ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.240
Committed: Sat Jul 20 16:50:01 2013 UTC (10 years, 10 months ago) by dl
Branch: MAIN
Changes since 1.239: +68 -39 lines
Log Message:
Ensure consistent insertion

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.io.Serializable;
11 import java.lang.reflect.ParameterizedType;
12 import java.lang.reflect.Type;
13 import java.util.AbstractMap;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Comparator;
17 import java.util.ConcurrentModificationException;
18 import java.util.Enumeration;
19 import java.util.HashMap;
20 import java.util.Hashtable;
21 import java.util.Iterator;
22 import java.util.Map;
23 import java.util.NoSuchElementException;
24 import java.util.Set;
25 import java.util.Spliterator;
26 import java.util.concurrent.ConcurrentMap;
27 import java.util.concurrent.ForkJoinPool;
28 import java.util.concurrent.atomic.AtomicReference;
29 import java.util.concurrent.locks.LockSupport;
30 import java.util.concurrent.locks.ReentrantLock;
31 import java.util.function.BiConsumer;
32 import java.util.function.BiFunction;
33 import java.util.function.BinaryOperator;
34 import java.util.function.Consumer;
35 import java.util.function.DoubleBinaryOperator;
36 import java.util.function.Function;
37 import java.util.function.IntBinaryOperator;
38 import java.util.function.LongBinaryOperator;
39 import java.util.function.ToDoubleBiFunction;
40 import java.util.function.ToDoubleFunction;
41 import java.util.function.ToIntBiFunction;
42 import java.util.function.ToIntFunction;
43 import java.util.function.ToLongBiFunction;
44 import java.util.function.ToLongFunction;
45 import java.util.stream.Stream;
46
47 /**
48 * A hash table supporting full concurrency of retrievals and
49 * high expected concurrency for updates. This class obeys the
50 * same functional specification as {@link java.util.Hashtable}, and
51 * includes versions of methods corresponding to each method of
52 * {@code Hashtable}. However, even though all operations are
53 * thread-safe, retrieval operations do <em>not</em> entail locking,
54 * and there is <em>not</em> any support for locking the entire table
55 * in a way that prevents all access. This class is fully
56 * interoperable with {@code Hashtable} in programs that rely on its
57 * thread safety but not on its synchronization details.
58 *
59 * <p>Retrieval operations (including {@code get}) generally do not
60 * block, so may overlap with update operations (including {@code put}
61 * and {@code remove}). Retrievals reflect the results of the most
62 * recently <em>completed</em> update operations holding upon their
63 * onset. (More formally, an update operation for a given key bears a
64 * <em>happens-before</em> relation with any (non-null) retrieval for
65 * that key reporting the updated value.) For aggregate operations
66 * such as {@code putAll} and {@code clear}, concurrent retrievals may
67 * reflect insertion or removal of only some entries. Similarly,
68 * Iterators and Enumerations return elements reflecting the state of
69 * the hash table at some point at or since the creation of the
70 * iterator/enumeration. They do <em>not</em> throw {@link
71 * ConcurrentModificationException}. However, iterators are designed
72 * to be used by only one thread at a time. Bear in mind that the
73 * results of aggregate status methods including {@code size}, {@code
74 * isEmpty}, and {@code containsValue} are typically useful only when
75 * a map is not undergoing concurrent updates in other threads.
76 * Otherwise the results of these methods reflect transient states
77 * that may be adequate for monitoring or estimation purposes, but not
78 * for program control.
79 *
80 * <p>The table is dynamically expanded when there are too many
81 * collisions (i.e., keys that have distinct hash codes but fall into
82 * the same slot modulo the table size), with the expected average
83 * effect of maintaining roughly two bins per mapping (corresponding
84 * to a 0.75 load factor threshold for resizing). There may be much
85 * variance around this average as mappings are added and removed, but
86 * overall, this maintains a commonly accepted time/space tradeoff for
87 * hash tables. However, resizing this or any other kind of hash
88 * table may be a relatively slow operation. When possible, it is a
89 * good idea to provide a size estimate as an optional {@code
90 * initialCapacity} constructor argument. An additional optional
91 * {@code loadFactor} constructor argument provides a further means of
92 * customizing initial table capacity by specifying the table density
93 * to be used in calculating the amount of space to allocate for the
94 * given number of elements. Also, for compatibility with previous
95 * versions of this class, constructors may optionally specify an
96 * expected {@code concurrencyLevel} as an additional hint for
97 * internal sizing. Note that using many keys with exactly the same
98 * {@code hashCode()} is a sure way to slow down performance of any
99 * hash table. To ameliorate impact, when keys are {@link Comparable},
100 * this class may use comparison order among keys to help break ties.
101 *
102 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
103 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
104 * (using {@link #keySet(Object)} when only keys are of interest, and the
105 * mapped values are (perhaps transiently) not used or all take the
106 * same mapping value.
107 *
108 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
109 * form of histogram or multiset) by using {@link
110 * java.util.concurrent.atomic.LongAdder} values and initializing via
111 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
112 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
113 * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
114 *
115 * <p>This class and its views and iterators implement all of the
116 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
117 * interfaces.
118 *
119 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
120 * does <em>not</em> allow {@code null} to be used as a key or value.
121 *
122 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
123 * operations that, unlike most {@link Stream} methods, are designed
124 * to be safely, and often sensibly, applied even with maps that are
125 * being concurrently updated by other threads; for example, when
126 * computing a snapshot summary of the values in a shared registry.
127 * There are three kinds of operation, each with four forms, accepting
128 * functions with Keys, Values, Entries, and (Key, Value) arguments
129 * and/or return values. Because the elements of a ConcurrentHashMap
130 * are not ordered in any particular way, and may be processed in
131 * different orders in different parallel executions, the correctness
132 * of supplied functions should not depend on any ordering, or on any
133 * other objects or values that may transiently change while
134 * computation is in progress; and except for forEach actions, should
135 * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
136 * objects do not support method {@code setValue}.
137 *
138 * <ul>
139 * <li> forEach: Perform a given action on each element.
140 * A variant form applies a given transformation on each element
141 * before performing the action.</li>
142 *
143 * <li> search: Return the first available non-null result of
144 * applying a given function on each element; skipping further
145 * search when a result is found.</li>
146 *
147 * <li> reduce: Accumulate each element. The supplied reduction
148 * function cannot rely on ordering (more formally, it should be
149 * both associative and commutative). There are five variants:
150 *
151 * <ul>
152 *
153 * <li> Plain reductions. (There is not a form of this method for
154 * (key, value) function arguments since there is no corresponding
155 * return type.)</li>
156 *
157 * <li> Mapped reductions that accumulate the results of a given
158 * function applied to each element.</li>
159 *
160 * <li> Reductions to scalar doubles, longs, and ints, using a
161 * given basis value.</li>
162 *
163 * </ul>
164 * </li>
165 * </ul>
166 *
167 * <p>These bulk operations accept a {@code parallelismThreshold}
168 * argument. Methods proceed sequentially if the current map size is
169 * estimated to be less than the given threshold. Using a value of
170 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
171 * of {@code 1} results in maximal parallelism by partitioning into
172 * enough subtasks to fully utilize the {@link
173 * ForkJoinPool#commonPool()} that is used for all parallel
174 * computations. Normally, you would initially choose one of these
175 * extreme values, and then measure performance of using in-between
176 * values that trade off overhead versus throughput.
177 *
178 * <p>The concurrency properties of bulk operations follow
179 * from those of ConcurrentHashMap: Any non-null result returned
180 * from {@code get(key)} and related access methods bears a
181 * happens-before relation with the associated insertion or
182 * update. The result of any bulk operation reflects the
183 * composition of these per-element relations (but is not
184 * necessarily atomic with respect to the map as a whole unless it
185 * is somehow known to be quiescent). Conversely, because keys
186 * and values in the map are never null, null serves as a reliable
187 * atomic indicator of the current lack of any result. To
188 * maintain this property, null serves as an implicit basis for
189 * all non-scalar reduction operations. For the double, long, and
190 * int versions, the basis should be one that, when combined with
191 * any other value, returns that other value (more formally, it
192 * should be the identity element for the reduction). Most common
193 * reductions have these properties; for example, computing a sum
194 * with basis 0 or a minimum with basis MAX_VALUE.
195 *
196 * <p>Search and transformation functions provided as arguments
197 * should similarly return null to indicate the lack of any result
198 * (in which case it is not used). In the case of mapped
199 * reductions, this also enables transformations to serve as
200 * filters, returning null (or, in the case of primitive
201 * specializations, the identity basis) if the element should not
202 * be combined. You can create compound transformations and
203 * filterings by composing them yourself under this "null means
204 * there is nothing there now" rule before using them in search or
205 * reduce operations.
206 *
207 * <p>Methods accepting and/or returning Entry arguments maintain
208 * key-value associations. They may be useful for example when
209 * finding the key for the greatest value. Note that "plain" Entry
210 * arguments can be supplied using {@code new
211 * AbstractMap.SimpleEntry(k,v)}.
212 *
213 * <p>Bulk operations may complete abruptly, throwing an
214 * exception encountered in the application of a supplied
215 * function. Bear in mind when handling such exceptions that other
216 * concurrently executing functions could also have thrown
217 * exceptions, or would have done so if the first exception had
218 * not occurred.
219 *
220 * <p>Speedups for parallel compared to sequential forms are common
221 * but not guaranteed. Parallel operations involving brief functions
222 * on small maps may execute more slowly than sequential forms if the
223 * underlying work to parallelize the computation is more expensive
224 * than the computation itself. Similarly, parallelization may not
225 * lead to much actual parallelism if all processors are busy
226 * performing unrelated tasks.
227 *
228 * <p>All arguments to all task methods must be non-null.
229 *
230 * <p>This class is a member of the
231 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
232 * Java Collections Framework</a>.
233 *
234 * @since 1.5
235 * @author Doug Lea
236 * @param <K> the type of keys maintained by this map
237 * @param <V> the type of mapped values
238 */
239 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
240 implements ConcurrentMap<K,V>, Serializable {
241 private static final long serialVersionUID = 7249069246763182397L;
242
243 /*
244 * Overview:
245 *
246 * The primary design goal of this hash table is to maintain
247 * concurrent readability (typically method get(), but also
248 * iterators and related methods) while minimizing update
249 * contention. Secondary goals are to keep space consumption about
250 * the same or better than java.util.HashMap, and to support high
251 * initial insertion rates on an empty table by many threads.
252 *
253 * This map usually acts as a binned (bucketed) hash table. Each
254 * key-value mapping is held in a Node. Most nodes are instances
255 * of the basic Node class with hash, key, value, and next
256 * fields. However, various subclasses exist: TreeNodes are
257 * arranged in balanced trees, not lists. TreeBins hold the roots
258 * of sets of TreeNodes. ForwardingNodes are placed at the heads
259 * of bins during resizing. ReservationNodes are used as
260 * placeholders while establishing values in computeIfAbsent and
261 * related methods. The types TreeBin, ForwardingNode, and
262 * ReservationNode do not hold normal user keys, values, or
263 * hashes, and are readily distinguishable during search etc
264 * because they have negative hash fields and null key and value
265 * fields. (These special nodes are either uncommon or transient,
266 * so the impact of carrying around some unused fields is
267 * insignificant.)
268 *
269 * The table is lazily initialized to a power-of-two size upon the
270 * first insertion. Each bin in the table normally contains a
271 * list of Nodes (most often, the list has only zero or one Node).
272 * Table accesses require volatile/atomic reads, writes, and
273 * CASes. Because there is no other way to arrange this without
274 * adding further indirections, we use intrinsics
275 * (sun.misc.Unsafe) operations.
276 *
277 * We use the top (sign) bit of Node hash fields for control
278 * purposes -- it is available anyway because of addressing
279 * constraints. Nodes with negative hash fields are specially
280 * handled or ignored in map methods.
281 *
282 * Insertion (via put or its variants) of the first node in an
283 * empty bin is performed by just CASing it to the bin. This is
284 * by far the most common case for put operations under most
285 * key/hash distributions. Other update operations (insert,
286 * delete, and replace) require locks. We do not want to waste
287 * the space required to associate a distinct lock object with
288 * each bin, so instead use the first node of a bin list itself as
289 * a lock. Locking support for these locks relies on builtin
290 * "synchronized" monitors.
291 *
292 * Using the first node of a list as a lock does not by itself
293 * suffice though: When a node is locked, any update must first
294 * validate that it is still the first node after locking it, and
295 * retry if not. Because new nodes are always appended to lists,
296 * once a node is first in a bin, it remains first until deleted
297 * or the bin becomes invalidated (upon resizing).
298 *
299 * The main disadvantage of per-bin locks is that other update
300 * operations on other nodes in a bin list protected by the same
301 * lock can stall, for example when user equals() or mapping
302 * functions take a long time. However, statistically, under
303 * random hash codes, this is not a common problem. Ideally, the
304 * frequency of nodes in bins follows a Poisson distribution
305 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
306 * parameter of about 0.5 on average, given the resizing threshold
307 * of 0.75, although with a large variance because of resizing
308 * granularity. Ignoring variance, the expected occurrences of
309 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
310 * first values are:
311 *
312 * 0: 0.60653066
313 * 1: 0.30326533
314 * 2: 0.07581633
315 * 3: 0.01263606
316 * 4: 0.00157952
317 * 5: 0.00015795
318 * 6: 0.00001316
319 * 7: 0.00000094
320 * 8: 0.00000006
321 * more: less than 1 in ten million
322 *
323 * Lock contention probability for two threads accessing distinct
324 * elements is roughly 1 / (8 * #elements) under random hashes.
325 *
326 * Actual hash code distributions encountered in practice
327 * sometimes deviate significantly from uniform randomness. This
328 * includes the case when N > (1<<30), so some keys MUST collide.
329 * Similarly for dumb or hostile usages in which multiple keys are
330 * designed to have identical hash codes or ones that differs only
331 * in masked-out high bits. So we use a secondary strategy that
332 * applies when the number of nodes in a bin exceeds a
333 * threshold. These TreeBins use a balanced tree to hold nodes (a
334 * specialized form of red-black trees), bounding search time to
335 * O(log N). Each search step in a TreeBin is at least twice as
336 * slow as in a regular list, but given that N cannot exceed
337 * (1<<64) (before running out of addresses) this bounds search
338 * steps, lock hold times, etc, to reasonable constants (roughly
339 * 100 nodes inspected per operation worst case) so long as keys
340 * are Comparable (which is very common -- String, Long, etc).
341 * TreeBin nodes (TreeNodes) also maintain the same "next"
342 * traversal pointers as regular nodes, so can be traversed in
343 * iterators in the same way.
344 *
345 * The table is resized when occupancy exceeds a percentage
346 * threshold (nominally, 0.75, but see below). Any thread
347 * noticing an overfull bin may assist in resizing after the
348 * initiating thread allocates and sets up the replacement
349 * array. However, rather than stalling, these other threads may
350 * proceed with insertions etc. The use of TreeBins shields us
351 * from the worst case effects of overfilling while resizes are in
352 * progress. Resizing proceeds by transferring bins, one by one,
353 * from the table to the next table. To enable concurrency, the
354 * next table must be (incrementally) prefilled with place-holders
355 * serving as reverse forwarders to the old table. Because we are
356 * using power-of-two expansion, the elements from each bin must
357 * either stay at same index, or move with a power of two
358 * offset. We eliminate unnecessary node creation by catching
359 * cases where old nodes can be reused because their next fields
360 * won't change. On average, only about one-sixth of them need
361 * cloning when a table doubles. The nodes they replace will be
362 * garbage collectable as soon as they are no longer referenced by
363 * any reader thread that may be in the midst of concurrently
364 * traversing table. Upon transfer, the old table bin contains
365 * only a special forwarding node (with hash field "MOVED") that
366 * contains the next table as its key. On encountering a
367 * forwarding node, access and update operations restart, using
368 * the new table.
369 *
370 * Each bin transfer requires its bin lock, which can stall
371 * waiting for locks while resizing. However, because other
372 * threads can join in and help resize rather than contend for
373 * locks, average aggregate waits become shorter as resizing
374 * progresses. The transfer operation must also ensure that all
375 * accessible bins in both the old and new table are usable by any
376 * traversal. This is arranged by proceeding from the last bin
377 * (table.length - 1) up towards the first. Upon seeing a
378 * forwarding node, traversals (see class Traverser) arrange to
379 * move to the new table without revisiting nodes. However, to
380 * ensure that no intervening nodes are skipped, bin splitting can
381 * only begin after the associated reverse-forwarders are in
382 * place.
383 *
384 * The traversal scheme also applies to partial traversals of
385 * ranges of bins (via an alternate Traverser constructor)
386 * to support partitioned aggregate operations. Also, read-only
387 * operations give up if ever forwarded to a null table, which
388 * provides support for shutdown-style clearing, which is also not
389 * currently implemented.
390 *
391 * Lazy table initialization minimizes footprint until first use,
392 * and also avoids resizings when the first operation is from a
393 * putAll, constructor with map argument, or deserialization.
394 * These cases attempt to override the initial capacity settings,
395 * but harmlessly fail to take effect in cases of races.
396 *
397 * The element count is maintained using a specialization of
398 * LongAdder. We need to incorporate a specialization rather than
399 * just use a LongAdder in order to access implicit
400 * contention-sensing that leads to creation of multiple
401 * CounterCells. The counter mechanics avoid contention on
402 * updates but can encounter cache thrashing if read too
403 * frequently during concurrent access. To avoid reading so often,
404 * resizing under contention is attempted only upon adding to a
405 * bin already holding two or more nodes. Under uniform hash
406 * distributions, the probability of this occurring at threshold
407 * is around 13%, meaning that only about 1 in 8 puts check
408 * threshold (and after resizing, many fewer do so).
409 *
410 * TreeBins use a special form of comparison for search and
411 * related operations (which is the main reason we cannot use
412 * existing collections such as TreeMaps). TreeBins contain
413 * Comparable elements, but may contain others, as well as
414 * elements that are Comparable but not necessarily Comparable for
415 * the same T, so we cannot invoke compareTo among them. To handle
416 * this, the tree is ordered primarily by hash value, then by
417 * Comparable.compareTo order if applicable. On lookup at a node,
418 * if elements are not comparable or compare as 0 then both left
419 * and right children may need to be searched in the case of tied
420 * hash values. (This corresponds to the full list search that
421 * would be necessary if all elements were non-Comparable and had
422 * tied hashes.) On insertion, to keep a total ordering (or as
423 * close as is required here) across rebalancings, we compare
424 * classes and identityHashCodes as tie-breakers. The red-black
425 * balancing code is updated from pre-jdk-collections
426 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
427 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
428 * Algorithms" (CLR).
429 *
430 * TreeBins also require an additional locking mechanism. While
431 * list traversal is always possible by readers even during
432 * updates, tree traversal is not, mainly because of tree-rotations
433 * that may change the root node and/or its linkages. TreeBins
434 * include a simple read-write lock mechanism parasitic on the
435 * main bin-synchronization strategy: Structural adjustments
436 * associated with an insertion or removal are already bin-locked
437 * (and so cannot conflict with other writers) but must wait for
438 * ongoing readers to finish. Since there can be only one such
439 * waiter, we use a simple scheme using a single "waiter" field to
440 * block writers. However, readers need never block. If the root
441 * lock is held, they proceed along the slow traversal path (via
442 * next-pointers) until the lock becomes available or the list is
443 * exhausted, whichever comes first. These cases are not fast, but
444 * maximize aggregate expected throughput.
445 *
446 * Maintaining API and serialization compatibility with previous
447 * versions of this class introduces several oddities. Mainly: We
448 * leave untouched but unused constructor arguments refering to
449 * concurrencyLevel. We accept a loadFactor constructor argument,
450 * but apply it only to initial table capacity (which is the only
451 * time that we can guarantee to honor it.) We also declare an
452 * unused "Segment" class that is instantiated in minimal form
453 * only when serializing.
454 *
455 * Also, solely for compatibility with previous versions of this
456 * class, it extends AbstractMap, even though all of its methods
457 * are overridden, so it is just useless baggage.
458 *
459 * This file is organized to make things a little easier to follow
460 * while reading than they might otherwise: First the main static
461 * declarations and utilities, then fields, then main public
462 * methods (with a few factorings of multiple public methods into
463 * internal ones), then sizing methods, trees, traversers, and
464 * bulk operations.
465 */
466
467 /* ---------------- Constants -------------- */
468
469 /**
470 * The largest possible table capacity. This value must be
471 * exactly 1<<30 to stay within Java array allocation and indexing
472 * bounds for power of two table sizes, and is further required
473 * because the top two bits of 32bit hash fields are used for
474 * control purposes.
475 */
476 private static final int MAXIMUM_CAPACITY = 1 << 30;
477
478 /**
479 * The default initial table capacity. Must be a power of 2
480 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
481 */
482 private static final int DEFAULT_CAPACITY = 16;
483
484 /**
485 * The largest possible (non-power of two) array size.
486 * Needed by toArray and related methods.
487 */
488 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
489
490 /**
491 * The default concurrency level for this table. Unused but
492 * defined for compatibility with previous versions of this class.
493 */
494 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
495
496 /**
497 * The load factor for this table. Overrides of this value in
498 * constructors affect only the initial table capacity. The
499 * actual floating point value isn't normally used -- it is
500 * simpler to use expressions such as {@code n - (n >>> 2)} for
501 * the associated resizing threshold.
502 */
503 private static final float LOAD_FACTOR = 0.75f;
504
505 /**
506 * The bin count threshold for using a tree rather than list for a
507 * bin. Bins are converted to trees when adding an element to a
508 * bin with at least this many nodes. The value must be greater
509 * than 2, and should be at least 8 to mesh with assumptions in
510 * tree removal about conversion back to plain bins upon
511 * shrinkage.
512 */
513 static final int TREEIFY_THRESHOLD = 8;
514
515 /**
516 * The bin count threshold for untreeifying a (split) bin during a
517 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
518 * most 6 to mesh with shrinkage detection under removal.
519 */
520 static final int UNTREEIFY_THRESHOLD = 6;
521
522 /**
523 * The smallest table capacity for which bins may be treeified.
524 * (Otherwise the table is resized if too many nodes in a bin.)
525 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
526 * conflicts between resizing and treeification thresholds.
527 */
528 static final int MIN_TREEIFY_CAPACITY = 64;
529
530 /**
531 * Minimum number of rebinnings per transfer step. Ranges are
532 * subdivided to allow multiple resizer threads. This value
533 * serves as a lower bound to avoid resizers encountering
534 * excessive memory contention. The value should be at least
535 * DEFAULT_CAPACITY.
536 */
537 private static final int MIN_TRANSFER_STRIDE = 16;
538
539 /*
540 * Encodings for Node hash fields. See above for explanation.
541 */
542 static final int MOVED = -1; // hash for forwarding nodes
543 static final int TREEBIN = -2; // hash for roots of trees
544 static final int RESERVED = -3; // hash for transient reservations
545 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
546
547 /** Number of CPUS, to place bounds on some sizings */
548 static final int NCPU = Runtime.getRuntime().availableProcessors();
549
550 /** For serialization compatibility. */
551 private static final ObjectStreamField[] serialPersistentFields = {
552 new ObjectStreamField("segments", Segment[].class),
553 new ObjectStreamField("segmentMask", Integer.TYPE),
554 new ObjectStreamField("segmentShift", Integer.TYPE)
555 };
556
557 /* ---------------- Nodes -------------- */
558
559 /**
560 * Key-value entry. This class is never exported out as a
561 * user-mutable Map.Entry (i.e., one supporting setValue; see
562 * MapEntry below), but can be used for read-only traversals used
563 * in bulk tasks. Subclasses of Node with a negative hash field
564 * are special, and contain null keys and values (but are never
565 * exported). Otherwise, keys and vals are never null.
566 */
567 static class Node<K,V> implements Map.Entry<K,V> {
568 final int hash;
569 final K key;
570 volatile V val;
571 volatile Node<K,V> next;
572
573 Node(int hash, K key, V val, Node<K,V> next) {
574 this.hash = hash;
575 this.key = key;
576 this.val = val;
577 this.next = next;
578 }
579
580 public final K getKey() { return key; }
581 public final V getValue() { return val; }
582 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
583 public final String toString(){ return key + "=" + val; }
584 public final V setValue(V value) {
585 throw new UnsupportedOperationException();
586 }
587
588 public final boolean equals(Object o) {
589 Object k, v, u; Map.Entry<?,?> e;
590 return ((o instanceof Map.Entry) &&
591 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
592 (v = e.getValue()) != null &&
593 (k == key || k.equals(key)) &&
594 (v == (u = val) || v.equals(u)));
595 }
596
597 /**
598 * Virtualized support for map.get(); overridden in subclasses.
599 */
600 Node<K,V> find(int h, Object k) {
601 Node<K,V> e = this;
602 if (k != null) {
603 do {
604 K ek;
605 if (e.hash == h &&
606 ((ek = e.key) == k || (ek != null && k.equals(ek))))
607 return e;
608 } while ((e = e.next) != null);
609 }
610 return null;
611 }
612 }
613
614 /* ---------------- Static utilities -------------- */
615
616 /**
617 * Spreads (XORs) higher bits of hash to lower and also forces top
618 * bit to 0. Because the table uses power-of-two masking, sets of
619 * hashes that vary only in bits above the current mask will
620 * always collide. (Among known examples are sets of Float keys
621 * holding consecutive whole numbers in small tables.) So we
622 * apply a transform that spreads the impact of higher bits
623 * downward. There is a tradeoff between speed, utility, and
624 * quality of bit-spreading. Because many common sets of hashes
625 * are already reasonably distributed (so don't benefit from
626 * spreading), and because we use trees to handle large sets of
627 * collisions in bins, we just XOR some shifted bits in the
628 * cheapest possible way to reduce systematic lossage, as well as
629 * to incorporate impact of the highest bits that would otherwise
630 * never be used in index calculations because of table bounds.
631 */
632 static final int spread(int h) {
633 return (h ^ (h >>> 16)) & HASH_BITS;
634 }
635
636 /**
637 * Returns a power of two table size for the given desired capacity.
638 * See Hackers Delight, sec 3.2
639 */
640 private static final int tableSizeFor(int c) {
641 int n = c - 1;
642 n |= n >>> 1;
643 n |= n >>> 2;
644 n |= n >>> 4;
645 n |= n >>> 8;
646 n |= n >>> 16;
647 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
648 }
649
650 /**
651 * Returns x's Class if it is of the form "class C implements
652 * Comparable<C>", else null.
653 */
654 static Class<?> comparableClassFor(Object x) {
655 if (x instanceof Comparable) {
656 Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
657 if ((c = x.getClass()) == String.class) // bypass checks
658 return c;
659 if ((ts = c.getGenericInterfaces()) != null) {
660 for (int i = 0; i < ts.length; ++i) {
661 if (((t = ts[i]) instanceof ParameterizedType) &&
662 ((p = (ParameterizedType)t).getRawType() ==
663 Comparable.class) &&
664 (as = p.getActualTypeArguments()) != null &&
665 as.length == 1 && as[0] == c) // type arg is c
666 return c;
667 }
668 }
669 }
670 return null;
671 }
672
673 /**
674 * Returns k.compareTo(x) if x matches kc (k's screened comparable
675 * class), else 0.
676 */
677 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
678 static int compareComparables(Class<?> kc, Object k, Object x) {
679 return (x == null || x.getClass() != kc ? 0 :
680 ((Comparable)k).compareTo(x));
681 }
682
683 /* ---------------- Table element access -------------- */
684
685 /*
686 * Volatile access methods are used for table elements as well as
687 * elements of in-progress next table while resizing. All uses of
688 * the tab arguments must be null checked by callers. All callers
689 * also paranoically precheck that tab's length is not zero (or an
690 * equivalent check), thus ensuring that any index argument taking
691 * the form of a hash value anded with (length - 1) is a valid
692 * index. Note that, to be correct wrt arbitrary concurrency
693 * errors by users, these checks must operate on local variables,
694 * which accounts for some odd-looking inline assignments below.
695 * Note that calls to setTabAt always occur within locked regions,
696 * and so in principle require only release ordering, not need
697 * full volatile semantics, but are currently coded as volatile
698 * writes to be conservative.
699 */
700
701 @SuppressWarnings("unchecked")
702 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
703 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
704 }
705
706 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
707 Node<K,V> c, Node<K,V> v) {
708 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
709 }
710
711 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
712 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
713 }
714
715 /* ---------------- Fields -------------- */
716
717 /**
718 * The array of bins. Lazily initialized upon first insertion.
719 * Size is always a power of two. Accessed directly by iterators.
720 */
721 transient volatile Node<K,V>[] table;
722
723 /**
724 * The next table to use; non-null only while resizing.
725 */
726 private transient volatile Node<K,V>[] nextTable;
727
728 /**
729 * Base counter value, used mainly when there is no contention,
730 * but also as a fallback during table initialization
731 * races. Updated via CAS.
732 */
733 private transient volatile long baseCount;
734
735 /**
736 * Table initialization and resizing control. When negative, the
737 * table is being initialized or resized: -1 for initialization,
738 * else -(1 + the number of active resizing threads). Otherwise,
739 * when table is null, holds the initial table size to use upon
740 * creation, or 0 for default. After initialization, holds the
741 * next element count value upon which to resize the table.
742 */
743 private transient volatile int sizeCtl;
744
745 /**
746 * The next table index (plus one) to split while resizing.
747 */
748 private transient volatile int transferIndex;
749
750 /**
751 * The least available table index to split while resizing.
752 */
753 private transient volatile int transferOrigin;
754
755 /**
756 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
757 */
758 private transient volatile int cellsBusy;
759
760 /**
761 * Table of counter cells. When non-null, size is a power of 2.
762 */
763 private transient volatile CounterCell[] counterCells;
764
765 // views
766 private transient KeySetView<K,V> keySet;
767 private transient ValuesView<K,V> values;
768 private transient EntrySetView<K,V> entrySet;
769
770
771 /* ---------------- Public operations -------------- */
772
773 /**
774 * Creates a new, empty map with the default initial table size (16).
775 */
776 public ConcurrentHashMap() {
777 }
778
779 /**
780 * Creates a new, empty map with an initial table size
781 * accommodating the specified number of elements without the need
782 * to dynamically resize.
783 *
784 * @param initialCapacity The implementation performs internal
785 * sizing to accommodate this many elements.
786 * @throws IllegalArgumentException if the initial capacity of
787 * elements is negative
788 */
789 public ConcurrentHashMap(int initialCapacity) {
790 if (initialCapacity < 0)
791 throw new IllegalArgumentException();
792 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
793 MAXIMUM_CAPACITY :
794 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
795 this.sizeCtl = cap;
796 }
797
798 /**
799 * Creates a new map with the same mappings as the given map.
800 *
801 * @param m the map
802 */
803 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
804 this.sizeCtl = DEFAULT_CAPACITY;
805 putAll(m);
806 }
807
808 /**
809 * Creates a new, empty map with an initial table size based on
810 * the given number of elements ({@code initialCapacity}) and
811 * initial table density ({@code loadFactor}).
812 *
813 * @param initialCapacity the initial capacity. The implementation
814 * performs internal sizing to accommodate this many elements,
815 * given the specified load factor.
816 * @param loadFactor the load factor (table density) for
817 * establishing the initial table size
818 * @throws IllegalArgumentException if the initial capacity of
819 * elements is negative or the load factor is nonpositive
820 *
821 * @since 1.6
822 */
823 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
824 this(initialCapacity, loadFactor, 1);
825 }
826
827 /**
828 * Creates a new, empty map with an initial table size based on
829 * the given number of elements ({@code initialCapacity}), table
830 * density ({@code loadFactor}), and number of concurrently
831 * updating threads ({@code concurrencyLevel}).
832 *
833 * @param initialCapacity the initial capacity. The implementation
834 * performs internal sizing to accommodate this many elements,
835 * given the specified load factor.
836 * @param loadFactor the load factor (table density) for
837 * establishing the initial table size
838 * @param concurrencyLevel the estimated number of concurrently
839 * updating threads. The implementation may use this value as
840 * a sizing hint.
841 * @throws IllegalArgumentException if the initial capacity is
842 * negative or the load factor or concurrencyLevel are
843 * nonpositive
844 */
845 public ConcurrentHashMap(int initialCapacity,
846 float loadFactor, int concurrencyLevel) {
847 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
848 throw new IllegalArgumentException();
849 if (initialCapacity < concurrencyLevel) // Use at least as many bins
850 initialCapacity = concurrencyLevel; // as estimated threads
851 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
852 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
853 MAXIMUM_CAPACITY : tableSizeFor((int)size);
854 this.sizeCtl = cap;
855 }
856
857 // Original (since JDK1.2) Map methods
858
859 /**
860 * {@inheritDoc}
861 */
862 public int size() {
863 long n = sumCount();
864 return ((n < 0L) ? 0 :
865 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
866 (int)n);
867 }
868
869 /**
870 * {@inheritDoc}
871 */
872 public boolean isEmpty() {
873 return sumCount() <= 0L; // ignore transient negative values
874 }
875
876 /**
877 * Returns the value to which the specified key is mapped,
878 * or {@code null} if this map contains no mapping for the key.
879 *
880 * <p>More formally, if this map contains a mapping from a key
881 * {@code k} to a value {@code v} such that {@code key.equals(k)},
882 * then this method returns {@code v}; otherwise it returns
883 * {@code null}. (There can be at most one such mapping.)
884 *
885 * @throws NullPointerException if the specified key is null
886 */
887 public V get(Object key) {
888 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
889 int h = spread(key.hashCode());
890 if ((tab = table) != null && (n = tab.length) > 0 &&
891 (e = tabAt(tab, (n - 1) & h)) != null) {
892 if ((eh = e.hash) == h) {
893 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
894 return e.val;
895 }
896 else if (eh < 0)
897 return (p = e.find(h, key)) != null ? p.val : null;
898 while ((e = e.next) != null) {
899 if (e.hash == h &&
900 ((ek = e.key) == key || (ek != null && key.equals(ek))))
901 return e.val;
902 }
903 }
904 return null;
905 }
906
907 /**
908 * Tests if the specified object is a key in this table.
909 *
910 * @param key possible key
911 * @return {@code true} if and only if the specified object
912 * is a key in this table, as determined by the
913 * {@code equals} method; {@code false} otherwise
914 * @throws NullPointerException if the specified key is null
915 */
916 public boolean containsKey(Object key) {
917 return get(key) != null;
918 }
919
920 /**
921 * Returns {@code true} if this map maps one or more keys to the
922 * specified value. Note: This method may require a full traversal
923 * of the map, and is much slower than method {@code containsKey}.
924 *
925 * @param value value whose presence in this map is to be tested
926 * @return {@code true} if this map maps one or more keys to the
927 * specified value
928 * @throws NullPointerException if the specified value is null
929 */
930 public boolean containsValue(Object value) {
931 if (value == null)
932 throw new NullPointerException();
933 Node<K,V>[] t;
934 if ((t = table) != null) {
935 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
936 for (Node<K,V> p; (p = it.advance()) != null; ) {
937 V v;
938 if ((v = p.val) == value || (v != null && value.equals(v)))
939 return true;
940 }
941 }
942 return false;
943 }
944
945 /**
946 * Maps the specified key to the specified value in this table.
947 * Neither the key nor the value can be null.
948 *
949 * <p>The value can be retrieved by calling the {@code get} method
950 * with a key that is equal to the original key.
951 *
952 * @param key key with which the specified value is to be associated
953 * @param value value to be associated with the specified key
954 * @return the previous value associated with {@code key}, or
955 * {@code null} if there was no mapping for {@code key}
956 * @throws NullPointerException if the specified key or value is null
957 */
958 public V put(K key, V value) {
959 return putVal(key, value, false);
960 }
961
962 /** Implementation for put and putIfAbsent */
963 final V putVal(K key, V value, boolean onlyIfAbsent) {
964 if (key == null || value == null) throw new NullPointerException();
965 int hash = spread(key.hashCode());
966 int binCount = 0;
967 for (Node<K,V>[] tab = table;;) {
968 Node<K,V> f; int n, i, fh;
969 if (tab == null || (n = tab.length) == 0)
970 tab = initTable();
971 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
972 if (casTabAt(tab, i, null,
973 new Node<K,V>(hash, key, value, null)))
974 break; // no lock when adding to empty bin
975 }
976 else if ((fh = f.hash) == MOVED)
977 tab = helpTransfer(tab, f);
978 else {
979 V oldVal = null;
980 synchronized (f) {
981 if (tabAt(tab, i) == f) {
982 if (fh >= 0) {
983 binCount = 1;
984 for (Node<K,V> e = f;; ++binCount) {
985 K ek;
986 if (e.hash == hash &&
987 ((ek = e.key) == key ||
988 (ek != null && key.equals(ek)))) {
989 oldVal = e.val;
990 if (!onlyIfAbsent)
991 e.val = value;
992 break;
993 }
994 Node<K,V> pred = e;
995 if ((e = e.next) == null) {
996 pred.next = new Node<K,V>(hash, key,
997 value, null);
998 break;
999 }
1000 }
1001 }
1002 else if (f instanceof TreeBin) {
1003 Node<K,V> p;
1004 binCount = 2;
1005 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1006 value)) != null) {
1007 oldVal = p.val;
1008 if (!onlyIfAbsent)
1009 p.val = value;
1010 }
1011 }
1012 }
1013 }
1014 if (binCount != 0) {
1015 if (binCount >= TREEIFY_THRESHOLD)
1016 treeifyBin(tab, i);
1017 if (oldVal != null)
1018 return oldVal;
1019 break;
1020 }
1021 }
1022 }
1023 addCount(1L, binCount);
1024 return null;
1025 }
1026
1027 /**
1028 * Copies all of the mappings from the specified map to this one.
1029 * These mappings replace any mappings that this map had for any of the
1030 * keys currently in the specified map.
1031 *
1032 * @param m mappings to be stored in this map
1033 */
1034 public void putAll(Map<? extends K, ? extends V> m) {
1035 tryPresize(m.size());
1036 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1037 putVal(e.getKey(), e.getValue(), false);
1038 }
1039
1040 /**
1041 * Removes the key (and its corresponding value) from this map.
1042 * This method does nothing if the key is not in the map.
1043 *
1044 * @param key the key that needs to be removed
1045 * @return the previous value associated with {@code key}, or
1046 * {@code null} if there was no mapping for {@code key}
1047 * @throws NullPointerException if the specified key is null
1048 */
1049 public V remove(Object key) {
1050 return replaceNode(key, null, null);
1051 }
1052
1053 /**
1054 * Implementation for the four public remove/replace methods:
1055 * Replaces node value with v, conditional upon match of cv if
1056 * non-null. If resulting value is null, delete.
1057 */
1058 final V replaceNode(Object key, V value, Object cv) {
1059 int hash = spread(key.hashCode());
1060 for (Node<K,V>[] tab = table;;) {
1061 Node<K,V> f; int n, i, fh;
1062 if (tab == null || (n = tab.length) == 0 ||
1063 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1064 break;
1065 else if ((fh = f.hash) == MOVED)
1066 tab = helpTransfer(tab, f);
1067 else {
1068 V oldVal = null;
1069 boolean validated = false;
1070 synchronized (f) {
1071 if (tabAt(tab, i) == f) {
1072 if (fh >= 0) {
1073 validated = true;
1074 for (Node<K,V> e = f, pred = null;;) {
1075 K ek;
1076 if (e.hash == hash &&
1077 ((ek = e.key) == key ||
1078 (ek != null && key.equals(ek)))) {
1079 V ev = e.val;
1080 if (cv == null || cv == ev ||
1081 (ev != null && cv.equals(ev))) {
1082 oldVal = ev;
1083 if (value != null)
1084 e.val = value;
1085 else if (pred != null)
1086 pred.next = e.next;
1087 else
1088 setTabAt(tab, i, e.next);
1089 }
1090 break;
1091 }
1092 pred = e;
1093 if ((e = e.next) == null)
1094 break;
1095 }
1096 }
1097 else if (f instanceof TreeBin) {
1098 validated = true;
1099 TreeBin<K,V> t = (TreeBin<K,V>)f;
1100 TreeNode<K,V> r, p;
1101 if ((r = t.root) != null &&
1102 (p = r.findTreeNode(hash, key, null)) != null) {
1103 V pv = p.val;
1104 if (cv == null || cv == pv ||
1105 (pv != null && cv.equals(pv))) {
1106 oldVal = pv;
1107 if (value != null)
1108 p.val = value;
1109 else if (t.removeTreeNode(p))
1110 setTabAt(tab, i, untreeify(t.first));
1111 }
1112 }
1113 }
1114 }
1115 }
1116 if (validated) {
1117 if (oldVal != null) {
1118 if (value == null)
1119 addCount(-1L, -1);
1120 return oldVal;
1121 }
1122 break;
1123 }
1124 }
1125 }
1126 return null;
1127 }
1128
1129 /**
1130 * Removes all of the mappings from this map.
1131 */
1132 public void clear() {
1133 long delta = 0L; // negative number of deletions
1134 int i = 0;
1135 Node<K,V>[] tab = table;
1136 while (tab != null && i < tab.length) {
1137 int fh;
1138 Node<K,V> f = tabAt(tab, i);
1139 if (f == null)
1140 ++i;
1141 else if ((fh = f.hash) == MOVED) {
1142 tab = helpTransfer(tab, f);
1143 i = 0; // restart
1144 }
1145 else {
1146 synchronized (f) {
1147 if (tabAt(tab, i) == f) {
1148 Node<K,V> p = (fh >= 0 ? f :
1149 (f instanceof TreeBin) ?
1150 ((TreeBin<K,V>)f).first : null);
1151 while (p != null) {
1152 --delta;
1153 p = p.next;
1154 }
1155 setTabAt(tab, i++, null);
1156 }
1157 }
1158 }
1159 }
1160 if (delta != 0L)
1161 addCount(delta, -1);
1162 }
1163
1164 /**
1165 * Returns a {@link Set} view of the keys contained in this map.
1166 * The set is backed by the map, so changes to the map are
1167 * reflected in the set, and vice-versa. The set supports element
1168 * removal, which removes the corresponding mapping from this map,
1169 * via the {@code Iterator.remove}, {@code Set.remove},
1170 * {@code removeAll}, {@code retainAll}, and {@code clear}
1171 * operations. It does not support the {@code add} or
1172 * {@code addAll} operations.
1173 *
1174 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1175 * that will never throw {@link ConcurrentModificationException},
1176 * and guarantees to traverse elements as they existed upon
1177 * construction of the iterator, and may (but is not guaranteed to)
1178 * reflect any modifications subsequent to construction.
1179 *
1180 * @return the set view
1181 */
1182 public KeySetView<K,V> keySet() {
1183 KeySetView<K,V> ks;
1184 return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1185 }
1186
1187 /**
1188 * Returns a {@link Collection} view of the values contained in this map.
1189 * The collection is backed by the map, so changes to the map are
1190 * reflected in the collection, and vice-versa. The collection
1191 * supports element removal, which removes the corresponding
1192 * mapping from this map, via the {@code Iterator.remove},
1193 * {@code Collection.remove}, {@code removeAll},
1194 * {@code retainAll}, and {@code clear} operations. It does not
1195 * support the {@code add} or {@code addAll} operations.
1196 *
1197 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1198 * that will never throw {@link ConcurrentModificationException},
1199 * and guarantees to traverse elements as they existed upon
1200 * construction of the iterator, and may (but is not guaranteed to)
1201 * reflect any modifications subsequent to construction.
1202 *
1203 * @return the collection view
1204 */
1205 public Collection<V> values() {
1206 ValuesView<K,V> vs;
1207 return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1208 }
1209
1210 /**
1211 * Returns a {@link Set} view of the mappings contained in this map.
1212 * The set is backed by the map, so changes to the map are
1213 * reflected in the set, and vice-versa. The set supports element
1214 * removal, which removes the corresponding mapping from the map,
1215 * via the {@code Iterator.remove}, {@code Set.remove},
1216 * {@code removeAll}, {@code retainAll}, and {@code clear}
1217 * operations.
1218 *
1219 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1220 * that will never throw {@link ConcurrentModificationException},
1221 * and guarantees to traverse elements as they existed upon
1222 * construction of the iterator, and may (but is not guaranteed to)
1223 * reflect any modifications subsequent to construction.
1224 *
1225 * @return the set view
1226 */
1227 public Set<Map.Entry<K,V>> entrySet() {
1228 EntrySetView<K,V> es;
1229 return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1230 }
1231
1232 /**
1233 * Returns the hash code value for this {@link Map}, i.e.,
1234 * the sum of, for each key-value pair in the map,
1235 * {@code key.hashCode() ^ value.hashCode()}.
1236 *
1237 * @return the hash code value for this map
1238 */
1239 public int hashCode() {
1240 int h = 0;
1241 Node<K,V>[] t;
1242 if ((t = table) != null) {
1243 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1244 for (Node<K,V> p; (p = it.advance()) != null; )
1245 h += p.key.hashCode() ^ p.val.hashCode();
1246 }
1247 return h;
1248 }
1249
1250 /**
1251 * Returns a string representation of this map. The string
1252 * representation consists of a list of key-value mappings (in no
1253 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1254 * mappings are separated by the characters {@code ", "} (comma
1255 * and space). Each key-value mapping is rendered as the key
1256 * followed by an equals sign ("{@code =}") followed by the
1257 * associated value.
1258 *
1259 * @return a string representation of this map
1260 */
1261 public String toString() {
1262 Node<K,V>[] t;
1263 int f = (t = table) == null ? 0 : t.length;
1264 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1265 StringBuilder sb = new StringBuilder();
1266 sb.append('{');
1267 Node<K,V> p;
1268 if ((p = it.advance()) != null) {
1269 for (;;) {
1270 K k = p.key;
1271 V v = p.val;
1272 sb.append(k == this ? "(this Map)" : k);
1273 sb.append('=');
1274 sb.append(v == this ? "(this Map)" : v);
1275 if ((p = it.advance()) == null)
1276 break;
1277 sb.append(',').append(' ');
1278 }
1279 }
1280 return sb.append('}').toString();
1281 }
1282
1283 /**
1284 * Compares the specified object with this map for equality.
1285 * Returns {@code true} if the given object is a map with the same
1286 * mappings as this map. This operation may return misleading
1287 * results if either map is concurrently modified during execution
1288 * of this method.
1289 *
1290 * @param o object to be compared for equality with this map
1291 * @return {@code true} if the specified object is equal to this map
1292 */
1293 public boolean equals(Object o) {
1294 if (o != this) {
1295 if (!(o instanceof Map))
1296 return false;
1297 Map<?,?> m = (Map<?,?>) o;
1298 Node<K,V>[] t;
1299 int f = (t = table) == null ? 0 : t.length;
1300 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1301 for (Node<K,V> p; (p = it.advance()) != null; ) {
1302 V val = p.val;
1303 Object v = m.get(p.key);
1304 if (v == null || (v != val && !v.equals(val)))
1305 return false;
1306 }
1307 for (Map.Entry<?,?> e : m.entrySet()) {
1308 Object mk, mv, v;
1309 if ((mk = e.getKey()) == null ||
1310 (mv = e.getValue()) == null ||
1311 (v = get(mk)) == null ||
1312 (mv != v && !mv.equals(v)))
1313 return false;
1314 }
1315 }
1316 return true;
1317 }
1318
1319 /**
1320 * Stripped-down version of helper class used in previous version,
1321 * declared for the sake of serialization compatibility
1322 */
1323 static class Segment<K,V> extends ReentrantLock implements Serializable {
1324 private static final long serialVersionUID = 2249069246763182397L;
1325 final float loadFactor;
1326 Segment(float lf) { this.loadFactor = lf; }
1327 }
1328
1329 /**
1330 * Saves the state of the {@code ConcurrentHashMap} instance to a
1331 * stream (i.e., serializes it).
1332 * @param s the stream
1333 * @throws java.io.IOException if an I/O error occurs
1334 * @serialData
1335 * the key (Object) and value (Object)
1336 * for each key-value mapping, followed by a null pair.
1337 * The key-value mappings are emitted in no particular order.
1338 */
1339 private void writeObject(java.io.ObjectOutputStream s)
1340 throws java.io.IOException {
1341 // For serialization compatibility
1342 // Emulate segment calculation from previous version of this class
1343 int sshift = 0;
1344 int ssize = 1;
1345 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1346 ++sshift;
1347 ssize <<= 1;
1348 }
1349 int segmentShift = 32 - sshift;
1350 int segmentMask = ssize - 1;
1351 @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1352 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1353 for (int i = 0; i < segments.length; ++i)
1354 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1355 s.putFields().put("segments", segments);
1356 s.putFields().put("segmentShift", segmentShift);
1357 s.putFields().put("segmentMask", segmentMask);
1358 s.writeFields();
1359
1360 Node<K,V>[] t;
1361 if ((t = table) != null) {
1362 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1363 for (Node<K,V> p; (p = it.advance()) != null; ) {
1364 s.writeObject(p.key);
1365 s.writeObject(p.val);
1366 }
1367 }
1368 s.writeObject(null);
1369 s.writeObject(null);
1370 segments = null; // throw away
1371 }
1372
1373 /**
1374 * Reconstitutes the instance from a stream (that is, deserializes it).
1375 * @param s the stream
1376 * @throws ClassNotFoundException if the class of a serialized object
1377 * could not be found
1378 * @throws java.io.IOException if an I/O error occurs
1379 */
1380 private void readObject(java.io.ObjectInputStream s)
1381 throws java.io.IOException, ClassNotFoundException {
1382 /*
1383 * To improve performance in typical cases, we create nodes
1384 * while reading, then place in table once size is known.
1385 * However, we must also validate uniqueness and deal with
1386 * overpopulated bins while doing so, which requires
1387 * specialized versions of putVal mechanics.
1388 */
1389 sizeCtl = -1; // force exclusion for table construction
1390 s.defaultReadObject();
1391 long size = 0L;
1392 Node<K,V> p = null;
1393 for (;;) {
1394 @SuppressWarnings("unchecked") K k = (K) s.readObject();
1395 @SuppressWarnings("unchecked") V v = (V) s.readObject();
1396 if (k != null && v != null) {
1397 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1398 ++size;
1399 }
1400 else
1401 break;
1402 }
1403 if (size == 0L)
1404 sizeCtl = 0;
1405 else {
1406 int n;
1407 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1408 n = MAXIMUM_CAPACITY;
1409 else {
1410 int sz = (int)size;
1411 n = tableSizeFor(sz + (sz >>> 1) + 1);
1412 }
1413 @SuppressWarnings({"rawtypes","unchecked"})
1414 Node<K,V>[] tab = (Node<K,V>[])new Node[n];
1415 int mask = n - 1;
1416 long added = 0L;
1417 while (p != null) {
1418 boolean insertAtFront;
1419 Node<K,V> next = p.next, first;
1420 int h = p.hash, j = h & mask;
1421 if ((first = tabAt(tab, j)) == null)
1422 insertAtFront = true;
1423 else {
1424 K k = p.key;
1425 if (first.hash < 0) {
1426 TreeBin<K,V> t = (TreeBin<K,V>)first;
1427 if (t.putTreeVal(h, k, p.val) == null)
1428 ++added;
1429 insertAtFront = false;
1430 }
1431 else {
1432 int binCount = 0;
1433 insertAtFront = true;
1434 Node<K,V> q; K qk;
1435 for (q = first; q != null; q = q.next) {
1436 if (q.hash == h &&
1437 ((qk = q.key) == k ||
1438 (qk != null && k.equals(qk)))) {
1439 insertAtFront = false;
1440 break;
1441 }
1442 ++binCount;
1443 }
1444 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1445 insertAtFront = false;
1446 ++added;
1447 p.next = first;
1448 TreeNode<K,V> hd = null, tl = null;
1449 for (q = p; q != null; q = q.next) {
1450 TreeNode<K,V> t = new TreeNode<K,V>
1451 (q.hash, q.key, q.val, null, null);
1452 if ((t.prev = tl) == null)
1453 hd = t;
1454 else
1455 tl.next = t;
1456 tl = t;
1457 }
1458 setTabAt(tab, j, new TreeBin<K,V>(hd));
1459 }
1460 }
1461 }
1462 if (insertAtFront) {
1463 ++added;
1464 p.next = first;
1465 setTabAt(tab, j, p);
1466 }
1467 p = next;
1468 }
1469 table = tab;
1470 sizeCtl = n - (n >>> 2);
1471 baseCount = added;
1472 }
1473 }
1474
1475 // ConcurrentMap methods
1476
1477 /**
1478 * {@inheritDoc}
1479 *
1480 * @return the previous value associated with the specified key,
1481 * or {@code null} if there was no mapping for the key
1482 * @throws NullPointerException if the specified key or value is null
1483 */
1484 public V putIfAbsent(K key, V value) {
1485 return putVal(key, value, true);
1486 }
1487
1488 /**
1489 * {@inheritDoc}
1490 *
1491 * @throws NullPointerException if the specified key is null
1492 */
1493 public boolean remove(Object key, Object value) {
1494 if (key == null)
1495 throw new NullPointerException();
1496 return value != null && replaceNode(key, null, value) != null;
1497 }
1498
1499 /**
1500 * {@inheritDoc}
1501 *
1502 * @throws NullPointerException if any of the arguments are null
1503 */
1504 public boolean replace(K key, V oldValue, V newValue) {
1505 if (key == null || oldValue == null || newValue == null)
1506 throw new NullPointerException();
1507 return replaceNode(key, newValue, oldValue) != null;
1508 }
1509
1510 /**
1511 * {@inheritDoc}
1512 *
1513 * @return the previous value associated with the specified key,
1514 * or {@code null} if there was no mapping for the key
1515 * @throws NullPointerException if the specified key or value is null
1516 */
1517 public V replace(K key, V value) {
1518 if (key == null || value == null)
1519 throw new NullPointerException();
1520 return replaceNode(key, value, null);
1521 }
1522
1523 // Overrides of JDK8+ Map extension method defaults
1524
1525 /**
1526 * Returns the value to which the specified key is mapped, or the
1527 * given default value if this map contains no mapping for the
1528 * key.
1529 *
1530 * @param key the key whose associated value is to be returned
1531 * @param defaultValue the value to return if this map contains
1532 * no mapping for the given key
1533 * @return the mapping for the key, if present; else the default value
1534 * @throws NullPointerException if the specified key is null
1535 */
1536 public V getOrDefault(Object key, V defaultValue) {
1537 V v;
1538 return (v = get(key)) == null ? defaultValue : v;
1539 }
1540
1541 public void forEach(BiConsumer<? super K, ? super V> action) {
1542 if (action == null) throw new NullPointerException();
1543 Node<K,V>[] t;
1544 if ((t = table) != null) {
1545 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1546 for (Node<K,V> p; (p = it.advance()) != null; ) {
1547 action.accept(p.key, p.val);
1548 }
1549 }
1550 }
1551
1552 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1553 if (function == null) throw new NullPointerException();
1554 Node<K,V>[] t;
1555 if ((t = table) != null) {
1556 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1557 for (Node<K,V> p; (p = it.advance()) != null; ) {
1558 V oldValue = p.val;
1559 for (K key = p.key;;) {
1560 V newValue = function.apply(key, oldValue);
1561 if (newValue == null)
1562 throw new NullPointerException();
1563 if (replaceNode(key, newValue, oldValue) != null ||
1564 (oldValue = get(key)) == null)
1565 break;
1566 }
1567 }
1568 }
1569 }
1570
1571 /**
1572 * If the specified key is not already associated with a value,
1573 * attempts to compute its value using the given mapping function
1574 * and enters it into this map unless {@code null}. The entire
1575 * method invocation is performed atomically, so the function is
1576 * applied at most once per key. Some attempted update operations
1577 * on this map by other threads may be blocked while computation
1578 * is in progress, so the computation should be short and simple,
1579 * and must not attempt to update any other mappings of this map.
1580 *
1581 * @param key key with which the specified value is to be associated
1582 * @param mappingFunction the function to compute a value
1583 * @return the current (existing or computed) value associated with
1584 * the specified key, or null if the computed value is null
1585 * @throws NullPointerException if the specified key or mappingFunction
1586 * is null
1587 * @throws IllegalStateException if the computation detectably
1588 * attempts a recursive update to this map that would
1589 * otherwise never complete
1590 * @throws RuntimeException or Error if the mappingFunction does so,
1591 * in which case the mapping is left unestablished
1592 */
1593 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1594 if (key == null || mappingFunction == null)
1595 throw new NullPointerException();
1596 int h = spread(key.hashCode());
1597 V val = null;
1598 int binCount = 0;
1599 for (Node<K,V>[] tab = table;;) {
1600 Node<K,V> f; int n, i, fh;
1601 if (tab == null || (n = tab.length) == 0)
1602 tab = initTable();
1603 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1604 Node<K,V> r = new ReservationNode<K,V>();
1605 synchronized (r) {
1606 if (casTabAt(tab, i, null, r)) {
1607 binCount = 1;
1608 Node<K,V> node = null;
1609 try {
1610 if ((val = mappingFunction.apply(key)) != null)
1611 node = new Node<K,V>(h, key, val, null);
1612 } finally {
1613 setTabAt(tab, i, node);
1614 }
1615 }
1616 }
1617 if (binCount != 0)
1618 break;
1619 }
1620 else if ((fh = f.hash) == MOVED)
1621 tab = helpTransfer(tab, f);
1622 else {
1623 boolean added = false;
1624 synchronized (f) {
1625 if (tabAt(tab, i) == f) {
1626 if (fh >= 0) {
1627 binCount = 1;
1628 for (Node<K,V> e = f;; ++binCount) {
1629 K ek; V ev;
1630 if (e.hash == h &&
1631 ((ek = e.key) == key ||
1632 (ek != null && key.equals(ek)))) {
1633 val = e.val;
1634 break;
1635 }
1636 Node<K,V> pred = e;
1637 if ((e = e.next) == null) {
1638 if ((val = mappingFunction.apply(key)) != null) {
1639 added = true;
1640 pred.next = new Node<K,V>(h, key, val, null);
1641 }
1642 break;
1643 }
1644 }
1645 }
1646 else if (f instanceof TreeBin) {
1647 binCount = 2;
1648 TreeBin<K,V> t = (TreeBin<K,V>)f;
1649 TreeNode<K,V> r, p;
1650 if ((r = t.root) != null &&
1651 (p = r.findTreeNode(h, key, null)) != null)
1652 val = p.val;
1653 else if ((val = mappingFunction.apply(key)) != null) {
1654 added = true;
1655 t.putTreeVal(h, key, val);
1656 }
1657 }
1658 }
1659 }
1660 if (binCount != 0) {
1661 if (binCount >= TREEIFY_THRESHOLD)
1662 treeifyBin(tab, i);
1663 if (!added)
1664 return val;
1665 break;
1666 }
1667 }
1668 }
1669 if (val != null)
1670 addCount(1L, binCount);
1671 return val;
1672 }
1673
1674 /**
1675 * If the value for the specified key is present, attempts to
1676 * compute a new mapping given the key and its current mapped
1677 * value. The entire method invocation is performed atomically.
1678 * Some attempted update operations on this map by other threads
1679 * may be blocked while computation is in progress, so the
1680 * computation should be short and simple, and must not attempt to
1681 * update any other mappings of this map.
1682 *
1683 * @param key key with which a value may be associated
1684 * @param remappingFunction the function to compute a value
1685 * @return the new value associated with the specified key, or null if none
1686 * @throws NullPointerException if the specified key or remappingFunction
1687 * is null
1688 * @throws IllegalStateException if the computation detectably
1689 * attempts a recursive update to this map that would
1690 * otherwise never complete
1691 * @throws RuntimeException or Error if the remappingFunction does so,
1692 * in which case the mapping is unchanged
1693 */
1694 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1695 if (key == null || remappingFunction == null)
1696 throw new NullPointerException();
1697 int h = spread(key.hashCode());
1698 V val = null;
1699 int delta = 0;
1700 int binCount = 0;
1701 for (Node<K,V>[] tab = table;;) {
1702 Node<K,V> f; int n, i, fh;
1703 if (tab == null || (n = tab.length) == 0)
1704 tab = initTable();
1705 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1706 break;
1707 else if ((fh = f.hash) == MOVED)
1708 tab = helpTransfer(tab, f);
1709 else {
1710 synchronized (f) {
1711 if (tabAt(tab, i) == f) {
1712 if (fh >= 0) {
1713 binCount = 1;
1714 for (Node<K,V> e = f, pred = null;; ++binCount) {
1715 K ek;
1716 if (e.hash == h &&
1717 ((ek = e.key) == key ||
1718 (ek != null && key.equals(ek)))) {
1719 val = remappingFunction.apply(key, e.val);
1720 if (val != null)
1721 e.val = val;
1722 else {
1723 delta = -1;
1724 Node<K,V> en = e.next;
1725 if (pred != null)
1726 pred.next = en;
1727 else
1728 setTabAt(tab, i, en);
1729 }
1730 break;
1731 }
1732 pred = e;
1733 if ((e = e.next) == null)
1734 break;
1735 }
1736 }
1737 else if (f instanceof TreeBin) {
1738 binCount = 2;
1739 TreeBin<K,V> t = (TreeBin<K,V>)f;
1740 TreeNode<K,V> r, p;
1741 if ((r = t.root) != null &&
1742 (p = r.findTreeNode(h, key, null)) != null) {
1743 val = remappingFunction.apply(key, p.val);
1744 if (val != null)
1745 p.val = val;
1746 else {
1747 delta = -1;
1748 if (t.removeTreeNode(p))
1749 setTabAt(tab, i, untreeify(t.first));
1750 }
1751 }
1752 }
1753 }
1754 }
1755 if (binCount != 0)
1756 break;
1757 }
1758 }
1759 if (delta != 0)
1760 addCount((long)delta, binCount);
1761 return val;
1762 }
1763
1764 /**
1765 * Attempts to compute a mapping for the specified key and its
1766 * current mapped value (or {@code null} if there is no current
1767 * mapping). The entire method invocation is performed atomically.
1768 * Some attempted update operations on this map by other threads
1769 * may be blocked while computation is in progress, so the
1770 * computation should be short and simple, and must not attempt to
1771 * update any other mappings of this Map.
1772 *
1773 * @param key key with which the specified value is to be associated
1774 * @param remappingFunction the function to compute a value
1775 * @return the new value associated with the specified key, or null if none
1776 * @throws NullPointerException if the specified key or remappingFunction
1777 * is null
1778 * @throws IllegalStateException if the computation detectably
1779 * attempts a recursive update to this map that would
1780 * otherwise never complete
1781 * @throws RuntimeException or Error if the remappingFunction does so,
1782 * in which case the mapping is unchanged
1783 */
1784 public V compute(K key,
1785 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1786 if (key == null || remappingFunction == null)
1787 throw new NullPointerException();
1788 int h = spread(key.hashCode());
1789 V val = null;
1790 int delta = 0;
1791 int binCount = 0;
1792 for (Node<K,V>[] tab = table;;) {
1793 Node<K,V> f; int n, i, fh;
1794 if (tab == null || (n = tab.length) == 0)
1795 tab = initTable();
1796 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1797 Node<K,V> r = new ReservationNode<K,V>();
1798 synchronized (r) {
1799 if (casTabAt(tab, i, null, r)) {
1800 binCount = 1;
1801 Node<K,V> node = null;
1802 try {
1803 if ((val = remappingFunction.apply(key, null)) != null) {
1804 delta = 1;
1805 node = new Node<K,V>(h, key, val, null);
1806 }
1807 } finally {
1808 setTabAt(tab, i, node);
1809 }
1810 }
1811 }
1812 if (binCount != 0)
1813 break;
1814 }
1815 else if ((fh = f.hash) == MOVED)
1816 tab = helpTransfer(tab, f);
1817 else {
1818 synchronized (f) {
1819 if (tabAt(tab, i) == f) {
1820 if (fh >= 0) {
1821 binCount = 1;
1822 for (Node<K,V> e = f, pred = null;; ++binCount) {
1823 K ek;
1824 if (e.hash == h &&
1825 ((ek = e.key) == key ||
1826 (ek != null && key.equals(ek)))) {
1827 val = remappingFunction.apply(key, e.val);
1828 if (val != null)
1829 e.val = val;
1830 else {
1831 delta = -1;
1832 Node<K,V> en = e.next;
1833 if (pred != null)
1834 pred.next = en;
1835 else
1836 setTabAt(tab, i, en);
1837 }
1838 break;
1839 }
1840 pred = e;
1841 if ((e = e.next) == null) {
1842 val = remappingFunction.apply(key, null);
1843 if (val != null) {
1844 delta = 1;
1845 pred.next =
1846 new Node<K,V>(h, key, val, null);
1847 }
1848 break;
1849 }
1850 }
1851 }
1852 else if (f instanceof TreeBin) {
1853 binCount = 1;
1854 TreeBin<K,V> t = (TreeBin<K,V>)f;
1855 TreeNode<K,V> r, p;
1856 if ((r = t.root) != null)
1857 p = r.findTreeNode(h, key, null);
1858 else
1859 p = null;
1860 V pv = (p == null) ? null : p.val;
1861 val = remappingFunction.apply(key, pv);
1862 if (val != null) {
1863 if (p != null)
1864 p.val = val;
1865 else {
1866 delta = 1;
1867 t.putTreeVal(h, key, val);
1868 }
1869 }
1870 else if (p != null) {
1871 delta = -1;
1872 if (t.removeTreeNode(p))
1873 setTabAt(tab, i, untreeify(t.first));
1874 }
1875 }
1876 }
1877 }
1878 if (binCount != 0) {
1879 if (binCount >= TREEIFY_THRESHOLD)
1880 treeifyBin(tab, i);
1881 break;
1882 }
1883 }
1884 }
1885 if (delta != 0)
1886 addCount((long)delta, binCount);
1887 return val;
1888 }
1889
1890 /**
1891 * If the specified key is not already associated with a
1892 * (non-null) value, associates it with the given value.
1893 * Otherwise, replaces the value with the results of the given
1894 * remapping function, or removes if {@code null}. The entire
1895 * method invocation is performed atomically. Some attempted
1896 * update operations on this map by other threads may be blocked
1897 * while computation is in progress, so the computation should be
1898 * short and simple, and must not attempt to update any other
1899 * mappings of this Map.
1900 *
1901 * @param key key with which the specified value is to be associated
1902 * @param value the value to use if absent
1903 * @param remappingFunction the function to recompute a value if present
1904 * @return the new value associated with the specified key, or null if none
1905 * @throws NullPointerException if the specified key or the
1906 * remappingFunction is null
1907 * @throws RuntimeException or Error if the remappingFunction does so,
1908 * in which case the mapping is unchanged
1909 */
1910 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1911 if (key == null || value == null || remappingFunction == null)
1912 throw new NullPointerException();
1913 int h = spread(key.hashCode());
1914 V val = null;
1915 int delta = 0;
1916 int binCount = 0;
1917 for (Node<K,V>[] tab = table;;) {
1918 Node<K,V> f; int n, i, fh;
1919 if (tab == null || (n = tab.length) == 0)
1920 tab = initTable();
1921 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1922 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1923 delta = 1;
1924 val = value;
1925 break;
1926 }
1927 }
1928 else if ((fh = f.hash) == MOVED)
1929 tab = helpTransfer(tab, f);
1930 else {
1931 synchronized (f) {
1932 if (tabAt(tab, i) == f) {
1933 if (fh >= 0) {
1934 binCount = 1;
1935 for (Node<K,V> e = f, pred = null;; ++binCount) {
1936 K ek;
1937 if (e.hash == h &&
1938 ((ek = e.key) == key ||
1939 (ek != null && key.equals(ek)))) {
1940 val = remappingFunction.apply(e.val, value);
1941 if (val != null)
1942 e.val = val;
1943 else {
1944 delta = -1;
1945 Node<K,V> en = e.next;
1946 if (pred != null)
1947 pred.next = en;
1948 else
1949 setTabAt(tab, i, en);
1950 }
1951 break;
1952 }
1953 pred = e;
1954 if ((e = e.next) == null) {
1955 delta = 1;
1956 val = value;
1957 pred.next =
1958 new Node<K,V>(h, key, val, null);
1959 break;
1960 }
1961 }
1962 }
1963 else if (f instanceof TreeBin) {
1964 binCount = 2;
1965 TreeBin<K,V> t = (TreeBin<K,V>)f;
1966 TreeNode<K,V> r = t.root;
1967 TreeNode<K,V> p = (r == null) ? null :
1968 r.findTreeNode(h, key, null);
1969 val = (p == null) ? value :
1970 remappingFunction.apply(p.val, value);
1971 if (val != null) {
1972 if (p != null)
1973 p.val = val;
1974 else {
1975 delta = 1;
1976 t.putTreeVal(h, key, val);
1977 }
1978 }
1979 else if (p != null) {
1980 delta = -1;
1981 if (t.removeTreeNode(p))
1982 setTabAt(tab, i, untreeify(t.first));
1983 }
1984 }
1985 }
1986 }
1987 if (binCount != 0) {
1988 if (binCount >= TREEIFY_THRESHOLD)
1989 treeifyBin(tab, i);
1990 break;
1991 }
1992 }
1993 }
1994 if (delta != 0)
1995 addCount((long)delta, binCount);
1996 return val;
1997 }
1998
1999 // Hashtable legacy methods
2000
2001 /**
2002 * Legacy method testing if some key maps into the specified value
2003 * in this table. This method is identical in functionality to
2004 * {@link #containsValue(Object)}, and exists solely to ensure
2005 * full compatibility with class {@link java.util.Hashtable},
2006 * which supported this method prior to introduction of the
2007 * Java Collections framework.
2008 *
2009 * @param value a value to search for
2010 * @return {@code true} if and only if some key maps to the
2011 * {@code value} argument in this table as
2012 * determined by the {@code equals} method;
2013 * {@code false} otherwise
2014 * @throws NullPointerException if the specified value is null
2015 */
2016 @Deprecated public boolean contains(Object value) {
2017 return containsValue(value);
2018 }
2019
2020 /**
2021 * Returns an enumeration of the keys in this table.
2022 *
2023 * @return an enumeration of the keys in this table
2024 * @see #keySet()
2025 */
2026 public Enumeration<K> keys() {
2027 Node<K,V>[] t;
2028 int f = (t = table) == null ? 0 : t.length;
2029 return new KeyIterator<K,V>(t, f, 0, f, this);
2030 }
2031
2032 /**
2033 * Returns an enumeration of the values in this table.
2034 *
2035 * @return an enumeration of the values in this table
2036 * @see #values()
2037 */
2038 public Enumeration<V> elements() {
2039 Node<K,V>[] t;
2040 int f = (t = table) == null ? 0 : t.length;
2041 return new ValueIterator<K,V>(t, f, 0, f, this);
2042 }
2043
2044 // ConcurrentHashMap-only methods
2045
2046 /**
2047 * Returns the number of mappings. This method should be used
2048 * instead of {@link #size} because a ConcurrentHashMap may
2049 * contain more mappings than can be represented as an int. The
2050 * value returned is an estimate; the actual count may differ if
2051 * there are concurrent insertions or removals.
2052 *
2053 * @return the number of mappings
2054 * @since 1.8
2055 */
2056 public long mappingCount() {
2057 long n = sumCount();
2058 return (n < 0L) ? 0L : n; // ignore transient negative values
2059 }
2060
2061 /**
2062 * Creates a new {@link Set} backed by a ConcurrentHashMap
2063 * from the given type to {@code Boolean.TRUE}.
2064 *
2065 * @param <K> the element type of the returned set
2066 * @return the new set
2067 * @since 1.8
2068 */
2069 public static <K> KeySetView<K,Boolean> newKeySet() {
2070 return new KeySetView<K,Boolean>
2071 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2072 }
2073
2074 /**
2075 * Creates a new {@link Set} backed by a ConcurrentHashMap
2076 * from the given type to {@code Boolean.TRUE}.
2077 *
2078 * @param initialCapacity The implementation performs internal
2079 * sizing to accommodate this many elements.
2080 * @param <K> the element type of the returned set
2081 * @return the new set
2082 * @throws IllegalArgumentException if the initial capacity of
2083 * elements is negative
2084 * @since 1.8
2085 */
2086 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2087 return new KeySetView<K,Boolean>
2088 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2089 }
2090
2091 /**
2092 * Returns a {@link Set} view of the keys in this map, using the
2093 * given common mapped value for any additions (i.e., {@link
2094 * Collection#add} and {@link Collection#addAll(Collection)}).
2095 * This is of course only appropriate if it is acceptable to use
2096 * the same value for all additions from this view.
2097 *
2098 * @param mappedValue the mapped value to use for any additions
2099 * @return the set view
2100 * @throws NullPointerException if the mappedValue is null
2101 */
2102 public KeySetView<K,V> keySet(V mappedValue) {
2103 if (mappedValue == null)
2104 throw new NullPointerException();
2105 return new KeySetView<K,V>(this, mappedValue);
2106 }
2107
2108 /* ---------------- Special Nodes -------------- */
2109
2110 /**
2111 * A node inserted at head of bins during transfer operations.
2112 */
2113 static final class ForwardingNode<K,V> extends Node<K,V> {
2114 final Node<K,V>[] nextTable;
2115 ForwardingNode(Node<K,V>[] tab) {
2116 super(MOVED, null, null, null);
2117 this.nextTable = tab;
2118 }
2119
2120 Node<K,V> find(int h, Object k) {
2121 // loop to avoid arbitrarily deep recursion on forwarding nodes
2122 outer: for (Node<K,V>[] tab = nextTable;;) {
2123 Node<K,V> e; int n;
2124 if (k == null || tab == null || (n = tab.length) == 0 ||
2125 (e = tabAt(tab, (n - 1) & h)) == null)
2126 return null;
2127 for (;;) {
2128 int eh; K ek;
2129 if ((eh = e.hash) == h &&
2130 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2131 return e;
2132 if (eh < 0) {
2133 if (e instanceof ForwardingNode) {
2134 tab = ((ForwardingNode<K,V>)e).nextTable;
2135 continue outer;
2136 }
2137 else
2138 return e.find(h, k);
2139 }
2140 if ((e = e.next) == null)
2141 return null;
2142 }
2143 }
2144 }
2145 }
2146
2147 /**
2148 * A place-holder node used in computeIfAbsent and compute
2149 */
2150 static final class ReservationNode<K,V> extends Node<K,V> {
2151 ReservationNode() {
2152 super(RESERVED, null, null, null);
2153 }
2154
2155 Node<K,V> find(int h, Object k) {
2156 return null;
2157 }
2158 }
2159
2160 /* ---------------- Table Initialization and Resizing -------------- */
2161
2162 /**
2163 * Initializes table, using the size recorded in sizeCtl.
2164 */
2165 private final Node<K,V>[] initTable() {
2166 Node<K,V>[] tab; int sc;
2167 while ((tab = table) == null || tab.length == 0) {
2168 if ((sc = sizeCtl) < 0)
2169 Thread.yield(); // lost initialization race; just spin
2170 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2171 try {
2172 if ((tab = table) == null || tab.length == 0) {
2173 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2174 @SuppressWarnings({"rawtypes","unchecked"})
2175 Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2176 table = tab = nt;
2177 sc = n - (n >>> 2);
2178 }
2179 } finally {
2180 sizeCtl = sc;
2181 }
2182 break;
2183 }
2184 }
2185 return tab;
2186 }
2187
2188 /**
2189 * Adds to count, and if table is too small and not already
2190 * resizing, initiates transfer. If already resizing, helps
2191 * perform transfer if work is available. Rechecks occupancy
2192 * after a transfer to see if another resize is already needed
2193 * because resizings are lagging additions.
2194 *
2195 * @param x the count to add
2196 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2197 */
2198 private final void addCount(long x, int check) {
2199 CounterCell[] as; long b, s;
2200 if ((as = counterCells) != null ||
2201 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2202 CounterCell a; long v; int m;
2203 boolean uncontended = true;
2204 if (as == null || (m = as.length - 1) < 0 ||
2205 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2206 !(uncontended =
2207 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2208 fullAddCount(x, uncontended);
2209 return;
2210 }
2211 if (check <= 1)
2212 return;
2213 s = sumCount();
2214 }
2215 if (check >= 0) {
2216 Node<K,V>[] tab, nt; int sc;
2217 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2218 tab.length < MAXIMUM_CAPACITY) {
2219 if (sc < 0) {
2220 if (sc == -1 || transferIndex <= transferOrigin ||
2221 (nt = nextTable) == null)
2222 break;
2223 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2224 transfer(tab, nt);
2225 }
2226 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2227 transfer(tab, null);
2228 s = sumCount();
2229 }
2230 }
2231 }
2232
2233 /**
2234 * Helps transfer if a resize is in progress.
2235 */
2236 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2237 Node<K,V>[] nextTab; int sc;
2238 if ((f instanceof ForwardingNode) &&
2239 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2240 if (nextTab == nextTable && tab == table &&
2241 transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
2242 U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2243 transfer(tab, nextTab);
2244 return nextTab;
2245 }
2246 return table;
2247 }
2248
2249 /**
2250 * Tries to presize table to accommodate the given number of elements.
2251 *
2252 * @param size number of elements (doesn't need to be perfectly accurate)
2253 */
2254 private final void tryPresize(int size) {
2255 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2256 tableSizeFor(size + (size >>> 1) + 1);
2257 int sc;
2258 while ((sc = sizeCtl) >= 0) {
2259 Node<K,V>[] tab = table; int n;
2260 if (tab == null || (n = tab.length) == 0) {
2261 n = (sc > c) ? sc : c;
2262 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2263 try {
2264 if (table == tab) {
2265 @SuppressWarnings({"rawtypes","unchecked"})
2266 Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2267 table = nt;
2268 sc = n - (n >>> 2);
2269 }
2270 } finally {
2271 sizeCtl = sc;
2272 }
2273 }
2274 }
2275 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2276 break;
2277 else if (tab == table &&
2278 U.compareAndSwapInt(this, SIZECTL, sc, -2))
2279 transfer(tab, null);
2280 }
2281 }
2282
2283 /**
2284 * Moves and/or copies the nodes in each bin to new table. See
2285 * above for explanation.
2286 */
2287 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2288 int n = tab.length, stride;
2289 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2290 stride = MIN_TRANSFER_STRIDE; // subdivide range
2291 if (nextTab == null) { // initiating
2292 try {
2293 @SuppressWarnings({"rawtypes","unchecked"})
2294 Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
2295 nextTab = nt;
2296 } catch (Throwable ex) { // try to cope with OOME
2297 sizeCtl = Integer.MAX_VALUE;
2298 return;
2299 }
2300 nextTable = nextTab;
2301 transferOrigin = n;
2302 transferIndex = n;
2303 ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
2304 for (int k = n; k > 0;) { // progressively reveal ready slots
2305 int nextk = (k > stride) ? k - stride : 0;
2306 for (int m = nextk; m < k; ++m)
2307 nextTab[m] = rev;
2308 for (int m = n + nextk; m < n + k; ++m)
2309 nextTab[m] = rev;
2310 U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2311 }
2312 }
2313 int nextn = nextTab.length;
2314 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2315 boolean advance = true;
2316 boolean finishing = false; // to ensure sweep before committing nextTab
2317 for (int i = 0, bound = 0;;) {
2318 int nextIndex, nextBound, fh; Node<K,V> f;
2319 while (advance) {
2320 if (--i >= bound || finishing)
2321 advance = false;
2322 else if ((nextIndex = transferIndex) <= transferOrigin) {
2323 i = -1;
2324 advance = false;
2325 }
2326 else if (U.compareAndSwapInt
2327 (this, TRANSFERINDEX, nextIndex,
2328 nextBound = (nextIndex > stride ?
2329 nextIndex - stride : 0))) {
2330 bound = nextBound;
2331 i = nextIndex - 1;
2332 advance = false;
2333 }
2334 }
2335 if (i < 0 || i >= n || i + n >= nextn) {
2336 if (finishing) {
2337 nextTable = null;
2338 table = nextTab;
2339 sizeCtl = (n << 1) - (n >>> 1);
2340 return;
2341 }
2342 for (int sc;;) {
2343 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2344 if (sc != -1)
2345 return;
2346 finishing = advance = true;
2347 i = n; // recheck before commit
2348 break;
2349 }
2350 }
2351 }
2352 else if ((f = tabAt(tab, i)) == null) {
2353 if (casTabAt(tab, i, null, fwd)) {
2354 setTabAt(nextTab, i, null);
2355 setTabAt(nextTab, i + n, null);
2356 advance = true;
2357 }
2358 }
2359 else if ((fh = f.hash) == MOVED)
2360 advance = true; // already processed
2361 else {
2362 synchronized (f) {
2363 if (tabAt(tab, i) == f) {
2364 Node<K,V> ln, hn;
2365 if (fh >= 0) {
2366 int runBit = fh & n;
2367 Node<K,V> lastRun = f;
2368 for (Node<K,V> p = f.next; p != null; p = p.next) {
2369 int b = p.hash & n;
2370 if (b != runBit) {
2371 runBit = b;
2372 lastRun = p;
2373 }
2374 }
2375 if (runBit == 0) {
2376 ln = lastRun;
2377 hn = null;
2378 }
2379 else {
2380 hn = lastRun;
2381 ln = null;
2382 }
2383 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2384 int ph = p.hash; K pk = p.key; V pv = p.val;
2385 if ((ph & n) == 0)
2386 ln = new Node<K,V>(ph, pk, pv, ln);
2387 else
2388 hn = new Node<K,V>(ph, pk, pv, hn);
2389 }
2390 setTabAt(nextTab, i, ln);
2391 setTabAt(nextTab, i + n, hn);
2392 setTabAt(tab, i, fwd);
2393 advance = true;
2394 }
2395 else if (f instanceof TreeBin) {
2396 TreeBin<K,V> t = (TreeBin<K,V>)f;
2397 TreeNode<K,V> lo = null, loTail = null;
2398 TreeNode<K,V> hi = null, hiTail = null;
2399 int lc = 0, hc = 0;
2400 for (Node<K,V> e = t.first; e != null; e = e.next) {
2401 int h = e.hash;
2402 TreeNode<K,V> p = new TreeNode<K,V>
2403 (h, e.key, e.val, null, null);
2404 if ((h & n) == 0) {
2405 if ((p.prev = loTail) == null)
2406 lo = p;
2407 else
2408 loTail.next = p;
2409 loTail = p;
2410 ++lc;
2411 }
2412 else {
2413 if ((p.prev = hiTail) == null)
2414 hi = p;
2415 else
2416 hiTail.next = p;
2417 hiTail = p;
2418 ++hc;
2419 }
2420 }
2421 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2422 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2423 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2424 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2425 setTabAt(nextTab, i, ln);
2426 setTabAt(nextTab, i + n, hn);
2427 setTabAt(tab, i, fwd);
2428 advance = true;
2429 }
2430 }
2431 }
2432 }
2433 }
2434 }
2435
2436 /* ---------------- Counter support -------------- */
2437
2438 /**
2439 * A padded cell for distributing counts. Adapted from LongAdder
2440 * and Striped64. See their internal docs for explanation.
2441 */
2442 @sun.misc.Contended static final class CounterCell {
2443 volatile long value;
2444 CounterCell(long x) { value = x; }
2445 }
2446
2447 final long sumCount() {
2448 CounterCell[] as = counterCells; CounterCell a;
2449 long sum = baseCount;
2450 if (as != null) {
2451 for (int i = 0; i < as.length; ++i) {
2452 if ((a = as[i]) != null)
2453 sum += a.value;
2454 }
2455 }
2456 return sum;
2457 }
2458
2459 // See LongAdder version for explanation
2460 private final void fullAddCount(long x, boolean wasUncontended) {
2461 int h;
2462 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2463 ThreadLocalRandom.localInit(); // force initialization
2464 h = ThreadLocalRandom.getProbe();
2465 wasUncontended = true;
2466 }
2467 boolean collide = false; // True if last slot nonempty
2468 for (;;) {
2469 CounterCell[] as; CounterCell a; int n; long v;
2470 if ((as = counterCells) != null && (n = as.length) > 0) {
2471 if ((a = as[(n - 1) & h]) == null) {
2472 if (cellsBusy == 0) { // Try to attach new Cell
2473 CounterCell r = new CounterCell(x); // Optimistic create
2474 if (cellsBusy == 0 &&
2475 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2476 boolean created = false;
2477 try { // Recheck under lock
2478 CounterCell[] rs; int m, j;
2479 if ((rs = counterCells) != null &&
2480 (m = rs.length) > 0 &&
2481 rs[j = (m - 1) & h] == null) {
2482 rs[j] = r;
2483 created = true;
2484 }
2485 } finally {
2486 cellsBusy = 0;
2487 }
2488 if (created)
2489 break;
2490 continue; // Slot is now non-empty
2491 }
2492 }
2493 collide = false;
2494 }
2495 else if (!wasUncontended) // CAS already known to fail
2496 wasUncontended = true; // Continue after rehash
2497 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2498 break;
2499 else if (counterCells != as || n >= NCPU)
2500 collide = false; // At max size or stale
2501 else if (!collide)
2502 collide = true;
2503 else if (cellsBusy == 0 &&
2504 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2505 try {
2506 if (counterCells == as) {// Expand table unless stale
2507 CounterCell[] rs = new CounterCell[n << 1];
2508 for (int i = 0; i < n; ++i)
2509 rs[i] = as[i];
2510 counterCells = rs;
2511 }
2512 } finally {
2513 cellsBusy = 0;
2514 }
2515 collide = false;
2516 continue; // Retry with expanded table
2517 }
2518 h = ThreadLocalRandom.advanceProbe(h);
2519 }
2520 else if (cellsBusy == 0 && counterCells == as &&
2521 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2522 boolean init = false;
2523 try { // Initialize table
2524 if (counterCells == as) {
2525 CounterCell[] rs = new CounterCell[2];
2526 rs[h & 1] = new CounterCell(x);
2527 counterCells = rs;
2528 init = true;
2529 }
2530 } finally {
2531 cellsBusy = 0;
2532 }
2533 if (init)
2534 break;
2535 }
2536 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2537 break; // Fall back on using base
2538 }
2539 }
2540
2541 /* ---------------- Conversion from/to TreeBins -------------- */
2542
2543 /**
2544 * Replaces all linked nodes in bin at given index unless table is
2545 * too small, in which case resizes instead.
2546 */
2547 private final void treeifyBin(Node<K,V>[] tab, int index) {
2548 Node<K,V> b; int n, sc;
2549 if (tab != null) {
2550 if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2551 if (tab == table && (sc = sizeCtl) >= 0 &&
2552 U.compareAndSwapInt(this, SIZECTL, sc, -2))
2553 transfer(tab, null);
2554 }
2555 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2556 synchronized (b) {
2557 if (tabAt(tab, index) == b) {
2558 TreeNode<K,V> hd = null, tl = null;
2559 for (Node<K,V> e = b; e != null; e = e.next) {
2560 TreeNode<K,V> p =
2561 new TreeNode<K,V>(e.hash, e.key, e.val,
2562 null, null);
2563 if ((p.prev = tl) == null)
2564 hd = p;
2565 else
2566 tl.next = p;
2567 tl = p;
2568 }
2569 setTabAt(tab, index, new TreeBin<K,V>(hd));
2570 }
2571 }
2572 }
2573 }
2574 }
2575
2576 /**
2577 * Returns a list on non-TreeNodes replacing those in given list.
2578 */
2579 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2580 Node<K,V> hd = null, tl = null;
2581 for (Node<K,V> q = b; q != null; q = q.next) {
2582 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2583 if (tl == null)
2584 hd = p;
2585 else
2586 tl.next = p;
2587 tl = p;
2588 }
2589 return hd;
2590 }
2591
2592 /* ---------------- TreeNodes -------------- */
2593
2594 /**
2595 * Nodes for use in TreeBins
2596 */
2597 static final class TreeNode<K,V> extends Node<K,V> {
2598 TreeNode<K,V> parent; // red-black tree links
2599 TreeNode<K,V> left;
2600 TreeNode<K,V> right;
2601 TreeNode<K,V> prev; // needed to unlink next upon deletion
2602 boolean red;
2603
2604 TreeNode(int hash, K key, V val, Node<K,V> next,
2605 TreeNode<K,V> parent) {
2606 super(hash, key, val, next);
2607 this.parent = parent;
2608 }
2609
2610 Node<K,V> find(int h, Object k) {
2611 return findTreeNode(h, k, null);
2612 }
2613
2614 /**
2615 * Returns the TreeNode (or null if not found) for the given key
2616 * starting at given root.
2617 */
2618 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2619 if (k != null) {
2620 TreeNode<K,V> p = this;
2621 do {
2622 int ph, dir; K pk; TreeNode<K,V> q;
2623 TreeNode<K,V> pl = p.left, pr = p.right;
2624 if ((ph = p.hash) > h)
2625 p = pl;
2626 else if (ph < h)
2627 p = pr;
2628 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2629 return p;
2630 else if (pl == null)
2631 p = pr;
2632 else if (pr == null)
2633 p = pl;
2634 else if ((kc != null ||
2635 (kc = comparableClassFor(k)) != null) &&
2636 (dir = compareComparables(kc, k, pk)) != 0)
2637 p = (dir < 0) ? pl : pr;
2638 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2639 return q;
2640 else
2641 p = pl;
2642 } while (p != null);
2643 }
2644 return null;
2645 }
2646 }
2647
2648 /* ---------------- TreeBins -------------- */
2649
2650 /**
2651 * TreeNodes used at the heads of bins. TreeBins do not hold user
2652 * keys or values, but instead point to list of TreeNodes and
2653 * their root. They also maintain a parasitic read-write lock
2654 * forcing writers (who hold bin lock) to wait for readers (who do
2655 * not) to complete before tree restructuring operations.
2656 */
2657 static final class TreeBin<K,V> extends Node<K,V> {
2658 TreeNode<K,V> root;
2659 volatile TreeNode<K,V> first;
2660 volatile Thread waiter;
2661 volatile int lockState;
2662 // values for lockState
2663 static final int WRITER = 1; // set while holding write lock
2664 static final int WAITER = 2; // set when waiting for write lock
2665 static final int READER = 4; // increment value for setting read lock
2666
2667 /**
2668 * Tie-breaking utility for ordering insertions when equal
2669 * hashCodes and non-comparable. We don't require a total
2670 * order, just a consistent insertion rule to maintain
2671 * equivalence across rebalancings. Tie-breaking further than
2672 * necessary simplifies testing a bit.
2673 */
2674 static int tieBreakOrder(Object a, Object b) {
2675 int d;
2676 if (a == null || b == null ||
2677 (d = a.getClass().getName().
2678 compareTo(b.getClass().getName())) == 0)
2679 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2680 -1 : 1);
2681 return d;
2682 }
2683
2684 /**
2685 * Creates bin with initial set of nodes headed by b.
2686 */
2687 TreeBin(TreeNode<K,V> b) {
2688 super(TREEBIN, null, null, null);
2689 this.first = b;
2690 TreeNode<K,V> r = null;
2691 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2692 next = (TreeNode<K,V>)x.next;
2693 x.left = x.right = null;
2694 if (r == null) {
2695 x.parent = null;
2696 x.red = false;
2697 r = x;
2698 }
2699 else {
2700 K k = x.key;
2701 int h = x.hash;
2702 Class<?> kc = null;
2703 for (TreeNode<K,V> p = r;;) {
2704 int dir, ph;
2705 K pk = p.key;
2706 if ((ph = p.hash) > h)
2707 dir = -1;
2708 else if (ph < h)
2709 dir = 1;
2710 else if ((kc == null &&
2711 (kc = comparableClassFor(k)) == null) ||
2712 (dir = compareComparables(kc, k, pk)) == 0)
2713 dir = tieBreakOrder(k, pk);
2714 TreeNode<K,V> xp = p;
2715 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2716 x.parent = xp;
2717 if (dir <= 0)
2718 xp.left = x;
2719 else
2720 xp.right = x;
2721 r = balanceInsertion(r, x);
2722 break;
2723 }
2724 }
2725 }
2726 }
2727 this.root = r;
2728 assert checkInvariants(root);
2729 }
2730
2731 /**
2732 * Acquires write lock for tree restructuring.
2733 */
2734 private final void lockRoot() {
2735 if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2736 contendedLock(); // offload to separate method
2737 }
2738
2739 /**
2740 * Releases write lock for tree restructuring.
2741 */
2742 private final void unlockRoot() {
2743 lockState = 0;
2744 }
2745
2746 /**
2747 * Possibly blocks awaiting root lock.
2748 */
2749 private final void contendedLock() {
2750 boolean waiting = false;
2751 for (int s;;) {
2752 if (((s = lockState) & WRITER) == 0) {
2753 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2754 if (waiting)
2755 waiter = null;
2756 return;
2757 }
2758 }
2759 else if ((s | WAITER) == 0) {
2760 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2761 waiting = true;
2762 waiter = Thread.currentThread();
2763 }
2764 }
2765 else if (waiting)
2766 LockSupport.park(this);
2767 }
2768 }
2769
2770 /**
2771 * Returns matching node or null if none. Tries to search
2772 * using tree comparisons from root, but continues linear
2773 * search when lock not available.
2774 */
2775 final Node<K,V> find(int h, Object k) {
2776 if (k != null) {
2777 for (Node<K,V> e = first; e != null; e = e.next) {
2778 int s; K ek;
2779 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2780 if (e.hash == h &&
2781 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2782 return e;
2783 }
2784 else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2785 s + READER)) {
2786 TreeNode<K,V> r, p;
2787 try {
2788 p = ((r = root) == null ? null :
2789 r.findTreeNode(h, k, null));
2790 } finally {
2791 Thread w;
2792 if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2793 (READER|WAITER) && (w = waiter) != null)
2794 LockSupport.unpark(w);
2795 }
2796 return p;
2797 }
2798 }
2799 }
2800 return null;
2801 }
2802
2803 /**
2804 * Finds or adds a node.
2805 * @return null if added
2806 */
2807 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2808 Class<?> kc = null;
2809 boolean searched = false;
2810 for (TreeNode<K,V> p = root;;) {
2811 int dir, ph; K pk;
2812 if (p == null) {
2813 first = root = new TreeNode<K,V>(h, k, v, null, null);
2814 break;
2815 }
2816 else if ((ph = p.hash) > h)
2817 dir = -1;
2818 else if (ph < h)
2819 dir = 1;
2820 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2821 return p;
2822 else if ((kc == null &&
2823 (kc = comparableClassFor(k)) == null) ||
2824 (dir = compareComparables(kc, k, pk)) == 0) {
2825 if (!searched) {
2826 TreeNode<K,V> q, ch;
2827 searched = true;
2828 if (((ch = p.left) != null &&
2829 (q = ch.findTreeNode(h, k, kc)) != null) ||
2830 ((ch = p.right) != null &&
2831 (q = ch.findTreeNode(h, k, kc)) != null))
2832 return q;
2833 }
2834 dir = tieBreakOrder(k, pk);
2835 }
2836
2837 TreeNode<K,V> xp = p;
2838 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2839 TreeNode<K,V> x, f = first;
2840 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2841 if (f != null)
2842 f.prev = x;
2843 if (dir <= 0)
2844 xp.left = x;
2845 else
2846 xp.right = x;
2847 if (!xp.red)
2848 x.red = true;
2849 else {
2850 lockRoot();
2851 try {
2852 root = balanceInsertion(root, x);
2853 } finally {
2854 unlockRoot();
2855 }
2856 }
2857 break;
2858 }
2859 }
2860 assert checkInvariants(root);
2861 return null;
2862 }
2863
2864 /**
2865 * Removes the given node, that must be present before this
2866 * call. This is messier than typical red-black deletion code
2867 * because we cannot swap the contents of an interior node
2868 * with a leaf successor that is pinned by "next" pointers
2869 * that are accessible independently of lock. So instead we
2870 * swap the tree linkages.
2871 *
2872 * @return true if now too small, so should be untreeified
2873 */
2874 final boolean removeTreeNode(TreeNode<K,V> p) {
2875 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2876 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2877 TreeNode<K,V> r, rl;
2878 if (pred == null)
2879 first = next;
2880 else
2881 pred.next = next;
2882 if (next != null)
2883 next.prev = pred;
2884 if (first == null) {
2885 root = null;
2886 return true;
2887 }
2888 if ((r = root) == null || r.right == null || // too small
2889 (rl = r.left) == null || rl.left == null)
2890 return true;
2891 lockRoot();
2892 try {
2893 TreeNode<K,V> replacement;
2894 TreeNode<K,V> pl = p.left;
2895 TreeNode<K,V> pr = p.right;
2896 if (pl != null && pr != null) {
2897 TreeNode<K,V> s = pr, sl;
2898 while ((sl = s.left) != null) // find successor
2899 s = sl;
2900 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2901 TreeNode<K,V> sr = s.right;
2902 TreeNode<K,V> pp = p.parent;
2903 if (s == pr) { // p was s's direct parent
2904 p.parent = s;
2905 s.right = p;
2906 }
2907 else {
2908 TreeNode<K,V> sp = s.parent;
2909 if ((p.parent = sp) != null) {
2910 if (s == sp.left)
2911 sp.left = p;
2912 else
2913 sp.right = p;
2914 }
2915 if ((s.right = pr) != null)
2916 pr.parent = s;
2917 }
2918 p.left = null;
2919 if ((p.right = sr) != null)
2920 sr.parent = p;
2921 if ((s.left = pl) != null)
2922 pl.parent = s;
2923 if ((s.parent = pp) == null)
2924 r = s;
2925 else if (p == pp.left)
2926 pp.left = s;
2927 else
2928 pp.right = s;
2929 if (sr != null)
2930 replacement = sr;
2931 else
2932 replacement = p;
2933 }
2934 else if (pl != null)
2935 replacement = pl;
2936 else if (pr != null)
2937 replacement = pr;
2938 else
2939 replacement = p;
2940 if (replacement != p) {
2941 TreeNode<K,V> pp = replacement.parent = p.parent;
2942 if (pp == null)
2943 r = replacement;
2944 else if (p == pp.left)
2945 pp.left = replacement;
2946 else
2947 pp.right = replacement;
2948 p.left = p.right = p.parent = null;
2949 }
2950
2951 root = (p.red) ? r : balanceDeletion(r, replacement);
2952
2953 if (p == replacement) { // detach pointers
2954 TreeNode<K,V> pp;
2955 if ((pp = p.parent) != null) {
2956 if (p == pp.left)
2957 pp.left = null;
2958 else if (p == pp.right)
2959 pp.right = null;
2960 p.parent = null;
2961 }
2962 }
2963 } finally {
2964 unlockRoot();
2965 }
2966 assert checkInvariants(root);
2967 return false;
2968 }
2969
2970 /* ------------------------------------------------------------ */
2971 // Red-black tree methods, all adapted from CLR
2972
2973 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2974 TreeNode<K,V> p) {
2975 TreeNode<K,V> r, pp, rl;
2976 if (p != null && (r = p.right) != null) {
2977 if ((rl = p.right = r.left) != null)
2978 rl.parent = p;
2979 if ((pp = r.parent = p.parent) == null)
2980 (root = r).red = false;
2981 else if (pp.left == p)
2982 pp.left = r;
2983 else
2984 pp.right = r;
2985 r.left = p;
2986 p.parent = r;
2987 }
2988 return root;
2989 }
2990
2991 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2992 TreeNode<K,V> p) {
2993 TreeNode<K,V> l, pp, lr;
2994 if (p != null && (l = p.left) != null) {
2995 if ((lr = p.left = l.right) != null)
2996 lr.parent = p;
2997 if ((pp = l.parent = p.parent) == null)
2998 (root = l).red = false;
2999 else if (pp.right == p)
3000 pp.right = l;
3001 else
3002 pp.left = l;
3003 l.right = p;
3004 p.parent = l;
3005 }
3006 return root;
3007 }
3008
3009 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3010 TreeNode<K,V> x) {
3011 x.red = true;
3012 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3013 if ((xp = x.parent) == null) {
3014 x.red = false;
3015 return x;
3016 }
3017 else if (!xp.red || (xpp = xp.parent) == null)
3018 return root;
3019 if (xp == (xppl = xpp.left)) {
3020 if ((xppr = xpp.right) != null && xppr.red) {
3021 xppr.red = false;
3022 xp.red = false;
3023 xpp.red = true;
3024 x = xpp;
3025 }
3026 else {
3027 if (x == xp.right) {
3028 root = rotateLeft(root, x = xp);
3029 xpp = (xp = x.parent) == null ? null : xp.parent;
3030 }
3031 if (xp != null) {
3032 xp.red = false;
3033 if (xpp != null) {
3034 xpp.red = true;
3035 root = rotateRight(root, xpp);
3036 }
3037 }
3038 }
3039 }
3040 else {
3041 if (xppl != null && xppl.red) {
3042 xppl.red = false;
3043 xp.red = false;
3044 xpp.red = true;
3045 x = xpp;
3046 }
3047 else {
3048 if (x == xp.left) {
3049 root = rotateRight(root, x = xp);
3050 xpp = (xp = x.parent) == null ? null : xp.parent;
3051 }
3052 if (xp != null) {
3053 xp.red = false;
3054 if (xpp != null) {
3055 xpp.red = true;
3056 root = rotateLeft(root, xpp);
3057 }
3058 }
3059 }
3060 }
3061 }
3062 }
3063
3064 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3065 TreeNode<K,V> x) {
3066 for (TreeNode<K,V> xp, xpl, xpr;;) {
3067 if (x == null || x == root)
3068 return root;
3069 else if ((xp = x.parent) == null) {
3070 x.red = false;
3071 return x;
3072 }
3073 else if (x.red) {
3074 x.red = false;
3075 return root;
3076 }
3077 else if ((xpl = xp.left) == x) {
3078 if ((xpr = xp.right) != null && xpr.red) {
3079 xpr.red = false;
3080 xp.red = true;
3081 root = rotateLeft(root, xp);
3082 xpr = (xp = x.parent) == null ? null : xp.right;
3083 }
3084 if (xpr == null)
3085 x = xp;
3086 else {
3087 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3088 if ((sr == null || !sr.red) &&
3089 (sl == null || !sl.red)) {
3090 xpr.red = true;
3091 x = xp;
3092 }
3093 else {
3094 if (sr == null || !sr.red) {
3095 if (sl != null)
3096 sl.red = false;
3097 xpr.red = true;
3098 root = rotateRight(root, xpr);
3099 xpr = (xp = x.parent) == null ?
3100 null : xp.right;
3101 }
3102 if (xpr != null) {
3103 xpr.red = (xp == null) ? false : xp.red;
3104 if ((sr = xpr.right) != null)
3105 sr.red = false;
3106 }
3107 if (xp != null) {
3108 xp.red = false;
3109 root = rotateLeft(root, xp);
3110 }
3111 x = root;
3112 }
3113 }
3114 }
3115 else { // symmetric
3116 if (xpl != null && xpl.red) {
3117 xpl.red = false;
3118 xp.red = true;
3119 root = rotateRight(root, xp);
3120 xpl = (xp = x.parent) == null ? null : xp.left;
3121 }
3122 if (xpl == null)
3123 x = xp;
3124 else {
3125 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3126 if ((sl == null || !sl.red) &&
3127 (sr == null || !sr.red)) {
3128 xpl.red = true;
3129 x = xp;
3130 }
3131 else {
3132 if (sl == null || !sl.red) {
3133 if (sr != null)
3134 sr.red = false;
3135 xpl.red = true;
3136 root = rotateLeft(root, xpl);
3137 xpl = (xp = x.parent) == null ?
3138 null : xp.left;
3139 }
3140 if (xpl != null) {
3141 xpl.red = (xp == null) ? false : xp.red;
3142 if ((sl = xpl.left) != null)
3143 sl.red = false;
3144 }
3145 if (xp != null) {
3146 xp.red = false;
3147 root = rotateRight(root, xp);
3148 }
3149 x = root;
3150 }
3151 }
3152 }
3153 }
3154 }
3155
3156 /**
3157 * Recursive invariant check
3158 */
3159 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3160 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3161 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3162 if (tb != null && tb.next != t)
3163 return false;
3164 if (tn != null && tn.prev != t)
3165 return false;
3166 if (tp != null && t != tp.left && t != tp.right)
3167 return false;
3168 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3169 return false;
3170 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3171 return false;
3172 if (t.red && tl != null && tl.red && tr != null && tr.red)
3173 return false;
3174 if (tl != null && !checkInvariants(tl))
3175 return false;
3176 if (tr != null && !checkInvariants(tr))
3177 return false;
3178 return true;
3179 }
3180
3181 private static final sun.misc.Unsafe U;
3182 private static final long LOCKSTATE;
3183 static {
3184 try {
3185 U = sun.misc.Unsafe.getUnsafe();
3186 Class<?> k = TreeBin.class;
3187 LOCKSTATE = U.objectFieldOffset
3188 (k.getDeclaredField("lockState"));
3189 } catch (Exception e) {
3190 throw new Error(e);
3191 }
3192 }
3193 }
3194
3195 /* ----------------Table Traversal -------------- */
3196
3197 /**
3198 * Encapsulates traversal for methods such as containsValue; also
3199 * serves as a base class for other iterators and spliterators.
3200 *
3201 * Method advance visits once each still-valid node that was
3202 * reachable upon iterator construction. It might miss some that
3203 * were added to a bin after the bin was visited, which is OK wrt
3204 * consistency guarantees. Maintaining this property in the face
3205 * of possible ongoing resizes requires a fair amount of
3206 * bookkeeping state that is difficult to optimize away amidst
3207 * volatile accesses. Even so, traversal maintains reasonable
3208 * throughput.
3209 *
3210 * Normally, iteration proceeds bin-by-bin traversing lists.
3211 * However, if the table has been resized, then all future steps
3212 * must traverse both the bin at the current index as well as at
3213 * (index + baseSize); and so on for further resizings. To
3214 * paranoically cope with potential sharing by users of iterators
3215 * across threads, iteration terminates if a bounds checks fails
3216 * for a table read.
3217 */
3218 static class Traverser<K,V> {
3219 Node<K,V>[] tab; // current table; updated if resized
3220 Node<K,V> next; // the next entry to use
3221 int index; // index of bin to use next
3222 int baseIndex; // current index of initial table
3223 int baseLimit; // index bound for initial table
3224 final int baseSize; // initial table size
3225
3226 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3227 this.tab = tab;
3228 this.baseSize = size;
3229 this.baseIndex = this.index = index;
3230 this.baseLimit = limit;
3231 this.next = null;
3232 }
3233
3234 /**
3235 * Advances if possible, returning next valid node, or null if none.
3236 */
3237 final Node<K,V> advance() {
3238 Node<K,V> e;
3239 if ((e = next) != null)
3240 e = e.next;
3241 for (;;) {
3242 Node<K,V>[] t; int i, n; K ek; // must use locals in checks
3243 if (e != null)
3244 return next = e;
3245 if (baseIndex >= baseLimit || (t = tab) == null ||
3246 (n = t.length) <= (i = index) || i < 0)
3247 return next = null;
3248 if ((e = tabAt(t, index)) != null && e.hash < 0) {
3249 if (e instanceof ForwardingNode) {
3250 tab = ((ForwardingNode<K,V>)e).nextTable;
3251 e = null;
3252 continue;
3253 }
3254 else if (e instanceof TreeBin)
3255 e = ((TreeBin<K,V>)e).first;
3256 else
3257 e = null;
3258 }
3259 if ((index += baseSize) >= n)
3260 index = ++baseIndex; // visit upper slots if present
3261 }
3262 }
3263 }
3264
3265 /**
3266 * Base of key, value, and entry Iterators. Adds fields to
3267 * Traverser to support iterator.remove.
3268 */
3269 static class BaseIterator<K,V> extends Traverser<K,V> {
3270 final ConcurrentHashMap<K,V> map;
3271 Node<K,V> lastReturned;
3272 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3273 ConcurrentHashMap<K,V> map) {
3274 super(tab, size, index, limit);
3275 this.map = map;
3276 advance();
3277 }
3278
3279 public final boolean hasNext() { return next != null; }
3280 public final boolean hasMoreElements() { return next != null; }
3281
3282 public final void remove() {
3283 Node<K,V> p;
3284 if ((p = lastReturned) == null)
3285 throw new IllegalStateException();
3286 lastReturned = null;
3287 map.replaceNode(p.key, null, null);
3288 }
3289 }
3290
3291 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3292 implements Iterator<K>, Enumeration<K> {
3293 KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3294 ConcurrentHashMap<K,V> map) {
3295 super(tab, index, size, limit, map);
3296 }
3297
3298 public final K next() {
3299 Node<K,V> p;
3300 if ((p = next) == null)
3301 throw new NoSuchElementException();
3302 K k = p.key;
3303 lastReturned = p;
3304 advance();
3305 return k;
3306 }
3307
3308 public final K nextElement() { return next(); }
3309 }
3310
3311 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3312 implements Iterator<V>, Enumeration<V> {
3313 ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3314 ConcurrentHashMap<K,V> map) {
3315 super(tab, index, size, limit, map);
3316 }
3317
3318 public final V next() {
3319 Node<K,V> p;
3320 if ((p = next) == null)
3321 throw new NoSuchElementException();
3322 V v = p.val;
3323 lastReturned = p;
3324 advance();
3325 return v;
3326 }
3327
3328 public final V nextElement() { return next(); }
3329 }
3330
3331 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3332 implements Iterator<Map.Entry<K,V>> {
3333 EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3334 ConcurrentHashMap<K,V> map) {
3335 super(tab, index, size, limit, map);
3336 }
3337
3338 public final Map.Entry<K,V> next() {
3339 Node<K,V> p;
3340 if ((p = next) == null)
3341 throw new NoSuchElementException();
3342 K k = p.key;
3343 V v = p.val;
3344 lastReturned = p;
3345 advance();
3346 return new MapEntry<K,V>(k, v, map);
3347 }
3348 }
3349
3350 /**
3351 * Exported Entry for EntryIterator
3352 */
3353 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3354 final K key; // non-null
3355 V val; // non-null
3356 final ConcurrentHashMap<K,V> map;
3357 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3358 this.key = key;
3359 this.val = val;
3360 this.map = map;
3361 }
3362 public K getKey() { return key; }
3363 public V getValue() { return val; }
3364 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3365 public String toString() { return key + "=" + val; }
3366
3367 public boolean equals(Object o) {
3368 Object k, v; Map.Entry<?,?> e;
3369 return ((o instanceof Map.Entry) &&
3370 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3371 (v = e.getValue()) != null &&
3372 (k == key || k.equals(key)) &&
3373 (v == val || v.equals(val)));
3374 }
3375
3376 /**
3377 * Sets our entry's value and writes through to the map. The
3378 * value to return is somewhat arbitrary here. Since we do not
3379 * necessarily track asynchronous changes, the most recent
3380 * "previous" value could be different from what we return (or
3381 * could even have been removed, in which case the put will
3382 * re-establish). We do not and cannot guarantee more.
3383 */
3384 public V setValue(V value) {
3385 if (value == null) throw new NullPointerException();
3386 V v = val;
3387 val = value;
3388 map.put(key, value);
3389 return v;
3390 }
3391 }
3392
3393 static final class KeySpliterator<K,V> extends Traverser<K,V>
3394 implements Spliterator<K> {
3395 long est; // size estimate
3396 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3397 long est) {
3398 super(tab, size, index, limit);
3399 this.est = est;
3400 }
3401
3402 public Spliterator<K> trySplit() {
3403 int i, f, h;
3404 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3405 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3406 f, est >>>= 1);
3407 }
3408
3409 public void forEachRemaining(Consumer<? super K> action) {
3410 if (action == null) throw new NullPointerException();
3411 for (Node<K,V> p; (p = advance()) != null;)
3412 action.accept(p.key);
3413 }
3414
3415 public boolean tryAdvance(Consumer<? super K> action) {
3416 if (action == null) throw new NullPointerException();
3417 Node<K,V> p;
3418 if ((p = advance()) == null)
3419 return false;
3420 action.accept(p.key);
3421 return true;
3422 }
3423
3424 public long estimateSize() { return est; }
3425
3426 public int characteristics() {
3427 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3428 Spliterator.NONNULL;
3429 }
3430 }
3431
3432 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3433 implements Spliterator<V> {
3434 long est; // size estimate
3435 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3436 long est) {
3437 super(tab, size, index, limit);
3438 this.est = est;
3439 }
3440
3441 public Spliterator<V> trySplit() {
3442 int i, f, h;
3443 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3444 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3445 f, est >>>= 1);
3446 }
3447
3448 public void forEachRemaining(Consumer<? super V> action) {
3449 if (action == null) throw new NullPointerException();
3450 for (Node<K,V> p; (p = advance()) != null;)
3451 action.accept(p.val);
3452 }
3453
3454 public boolean tryAdvance(Consumer<? super V> action) {
3455 if (action == null) throw new NullPointerException();
3456 Node<K,V> p;
3457 if ((p = advance()) == null)
3458 return false;
3459 action.accept(p.val);
3460 return true;
3461 }
3462
3463 public long estimateSize() { return est; }
3464
3465 public int characteristics() {
3466 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3467 }
3468 }
3469
3470 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3471 implements Spliterator<Map.Entry<K,V>> {
3472 final ConcurrentHashMap<K,V> map; // To export MapEntry
3473 long est; // size estimate
3474 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3475 long est, ConcurrentHashMap<K,V> map) {
3476 super(tab, size, index, limit);
3477 this.map = map;
3478 this.est = est;
3479 }
3480
3481 public Spliterator<Map.Entry<K,V>> trySplit() {
3482 int i, f, h;
3483 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3484 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3485 f, est >>>= 1, map);
3486 }
3487
3488 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3489 if (action == null) throw new NullPointerException();
3490 for (Node<K,V> p; (p = advance()) != null; )
3491 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3492 }
3493
3494 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3495 if (action == null) throw new NullPointerException();
3496 Node<K,V> p;
3497 if ((p = advance()) == null)
3498 return false;
3499 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3500 return true;
3501 }
3502
3503 public long estimateSize() { return est; }
3504
3505 public int characteristics() {
3506 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3507 Spliterator.NONNULL;
3508 }
3509 }
3510
3511 // Parallel bulk operations
3512
3513 /**
3514 * Computes initial batch value for bulk tasks. The returned value
3515 * is approximately exp2 of the number of times (minus one) to
3516 * split task by two before executing leaf action. This value is
3517 * faster to compute and more convenient to use as a guide to
3518 * splitting than is the depth, since it is used while dividing by
3519 * two anyway.
3520 */
3521 final int batchFor(long b) {
3522 long n;
3523 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3524 return 0;
3525 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3526 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3527 }
3528
3529 /**
3530 * Performs the given action for each (key, value).
3531 *
3532 * @param parallelismThreshold the (estimated) number of elements
3533 * needed for this operation to be executed in parallel
3534 * @param action the action
3535 * @since 1.8
3536 */
3537 public void forEach(long parallelismThreshold,
3538 BiConsumer<? super K,? super V> action) {
3539 if (action == null) throw new NullPointerException();
3540 new ForEachMappingTask<K,V>
3541 (null, batchFor(parallelismThreshold), 0, 0, table,
3542 action).invoke();
3543 }
3544
3545 /**
3546 * Performs the given action for each non-null transformation
3547 * of each (key, value).
3548 *
3549 * @param parallelismThreshold the (estimated) number of elements
3550 * needed for this operation to be executed in parallel
3551 * @param transformer a function returning the transformation
3552 * for an element, or null if there is no transformation (in
3553 * which case the action is not applied)
3554 * @param action the action
3555 * @param <U> the return type of the transformer
3556 * @since 1.8
3557 */
3558 public <U> void forEach(long parallelismThreshold,
3559 BiFunction<? super K, ? super V, ? extends U> transformer,
3560 Consumer<? super U> action) {
3561 if (transformer == null || action == null)
3562 throw new NullPointerException();
3563 new ForEachTransformedMappingTask<K,V,U>
3564 (null, batchFor(parallelismThreshold), 0, 0, table,
3565 transformer, action).invoke();
3566 }
3567
3568 /**
3569 * Returns a non-null result from applying the given search
3570 * function on each (key, value), or null if none. Upon
3571 * success, further element processing is suppressed and the
3572 * results of any other parallel invocations of the search
3573 * function are ignored.
3574 *
3575 * @param parallelismThreshold the (estimated) number of elements
3576 * needed for this operation to be executed in parallel
3577 * @param searchFunction a function returning a non-null
3578 * result on success, else null
3579 * @param <U> the return type of the search function
3580 * @return a non-null result from applying the given search
3581 * function on each (key, value), or null if none
3582 * @since 1.8
3583 */
3584 public <U> U search(long parallelismThreshold,
3585 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3586 if (searchFunction == null) throw new NullPointerException();
3587 return new SearchMappingsTask<K,V,U>
3588 (null, batchFor(parallelismThreshold), 0, 0, table,
3589 searchFunction, new AtomicReference<U>()).invoke();
3590 }
3591
3592 /**
3593 * Returns the result of accumulating the given transformation
3594 * of all (key, value) pairs using the given reducer to
3595 * combine values, or null if none.
3596 *
3597 * @param parallelismThreshold the (estimated) number of elements
3598 * needed for this operation to be executed in parallel
3599 * @param transformer a function returning the transformation
3600 * for an element, or null if there is no transformation (in
3601 * which case it is not combined)
3602 * @param reducer a commutative associative combining function
3603 * @param <U> the return type of the transformer
3604 * @return the result of accumulating the given transformation
3605 * of all (key, value) pairs
3606 * @since 1.8
3607 */
3608 public <U> U reduce(long parallelismThreshold,
3609 BiFunction<? super K, ? super V, ? extends U> transformer,
3610 BiFunction<? super U, ? super U, ? extends U> reducer) {
3611 if (transformer == null || reducer == null)
3612 throw new NullPointerException();
3613 return new MapReduceMappingsTask<K,V,U>
3614 (null, batchFor(parallelismThreshold), 0, 0, table,
3615 null, transformer, reducer).invoke();
3616 }
3617
3618 /**
3619 * Returns the result of accumulating the given transformation
3620 * of all (key, value) pairs using the given reducer to
3621 * combine values, and the given basis as an identity value.
3622 *
3623 * @param parallelismThreshold the (estimated) number of elements
3624 * needed for this operation to be executed in parallel
3625 * @param transformer a function returning the transformation
3626 * for an element
3627 * @param basis the identity (initial default value) for the reduction
3628 * @param reducer a commutative associative combining function
3629 * @return the result of accumulating the given transformation
3630 * of all (key, value) pairs
3631 * @since 1.8
3632 */
3633 public double reduceToDouble(long parallelismThreshold,
3634 ToDoubleBiFunction<? super K, ? super V> transformer,
3635 double basis,
3636 DoubleBinaryOperator reducer) {
3637 if (transformer == null || reducer == null)
3638 throw new NullPointerException();
3639 return new MapReduceMappingsToDoubleTask<K,V>
3640 (null, batchFor(parallelismThreshold), 0, 0, table,
3641 null, transformer, basis, reducer).invoke();
3642 }
3643
3644 /**
3645 * Returns the result of accumulating the given transformation
3646 * of all (key, value) pairs using the given reducer to
3647 * combine values, and the given basis as an identity value.
3648 *
3649 * @param parallelismThreshold the (estimated) number of elements
3650 * needed for this operation to be executed in parallel
3651 * @param transformer a function returning the transformation
3652 * for an element
3653 * @param basis the identity (initial default value) for the reduction
3654 * @param reducer a commutative associative combining function
3655 * @return the result of accumulating the given transformation
3656 * of all (key, value) pairs
3657 * @since 1.8
3658 */
3659 public long reduceToLong(long parallelismThreshold,
3660 ToLongBiFunction<? super K, ? super V> transformer,
3661 long basis,
3662 LongBinaryOperator reducer) {
3663 if (transformer == null || reducer == null)
3664 throw new NullPointerException();
3665 return new MapReduceMappingsToLongTask<K,V>
3666 (null, batchFor(parallelismThreshold), 0, 0, table,
3667 null, transformer, basis, reducer).invoke();
3668 }
3669
3670 /**
3671 * Returns the result of accumulating the given transformation
3672 * of all (key, value) pairs using the given reducer to
3673 * combine values, and the given basis as an identity value.
3674 *
3675 * @param parallelismThreshold the (estimated) number of elements
3676 * needed for this operation to be executed in parallel
3677 * @param transformer a function returning the transformation
3678 * for an element
3679 * @param basis the identity (initial default value) for the reduction
3680 * @param reducer a commutative associative combining function
3681 * @return the result of accumulating the given transformation
3682 * of all (key, value) pairs
3683 * @since 1.8
3684 */
3685 public int reduceToInt(long parallelismThreshold,
3686 ToIntBiFunction<? super K, ? super V> transformer,
3687 int basis,
3688 IntBinaryOperator reducer) {
3689 if (transformer == null || reducer == null)
3690 throw new NullPointerException();
3691 return new MapReduceMappingsToIntTask<K,V>
3692 (null, batchFor(parallelismThreshold), 0, 0, table,
3693 null, transformer, basis, reducer).invoke();
3694 }
3695
3696 /**
3697 * Performs the given action for each key.
3698 *
3699 * @param parallelismThreshold the (estimated) number of elements
3700 * needed for this operation to be executed in parallel
3701 * @param action the action
3702 * @since 1.8
3703 */
3704 public void forEachKey(long parallelismThreshold,
3705 Consumer<? super K> action) {
3706 if (action == null) throw new NullPointerException();
3707 new ForEachKeyTask<K,V>
3708 (null, batchFor(parallelismThreshold), 0, 0, table,
3709 action).invoke();
3710 }
3711
3712 /**
3713 * Performs the given action for each non-null transformation
3714 * of each key.
3715 *
3716 * @param parallelismThreshold the (estimated) number of elements
3717 * needed for this operation to be executed in parallel
3718 * @param transformer a function returning the transformation
3719 * for an element, or null if there is no transformation (in
3720 * which case the action is not applied)
3721 * @param action the action
3722 * @param <U> the return type of the transformer
3723 * @since 1.8
3724 */
3725 public <U> void forEachKey(long parallelismThreshold,
3726 Function<? super K, ? extends U> transformer,
3727 Consumer<? super U> action) {
3728 if (transformer == null || action == null)
3729 throw new NullPointerException();
3730 new ForEachTransformedKeyTask<K,V,U>
3731 (null, batchFor(parallelismThreshold), 0, 0, table,
3732 transformer, action).invoke();
3733 }
3734
3735 /**
3736 * Returns a non-null result from applying the given search
3737 * function on each key, or null if none. Upon success,
3738 * further element processing is suppressed and the results of
3739 * any other parallel invocations of the search function are
3740 * ignored.
3741 *
3742 * @param parallelismThreshold the (estimated) number of elements
3743 * needed for this operation to be executed in parallel
3744 * @param searchFunction a function returning a non-null
3745 * result on success, else null
3746 * @param <U> the return type of the search function
3747 * @return a non-null result from applying the given search
3748 * function on each key, or null if none
3749 * @since 1.8
3750 */
3751 public <U> U searchKeys(long parallelismThreshold,
3752 Function<? super K, ? extends U> searchFunction) {
3753 if (searchFunction == null) throw new NullPointerException();
3754 return new SearchKeysTask<K,V,U>
3755 (null, batchFor(parallelismThreshold), 0, 0, table,
3756 searchFunction, new AtomicReference<U>()).invoke();
3757 }
3758
3759 /**
3760 * Returns the result of accumulating all keys using the given
3761 * reducer to combine values, or null if none.
3762 *
3763 * @param parallelismThreshold the (estimated) number of elements
3764 * needed for this operation to be executed in parallel
3765 * @param reducer a commutative associative combining function
3766 * @return the result of accumulating all keys using the given
3767 * reducer to combine values, or null if none
3768 * @since 1.8
3769 */
3770 public K reduceKeys(long parallelismThreshold,
3771 BiFunction<? super K, ? super K, ? extends K> reducer) {
3772 if (reducer == null) throw new NullPointerException();
3773 return new ReduceKeysTask<K,V>
3774 (null, batchFor(parallelismThreshold), 0, 0, table,
3775 null, reducer).invoke();
3776 }
3777
3778 /**
3779 * Returns the result of accumulating the given transformation
3780 * of all keys using the given reducer to combine values, or
3781 * null if none.
3782 *
3783 * @param parallelismThreshold the (estimated) number of elements
3784 * needed for this operation to be executed in parallel
3785 * @param transformer a function returning the transformation
3786 * for an element, or null if there is no transformation (in
3787 * which case it is not combined)
3788 * @param reducer a commutative associative combining function
3789 * @param <U> the return type of the transformer
3790 * @return the result of accumulating the given transformation
3791 * of all keys
3792 * @since 1.8
3793 */
3794 public <U> U reduceKeys(long parallelismThreshold,
3795 Function<? super K, ? extends U> transformer,
3796 BiFunction<? super U, ? super U, ? extends U> reducer) {
3797 if (transformer == null || reducer == null)
3798 throw new NullPointerException();
3799 return new MapReduceKeysTask<K,V,U>
3800 (null, batchFor(parallelismThreshold), 0, 0, table,
3801 null, transformer, reducer).invoke();
3802 }
3803
3804 /**
3805 * Returns the result of accumulating the given transformation
3806 * of all keys using the given reducer to combine values, and
3807 * the given basis as an identity value.
3808 *
3809 * @param parallelismThreshold the (estimated) number of elements
3810 * needed for this operation to be executed in parallel
3811 * @param transformer a function returning the transformation
3812 * for an element
3813 * @param basis the identity (initial default value) for the reduction
3814 * @param reducer a commutative associative combining function
3815 * @return the result of accumulating the given transformation
3816 * of all keys
3817 * @since 1.8
3818 */
3819 public double reduceKeysToDouble(long parallelismThreshold,
3820 ToDoubleFunction<? super K> transformer,
3821 double basis,
3822 DoubleBinaryOperator reducer) {
3823 if (transformer == null || reducer == null)
3824 throw new NullPointerException();
3825 return new MapReduceKeysToDoubleTask<K,V>
3826 (null, batchFor(parallelismThreshold), 0, 0, table,
3827 null, transformer, basis, reducer).invoke();
3828 }
3829
3830 /**
3831 * Returns the result of accumulating the given transformation
3832 * of all keys using the given reducer to combine values, and
3833 * the given basis as an identity value.
3834 *
3835 * @param parallelismThreshold the (estimated) number of elements
3836 * needed for this operation to be executed in parallel
3837 * @param transformer a function returning the transformation
3838 * for an element
3839 * @param basis the identity (initial default value) for the reduction
3840 * @param reducer a commutative associative combining function
3841 * @return the result of accumulating the given transformation
3842 * of all keys
3843 * @since 1.8
3844 */
3845 public long reduceKeysToLong(long parallelismThreshold,
3846 ToLongFunction<? super K> transformer,
3847 long basis,
3848 LongBinaryOperator reducer) {
3849 if (transformer == null || reducer == null)
3850 throw new NullPointerException();
3851 return new MapReduceKeysToLongTask<K,V>
3852 (null, batchFor(parallelismThreshold), 0, 0, table,
3853 null, transformer, basis, reducer).invoke();
3854 }
3855
3856 /**
3857 * Returns the result of accumulating the given transformation
3858 * of all keys using the given reducer to combine values, and
3859 * the given basis as an identity value.
3860 *
3861 * @param parallelismThreshold the (estimated) number of elements
3862 * needed for this operation to be executed in parallel
3863 * @param transformer a function returning the transformation
3864 * for an element
3865 * @param basis the identity (initial default value) for the reduction
3866 * @param reducer a commutative associative combining function
3867 * @return the result of accumulating the given transformation
3868 * of all keys
3869 * @since 1.8
3870 */
3871 public int reduceKeysToInt(long parallelismThreshold,
3872 ToIntFunction<? super K> transformer,
3873 int basis,
3874 IntBinaryOperator reducer) {
3875 if (transformer == null || reducer == null)
3876 throw new NullPointerException();
3877 return new MapReduceKeysToIntTask<K,V>
3878 (null, batchFor(parallelismThreshold), 0, 0, table,
3879 null, transformer, basis, reducer).invoke();
3880 }
3881
3882 /**
3883 * Performs the given action for each value.
3884 *
3885 * @param parallelismThreshold the (estimated) number of elements
3886 * needed for this operation to be executed in parallel
3887 * @param action the action
3888 * @since 1.8
3889 */
3890 public void forEachValue(long parallelismThreshold,
3891 Consumer<? super V> action) {
3892 if (action == null)
3893 throw new NullPointerException();
3894 new ForEachValueTask<K,V>
3895 (null, batchFor(parallelismThreshold), 0, 0, table,
3896 action).invoke();
3897 }
3898
3899 /**
3900 * Performs the given action for each non-null transformation
3901 * of each value.
3902 *
3903 * @param parallelismThreshold the (estimated) number of elements
3904 * needed for this operation to be executed in parallel
3905 * @param transformer a function returning the transformation
3906 * for an element, or null if there is no transformation (in
3907 * which case the action is not applied)
3908 * @param action the action
3909 * @param <U> the return type of the transformer
3910 * @since 1.8
3911 */
3912 public <U> void forEachValue(long parallelismThreshold,
3913 Function<? super V, ? extends U> transformer,
3914 Consumer<? super U> action) {
3915 if (transformer == null || action == null)
3916 throw new NullPointerException();
3917 new ForEachTransformedValueTask<K,V,U>
3918 (null, batchFor(parallelismThreshold), 0, 0, table,
3919 transformer, action).invoke();
3920 }
3921
3922 /**
3923 * Returns a non-null result from applying the given search
3924 * function on each value, or null if none. Upon success,
3925 * further element processing is suppressed and the results of
3926 * any other parallel invocations of the search function are
3927 * ignored.
3928 *
3929 * @param parallelismThreshold the (estimated) number of elements
3930 * needed for this operation to be executed in parallel
3931 * @param searchFunction a function returning a non-null
3932 * result on success, else null
3933 * @param <U> the return type of the search function
3934 * @return a non-null result from applying the given search
3935 * function on each value, or null if none
3936 * @since 1.8
3937 */
3938 public <U> U searchValues(long parallelismThreshold,
3939 Function<? super V, ? extends U> searchFunction) {
3940 if (searchFunction == null) throw new NullPointerException();
3941 return new SearchValuesTask<K,V,U>
3942 (null, batchFor(parallelismThreshold), 0, 0, table,
3943 searchFunction, new AtomicReference<U>()).invoke();
3944 }
3945
3946 /**
3947 * Returns the result of accumulating all values using the
3948 * given reducer to combine values, or null if none.
3949 *
3950 * @param parallelismThreshold the (estimated) number of elements
3951 * needed for this operation to be executed in parallel
3952 * @param reducer a commutative associative combining function
3953 * @return the result of accumulating all values
3954 * @since 1.8
3955 */
3956 public V reduceValues(long parallelismThreshold,
3957 BiFunction<? super V, ? super V, ? extends V> reducer) {
3958 if (reducer == null) throw new NullPointerException();
3959 return new ReduceValuesTask<K,V>
3960 (null, batchFor(parallelismThreshold), 0, 0, table,
3961 null, reducer).invoke();
3962 }
3963
3964 /**
3965 * Returns the result of accumulating the given transformation
3966 * of all values using the given reducer to combine values, or
3967 * null if none.
3968 *
3969 * @param parallelismThreshold the (estimated) number of elements
3970 * needed for this operation to be executed in parallel
3971 * @param transformer a function returning the transformation
3972 * for an element, or null if there is no transformation (in
3973 * which case it is not combined)
3974 * @param reducer a commutative associative combining function
3975 * @param <U> the return type of the transformer
3976 * @return the result of accumulating the given transformation
3977 * of all values
3978 * @since 1.8
3979 */
3980 public <U> U reduceValues(long parallelismThreshold,
3981 Function<? super V, ? extends U> transformer,
3982 BiFunction<? super U, ? super U, ? extends U> reducer) {
3983 if (transformer == null || reducer == null)
3984 throw new NullPointerException();
3985 return new MapReduceValuesTask<K,V,U>
3986 (null, batchFor(parallelismThreshold), 0, 0, table,
3987 null, transformer, reducer).invoke();
3988 }
3989
3990 /**
3991 * Returns the result of accumulating the given transformation
3992 * of all values using the given reducer to combine values,
3993 * and the given basis as an identity value.
3994 *
3995 * @param parallelismThreshold the (estimated) number of elements
3996 * needed for this operation to be executed in parallel
3997 * @param transformer a function returning the transformation
3998 * for an element
3999 * @param basis the identity (initial default value) for the reduction
4000 * @param reducer a commutative associative combining function
4001 * @return the result of accumulating the given transformation
4002 * of all values
4003 * @since 1.8
4004 */
4005 public double reduceValuesToDouble(long parallelismThreshold,
4006 ToDoubleFunction<? super V> transformer,
4007 double basis,
4008 DoubleBinaryOperator reducer) {
4009 if (transformer == null || reducer == null)
4010 throw new NullPointerException();
4011 return new MapReduceValuesToDoubleTask<K,V>
4012 (null, batchFor(parallelismThreshold), 0, 0, table,
4013 null, transformer, basis, reducer).invoke();
4014 }
4015
4016 /**
4017 * Returns the result of accumulating the given transformation
4018 * of all values using the given reducer to combine values,
4019 * and the given basis as an identity value.
4020 *
4021 * @param parallelismThreshold the (estimated) number of elements
4022 * needed for this operation to be executed in parallel
4023 * @param transformer a function returning the transformation
4024 * for an element
4025 * @param basis the identity (initial default value) for the reduction
4026 * @param reducer a commutative associative combining function
4027 * @return the result of accumulating the given transformation
4028 * of all values
4029 * @since 1.8
4030 */
4031 public long reduceValuesToLong(long parallelismThreshold,
4032 ToLongFunction<? super V> transformer,
4033 long basis,
4034 LongBinaryOperator reducer) {
4035 if (transformer == null || reducer == null)
4036 throw new NullPointerException();
4037 return new MapReduceValuesToLongTask<K,V>
4038 (null, batchFor(parallelismThreshold), 0, 0, table,
4039 null, transformer, basis, reducer).invoke();
4040 }
4041
4042 /**
4043 * Returns the result of accumulating the given transformation
4044 * of all values using the given reducer to combine values,
4045 * and the given basis as an identity value.
4046 *
4047 * @param parallelismThreshold the (estimated) number of elements
4048 * needed for this operation to be executed in parallel
4049 * @param transformer a function returning the transformation
4050 * for an element
4051 * @param basis the identity (initial default value) for the reduction
4052 * @param reducer a commutative associative combining function
4053 * @return the result of accumulating the given transformation
4054 * of all values
4055 * @since 1.8
4056 */
4057 public int reduceValuesToInt(long parallelismThreshold,
4058 ToIntFunction<? super V> transformer,
4059 int basis,
4060 IntBinaryOperator reducer) {
4061 if (transformer == null || reducer == null)
4062 throw new NullPointerException();
4063 return new MapReduceValuesToIntTask<K,V>
4064 (null, batchFor(parallelismThreshold), 0, 0, table,
4065 null, transformer, basis, reducer).invoke();
4066 }
4067
4068 /**
4069 * Performs the given action for each entry.
4070 *
4071 * @param parallelismThreshold the (estimated) number of elements
4072 * needed for this operation to be executed in parallel
4073 * @param action the action
4074 * @since 1.8
4075 */
4076 public void forEachEntry(long parallelismThreshold,
4077 Consumer<? super Map.Entry<K,V>> action) {
4078 if (action == null) throw new NullPointerException();
4079 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4080 action).invoke();
4081 }
4082
4083 /**
4084 * Performs the given action for each non-null transformation
4085 * of each entry.
4086 *
4087 * @param parallelismThreshold the (estimated) number of elements
4088 * needed for this operation to be executed in parallel
4089 * @param transformer a function returning the transformation
4090 * for an element, or null if there is no transformation (in
4091 * which case the action is not applied)
4092 * @param action the action
4093 * @param <U> the return type of the transformer
4094 * @since 1.8
4095 */
4096 public <U> void forEachEntry(long parallelismThreshold,
4097 Function<Map.Entry<K,V>, ? extends U> transformer,
4098 Consumer<? super U> action) {
4099 if (transformer == null || action == null)
4100 throw new NullPointerException();
4101 new ForEachTransformedEntryTask<K,V,U>
4102 (null, batchFor(parallelismThreshold), 0, 0, table,
4103 transformer, action).invoke();
4104 }
4105
4106 /**
4107 * Returns a non-null result from applying the given search
4108 * function on each entry, or null if none. Upon success,
4109 * further element processing is suppressed and the results of
4110 * any other parallel invocations of the search function are
4111 * ignored.
4112 *
4113 * @param parallelismThreshold the (estimated) number of elements
4114 * needed for this operation to be executed in parallel
4115 * @param searchFunction a function returning a non-null
4116 * result on success, else null
4117 * @param <U> the return type of the search function
4118 * @return a non-null result from applying the given search
4119 * function on each entry, or null if none
4120 * @since 1.8
4121 */
4122 public <U> U searchEntries(long parallelismThreshold,
4123 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4124 if (searchFunction == null) throw new NullPointerException();
4125 return new SearchEntriesTask<K,V,U>
4126 (null, batchFor(parallelismThreshold), 0, 0, table,
4127 searchFunction, new AtomicReference<U>()).invoke();
4128 }
4129
4130 /**
4131 * Returns the result of accumulating all entries using the
4132 * given reducer to combine values, or null if none.
4133 *
4134 * @param parallelismThreshold the (estimated) number of elements
4135 * needed for this operation to be executed in parallel
4136 * @param reducer a commutative associative combining function
4137 * @return the result of accumulating all entries
4138 * @since 1.8
4139 */
4140 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4141 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4142 if (reducer == null) throw new NullPointerException();
4143 return new ReduceEntriesTask<K,V>
4144 (null, batchFor(parallelismThreshold), 0, 0, table,
4145 null, reducer).invoke();
4146 }
4147
4148 /**
4149 * Returns the result of accumulating the given transformation
4150 * of all entries using the given reducer to combine values,
4151 * or null if none.
4152 *
4153 * @param parallelismThreshold the (estimated) number of elements
4154 * needed for this operation to be executed in parallel
4155 * @param transformer a function returning the transformation
4156 * for an element, or null if there is no transformation (in
4157 * which case it is not combined)
4158 * @param reducer a commutative associative combining function
4159 * @param <U> the return type of the transformer
4160 * @return the result of accumulating the given transformation
4161 * of all entries
4162 * @since 1.8
4163 */
4164 public <U> U reduceEntries(long parallelismThreshold,
4165 Function<Map.Entry<K,V>, ? extends U> transformer,
4166 BiFunction<? super U, ? super U, ? extends U> reducer) {
4167 if (transformer == null || reducer == null)
4168 throw new NullPointerException();
4169 return new MapReduceEntriesTask<K,V,U>
4170 (null, batchFor(parallelismThreshold), 0, 0, table,
4171 null, transformer, reducer).invoke();
4172 }
4173
4174 /**
4175 * Returns the result of accumulating the given transformation
4176 * of all entries using the given reducer to combine values,
4177 * and the given basis as an identity value.
4178 *
4179 * @param parallelismThreshold the (estimated) number of elements
4180 * needed for this operation to be executed in parallel
4181 * @param transformer a function returning the transformation
4182 * for an element
4183 * @param basis the identity (initial default value) for the reduction
4184 * @param reducer a commutative associative combining function
4185 * @return the result of accumulating the given transformation
4186 * of all entries
4187 * @since 1.8
4188 */
4189 public double reduceEntriesToDouble(long parallelismThreshold,
4190 ToDoubleFunction<Map.Entry<K,V>> transformer,
4191 double basis,
4192 DoubleBinaryOperator reducer) {
4193 if (transformer == null || reducer == null)
4194 throw new NullPointerException();
4195 return new MapReduceEntriesToDoubleTask<K,V>
4196 (null, batchFor(parallelismThreshold), 0, 0, table,
4197 null, transformer, basis, reducer).invoke();
4198 }
4199
4200 /**
4201 * Returns the result of accumulating the given transformation
4202 * of all entries using the given reducer to combine values,
4203 * and the given basis as an identity value.
4204 *
4205 * @param parallelismThreshold the (estimated) number of elements
4206 * needed for this operation to be executed in parallel
4207 * @param transformer a function returning the transformation
4208 * for an element
4209 * @param basis the identity (initial default value) for the reduction
4210 * @param reducer a commutative associative combining function
4211 * @return the result of accumulating the given transformation
4212 * of all entries
4213 * @since 1.8
4214 */
4215 public long reduceEntriesToLong(long parallelismThreshold,
4216 ToLongFunction<Map.Entry<K,V>> transformer,
4217 long basis,
4218 LongBinaryOperator reducer) {
4219 if (transformer == null || reducer == null)
4220 throw new NullPointerException();
4221 return new MapReduceEntriesToLongTask<K,V>
4222 (null, batchFor(parallelismThreshold), 0, 0, table,
4223 null, transformer, basis, reducer).invoke();
4224 }
4225
4226 /**
4227 * Returns the result of accumulating the given transformation
4228 * of all entries using the given reducer to combine values,
4229 * and the given basis as an identity value.
4230 *
4231 * @param parallelismThreshold the (estimated) number of elements
4232 * needed for this operation to be executed in parallel
4233 * @param transformer a function returning the transformation
4234 * for an element
4235 * @param basis the identity (initial default value) for the reduction
4236 * @param reducer a commutative associative combining function
4237 * @return the result of accumulating the given transformation
4238 * of all entries
4239 * @since 1.8
4240 */
4241 public int reduceEntriesToInt(long parallelismThreshold,
4242 ToIntFunction<Map.Entry<K,V>> transformer,
4243 int basis,
4244 IntBinaryOperator reducer) {
4245 if (transformer == null || reducer == null)
4246 throw new NullPointerException();
4247 return new MapReduceEntriesToIntTask<K,V>
4248 (null, batchFor(parallelismThreshold), 0, 0, table,
4249 null, transformer, basis, reducer).invoke();
4250 }
4251
4252
4253 /* ----------------Views -------------- */
4254
4255 /**
4256 * Base class for views.
4257 */
4258 abstract static class CollectionView<K,V,E>
4259 implements Collection<E>, java.io.Serializable {
4260 private static final long serialVersionUID = 7249069246763182397L;
4261 final ConcurrentHashMap<K,V> map;
4262 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4263
4264 /**
4265 * Returns the map backing this view.
4266 *
4267 * @return the map backing this view
4268 */
4269 public ConcurrentHashMap<K,V> getMap() { return map; }
4270
4271 /**
4272 * Removes all of the elements from this view, by removing all
4273 * the mappings from the map backing this view.
4274 */
4275 public final void clear() { map.clear(); }
4276 public final int size() { return map.size(); }
4277 public final boolean isEmpty() { return map.isEmpty(); }
4278
4279 // implementations below rely on concrete classes supplying these
4280 // abstract methods
4281 /**
4282 * Returns a "weakly consistent" iterator that will never
4283 * throw {@link ConcurrentModificationException}, and
4284 * guarantees to traverse elements as they existed upon
4285 * construction of the iterator, and may (but is not
4286 * guaranteed to) reflect any modifications subsequent to
4287 * construction.
4288 */
4289 public abstract Iterator<E> iterator();
4290 public abstract boolean contains(Object o);
4291 public abstract boolean remove(Object o);
4292
4293 private static final String oomeMsg = "Required array size too large";
4294
4295 public final Object[] toArray() {
4296 long sz = map.mappingCount();
4297 if (sz > MAX_ARRAY_SIZE)
4298 throw new OutOfMemoryError(oomeMsg);
4299 int n = (int)sz;
4300 Object[] r = new Object[n];
4301 int i = 0;
4302 for (E e : this) {
4303 if (i == n) {
4304 if (n >= MAX_ARRAY_SIZE)
4305 throw new OutOfMemoryError(oomeMsg);
4306 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4307 n = MAX_ARRAY_SIZE;
4308 else
4309 n += (n >>> 1) + 1;
4310 r = Arrays.copyOf(r, n);
4311 }
4312 r[i++] = e;
4313 }
4314 return (i == n) ? r : Arrays.copyOf(r, i);
4315 }
4316
4317 @SuppressWarnings("unchecked")
4318 public final <T> T[] toArray(T[] a) {
4319 long sz = map.mappingCount();
4320 if (sz > MAX_ARRAY_SIZE)
4321 throw new OutOfMemoryError(oomeMsg);
4322 int m = (int)sz;
4323 T[] r = (a.length >= m) ? a :
4324 (T[])java.lang.reflect.Array
4325 .newInstance(a.getClass().getComponentType(), m);
4326 int n = r.length;
4327 int i = 0;
4328 for (E e : this) {
4329 if (i == n) {
4330 if (n >= MAX_ARRAY_SIZE)
4331 throw new OutOfMemoryError(oomeMsg);
4332 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4333 n = MAX_ARRAY_SIZE;
4334 else
4335 n += (n >>> 1) + 1;
4336 r = Arrays.copyOf(r, n);
4337 }
4338 r[i++] = (T)e;
4339 }
4340 if (a == r && i < n) {
4341 r[i] = null; // null-terminate
4342 return r;
4343 }
4344 return (i == n) ? r : Arrays.copyOf(r, i);
4345 }
4346
4347 /**
4348 * Returns a string representation of this collection.
4349 * The string representation consists of the string representations
4350 * of the collection's elements in the order they are returned by
4351 * its iterator, enclosed in square brackets ({@code "[]"}).
4352 * Adjacent elements are separated by the characters {@code ", "}
4353 * (comma and space). Elements are converted to strings as by
4354 * {@link String#valueOf(Object)}.
4355 *
4356 * @return a string representation of this collection
4357 */
4358 public final String toString() {
4359 StringBuilder sb = new StringBuilder();
4360 sb.append('[');
4361 Iterator<E> it = iterator();
4362 if (it.hasNext()) {
4363 for (;;) {
4364 Object e = it.next();
4365 sb.append(e == this ? "(this Collection)" : e);
4366 if (!it.hasNext())
4367 break;
4368 sb.append(',').append(' ');
4369 }
4370 }
4371 return sb.append(']').toString();
4372 }
4373
4374 public final boolean containsAll(Collection<?> c) {
4375 if (c != this) {
4376 for (Object e : c) {
4377 if (e == null || !contains(e))
4378 return false;
4379 }
4380 }
4381 return true;
4382 }
4383
4384 public final boolean removeAll(Collection<?> c) {
4385 boolean modified = false;
4386 for (Iterator<E> it = iterator(); it.hasNext();) {
4387 if (c.contains(it.next())) {
4388 it.remove();
4389 modified = true;
4390 }
4391 }
4392 return modified;
4393 }
4394
4395 public final boolean retainAll(Collection<?> c) {
4396 boolean modified = false;
4397 for (Iterator<E> it = iterator(); it.hasNext();) {
4398 if (!c.contains(it.next())) {
4399 it.remove();
4400 modified = true;
4401 }
4402 }
4403 return modified;
4404 }
4405
4406 }
4407
4408 /**
4409 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4410 * which additions may optionally be enabled by mapping to a
4411 * common value. This class cannot be directly instantiated.
4412 * See {@link #keySet() keySet()},
4413 * {@link #keySet(Object) keySet(V)},
4414 * {@link #newKeySet() newKeySet()},
4415 * {@link #newKeySet(int) newKeySet(int)}.
4416 *
4417 * @since 1.8
4418 */
4419 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4420 implements Set<K>, java.io.Serializable {
4421 private static final long serialVersionUID = 7249069246763182397L;
4422 private final V value;
4423 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4424 super(map);
4425 this.value = value;
4426 }
4427
4428 /**
4429 * Returns the default mapped value for additions,
4430 * or {@code null} if additions are not supported.
4431 *
4432 * @return the default mapped value for additions, or {@code null}
4433 * if not supported
4434 */
4435 public V getMappedValue() { return value; }
4436
4437 /**
4438 * {@inheritDoc}
4439 * @throws NullPointerException if the specified key is null
4440 */
4441 public boolean contains(Object o) { return map.containsKey(o); }
4442
4443 /**
4444 * Removes the key from this map view, by removing the key (and its
4445 * corresponding value) from the backing map. This method does
4446 * nothing if the key is not in the map.
4447 *
4448 * @param o the key to be removed from the backing map
4449 * @return {@code true} if the backing map contained the specified key
4450 * @throws NullPointerException if the specified key is null
4451 */
4452 public boolean remove(Object o) { return map.remove(o) != null; }
4453
4454 /**
4455 * @return an iterator over the keys of the backing map
4456 */
4457 public Iterator<K> iterator() {
4458 Node<K,V>[] t;
4459 ConcurrentHashMap<K,V> m = map;
4460 int f = (t = m.table) == null ? 0 : t.length;
4461 return new KeyIterator<K,V>(t, f, 0, f, m);
4462 }
4463
4464 /**
4465 * Adds the specified key to this set view by mapping the key to
4466 * the default mapped value in the backing map, if defined.
4467 *
4468 * @param e key to be added
4469 * @return {@code true} if this set changed as a result of the call
4470 * @throws NullPointerException if the specified key is null
4471 * @throws UnsupportedOperationException if no default mapped value
4472 * for additions was provided
4473 */
4474 public boolean add(K e) {
4475 V v;
4476 if ((v = value) == null)
4477 throw new UnsupportedOperationException();
4478 return map.putVal(e, v, true) == null;
4479 }
4480
4481 /**
4482 * Adds all of the elements in the specified collection to this set,
4483 * as if by calling {@link #add} on each one.
4484 *
4485 * @param c the elements to be inserted into this set
4486 * @return {@code true} if this set changed as a result of the call
4487 * @throws NullPointerException if the collection or any of its
4488 * elements are {@code null}
4489 * @throws UnsupportedOperationException if no default mapped value
4490 * for additions was provided
4491 */
4492 public boolean addAll(Collection<? extends K> c) {
4493 boolean added = false;
4494 V v;
4495 if ((v = value) == null)
4496 throw new UnsupportedOperationException();
4497 for (K e : c) {
4498 if (map.putVal(e, v, true) == null)
4499 added = true;
4500 }
4501 return added;
4502 }
4503
4504 public int hashCode() {
4505 int h = 0;
4506 for (K e : this)
4507 h += e.hashCode();
4508 return h;
4509 }
4510
4511 public boolean equals(Object o) {
4512 Set<?> c;
4513 return ((o instanceof Set) &&
4514 ((c = (Set<?>)o) == this ||
4515 (containsAll(c) && c.containsAll(this))));
4516 }
4517
4518 public Spliterator<K> spliterator() {
4519 Node<K,V>[] t;
4520 ConcurrentHashMap<K,V> m = map;
4521 long n = m.sumCount();
4522 int f = (t = m.table) == null ? 0 : t.length;
4523 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4524 }
4525
4526 public void forEach(Consumer<? super K> action) {
4527 if (action == null) throw new NullPointerException();
4528 Node<K,V>[] t;
4529 if ((t = map.table) != null) {
4530 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4531 for (Node<K,V> p; (p = it.advance()) != null; )
4532 action.accept(p.key);
4533 }
4534 }
4535 }
4536
4537 /**
4538 * A view of a ConcurrentHashMap as a {@link Collection} of
4539 * values, in which additions are disabled. This class cannot be
4540 * directly instantiated. See {@link #values()}.
4541 */
4542 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4543 implements Collection<V>, java.io.Serializable {
4544 private static final long serialVersionUID = 2249069246763182397L;
4545 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4546 public final boolean contains(Object o) {
4547 return map.containsValue(o);
4548 }
4549
4550 public final boolean remove(Object o) {
4551 if (o != null) {
4552 for (Iterator<V> it = iterator(); it.hasNext();) {
4553 if (o.equals(it.next())) {
4554 it.remove();
4555 return true;
4556 }
4557 }
4558 }
4559 return false;
4560 }
4561
4562 public final Iterator<V> iterator() {
4563 ConcurrentHashMap<K,V> m = map;
4564 Node<K,V>[] t;
4565 int f = (t = m.table) == null ? 0 : t.length;
4566 return new ValueIterator<K,V>(t, f, 0, f, m);
4567 }
4568
4569 public final boolean add(V e) {
4570 throw new UnsupportedOperationException();
4571 }
4572 public final boolean addAll(Collection<? extends V> c) {
4573 throw new UnsupportedOperationException();
4574 }
4575
4576 public Spliterator<V> spliterator() {
4577 Node<K,V>[] t;
4578 ConcurrentHashMap<K,V> m = map;
4579 long n = m.sumCount();
4580 int f = (t = m.table) == null ? 0 : t.length;
4581 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4582 }
4583
4584 public void forEach(Consumer<? super V> action) {
4585 if (action == null) throw new NullPointerException();
4586 Node<K,V>[] t;
4587 if ((t = map.table) != null) {
4588 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4589 for (Node<K,V> p; (p = it.advance()) != null; )
4590 action.accept(p.val);
4591 }
4592 }
4593 }
4594
4595 /**
4596 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4597 * entries. This class cannot be directly instantiated. See
4598 * {@link #entrySet()}.
4599 */
4600 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4601 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4602 private static final long serialVersionUID = 2249069246763182397L;
4603 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4604
4605 public boolean contains(Object o) {
4606 Object k, v, r; Map.Entry<?,?> e;
4607 return ((o instanceof Map.Entry) &&
4608 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4609 (r = map.get(k)) != null &&
4610 (v = e.getValue()) != null &&
4611 (v == r || v.equals(r)));
4612 }
4613
4614 public boolean remove(Object o) {
4615 Object k, v; Map.Entry<?,?> e;
4616 return ((o instanceof Map.Entry) &&
4617 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4618 (v = e.getValue()) != null &&
4619 map.remove(k, v));
4620 }
4621
4622 /**
4623 * @return an iterator over the entries of the backing map
4624 */
4625 public Iterator<Map.Entry<K,V>> iterator() {
4626 ConcurrentHashMap<K,V> m = map;
4627 Node<K,V>[] t;
4628 int f = (t = m.table) == null ? 0 : t.length;
4629 return new EntryIterator<K,V>(t, f, 0, f, m);
4630 }
4631
4632 public boolean add(Entry<K,V> e) {
4633 return map.putVal(e.getKey(), e.getValue(), false) == null;
4634 }
4635
4636 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4637 boolean added = false;
4638 for (Entry<K,V> e : c) {
4639 if (add(e))
4640 added = true;
4641 }
4642 return added;
4643 }
4644
4645 public final int hashCode() {
4646 int h = 0;
4647 Node<K,V>[] t;
4648 if ((t = map.table) != null) {
4649 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4650 for (Node<K,V> p; (p = it.advance()) != null; ) {
4651 h += p.hashCode();
4652 }
4653 }
4654 return h;
4655 }
4656
4657 public final boolean equals(Object o) {
4658 Set<?> c;
4659 return ((o instanceof Set) &&
4660 ((c = (Set<?>)o) == this ||
4661 (containsAll(c) && c.containsAll(this))));
4662 }
4663
4664 public Spliterator<Map.Entry<K,V>> spliterator() {
4665 Node<K,V>[] t;
4666 ConcurrentHashMap<K,V> m = map;
4667 long n = m.sumCount();
4668 int f = (t = m.table) == null ? 0 : t.length;
4669 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4670 }
4671
4672 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4673 if (action == null) throw new NullPointerException();
4674 Node<K,V>[] t;
4675 if ((t = map.table) != null) {
4676 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4677 for (Node<K,V> p; (p = it.advance()) != null; )
4678 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4679 }
4680 }
4681
4682 }
4683
4684 // -------------------------------------------------------
4685
4686 /**
4687 * Base class for bulk tasks. Repeats some fields and code from
4688 * class Traverser, because we need to subclass CountedCompleter.
4689 */
4690 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4691 Node<K,V>[] tab; // same as Traverser
4692 Node<K,V> next;
4693 int index;
4694 int baseIndex;
4695 int baseLimit;
4696 final int baseSize;
4697 int batch; // split control
4698
4699 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4700 super(par);
4701 this.batch = b;
4702 this.index = this.baseIndex = i;
4703 if ((this.tab = t) == null)
4704 this.baseSize = this.baseLimit = 0;
4705 else if (par == null)
4706 this.baseSize = this.baseLimit = t.length;
4707 else {
4708 this.baseLimit = f;
4709 this.baseSize = par.baseSize;
4710 }
4711 }
4712
4713 /**
4714 * Same as Traverser version
4715 */
4716 final Node<K,V> advance() {
4717 Node<K,V> e;
4718 if ((e = next) != null)
4719 e = e.next;
4720 for (;;) {
4721 Node<K,V>[] t; int i, n; K ek; // must use locals in checks
4722 if (e != null)
4723 return next = e;
4724 if (baseIndex >= baseLimit || (t = tab) == null ||
4725 (n = t.length) <= (i = index) || i < 0)
4726 return next = null;
4727 if ((e = tabAt(t, index)) != null && e.hash < 0) {
4728 if (e instanceof ForwardingNode) {
4729 tab = ((ForwardingNode<K,V>)e).nextTable;
4730 e = null;
4731 continue;
4732 }
4733 else if (e instanceof TreeBin)
4734 e = ((TreeBin<K,V>)e).first;
4735 else
4736 e = null;
4737 }
4738 if ((index += baseSize) >= n)
4739 index = ++baseIndex; // visit upper slots if present
4740 }
4741 }
4742 }
4743
4744 /*
4745 * Task classes. Coded in a regular but ugly format/style to
4746 * simplify checks that each variant differs in the right way from
4747 * others. The null screenings exist because compilers cannot tell
4748 * that we've already null-checked task arguments, so we force
4749 * simplest hoisted bypass to help avoid convoluted traps.
4750 */
4751 @SuppressWarnings("serial")
4752 static final class ForEachKeyTask<K,V>
4753 extends BulkTask<K,V,Void> {
4754 final Consumer<? super K> action;
4755 ForEachKeyTask
4756 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4757 Consumer<? super K> action) {
4758 super(p, b, i, f, t);
4759 this.action = action;
4760 }
4761 public final void compute() {
4762 final Consumer<? super K> action;
4763 if ((action = this.action) != null) {
4764 for (int i = baseIndex, f, h; batch > 0 &&
4765 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4766 addToPendingCount(1);
4767 new ForEachKeyTask<K,V>
4768 (this, batch >>>= 1, baseLimit = h, f, tab,
4769 action).fork();
4770 }
4771 for (Node<K,V> p; (p = advance()) != null;)
4772 action.accept(p.key);
4773 propagateCompletion();
4774 }
4775 }
4776 }
4777
4778 @SuppressWarnings("serial")
4779 static final class ForEachValueTask<K,V>
4780 extends BulkTask<K,V,Void> {
4781 final Consumer<? super V> action;
4782 ForEachValueTask
4783 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4784 Consumer<? super V> action) {
4785 super(p, b, i, f, t);
4786 this.action = action;
4787 }
4788 public final void compute() {
4789 final Consumer<? super V> action;
4790 if ((action = this.action) != null) {
4791 for (int i = baseIndex, f, h; batch > 0 &&
4792 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4793 addToPendingCount(1);
4794 new ForEachValueTask<K,V>
4795 (this, batch >>>= 1, baseLimit = h, f, tab,
4796 action).fork();
4797 }
4798 for (Node<K,V> p; (p = advance()) != null;)
4799 action.accept(p.val);
4800 propagateCompletion();
4801 }
4802 }
4803 }
4804
4805 @SuppressWarnings("serial")
4806 static final class ForEachEntryTask<K,V>
4807 extends BulkTask<K,V,Void> {
4808 final Consumer<? super Entry<K,V>> action;
4809 ForEachEntryTask
4810 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4811 Consumer<? super Entry<K,V>> action) {
4812 super(p, b, i, f, t);
4813 this.action = action;
4814 }
4815 public final void compute() {
4816 final Consumer<? super Entry<K,V>> action;
4817 if ((action = this.action) != null) {
4818 for (int i = baseIndex, f, h; batch > 0 &&
4819 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4820 addToPendingCount(1);
4821 new ForEachEntryTask<K,V>
4822 (this, batch >>>= 1, baseLimit = h, f, tab,
4823 action).fork();
4824 }
4825 for (Node<K,V> p; (p = advance()) != null; )
4826 action.accept(p);
4827 propagateCompletion();
4828 }
4829 }
4830 }
4831
4832 @SuppressWarnings("serial")
4833 static final class ForEachMappingTask<K,V>
4834 extends BulkTask<K,V,Void> {
4835 final BiConsumer<? super K, ? super V> action;
4836 ForEachMappingTask
4837 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4838 BiConsumer<? super K,? super V> action) {
4839 super(p, b, i, f, t);
4840 this.action = action;
4841 }
4842 public final void compute() {
4843 final BiConsumer<? super K, ? super V> action;
4844 if ((action = this.action) != null) {
4845 for (int i = baseIndex, f, h; batch > 0 &&
4846 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4847 addToPendingCount(1);
4848 new ForEachMappingTask<K,V>
4849 (this, batch >>>= 1, baseLimit = h, f, tab,
4850 action).fork();
4851 }
4852 for (Node<K,V> p; (p = advance()) != null; )
4853 action.accept(p.key, p.val);
4854 propagateCompletion();
4855 }
4856 }
4857 }
4858
4859 @SuppressWarnings("serial")
4860 static final class ForEachTransformedKeyTask<K,V,U>
4861 extends BulkTask<K,V,Void> {
4862 final Function<? super K, ? extends U> transformer;
4863 final Consumer<? super U> action;
4864 ForEachTransformedKeyTask
4865 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4866 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4867 super(p, b, i, f, t);
4868 this.transformer = transformer; this.action = action;
4869 }
4870 public final void compute() {
4871 final Function<? super K, ? extends U> transformer;
4872 final Consumer<? super U> action;
4873 if ((transformer = this.transformer) != null &&
4874 (action = this.action) != null) {
4875 for (int i = baseIndex, f, h; batch > 0 &&
4876 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4877 addToPendingCount(1);
4878 new ForEachTransformedKeyTask<K,V,U>
4879 (this, batch >>>= 1, baseLimit = h, f, tab,
4880 transformer, action).fork();
4881 }
4882 for (Node<K,V> p; (p = advance()) != null; ) {
4883 U u;
4884 if ((u = transformer.apply(p.key)) != null)
4885 action.accept(u);
4886 }
4887 propagateCompletion();
4888 }
4889 }
4890 }
4891
4892 @SuppressWarnings("serial")
4893 static final class ForEachTransformedValueTask<K,V,U>
4894 extends BulkTask<K,V,Void> {
4895 final Function<? super V, ? extends U> transformer;
4896 final Consumer<? super U> action;
4897 ForEachTransformedValueTask
4898 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4899 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
4900 super(p, b, i, f, t);
4901 this.transformer = transformer; this.action = action;
4902 }
4903 public final void compute() {
4904 final Function<? super V, ? extends U> transformer;
4905 final Consumer<? super U> action;
4906 if ((transformer = this.transformer) != null &&
4907 (action = this.action) != null) {
4908 for (int i = baseIndex, f, h; batch > 0 &&
4909 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4910 addToPendingCount(1);
4911 new ForEachTransformedValueTask<K,V,U>
4912 (this, batch >>>= 1, baseLimit = h, f, tab,
4913 transformer, action).fork();
4914 }
4915 for (Node<K,V> p; (p = advance()) != null; ) {
4916 U u;
4917 if ((u = transformer.apply(p.val)) != null)
4918 action.accept(u);
4919 }
4920 propagateCompletion();
4921 }
4922 }
4923 }
4924
4925 @SuppressWarnings("serial")
4926 static final class ForEachTransformedEntryTask<K,V,U>
4927 extends BulkTask<K,V,Void> {
4928 final Function<Map.Entry<K,V>, ? extends U> transformer;
4929 final Consumer<? super U> action;
4930 ForEachTransformedEntryTask
4931 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4932 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
4933 super(p, b, i, f, t);
4934 this.transformer = transformer; this.action = action;
4935 }
4936 public final void compute() {
4937 final Function<Map.Entry<K,V>, ? extends U> transformer;
4938 final Consumer<? super U> action;
4939 if ((transformer = this.transformer) != null &&
4940 (action = this.action) != null) {
4941 for (int i = baseIndex, f, h; batch > 0 &&
4942 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4943 addToPendingCount(1);
4944 new ForEachTransformedEntryTask<K,V,U>
4945 (this, batch >>>= 1, baseLimit = h, f, tab,
4946 transformer, action).fork();
4947 }
4948 for (Node<K,V> p; (p = advance()) != null; ) {
4949 U u;
4950 if ((u = transformer.apply(p)) != null)
4951 action.accept(u);
4952 }
4953 propagateCompletion();
4954 }
4955 }
4956 }
4957
4958 @SuppressWarnings("serial")
4959 static final class ForEachTransformedMappingTask<K,V,U>
4960 extends BulkTask<K,V,Void> {
4961 final BiFunction<? super K, ? super V, ? extends U> transformer;
4962 final Consumer<? super U> action;
4963 ForEachTransformedMappingTask
4964 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4965 BiFunction<? super K, ? super V, ? extends U> transformer,
4966 Consumer<? super U> action) {
4967 super(p, b, i, f, t);
4968 this.transformer = transformer; this.action = action;
4969 }
4970 public final void compute() {
4971 final BiFunction<? super K, ? super V, ? extends U> transformer;
4972 final Consumer<? super U> action;
4973 if ((transformer = this.transformer) != null &&
4974 (action = this.action) != null) {
4975 for (int i = baseIndex, f, h; batch > 0 &&
4976 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4977 addToPendingCount(1);
4978 new ForEachTransformedMappingTask<K,V,U>
4979 (this, batch >>>= 1, baseLimit = h, f, tab,
4980 transformer, action).fork();
4981 }
4982 for (Node<K,V> p; (p = advance()) != null; ) {
4983 U u;
4984 if ((u = transformer.apply(p.key, p.val)) != null)
4985 action.accept(u);
4986 }
4987 propagateCompletion();
4988 }
4989 }
4990 }
4991
4992 @SuppressWarnings("serial")
4993 static final class SearchKeysTask<K,V,U>
4994 extends BulkTask<K,V,U> {
4995 final Function<? super K, ? extends U> searchFunction;
4996 final AtomicReference<U> result;
4997 SearchKeysTask
4998 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4999 Function<? super K, ? extends U> searchFunction,
5000 AtomicReference<U> result) {
5001 super(p, b, i, f, t);
5002 this.searchFunction = searchFunction; this.result = result;
5003 }
5004 public final U getRawResult() { return result.get(); }
5005 public final void compute() {
5006 final Function<? super K, ? extends U> searchFunction;
5007 final AtomicReference<U> result;
5008 if ((searchFunction = this.searchFunction) != null &&
5009 (result = this.result) != null) {
5010 for (int i = baseIndex, f, h; batch > 0 &&
5011 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5012 if (result.get() != null)
5013 return;
5014 addToPendingCount(1);
5015 new SearchKeysTask<K,V,U>
5016 (this, batch >>>= 1, baseLimit = h, f, tab,
5017 searchFunction, result).fork();
5018 }
5019 while (result.get() == null) {
5020 U u;
5021 Node<K,V> p;
5022 if ((p = advance()) == null) {
5023 propagateCompletion();
5024 break;
5025 }
5026 if ((u = searchFunction.apply(p.key)) != null) {
5027 if (result.compareAndSet(null, u))
5028 quietlyCompleteRoot();
5029 break;
5030 }
5031 }
5032 }
5033 }
5034 }
5035
5036 @SuppressWarnings("serial")
5037 static final class SearchValuesTask<K,V,U>
5038 extends BulkTask<K,V,U> {
5039 final Function<? super V, ? extends U> searchFunction;
5040 final AtomicReference<U> result;
5041 SearchValuesTask
5042 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5043 Function<? super V, ? extends U> searchFunction,
5044 AtomicReference<U> result) {
5045 super(p, b, i, f, t);
5046 this.searchFunction = searchFunction; this.result = result;
5047 }
5048 public final U getRawResult() { return result.get(); }
5049 public final void compute() {
5050 final Function<? super V, ? extends U> searchFunction;
5051 final AtomicReference<U> result;
5052 if ((searchFunction = this.searchFunction) != null &&
5053 (result = this.result) != null) {
5054 for (int i = baseIndex, f, h; batch > 0 &&
5055 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5056 if (result.get() != null)
5057 return;
5058 addToPendingCount(1);
5059 new SearchValuesTask<K,V,U>
5060 (this, batch >>>= 1, baseLimit = h, f, tab,
5061 searchFunction, result).fork();
5062 }
5063 while (result.get() == null) {
5064 U u;
5065 Node<K,V> p;
5066 if ((p = advance()) == null) {
5067 propagateCompletion();
5068 break;
5069 }
5070 if ((u = searchFunction.apply(p.val)) != null) {
5071 if (result.compareAndSet(null, u))
5072 quietlyCompleteRoot();
5073 break;
5074 }
5075 }
5076 }
5077 }
5078 }
5079
5080 @SuppressWarnings("serial")
5081 static final class SearchEntriesTask<K,V,U>
5082 extends BulkTask<K,V,U> {
5083 final Function<Entry<K,V>, ? extends U> searchFunction;
5084 final AtomicReference<U> result;
5085 SearchEntriesTask
5086 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5087 Function<Entry<K,V>, ? extends U> searchFunction,
5088 AtomicReference<U> result) {
5089 super(p, b, i, f, t);
5090 this.searchFunction = searchFunction; this.result = result;
5091 }
5092 public final U getRawResult() { return result.get(); }
5093 public final void compute() {
5094 final Function<Entry<K,V>, ? extends U> searchFunction;
5095 final AtomicReference<U> result;
5096 if ((searchFunction = this.searchFunction) != null &&
5097 (result = this.result) != null) {
5098 for (int i = baseIndex, f, h; batch > 0 &&
5099 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5100 if (result.get() != null)
5101 return;
5102 addToPendingCount(1);
5103 new SearchEntriesTask<K,V,U>
5104 (this, batch >>>= 1, baseLimit = h, f, tab,
5105 searchFunction, result).fork();
5106 }
5107 while (result.get() == null) {
5108 U u;
5109 Node<K,V> p;
5110 if ((p = advance()) == null) {
5111 propagateCompletion();
5112 break;
5113 }
5114 if ((u = searchFunction.apply(p)) != null) {
5115 if (result.compareAndSet(null, u))
5116 quietlyCompleteRoot();
5117 return;
5118 }
5119 }
5120 }
5121 }
5122 }
5123
5124 @SuppressWarnings("serial")
5125 static final class SearchMappingsTask<K,V,U>
5126 extends BulkTask<K,V,U> {
5127 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5128 final AtomicReference<U> result;
5129 SearchMappingsTask
5130 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5131 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5132 AtomicReference<U> result) {
5133 super(p, b, i, f, t);
5134 this.searchFunction = searchFunction; this.result = result;
5135 }
5136 public final U getRawResult() { return result.get(); }
5137 public final void compute() {
5138 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5139 final AtomicReference<U> result;
5140 if ((searchFunction = this.searchFunction) != null &&
5141 (result = this.result) != null) {
5142 for (int i = baseIndex, f, h; batch > 0 &&
5143 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5144 if (result.get() != null)
5145 return;
5146 addToPendingCount(1);
5147 new SearchMappingsTask<K,V,U>
5148 (this, batch >>>= 1, baseLimit = h, f, tab,
5149 searchFunction, result).fork();
5150 }
5151 while (result.get() == null) {
5152 U u;
5153 Node<K,V> p;
5154 if ((p = advance()) == null) {
5155 propagateCompletion();
5156 break;
5157 }
5158 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5159 if (result.compareAndSet(null, u))
5160 quietlyCompleteRoot();
5161 break;
5162 }
5163 }
5164 }
5165 }
5166 }
5167
5168 @SuppressWarnings("serial")
5169 static final class ReduceKeysTask<K,V>
5170 extends BulkTask<K,V,K> {
5171 final BiFunction<? super K, ? super K, ? extends K> reducer;
5172 K result;
5173 ReduceKeysTask<K,V> rights, nextRight;
5174 ReduceKeysTask
5175 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5176 ReduceKeysTask<K,V> nextRight,
5177 BiFunction<? super K, ? super K, ? extends K> reducer) {
5178 super(p, b, i, f, t); this.nextRight = nextRight;
5179 this.reducer = reducer;
5180 }
5181 public final K getRawResult() { return result; }
5182 public final void compute() {
5183 final BiFunction<? super K, ? super K, ? extends K> reducer;
5184 if ((reducer = this.reducer) != null) {
5185 for (int i = baseIndex, f, h; batch > 0 &&
5186 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5187 addToPendingCount(1);
5188 (rights = new ReduceKeysTask<K,V>
5189 (this, batch >>>= 1, baseLimit = h, f, tab,
5190 rights, reducer)).fork();
5191 }
5192 K r = null;
5193 for (Node<K,V> p; (p = advance()) != null; ) {
5194 K u = p.key;
5195 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5196 }
5197 result = r;
5198 CountedCompleter<?> c;
5199 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5200 @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5201 t = (ReduceKeysTask<K,V>)c,
5202 s = t.rights;
5203 while (s != null) {
5204 K tr, sr;
5205 if ((sr = s.result) != null)
5206 t.result = (((tr = t.result) == null) ? sr :
5207 reducer.apply(tr, sr));
5208 s = t.rights = s.nextRight;
5209 }
5210 }
5211 }
5212 }
5213 }
5214
5215 @SuppressWarnings("serial")
5216 static final class ReduceValuesTask<K,V>
5217 extends BulkTask<K,V,V> {
5218 final BiFunction<? super V, ? super V, ? extends V> reducer;
5219 V result;
5220 ReduceValuesTask<K,V> rights, nextRight;
5221 ReduceValuesTask
5222 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5223 ReduceValuesTask<K,V> nextRight,
5224 BiFunction<? super V, ? super V, ? extends V> reducer) {
5225 super(p, b, i, f, t); this.nextRight = nextRight;
5226 this.reducer = reducer;
5227 }
5228 public final V getRawResult() { return result; }
5229 public final void compute() {
5230 final BiFunction<? super V, ? super V, ? extends V> reducer;
5231 if ((reducer = this.reducer) != null) {
5232 for (int i = baseIndex, f, h; batch > 0 &&
5233 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5234 addToPendingCount(1);
5235 (rights = new ReduceValuesTask<K,V>
5236 (this, batch >>>= 1, baseLimit = h, f, tab,
5237 rights, reducer)).fork();
5238 }
5239 V r = null;
5240 for (Node<K,V> p; (p = advance()) != null; ) {
5241 V v = p.val;
5242 r = (r == null) ? v : reducer.apply(r, v);
5243 }
5244 result = r;
5245 CountedCompleter<?> c;
5246 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5247 @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5248 t = (ReduceValuesTask<K,V>)c,
5249 s = t.rights;
5250 while (s != null) {
5251 V tr, sr;
5252 if ((sr = s.result) != null)
5253 t.result = (((tr = t.result) == null) ? sr :
5254 reducer.apply(tr, sr));
5255 s = t.rights = s.nextRight;
5256 }
5257 }
5258 }
5259 }
5260 }
5261
5262 @SuppressWarnings("serial")
5263 static final class ReduceEntriesTask<K,V>
5264 extends BulkTask<K,V,Map.Entry<K,V>> {
5265 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5266 Map.Entry<K,V> result;
5267 ReduceEntriesTask<K,V> rights, nextRight;
5268 ReduceEntriesTask
5269 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5270 ReduceEntriesTask<K,V> nextRight,
5271 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5272 super(p, b, i, f, t); this.nextRight = nextRight;
5273 this.reducer = reducer;
5274 }
5275 public final Map.Entry<K,V> getRawResult() { return result; }
5276 public final void compute() {
5277 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5278 if ((reducer = this.reducer) != null) {
5279 for (int i = baseIndex, f, h; batch > 0 &&
5280 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5281 addToPendingCount(1);
5282 (rights = new ReduceEntriesTask<K,V>
5283 (this, batch >>>= 1, baseLimit = h, f, tab,
5284 rights, reducer)).fork();
5285 }
5286 Map.Entry<K,V> r = null;
5287 for (Node<K,V> p; (p = advance()) != null; )
5288 r = (r == null) ? p : reducer.apply(r, p);
5289 result = r;
5290 CountedCompleter<?> c;
5291 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5292 @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5293 t = (ReduceEntriesTask<K,V>)c,
5294 s = t.rights;
5295 while (s != null) {
5296 Map.Entry<K,V> tr, sr;
5297 if ((sr = s.result) != null)
5298 t.result = (((tr = t.result) == null) ? sr :
5299 reducer.apply(tr, sr));
5300 s = t.rights = s.nextRight;
5301 }
5302 }
5303 }
5304 }
5305 }
5306
5307 @SuppressWarnings("serial")
5308 static final class MapReduceKeysTask<K,V,U>
5309 extends BulkTask<K,V,U> {
5310 final Function<? super K, ? extends U> transformer;
5311 final BiFunction<? super U, ? super U, ? extends U> reducer;
5312 U result;
5313 MapReduceKeysTask<K,V,U> rights, nextRight;
5314 MapReduceKeysTask
5315 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5316 MapReduceKeysTask<K,V,U> nextRight,
5317 Function<? super K, ? extends U> transformer,
5318 BiFunction<? super U, ? super U, ? extends U> reducer) {
5319 super(p, b, i, f, t); this.nextRight = nextRight;
5320 this.transformer = transformer;
5321 this.reducer = reducer;
5322 }
5323 public final U getRawResult() { return result; }
5324 public final void compute() {
5325 final Function<? super K, ? extends U> transformer;
5326 final BiFunction<? super U, ? super U, ? extends U> reducer;
5327 if ((transformer = this.transformer) != null &&
5328 (reducer = this.reducer) != null) {
5329 for (int i = baseIndex, f, h; batch > 0 &&
5330 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5331 addToPendingCount(1);
5332 (rights = new MapReduceKeysTask<K,V,U>
5333 (this, batch >>>= 1, baseLimit = h, f, tab,
5334 rights, transformer, reducer)).fork();
5335 }
5336 U r = null;
5337 for (Node<K,V> p; (p = advance()) != null; ) {
5338 U u;
5339 if ((u = transformer.apply(p.key)) != null)
5340 r = (r == null) ? u : reducer.apply(r, u);
5341 }
5342 result = r;
5343 CountedCompleter<?> c;
5344 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5345 @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5346 t = (MapReduceKeysTask<K,V,U>)c,
5347 s = t.rights;
5348 while (s != null) {
5349 U tr, sr;
5350 if ((sr = s.result) != null)
5351 t.result = (((tr = t.result) == null) ? sr :
5352 reducer.apply(tr, sr));
5353 s = t.rights = s.nextRight;
5354 }
5355 }
5356 }
5357 }
5358 }
5359
5360 @SuppressWarnings("serial")
5361 static final class MapReduceValuesTask<K,V,U>
5362 extends BulkTask<K,V,U> {
5363 final Function<? super V, ? extends U> transformer;
5364 final BiFunction<? super U, ? super U, ? extends U> reducer;
5365 U result;
5366 MapReduceValuesTask<K,V,U> rights, nextRight;
5367 MapReduceValuesTask
5368 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5369 MapReduceValuesTask<K,V,U> nextRight,
5370 Function<? super V, ? extends U> transformer,
5371 BiFunction<? super U, ? super U, ? extends U> reducer) {
5372 super(p, b, i, f, t); this.nextRight = nextRight;
5373 this.transformer = transformer;
5374 this.reducer = reducer;
5375 }
5376 public final U getRawResult() { return result; }
5377 public final void compute() {
5378 final Function<? super V, ? extends U> transformer;
5379 final BiFunction<? super U, ? super U, ? extends U> reducer;
5380 if ((transformer = this.transformer) != null &&
5381 (reducer = this.reducer) != null) {
5382 for (int i = baseIndex, f, h; batch > 0 &&
5383 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5384 addToPendingCount(1);
5385 (rights = new MapReduceValuesTask<K,V,U>
5386 (this, batch >>>= 1, baseLimit = h, f, tab,
5387 rights, transformer, reducer)).fork();
5388 }
5389 U r = null;
5390 for (Node<K,V> p; (p = advance()) != null; ) {
5391 U u;
5392 if ((u = transformer.apply(p.val)) != null)
5393 r = (r == null) ? u : reducer.apply(r, u);
5394 }
5395 result = r;
5396 CountedCompleter<?> c;
5397 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5398 @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5399 t = (MapReduceValuesTask<K,V,U>)c,
5400 s = t.rights;
5401 while (s != null) {
5402 U tr, sr;
5403 if ((sr = s.result) != null)
5404 t.result = (((tr = t.result) == null) ? sr :
5405 reducer.apply(tr, sr));
5406 s = t.rights = s.nextRight;
5407 }
5408 }
5409 }
5410 }
5411 }
5412
5413 @SuppressWarnings("serial")
5414 static final class MapReduceEntriesTask<K,V,U>
5415 extends BulkTask<K,V,U> {
5416 final Function<Map.Entry<K,V>, ? extends U> transformer;
5417 final BiFunction<? super U, ? super U, ? extends U> reducer;
5418 U result;
5419 MapReduceEntriesTask<K,V,U> rights, nextRight;
5420 MapReduceEntriesTask
5421 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5422 MapReduceEntriesTask<K,V,U> nextRight,
5423 Function<Map.Entry<K,V>, ? extends U> transformer,
5424 BiFunction<? super U, ? super U, ? extends U> reducer) {
5425 super(p, b, i, f, t); this.nextRight = nextRight;
5426 this.transformer = transformer;
5427 this.reducer = reducer;
5428 }
5429 public final U getRawResult() { return result; }
5430 public final void compute() {
5431 final Function<Map.Entry<K,V>, ? extends U> transformer;
5432 final BiFunction<? super U, ? super U, ? extends U> reducer;
5433 if ((transformer = this.transformer) != null &&
5434 (reducer = this.reducer) != null) {
5435 for (int i = baseIndex, f, h; batch > 0 &&
5436 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5437 addToPendingCount(1);
5438 (rights = new MapReduceEntriesTask<K,V,U>
5439 (this, batch >>>= 1, baseLimit = h, f, tab,
5440 rights, transformer, reducer)).fork();
5441 }
5442 U r = null;
5443 for (Node<K,V> p; (p = advance()) != null; ) {
5444 U u;
5445 if ((u = transformer.apply(p)) != null)
5446 r = (r == null) ? u : reducer.apply(r, u);
5447 }
5448 result = r;
5449 CountedCompleter<?> c;
5450 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5451 @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5452 t = (MapReduceEntriesTask<K,V,U>)c,
5453 s = t.rights;
5454 while (s != null) {
5455 U tr, sr;
5456 if ((sr = s.result) != null)
5457 t.result = (((tr = t.result) == null) ? sr :
5458 reducer.apply(tr, sr));
5459 s = t.rights = s.nextRight;
5460 }
5461 }
5462 }
5463 }
5464 }
5465
5466 @SuppressWarnings("serial")
5467 static final class MapReduceMappingsTask<K,V,U>
5468 extends BulkTask<K,V,U> {
5469 final BiFunction<? super K, ? super V, ? extends U> transformer;
5470 final BiFunction<? super U, ? super U, ? extends U> reducer;
5471 U result;
5472 MapReduceMappingsTask<K,V,U> rights, nextRight;
5473 MapReduceMappingsTask
5474 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5475 MapReduceMappingsTask<K,V,U> nextRight,
5476 BiFunction<? super K, ? super V, ? extends U> transformer,
5477 BiFunction<? super U, ? super U, ? extends U> reducer) {
5478 super(p, b, i, f, t); this.nextRight = nextRight;
5479 this.transformer = transformer;
5480 this.reducer = reducer;
5481 }
5482 public final U getRawResult() { return result; }
5483 public final void compute() {
5484 final BiFunction<? super K, ? super V, ? extends U> transformer;
5485 final BiFunction<? super U, ? super U, ? extends U> reducer;
5486 if ((transformer = this.transformer) != null &&
5487 (reducer = this.reducer) != null) {
5488 for (int i = baseIndex, f, h; batch > 0 &&
5489 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5490 addToPendingCount(1);
5491 (rights = new MapReduceMappingsTask<K,V,U>
5492 (this, batch >>>= 1, baseLimit = h, f, tab,
5493 rights, transformer, reducer)).fork();
5494 }
5495 U r = null;
5496 for (Node<K,V> p; (p = advance()) != null; ) {
5497 U u;
5498 if ((u = transformer.apply(p.key, p.val)) != null)
5499 r = (r == null) ? u : reducer.apply(r, u);
5500 }
5501 result = r;
5502 CountedCompleter<?> c;
5503 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5504 @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5505 t = (MapReduceMappingsTask<K,V,U>)c,
5506 s = t.rights;
5507 while (s != null) {
5508 U tr, sr;
5509 if ((sr = s.result) != null)
5510 t.result = (((tr = t.result) == null) ? sr :
5511 reducer.apply(tr, sr));
5512 s = t.rights = s.nextRight;
5513 }
5514 }
5515 }
5516 }
5517 }
5518
5519 @SuppressWarnings("serial")
5520 static final class MapReduceKeysToDoubleTask<K,V>
5521 extends BulkTask<K,V,Double> {
5522 final ToDoubleFunction<? super K> transformer;
5523 final DoubleBinaryOperator reducer;
5524 final double basis;
5525 double result;
5526 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5527 MapReduceKeysToDoubleTask
5528 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5529 MapReduceKeysToDoubleTask<K,V> nextRight,
5530 ToDoubleFunction<? super K> transformer,
5531 double basis,
5532 DoubleBinaryOperator reducer) {
5533 super(p, b, i, f, t); this.nextRight = nextRight;
5534 this.transformer = transformer;
5535 this.basis = basis; this.reducer = reducer;
5536 }
5537 public final Double getRawResult() { return result; }
5538 public final void compute() {
5539 final ToDoubleFunction<? super K> transformer;
5540 final DoubleBinaryOperator reducer;
5541 if ((transformer = this.transformer) != null &&
5542 (reducer = this.reducer) != null) {
5543 double r = this.basis;
5544 for (int i = baseIndex, f, h; batch > 0 &&
5545 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5546 addToPendingCount(1);
5547 (rights = new MapReduceKeysToDoubleTask<K,V>
5548 (this, batch >>>= 1, baseLimit = h, f, tab,
5549 rights, transformer, r, reducer)).fork();
5550 }
5551 for (Node<K,V> p; (p = advance()) != null; )
5552 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5553 result = r;
5554 CountedCompleter<?> c;
5555 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5556 @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5557 t = (MapReduceKeysToDoubleTask<K,V>)c,
5558 s = t.rights;
5559 while (s != null) {
5560 t.result = reducer.applyAsDouble(t.result, s.result);
5561 s = t.rights = s.nextRight;
5562 }
5563 }
5564 }
5565 }
5566 }
5567
5568 @SuppressWarnings("serial")
5569 static final class MapReduceValuesToDoubleTask<K,V>
5570 extends BulkTask<K,V,Double> {
5571 final ToDoubleFunction<? super V> transformer;
5572 final DoubleBinaryOperator reducer;
5573 final double basis;
5574 double result;
5575 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5576 MapReduceValuesToDoubleTask
5577 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5578 MapReduceValuesToDoubleTask<K,V> nextRight,
5579 ToDoubleFunction<? super V> transformer,
5580 double basis,
5581 DoubleBinaryOperator reducer) {
5582 super(p, b, i, f, t); this.nextRight = nextRight;
5583 this.transformer = transformer;
5584 this.basis = basis; this.reducer = reducer;
5585 }
5586 public final Double getRawResult() { return result; }
5587 public final void compute() {
5588 final ToDoubleFunction<? super V> transformer;
5589 final DoubleBinaryOperator reducer;
5590 if ((transformer = this.transformer) != null &&
5591 (reducer = this.reducer) != null) {
5592 double r = this.basis;
5593 for (int i = baseIndex, f, h; batch > 0 &&
5594 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5595 addToPendingCount(1);
5596 (rights = new MapReduceValuesToDoubleTask<K,V>
5597 (this, batch >>>= 1, baseLimit = h, f, tab,
5598 rights, transformer, r, reducer)).fork();
5599 }
5600 for (Node<K,V> p; (p = advance()) != null; )
5601 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5602 result = r;
5603 CountedCompleter<?> c;
5604 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5605 @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5606 t = (MapReduceValuesToDoubleTask<K,V>)c,
5607 s = t.rights;
5608 while (s != null) {
5609 t.result = reducer.applyAsDouble(t.result, s.result);
5610 s = t.rights = s.nextRight;
5611 }
5612 }
5613 }
5614 }
5615 }
5616
5617 @SuppressWarnings("serial")
5618 static final class MapReduceEntriesToDoubleTask<K,V>
5619 extends BulkTask<K,V,Double> {
5620 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5621 final DoubleBinaryOperator reducer;
5622 final double basis;
5623 double result;
5624 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5625 MapReduceEntriesToDoubleTask
5626 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5627 MapReduceEntriesToDoubleTask<K,V> nextRight,
5628 ToDoubleFunction<Map.Entry<K,V>> transformer,
5629 double basis,
5630 DoubleBinaryOperator reducer) {
5631 super(p, b, i, f, t); this.nextRight = nextRight;
5632 this.transformer = transformer;
5633 this.basis = basis; this.reducer = reducer;
5634 }
5635 public final Double getRawResult() { return result; }
5636 public final void compute() {
5637 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5638 final DoubleBinaryOperator reducer;
5639 if ((transformer = this.transformer) != null &&
5640 (reducer = this.reducer) != null) {
5641 double r = this.basis;
5642 for (int i = baseIndex, f, h; batch > 0 &&
5643 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5644 addToPendingCount(1);
5645 (rights = new MapReduceEntriesToDoubleTask<K,V>
5646 (this, batch >>>= 1, baseLimit = h, f, tab,
5647 rights, transformer, r, reducer)).fork();
5648 }
5649 for (Node<K,V> p; (p = advance()) != null; )
5650 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5651 result = r;
5652 CountedCompleter<?> c;
5653 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5654 @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5655 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5656 s = t.rights;
5657 while (s != null) {
5658 t.result = reducer.applyAsDouble(t.result, s.result);
5659 s = t.rights = s.nextRight;
5660 }
5661 }
5662 }
5663 }
5664 }
5665
5666 @SuppressWarnings("serial")
5667 static final class MapReduceMappingsToDoubleTask<K,V>
5668 extends BulkTask<K,V,Double> {
5669 final ToDoubleBiFunction<? super K, ? super V> transformer;
5670 final DoubleBinaryOperator reducer;
5671 final double basis;
5672 double result;
5673 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5674 MapReduceMappingsToDoubleTask
5675 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5676 MapReduceMappingsToDoubleTask<K,V> nextRight,
5677 ToDoubleBiFunction<? super K, ? super V> transformer,
5678 double basis,
5679 DoubleBinaryOperator reducer) {
5680 super(p, b, i, f, t); this.nextRight = nextRight;
5681 this.transformer = transformer;
5682 this.basis = basis; this.reducer = reducer;
5683 }
5684 public final Double getRawResult() { return result; }
5685 public final void compute() {
5686 final ToDoubleBiFunction<? super K, ? super V> transformer;
5687 final DoubleBinaryOperator reducer;
5688 if ((transformer = this.transformer) != null &&
5689 (reducer = this.reducer) != null) {
5690 double r = this.basis;
5691 for (int i = baseIndex, f, h; batch > 0 &&
5692 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5693 addToPendingCount(1);
5694 (rights = new MapReduceMappingsToDoubleTask<K,V>
5695 (this, batch >>>= 1, baseLimit = h, f, tab,
5696 rights, transformer, r, reducer)).fork();
5697 }
5698 for (Node<K,V> p; (p = advance()) != null; )
5699 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5700 result = r;
5701 CountedCompleter<?> c;
5702 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5703 @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5704 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5705 s = t.rights;
5706 while (s != null) {
5707 t.result = reducer.applyAsDouble(t.result, s.result);
5708 s = t.rights = s.nextRight;
5709 }
5710 }
5711 }
5712 }
5713 }
5714
5715 @SuppressWarnings("serial")
5716 static final class MapReduceKeysToLongTask<K,V>
5717 extends BulkTask<K,V,Long> {
5718 final ToLongFunction<? super K> transformer;
5719 final LongBinaryOperator reducer;
5720 final long basis;
5721 long result;
5722 MapReduceKeysToLongTask<K,V> rights, nextRight;
5723 MapReduceKeysToLongTask
5724 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5725 MapReduceKeysToLongTask<K,V> nextRight,
5726 ToLongFunction<? super K> transformer,
5727 long basis,
5728 LongBinaryOperator reducer) {
5729 super(p, b, i, f, t); this.nextRight = nextRight;
5730 this.transformer = transformer;
5731 this.basis = basis; this.reducer = reducer;
5732 }
5733 public final Long getRawResult() { return result; }
5734 public final void compute() {
5735 final ToLongFunction<? super K> transformer;
5736 final LongBinaryOperator reducer;
5737 if ((transformer = this.transformer) != null &&
5738 (reducer = this.reducer) != null) {
5739 long r = this.basis;
5740 for (int i = baseIndex, f, h; batch > 0 &&
5741 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5742 addToPendingCount(1);
5743 (rights = new MapReduceKeysToLongTask<K,V>
5744 (this, batch >>>= 1, baseLimit = h, f, tab,
5745 rights, transformer, r, reducer)).fork();
5746 }
5747 for (Node<K,V> p; (p = advance()) != null; )
5748 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5749 result = r;
5750 CountedCompleter<?> c;
5751 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5752 @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5753 t = (MapReduceKeysToLongTask<K,V>)c,
5754 s = t.rights;
5755 while (s != null) {
5756 t.result = reducer.applyAsLong(t.result, s.result);
5757 s = t.rights = s.nextRight;
5758 }
5759 }
5760 }
5761 }
5762 }
5763
5764 @SuppressWarnings("serial")
5765 static final class MapReduceValuesToLongTask<K,V>
5766 extends BulkTask<K,V,Long> {
5767 final ToLongFunction<? super V> transformer;
5768 final LongBinaryOperator reducer;
5769 final long basis;
5770 long result;
5771 MapReduceValuesToLongTask<K,V> rights, nextRight;
5772 MapReduceValuesToLongTask
5773 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5774 MapReduceValuesToLongTask<K,V> nextRight,
5775 ToLongFunction<? super V> transformer,
5776 long basis,
5777 LongBinaryOperator reducer) {
5778 super(p, b, i, f, t); this.nextRight = nextRight;
5779 this.transformer = transformer;
5780 this.basis = basis; this.reducer = reducer;
5781 }
5782 public final Long getRawResult() { return result; }
5783 public final void compute() {
5784 final ToLongFunction<? super V> transformer;
5785 final LongBinaryOperator reducer;
5786 if ((transformer = this.transformer) != null &&
5787 (reducer = this.reducer) != null) {
5788 long r = this.basis;
5789 for (int i = baseIndex, f, h; batch > 0 &&
5790 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5791 addToPendingCount(1);
5792 (rights = new MapReduceValuesToLongTask<K,V>
5793 (this, batch >>>= 1, baseLimit = h, f, tab,
5794 rights, transformer, r, reducer)).fork();
5795 }
5796 for (Node<K,V> p; (p = advance()) != null; )
5797 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5798 result = r;
5799 CountedCompleter<?> c;
5800 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5801 @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5802 t = (MapReduceValuesToLongTask<K,V>)c,
5803 s = t.rights;
5804 while (s != null) {
5805 t.result = reducer.applyAsLong(t.result, s.result);
5806 s = t.rights = s.nextRight;
5807 }
5808 }
5809 }
5810 }
5811 }
5812
5813 @SuppressWarnings("serial")
5814 static final class MapReduceEntriesToLongTask<K,V>
5815 extends BulkTask<K,V,Long> {
5816 final ToLongFunction<Map.Entry<K,V>> transformer;
5817 final LongBinaryOperator reducer;
5818 final long basis;
5819 long result;
5820 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5821 MapReduceEntriesToLongTask
5822 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5823 MapReduceEntriesToLongTask<K,V> nextRight,
5824 ToLongFunction<Map.Entry<K,V>> transformer,
5825 long basis,
5826 LongBinaryOperator reducer) {
5827 super(p, b, i, f, t); this.nextRight = nextRight;
5828 this.transformer = transformer;
5829 this.basis = basis; this.reducer = reducer;
5830 }
5831 public final Long getRawResult() { return result; }
5832 public final void compute() {
5833 final ToLongFunction<Map.Entry<K,V>> transformer;
5834 final LongBinaryOperator reducer;
5835 if ((transformer = this.transformer) != null &&
5836 (reducer = this.reducer) != null) {
5837 long r = this.basis;
5838 for (int i = baseIndex, f, h; batch > 0 &&
5839 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5840 addToPendingCount(1);
5841 (rights = new MapReduceEntriesToLongTask<K,V>
5842 (this, batch >>>= 1, baseLimit = h, f, tab,
5843 rights, transformer, r, reducer)).fork();
5844 }
5845 for (Node<K,V> p; (p = advance()) != null; )
5846 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5847 result = r;
5848 CountedCompleter<?> c;
5849 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5850 @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5851 t = (MapReduceEntriesToLongTask<K,V>)c,
5852 s = t.rights;
5853 while (s != null) {
5854 t.result = reducer.applyAsLong(t.result, s.result);
5855 s = t.rights = s.nextRight;
5856 }
5857 }
5858 }
5859 }
5860 }
5861
5862 @SuppressWarnings("serial")
5863 static final class MapReduceMappingsToLongTask<K,V>
5864 extends BulkTask<K,V,Long> {
5865 final ToLongBiFunction<? super K, ? super V> transformer;
5866 final LongBinaryOperator reducer;
5867 final long basis;
5868 long result;
5869 MapReduceMappingsToLongTask<K,V> rights, nextRight;
5870 MapReduceMappingsToLongTask
5871 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5872 MapReduceMappingsToLongTask<K,V> nextRight,
5873 ToLongBiFunction<? super K, ? super V> transformer,
5874 long basis,
5875 LongBinaryOperator reducer) {
5876 super(p, b, i, f, t); this.nextRight = nextRight;
5877 this.transformer = transformer;
5878 this.basis = basis; this.reducer = reducer;
5879 }
5880 public final Long getRawResult() { return result; }
5881 public final void compute() {
5882 final ToLongBiFunction<? super K, ? super V> transformer;
5883 final LongBinaryOperator reducer;
5884 if ((transformer = this.transformer) != null &&
5885 (reducer = this.reducer) != null) {
5886 long r = this.basis;
5887 for (int i = baseIndex, f, h; batch > 0 &&
5888 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5889 addToPendingCount(1);
5890 (rights = new MapReduceMappingsToLongTask<K,V>
5891 (this, batch >>>= 1, baseLimit = h, f, tab,
5892 rights, transformer, r, reducer)).fork();
5893 }
5894 for (Node<K,V> p; (p = advance()) != null; )
5895 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
5896 result = r;
5897 CountedCompleter<?> c;
5898 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5899 @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5900 t = (MapReduceMappingsToLongTask<K,V>)c,
5901 s = t.rights;
5902 while (s != null) {
5903 t.result = reducer.applyAsLong(t.result, s.result);
5904 s = t.rights = s.nextRight;
5905 }
5906 }
5907 }
5908 }
5909 }
5910
5911 @SuppressWarnings("serial")
5912 static final class MapReduceKeysToIntTask<K,V>
5913 extends BulkTask<K,V,Integer> {
5914 final ToIntFunction<? super K> transformer;
5915 final IntBinaryOperator reducer;
5916 final int basis;
5917 int result;
5918 MapReduceKeysToIntTask<K,V> rights, nextRight;
5919 MapReduceKeysToIntTask
5920 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5921 MapReduceKeysToIntTask<K,V> nextRight,
5922 ToIntFunction<? super K> transformer,
5923 int basis,
5924 IntBinaryOperator reducer) {
5925 super(p, b, i, f, t); this.nextRight = nextRight;
5926 this.transformer = transformer;
5927 this.basis = basis; this.reducer = reducer;
5928 }
5929 public final Integer getRawResult() { return result; }
5930 public final void compute() {
5931 final ToIntFunction<? super K> transformer;
5932 final IntBinaryOperator reducer;
5933 if ((transformer = this.transformer) != null &&
5934 (reducer = this.reducer) != null) {
5935 int r = this.basis;
5936 for (int i = baseIndex, f, h; batch > 0 &&
5937 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5938 addToPendingCount(1);
5939 (rights = new MapReduceKeysToIntTask<K,V>
5940 (this, batch >>>= 1, baseLimit = h, f, tab,
5941 rights, transformer, r, reducer)).fork();
5942 }
5943 for (Node<K,V> p; (p = advance()) != null; )
5944 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
5945 result = r;
5946 CountedCompleter<?> c;
5947 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5948 @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5949 t = (MapReduceKeysToIntTask<K,V>)c,
5950 s = t.rights;
5951 while (s != null) {
5952 t.result = reducer.applyAsInt(t.result, s.result);
5953 s = t.rights = s.nextRight;
5954 }
5955 }
5956 }
5957 }
5958 }
5959
5960 @SuppressWarnings("serial")
5961 static final class MapReduceValuesToIntTask<K,V>
5962 extends BulkTask<K,V,Integer> {
5963 final ToIntFunction<? super V> transformer;
5964 final IntBinaryOperator reducer;
5965 final int basis;
5966 int result;
5967 MapReduceValuesToIntTask<K,V> rights, nextRight;
5968 MapReduceValuesToIntTask
5969 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5970 MapReduceValuesToIntTask<K,V> nextRight,
5971 ToIntFunction<? super V> transformer,
5972 int basis,
5973 IntBinaryOperator reducer) {
5974 super(p, b, i, f, t); this.nextRight = nextRight;
5975 this.transformer = transformer;
5976 this.basis = basis; this.reducer = reducer;
5977 }
5978 public final Integer getRawResult() { return result; }
5979 public final void compute() {
5980 final ToIntFunction<? super V> transformer;
5981 final IntBinaryOperator reducer;
5982 if ((transformer = this.transformer) != null &&
5983 (reducer = this.reducer) != null) {
5984 int r = this.basis;
5985 for (int i = baseIndex, f, h; batch > 0 &&
5986 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5987 addToPendingCount(1);
5988 (rights = new MapReduceValuesToIntTask<K,V>
5989 (this, batch >>>= 1, baseLimit = h, f, tab,
5990 rights, transformer, r, reducer)).fork();
5991 }
5992 for (Node<K,V> p; (p = advance()) != null; )
5993 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
5994 result = r;
5995 CountedCompleter<?> c;
5996 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5997 @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5998 t = (MapReduceValuesToIntTask<K,V>)c,
5999 s = t.rights;
6000 while (s != null) {
6001 t.result = reducer.applyAsInt(t.result, s.result);
6002 s = t.rights = s.nextRight;
6003 }
6004 }
6005 }
6006 }
6007 }
6008
6009 @SuppressWarnings("serial")
6010 static final class MapReduceEntriesToIntTask<K,V>
6011 extends BulkTask<K,V,Integer> {
6012 final ToIntFunction<Map.Entry<K,V>> transformer;
6013 final IntBinaryOperator reducer;
6014 final int basis;
6015 int result;
6016 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6017 MapReduceEntriesToIntTask
6018 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6019 MapReduceEntriesToIntTask<K,V> nextRight,
6020 ToIntFunction<Map.Entry<K,V>> transformer,
6021 int basis,
6022 IntBinaryOperator reducer) {
6023 super(p, b, i, f, t); this.nextRight = nextRight;
6024 this.transformer = transformer;
6025 this.basis = basis; this.reducer = reducer;
6026 }
6027 public final Integer getRawResult() { return result; }
6028 public final void compute() {
6029 final ToIntFunction<Map.Entry<K,V>> transformer;
6030 final IntBinaryOperator reducer;
6031 if ((transformer = this.transformer) != null &&
6032 (reducer = this.reducer) != null) {
6033 int r = this.basis;
6034 for (int i = baseIndex, f, h; batch > 0 &&
6035 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6036 addToPendingCount(1);
6037 (rights = new MapReduceEntriesToIntTask<K,V>
6038 (this, batch >>>= 1, baseLimit = h, f, tab,
6039 rights, transformer, r, reducer)).fork();
6040 }
6041 for (Node<K,V> p; (p = advance()) != null; )
6042 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6043 result = r;
6044 CountedCompleter<?> c;
6045 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6046 @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
6047 t = (MapReduceEntriesToIntTask<K,V>)c,
6048 s = t.rights;
6049 while (s != null) {
6050 t.result = reducer.applyAsInt(t.result, s.result);
6051 s = t.rights = s.nextRight;
6052 }
6053 }
6054 }
6055 }
6056 }
6057
6058 @SuppressWarnings("serial")
6059 static final class MapReduceMappingsToIntTask<K,V>
6060 extends BulkTask<K,V,Integer> {
6061 final ToIntBiFunction<? super K, ? super V> transformer;
6062 final IntBinaryOperator reducer;
6063 final int basis;
6064 int result;
6065 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6066 MapReduceMappingsToIntTask
6067 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6068 MapReduceMappingsToIntTask<K,V> nextRight,
6069 ToIntBiFunction<? super K, ? super V> transformer,
6070 int basis,
6071 IntBinaryOperator reducer) {
6072 super(p, b, i, f, t); this.nextRight = nextRight;
6073 this.transformer = transformer;
6074 this.basis = basis; this.reducer = reducer;
6075 }
6076 public final Integer getRawResult() { return result; }
6077 public final void compute() {
6078 final ToIntBiFunction<? super K, ? super V> transformer;
6079 final IntBinaryOperator reducer;
6080 if ((transformer = this.transformer) != null &&
6081 (reducer = this.reducer) != null) {
6082 int r = this.basis;
6083 for (int i = baseIndex, f, h; batch > 0 &&
6084 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6085 addToPendingCount(1);
6086 (rights = new MapReduceMappingsToIntTask<K,V>
6087 (this, batch >>>= 1, baseLimit = h, f, tab,
6088 rights, transformer, r, reducer)).fork();
6089 }
6090 for (Node<K,V> p; (p = advance()) != null; )
6091 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6092 result = r;
6093 CountedCompleter<?> c;
6094 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6095 @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6096 t = (MapReduceMappingsToIntTask<K,V>)c,
6097 s = t.rights;
6098 while (s != null) {
6099 t.result = reducer.applyAsInt(t.result, s.result);
6100 s = t.rights = s.nextRight;
6101 }
6102 }
6103 }
6104 }
6105 }
6106
6107 // Unsafe mechanics
6108 private static final sun.misc.Unsafe U;
6109 private static final long SIZECTL;
6110 private static final long TRANSFERINDEX;
6111 private static final long TRANSFERORIGIN;
6112 private static final long BASECOUNT;
6113 private static final long CELLSBUSY;
6114 private static final long CELLVALUE;
6115 private static final long ABASE;
6116 private static final int ASHIFT;
6117
6118 static {
6119 try {
6120 U = sun.misc.Unsafe.getUnsafe();
6121 Class<?> k = ConcurrentHashMap.class;
6122 SIZECTL = U.objectFieldOffset
6123 (k.getDeclaredField("sizeCtl"));
6124 TRANSFERINDEX = U.objectFieldOffset
6125 (k.getDeclaredField("transferIndex"));
6126 TRANSFERORIGIN = U.objectFieldOffset
6127 (k.getDeclaredField("transferOrigin"));
6128 BASECOUNT = U.objectFieldOffset
6129 (k.getDeclaredField("baseCount"));
6130 CELLSBUSY = U.objectFieldOffset
6131 (k.getDeclaredField("cellsBusy"));
6132 Class<?> ck = CounterCell.class;
6133 CELLVALUE = U.objectFieldOffset
6134 (ck.getDeclaredField("value"));
6135 Class<?> ak = Node[].class;
6136 ABASE = U.arrayBaseOffset(ak);
6137 int scale = U.arrayIndexScale(ak);
6138 if ((scale & (scale - 1)) != 0)
6139 throw new Error("data type scale not a power of two");
6140 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6141 } catch (Exception e) {
6142 throw new Error(e);
6143 }
6144 }
6145 }