, tab,
5599 rights, transformer, r, reducer)).fork();
5600 }
5601 for (Node<K,V> p; (p = advance()) != null; )
5602 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5603 result = r;
5604 CountedCompleter<?> c;
5605 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5606 @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5607 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5608 s = t.rights;
5609 while (s != null) {
5610 t.result = reducer.applyAsDouble(t.result, s.result);
5611 s = t.rights = s.nextRight;
5612 }
5613 }
5614 }
5615 }
5616 }
5617
5618 @SuppressWarnings("serial")
5619 static final class MapReduceMappingsToDoubleTask<K,V>
5620 extends BulkTask<K,V,Double> {
5621 final ToDoubleBiFunction<? super K, ? super V> transformer;
5622 final DoubleBinaryOperator reducer;
5623 final double basis;
5624 double result;
5625 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5626 MapReduceMappingsToDoubleTask
5627 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5628 MapReduceMappingsToDoubleTask<K,V> nextRight,
5629 ToDoubleBiFunction<? super K, ? super V> transformer,
5630 double basis,
5631 DoubleBinaryOperator reducer) {
5632 super(p, b, i, f, t); this.nextRight = nextRight;
5633 this.transformer = transformer;
5634 this.basis = basis; this.reducer = reducer;
5635 }
5636 public final Double getRawResult() { return result; }
5637 public final void compute() {
5638 final ToDoubleBiFunction<? super K, ? super V> transformer;
5639 final DoubleBinaryOperator reducer;
5640 if ((transformer = this.transformer) != null &&
5641 (reducer = this.reducer) != null) {
5642 double r = this.basis;
5643 for (int i = baseIndex, f, h; batch > 0 &&
5644 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5645 addToPendingCount(1);
5646 (rights = new MapReduceMappingsToDoubleTask<K,V>
5647 (this, batch >>>= 1, baseLimit = h, f, tab,
5648 rights, transformer, r, reducer)).fork();
5649 }
5650 for (Node<K,V> p; (p = advance()) != null; )
5651 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5652 result = r;
5653 CountedCompleter<?> c;
5654 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5655 @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5656 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5657 s = t.rights;
5658 while (s != null) {
5659 t.result = reducer.applyAsDouble(t.result, s.result);
5660 s = t.rights = s.nextRight;
5661 }
5662 }
5663 }
5664 }
5665 }
5666
5667 @SuppressWarnings("serial")
5668 static final class MapReduceKeysToLongTask<K,V>
5669 extends BulkTask<K,V,Long> {
5670 final ToLongFunction<? super K> transformer;
5671 final LongBinaryOperator reducer;
5672 final long basis;
5673 long result;
5674 MapReduceKeysToLongTask<K,V> rights, nextRight;
5675 MapReduceKeysToLongTask
5676 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5677 MapReduceKeysToLongTask<K,V> nextRight,
5678 ToLongFunction<? super K> transformer,
5679 long basis,
5680 LongBinaryOperator reducer) {
5681 super(p, b, i, f, t); this.nextRight = nextRight;
5682 this.transformer = transformer;
5683 this.basis = basis; this.reducer = reducer;
5684 }
5685 public final Long getRawResult() { return result; }
5686 public final void compute() {
5687 final ToLongFunction<? super K> transformer;
5688 final LongBinaryOperator reducer;
5689 if ((transformer = this.transformer) != null &&
5690 (reducer = this.reducer) != null) {
5691 long r = this.basis;
5692 for (int i = baseIndex, f, h; batch > 0 &&
5693 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5694 addToPendingCount(1);
5695 (rights = new MapReduceKeysToLongTask<K,V>
5696 (this, batch >>>= 1, baseLimit = h, f, tab,
5697 rights, transformer, r, reducer)).fork();
5698 }
5699 for (Node<K,V> p; (p = advance()) != null; )
5700 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5701 result = r;
5702 CountedCompleter<?> c;
5703 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5704 @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5705 t = (MapReduceKeysToLongTask<K,V>)c,
5706 s = t.rights;
5707 while (s != null) {
5708 t.result = reducer.applyAsLong(t.result, s.result);
5709 s = t.rights = s.nextRight;
5710 }
5711 }
5712 }
5713 }
5714 }
5715
5716 @SuppressWarnings("serial")
5717 static final class MapReduceValuesToLongTask<K,V>
5718 extends BulkTask<K,V,Long> {
5719 final ToLongFunction<? super V> transformer;
5720 final LongBinaryOperator reducer;
5721 final long basis;
5722 long result;
5723 MapReduceValuesToLongTask<K,V> rights, nextRight;
5724 MapReduceValuesToLongTask
5725 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5726 MapReduceValuesToLongTask<K,V> nextRight,
5727 ToLongFunction<? super V> transformer,
5728 long basis,
5729 LongBinaryOperator reducer) {
5730 super(p, b, i, f, t); this.nextRight = nextRight;
5731 this.transformer = transformer;
5732 this.basis = basis; this.reducer = reducer;
5733 }
5734 public final Long getRawResult() { return result; }
5735 public final void compute() {
5736 final ToLongFunction<? super V> transformer;
5737 final LongBinaryOperator reducer;
5738 if ((transformer = this.transformer) != null &&
5739 (reducer = this.reducer) != null) {
5740 long r = this.basis;
5741 for (int i = baseIndex, f, h; batch > 0 &&
5742 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5743 addToPendingCount(1);
5744 (rights = new MapReduceValuesToLongTask<K,V>
5745 (this, batch >>>= 1, baseLimit = h, f, tab,
5746 rights, transformer, r, reducer)).fork();
5747 }
5748 for (Node<K,V> p; (p = advance()) != null; )
5749 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5750 result = r;
5751 CountedCompleter<?> c;
5752 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5753 @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5754 t = (MapReduceValuesToLongTask<K,V>)c,
5755 s = t.rights;
5756 while (s != null) {
5757 t.result = reducer.applyAsLong(t.result, s.result);
5758 s = t.rights = s.nextRight;
5759 }
5760 }
5761 }
5762 }
5763 }
5764
5765 @SuppressWarnings("serial")
5766 static final class MapReduceEntriesToLongTask<K,V>
5767 extends BulkTask<K,V,Long> {
5768 final ToLongFunction<Map.Entry<K,V>> transformer;
5769 final LongBinaryOperator reducer;
5770 final long basis;
5771 long result;
5772 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5773 MapReduceEntriesToLongTask
5774 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5775 MapReduceEntriesToLongTask<K,V> nextRight,
5776 ToLongFunction<Map.Entry<K,V>> transformer,
5777 long basis,
5778 LongBinaryOperator reducer) {
5779 super(p, b, i, f, t); this.nextRight = nextRight;
5780 this.transformer = transformer;
5781 this.basis = basis; this.reducer = reducer;
5782 }
5783 public final Long getRawResult() { return result; }
5784 public final void compute() {
5785 final ToLongFunction<Map.Entry<K,V>> transformer;
5786 final LongBinaryOperator reducer;
5787 if ((transformer = this.transformer) != null &&
5788 (reducer = this.reducer) != null) {
5789 long r = this.basis;
5790 for (int i = baseIndex, f, h; batch > 0 &&
5791 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5792 addToPendingCount(1);
5793 (rights = new MapReduceEntriesToLongTask<K,V>
5794 (this, batch >>>= 1, baseLimit = h, f, tab,
5795 rights, transformer, r, reducer)).fork();
5796 }
5797 for (Node<K,V> p; (p = advance()) != null; )
5798 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5799 result = r;
5800 CountedCompleter<?> c;
5801 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5802 @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5803 t = (MapReduceEntriesToLongTask<K,V>)c,
5804 s = t.rights;
5805 while (s != null) {
5806 t.result = reducer.applyAsLong(t.result, s.result);
5807 s = t.rights = s.nextRight;
5808 }
5809 }
5810 }
5811 }
5812 }
5813
5814 @SuppressWarnings("serial")
5815 static final class MapReduceMappingsToLongTask<K,V>
5816 extends BulkTask<K,V,Long> {
5817 final ToLongBiFunction<? super K, ? super V> transformer;
5818 final LongBinaryOperator reducer;
5819 final long basis;
5820 long result;
5821 MapReduceMappingsToLongTask<K,V> rights, nextRight;
5822 MapReduceMappingsToLongTask
5823 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5824 MapReduceMappingsToLongTask<K,V> nextRight,
5825 ToLongBiFunction<? super K, ? super V> transformer,
5826 long basis,
5827 LongBinaryOperator reducer) {
5828 super(p, b, i, f, t); this.nextRight = nextRight;
5829 this.transformer = transformer;
5830 this.basis = basis; this.reducer = reducer;
5831 }
5832 public final Long getRawResult() { return result; }
5833 public final void compute() {
5834 final ToLongBiFunction<? super K, ? super V> transformer;
5835 final LongBinaryOperator reducer;
5836 if ((transformer = this.transformer) != null &&
5837 (reducer = this.reducer) != null) {
5838 long r = this.basis;
5839 for (int i = baseIndex, f, h; batch > 0 &&
5840 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5841 addToPendingCount(1);
5842 (rights = new MapReduceMappingsToLongTask<K,V>
5843 (this, batch >>>= 1, baseLimit = h, f, tab,
5844 rights, transformer, r, reducer)).fork();
5845 }
5846 for (Node<K,V> p; (p = advance()) != null; )
5847 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
5848 result = r;
5849 CountedCompleter<?> c;
5850 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5851 @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5852 t = (MapReduceMappingsToLongTask<K,V>)c,
5853 s = t.rights;
5854 while (s != null) {
5855 t.result = reducer.applyAsLong(t.result, s.result);
5856 s = t.rights = s.nextRight;
5857 }
5858 }
5859 }
5860 }
5861 }
5862
5863 @SuppressWarnings("serial")
5864 static final class MapReduceKeysToIntTask<K,V>
5865 extends BulkTask<K,V,Integer> {
5866 final ToIntFunction<? super K> transformer;
5867 final IntBinaryOperator reducer;
5868 final int basis;
5869 int result;
5870 MapReduceKeysToIntTask<K,V> rights, nextRight;
5871 MapReduceKeysToIntTask
5872 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5873 MapReduceKeysToIntTask<K,V> nextRight,
5874 ToIntFunction<? super K> transformer,
5875 int basis,
5876 IntBinaryOperator reducer) {
5877 super(p, b, i, f, t); this.nextRight = nextRight;
5878 this.transformer = transformer;
5879 this.basis = basis; this.reducer = reducer;
5880 }
5881 public final Integer getRawResult() { return result; }
5882 public final void compute() {
5883 final ToIntFunction<? super K> transformer;
5884 final IntBinaryOperator reducer;
5885 if ((transformer = this.transformer) != null &&
5886 (reducer = this.reducer) != null) {
5887 int r = this.basis;
5888 for (int i = baseIndex, f, h; batch > 0 &&
5889 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5890 addToPendingCount(1);
5891 (rights = new MapReduceKeysToIntTask<K,V>
5892 (this, batch >>>= 1, baseLimit = h, f, tab,
5893 rights, transformer, r, reducer)).fork();
5894 }
5895 for (Node<K,V> p; (p = advance()) != null; )
5896 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
5897 result = r;
5898 CountedCompleter<?> c;
5899 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5900 @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5901 t = (MapReduceKeysToIntTask<K,V>)c,
5902 s = t.rights;
5903 while (s != null) {
5904 t.result = reducer.applyAsInt(t.result, s.result);
5905 s = t.rights = s.nextRight;
5906 }
5907 }
5908 }
5909 }
5910 }
5911
5912 @SuppressWarnings("serial")
5913 static final class MapReduceValuesToIntTask<K,V>
5914 extends BulkTask<K,V,Integer> {
5915 final ToIntFunction<? super V> transformer;
5916 final IntBinaryOperator reducer;
5917 final int basis;
5918 int result;
5919 MapReduceValuesToIntTask<K,V> rights, nextRight;
5920 MapReduceValuesToIntTask
5921 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5922 MapReduceValuesToIntTask<K,V> nextRight,
5923 ToIntFunction<? super V> transformer,
5924 int basis,
5925 IntBinaryOperator reducer) {
5926 super(p, b, i, f, t); this.nextRight = nextRight;
5927 this.transformer = transformer;
5928 this.basis = basis; this.reducer = reducer;
5929 }
5930 public final Integer getRawResult() { return result; }
5931 public final void compute() {
5932 final ToIntFunction<? super V> transformer;
5933 final IntBinaryOperator reducer;
5934 if ((transformer = this.transformer) != null &&
5935 (reducer = this.reducer) != null) {
5936 int r = this.basis;
5937 for (int i = baseIndex, f, h; batch > 0 &&
5938 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5939 addToPendingCount(1);
5940 (rights = new MapReduceValuesToIntTask<K,V>
5941 (this, batch >>>= 1, baseLimit = h, f, tab,
5942 rights, transformer, r, reducer)).fork();
5943 }
5944 for (Node<K,V> p; (p = advance()) != null; )
5945 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
5946 result = r;
5947 CountedCompleter<?> c;
5948 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5949 @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5950 t = (MapReduceValuesToIntTask<K,V>)c,
5951 s = t.rights;
5952 while (s != null) {
5953 t.result = reducer.applyAsInt(t.result, s.result);
5954 s = t.rights = s.nextRight;
5955 }
5956 }
5957 }
5958 }
5959 }
5960
5961 @SuppressWarnings("serial")
5962 static final class MapReduceEntriesToIntTask<K,V>
5963 extends BulkTask<K,V,Integer> {
5964 final ToIntFunction<Map.Entry<K,V>> transformer;
5965 final IntBinaryOperator reducer;
5966 final int basis;
5967 int result;
5968 MapReduceEntriesToIntTask<K,V> rights, nextRight;
5969 MapReduceEntriesToIntTask
5970 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5971 MapReduceEntriesToIntTask<K,V> nextRight,
5972 ToIntFunction<Map.Entry<K,V>> transformer,
5973 int basis,
5974 IntBinaryOperator reducer) {
5975 super(p, b, i, f, t); this.nextRight = nextRight;
5976 this.transformer = transformer;
5977 this.basis = basis; this.reducer = reducer;
5978 }
5979 public final Integer getRawResult() { return result; }
5980 public final void compute() {
5981 final ToIntFunction<Map.Entry<K,V>> transformer;
5982 final IntBinaryOperator reducer;
5983 if ((transformer = this.transformer) != null &&
5984 (reducer = this.reducer) != null) {
5985 int r = this.basis;
5986 for (int i = baseIndex, f, h; batch > 0 &&
5987 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5988 addToPendingCount(1);
5989 (rights = new MapReduceEntriesToIntTask<K,V>
5990 (this, batch >>>= 1, baseLimit = h, f, tab,
5991 rights, transformer, r, reducer)).fork();
5992 }
5993 for (Node<K,V> p; (p = advance()) != null; )
5994 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
5995 result = r;
5996 CountedCompleter<?> c;
5997 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5998 @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
5999 t = (MapReduceEntriesToIntTask<K,V>)c,
6000 s = t.rights;
6001 while (s != null) {
6002 t.result = reducer.applyAsInt(t.result, s.result);
6003 s = t.rights = s.nextRight;
6004 }
6005 }
6006 }
6007 }
6008 }
6009
6010 @SuppressWarnings("serial")
6011 static final class MapReduceMappingsToIntTask<K,V>
6012 extends BulkTask<K,V,Integer> {
6013 final ToIntBiFunction<? super K, ? super V> transformer;
6014 final IntBinaryOperator reducer;
6015 final int basis;
6016 int result;
6017 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6018 MapReduceMappingsToIntTask
6019 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6020 MapReduceMappingsToIntTask<K,V> nextRight,
6021 ToIntBiFunction<? super K, ? super V> transformer,
6022 int basis,
6023 IntBinaryOperator reducer) {
6024 super(p, b, i, f, t); this.nextRight = nextRight;
6025 this.transformer = transformer;
6026 this.basis = basis; this.reducer = reducer;
6027 }
6028 public final Integer getRawResult() { return result; }
6029 public final void compute() {
6030 final ToIntBiFunction<? super K, ? super V> transformer;
6031 final IntBinaryOperator reducer;
6032 if ((transformer = this.transformer) != null &&
6033 (reducer = this.reducer) != null) {
6034 int r = this.basis;
6035 for (int i = baseIndex, f, h; batch > 0 &&
6036 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6037 addToPendingCount(1);
6038 (rights = new MapReduceMappingsToIntTask<K,V>
6039 (this, batch >>>= 1, baseLimit = h, f, tab,
6040 rights, transformer, r, reducer)).fork();
6041 }
6042 for (Node<K,V> p; (p = advance()) != null; )
6043 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6044 result = r;
6045 CountedCompleter<?> c;
6046 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6047 @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6048 t = (MapReduceMappingsToIntTask<K,V>)c,
6049 s = t.rights;
6050 while (s != null) {
6051 t.result = reducer.applyAsInt(t.result, s.result);
6052 s = t.rights = s.nextRight;
6053 }
6054 }
6055 }
6056 }
6057 }
6058
6059 // Unsafe mechanics
6060 private static final sun.misc.Unsafe U;
6061 private static final long SIZECTL;
6062 private static final long TRANSFERINDEX;
6063 private static final long TRANSFERORIGIN;
6064 private static final long BASECOUNT;
6065 private static final long CELLSBUSY;
6066 private static final long CELLVALUE;
6067 private static final long ABASE;
6068 private static final int ASHIFT;
6069
6070 static {
6071 try {
6072 U = sun.misc.Unsafe.getUnsafe();
6073 Class<?> k = ConcurrentHashMap.class;
6074 SIZECTL = U.objectFieldOffset
6075 (k.getDeclaredField("sizeCtl"));
6076 TRANSFERINDEX = U.objectFieldOffset
6077 (k.getDeclaredField("transferIndex"));
6078 TRANSFERORIGIN = U.objectFieldOffset
6079 (k.getDeclaredField("transferOrigin"));
6080 BASECOUNT = U.objectFieldOffset
6081 (k.getDeclaredField("baseCount"));
6082 CELLSBUSY = U.objectFieldOffset
6083 (k.getDeclaredField("cellsBusy"));
6084 Class<?> ck = CounterCell.class;
6085 CELLVALUE = U.objectFieldOffset
6086 (ck.getDeclaredField("value"));
6087 Class<?> ak = Node[].class;
6088 ABASE = U.arrayBaseOffset(ak);
6089 int scale = U.arrayIndexScale(ak);
6090 if ((scale & (scale - 1)) != 0)
6091 throw new Error("data type scale not a power of two");
6092 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6093 } catch (Exception e) {
6094 throw new Error(e);
6095 }
6096 }
6097 }