ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.247
Committed: Sun Sep 1 04:49:06 2013 UTC (10 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.246: +7 -7 lines
Log Message:
whitespace

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.io.Serializable;
11 import java.lang.reflect.ParameterizedType;
12 import java.lang.reflect.Type;
13 import java.util.AbstractMap;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Comparator;
17 import java.util.Enumeration;
18 import java.util.HashMap;
19 import java.util.Hashtable;
20 import java.util.Iterator;
21 import java.util.Map;
22 import java.util.NoSuchElementException;
23 import java.util.Set;
24 import java.util.Spliterator;
25 import java.util.concurrent.ConcurrentMap;
26 import java.util.concurrent.ForkJoinPool;
27 import java.util.concurrent.atomic.AtomicReference;
28 import java.util.concurrent.locks.LockSupport;
29 import java.util.concurrent.locks.ReentrantLock;
30 import java.util.function.BiConsumer;
31 import java.util.function.BiFunction;
32 import java.util.function.BinaryOperator;
33 import java.util.function.Consumer;
34 import java.util.function.DoubleBinaryOperator;
35 import java.util.function.Function;
36 import java.util.function.IntBinaryOperator;
37 import java.util.function.LongBinaryOperator;
38 import java.util.function.ToDoubleBiFunction;
39 import java.util.function.ToDoubleFunction;
40 import java.util.function.ToIntBiFunction;
41 import java.util.function.ToIntFunction;
42 import java.util.function.ToLongBiFunction;
43 import java.util.function.ToLongFunction;
44 import java.util.stream.Stream;
45
46 /**
47 * A hash table supporting full concurrency of retrievals and
48 * high expected concurrency for updates. This class obeys the
49 * same functional specification as {@link java.util.Hashtable}, and
50 * includes versions of methods corresponding to each method of
51 * {@code Hashtable}. However, even though all operations are
52 * thread-safe, retrieval operations do <em>not</em> entail locking,
53 * and there is <em>not</em> any support for locking the entire table
54 * in a way that prevents all access. This class is fully
55 * interoperable with {@code Hashtable} in programs that rely on its
56 * thread safety but not on its synchronization details.
57 *
58 * <p>Retrieval operations (including {@code get}) generally do not
59 * block, so may overlap with update operations (including {@code put}
60 * and {@code remove}). Retrievals reflect the results of the most
61 * recently <em>completed</em> update operations holding upon their
62 * onset. (More formally, an update operation for a given key bears a
63 * <em>happens-before</em> relation with any (non-null) retrieval for
64 * that key reporting the updated value.) For aggregate operations
65 * such as {@code putAll} and {@code clear}, concurrent retrievals may
66 * reflect insertion or removal of only some entries. Similarly,
67 * Iterators, Spliterators and Enumerations return elements reflecting the
68 * state of the hash table at some point at or since the creation of the
69 * iterator/enumeration. They do <em>not</em> throw {@link
70 * java.util.ConcurrentModificationException ConcurrentModificationException}.
71 * However, iterators are designed to be used by only one thread at a time.
72 * Bear in mind that the results of aggregate status methods including
73 * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
74 * useful only when a map is not undergoing concurrent updates in other threads.
75 * Otherwise the results of these methods reflect transient states
76 * that may be adequate for monitoring or estimation purposes, but not
77 * for program control.
78 *
79 * <p>The table is dynamically expanded when there are too many
80 * collisions (i.e., keys that have distinct hash codes but fall into
81 * the same slot modulo the table size), with the expected average
82 * effect of maintaining roughly two bins per mapping (corresponding
83 * to a 0.75 load factor threshold for resizing). There may be much
84 * variance around this average as mappings are added and removed, but
85 * overall, this maintains a commonly accepted time/space tradeoff for
86 * hash tables. However, resizing this or any other kind of hash
87 * table may be a relatively slow operation. When possible, it is a
88 * good idea to provide a size estimate as an optional {@code
89 * initialCapacity} constructor argument. An additional optional
90 * {@code loadFactor} constructor argument provides a further means of
91 * customizing initial table capacity by specifying the table density
92 * to be used in calculating the amount of space to allocate for the
93 * given number of elements. Also, for compatibility with previous
94 * versions of this class, constructors may optionally specify an
95 * expected {@code concurrencyLevel} as an additional hint for
96 * internal sizing. Note that using many keys with exactly the same
97 * {@code hashCode()} is a sure way to slow down performance of any
98 * hash table. To ameliorate impact, when keys are {@link Comparable},
99 * this class may use comparison order among keys to help break ties.
100 *
101 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
102 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
103 * (using {@link #keySet(Object)} when only keys are of interest, and the
104 * mapped values are (perhaps transiently) not used or all take the
105 * same mapping value.
106 *
107 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
108 * form of histogram or multiset) by using {@link
109 * java.util.concurrent.atomic.LongAdder} values and initializing via
110 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
111 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
112 * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
113 *
114 * <p>This class and its views and iterators implement all of the
115 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
116 * interfaces.
117 *
118 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
119 * does <em>not</em> allow {@code null} to be used as a key or value.
120 *
121 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
122 * operations that, unlike most {@link Stream} methods, are designed
123 * to be safely, and often sensibly, applied even with maps that are
124 * being concurrently updated by other threads; for example, when
125 * computing a snapshot summary of the values in a shared registry.
126 * There are three kinds of operation, each with four forms, accepting
127 * functions with Keys, Values, Entries, and (Key, Value) arguments
128 * and/or return values. Because the elements of a ConcurrentHashMap
129 * are not ordered in any particular way, and may be processed in
130 * different orders in different parallel executions, the correctness
131 * of supplied functions should not depend on any ordering, or on any
132 * other objects or values that may transiently change while
133 * computation is in progress; and except for forEach actions, should
134 * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
135 * objects do not support method {@code setValue}.
136 *
137 * <ul>
138 * <li> forEach: Perform a given action on each element.
139 * A variant form applies a given transformation on each element
140 * before performing the action.</li>
141 *
142 * <li> search: Return the first available non-null result of
143 * applying a given function on each element; skipping further
144 * search when a result is found.</li>
145 *
146 * <li> reduce: Accumulate each element. The supplied reduction
147 * function cannot rely on ordering (more formally, it should be
148 * both associative and commutative). There are five variants:
149 *
150 * <ul>
151 *
152 * <li> Plain reductions. (There is not a form of this method for
153 * (key, value) function arguments since there is no corresponding
154 * return type.)</li>
155 *
156 * <li> Mapped reductions that accumulate the results of a given
157 * function applied to each element.</li>
158 *
159 * <li> Reductions to scalar doubles, longs, and ints, using a
160 * given basis value.</li>
161 *
162 * </ul>
163 * </li>
164 * </ul>
165 *
166 * <p>These bulk operations accept a {@code parallelismThreshold}
167 * argument. Methods proceed sequentially if the current map size is
168 * estimated to be less than the given threshold. Using a value of
169 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
170 * of {@code 1} results in maximal parallelism by partitioning into
171 * enough subtasks to fully utilize the {@link
172 * ForkJoinPool#commonPool()} that is used for all parallel
173 * computations. Normally, you would initially choose one of these
174 * extreme values, and then measure performance of using in-between
175 * values that trade off overhead versus throughput.
176 *
177 * <p>The concurrency properties of bulk operations follow
178 * from those of ConcurrentHashMap: Any non-null result returned
179 * from {@code get(key)} and related access methods bears a
180 * happens-before relation with the associated insertion or
181 * update. The result of any bulk operation reflects the
182 * composition of these per-element relations (but is not
183 * necessarily atomic with respect to the map as a whole unless it
184 * is somehow known to be quiescent). Conversely, because keys
185 * and values in the map are never null, null serves as a reliable
186 * atomic indicator of the current lack of any result. To
187 * maintain this property, null serves as an implicit basis for
188 * all non-scalar reduction operations. For the double, long, and
189 * int versions, the basis should be one that, when combined with
190 * any other value, returns that other value (more formally, it
191 * should be the identity element for the reduction). Most common
192 * reductions have these properties; for example, computing a sum
193 * with basis 0 or a minimum with basis MAX_VALUE.
194 *
195 * <p>Search and transformation functions provided as arguments
196 * should similarly return null to indicate the lack of any result
197 * (in which case it is not used). In the case of mapped
198 * reductions, this also enables transformations to serve as
199 * filters, returning null (or, in the case of primitive
200 * specializations, the identity basis) if the element should not
201 * be combined. You can create compound transformations and
202 * filterings by composing them yourself under this "null means
203 * there is nothing there now" rule before using them in search or
204 * reduce operations.
205 *
206 * <p>Methods accepting and/or returning Entry arguments maintain
207 * key-value associations. They may be useful for example when
208 * finding the key for the greatest value. Note that "plain" Entry
209 * arguments can be supplied using {@code new
210 * AbstractMap.SimpleEntry(k,v)}.
211 *
212 * <p>Bulk operations may complete abruptly, throwing an
213 * exception encountered in the application of a supplied
214 * function. Bear in mind when handling such exceptions that other
215 * concurrently executing functions could also have thrown
216 * exceptions, or would have done so if the first exception had
217 * not occurred.
218 *
219 * <p>Speedups for parallel compared to sequential forms are common
220 * but not guaranteed. Parallel operations involving brief functions
221 * on small maps may execute more slowly than sequential forms if the
222 * underlying work to parallelize the computation is more expensive
223 * than the computation itself. Similarly, parallelization may not
224 * lead to much actual parallelism if all processors are busy
225 * performing unrelated tasks.
226 *
227 * <p>All arguments to all task methods must be non-null.
228 *
229 * <p>This class is a member of the
230 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
231 * Java Collections Framework</a>.
232 *
233 * @since 1.5
234 * @author Doug Lea
235 * @param <K> the type of keys maintained by this map
236 * @param <V> the type of mapped values
237 */
238 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
239 implements ConcurrentMap<K,V>, Serializable {
240 private static final long serialVersionUID = 7249069246763182397L;
241
242 /*
243 * Overview:
244 *
245 * The primary design goal of this hash table is to maintain
246 * concurrent readability (typically method get(), but also
247 * iterators and related methods) while minimizing update
248 * contention. Secondary goals are to keep space consumption about
249 * the same or better than java.util.HashMap, and to support high
250 * initial insertion rates on an empty table by many threads.
251 *
252 * This map usually acts as a binned (bucketed) hash table. Each
253 * key-value mapping is held in a Node. Most nodes are instances
254 * of the basic Node class with hash, key, value, and next
255 * fields. However, various subclasses exist: TreeNodes are
256 * arranged in balanced trees, not lists. TreeBins hold the roots
257 * of sets of TreeNodes. ForwardingNodes are placed at the heads
258 * of bins during resizing. ReservationNodes are used as
259 * placeholders while establishing values in computeIfAbsent and
260 * related methods. The types TreeBin, ForwardingNode, and
261 * ReservationNode do not hold normal user keys, values, or
262 * hashes, and are readily distinguishable during search etc
263 * because they have negative hash fields and null key and value
264 * fields. (These special nodes are either uncommon or transient,
265 * so the impact of carrying around some unused fields is
266 * insignificant.)
267 *
268 * The table is lazily initialized to a power-of-two size upon the
269 * first insertion. Each bin in the table normally contains a
270 * list of Nodes (most often, the list has only zero or one Node).
271 * Table accesses require volatile/atomic reads, writes, and
272 * CASes. Because there is no other way to arrange this without
273 * adding further indirections, we use intrinsics
274 * (sun.misc.Unsafe) operations.
275 *
276 * We use the top (sign) bit of Node hash fields for control
277 * purposes -- it is available anyway because of addressing
278 * constraints. Nodes with negative hash fields are specially
279 * handled or ignored in map methods.
280 *
281 * Insertion (via put or its variants) of the first node in an
282 * empty bin is performed by just CASing it to the bin. This is
283 * by far the most common case for put operations under most
284 * key/hash distributions. Other update operations (insert,
285 * delete, and replace) require locks. We do not want to waste
286 * the space required to associate a distinct lock object with
287 * each bin, so instead use the first node of a bin list itself as
288 * a lock. Locking support for these locks relies on builtin
289 * "synchronized" monitors.
290 *
291 * Using the first node of a list as a lock does not by itself
292 * suffice though: When a node is locked, any update must first
293 * validate that it is still the first node after locking it, and
294 * retry if not. Because new nodes are always appended to lists,
295 * once a node is first in a bin, it remains first until deleted
296 * or the bin becomes invalidated (upon resizing).
297 *
298 * The main disadvantage of per-bin locks is that other update
299 * operations on other nodes in a bin list protected by the same
300 * lock can stall, for example when user equals() or mapping
301 * functions take a long time. However, statistically, under
302 * random hash codes, this is not a common problem. Ideally, the
303 * frequency of nodes in bins follows a Poisson distribution
304 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
305 * parameter of about 0.5 on average, given the resizing threshold
306 * of 0.75, although with a large variance because of resizing
307 * granularity. Ignoring variance, the expected occurrences of
308 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
309 * first values are:
310 *
311 * 0: 0.60653066
312 * 1: 0.30326533
313 * 2: 0.07581633
314 * 3: 0.01263606
315 * 4: 0.00157952
316 * 5: 0.00015795
317 * 6: 0.00001316
318 * 7: 0.00000094
319 * 8: 0.00000006
320 * more: less than 1 in ten million
321 *
322 * Lock contention probability for two threads accessing distinct
323 * elements is roughly 1 / (8 * #elements) under random hashes.
324 *
325 * Actual hash code distributions encountered in practice
326 * sometimes deviate significantly from uniform randomness. This
327 * includes the case when N > (1<<30), so some keys MUST collide.
328 * Similarly for dumb or hostile usages in which multiple keys are
329 * designed to have identical hash codes or ones that differs only
330 * in masked-out high bits. So we use a secondary strategy that
331 * applies when the number of nodes in a bin exceeds a
332 * threshold. These TreeBins use a balanced tree to hold nodes (a
333 * specialized form of red-black trees), bounding search time to
334 * O(log N). Each search step in a TreeBin is at least twice as
335 * slow as in a regular list, but given that N cannot exceed
336 * (1<<64) (before running out of addresses) this bounds search
337 * steps, lock hold times, etc, to reasonable constants (roughly
338 * 100 nodes inspected per operation worst case) so long as keys
339 * are Comparable (which is very common -- String, Long, etc).
340 * TreeBin nodes (TreeNodes) also maintain the same "next"
341 * traversal pointers as regular nodes, so can be traversed in
342 * iterators in the same way.
343 *
344 * The table is resized when occupancy exceeds a percentage
345 * threshold (nominally, 0.75, but see below). Any thread
346 * noticing an overfull bin may assist in resizing after the
347 * initiating thread allocates and sets up the replacement
348 * array. However, rather than stalling, these other threads may
349 * proceed with insertions etc. The use of TreeBins shields us
350 * from the worst case effects of overfilling while resizes are in
351 * progress. Resizing proceeds by transferring bins, one by one,
352 * from the table to the next table. However, threads claim small
353 * blocks of indices to transfer (via field transferIndex) before
354 * doing so, reducing contention. Because we are using
355 * power-of-two expansion, the elements from each bin must either
356 * stay at same index, or move with a power of two offset. We
357 * eliminate unnecessary node creation by catching cases where old
358 * nodes can be reused because their next fields won't change. On
359 * average, only about one-sixth of them need cloning when a table
360 * doubles. The nodes they replace will be garbage collectable as
361 * soon as they are no longer referenced by any reader thread that
362 * may be in the midst of concurrently traversing table. Upon
363 * transfer, the old table bin contains only a special forwarding
364 * node (with hash field "MOVED") that contains the next table as
365 * its key. On encountering a forwarding node, access and update
366 * operations restart, using the new table.
367 *
368 * Each bin transfer requires its bin lock, which can stall
369 * waiting for locks while resizing. However, because other
370 * threads can join in and help resize rather than contend for
371 * locks, average aggregate waits become shorter as resizing
372 * progresses. The transfer operation must also ensure that all
373 * accessible bins in both the old and new table are usable by any
374 * traversal. This is arranged in part by proceeding from the
375 * last bin (table.length - 1) up towards the first. Upon seeing
376 * a forwarding node, traversals (see class Traverser) arrange to
377 * move to the new table without revisiting nodes. To ensure that
378 * no intervening nodes are skipped even when moved out of order,
379 * a stack (see class TableStack) is created on first encounter of
380 * a forwarding node during a traversal, to maintain its place if
381 * later processing the current table. The need for these
382 * save/restore mechanics is relatively rare, but when one
383 * forwwarding node is encountered, typically many more will be.
384 * So Traversers use a simple caching scheme to avoid creating so
385 * many new TableStack nodes. (Thanks to Peter Levart for
386 * suggesting use of a stack here.)
387 *
388 * The traversal scheme also applies to partial traversals of
389 * ranges of bins (via an alternate Traverser constructor)
390 * to support partitioned aggregate operations. Also, read-only
391 * operations give up if ever forwarded to a null table, which
392 * provides support for shutdown-style clearing, which is also not
393 * currently implemented.
394 *
395 * Lazy table initialization minimizes footprint until first use,
396 * and also avoids resizings when the first operation is from a
397 * putAll, constructor with map argument, or deserialization.
398 * These cases attempt to override the initial capacity settings,
399 * but harmlessly fail to take effect in cases of races.
400 *
401 * The element count is maintained using a specialization of
402 * LongAdder. We need to incorporate a specialization rather than
403 * just use a LongAdder in order to access implicit
404 * contention-sensing that leads to creation of multiple
405 * CounterCells. The counter mechanics avoid contention on
406 * updates but can encounter cache thrashing if read too
407 * frequently during concurrent access. To avoid reading so often,
408 * resizing under contention is attempted only upon adding to a
409 * bin already holding two or more nodes. Under uniform hash
410 * distributions, the probability of this occurring at threshold
411 * is around 13%, meaning that only about 1 in 8 puts check
412 * threshold (and after resizing, many fewer do so).
413 *
414 * TreeBins use a special form of comparison for search and
415 * related operations (which is the main reason we cannot use
416 * existing collections such as TreeMaps). TreeBins contain
417 * Comparable elements, but may contain others, as well as
418 * elements that are Comparable but not necessarily Comparable for
419 * the same T, so we cannot invoke compareTo among them. To handle
420 * this, the tree is ordered primarily by hash value, then by
421 * Comparable.compareTo order if applicable. On lookup at a node,
422 * if elements are not comparable or compare as 0 then both left
423 * and right children may need to be searched in the case of tied
424 * hash values. (This corresponds to the full list search that
425 * would be necessary if all elements were non-Comparable and had
426 * tied hashes.) On insertion, to keep a total ordering (or as
427 * close as is required here) across rebalancings, we compare
428 * classes and identityHashCodes as tie-breakers. The red-black
429 * balancing code is updated from pre-jdk-collections
430 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
431 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
432 * Algorithms" (CLR).
433 *
434 * TreeBins also require an additional locking mechanism. While
435 * list traversal is always possible by readers even during
436 * updates, tree traversal is not, mainly because of tree-rotations
437 * that may change the root node and/or its linkages. TreeBins
438 * include a simple read-write lock mechanism parasitic on the
439 * main bin-synchronization strategy: Structural adjustments
440 * associated with an insertion or removal are already bin-locked
441 * (and so cannot conflict with other writers) but must wait for
442 * ongoing readers to finish. Since there can be only one such
443 * waiter, we use a simple scheme using a single "waiter" field to
444 * block writers. However, readers need never block. If the root
445 * lock is held, they proceed along the slow traversal path (via
446 * next-pointers) until the lock becomes available or the list is
447 * exhausted, whichever comes first. These cases are not fast, but
448 * maximize aggregate expected throughput.
449 *
450 * Maintaining API and serialization compatibility with previous
451 * versions of this class introduces several oddities. Mainly: We
452 * leave untouched but unused constructor arguments refering to
453 * concurrencyLevel. We accept a loadFactor constructor argument,
454 * but apply it only to initial table capacity (which is the only
455 * time that we can guarantee to honor it.) We also declare an
456 * unused "Segment" class that is instantiated in minimal form
457 * only when serializing.
458 *
459 * Also, solely for compatibility with previous versions of this
460 * class, it extends AbstractMap, even though all of its methods
461 * are overridden, so it is just useless baggage.
462 *
463 * This file is organized to make things a little easier to follow
464 * while reading than they might otherwise: First the main static
465 * declarations and utilities, then fields, then main public
466 * methods (with a few factorings of multiple public methods into
467 * internal ones), then sizing methods, trees, traversers, and
468 * bulk operations.
469 */
470
471 /* ---------------- Constants -------------- */
472
473 /**
474 * The largest possible table capacity. This value must be
475 * exactly 1<<30 to stay within Java array allocation and indexing
476 * bounds for power of two table sizes, and is further required
477 * because the top two bits of 32bit hash fields are used for
478 * control purposes.
479 */
480 private static final int MAXIMUM_CAPACITY = 1 << 30;
481
482 /**
483 * The default initial table capacity. Must be a power of 2
484 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
485 */
486 private static final int DEFAULT_CAPACITY = 16;
487
488 /**
489 * The largest possible (non-power of two) array size.
490 * Needed by toArray and related methods.
491 */
492 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
493
494 /**
495 * The default concurrency level for this table. Unused but
496 * defined for compatibility with previous versions of this class.
497 */
498 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
499
500 /**
501 * The load factor for this table. Overrides of this value in
502 * constructors affect only the initial table capacity. The
503 * actual floating point value isn't normally used -- it is
504 * simpler to use expressions such as {@code n - (n >>> 2)} for
505 * the associated resizing threshold.
506 */
507 private static final float LOAD_FACTOR = 0.75f;
508
509 /**
510 * The bin count threshold for using a tree rather than list for a
511 * bin. Bins are converted to trees when adding an element to a
512 * bin with at least this many nodes. The value must be greater
513 * than 2, and should be at least 8 to mesh with assumptions in
514 * tree removal about conversion back to plain bins upon
515 * shrinkage.
516 */
517 static final int TREEIFY_THRESHOLD = 8;
518
519 /**
520 * The bin count threshold for untreeifying a (split) bin during a
521 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
522 * most 6 to mesh with shrinkage detection under removal.
523 */
524 static final int UNTREEIFY_THRESHOLD = 6;
525
526 /**
527 * The smallest table capacity for which bins may be treeified.
528 * (Otherwise the table is resized if too many nodes in a bin.)
529 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
530 * conflicts between resizing and treeification thresholds.
531 */
532 static final int MIN_TREEIFY_CAPACITY = 64;
533
534 /**
535 * Minimum number of rebinnings per transfer step. Ranges are
536 * subdivided to allow multiple resizer threads. This value
537 * serves as a lower bound to avoid resizers encountering
538 * excessive memory contention. The value should be at least
539 * DEFAULT_CAPACITY.
540 */
541 private static final int MIN_TRANSFER_STRIDE = 16;
542
543 /*
544 * Encodings for Node hash fields. See above for explanation.
545 */
546 static final int MOVED = -1; // hash for forwarding nodes
547 static final int TREEBIN = -2; // hash for roots of trees
548 static final int RESERVED = -3; // hash for transient reservations
549 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
550
551 /** Number of CPUS, to place bounds on some sizings */
552 static final int NCPU = Runtime.getRuntime().availableProcessors();
553
554 /** For serialization compatibility. */
555 private static final ObjectStreamField[] serialPersistentFields = {
556 new ObjectStreamField("segments", Segment[].class),
557 new ObjectStreamField("segmentMask", Integer.TYPE),
558 new ObjectStreamField("segmentShift", Integer.TYPE)
559 };
560
561 /* ---------------- Nodes -------------- */
562
563 /**
564 * Key-value entry. This class is never exported out as a
565 * user-mutable Map.Entry (i.e., one supporting setValue; see
566 * MapEntry below), but can be used for read-only traversals used
567 * in bulk tasks. Subclasses of Node with a negative hash field
568 * are special, and contain null keys and values (but are never
569 * exported). Otherwise, keys and vals are never null.
570 */
571 static class Node<K,V> implements Map.Entry<K,V> {
572 final int hash;
573 final K key;
574 volatile V val;
575 volatile Node<K,V> next;
576
577 Node(int hash, K key, V val, Node<K,V> next) {
578 this.hash = hash;
579 this.key = key;
580 this.val = val;
581 this.next = next;
582 }
583
584 public final K getKey() { return key; }
585 public final V getValue() { return val; }
586 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
587 public final String toString(){ return key + "=" + val; }
588 public final V setValue(V value) {
589 throw new UnsupportedOperationException();
590 }
591
592 public final boolean equals(Object o) {
593 Object k, v, u; Map.Entry<?,?> e;
594 return ((o instanceof Map.Entry) &&
595 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
596 (v = e.getValue()) != null &&
597 (k == key || k.equals(key)) &&
598 (v == (u = val) || v.equals(u)));
599 }
600
601 /**
602 * Virtualized support for map.get(); overridden in subclasses.
603 */
604 Node<K,V> find(int h, Object k) {
605 Node<K,V> e = this;
606 if (k != null) {
607 do {
608 K ek;
609 if (e.hash == h &&
610 ((ek = e.key) == k || (ek != null && k.equals(ek))))
611 return e;
612 } while ((e = e.next) != null);
613 }
614 return null;
615 }
616 }
617
618 /* ---------------- Static utilities -------------- */
619
620 /**
621 * Spreads (XORs) higher bits of hash to lower and also forces top
622 * bit to 0. Because the table uses power-of-two masking, sets of
623 * hashes that vary only in bits above the current mask will
624 * always collide. (Among known examples are sets of Float keys
625 * holding consecutive whole numbers in small tables.) So we
626 * apply a transform that spreads the impact of higher bits
627 * downward. There is a tradeoff between speed, utility, and
628 * quality of bit-spreading. Because many common sets of hashes
629 * are already reasonably distributed (so don't benefit from
630 * spreading), and because we use trees to handle large sets of
631 * collisions in bins, we just XOR some shifted bits in the
632 * cheapest possible way to reduce systematic lossage, as well as
633 * to incorporate impact of the highest bits that would otherwise
634 * never be used in index calculations because of table bounds.
635 */
636 static final int spread(int h) {
637 return (h ^ (h >>> 16)) & HASH_BITS;
638 }
639
640 /**
641 * Returns a power of two table size for the given desired capacity.
642 * See Hackers Delight, sec 3.2
643 */
644 private static final int tableSizeFor(int c) {
645 int n = c - 1;
646 n |= n >>> 1;
647 n |= n >>> 2;
648 n |= n >>> 4;
649 n |= n >>> 8;
650 n |= n >>> 16;
651 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
652 }
653
654 /**
655 * Returns x's Class if it is of the form "class C implements
656 * Comparable<C>", else null.
657 */
658 static Class<?> comparableClassFor(Object x) {
659 if (x instanceof Comparable) {
660 Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
661 if ((c = x.getClass()) == String.class) // bypass checks
662 return c;
663 if ((ts = c.getGenericInterfaces()) != null) {
664 for (int i = 0; i < ts.length; ++i) {
665 if (((t = ts[i]) instanceof ParameterizedType) &&
666 ((p = (ParameterizedType)t).getRawType() ==
667 Comparable.class) &&
668 (as = p.getActualTypeArguments()) != null &&
669 as.length == 1 && as[0] == c) // type arg is c
670 return c;
671 }
672 }
673 }
674 return null;
675 }
676
677 /**
678 * Returns k.compareTo(x) if x matches kc (k's screened comparable
679 * class), else 0.
680 */
681 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
682 static int compareComparables(Class<?> kc, Object k, Object x) {
683 return (x == null || x.getClass() != kc ? 0 :
684 ((Comparable)k).compareTo(x));
685 }
686
687 /* ---------------- Table element access -------------- */
688
689 /*
690 * Volatile access methods are used for table elements as well as
691 * elements of in-progress next table while resizing. All uses of
692 * the tab arguments must be null checked by callers. All callers
693 * also paranoically precheck that tab's length is not zero (or an
694 * equivalent check), thus ensuring that any index argument taking
695 * the form of a hash value anded with (length - 1) is a valid
696 * index. Note that, to be correct wrt arbitrary concurrency
697 * errors by users, these checks must operate on local variables,
698 * which accounts for some odd-looking inline assignments below.
699 * Note that calls to setTabAt always occur within locked regions,
700 * and so in principle require only release ordering, not need
701 * full volatile semantics, but are currently coded as volatile
702 * writes to be conservative.
703 */
704
705 @SuppressWarnings("unchecked")
706 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
707 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
708 }
709
710 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
711 Node<K,V> c, Node<K,V> v) {
712 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
713 }
714
715 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
716 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
717 }
718
719 /* ---------------- Fields -------------- */
720
721 /**
722 * The array of bins. Lazily initialized upon first insertion.
723 * Size is always a power of two. Accessed directly by iterators.
724 */
725 transient volatile Node<K,V>[] table;
726
727 /**
728 * The next table to use; non-null only while resizing.
729 */
730 private transient volatile Node<K,V>[] nextTable;
731
732 /**
733 * Base counter value, used mainly when there is no contention,
734 * but also as a fallback during table initialization
735 * races. Updated via CAS.
736 */
737 private transient volatile long baseCount;
738
739 /**
740 * Table initialization and resizing control. When negative, the
741 * table is being initialized or resized: -1 for initialization,
742 * else -(1 + the number of active resizing threads). Otherwise,
743 * when table is null, holds the initial table size to use upon
744 * creation, or 0 for default. After initialization, holds the
745 * next element count value upon which to resize the table.
746 */
747 private transient volatile int sizeCtl;
748
749 /**
750 * The next table index (plus one) to split while resizing.
751 */
752 private transient volatile int transferIndex;
753
754 /**
755 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
756 */
757 private transient volatile int cellsBusy;
758
759 /**
760 * Table of counter cells. When non-null, size is a power of 2.
761 */
762 private transient volatile CounterCell[] counterCells;
763
764 // views
765 private transient KeySetView<K,V> keySet;
766 private transient ValuesView<K,V> values;
767 private transient EntrySetView<K,V> entrySet;
768
769
770 /* ---------------- Public operations -------------- */
771
772 /**
773 * Creates a new, empty map with the default initial table size (16).
774 */
775 public ConcurrentHashMap() {
776 }
777
778 /**
779 * Creates a new, empty map with an initial table size
780 * accommodating the specified number of elements without the need
781 * to dynamically resize.
782 *
783 * @param initialCapacity The implementation performs internal
784 * sizing to accommodate this many elements.
785 * @throws IllegalArgumentException if the initial capacity of
786 * elements is negative
787 */
788 public ConcurrentHashMap(int initialCapacity) {
789 if (initialCapacity < 0)
790 throw new IllegalArgumentException();
791 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
792 MAXIMUM_CAPACITY :
793 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
794 this.sizeCtl = cap;
795 }
796
797 /**
798 * Creates a new map with the same mappings as the given map.
799 *
800 * @param m the map
801 */
802 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
803 this.sizeCtl = DEFAULT_CAPACITY;
804 putAll(m);
805 }
806
807 /**
808 * Creates a new, empty map with an initial table size based on
809 * the given number of elements ({@code initialCapacity}) and
810 * initial table density ({@code loadFactor}).
811 *
812 * @param initialCapacity the initial capacity. The implementation
813 * performs internal sizing to accommodate this many elements,
814 * given the specified load factor.
815 * @param loadFactor the load factor (table density) for
816 * establishing the initial table size
817 * @throws IllegalArgumentException if the initial capacity of
818 * elements is negative or the load factor is nonpositive
819 *
820 * @since 1.6
821 */
822 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
823 this(initialCapacity, loadFactor, 1);
824 }
825
826 /**
827 * Creates a new, empty map with an initial table size based on
828 * the given number of elements ({@code initialCapacity}), table
829 * density ({@code loadFactor}), and number of concurrently
830 * updating threads ({@code concurrencyLevel}).
831 *
832 * @param initialCapacity the initial capacity. The implementation
833 * performs internal sizing to accommodate this many elements,
834 * given the specified load factor.
835 * @param loadFactor the load factor (table density) for
836 * establishing the initial table size
837 * @param concurrencyLevel the estimated number of concurrently
838 * updating threads. The implementation may use this value as
839 * a sizing hint.
840 * @throws IllegalArgumentException if the initial capacity is
841 * negative or the load factor or concurrencyLevel are
842 * nonpositive
843 */
844 public ConcurrentHashMap(int initialCapacity,
845 float loadFactor, int concurrencyLevel) {
846 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
847 throw new IllegalArgumentException();
848 if (initialCapacity < concurrencyLevel) // Use at least as many bins
849 initialCapacity = concurrencyLevel; // as estimated threads
850 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
851 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
852 MAXIMUM_CAPACITY : tableSizeFor((int)size);
853 this.sizeCtl = cap;
854 }
855
856 // Original (since JDK1.2) Map methods
857
858 /**
859 * {@inheritDoc}
860 */
861 public int size() {
862 long n = sumCount();
863 return ((n < 0L) ? 0 :
864 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
865 (int)n);
866 }
867
868 /**
869 * {@inheritDoc}
870 */
871 public boolean isEmpty() {
872 return sumCount() <= 0L; // ignore transient negative values
873 }
874
875 /**
876 * Returns the value to which the specified key is mapped,
877 * or {@code null} if this map contains no mapping for the key.
878 *
879 * <p>More formally, if this map contains a mapping from a key
880 * {@code k} to a value {@code v} such that {@code key.equals(k)},
881 * then this method returns {@code v}; otherwise it returns
882 * {@code null}. (There can be at most one such mapping.)
883 *
884 * @throws NullPointerException if the specified key is null
885 */
886 public V get(Object key) {
887 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
888 int h = spread(key.hashCode());
889 if ((tab = table) != null && (n = tab.length) > 0 &&
890 (e = tabAt(tab, (n - 1) & h)) != null) {
891 if ((eh = e.hash) == h) {
892 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
893 return e.val;
894 }
895 else if (eh < 0)
896 return (p = e.find(h, key)) != null ? p.val : null;
897 while ((e = e.next) != null) {
898 if (e.hash == h &&
899 ((ek = e.key) == key || (ek != null && key.equals(ek))))
900 return e.val;
901 }
902 }
903 return null;
904 }
905
906 /**
907 * Tests if the specified object is a key in this table.
908 *
909 * @param key possible key
910 * @return {@code true} if and only if the specified object
911 * is a key in this table, as determined by the
912 * {@code equals} method; {@code false} otherwise
913 * @throws NullPointerException if the specified key is null
914 */
915 public boolean containsKey(Object key) {
916 return get(key) != null;
917 }
918
919 /**
920 * Returns {@code true} if this map maps one or more keys to the
921 * specified value. Note: This method may require a full traversal
922 * of the map, and is much slower than method {@code containsKey}.
923 *
924 * @param value value whose presence in this map is to be tested
925 * @return {@code true} if this map maps one or more keys to the
926 * specified value
927 * @throws NullPointerException if the specified value is null
928 */
929 public boolean containsValue(Object value) {
930 if (value == null)
931 throw new NullPointerException();
932 Node<K,V>[] t;
933 if ((t = table) != null) {
934 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
935 for (Node<K,V> p; (p = it.advance()) != null; ) {
936 V v;
937 if ((v = p.val) == value || (v != null && value.equals(v)))
938 return true;
939 }
940 }
941 return false;
942 }
943
944 /**
945 * Maps the specified key to the specified value in this table.
946 * Neither the key nor the value can be null.
947 *
948 * <p>The value can be retrieved by calling the {@code get} method
949 * with a key that is equal to the original key.
950 *
951 * @param key key with which the specified value is to be associated
952 * @param value value to be associated with the specified key
953 * @return the previous value associated with {@code key}, or
954 * {@code null} if there was no mapping for {@code key}
955 * @throws NullPointerException if the specified key or value is null
956 */
957 public V put(K key, V value) {
958 return putVal(key, value, false);
959 }
960
961 /** Implementation for put and putIfAbsent */
962 final V putVal(K key, V value, boolean onlyIfAbsent) {
963 if (key == null || value == null) throw new NullPointerException();
964 int hash = spread(key.hashCode());
965 int binCount = 0;
966 for (Node<K,V>[] tab = table;;) {
967 Node<K,V> f; int n, i, fh;
968 if (tab == null || (n = tab.length) == 0)
969 tab = initTable();
970 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
971 if (casTabAt(tab, i, null,
972 new Node<K,V>(hash, key, value, null)))
973 break; // no lock when adding to empty bin
974 }
975 else if ((fh = f.hash) == MOVED)
976 tab = helpTransfer(tab, f);
977 else {
978 V oldVal = null;
979 synchronized (f) {
980 if (tabAt(tab, i) == f) {
981 if (fh >= 0) {
982 binCount = 1;
983 for (Node<K,V> e = f;; ++binCount) {
984 K ek;
985 if (e.hash == hash &&
986 ((ek = e.key) == key ||
987 (ek != null && key.equals(ek)))) {
988 oldVal = e.val;
989 if (!onlyIfAbsent)
990 e.val = value;
991 break;
992 }
993 Node<K,V> pred = e;
994 if ((e = e.next) == null) {
995 pred.next = new Node<K,V>(hash, key,
996 value, null);
997 break;
998 }
999 }
1000 }
1001 else if (f instanceof TreeBin) {
1002 Node<K,V> p;
1003 binCount = 2;
1004 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1005 value)) != null) {
1006 oldVal = p.val;
1007 if (!onlyIfAbsent)
1008 p.val = value;
1009 }
1010 }
1011 }
1012 }
1013 if (binCount != 0) {
1014 if (binCount >= TREEIFY_THRESHOLD)
1015 treeifyBin(tab, i);
1016 if (oldVal != null)
1017 return oldVal;
1018 break;
1019 }
1020 }
1021 }
1022 addCount(1L, binCount);
1023 return null;
1024 }
1025
1026 /**
1027 * Copies all of the mappings from the specified map to this one.
1028 * These mappings replace any mappings that this map had for any of the
1029 * keys currently in the specified map.
1030 *
1031 * @param m mappings to be stored in this map
1032 */
1033 public void putAll(Map<? extends K, ? extends V> m) {
1034 tryPresize(m.size());
1035 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1036 putVal(e.getKey(), e.getValue(), false);
1037 }
1038
1039 /**
1040 * Removes the key (and its corresponding value) from this map.
1041 * This method does nothing if the key is not in the map.
1042 *
1043 * @param key the key that needs to be removed
1044 * @return the previous value associated with {@code key}, or
1045 * {@code null} if there was no mapping for {@code key}
1046 * @throws NullPointerException if the specified key is null
1047 */
1048 public V remove(Object key) {
1049 return replaceNode(key, null, null);
1050 }
1051
1052 /**
1053 * Implementation for the four public remove/replace methods:
1054 * Replaces node value with v, conditional upon match of cv if
1055 * non-null. If resulting value is null, delete.
1056 */
1057 final V replaceNode(Object key, V value, Object cv) {
1058 int hash = spread(key.hashCode());
1059 for (Node<K,V>[] tab = table;;) {
1060 Node<K,V> f; int n, i, fh;
1061 if (tab == null || (n = tab.length) == 0 ||
1062 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1063 break;
1064 else if ((fh = f.hash) == MOVED)
1065 tab = helpTransfer(tab, f);
1066 else {
1067 V oldVal = null;
1068 boolean validated = false;
1069 synchronized (f) {
1070 if (tabAt(tab, i) == f) {
1071 if (fh >= 0) {
1072 validated = true;
1073 for (Node<K,V> e = f, pred = null;;) {
1074 K ek;
1075 if (e.hash == hash &&
1076 ((ek = e.key) == key ||
1077 (ek != null && key.equals(ek)))) {
1078 V ev = e.val;
1079 if (cv == null || cv == ev ||
1080 (ev != null && cv.equals(ev))) {
1081 oldVal = ev;
1082 if (value != null)
1083 e.val = value;
1084 else if (pred != null)
1085 pred.next = e.next;
1086 else
1087 setTabAt(tab, i, e.next);
1088 }
1089 break;
1090 }
1091 pred = e;
1092 if ((e = e.next) == null)
1093 break;
1094 }
1095 }
1096 else if (f instanceof TreeBin) {
1097 validated = true;
1098 TreeBin<K,V> t = (TreeBin<K,V>)f;
1099 TreeNode<K,V> r, p;
1100 if ((r = t.root) != null &&
1101 (p = r.findTreeNode(hash, key, null)) != null) {
1102 V pv = p.val;
1103 if (cv == null || cv == pv ||
1104 (pv != null && cv.equals(pv))) {
1105 oldVal = pv;
1106 if (value != null)
1107 p.val = value;
1108 else if (t.removeTreeNode(p))
1109 setTabAt(tab, i, untreeify(t.first));
1110 }
1111 }
1112 }
1113 }
1114 }
1115 if (validated) {
1116 if (oldVal != null) {
1117 if (value == null)
1118 addCount(-1L, -1);
1119 return oldVal;
1120 }
1121 break;
1122 }
1123 }
1124 }
1125 return null;
1126 }
1127
1128 /**
1129 * Removes all of the mappings from this map.
1130 */
1131 public void clear() {
1132 long delta = 0L; // negative number of deletions
1133 int i = 0;
1134 Node<K,V>[] tab = table;
1135 while (tab != null && i < tab.length) {
1136 int fh;
1137 Node<K,V> f = tabAt(tab, i);
1138 if (f == null)
1139 ++i;
1140 else if ((fh = f.hash) == MOVED) {
1141 tab = helpTransfer(tab, f);
1142 i = 0; // restart
1143 }
1144 else {
1145 synchronized (f) {
1146 if (tabAt(tab, i) == f) {
1147 Node<K,V> p = (fh >= 0 ? f :
1148 (f instanceof TreeBin) ?
1149 ((TreeBin<K,V>)f).first : null);
1150 while (p != null) {
1151 --delta;
1152 p = p.next;
1153 }
1154 setTabAt(tab, i++, null);
1155 }
1156 }
1157 }
1158 }
1159 if (delta != 0L)
1160 addCount(delta, -1);
1161 }
1162
1163 /**
1164 * Returns a {@link Set} view of the keys contained in this map.
1165 * The set is backed by the map, so changes to the map are
1166 * reflected in the set, and vice-versa. The set supports element
1167 * removal, which removes the corresponding mapping from this map,
1168 * via the {@code Iterator.remove}, {@code Set.remove},
1169 * {@code removeAll}, {@code retainAll}, and {@code clear}
1170 * operations. It does not support the {@code add} or
1171 * {@code addAll} operations.
1172 *
1173 * <p>The view's iterators and spliterators are
1174 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1175 *
1176 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1177 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1178 *
1179 * @return the set view
1180 */
1181 public KeySetView<K,V> keySet() {
1182 KeySetView<K,V> ks;
1183 return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1184 }
1185
1186 /**
1187 * Returns a {@link Collection} view of the values contained in this map.
1188 * The collection is backed by the map, so changes to the map are
1189 * reflected in the collection, and vice-versa. The collection
1190 * supports element removal, which removes the corresponding
1191 * mapping from this map, via the {@code Iterator.remove},
1192 * {@code Collection.remove}, {@code removeAll},
1193 * {@code retainAll}, and {@code clear} operations. It does not
1194 * support the {@code add} or {@code addAll} operations.
1195 *
1196 * <p>The view's iterators and spliterators are
1197 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1198 *
1199 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1200 * and {@link Spliterator#NONNULL}.
1201 *
1202 * @return the collection view
1203 */
1204 public Collection<V> values() {
1205 ValuesView<K,V> vs;
1206 return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1207 }
1208
1209 /**
1210 * Returns a {@link Set} view of the mappings contained in this map.
1211 * The set is backed by the map, so changes to the map are
1212 * reflected in the set, and vice-versa. The set supports element
1213 * removal, which removes the corresponding mapping from the map,
1214 * via the {@code Iterator.remove}, {@code Set.remove},
1215 * {@code removeAll}, {@code retainAll}, and {@code clear}
1216 * operations.
1217 *
1218 * <p>The view's iterators and spliterators are
1219 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1220 *
1221 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1222 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1223 *
1224 * @return the set view
1225 */
1226 public Set<Map.Entry<K,V>> entrySet() {
1227 EntrySetView<K,V> es;
1228 return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1229 }
1230
1231 /**
1232 * Returns the hash code value for this {@link Map}, i.e.,
1233 * the sum of, for each key-value pair in the map,
1234 * {@code key.hashCode() ^ value.hashCode()}.
1235 *
1236 * @return the hash code value for this map
1237 */
1238 public int hashCode() {
1239 int h = 0;
1240 Node<K,V>[] t;
1241 if ((t = table) != null) {
1242 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1243 for (Node<K,V> p; (p = it.advance()) != null; )
1244 h += p.key.hashCode() ^ p.val.hashCode();
1245 }
1246 return h;
1247 }
1248
1249 /**
1250 * Returns a string representation of this map. The string
1251 * representation consists of a list of key-value mappings (in no
1252 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1253 * mappings are separated by the characters {@code ", "} (comma
1254 * and space). Each key-value mapping is rendered as the key
1255 * followed by an equals sign ("{@code =}") followed by the
1256 * associated value.
1257 *
1258 * @return a string representation of this map
1259 */
1260 public String toString() {
1261 Node<K,V>[] t;
1262 int f = (t = table) == null ? 0 : t.length;
1263 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1264 StringBuilder sb = new StringBuilder();
1265 sb.append('{');
1266 Node<K,V> p;
1267 if ((p = it.advance()) != null) {
1268 for (;;) {
1269 K k = p.key;
1270 V v = p.val;
1271 sb.append(k == this ? "(this Map)" : k);
1272 sb.append('=');
1273 sb.append(v == this ? "(this Map)" : v);
1274 if ((p = it.advance()) == null)
1275 break;
1276 sb.append(',').append(' ');
1277 }
1278 }
1279 return sb.append('}').toString();
1280 }
1281
1282 /**
1283 * Compares the specified object with this map for equality.
1284 * Returns {@code true} if the given object is a map with the same
1285 * mappings as this map. This operation may return misleading
1286 * results if either map is concurrently modified during execution
1287 * of this method.
1288 *
1289 * @param o object to be compared for equality with this map
1290 * @return {@code true} if the specified object is equal to this map
1291 */
1292 public boolean equals(Object o) {
1293 if (o != this) {
1294 if (!(o instanceof Map))
1295 return false;
1296 Map<?,?> m = (Map<?,?>) o;
1297 Node<K,V>[] t;
1298 int f = (t = table) == null ? 0 : t.length;
1299 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1300 for (Node<K,V> p; (p = it.advance()) != null; ) {
1301 V val = p.val;
1302 Object v = m.get(p.key);
1303 if (v == null || (v != val && !v.equals(val)))
1304 return false;
1305 }
1306 for (Map.Entry<?,?> e : m.entrySet()) {
1307 Object mk, mv, v;
1308 if ((mk = e.getKey()) == null ||
1309 (mv = e.getValue()) == null ||
1310 (v = get(mk)) == null ||
1311 (mv != v && !mv.equals(v)))
1312 return false;
1313 }
1314 }
1315 return true;
1316 }
1317
1318 /**
1319 * Stripped-down version of helper class used in previous version,
1320 * declared for the sake of serialization compatibility
1321 */
1322 static class Segment<K,V> extends ReentrantLock implements Serializable {
1323 private static final long serialVersionUID = 2249069246763182397L;
1324 final float loadFactor;
1325 Segment(float lf) { this.loadFactor = lf; }
1326 }
1327
1328 /**
1329 * Saves the state of the {@code ConcurrentHashMap} instance to a
1330 * stream (i.e., serializes it).
1331 * @param s the stream
1332 * @throws java.io.IOException if an I/O error occurs
1333 * @serialData
1334 * the key (Object) and value (Object)
1335 * for each key-value mapping, followed by a null pair.
1336 * The key-value mappings are emitted in no particular order.
1337 */
1338 private void writeObject(java.io.ObjectOutputStream s)
1339 throws java.io.IOException {
1340 // For serialization compatibility
1341 // Emulate segment calculation from previous version of this class
1342 int sshift = 0;
1343 int ssize = 1;
1344 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1345 ++sshift;
1346 ssize <<= 1;
1347 }
1348 int segmentShift = 32 - sshift;
1349 int segmentMask = ssize - 1;
1350 @SuppressWarnings("unchecked")
1351 Segment<K,V>[] segments = (Segment<K,V>[])
1352 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1353 for (int i = 0; i < segments.length; ++i)
1354 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1355 s.putFields().put("segments", segments);
1356 s.putFields().put("segmentShift", segmentShift);
1357 s.putFields().put("segmentMask", segmentMask);
1358 s.writeFields();
1359
1360 Node<K,V>[] t;
1361 if ((t = table) != null) {
1362 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1363 for (Node<K,V> p; (p = it.advance()) != null; ) {
1364 s.writeObject(p.key);
1365 s.writeObject(p.val);
1366 }
1367 }
1368 s.writeObject(null);
1369 s.writeObject(null);
1370 segments = null; // throw away
1371 }
1372
1373 /**
1374 * Reconstitutes the instance from a stream (that is, deserializes it).
1375 * @param s the stream
1376 * @throws ClassNotFoundException if the class of a serialized object
1377 * could not be found
1378 * @throws java.io.IOException if an I/O error occurs
1379 */
1380 private void readObject(java.io.ObjectInputStream s)
1381 throws java.io.IOException, ClassNotFoundException {
1382 /*
1383 * To improve performance in typical cases, we create nodes
1384 * while reading, then place in table once size is known.
1385 * However, we must also validate uniqueness and deal with
1386 * overpopulated bins while doing so, which requires
1387 * specialized versions of putVal mechanics.
1388 */
1389 sizeCtl = -1; // force exclusion for table construction
1390 s.defaultReadObject();
1391 long size = 0L;
1392 Node<K,V> p = null;
1393 for (;;) {
1394 @SuppressWarnings("unchecked")
1395 K k = (K) s.readObject();
1396 @SuppressWarnings("unchecked")
1397 V v = (V) s.readObject();
1398 if (k != null && v != null) {
1399 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1400 ++size;
1401 }
1402 else
1403 break;
1404 }
1405 if (size == 0L)
1406 sizeCtl = 0;
1407 else {
1408 int n;
1409 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1410 n = MAXIMUM_CAPACITY;
1411 else {
1412 int sz = (int)size;
1413 n = tableSizeFor(sz + (sz >>> 1) + 1);
1414 }
1415 @SuppressWarnings("unchecked")
1416 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1417 int mask = n - 1;
1418 long added = 0L;
1419 while (p != null) {
1420 boolean insertAtFront;
1421 Node<K,V> next = p.next, first;
1422 int h = p.hash, j = h & mask;
1423 if ((first = tabAt(tab, j)) == null)
1424 insertAtFront = true;
1425 else {
1426 K k = p.key;
1427 if (first.hash < 0) {
1428 TreeBin<K,V> t = (TreeBin<K,V>)first;
1429 if (t.putTreeVal(h, k, p.val) == null)
1430 ++added;
1431 insertAtFront = false;
1432 }
1433 else {
1434 int binCount = 0;
1435 insertAtFront = true;
1436 Node<K,V> q; K qk;
1437 for (q = first; q != null; q = q.next) {
1438 if (q.hash == h &&
1439 ((qk = q.key) == k ||
1440 (qk != null && k.equals(qk)))) {
1441 insertAtFront = false;
1442 break;
1443 }
1444 ++binCount;
1445 }
1446 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1447 insertAtFront = false;
1448 ++added;
1449 p.next = first;
1450 TreeNode<K,V> hd = null, tl = null;
1451 for (q = p; q != null; q = q.next) {
1452 TreeNode<K,V> t = new TreeNode<K,V>
1453 (q.hash, q.key, q.val, null, null);
1454 if ((t.prev = tl) == null)
1455 hd = t;
1456 else
1457 tl.next = t;
1458 tl = t;
1459 }
1460 setTabAt(tab, j, new TreeBin<K,V>(hd));
1461 }
1462 }
1463 }
1464 if (insertAtFront) {
1465 ++added;
1466 p.next = first;
1467 setTabAt(tab, j, p);
1468 }
1469 p = next;
1470 }
1471 table = tab;
1472 sizeCtl = n - (n >>> 2);
1473 baseCount = added;
1474 }
1475 }
1476
1477 // ConcurrentMap methods
1478
1479 /**
1480 * {@inheritDoc}
1481 *
1482 * @return the previous value associated with the specified key,
1483 * or {@code null} if there was no mapping for the key
1484 * @throws NullPointerException if the specified key or value is null
1485 */
1486 public V putIfAbsent(K key, V value) {
1487 return putVal(key, value, true);
1488 }
1489
1490 /**
1491 * {@inheritDoc}
1492 *
1493 * @throws NullPointerException if the specified key is null
1494 */
1495 public boolean remove(Object key, Object value) {
1496 if (key == null)
1497 throw new NullPointerException();
1498 return value != null && replaceNode(key, null, value) != null;
1499 }
1500
1501 /**
1502 * {@inheritDoc}
1503 *
1504 * @throws NullPointerException if any of the arguments are null
1505 */
1506 public boolean replace(K key, V oldValue, V newValue) {
1507 if (key == null || oldValue == null || newValue == null)
1508 throw new NullPointerException();
1509 return replaceNode(key, newValue, oldValue) != null;
1510 }
1511
1512 /**
1513 * {@inheritDoc}
1514 *
1515 * @return the previous value associated with the specified key,
1516 * or {@code null} if there was no mapping for the key
1517 * @throws NullPointerException if the specified key or value is null
1518 */
1519 public V replace(K key, V value) {
1520 if (key == null || value == null)
1521 throw new NullPointerException();
1522 return replaceNode(key, value, null);
1523 }
1524
1525 // Overrides of JDK8+ Map extension method defaults
1526
1527 /**
1528 * Returns the value to which the specified key is mapped, or the
1529 * given default value if this map contains no mapping for the
1530 * key.
1531 *
1532 * @param key the key whose associated value is to be returned
1533 * @param defaultValue the value to return if this map contains
1534 * no mapping for the given key
1535 * @return the mapping for the key, if present; else the default value
1536 * @throws NullPointerException if the specified key is null
1537 */
1538 public V getOrDefault(Object key, V defaultValue) {
1539 V v;
1540 return (v = get(key)) == null ? defaultValue : v;
1541 }
1542
1543 public void forEach(BiConsumer<? super K, ? super V> action) {
1544 if (action == null) throw new NullPointerException();
1545 Node<K,V>[] t;
1546 if ((t = table) != null) {
1547 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1548 for (Node<K,V> p; (p = it.advance()) != null; ) {
1549 action.accept(p.key, p.val);
1550 }
1551 }
1552 }
1553
1554 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1555 if (function == null) throw new NullPointerException();
1556 Node<K,V>[] t;
1557 if ((t = table) != null) {
1558 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1559 for (Node<K,V> p; (p = it.advance()) != null; ) {
1560 V oldValue = p.val;
1561 for (K key = p.key;;) {
1562 V newValue = function.apply(key, oldValue);
1563 if (newValue == null)
1564 throw new NullPointerException();
1565 if (replaceNode(key, newValue, oldValue) != null ||
1566 (oldValue = get(key)) == null)
1567 break;
1568 }
1569 }
1570 }
1571 }
1572
1573 /**
1574 * If the specified key is not already associated with a value,
1575 * attempts to compute its value using the given mapping function
1576 * and enters it into this map unless {@code null}. The entire
1577 * method invocation is performed atomically, so the function is
1578 * applied at most once per key. Some attempted update operations
1579 * on this map by other threads may be blocked while computation
1580 * is in progress, so the computation should be short and simple,
1581 * and must not attempt to update any other mappings of this map.
1582 *
1583 * @param key key with which the specified value is to be associated
1584 * @param mappingFunction the function to compute a value
1585 * @return the current (existing or computed) value associated with
1586 * the specified key, or null if the computed value is null
1587 * @throws NullPointerException if the specified key or mappingFunction
1588 * is null
1589 * @throws IllegalStateException if the computation detectably
1590 * attempts a recursive update to this map that would
1591 * otherwise never complete
1592 * @throws RuntimeException or Error if the mappingFunction does so,
1593 * in which case the mapping is left unestablished
1594 */
1595 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1596 if (key == null || mappingFunction == null)
1597 throw new NullPointerException();
1598 int h = spread(key.hashCode());
1599 V val = null;
1600 int binCount = 0;
1601 for (Node<K,V>[] tab = table;;) {
1602 Node<K,V> f; int n, i, fh;
1603 if (tab == null || (n = tab.length) == 0)
1604 tab = initTable();
1605 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1606 Node<K,V> r = new ReservationNode<K,V>();
1607 synchronized (r) {
1608 if (casTabAt(tab, i, null, r)) {
1609 binCount = 1;
1610 Node<K,V> node = null;
1611 try {
1612 if ((val = mappingFunction.apply(key)) != null)
1613 node = new Node<K,V>(h, key, val, null);
1614 } finally {
1615 setTabAt(tab, i, node);
1616 }
1617 }
1618 }
1619 if (binCount != 0)
1620 break;
1621 }
1622 else if ((fh = f.hash) == MOVED)
1623 tab = helpTransfer(tab, f);
1624 else {
1625 boolean added = false;
1626 synchronized (f) {
1627 if (tabAt(tab, i) == f) {
1628 if (fh >= 0) {
1629 binCount = 1;
1630 for (Node<K,V> e = f;; ++binCount) {
1631 K ek; V ev;
1632 if (e.hash == h &&
1633 ((ek = e.key) == key ||
1634 (ek != null && key.equals(ek)))) {
1635 val = e.val;
1636 break;
1637 }
1638 Node<K,V> pred = e;
1639 if ((e = e.next) == null) {
1640 if ((val = mappingFunction.apply(key)) != null) {
1641 added = true;
1642 pred.next = new Node<K,V>(h, key, val, null);
1643 }
1644 break;
1645 }
1646 }
1647 }
1648 else if (f instanceof TreeBin) {
1649 binCount = 2;
1650 TreeBin<K,V> t = (TreeBin<K,V>)f;
1651 TreeNode<K,V> r, p;
1652 if ((r = t.root) != null &&
1653 (p = r.findTreeNode(h, key, null)) != null)
1654 val = p.val;
1655 else if ((val = mappingFunction.apply(key)) != null) {
1656 added = true;
1657 t.putTreeVal(h, key, val);
1658 }
1659 }
1660 }
1661 }
1662 if (binCount != 0) {
1663 if (binCount >= TREEIFY_THRESHOLD)
1664 treeifyBin(tab, i);
1665 if (!added)
1666 return val;
1667 break;
1668 }
1669 }
1670 }
1671 if (val != null)
1672 addCount(1L, binCount);
1673 return val;
1674 }
1675
1676 /**
1677 * If the value for the specified key is present, attempts to
1678 * compute a new mapping given the key and its current mapped
1679 * value. The entire method invocation is performed atomically.
1680 * Some attempted update operations on this map by other threads
1681 * may be blocked while computation is in progress, so the
1682 * computation should be short and simple, and must not attempt to
1683 * update any other mappings of this map.
1684 *
1685 * @param key key with which a value may be associated
1686 * @param remappingFunction the function to compute a value
1687 * @return the new value associated with the specified key, or null if none
1688 * @throws NullPointerException if the specified key or remappingFunction
1689 * is null
1690 * @throws IllegalStateException if the computation detectably
1691 * attempts a recursive update to this map that would
1692 * otherwise never complete
1693 * @throws RuntimeException or Error if the remappingFunction does so,
1694 * in which case the mapping is unchanged
1695 */
1696 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1697 if (key == null || remappingFunction == null)
1698 throw new NullPointerException();
1699 int h = spread(key.hashCode());
1700 V val = null;
1701 int delta = 0;
1702 int binCount = 0;
1703 for (Node<K,V>[] tab = table;;) {
1704 Node<K,V> f; int n, i, fh;
1705 if (tab == null || (n = tab.length) == 0)
1706 tab = initTable();
1707 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1708 break;
1709 else if ((fh = f.hash) == MOVED)
1710 tab = helpTransfer(tab, f);
1711 else {
1712 synchronized (f) {
1713 if (tabAt(tab, i) == f) {
1714 if (fh >= 0) {
1715 binCount = 1;
1716 for (Node<K,V> e = f, pred = null;; ++binCount) {
1717 K ek;
1718 if (e.hash == h &&
1719 ((ek = e.key) == key ||
1720 (ek != null && key.equals(ek)))) {
1721 val = remappingFunction.apply(key, e.val);
1722 if (val != null)
1723 e.val = val;
1724 else {
1725 delta = -1;
1726 Node<K,V> en = e.next;
1727 if (pred != null)
1728 pred.next = en;
1729 else
1730 setTabAt(tab, i, en);
1731 }
1732 break;
1733 }
1734 pred = e;
1735 if ((e = e.next) == null)
1736 break;
1737 }
1738 }
1739 else if (f instanceof TreeBin) {
1740 binCount = 2;
1741 TreeBin<K,V> t = (TreeBin<K,V>)f;
1742 TreeNode<K,V> r, p;
1743 if ((r = t.root) != null &&
1744 (p = r.findTreeNode(h, key, null)) != null) {
1745 val = remappingFunction.apply(key, p.val);
1746 if (val != null)
1747 p.val = val;
1748 else {
1749 delta = -1;
1750 if (t.removeTreeNode(p))
1751 setTabAt(tab, i, untreeify(t.first));
1752 }
1753 }
1754 }
1755 }
1756 }
1757 if (binCount != 0)
1758 break;
1759 }
1760 }
1761 if (delta != 0)
1762 addCount((long)delta, binCount);
1763 return val;
1764 }
1765
1766 /**
1767 * Attempts to compute a mapping for the specified key and its
1768 * current mapped value (or {@code null} if there is no current
1769 * mapping). The entire method invocation is performed atomically.
1770 * Some attempted update operations on this map by other threads
1771 * may be blocked while computation is in progress, so the
1772 * computation should be short and simple, and must not attempt to
1773 * update any other mappings of this Map.
1774 *
1775 * @param key key with which the specified value is to be associated
1776 * @param remappingFunction the function to compute a value
1777 * @return the new value associated with the specified key, or null if none
1778 * @throws NullPointerException if the specified key or remappingFunction
1779 * is null
1780 * @throws IllegalStateException if the computation detectably
1781 * attempts a recursive update to this map that would
1782 * otherwise never complete
1783 * @throws RuntimeException or Error if the remappingFunction does so,
1784 * in which case the mapping is unchanged
1785 */
1786 public V compute(K key,
1787 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1788 if (key == null || remappingFunction == null)
1789 throw new NullPointerException();
1790 int h = spread(key.hashCode());
1791 V val = null;
1792 int delta = 0;
1793 int binCount = 0;
1794 for (Node<K,V>[] tab = table;;) {
1795 Node<K,V> f; int n, i, fh;
1796 if (tab == null || (n = tab.length) == 0)
1797 tab = initTable();
1798 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1799 Node<K,V> r = new ReservationNode<K,V>();
1800 synchronized (r) {
1801 if (casTabAt(tab, i, null, r)) {
1802 binCount = 1;
1803 Node<K,V> node = null;
1804 try {
1805 if ((val = remappingFunction.apply(key, null)) != null) {
1806 delta = 1;
1807 node = new Node<K,V>(h, key, val, null);
1808 }
1809 } finally {
1810 setTabAt(tab, i, node);
1811 }
1812 }
1813 }
1814 if (binCount != 0)
1815 break;
1816 }
1817 else if ((fh = f.hash) == MOVED)
1818 tab = helpTransfer(tab, f);
1819 else {
1820 synchronized (f) {
1821 if (tabAt(tab, i) == f) {
1822 if (fh >= 0) {
1823 binCount = 1;
1824 for (Node<K,V> e = f, pred = null;; ++binCount) {
1825 K ek;
1826 if (e.hash == h &&
1827 ((ek = e.key) == key ||
1828 (ek != null && key.equals(ek)))) {
1829 val = remappingFunction.apply(key, e.val);
1830 if (val != null)
1831 e.val = val;
1832 else {
1833 delta = -1;
1834 Node<K,V> en = e.next;
1835 if (pred != null)
1836 pred.next = en;
1837 else
1838 setTabAt(tab, i, en);
1839 }
1840 break;
1841 }
1842 pred = e;
1843 if ((e = e.next) == null) {
1844 val = remappingFunction.apply(key, null);
1845 if (val != null) {
1846 delta = 1;
1847 pred.next =
1848 new Node<K,V>(h, key, val, null);
1849 }
1850 break;
1851 }
1852 }
1853 }
1854 else if (f instanceof TreeBin) {
1855 binCount = 1;
1856 TreeBin<K,V> t = (TreeBin<K,V>)f;
1857 TreeNode<K,V> r, p;
1858 if ((r = t.root) != null)
1859 p = r.findTreeNode(h, key, null);
1860 else
1861 p = null;
1862 V pv = (p == null) ? null : p.val;
1863 val = remappingFunction.apply(key, pv);
1864 if (val != null) {
1865 if (p != null)
1866 p.val = val;
1867 else {
1868 delta = 1;
1869 t.putTreeVal(h, key, val);
1870 }
1871 }
1872 else if (p != null) {
1873 delta = -1;
1874 if (t.removeTreeNode(p))
1875 setTabAt(tab, i, untreeify(t.first));
1876 }
1877 }
1878 }
1879 }
1880 if (binCount != 0) {
1881 if (binCount >= TREEIFY_THRESHOLD)
1882 treeifyBin(tab, i);
1883 break;
1884 }
1885 }
1886 }
1887 if (delta != 0)
1888 addCount((long)delta, binCount);
1889 return val;
1890 }
1891
1892 /**
1893 * If the specified key is not already associated with a
1894 * (non-null) value, associates it with the given value.
1895 * Otherwise, replaces the value with the results of the given
1896 * remapping function, or removes if {@code null}. The entire
1897 * method invocation is performed atomically. Some attempted
1898 * update operations on this map by other threads may be blocked
1899 * while computation is in progress, so the computation should be
1900 * short and simple, and must not attempt to update any other
1901 * mappings of this Map.
1902 *
1903 * @param key key with which the specified value is to be associated
1904 * @param value the value to use if absent
1905 * @param remappingFunction the function to recompute a value if present
1906 * @return the new value associated with the specified key, or null if none
1907 * @throws NullPointerException if the specified key or the
1908 * remappingFunction is null
1909 * @throws RuntimeException or Error if the remappingFunction does so,
1910 * in which case the mapping is unchanged
1911 */
1912 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1913 if (key == null || value == null || remappingFunction == null)
1914 throw new NullPointerException();
1915 int h = spread(key.hashCode());
1916 V val = null;
1917 int delta = 0;
1918 int binCount = 0;
1919 for (Node<K,V>[] tab = table;;) {
1920 Node<K,V> f; int n, i, fh;
1921 if (tab == null || (n = tab.length) == 0)
1922 tab = initTable();
1923 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1924 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1925 delta = 1;
1926 val = value;
1927 break;
1928 }
1929 }
1930 else if ((fh = f.hash) == MOVED)
1931 tab = helpTransfer(tab, f);
1932 else {
1933 synchronized (f) {
1934 if (tabAt(tab, i) == f) {
1935 if (fh >= 0) {
1936 binCount = 1;
1937 for (Node<K,V> e = f, pred = null;; ++binCount) {
1938 K ek;
1939 if (e.hash == h &&
1940 ((ek = e.key) == key ||
1941 (ek != null && key.equals(ek)))) {
1942 val = remappingFunction.apply(e.val, value);
1943 if (val != null)
1944 e.val = val;
1945 else {
1946 delta = -1;
1947 Node<K,V> en = e.next;
1948 if (pred != null)
1949 pred.next = en;
1950 else
1951 setTabAt(tab, i, en);
1952 }
1953 break;
1954 }
1955 pred = e;
1956 if ((e = e.next) == null) {
1957 delta = 1;
1958 val = value;
1959 pred.next =
1960 new Node<K,V>(h, key, val, null);
1961 break;
1962 }
1963 }
1964 }
1965 else if (f instanceof TreeBin) {
1966 binCount = 2;
1967 TreeBin<K,V> t = (TreeBin<K,V>)f;
1968 TreeNode<K,V> r = t.root;
1969 TreeNode<K,V> p = (r == null) ? null :
1970 r.findTreeNode(h, key, null);
1971 val = (p == null) ? value :
1972 remappingFunction.apply(p.val, value);
1973 if (val != null) {
1974 if (p != null)
1975 p.val = val;
1976 else {
1977 delta = 1;
1978 t.putTreeVal(h, key, val);
1979 }
1980 }
1981 else if (p != null) {
1982 delta = -1;
1983 if (t.removeTreeNode(p))
1984 setTabAt(tab, i, untreeify(t.first));
1985 }
1986 }
1987 }
1988 }
1989 if (binCount != 0) {
1990 if (binCount >= TREEIFY_THRESHOLD)
1991 treeifyBin(tab, i);
1992 break;
1993 }
1994 }
1995 }
1996 if (delta != 0)
1997 addCount((long)delta, binCount);
1998 return val;
1999 }
2000
2001 // Hashtable legacy methods
2002
2003 /**
2004 * Legacy method testing if some key maps into the specified value
2005 * in this table. This method is identical in functionality to
2006 * {@link #containsValue(Object)}, and exists solely to ensure
2007 * full compatibility with class {@link java.util.Hashtable},
2008 * which supported this method prior to introduction of the
2009 * Java Collections framework.
2010 *
2011 * @param value a value to search for
2012 * @return {@code true} if and only if some key maps to the
2013 * {@code value} argument in this table as
2014 * determined by the {@code equals} method;
2015 * {@code false} otherwise
2016 * @throws NullPointerException if the specified value is null
2017 */
2018 @Deprecated
2019 public boolean contains(Object value) {
2020 return containsValue(value);
2021 }
2022
2023 /**
2024 * Returns an enumeration of the keys in this table.
2025 *
2026 * @return an enumeration of the keys in this table
2027 * @see #keySet()
2028 */
2029 public Enumeration<K> keys() {
2030 Node<K,V>[] t;
2031 int f = (t = table) == null ? 0 : t.length;
2032 return new KeyIterator<K,V>(t, f, 0, f, this);
2033 }
2034
2035 /**
2036 * Returns an enumeration of the values in this table.
2037 *
2038 * @return an enumeration of the values in this table
2039 * @see #values()
2040 */
2041 public Enumeration<V> elements() {
2042 Node<K,V>[] t;
2043 int f = (t = table) == null ? 0 : t.length;
2044 return new ValueIterator<K,V>(t, f, 0, f, this);
2045 }
2046
2047 // ConcurrentHashMap-only methods
2048
2049 /**
2050 * Returns the number of mappings. This method should be used
2051 * instead of {@link #size} because a ConcurrentHashMap may
2052 * contain more mappings than can be represented as an int. The
2053 * value returned is an estimate; the actual count may differ if
2054 * there are concurrent insertions or removals.
2055 *
2056 * @return the number of mappings
2057 * @since 1.8
2058 */
2059 public long mappingCount() {
2060 long n = sumCount();
2061 return (n < 0L) ? 0L : n; // ignore transient negative values
2062 }
2063
2064 /**
2065 * Creates a new {@link Set} backed by a ConcurrentHashMap
2066 * from the given type to {@code Boolean.TRUE}.
2067 *
2068 * @param <K> the element type of the returned set
2069 * @return the new set
2070 * @since 1.8
2071 */
2072 public static <K> KeySetView<K,Boolean> newKeySet() {
2073 return new KeySetView<K,Boolean>
2074 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2075 }
2076
2077 /**
2078 * Creates a new {@link Set} backed by a ConcurrentHashMap
2079 * from the given type to {@code Boolean.TRUE}.
2080 *
2081 * @param initialCapacity The implementation performs internal
2082 * sizing to accommodate this many elements.
2083 * @param <K> the element type of the returned set
2084 * @return the new set
2085 * @throws IllegalArgumentException if the initial capacity of
2086 * elements is negative
2087 * @since 1.8
2088 */
2089 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2090 return new KeySetView<K,Boolean>
2091 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2092 }
2093
2094 /**
2095 * Returns a {@link Set} view of the keys in this map, using the
2096 * given common mapped value for any additions (i.e., {@link
2097 * Collection#add} and {@link Collection#addAll(Collection)}).
2098 * This is of course only appropriate if it is acceptable to use
2099 * the same value for all additions from this view.
2100 *
2101 * @param mappedValue the mapped value to use for any additions
2102 * @return the set view
2103 * @throws NullPointerException if the mappedValue is null
2104 */
2105 public KeySetView<K,V> keySet(V mappedValue) {
2106 if (mappedValue == null)
2107 throw new NullPointerException();
2108 return new KeySetView<K,V>(this, mappedValue);
2109 }
2110
2111 /* ---------------- Special Nodes -------------- */
2112
2113 /**
2114 * A node inserted at head of bins during transfer operations.
2115 */
2116 static final class ForwardingNode<K,V> extends Node<K,V> {
2117 final Node<K,V>[] nextTable;
2118 ForwardingNode(Node<K,V>[] tab) {
2119 super(MOVED, null, null, null);
2120 this.nextTable = tab;
2121 }
2122
2123 Node<K,V> find(int h, Object k) {
2124 // loop to avoid arbitrarily deep recursion on forwarding nodes
2125 outer: for (Node<K,V>[] tab = nextTable;;) {
2126 Node<K,V> e; int n;
2127 if (k == null || tab == null || (n = tab.length) == 0 ||
2128 (e = tabAt(tab, (n - 1) & h)) == null)
2129 return null;
2130 for (;;) {
2131 int eh; K ek;
2132 if ((eh = e.hash) == h &&
2133 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2134 return e;
2135 if (eh < 0) {
2136 if (e instanceof ForwardingNode) {
2137 tab = ((ForwardingNode<K,V>)e).nextTable;
2138 continue outer;
2139 }
2140 else
2141 return e.find(h, k);
2142 }
2143 if ((e = e.next) == null)
2144 return null;
2145 }
2146 }
2147 }
2148 }
2149
2150 /**
2151 * A place-holder node used in computeIfAbsent and compute
2152 */
2153 static final class ReservationNode<K,V> extends Node<K,V> {
2154 ReservationNode() {
2155 super(RESERVED, null, null, null);
2156 }
2157
2158 Node<K,V> find(int h, Object k) {
2159 return null;
2160 }
2161 }
2162
2163 /* ---------------- Table Initialization and Resizing -------------- */
2164
2165 /**
2166 * Initializes table, using the size recorded in sizeCtl.
2167 */
2168 private final Node<K,V>[] initTable() {
2169 Node<K,V>[] tab; int sc;
2170 while ((tab = table) == null || tab.length == 0) {
2171 if ((sc = sizeCtl) < 0)
2172 Thread.yield(); // lost initialization race; just spin
2173 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2174 try {
2175 if ((tab = table) == null || tab.length == 0) {
2176 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2177 @SuppressWarnings("unchecked")
2178 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2179 table = tab = nt;
2180 sc = n - (n >>> 2);
2181 }
2182 } finally {
2183 sizeCtl = sc;
2184 }
2185 break;
2186 }
2187 }
2188 return tab;
2189 }
2190
2191 /**
2192 * Adds to count, and if table is too small and not already
2193 * resizing, initiates transfer. If already resizing, helps
2194 * perform transfer if work is available. Rechecks occupancy
2195 * after a transfer to see if another resize is already needed
2196 * because resizings are lagging additions.
2197 *
2198 * @param x the count to add
2199 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2200 */
2201 private final void addCount(long x, int check) {
2202 CounterCell[] as; long b, s;
2203 if ((as = counterCells) != null ||
2204 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2205 CounterCell a; long v; int m;
2206 boolean uncontended = true;
2207 if (as == null || (m = as.length - 1) < 0 ||
2208 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2209 !(uncontended =
2210 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2211 fullAddCount(x, uncontended);
2212 return;
2213 }
2214 if (check <= 1)
2215 return;
2216 s = sumCount();
2217 }
2218 if (check >= 0) {
2219 Node<K,V>[] tab, nt; int sc;
2220 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2221 tab.length < MAXIMUM_CAPACITY) {
2222 if (sc < 0) {
2223 if (sc == -1 || transferIndex <= 0 ||
2224 (nt = nextTable) == null)
2225 break;
2226 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2227 transfer(tab, nt);
2228 }
2229 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2230 transfer(tab, null);
2231 s = sumCount();
2232 }
2233 }
2234 }
2235
2236 /**
2237 * Helps transfer if a resize is in progress.
2238 */
2239 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2240 Node<K,V>[] nextTab; int sc;
2241 if ((f instanceof ForwardingNode) &&
2242 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2243 while (transferIndex > 0 && nextTab == nextTable &&
2244 (sc = sizeCtl) < -1) {
2245 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1)) {
2246 transfer(tab, nextTab);
2247 break;
2248 }
2249 }
2250 return nextTab;
2251 }
2252 return table;
2253 }
2254
2255 /**
2256 * Tries to presize table to accommodate the given number of elements.
2257 *
2258 * @param size number of elements (doesn't need to be perfectly accurate)
2259 */
2260 private final void tryPresize(int size) {
2261 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2262 tableSizeFor(size + (size >>> 1) + 1);
2263 int sc;
2264 while ((sc = sizeCtl) >= 0) {
2265 Node<K,V>[] tab = table; int n;
2266 if (tab == null || (n = tab.length) == 0) {
2267 n = (sc > c) ? sc : c;
2268 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2269 try {
2270 if (table == tab) {
2271 @SuppressWarnings("unchecked")
2272 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2273 table = nt;
2274 sc = n - (n >>> 2);
2275 }
2276 } finally {
2277 sizeCtl = sc;
2278 }
2279 }
2280 }
2281 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2282 break;
2283 else if (tab == table &&
2284 U.compareAndSwapInt(this, SIZECTL, sc, -2))
2285 transfer(tab, null);
2286 }
2287 }
2288
2289 /**
2290 * Moves and/or copies the nodes in each bin to new table. See
2291 * above for explanation.
2292 */
2293 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2294 int n = tab.length, stride;
2295 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2296 stride = MIN_TRANSFER_STRIDE; // subdivide range
2297 if (nextTab == null) { // initiating
2298 try {
2299 @SuppressWarnings("unchecked")
2300 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2301 nextTab = nt;
2302 } catch (Throwable ex) { // try to cope with OOME
2303 sizeCtl = Integer.MAX_VALUE;
2304 return;
2305 }
2306 nextTable = nextTab;
2307 transferIndex = n;
2308 }
2309 int nextn = nextTab.length;
2310 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2311 boolean advance = true;
2312 boolean finishing = false; // to ensure sweep before committing nextTab
2313 for (int i = 0, bound = 0;;) {
2314 Node<K,V> f; int fh;
2315 while (advance) {
2316 int nextIndex, nextBound;
2317 if (--i >= bound || finishing)
2318 advance = false;
2319 else if ((nextIndex = transferIndex) <= 0) {
2320 i = -1;
2321 advance = false;
2322 }
2323 else if (U.compareAndSwapInt
2324 (this, TRANSFERINDEX, nextIndex,
2325 nextBound = (nextIndex > stride ?
2326 nextIndex - stride : 0))) {
2327 bound = nextBound;
2328 i = nextIndex - 1;
2329 advance = false;
2330 }
2331 }
2332 if (i < 0 || i >= n || i + n >= nextn) {
2333 int sc;
2334 if (finishing) {
2335 nextTable = null;
2336 table = nextTab;
2337 sizeCtl = (n << 1) - (n >>> 1);
2338 return;
2339 }
2340 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2341 if (sc != -1)
2342 return;
2343 finishing = advance = true;
2344 i = n; // recheck before commit
2345 }
2346 }
2347 else if ((f = tabAt(tab, i)) == null)
2348 advance = casTabAt(tab, i, null, fwd);
2349 else if ((fh = f.hash) == MOVED)
2350 advance = true; // already processed
2351 else {
2352 synchronized (f) {
2353 if (tabAt(tab, i) == f) {
2354 Node<K,V> ln, hn;
2355 if (fh >= 0) {
2356 int runBit = fh & n;
2357 Node<K,V> lastRun = f;
2358 for (Node<K,V> p = f.next; p != null; p = p.next) {
2359 int b = p.hash & n;
2360 if (b != runBit) {
2361 runBit = b;
2362 lastRun = p;
2363 }
2364 }
2365 if (runBit == 0) {
2366 ln = lastRun;
2367 hn = null;
2368 }
2369 else {
2370 hn = lastRun;
2371 ln = null;
2372 }
2373 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2374 int ph = p.hash; K pk = p.key; V pv = p.val;
2375 if ((ph & n) == 0)
2376 ln = new Node<K,V>(ph, pk, pv, ln);
2377 else
2378 hn = new Node<K,V>(ph, pk, pv, hn);
2379 }
2380 setTabAt(nextTab, i, ln);
2381 setTabAt(nextTab, i + n, hn);
2382 setTabAt(tab, i, fwd);
2383 advance = true;
2384 }
2385 else if (f instanceof TreeBin) {
2386 TreeBin<K,V> t = (TreeBin<K,V>)f;
2387 TreeNode<K,V> lo = null, loTail = null;
2388 TreeNode<K,V> hi = null, hiTail = null;
2389 int lc = 0, hc = 0;
2390 for (Node<K,V> e = t.first; e != null; e = e.next) {
2391 int h = e.hash;
2392 TreeNode<K,V> p = new TreeNode<K,V>
2393 (h, e.key, e.val, null, null);
2394 if ((h & n) == 0) {
2395 if ((p.prev = loTail) == null)
2396 lo = p;
2397 else
2398 loTail.next = p;
2399 loTail = p;
2400 ++lc;
2401 }
2402 else {
2403 if ((p.prev = hiTail) == null)
2404 hi = p;
2405 else
2406 hiTail.next = p;
2407 hiTail = p;
2408 ++hc;
2409 }
2410 }
2411 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2412 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2413 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2414 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2415 setTabAt(nextTab, i, ln);
2416 setTabAt(nextTab, i + n, hn);
2417 setTabAt(tab, i, fwd);
2418 advance = true;
2419 }
2420 }
2421 }
2422 }
2423 }
2424 }
2425
2426 /* ---------------- Counter support -------------- */
2427
2428 /**
2429 * A padded cell for distributing counts. Adapted from LongAdder
2430 * and Striped64. See their internal docs for explanation.
2431 */
2432 @sun.misc.Contended static final class CounterCell {
2433 volatile long value;
2434 CounterCell(long x) { value = x; }
2435 }
2436
2437 final long sumCount() {
2438 CounterCell[] as = counterCells; CounterCell a;
2439 long sum = baseCount;
2440 if (as != null) {
2441 for (int i = 0; i < as.length; ++i) {
2442 if ((a = as[i]) != null)
2443 sum += a.value;
2444 }
2445 }
2446 return sum;
2447 }
2448
2449 // See LongAdder version for explanation
2450 private final void fullAddCount(long x, boolean wasUncontended) {
2451 int h;
2452 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2453 ThreadLocalRandom.localInit(); // force initialization
2454 h = ThreadLocalRandom.getProbe();
2455 wasUncontended = true;
2456 }
2457 boolean collide = false; // True if last slot nonempty
2458 for (;;) {
2459 CounterCell[] as; CounterCell a; int n; long v;
2460 if ((as = counterCells) != null && (n = as.length) > 0) {
2461 if ((a = as[(n - 1) & h]) == null) {
2462 if (cellsBusy == 0) { // Try to attach new Cell
2463 CounterCell r = new CounterCell(x); // Optimistic create
2464 if (cellsBusy == 0 &&
2465 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2466 boolean created = false;
2467 try { // Recheck under lock
2468 CounterCell[] rs; int m, j;
2469 if ((rs = counterCells) != null &&
2470 (m = rs.length) > 0 &&
2471 rs[j = (m - 1) & h] == null) {
2472 rs[j] = r;
2473 created = true;
2474 }
2475 } finally {
2476 cellsBusy = 0;
2477 }
2478 if (created)
2479 break;
2480 continue; // Slot is now non-empty
2481 }
2482 }
2483 collide = false;
2484 }
2485 else if (!wasUncontended) // CAS already known to fail
2486 wasUncontended = true; // Continue after rehash
2487 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2488 break;
2489 else if (counterCells != as || n >= NCPU)
2490 collide = false; // At max size or stale
2491 else if (!collide)
2492 collide = true;
2493 else if (cellsBusy == 0 &&
2494 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2495 try {
2496 if (counterCells == as) {// Expand table unless stale
2497 CounterCell[] rs = new CounterCell[n << 1];
2498 for (int i = 0; i < n; ++i)
2499 rs[i] = as[i];
2500 counterCells = rs;
2501 }
2502 } finally {
2503 cellsBusy = 0;
2504 }
2505 collide = false;
2506 continue; // Retry with expanded table
2507 }
2508 h = ThreadLocalRandom.advanceProbe(h);
2509 }
2510 else if (cellsBusy == 0 && counterCells == as &&
2511 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2512 boolean init = false;
2513 try { // Initialize table
2514 if (counterCells == as) {
2515 CounterCell[] rs = new CounterCell[2];
2516 rs[h & 1] = new CounterCell(x);
2517 counterCells = rs;
2518 init = true;
2519 }
2520 } finally {
2521 cellsBusy = 0;
2522 }
2523 if (init)
2524 break;
2525 }
2526 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2527 break; // Fall back on using base
2528 }
2529 }
2530
2531 /* ---------------- Conversion from/to TreeBins -------------- */
2532
2533 /**
2534 * Replaces all linked nodes in bin at given index unless table is
2535 * too small, in which case resizes instead.
2536 */
2537 private final void treeifyBin(Node<K,V>[] tab, int index) {
2538 Node<K,V> b; int n, sc;
2539 if (tab != null) {
2540 if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2541 if (tab == table && (sc = sizeCtl) >= 0 &&
2542 U.compareAndSwapInt(this, SIZECTL, sc, -2))
2543 transfer(tab, null);
2544 }
2545 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2546 synchronized (b) {
2547 if (tabAt(tab, index) == b) {
2548 TreeNode<K,V> hd = null, tl = null;
2549 for (Node<K,V> e = b; e != null; e = e.next) {
2550 TreeNode<K,V> p =
2551 new TreeNode<K,V>(e.hash, e.key, e.val,
2552 null, null);
2553 if ((p.prev = tl) == null)
2554 hd = p;
2555 else
2556 tl.next = p;
2557 tl = p;
2558 }
2559 setTabAt(tab, index, new TreeBin<K,V>(hd));
2560 }
2561 }
2562 }
2563 }
2564 }
2565
2566 /**
2567 * Returns a list on non-TreeNodes replacing those in given list.
2568 */
2569 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2570 Node<K,V> hd = null, tl = null;
2571 for (Node<K,V> q = b; q != null; q = q.next) {
2572 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2573 if (tl == null)
2574 hd = p;
2575 else
2576 tl.next = p;
2577 tl = p;
2578 }
2579 return hd;
2580 }
2581
2582 /* ---------------- TreeNodes -------------- */
2583
2584 /**
2585 * Nodes for use in TreeBins
2586 */
2587 static final class TreeNode<K,V> extends Node<K,V> {
2588 TreeNode<K,V> parent; // red-black tree links
2589 TreeNode<K,V> left;
2590 TreeNode<K,V> right;
2591 TreeNode<K,V> prev; // needed to unlink next upon deletion
2592 boolean red;
2593
2594 TreeNode(int hash, K key, V val, Node<K,V> next,
2595 TreeNode<K,V> parent) {
2596 super(hash, key, val, next);
2597 this.parent = parent;
2598 }
2599
2600 Node<K,V> find(int h, Object k) {
2601 return findTreeNode(h, k, null);
2602 }
2603
2604 /**
2605 * Returns the TreeNode (or null if not found) for the given key
2606 * starting at given root.
2607 */
2608 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2609 if (k != null) {
2610 TreeNode<K,V> p = this;
2611 do {
2612 int ph, dir; K pk; TreeNode<K,V> q;
2613 TreeNode<K,V> pl = p.left, pr = p.right;
2614 if ((ph = p.hash) > h)
2615 p = pl;
2616 else if (ph < h)
2617 p = pr;
2618 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2619 return p;
2620 else if (pl == null)
2621 p = pr;
2622 else if (pr == null)
2623 p = pl;
2624 else if ((kc != null ||
2625 (kc = comparableClassFor(k)) != null) &&
2626 (dir = compareComparables(kc, k, pk)) != 0)
2627 p = (dir < 0) ? pl : pr;
2628 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2629 return q;
2630 else
2631 p = pl;
2632 } while (p != null);
2633 }
2634 return null;
2635 }
2636 }
2637
2638 /* ---------------- TreeBins -------------- */
2639
2640 /**
2641 * TreeNodes used at the heads of bins. TreeBins do not hold user
2642 * keys or values, but instead point to list of TreeNodes and
2643 * their root. They also maintain a parasitic read-write lock
2644 * forcing writers (who hold bin lock) to wait for readers (who do
2645 * not) to complete before tree restructuring operations.
2646 */
2647 static final class TreeBin<K,V> extends Node<K,V> {
2648 TreeNode<K,V> root;
2649 volatile TreeNode<K,V> first;
2650 volatile Thread waiter;
2651 volatile int lockState;
2652 // values for lockState
2653 static final int WRITER = 1; // set while holding write lock
2654 static final int WAITER = 2; // set when waiting for write lock
2655 static final int READER = 4; // increment value for setting read lock
2656
2657 /**
2658 * Tie-breaking utility for ordering insertions when equal
2659 * hashCodes and non-comparable. We don't require a total
2660 * order, just a consistent insertion rule to maintain
2661 * equivalence across rebalancings. Tie-breaking further than
2662 * necessary simplifies testing a bit.
2663 */
2664 static int tieBreakOrder(Object a, Object b) {
2665 int d;
2666 if (a == null || b == null ||
2667 (d = a.getClass().getName().
2668 compareTo(b.getClass().getName())) == 0)
2669 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2670 -1 : 1);
2671 return d;
2672 }
2673
2674 /**
2675 * Creates bin with initial set of nodes headed by b.
2676 */
2677 TreeBin(TreeNode<K,V> b) {
2678 super(TREEBIN, null, null, null);
2679 this.first = b;
2680 TreeNode<K,V> r = null;
2681 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2682 next = (TreeNode<K,V>)x.next;
2683 x.left = x.right = null;
2684 if (r == null) {
2685 x.parent = null;
2686 x.red = false;
2687 r = x;
2688 }
2689 else {
2690 K k = x.key;
2691 int h = x.hash;
2692 Class<?> kc = null;
2693 for (TreeNode<K,V> p = r;;) {
2694 int dir, ph;
2695 K pk = p.key;
2696 if ((ph = p.hash) > h)
2697 dir = -1;
2698 else if (ph < h)
2699 dir = 1;
2700 else if ((kc == null &&
2701 (kc = comparableClassFor(k)) == null) ||
2702 (dir = compareComparables(kc, k, pk)) == 0)
2703 dir = tieBreakOrder(k, pk);
2704 TreeNode<K,V> xp = p;
2705 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2706 x.parent = xp;
2707 if (dir <= 0)
2708 xp.left = x;
2709 else
2710 xp.right = x;
2711 r = balanceInsertion(r, x);
2712 break;
2713 }
2714 }
2715 }
2716 }
2717 this.root = r;
2718 assert checkInvariants(root);
2719 }
2720
2721 /**
2722 * Acquires write lock for tree restructuring.
2723 */
2724 private final void lockRoot() {
2725 if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2726 contendedLock(); // offload to separate method
2727 }
2728
2729 /**
2730 * Releases write lock for tree restructuring.
2731 */
2732 private final void unlockRoot() {
2733 lockState = 0;
2734 }
2735
2736 /**
2737 * Possibly blocks awaiting root lock.
2738 */
2739 private final void contendedLock() {
2740 boolean waiting = false;
2741 for (int s;;) {
2742 if (((s = lockState) & WRITER) == 0) {
2743 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2744 if (waiting)
2745 waiter = null;
2746 return;
2747 }
2748 }
2749 else if ((s & WAITER) == 0) {
2750 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2751 waiting = true;
2752 waiter = Thread.currentThread();
2753 }
2754 }
2755 else if (waiting)
2756 LockSupport.park(this);
2757 }
2758 }
2759
2760 /**
2761 * Returns matching node or null if none. Tries to search
2762 * using tree comparisons from root, but continues linear
2763 * search when lock not available.
2764 */
2765 final Node<K,V> find(int h, Object k) {
2766 if (k != null) {
2767 for (Node<K,V> e = first; e != null; e = e.next) {
2768 int s; K ek;
2769 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2770 if (e.hash == h &&
2771 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2772 return e;
2773 }
2774 else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2775 s + READER)) {
2776 TreeNode<K,V> r, p;
2777 try {
2778 p = ((r = root) == null ? null :
2779 r.findTreeNode(h, k, null));
2780 } finally {
2781 Thread w;
2782 if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2783 (READER|WAITER) && (w = waiter) != null)
2784 LockSupport.unpark(w);
2785 }
2786 return p;
2787 }
2788 }
2789 }
2790 return null;
2791 }
2792
2793 /**
2794 * Finds or adds a node.
2795 * @return null if added
2796 */
2797 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2798 Class<?> kc = null;
2799 boolean searched = false;
2800 for (TreeNode<K,V> p = root;;) {
2801 int dir, ph; K pk;
2802 if (p == null) {
2803 first = root = new TreeNode<K,V>(h, k, v, null, null);
2804 break;
2805 }
2806 else if ((ph = p.hash) > h)
2807 dir = -1;
2808 else if (ph < h)
2809 dir = 1;
2810 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2811 return p;
2812 else if ((kc == null &&
2813 (kc = comparableClassFor(k)) == null) ||
2814 (dir = compareComparables(kc, k, pk)) == 0) {
2815 if (!searched) {
2816 TreeNode<K,V> q, ch;
2817 searched = true;
2818 if (((ch = p.left) != null &&
2819 (q = ch.findTreeNode(h, k, kc)) != null) ||
2820 ((ch = p.right) != null &&
2821 (q = ch.findTreeNode(h, k, kc)) != null))
2822 return q;
2823 }
2824 dir = tieBreakOrder(k, pk);
2825 }
2826
2827 TreeNode<K,V> xp = p;
2828 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2829 TreeNode<K,V> x, f = first;
2830 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2831 if (f != null)
2832 f.prev = x;
2833 if (dir <= 0)
2834 xp.left = x;
2835 else
2836 xp.right = x;
2837 if (!xp.red)
2838 x.red = true;
2839 else {
2840 lockRoot();
2841 try {
2842 root = balanceInsertion(root, x);
2843 } finally {
2844 unlockRoot();
2845 }
2846 }
2847 break;
2848 }
2849 }
2850 assert checkInvariants(root);
2851 return null;
2852 }
2853
2854 /**
2855 * Removes the given node, that must be present before this
2856 * call. This is messier than typical red-black deletion code
2857 * because we cannot swap the contents of an interior node
2858 * with a leaf successor that is pinned by "next" pointers
2859 * that are accessible independently of lock. So instead we
2860 * swap the tree linkages.
2861 *
2862 * @return true if now too small, so should be untreeified
2863 */
2864 final boolean removeTreeNode(TreeNode<K,V> p) {
2865 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2866 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2867 TreeNode<K,V> r, rl;
2868 if (pred == null)
2869 first = next;
2870 else
2871 pred.next = next;
2872 if (next != null)
2873 next.prev = pred;
2874 if (first == null) {
2875 root = null;
2876 return true;
2877 }
2878 if ((r = root) == null || r.right == null || // too small
2879 (rl = r.left) == null || rl.left == null)
2880 return true;
2881 lockRoot();
2882 try {
2883 TreeNode<K,V> replacement;
2884 TreeNode<K,V> pl = p.left;
2885 TreeNode<K,V> pr = p.right;
2886 if (pl != null && pr != null) {
2887 TreeNode<K,V> s = pr, sl;
2888 while ((sl = s.left) != null) // find successor
2889 s = sl;
2890 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2891 TreeNode<K,V> sr = s.right;
2892 TreeNode<K,V> pp = p.parent;
2893 if (s == pr) { // p was s's direct parent
2894 p.parent = s;
2895 s.right = p;
2896 }
2897 else {
2898 TreeNode<K,V> sp = s.parent;
2899 if ((p.parent = sp) != null) {
2900 if (s == sp.left)
2901 sp.left = p;
2902 else
2903 sp.right = p;
2904 }
2905 if ((s.right = pr) != null)
2906 pr.parent = s;
2907 }
2908 p.left = null;
2909 if ((p.right = sr) != null)
2910 sr.parent = p;
2911 if ((s.left = pl) != null)
2912 pl.parent = s;
2913 if ((s.parent = pp) == null)
2914 r = s;
2915 else if (p == pp.left)
2916 pp.left = s;
2917 else
2918 pp.right = s;
2919 if (sr != null)
2920 replacement = sr;
2921 else
2922 replacement = p;
2923 }
2924 else if (pl != null)
2925 replacement = pl;
2926 else if (pr != null)
2927 replacement = pr;
2928 else
2929 replacement = p;
2930 if (replacement != p) {
2931 TreeNode<K,V> pp = replacement.parent = p.parent;
2932 if (pp == null)
2933 r = replacement;
2934 else if (p == pp.left)
2935 pp.left = replacement;
2936 else
2937 pp.right = replacement;
2938 p.left = p.right = p.parent = null;
2939 }
2940
2941 root = (p.red) ? r : balanceDeletion(r, replacement);
2942
2943 if (p == replacement) { // detach pointers
2944 TreeNode<K,V> pp;
2945 if ((pp = p.parent) != null) {
2946 if (p == pp.left)
2947 pp.left = null;
2948 else if (p == pp.right)
2949 pp.right = null;
2950 p.parent = null;
2951 }
2952 }
2953 } finally {
2954 unlockRoot();
2955 }
2956 assert checkInvariants(root);
2957 return false;
2958 }
2959
2960 /* ------------------------------------------------------------ */
2961 // Red-black tree methods, all adapted from CLR
2962
2963 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2964 TreeNode<K,V> p) {
2965 TreeNode<K,V> r, pp, rl;
2966 if (p != null && (r = p.right) != null) {
2967 if ((rl = p.right = r.left) != null)
2968 rl.parent = p;
2969 if ((pp = r.parent = p.parent) == null)
2970 (root = r).red = false;
2971 else if (pp.left == p)
2972 pp.left = r;
2973 else
2974 pp.right = r;
2975 r.left = p;
2976 p.parent = r;
2977 }
2978 return root;
2979 }
2980
2981 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2982 TreeNode<K,V> p) {
2983 TreeNode<K,V> l, pp, lr;
2984 if (p != null && (l = p.left) != null) {
2985 if ((lr = p.left = l.right) != null)
2986 lr.parent = p;
2987 if ((pp = l.parent = p.parent) == null)
2988 (root = l).red = false;
2989 else if (pp.right == p)
2990 pp.right = l;
2991 else
2992 pp.left = l;
2993 l.right = p;
2994 p.parent = l;
2995 }
2996 return root;
2997 }
2998
2999 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3000 TreeNode<K,V> x) {
3001 x.red = true;
3002 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3003 if ((xp = x.parent) == null) {
3004 x.red = false;
3005 return x;
3006 }
3007 else if (!xp.red || (xpp = xp.parent) == null)
3008 return root;
3009 if (xp == (xppl = xpp.left)) {
3010 if ((xppr = xpp.right) != null && xppr.red) {
3011 xppr.red = false;
3012 xp.red = false;
3013 xpp.red = true;
3014 x = xpp;
3015 }
3016 else {
3017 if (x == xp.right) {
3018 root = rotateLeft(root, x = xp);
3019 xpp = (xp = x.parent) == null ? null : xp.parent;
3020 }
3021 if (xp != null) {
3022 xp.red = false;
3023 if (xpp != null) {
3024 xpp.red = true;
3025 root = rotateRight(root, xpp);
3026 }
3027 }
3028 }
3029 }
3030 else {
3031 if (xppl != null && xppl.red) {
3032 xppl.red = false;
3033 xp.red = false;
3034 xpp.red = true;
3035 x = xpp;
3036 }
3037 else {
3038 if (x == xp.left) {
3039 root = rotateRight(root, x = xp);
3040 xpp = (xp = x.parent) == null ? null : xp.parent;
3041 }
3042 if (xp != null) {
3043 xp.red = false;
3044 if (xpp != null) {
3045 xpp.red = true;
3046 root = rotateLeft(root, xpp);
3047 }
3048 }
3049 }
3050 }
3051 }
3052 }
3053
3054 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3055 TreeNode<K,V> x) {
3056 for (TreeNode<K,V> xp, xpl, xpr;;) {
3057 if (x == null || x == root)
3058 return root;
3059 else if ((xp = x.parent) == null) {
3060 x.red = false;
3061 return x;
3062 }
3063 else if (x.red) {
3064 x.red = false;
3065 return root;
3066 }
3067 else if ((xpl = xp.left) == x) {
3068 if ((xpr = xp.right) != null && xpr.red) {
3069 xpr.red = false;
3070 xp.red = true;
3071 root = rotateLeft(root, xp);
3072 xpr = (xp = x.parent) == null ? null : xp.right;
3073 }
3074 if (xpr == null)
3075 x = xp;
3076 else {
3077 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3078 if ((sr == null || !sr.red) &&
3079 (sl == null || !sl.red)) {
3080 xpr.red = true;
3081 x = xp;
3082 }
3083 else {
3084 if (sr == null || !sr.red) {
3085 if (sl != null)
3086 sl.red = false;
3087 xpr.red = true;
3088 root = rotateRight(root, xpr);
3089 xpr = (xp = x.parent) == null ?
3090 null : xp.right;
3091 }
3092 if (xpr != null) {
3093 xpr.red = (xp == null) ? false : xp.red;
3094 if ((sr = xpr.right) != null)
3095 sr.red = false;
3096 }
3097 if (xp != null) {
3098 xp.red = false;
3099 root = rotateLeft(root, xp);
3100 }
3101 x = root;
3102 }
3103 }
3104 }
3105 else { // symmetric
3106 if (xpl != null && xpl.red) {
3107 xpl.red = false;
3108 xp.red = true;
3109 root = rotateRight(root, xp);
3110 xpl = (xp = x.parent) == null ? null : xp.left;
3111 }
3112 if (xpl == null)
3113 x = xp;
3114 else {
3115 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3116 if ((sl == null || !sl.red) &&
3117 (sr == null || !sr.red)) {
3118 xpl.red = true;
3119 x = xp;
3120 }
3121 else {
3122 if (sl == null || !sl.red) {
3123 if (sr != null)
3124 sr.red = false;
3125 xpl.red = true;
3126 root = rotateLeft(root, xpl);
3127 xpl = (xp = x.parent) == null ?
3128 null : xp.left;
3129 }
3130 if (xpl != null) {
3131 xpl.red = (xp == null) ? false : xp.red;
3132 if ((sl = xpl.left) != null)
3133 sl.red = false;
3134 }
3135 if (xp != null) {
3136 xp.red = false;
3137 root = rotateRight(root, xp);
3138 }
3139 x = root;
3140 }
3141 }
3142 }
3143 }
3144 }
3145
3146 /**
3147 * Recursive invariant check
3148 */
3149 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3150 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3151 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3152 if (tb != null && tb.next != t)
3153 return false;
3154 if (tn != null && tn.prev != t)
3155 return false;
3156 if (tp != null && t != tp.left && t != tp.right)
3157 return false;
3158 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3159 return false;
3160 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3161 return false;
3162 if (t.red && tl != null && tl.red && tr != null && tr.red)
3163 return false;
3164 if (tl != null && !checkInvariants(tl))
3165 return false;
3166 if (tr != null && !checkInvariants(tr))
3167 return false;
3168 return true;
3169 }
3170
3171 private static final sun.misc.Unsafe U;
3172 private static final long LOCKSTATE;
3173 static {
3174 try {
3175 U = sun.misc.Unsafe.getUnsafe();
3176 Class<?> k = TreeBin.class;
3177 LOCKSTATE = U.objectFieldOffset
3178 (k.getDeclaredField("lockState"));
3179 } catch (Exception e) {
3180 throw new Error(e);
3181 }
3182 }
3183 }
3184
3185 /* ----------------Table Traversal -------------- */
3186
3187 /**
3188 * Records the table, its length, and current traversal index for a
3189 * traverser that must process a region of a forwarded table before
3190 * proceeding with current table.
3191 */
3192 static final class TableStack<K,V> {
3193 int length;
3194 int index;
3195 Node<K,V>[] tab;
3196 TableStack<K,V> next;
3197 }
3198
3199 /**
3200 * Encapsulates traversal for methods such as containsValue; also
3201 * serves as a base class for other iterators and spliterators.
3202 *
3203 * Method advance visits once each still-valid node that was
3204 * reachable upon iterator construction. It might miss some that
3205 * were added to a bin after the bin was visited, which is OK wrt
3206 * consistency guarantees. Maintaining this property in the face
3207 * of possible ongoing resizes requires a fair amount of
3208 * bookkeeping state that is difficult to optimize away amidst
3209 * volatile accesses. Even so, traversal maintains reasonable
3210 * throughput.
3211 *
3212 * Normally, iteration proceeds bin-by-bin traversing lists.
3213 * However, if the table has been resized, then all future steps
3214 * must traverse both the bin at the current index as well as at
3215 * (index + baseSize); and so on for further resizings. To
3216 * paranoically cope with potential sharing by users of iterators
3217 * across threads, iteration terminates if a bounds checks fails
3218 * for a table read.
3219 */
3220 static class Traverser<K,V> {
3221 Node<K,V>[] tab; // current table; updated if resized
3222 Node<K,V> next; // the next entry to use
3223 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3224 int index; // index of bin to use next
3225 int baseIndex; // current index of initial table
3226 int baseLimit; // index bound for initial table
3227 final int baseSize; // initial table size
3228
3229 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3230 this.tab = tab;
3231 this.baseSize = size;
3232 this.baseIndex = this.index = index;
3233 this.baseLimit = limit;
3234 this.next = null;
3235 }
3236
3237 /**
3238 * Advances if possible, returning next valid node, or null if none.
3239 */
3240 final Node<K,V> advance() {
3241 Node<K,V> e;
3242 if ((e = next) != null)
3243 e = e.next;
3244 for (;;) {
3245 Node<K,V>[] t; int i, n; // must use locals in checks
3246 if (e != null)
3247 return next = e;
3248 if (baseIndex >= baseLimit || (t = tab) == null ||
3249 (n = t.length) <= (i = index) || i < 0)
3250 return next = null;
3251 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3252 if (e instanceof ForwardingNode) {
3253 tab = ((ForwardingNode<K,V>)e).nextTable;
3254 e = null;
3255 pushState(t, i, n);
3256 continue;
3257 }
3258 else if (e instanceof TreeBin)
3259 e = ((TreeBin<K,V>)e).first;
3260 else
3261 e = null;
3262 }
3263 if (stack != null)
3264 recoverState(n);
3265 else if ((index = i + baseSize) >= n)
3266 index = ++baseIndex; // visit upper slots if present
3267 }
3268 }
3269
3270 /**
3271 * Save traversal state upon encountering a forwarding node.
3272 */
3273 private void pushState(Node<K,V>[] t, int i, int n) {
3274 TableStack<K,V> s = spare; // reuse if possible
3275 if (s != null)
3276 spare = s.next;
3277 else
3278 s = new TableStack<K,V>();
3279 s.tab = t;
3280 s.length = n;
3281 s.index = i;
3282 s.next = stack;
3283 stack = s;
3284 }
3285
3286 /**
3287 * Possibly pop traversal state
3288 *
3289 * @param n length of current table
3290 */
3291 private void recoverState(int n) {
3292 TableStack<K,V> s; int len;
3293 while ((s = stack) != null && (index += (len = s.length)) >= n) {
3294 n = len;
3295 index = s.index;
3296 tab = s.tab;
3297 s.tab = null;
3298 TableStack<K,V> next = s.next;
3299 s.next = spare; // save for reuse
3300 stack = next;
3301 spare = s;
3302 }
3303 if (s == null && (index += baseSize) >= n)
3304 index = ++baseIndex;
3305 }
3306 }
3307
3308 /**
3309 * Base of key, value, and entry Iterators. Adds fields to
3310 * Traverser to support iterator.remove.
3311 */
3312 static class BaseIterator<K,V> extends Traverser<K,V> {
3313 final ConcurrentHashMap<K,V> map;
3314 Node<K,V> lastReturned;
3315 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3316 ConcurrentHashMap<K,V> map) {
3317 super(tab, size, index, limit);
3318 this.map = map;
3319 advance();
3320 }
3321
3322 public final boolean hasNext() { return next != null; }
3323 public final boolean hasMoreElements() { return next != null; }
3324
3325 public final void remove() {
3326 Node<K,V> p;
3327 if ((p = lastReturned) == null)
3328 throw new IllegalStateException();
3329 lastReturned = null;
3330 map.replaceNode(p.key, null, null);
3331 }
3332 }
3333
3334 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3335 implements Iterator<K>, Enumeration<K> {
3336 KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3337 ConcurrentHashMap<K,V> map) {
3338 super(tab, index, size, limit, map);
3339 }
3340
3341 public final K next() {
3342 Node<K,V> p;
3343 if ((p = next) == null)
3344 throw new NoSuchElementException();
3345 K k = p.key;
3346 lastReturned = p;
3347 advance();
3348 return k;
3349 }
3350
3351 public final K nextElement() { return next(); }
3352 }
3353
3354 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3355 implements Iterator<V>, Enumeration<V> {
3356 ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3357 ConcurrentHashMap<K,V> map) {
3358 super(tab, index, size, limit, map);
3359 }
3360
3361 public final V next() {
3362 Node<K,V> p;
3363 if ((p = next) == null)
3364 throw new NoSuchElementException();
3365 V v = p.val;
3366 lastReturned = p;
3367 advance();
3368 return v;
3369 }
3370
3371 public final V nextElement() { return next(); }
3372 }
3373
3374 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3375 implements Iterator<Map.Entry<K,V>> {
3376 EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3377 ConcurrentHashMap<K,V> map) {
3378 super(tab, index, size, limit, map);
3379 }
3380
3381 public final Map.Entry<K,V> next() {
3382 Node<K,V> p;
3383 if ((p = next) == null)
3384 throw new NoSuchElementException();
3385 K k = p.key;
3386 V v = p.val;
3387 lastReturned = p;
3388 advance();
3389 return new MapEntry<K,V>(k, v, map);
3390 }
3391 }
3392
3393 /**
3394 * Exported Entry for EntryIterator
3395 */
3396 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3397 final K key; // non-null
3398 V val; // non-null
3399 final ConcurrentHashMap<K,V> map;
3400 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3401 this.key = key;
3402 this.val = val;
3403 this.map = map;
3404 }
3405 public K getKey() { return key; }
3406 public V getValue() { return val; }
3407 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3408 public String toString() { return key + "=" + val; }
3409
3410 public boolean equals(Object o) {
3411 Object k, v; Map.Entry<?,?> e;
3412 return ((o instanceof Map.Entry) &&
3413 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3414 (v = e.getValue()) != null &&
3415 (k == key || k.equals(key)) &&
3416 (v == val || v.equals(val)));
3417 }
3418
3419 /**
3420 * Sets our entry's value and writes through to the map. The
3421 * value to return is somewhat arbitrary here. Since we do not
3422 * necessarily track asynchronous changes, the most recent
3423 * "previous" value could be different from what we return (or
3424 * could even have been removed, in which case the put will
3425 * re-establish). We do not and cannot guarantee more.
3426 */
3427 public V setValue(V value) {
3428 if (value == null) throw new NullPointerException();
3429 V v = val;
3430 val = value;
3431 map.put(key, value);
3432 return v;
3433 }
3434 }
3435
3436 static final class KeySpliterator<K,V> extends Traverser<K,V>
3437 implements Spliterator<K> {
3438 long est; // size estimate
3439 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3440 long est) {
3441 super(tab, size, index, limit);
3442 this.est = est;
3443 }
3444
3445 public Spliterator<K> trySplit() {
3446 int i, f, h;
3447 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3448 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3449 f, est >>>= 1);
3450 }
3451
3452 public void forEachRemaining(Consumer<? super K> action) {
3453 if (action == null) throw new NullPointerException();
3454 for (Node<K,V> p; (p = advance()) != null;)
3455 action.accept(p.key);
3456 }
3457
3458 public boolean tryAdvance(Consumer<? super K> action) {
3459 if (action == null) throw new NullPointerException();
3460 Node<K,V> p;
3461 if ((p = advance()) == null)
3462 return false;
3463 action.accept(p.key);
3464 return true;
3465 }
3466
3467 public long estimateSize() { return est; }
3468
3469 public int characteristics() {
3470 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3471 Spliterator.NONNULL;
3472 }
3473 }
3474
3475 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3476 implements Spliterator<V> {
3477 long est; // size estimate
3478 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3479 long est) {
3480 super(tab, size, index, limit);
3481 this.est = est;
3482 }
3483
3484 public Spliterator<V> trySplit() {
3485 int i, f, h;
3486 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3487 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3488 f, est >>>= 1);
3489 }
3490
3491 public void forEachRemaining(Consumer<? super V> action) {
3492 if (action == null) throw new NullPointerException();
3493 for (Node<K,V> p; (p = advance()) != null;)
3494 action.accept(p.val);
3495 }
3496
3497 public boolean tryAdvance(Consumer<? super V> action) {
3498 if (action == null) throw new NullPointerException();
3499 Node<K,V> p;
3500 if ((p = advance()) == null)
3501 return false;
3502 action.accept(p.val);
3503 return true;
3504 }
3505
3506 public long estimateSize() { return est; }
3507
3508 public int characteristics() {
3509 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3510 }
3511 }
3512
3513 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3514 implements Spliterator<Map.Entry<K,V>> {
3515 final ConcurrentHashMap<K,V> map; // To export MapEntry
3516 long est; // size estimate
3517 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3518 long est, ConcurrentHashMap<K,V> map) {
3519 super(tab, size, index, limit);
3520 this.map = map;
3521 this.est = est;
3522 }
3523
3524 public Spliterator<Map.Entry<K,V>> trySplit() {
3525 int i, f, h;
3526 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3527 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3528 f, est >>>= 1, map);
3529 }
3530
3531 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3532 if (action == null) throw new NullPointerException();
3533 for (Node<K,V> p; (p = advance()) != null; )
3534 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3535 }
3536
3537 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3538 if (action == null) throw new NullPointerException();
3539 Node<K,V> p;
3540 if ((p = advance()) == null)
3541 return false;
3542 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3543 return true;
3544 }
3545
3546 public long estimateSize() { return est; }
3547
3548 public int characteristics() {
3549 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3550 Spliterator.NONNULL;
3551 }
3552 }
3553
3554 // Parallel bulk operations
3555
3556 /**
3557 * Computes initial batch value for bulk tasks. The returned value
3558 * is approximately exp2 of the number of times (minus one) to
3559 * split task by two before executing leaf action. This value is
3560 * faster to compute and more convenient to use as a guide to
3561 * splitting than is the depth, since it is used while dividing by
3562 * two anyway.
3563 */
3564 final int batchFor(long b) {
3565 long n;
3566 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3567 return 0;
3568 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3569 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3570 }
3571
3572 /**
3573 * Performs the given action for each (key, value).
3574 *
3575 * @param parallelismThreshold the (estimated) number of elements
3576 * needed for this operation to be executed in parallel
3577 * @param action the action
3578 * @since 1.8
3579 */
3580 public void forEach(long parallelismThreshold,
3581 BiConsumer<? super K,? super V> action) {
3582 if (action == null) throw new NullPointerException();
3583 new ForEachMappingTask<K,V>
3584 (null, batchFor(parallelismThreshold), 0, 0, table,
3585 action).invoke();
3586 }
3587
3588 /**
3589 * Performs the given action for each non-null transformation
3590 * of each (key, value).
3591 *
3592 * @param parallelismThreshold the (estimated) number of elements
3593 * needed for this operation to be executed in parallel
3594 * @param transformer a function returning the transformation
3595 * for an element, or null if there is no transformation (in
3596 * which case the action is not applied)
3597 * @param action the action
3598 * @param <U> the return type of the transformer
3599 * @since 1.8
3600 */
3601 public <U> void forEach(long parallelismThreshold,
3602 BiFunction<? super K, ? super V, ? extends U> transformer,
3603 Consumer<? super U> action) {
3604 if (transformer == null || action == null)
3605 throw new NullPointerException();
3606 new ForEachTransformedMappingTask<K,V,U>
3607 (null, batchFor(parallelismThreshold), 0, 0, table,
3608 transformer, action).invoke();
3609 }
3610
3611 /**
3612 * Returns a non-null result from applying the given search
3613 * function on each (key, value), or null if none. Upon
3614 * success, further element processing is suppressed and the
3615 * results of any other parallel invocations of the search
3616 * function are ignored.
3617 *
3618 * @param parallelismThreshold the (estimated) number of elements
3619 * needed for this operation to be executed in parallel
3620 * @param searchFunction a function returning a non-null
3621 * result on success, else null
3622 * @param <U> the return type of the search function
3623 * @return a non-null result from applying the given search
3624 * function on each (key, value), or null if none
3625 * @since 1.8
3626 */
3627 public <U> U search(long parallelismThreshold,
3628 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3629 if (searchFunction == null) throw new NullPointerException();
3630 return new SearchMappingsTask<K,V,U>
3631 (null, batchFor(parallelismThreshold), 0, 0, table,
3632 searchFunction, new AtomicReference<U>()).invoke();
3633 }
3634
3635 /**
3636 * Returns the result of accumulating the given transformation
3637 * of all (key, value) pairs using the given reducer to
3638 * combine values, or null if none.
3639 *
3640 * @param parallelismThreshold the (estimated) number of elements
3641 * needed for this operation to be executed in parallel
3642 * @param transformer a function returning the transformation
3643 * for an element, or null if there is no transformation (in
3644 * which case it is not combined)
3645 * @param reducer a commutative associative combining function
3646 * @param <U> the return type of the transformer
3647 * @return the result of accumulating the given transformation
3648 * of all (key, value) pairs
3649 * @since 1.8
3650 */
3651 public <U> U reduce(long parallelismThreshold,
3652 BiFunction<? super K, ? super V, ? extends U> transformer,
3653 BiFunction<? super U, ? super U, ? extends U> reducer) {
3654 if (transformer == null || reducer == null)
3655 throw new NullPointerException();
3656 return new MapReduceMappingsTask<K,V,U>
3657 (null, batchFor(parallelismThreshold), 0, 0, table,
3658 null, transformer, reducer).invoke();
3659 }
3660
3661 /**
3662 * Returns the result of accumulating the given transformation
3663 * of all (key, value) pairs using the given reducer to
3664 * combine values, and the given basis as an identity value.
3665 *
3666 * @param parallelismThreshold the (estimated) number of elements
3667 * needed for this operation to be executed in parallel
3668 * @param transformer a function returning the transformation
3669 * for an element
3670 * @param basis the identity (initial default value) for the reduction
3671 * @param reducer a commutative associative combining function
3672 * @return the result of accumulating the given transformation
3673 * of all (key, value) pairs
3674 * @since 1.8
3675 */
3676 public double reduceToDouble(long parallelismThreshold,
3677 ToDoubleBiFunction<? super K, ? super V> transformer,
3678 double basis,
3679 DoubleBinaryOperator reducer) {
3680 if (transformer == null || reducer == null)
3681 throw new NullPointerException();
3682 return new MapReduceMappingsToDoubleTask<K,V>
3683 (null, batchFor(parallelismThreshold), 0, 0, table,
3684 null, transformer, basis, reducer).invoke();
3685 }
3686
3687 /**
3688 * Returns the result of accumulating the given transformation
3689 * of all (key, value) pairs using the given reducer to
3690 * combine values, and the given basis as an identity value.
3691 *
3692 * @param parallelismThreshold the (estimated) number of elements
3693 * needed for this operation to be executed in parallel
3694 * @param transformer a function returning the transformation
3695 * for an element
3696 * @param basis the identity (initial default value) for the reduction
3697 * @param reducer a commutative associative combining function
3698 * @return the result of accumulating the given transformation
3699 * of all (key, value) pairs
3700 * @since 1.8
3701 */
3702 public long reduceToLong(long parallelismThreshold,
3703 ToLongBiFunction<? super K, ? super V> transformer,
3704 long basis,
3705 LongBinaryOperator reducer) {
3706 if (transformer == null || reducer == null)
3707 throw new NullPointerException();
3708 return new MapReduceMappingsToLongTask<K,V>
3709 (null, batchFor(parallelismThreshold), 0, 0, table,
3710 null, transformer, basis, reducer).invoke();
3711 }
3712
3713 /**
3714 * Returns the result of accumulating the given transformation
3715 * of all (key, value) pairs using the given reducer to
3716 * combine values, and the given basis as an identity value.
3717 *
3718 * @param parallelismThreshold the (estimated) number of elements
3719 * needed for this operation to be executed in parallel
3720 * @param transformer a function returning the transformation
3721 * for an element
3722 * @param basis the identity (initial default value) for the reduction
3723 * @param reducer a commutative associative combining function
3724 * @return the result of accumulating the given transformation
3725 * of all (key, value) pairs
3726 * @since 1.8
3727 */
3728 public int reduceToInt(long parallelismThreshold,
3729 ToIntBiFunction<? super K, ? super V> transformer,
3730 int basis,
3731 IntBinaryOperator reducer) {
3732 if (transformer == null || reducer == null)
3733 throw new NullPointerException();
3734 return new MapReduceMappingsToIntTask<K,V>
3735 (null, batchFor(parallelismThreshold), 0, 0, table,
3736 null, transformer, basis, reducer).invoke();
3737 }
3738
3739 /**
3740 * Performs the given action for each key.
3741 *
3742 * @param parallelismThreshold the (estimated) number of elements
3743 * needed for this operation to be executed in parallel
3744 * @param action the action
3745 * @since 1.8
3746 */
3747 public void forEachKey(long parallelismThreshold,
3748 Consumer<? super K> action) {
3749 if (action == null) throw new NullPointerException();
3750 new ForEachKeyTask<K,V>
3751 (null, batchFor(parallelismThreshold), 0, 0, table,
3752 action).invoke();
3753 }
3754
3755 /**
3756 * Performs the given action for each non-null transformation
3757 * of each key.
3758 *
3759 * @param parallelismThreshold the (estimated) number of elements
3760 * needed for this operation to be executed in parallel
3761 * @param transformer a function returning the transformation
3762 * for an element, or null if there is no transformation (in
3763 * which case the action is not applied)
3764 * @param action the action
3765 * @param <U> the return type of the transformer
3766 * @since 1.8
3767 */
3768 public <U> void forEachKey(long parallelismThreshold,
3769 Function<? super K, ? extends U> transformer,
3770 Consumer<? super U> action) {
3771 if (transformer == null || action == null)
3772 throw new NullPointerException();
3773 new ForEachTransformedKeyTask<K,V,U>
3774 (null, batchFor(parallelismThreshold), 0, 0, table,
3775 transformer, action).invoke();
3776 }
3777
3778 /**
3779 * Returns a non-null result from applying the given search
3780 * function on each key, or null if none. Upon success,
3781 * further element processing is suppressed and the results of
3782 * any other parallel invocations of the search function are
3783 * ignored.
3784 *
3785 * @param parallelismThreshold the (estimated) number of elements
3786 * needed for this operation to be executed in parallel
3787 * @param searchFunction a function returning a non-null
3788 * result on success, else null
3789 * @param <U> the return type of the search function
3790 * @return a non-null result from applying the given search
3791 * function on each key, or null if none
3792 * @since 1.8
3793 */
3794 public <U> U searchKeys(long parallelismThreshold,
3795 Function<? super K, ? extends U> searchFunction) {
3796 if (searchFunction == null) throw new NullPointerException();
3797 return new SearchKeysTask<K,V,U>
3798 (null, batchFor(parallelismThreshold), 0, 0, table,
3799 searchFunction, new AtomicReference<U>()).invoke();
3800 }
3801
3802 /**
3803 * Returns the result of accumulating all keys using the given
3804 * reducer to combine values, or null if none.
3805 *
3806 * @param parallelismThreshold the (estimated) number of elements
3807 * needed for this operation to be executed in parallel
3808 * @param reducer a commutative associative combining function
3809 * @return the result of accumulating all keys using the given
3810 * reducer to combine values, or null if none
3811 * @since 1.8
3812 */
3813 public K reduceKeys(long parallelismThreshold,
3814 BiFunction<? super K, ? super K, ? extends K> reducer) {
3815 if (reducer == null) throw new NullPointerException();
3816 return new ReduceKeysTask<K,V>
3817 (null, batchFor(parallelismThreshold), 0, 0, table,
3818 null, reducer).invoke();
3819 }
3820
3821 /**
3822 * Returns the result of accumulating the given transformation
3823 * of all keys using the given reducer to combine values, or
3824 * null if none.
3825 *
3826 * @param parallelismThreshold the (estimated) number of elements
3827 * needed for this operation to be executed in parallel
3828 * @param transformer a function returning the transformation
3829 * for an element, or null if there is no transformation (in
3830 * which case it is not combined)
3831 * @param reducer a commutative associative combining function
3832 * @param <U> the return type of the transformer
3833 * @return the result of accumulating the given transformation
3834 * of all keys
3835 * @since 1.8
3836 */
3837 public <U> U reduceKeys(long parallelismThreshold,
3838 Function<? super K, ? extends U> transformer,
3839 BiFunction<? super U, ? super U, ? extends U> reducer) {
3840 if (transformer == null || reducer == null)
3841 throw new NullPointerException();
3842 return new MapReduceKeysTask<K,V,U>
3843 (null, batchFor(parallelismThreshold), 0, 0, table,
3844 null, transformer, reducer).invoke();
3845 }
3846
3847 /**
3848 * Returns the result of accumulating the given transformation
3849 * of all keys using the given reducer to combine values, and
3850 * the given basis as an identity value.
3851 *
3852 * @param parallelismThreshold the (estimated) number of elements
3853 * needed for this operation to be executed in parallel
3854 * @param transformer a function returning the transformation
3855 * for an element
3856 * @param basis the identity (initial default value) for the reduction
3857 * @param reducer a commutative associative combining function
3858 * @return the result of accumulating the given transformation
3859 * of all keys
3860 * @since 1.8
3861 */
3862 public double reduceKeysToDouble(long parallelismThreshold,
3863 ToDoubleFunction<? super K> transformer,
3864 double basis,
3865 DoubleBinaryOperator reducer) {
3866 if (transformer == null || reducer == null)
3867 throw new NullPointerException();
3868 return new MapReduceKeysToDoubleTask<K,V>
3869 (null, batchFor(parallelismThreshold), 0, 0, table,
3870 null, transformer, basis, reducer).invoke();
3871 }
3872
3873 /**
3874 * Returns the result of accumulating the given transformation
3875 * of all keys using the given reducer to combine values, and
3876 * the given basis as an identity value.
3877 *
3878 * @param parallelismThreshold the (estimated) number of elements
3879 * needed for this operation to be executed in parallel
3880 * @param transformer a function returning the transformation
3881 * for an element
3882 * @param basis the identity (initial default value) for the reduction
3883 * @param reducer a commutative associative combining function
3884 * @return the result of accumulating the given transformation
3885 * of all keys
3886 * @since 1.8
3887 */
3888 public long reduceKeysToLong(long parallelismThreshold,
3889 ToLongFunction<? super K> transformer,
3890 long basis,
3891 LongBinaryOperator reducer) {
3892 if (transformer == null || reducer == null)
3893 throw new NullPointerException();
3894 return new MapReduceKeysToLongTask<K,V>
3895 (null, batchFor(parallelismThreshold), 0, 0, table,
3896 null, transformer, basis, reducer).invoke();
3897 }
3898
3899 /**
3900 * Returns the result of accumulating the given transformation
3901 * of all keys using the given reducer to combine values, and
3902 * the given basis as an identity value.
3903 *
3904 * @param parallelismThreshold the (estimated) number of elements
3905 * needed for this operation to be executed in parallel
3906 * @param transformer a function returning the transformation
3907 * for an element
3908 * @param basis the identity (initial default value) for the reduction
3909 * @param reducer a commutative associative combining function
3910 * @return the result of accumulating the given transformation
3911 * of all keys
3912 * @since 1.8
3913 */
3914 public int reduceKeysToInt(long parallelismThreshold,
3915 ToIntFunction<? super K> transformer,
3916 int basis,
3917 IntBinaryOperator reducer) {
3918 if (transformer == null || reducer == null)
3919 throw new NullPointerException();
3920 return new MapReduceKeysToIntTask<K,V>
3921 (null, batchFor(parallelismThreshold), 0, 0, table,
3922 null, transformer, basis, reducer).invoke();
3923 }
3924
3925 /**
3926 * Performs the given action for each value.
3927 *
3928 * @param parallelismThreshold the (estimated) number of elements
3929 * needed for this operation to be executed in parallel
3930 * @param action the action
3931 * @since 1.8
3932 */
3933 public void forEachValue(long parallelismThreshold,
3934 Consumer<? super V> action) {
3935 if (action == null)
3936 throw new NullPointerException();
3937 new ForEachValueTask<K,V>
3938 (null, batchFor(parallelismThreshold), 0, 0, table,
3939 action).invoke();
3940 }
3941
3942 /**
3943 * Performs the given action for each non-null transformation
3944 * of each value.
3945 *
3946 * @param parallelismThreshold the (estimated) number of elements
3947 * needed for this operation to be executed in parallel
3948 * @param transformer a function returning the transformation
3949 * for an element, or null if there is no transformation (in
3950 * which case the action is not applied)
3951 * @param action the action
3952 * @param <U> the return type of the transformer
3953 * @since 1.8
3954 */
3955 public <U> void forEachValue(long parallelismThreshold,
3956 Function<? super V, ? extends U> transformer,
3957 Consumer<? super U> action) {
3958 if (transformer == null || action == null)
3959 throw new NullPointerException();
3960 new ForEachTransformedValueTask<K,V,U>
3961 (null, batchFor(parallelismThreshold), 0, 0, table,
3962 transformer, action).invoke();
3963 }
3964
3965 /**
3966 * Returns a non-null result from applying the given search
3967 * function on each value, or null if none. Upon success,
3968 * further element processing is suppressed and the results of
3969 * any other parallel invocations of the search function are
3970 * ignored.
3971 *
3972 * @param parallelismThreshold the (estimated) number of elements
3973 * needed for this operation to be executed in parallel
3974 * @param searchFunction a function returning a non-null
3975 * result on success, else null
3976 * @param <U> the return type of the search function
3977 * @return a non-null result from applying the given search
3978 * function on each value, or null if none
3979 * @since 1.8
3980 */
3981 public <U> U searchValues(long parallelismThreshold,
3982 Function<? super V, ? extends U> searchFunction) {
3983 if (searchFunction == null) throw new NullPointerException();
3984 return new SearchValuesTask<K,V,U>
3985 (null, batchFor(parallelismThreshold), 0, 0, table,
3986 searchFunction, new AtomicReference<U>()).invoke();
3987 }
3988
3989 /**
3990 * Returns the result of accumulating all values using the
3991 * given reducer to combine values, or null if none.
3992 *
3993 * @param parallelismThreshold the (estimated) number of elements
3994 * needed for this operation to be executed in parallel
3995 * @param reducer a commutative associative combining function
3996 * @return the result of accumulating all values
3997 * @since 1.8
3998 */
3999 public V reduceValues(long parallelismThreshold,
4000 BiFunction<? super V, ? super V, ? extends V> reducer) {
4001 if (reducer == null) throw new NullPointerException();
4002 return new ReduceValuesTask<K,V>
4003 (null, batchFor(parallelismThreshold), 0, 0, table,
4004 null, reducer).invoke();
4005 }
4006
4007 /**
4008 * Returns the result of accumulating the given transformation
4009 * of all values using the given reducer to combine values, or
4010 * null if none.
4011 *
4012 * @param parallelismThreshold the (estimated) number of elements
4013 * needed for this operation to be executed in parallel
4014 * @param transformer a function returning the transformation
4015 * for an element, or null if there is no transformation (in
4016 * which case it is not combined)
4017 * @param reducer a commutative associative combining function
4018 * @param <U> the return type of the transformer
4019 * @return the result of accumulating the given transformation
4020 * of all values
4021 * @since 1.8
4022 */
4023 public <U> U reduceValues(long parallelismThreshold,
4024 Function<? super V, ? extends U> transformer,
4025 BiFunction<? super U, ? super U, ? extends U> reducer) {
4026 if (transformer == null || reducer == null)
4027 throw new NullPointerException();
4028 return new MapReduceValuesTask<K,V,U>
4029 (null, batchFor(parallelismThreshold), 0, 0, table,
4030 null, transformer, reducer).invoke();
4031 }
4032
4033 /**
4034 * Returns the result of accumulating the given transformation
4035 * of all values using the given reducer to combine values,
4036 * and the given basis as an identity value.
4037 *
4038 * @param parallelismThreshold the (estimated) number of elements
4039 * needed for this operation to be executed in parallel
4040 * @param transformer a function returning the transformation
4041 * for an element
4042 * @param basis the identity (initial default value) for the reduction
4043 * @param reducer a commutative associative combining function
4044 * @return the result of accumulating the given transformation
4045 * of all values
4046 * @since 1.8
4047 */
4048 public double reduceValuesToDouble(long parallelismThreshold,
4049 ToDoubleFunction<? super V> transformer,
4050 double basis,
4051 DoubleBinaryOperator reducer) {
4052 if (transformer == null || reducer == null)
4053 throw new NullPointerException();
4054 return new MapReduceValuesToDoubleTask<K,V>
4055 (null, batchFor(parallelismThreshold), 0, 0, table,
4056 null, transformer, basis, reducer).invoke();
4057 }
4058
4059 /**
4060 * Returns the result of accumulating the given transformation
4061 * of all values using the given reducer to combine values,
4062 * and the given basis as an identity value.
4063 *
4064 * @param parallelismThreshold the (estimated) number of elements
4065 * needed for this operation to be executed in parallel
4066 * @param transformer a function returning the transformation
4067 * for an element
4068 * @param basis the identity (initial default value) for the reduction
4069 * @param reducer a commutative associative combining function
4070 * @return the result of accumulating the given transformation
4071 * of all values
4072 * @since 1.8
4073 */
4074 public long reduceValuesToLong(long parallelismThreshold,
4075 ToLongFunction<? super V> transformer,
4076 long basis,
4077 LongBinaryOperator reducer) {
4078 if (transformer == null || reducer == null)
4079 throw new NullPointerException();
4080 return new MapReduceValuesToLongTask<K,V>
4081 (null, batchFor(parallelismThreshold), 0, 0, table,
4082 null, transformer, basis, reducer).invoke();
4083 }
4084
4085 /**
4086 * Returns the result of accumulating the given transformation
4087 * of all values using the given reducer to combine values,
4088 * and the given basis as an identity value.
4089 *
4090 * @param parallelismThreshold the (estimated) number of elements
4091 * needed for this operation to be executed in parallel
4092 * @param transformer a function returning the transformation
4093 * for an element
4094 * @param basis the identity (initial default value) for the reduction
4095 * @param reducer a commutative associative combining function
4096 * @return the result of accumulating the given transformation
4097 * of all values
4098 * @since 1.8
4099 */
4100 public int reduceValuesToInt(long parallelismThreshold,
4101 ToIntFunction<? super V> transformer,
4102 int basis,
4103 IntBinaryOperator reducer) {
4104 if (transformer == null || reducer == null)
4105 throw new NullPointerException();
4106 return new MapReduceValuesToIntTask<K,V>
4107 (null, batchFor(parallelismThreshold), 0, 0, table,
4108 null, transformer, basis, reducer).invoke();
4109 }
4110
4111 /**
4112 * Performs the given action for each entry.
4113 *
4114 * @param parallelismThreshold the (estimated) number of elements
4115 * needed for this operation to be executed in parallel
4116 * @param action the action
4117 * @since 1.8
4118 */
4119 public void forEachEntry(long parallelismThreshold,
4120 Consumer<? super Map.Entry<K,V>> action) {
4121 if (action == null) throw new NullPointerException();
4122 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4123 action).invoke();
4124 }
4125
4126 /**
4127 * Performs the given action for each non-null transformation
4128 * of each entry.
4129 *
4130 * @param parallelismThreshold the (estimated) number of elements
4131 * needed for this operation to be executed in parallel
4132 * @param transformer a function returning the transformation
4133 * for an element, or null if there is no transformation (in
4134 * which case the action is not applied)
4135 * @param action the action
4136 * @param <U> the return type of the transformer
4137 * @since 1.8
4138 */
4139 public <U> void forEachEntry(long parallelismThreshold,
4140 Function<Map.Entry<K,V>, ? extends U> transformer,
4141 Consumer<? super U> action) {
4142 if (transformer == null || action == null)
4143 throw new NullPointerException();
4144 new ForEachTransformedEntryTask<K,V,U>
4145 (null, batchFor(parallelismThreshold), 0, 0, table,
4146 transformer, action).invoke();
4147 }
4148
4149 /**
4150 * Returns a non-null result from applying the given search
4151 * function on each entry, or null if none. Upon success,
4152 * further element processing is suppressed and the results of
4153 * any other parallel invocations of the search function are
4154 * ignored.
4155 *
4156 * @param parallelismThreshold the (estimated) number of elements
4157 * needed for this operation to be executed in parallel
4158 * @param searchFunction a function returning a non-null
4159 * result on success, else null
4160 * @param <U> the return type of the search function
4161 * @return a non-null result from applying the given search
4162 * function on each entry, or null if none
4163 * @since 1.8
4164 */
4165 public <U> U searchEntries(long parallelismThreshold,
4166 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4167 if (searchFunction == null) throw new NullPointerException();
4168 return new SearchEntriesTask<K,V,U>
4169 (null, batchFor(parallelismThreshold), 0, 0, table,
4170 searchFunction, new AtomicReference<U>()).invoke();
4171 }
4172
4173 /**
4174 * Returns the result of accumulating all entries using the
4175 * given reducer to combine values, or null if none.
4176 *
4177 * @param parallelismThreshold the (estimated) number of elements
4178 * needed for this operation to be executed in parallel
4179 * @param reducer a commutative associative combining function
4180 * @return the result of accumulating all entries
4181 * @since 1.8
4182 */
4183 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4184 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4185 if (reducer == null) throw new NullPointerException();
4186 return new ReduceEntriesTask<K,V>
4187 (null, batchFor(parallelismThreshold), 0, 0, table,
4188 null, reducer).invoke();
4189 }
4190
4191 /**
4192 * Returns the result of accumulating the given transformation
4193 * of all entries using the given reducer to combine values,
4194 * or null if none.
4195 *
4196 * @param parallelismThreshold the (estimated) number of elements
4197 * needed for this operation to be executed in parallel
4198 * @param transformer a function returning the transformation
4199 * for an element, or null if there is no transformation (in
4200 * which case it is not combined)
4201 * @param reducer a commutative associative combining function
4202 * @param <U> the return type of the transformer
4203 * @return the result of accumulating the given transformation
4204 * of all entries
4205 * @since 1.8
4206 */
4207 public <U> U reduceEntries(long parallelismThreshold,
4208 Function<Map.Entry<K,V>, ? extends U> transformer,
4209 BiFunction<? super U, ? super U, ? extends U> reducer) {
4210 if (transformer == null || reducer == null)
4211 throw new NullPointerException();
4212 return new MapReduceEntriesTask<K,V,U>
4213 (null, batchFor(parallelismThreshold), 0, 0, table,
4214 null, transformer, reducer).invoke();
4215 }
4216
4217 /**
4218 * Returns the result of accumulating the given transformation
4219 * of all entries using the given reducer to combine values,
4220 * and the given basis as an identity value.
4221 *
4222 * @param parallelismThreshold the (estimated) number of elements
4223 * needed for this operation to be executed in parallel
4224 * @param transformer a function returning the transformation
4225 * for an element
4226 * @param basis the identity (initial default value) for the reduction
4227 * @param reducer a commutative associative combining function
4228 * @return the result of accumulating the given transformation
4229 * of all entries
4230 * @since 1.8
4231 */
4232 public double reduceEntriesToDouble(long parallelismThreshold,
4233 ToDoubleFunction<Map.Entry<K,V>> transformer,
4234 double basis,
4235 DoubleBinaryOperator reducer) {
4236 if (transformer == null || reducer == null)
4237 throw new NullPointerException();
4238 return new MapReduceEntriesToDoubleTask<K,V>
4239 (null, batchFor(parallelismThreshold), 0, 0, table,
4240 null, transformer, basis, reducer).invoke();
4241 }
4242
4243 /**
4244 * Returns the result of accumulating the given transformation
4245 * of all entries using the given reducer to combine values,
4246 * and the given basis as an identity value.
4247 *
4248 * @param parallelismThreshold the (estimated) number of elements
4249 * needed for this operation to be executed in parallel
4250 * @param transformer a function returning the transformation
4251 * for an element
4252 * @param basis the identity (initial default value) for the reduction
4253 * @param reducer a commutative associative combining function
4254 * @return the result of accumulating the given transformation
4255 * of all entries
4256 * @since 1.8
4257 */
4258 public long reduceEntriesToLong(long parallelismThreshold,
4259 ToLongFunction<Map.Entry<K,V>> transformer,
4260 long basis,
4261 LongBinaryOperator reducer) {
4262 if (transformer == null || reducer == null)
4263 throw new NullPointerException();
4264 return new MapReduceEntriesToLongTask<K,V>
4265 (null, batchFor(parallelismThreshold), 0, 0, table,
4266 null, transformer, basis, reducer).invoke();
4267 }
4268
4269 /**
4270 * Returns the result of accumulating the given transformation
4271 * of all entries using the given reducer to combine values,
4272 * and the given basis as an identity value.
4273 *
4274 * @param parallelismThreshold the (estimated) number of elements
4275 * needed for this operation to be executed in parallel
4276 * @param transformer a function returning the transformation
4277 * for an element
4278 * @param basis the identity (initial default value) for the reduction
4279 * @param reducer a commutative associative combining function
4280 * @return the result of accumulating the given transformation
4281 * of all entries
4282 * @since 1.8
4283 */
4284 public int reduceEntriesToInt(long parallelismThreshold,
4285 ToIntFunction<Map.Entry<K,V>> transformer,
4286 int basis,
4287 IntBinaryOperator reducer) {
4288 if (transformer == null || reducer == null)
4289 throw new NullPointerException();
4290 return new MapReduceEntriesToIntTask<K,V>
4291 (null, batchFor(parallelismThreshold), 0, 0, table,
4292 null, transformer, basis, reducer).invoke();
4293 }
4294
4295
4296 /* ----------------Views -------------- */
4297
4298 /**
4299 * Base class for views.
4300 */
4301 abstract static class CollectionView<K,V,E>
4302 implements Collection<E>, java.io.Serializable {
4303 private static final long serialVersionUID = 7249069246763182397L;
4304 final ConcurrentHashMap<K,V> map;
4305 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4306
4307 /**
4308 * Returns the map backing this view.
4309 *
4310 * @return the map backing this view
4311 */
4312 public ConcurrentHashMap<K,V> getMap() { return map; }
4313
4314 /**
4315 * Removes all of the elements from this view, by removing all
4316 * the mappings from the map backing this view.
4317 */
4318 public final void clear() { map.clear(); }
4319 public final int size() { return map.size(); }
4320 public final boolean isEmpty() { return map.isEmpty(); }
4321
4322 // implementations below rely on concrete classes supplying these
4323 // abstract methods
4324 /**
4325 * Returns an iterator over the elements in this collection.
4326 *
4327 * <p>The returned iterator is
4328 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4329 *
4330 * @return an iterator over the elements in this collection
4331 */
4332 public abstract Iterator<E> iterator();
4333 public abstract boolean contains(Object o);
4334 public abstract boolean remove(Object o);
4335
4336 private static final String oomeMsg = "Required array size too large";
4337
4338 public final Object[] toArray() {
4339 long sz = map.mappingCount();
4340 if (sz > MAX_ARRAY_SIZE)
4341 throw new OutOfMemoryError(oomeMsg);
4342 int n = (int)sz;
4343 Object[] r = new Object[n];
4344 int i = 0;
4345 for (E e : this) {
4346 if (i == n) {
4347 if (n >= MAX_ARRAY_SIZE)
4348 throw new OutOfMemoryError(oomeMsg);
4349 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4350 n = MAX_ARRAY_SIZE;
4351 else
4352 n += (n >>> 1) + 1;
4353 r = Arrays.copyOf(r, n);
4354 }
4355 r[i++] = e;
4356 }
4357 return (i == n) ? r : Arrays.copyOf(r, i);
4358 }
4359
4360 @SuppressWarnings("unchecked")
4361 public final <T> T[] toArray(T[] a) {
4362 long sz = map.mappingCount();
4363 if (sz > MAX_ARRAY_SIZE)
4364 throw new OutOfMemoryError(oomeMsg);
4365 int m = (int)sz;
4366 T[] r = (a.length >= m) ? a :
4367 (T[])java.lang.reflect.Array
4368 .newInstance(a.getClass().getComponentType(), m);
4369 int n = r.length;
4370 int i = 0;
4371 for (E e : this) {
4372 if (i == n) {
4373 if (n >= MAX_ARRAY_SIZE)
4374 throw new OutOfMemoryError(oomeMsg);
4375 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4376 n = MAX_ARRAY_SIZE;
4377 else
4378 n += (n >>> 1) + 1;
4379 r = Arrays.copyOf(r, n);
4380 }
4381 r[i++] = (T)e;
4382 }
4383 if (a == r && i < n) {
4384 r[i] = null; // null-terminate
4385 return r;
4386 }
4387 return (i == n) ? r : Arrays.copyOf(r, i);
4388 }
4389
4390 /**
4391 * Returns a string representation of this collection.
4392 * The string representation consists of the string representations
4393 * of the collection's elements in the order they are returned by
4394 * its iterator, enclosed in square brackets ({@code "[]"}).
4395 * Adjacent elements are separated by the characters {@code ", "}
4396 * (comma and space). Elements are converted to strings as by
4397 * {@link String#valueOf(Object)}.
4398 *
4399 * @return a string representation of this collection
4400 */
4401 public final String toString() {
4402 StringBuilder sb = new StringBuilder();
4403 sb.append('[');
4404 Iterator<E> it = iterator();
4405 if (it.hasNext()) {
4406 for (;;) {
4407 Object e = it.next();
4408 sb.append(e == this ? "(this Collection)" : e);
4409 if (!it.hasNext())
4410 break;
4411 sb.append(',').append(' ');
4412 }
4413 }
4414 return sb.append(']').toString();
4415 }
4416
4417 public final boolean containsAll(Collection<?> c) {
4418 if (c != this) {
4419 for (Object e : c) {
4420 if (e == null || !contains(e))
4421 return false;
4422 }
4423 }
4424 return true;
4425 }
4426
4427 public final boolean removeAll(Collection<?> c) {
4428 boolean modified = false;
4429 for (Iterator<E> it = iterator(); it.hasNext();) {
4430 if (c.contains(it.next())) {
4431 it.remove();
4432 modified = true;
4433 }
4434 }
4435 return modified;
4436 }
4437
4438 public final boolean retainAll(Collection<?> c) {
4439 boolean modified = false;
4440 for (Iterator<E> it = iterator(); it.hasNext();) {
4441 if (!c.contains(it.next())) {
4442 it.remove();
4443 modified = true;
4444 }
4445 }
4446 return modified;
4447 }
4448
4449 }
4450
4451 /**
4452 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4453 * which additions may optionally be enabled by mapping to a
4454 * common value. This class cannot be directly instantiated.
4455 * See {@link #keySet() keySet()},
4456 * {@link #keySet(Object) keySet(V)},
4457 * {@link #newKeySet() newKeySet()},
4458 * {@link #newKeySet(int) newKeySet(int)}.
4459 *
4460 * @since 1.8
4461 */
4462 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4463 implements Set<K>, java.io.Serializable {
4464 private static final long serialVersionUID = 7249069246763182397L;
4465 private final V value;
4466 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4467 super(map);
4468 this.value = value;
4469 }
4470
4471 /**
4472 * Returns the default mapped value for additions,
4473 * or {@code null} if additions are not supported.
4474 *
4475 * @return the default mapped value for additions, or {@code null}
4476 * if not supported
4477 */
4478 public V getMappedValue() { return value; }
4479
4480 /**
4481 * {@inheritDoc}
4482 * @throws NullPointerException if the specified key is null
4483 */
4484 public boolean contains(Object o) { return map.containsKey(o); }
4485
4486 /**
4487 * Removes the key from this map view, by removing the key (and its
4488 * corresponding value) from the backing map. This method does
4489 * nothing if the key is not in the map.
4490 *
4491 * @param o the key to be removed from the backing map
4492 * @return {@code true} if the backing map contained the specified key
4493 * @throws NullPointerException if the specified key is null
4494 */
4495 public boolean remove(Object o) { return map.remove(o) != null; }
4496
4497 /**
4498 * @return an iterator over the keys of the backing map
4499 */
4500 public Iterator<K> iterator() {
4501 Node<K,V>[] t;
4502 ConcurrentHashMap<K,V> m = map;
4503 int f = (t = m.table) == null ? 0 : t.length;
4504 return new KeyIterator<K,V>(t, f, 0, f, m);
4505 }
4506
4507 /**
4508 * Adds the specified key to this set view by mapping the key to
4509 * the default mapped value in the backing map, if defined.
4510 *
4511 * @param e key to be added
4512 * @return {@code true} if this set changed as a result of the call
4513 * @throws NullPointerException if the specified key is null
4514 * @throws UnsupportedOperationException if no default mapped value
4515 * for additions was provided
4516 */
4517 public boolean add(K e) {
4518 V v;
4519 if ((v = value) == null)
4520 throw new UnsupportedOperationException();
4521 return map.putVal(e, v, true) == null;
4522 }
4523
4524 /**
4525 * Adds all of the elements in the specified collection to this set,
4526 * as if by calling {@link #add} on each one.
4527 *
4528 * @param c the elements to be inserted into this set
4529 * @return {@code true} if this set changed as a result of the call
4530 * @throws NullPointerException if the collection or any of its
4531 * elements are {@code null}
4532 * @throws UnsupportedOperationException if no default mapped value
4533 * for additions was provided
4534 */
4535 public boolean addAll(Collection<? extends K> c) {
4536 boolean added = false;
4537 V v;
4538 if ((v = value) == null)
4539 throw new UnsupportedOperationException();
4540 for (K e : c) {
4541 if (map.putVal(e, v, true) == null)
4542 added = true;
4543 }
4544 return added;
4545 }
4546
4547 public int hashCode() {
4548 int h = 0;
4549 for (K e : this)
4550 h += e.hashCode();
4551 return h;
4552 }
4553
4554 public boolean equals(Object o) {
4555 Set<?> c;
4556 return ((o instanceof Set) &&
4557 ((c = (Set<?>)o) == this ||
4558 (containsAll(c) && c.containsAll(this))));
4559 }
4560
4561 public Spliterator<K> spliterator() {
4562 Node<K,V>[] t;
4563 ConcurrentHashMap<K,V> m = map;
4564 long n = m.sumCount();
4565 int f = (t = m.table) == null ? 0 : t.length;
4566 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4567 }
4568
4569 public void forEach(Consumer<? super K> action) {
4570 if (action == null) throw new NullPointerException();
4571 Node<K,V>[] t;
4572 if ((t = map.table) != null) {
4573 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4574 for (Node<K,V> p; (p = it.advance()) != null; )
4575 action.accept(p.key);
4576 }
4577 }
4578 }
4579
4580 /**
4581 * A view of a ConcurrentHashMap as a {@link Collection} of
4582 * values, in which additions are disabled. This class cannot be
4583 * directly instantiated. See {@link #values()}.
4584 */
4585 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4586 implements Collection<V>, java.io.Serializable {
4587 private static final long serialVersionUID = 2249069246763182397L;
4588 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4589 public final boolean contains(Object o) {
4590 return map.containsValue(o);
4591 }
4592
4593 public final boolean remove(Object o) {
4594 if (o != null) {
4595 for (Iterator<V> it = iterator(); it.hasNext();) {
4596 if (o.equals(it.next())) {
4597 it.remove();
4598 return true;
4599 }
4600 }
4601 }
4602 return false;
4603 }
4604
4605 public final Iterator<V> iterator() {
4606 ConcurrentHashMap<K,V> m = map;
4607 Node<K,V>[] t;
4608 int f = (t = m.table) == null ? 0 : t.length;
4609 return new ValueIterator<K,V>(t, f, 0, f, m);
4610 }
4611
4612 public final boolean add(V e) {
4613 throw new UnsupportedOperationException();
4614 }
4615 public final boolean addAll(Collection<? extends V> c) {
4616 throw new UnsupportedOperationException();
4617 }
4618
4619 public Spliterator<V> spliterator() {
4620 Node<K,V>[] t;
4621 ConcurrentHashMap<K,V> m = map;
4622 long n = m.sumCount();
4623 int f = (t = m.table) == null ? 0 : t.length;
4624 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4625 }
4626
4627 public void forEach(Consumer<? super V> action) {
4628 if (action == null) throw new NullPointerException();
4629 Node<K,V>[] t;
4630 if ((t = map.table) != null) {
4631 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4632 for (Node<K,V> p; (p = it.advance()) != null; )
4633 action.accept(p.val);
4634 }
4635 }
4636 }
4637
4638 /**
4639 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4640 * entries. This class cannot be directly instantiated. See
4641 * {@link #entrySet()}.
4642 */
4643 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4644 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4645 private static final long serialVersionUID = 2249069246763182397L;
4646 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4647
4648 public boolean contains(Object o) {
4649 Object k, v, r; Map.Entry<?,?> e;
4650 return ((o instanceof Map.Entry) &&
4651 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4652 (r = map.get(k)) != null &&
4653 (v = e.getValue()) != null &&
4654 (v == r || v.equals(r)));
4655 }
4656
4657 public boolean remove(Object o) {
4658 Object k, v; Map.Entry<?,?> e;
4659 return ((o instanceof Map.Entry) &&
4660 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4661 (v = e.getValue()) != null &&
4662 map.remove(k, v));
4663 }
4664
4665 /**
4666 * @return an iterator over the entries of the backing map
4667 */
4668 public Iterator<Map.Entry<K,V>> iterator() {
4669 ConcurrentHashMap<K,V> m = map;
4670 Node<K,V>[] t;
4671 int f = (t = m.table) == null ? 0 : t.length;
4672 return new EntryIterator<K,V>(t, f, 0, f, m);
4673 }
4674
4675 public boolean add(Entry<K,V> e) {
4676 return map.putVal(e.getKey(), e.getValue(), false) == null;
4677 }
4678
4679 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4680 boolean added = false;
4681 for (Entry<K,V> e : c) {
4682 if (add(e))
4683 added = true;
4684 }
4685 return added;
4686 }
4687
4688 public final int hashCode() {
4689 int h = 0;
4690 Node<K,V>[] t;
4691 if ((t = map.table) != null) {
4692 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4693 for (Node<K,V> p; (p = it.advance()) != null; ) {
4694 h += p.hashCode();
4695 }
4696 }
4697 return h;
4698 }
4699
4700 public final boolean equals(Object o) {
4701 Set<?> c;
4702 return ((o instanceof Set) &&
4703 ((c = (Set<?>)o) == this ||
4704 (containsAll(c) && c.containsAll(this))));
4705 }
4706
4707 public Spliterator<Map.Entry<K,V>> spliterator() {
4708 Node<K,V>[] t;
4709 ConcurrentHashMap<K,V> m = map;
4710 long n = m.sumCount();
4711 int f = (t = m.table) == null ? 0 : t.length;
4712 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4713 }
4714
4715 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4716 if (action == null) throw new NullPointerException();
4717 Node<K,V>[] t;
4718 if ((t = map.table) != null) {
4719 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4720 for (Node<K,V> p; (p = it.advance()) != null; )
4721 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4722 }
4723 }
4724
4725 }
4726
4727 // -------------------------------------------------------
4728
4729 /**
4730 * Base class for bulk tasks. Repeats some fields and code from
4731 * class Traverser, because we need to subclass CountedCompleter.
4732 */
4733 @SuppressWarnings("serial")
4734 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4735 Node<K,V>[] tab; // same as Traverser
4736 Node<K,V> next;
4737 TableStack<K,V> stack, spare;
4738 int index;
4739 int baseIndex;
4740 int baseLimit;
4741 final int baseSize;
4742 int batch; // split control
4743
4744 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4745 super(par);
4746 this.batch = b;
4747 this.index = this.baseIndex = i;
4748 if ((this.tab = t) == null)
4749 this.baseSize = this.baseLimit = 0;
4750 else if (par == null)
4751 this.baseSize = this.baseLimit = t.length;
4752 else {
4753 this.baseLimit = f;
4754 this.baseSize = par.baseSize;
4755 }
4756 }
4757
4758 /**
4759 * Same as Traverser version
4760 */
4761 final Node<K,V> advance() {
4762 Node<K,V> e;
4763 if ((e = next) != null)
4764 e = e.next;
4765 for (;;) {
4766 Node<K,V>[] t; int i, n;
4767 if (e != null)
4768 return next = e;
4769 if (baseIndex >= baseLimit || (t = tab) == null ||
4770 (n = t.length) <= (i = index) || i < 0)
4771 return next = null;
4772 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4773 if (e instanceof ForwardingNode) {
4774 tab = ((ForwardingNode<K,V>)e).nextTable;
4775 e = null;
4776 pushState(t, i, n);
4777 continue;
4778 }
4779 else if (e instanceof TreeBin)
4780 e = ((TreeBin<K,V>)e).first;
4781 else
4782 e = null;
4783 }
4784 if (stack != null)
4785 recoverState(n);
4786 else if ((index = i + baseSize) >= n)
4787 index = ++baseIndex;
4788 }
4789 }
4790
4791 private void pushState(Node<K,V>[] t, int i, int n) {
4792 TableStack<K,V> s = spare;
4793 if (s != null)
4794 spare = s.next;
4795 else
4796 s = new TableStack<K,V>();
4797 s.tab = t;
4798 s.length = n;
4799 s.index = i;
4800 s.next = stack;
4801 stack = s;
4802 }
4803
4804 private void recoverState(int n) {
4805 TableStack<K,V> s; int len;
4806 while ((s = stack) != null && (index += (len = s.length)) >= n) {
4807 n = len;
4808 index = s.index;
4809 tab = s.tab;
4810 s.tab = null;
4811 TableStack<K,V> next = s.next;
4812 s.next = spare; // save for reuse
4813 stack = next;
4814 spare = s;
4815 }
4816 if (s == null && (index += baseSize) >= n)
4817 index = ++baseIndex;
4818 }
4819 }
4820
4821 /*
4822 * Task classes. Coded in a regular but ugly format/style to
4823 * simplify checks that each variant differs in the right way from
4824 * others. The null screenings exist because compilers cannot tell
4825 * that we've already null-checked task arguments, so we force
4826 * simplest hoisted bypass to help avoid convoluted traps.
4827 */
4828 @SuppressWarnings("serial")
4829 static final class ForEachKeyTask<K,V>
4830 extends BulkTask<K,V,Void> {
4831 final Consumer<? super K> action;
4832 ForEachKeyTask
4833 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4834 Consumer<? super K> action) {
4835 super(p, b, i, f, t);
4836 this.action = action;
4837 }
4838 public final void compute() {
4839 final Consumer<? super K> action;
4840 if ((action = this.action) != null) {
4841 for (int i = baseIndex, f, h; batch > 0 &&
4842 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4843 addToPendingCount(1);
4844 new ForEachKeyTask<K,V>
4845 (this, batch >>>= 1, baseLimit = h, f, tab,
4846 action).fork();
4847 }
4848 for (Node<K,V> p; (p = advance()) != null;)
4849 action.accept(p.key);
4850 propagateCompletion();
4851 }
4852 }
4853 }
4854
4855 @SuppressWarnings("serial")
4856 static final class ForEachValueTask<K,V>
4857 extends BulkTask<K,V,Void> {
4858 final Consumer<? super V> action;
4859 ForEachValueTask
4860 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4861 Consumer<? super V> action) {
4862 super(p, b, i, f, t);
4863 this.action = action;
4864 }
4865 public final void compute() {
4866 final Consumer<? super V> action;
4867 if ((action = this.action) != null) {
4868 for (int i = baseIndex, f, h; batch > 0 &&
4869 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4870 addToPendingCount(1);
4871 new ForEachValueTask<K,V>
4872 (this, batch >>>= 1, baseLimit = h, f, tab,
4873 action).fork();
4874 }
4875 for (Node<K,V> p; (p = advance()) != null;)
4876 action.accept(p.val);
4877 propagateCompletion();
4878 }
4879 }
4880 }
4881
4882 @SuppressWarnings("serial")
4883 static final class ForEachEntryTask<K,V>
4884 extends BulkTask<K,V,Void> {
4885 final Consumer<? super Entry<K,V>> action;
4886 ForEachEntryTask
4887 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4888 Consumer<? super Entry<K,V>> action) {
4889 super(p, b, i, f, t);
4890 this.action = action;
4891 }
4892 public final void compute() {
4893 final Consumer<? super Entry<K,V>> action;
4894 if ((action = this.action) != null) {
4895 for (int i = baseIndex, f, h; batch > 0 &&
4896 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4897 addToPendingCount(1);
4898 new ForEachEntryTask<K,V>
4899 (this, batch >>>= 1, baseLimit = h, f, tab,
4900 action).fork();
4901 }
4902 for (Node<K,V> p; (p = advance()) != null; )
4903 action.accept(p);
4904 propagateCompletion();
4905 }
4906 }
4907 }
4908
4909 @SuppressWarnings("serial")
4910 static final class ForEachMappingTask<K,V>
4911 extends BulkTask<K,V,Void> {
4912 final BiConsumer<? super K, ? super V> action;
4913 ForEachMappingTask
4914 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4915 BiConsumer<? super K,? super V> action) {
4916 super(p, b, i, f, t);
4917 this.action = action;
4918 }
4919 public final void compute() {
4920 final BiConsumer<? super K, ? super V> action;
4921 if ((action = this.action) != null) {
4922 for (int i = baseIndex, f, h; batch > 0 &&
4923 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4924 addToPendingCount(1);
4925 new ForEachMappingTask<K,V>
4926 (this, batch >>>= 1, baseLimit = h, f, tab,
4927 action).fork();
4928 }
4929 for (Node<K,V> p; (p = advance()) != null; )
4930 action.accept(p.key, p.val);
4931 propagateCompletion();
4932 }
4933 }
4934 }
4935
4936 @SuppressWarnings("serial")
4937 static final class ForEachTransformedKeyTask<K,V,U>
4938 extends BulkTask<K,V,Void> {
4939 final Function<? super K, ? extends U> transformer;
4940 final Consumer<? super U> action;
4941 ForEachTransformedKeyTask
4942 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4943 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4944 super(p, b, i, f, t);
4945 this.transformer = transformer; this.action = action;
4946 }
4947 public final void compute() {
4948 final Function<? super K, ? extends U> transformer;
4949 final Consumer<? super U> action;
4950 if ((transformer = this.transformer) != null &&
4951 (action = this.action) != null) {
4952 for (int i = baseIndex, f, h; batch > 0 &&
4953 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4954 addToPendingCount(1);
4955 new ForEachTransformedKeyTask<K,V,U>
4956 (this, batch >>>= 1, baseLimit = h, f, tab,
4957 transformer, action).fork();
4958 }
4959 for (Node<K,V> p; (p = advance()) != null; ) {
4960 U u;
4961 if ((u = transformer.apply(p.key)) != null)
4962 action.accept(u);
4963 }
4964 propagateCompletion();
4965 }
4966 }
4967 }
4968
4969 @SuppressWarnings("serial")
4970 static final class ForEachTransformedValueTask<K,V,U>
4971 extends BulkTask<K,V,Void> {
4972 final Function<? super V, ? extends U> transformer;
4973 final Consumer<? super U> action;
4974 ForEachTransformedValueTask
4975 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4976 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
4977 super(p, b, i, f, t);
4978 this.transformer = transformer; this.action = action;
4979 }
4980 public final void compute() {
4981 final Function<? super V, ? extends U> transformer;
4982 final Consumer<? super U> action;
4983 if ((transformer = this.transformer) != null &&
4984 (action = this.action) != null) {
4985 for (int i = baseIndex, f, h; batch > 0 &&
4986 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4987 addToPendingCount(1);
4988 new ForEachTransformedValueTask<K,V,U>
4989 (this, batch >>>= 1, baseLimit = h, f, tab,
4990 transformer, action).fork();
4991 }
4992 for (Node<K,V> p; (p = advance()) != null; ) {
4993 U u;
4994 if ((u = transformer.apply(p.val)) != null)
4995 action.accept(u);
4996 }
4997 propagateCompletion();
4998 }
4999 }
5000 }
5001
5002 @SuppressWarnings("serial")
5003 static final class ForEachTransformedEntryTask<K,V,U>
5004 extends BulkTask<K,V,Void> {
5005 final Function<Map.Entry<K,V>, ? extends U> transformer;
5006 final Consumer<? super U> action;
5007 ForEachTransformedEntryTask
5008 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5009 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5010 super(p, b, i, f, t);
5011 this.transformer = transformer; this.action = action;
5012 }
5013 public final void compute() {
5014 final Function<Map.Entry<K,V>, ? extends U> transformer;
5015 final Consumer<? super U> action;
5016 if ((transformer = this.transformer) != null &&
5017 (action = this.action) != null) {
5018 for (int i = baseIndex, f, h; batch > 0 &&
5019 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5020 addToPendingCount(1);
5021 new ForEachTransformedEntryTask<K,V,U>
5022 (this, batch >>>= 1, baseLimit = h, f, tab,
5023 transformer, action).fork();
5024 }
5025 for (Node<K,V> p; (p = advance()) != null; ) {
5026 U u;
5027 if ((u = transformer.apply(p)) != null)
5028 action.accept(u);
5029 }
5030 propagateCompletion();
5031 }
5032 }
5033 }
5034
5035 @SuppressWarnings("serial")
5036 static final class ForEachTransformedMappingTask<K,V,U>
5037 extends BulkTask<K,V,Void> {
5038 final BiFunction<? super K, ? super V, ? extends U> transformer;
5039 final Consumer<? super U> action;
5040 ForEachTransformedMappingTask
5041 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5042 BiFunction<? super K, ? super V, ? extends U> transformer,
5043 Consumer<? super U> action) {
5044 super(p, b, i, f, t);
5045 this.transformer = transformer; this.action = action;
5046 }
5047 public final void compute() {
5048 final BiFunction<? super K, ? super V, ? extends U> transformer;
5049 final Consumer<? super U> action;
5050 if ((transformer = this.transformer) != null &&
5051 (action = this.action) != null) {
5052 for (int i = baseIndex, f, h; batch > 0 &&
5053 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5054 addToPendingCount(1);
5055 new ForEachTransformedMappingTask<K,V,U>
5056 (this, batch >>>= 1, baseLimit = h, f, tab,
5057 transformer, action).fork();
5058 }
5059 for (Node<K,V> p; (p = advance()) != null; ) {
5060 U u;
5061 if ((u = transformer.apply(p.key, p.val)) != null)
5062 action.accept(u);
5063 }
5064 propagateCompletion();
5065 }
5066 }
5067 }
5068
5069 @SuppressWarnings("serial")
5070 static final class SearchKeysTask<K,V,U>
5071 extends BulkTask<K,V,U> {
5072 final Function<? super K, ? extends U> searchFunction;
5073 final AtomicReference<U> result;
5074 SearchKeysTask
5075 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5076 Function<? super K, ? extends U> searchFunction,
5077 AtomicReference<U> result) {
5078 super(p, b, i, f, t);
5079 this.searchFunction = searchFunction; this.result = result;
5080 }
5081 public final U getRawResult() { return result.get(); }
5082 public final void compute() {
5083 final Function<? super K, ? extends U> searchFunction;
5084 final AtomicReference<U> result;
5085 if ((searchFunction = this.searchFunction) != null &&
5086 (result = this.result) != null) {
5087 for (int i = baseIndex, f, h; batch > 0 &&
5088 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5089 if (result.get() != null)
5090 return;
5091 addToPendingCount(1);
5092 new SearchKeysTask<K,V,U>
5093 (this, batch >>>= 1, baseLimit = h, f, tab,
5094 searchFunction, result).fork();
5095 }
5096 while (result.get() == null) {
5097 U u;
5098 Node<K,V> p;
5099 if ((p = advance()) == null) {
5100 propagateCompletion();
5101 break;
5102 }
5103 if ((u = searchFunction.apply(p.key)) != null) {
5104 if (result.compareAndSet(null, u))
5105 quietlyCompleteRoot();
5106 break;
5107 }
5108 }
5109 }
5110 }
5111 }
5112
5113 @SuppressWarnings("serial")
5114 static final class SearchValuesTask<K,V,U>
5115 extends BulkTask<K,V,U> {
5116 final Function<? super V, ? extends U> searchFunction;
5117 final AtomicReference<U> result;
5118 SearchValuesTask
5119 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5120 Function<? super V, ? extends U> searchFunction,
5121 AtomicReference<U> result) {
5122 super(p, b, i, f, t);
5123 this.searchFunction = searchFunction; this.result = result;
5124 }
5125 public final U getRawResult() { return result.get(); }
5126 public final void compute() {
5127 final Function<? super V, ? extends U> searchFunction;
5128 final AtomicReference<U> result;
5129 if ((searchFunction = this.searchFunction) != null &&
5130 (result = this.result) != null) {
5131 for (int i = baseIndex, f, h; batch > 0 &&
5132 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5133 if (result.get() != null)
5134 return;
5135 addToPendingCount(1);
5136 new SearchValuesTask<K,V,U>
5137 (this, batch >>>= 1, baseLimit = h, f, tab,
5138 searchFunction, result).fork();
5139 }
5140 while (result.get() == null) {
5141 U u;
5142 Node<K,V> p;
5143 if ((p = advance()) == null) {
5144 propagateCompletion();
5145 break;
5146 }
5147 if ((u = searchFunction.apply(p.val)) != null) {
5148 if (result.compareAndSet(null, u))
5149 quietlyCompleteRoot();
5150 break;
5151 }
5152 }
5153 }
5154 }
5155 }
5156
5157 @SuppressWarnings("serial")
5158 static final class SearchEntriesTask<K,V,U>
5159 extends BulkTask<K,V,U> {
5160 final Function<Entry<K,V>, ? extends U> searchFunction;
5161 final AtomicReference<U> result;
5162 SearchEntriesTask
5163 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5164 Function<Entry<K,V>, ? extends U> searchFunction,
5165 AtomicReference<U> result) {
5166 super(p, b, i, f, t);
5167 this.searchFunction = searchFunction; this.result = result;
5168 }
5169 public final U getRawResult() { return result.get(); }
5170 public final void compute() {
5171 final Function<Entry<K,V>, ? extends U> searchFunction;
5172 final AtomicReference<U> result;
5173 if ((searchFunction = this.searchFunction) != null &&
5174 (result = this.result) != null) {
5175 for (int i = baseIndex, f, h; batch > 0 &&
5176 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5177 if (result.get() != null)
5178 return;
5179 addToPendingCount(1);
5180 new SearchEntriesTask<K,V,U>
5181 (this, batch >>>= 1, baseLimit = h, f, tab,
5182 searchFunction, result).fork();
5183 }
5184 while (result.get() == null) {
5185 U u;
5186 Node<K,V> p;
5187 if ((p = advance()) == null) {
5188 propagateCompletion();
5189 break;
5190 }
5191 if ((u = searchFunction.apply(p)) != null) {
5192 if (result.compareAndSet(null, u))
5193 quietlyCompleteRoot();
5194 return;
5195 }
5196 }
5197 }
5198 }
5199 }
5200
5201 @SuppressWarnings("serial")
5202 static final class SearchMappingsTask<K,V,U>
5203 extends BulkTask<K,V,U> {
5204 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5205 final AtomicReference<U> result;
5206 SearchMappingsTask
5207 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5208 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5209 AtomicReference<U> result) {
5210 super(p, b, i, f, t);
5211 this.searchFunction = searchFunction; this.result = result;
5212 }
5213 public final U getRawResult() { return result.get(); }
5214 public final void compute() {
5215 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5216 final AtomicReference<U> result;
5217 if ((searchFunction = this.searchFunction) != null &&
5218 (result = this.result) != null) {
5219 for (int i = baseIndex, f, h; batch > 0 &&
5220 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5221 if (result.get() != null)
5222 return;
5223 addToPendingCount(1);
5224 new SearchMappingsTask<K,V,U>
5225 (this, batch >>>= 1, baseLimit = h, f, tab,
5226 searchFunction, result).fork();
5227 }
5228 while (result.get() == null) {
5229 U u;
5230 Node<K,V> p;
5231 if ((p = advance()) == null) {
5232 propagateCompletion();
5233 break;
5234 }
5235 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5236 if (result.compareAndSet(null, u))
5237 quietlyCompleteRoot();
5238 break;
5239 }
5240 }
5241 }
5242 }
5243 }
5244
5245 @SuppressWarnings("serial")
5246 static final class ReduceKeysTask<K,V>
5247 extends BulkTask<K,V,K> {
5248 final BiFunction<? super K, ? super K, ? extends K> reducer;
5249 K result;
5250 ReduceKeysTask<K,V> rights, nextRight;
5251 ReduceKeysTask
5252 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5253 ReduceKeysTask<K,V> nextRight,
5254 BiFunction<? super K, ? super K, ? extends K> reducer) {
5255 super(p, b, i, f, t); this.nextRight = nextRight;
5256 this.reducer = reducer;
5257 }
5258 public final K getRawResult() { return result; }
5259 public final void compute() {
5260 final BiFunction<? super K, ? super K, ? extends K> reducer;
5261 if ((reducer = this.reducer) != null) {
5262 for (int i = baseIndex, f, h; batch > 0 &&
5263 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5264 addToPendingCount(1);
5265 (rights = new ReduceKeysTask<K,V>
5266 (this, batch >>>= 1, baseLimit = h, f, tab,
5267 rights, reducer)).fork();
5268 }
5269 K r = null;
5270 for (Node<K,V> p; (p = advance()) != null; ) {
5271 K u = p.key;
5272 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5273 }
5274 result = r;
5275 CountedCompleter<?> c;
5276 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5277 @SuppressWarnings("unchecked")
5278 ReduceKeysTask<K,V>
5279 t = (ReduceKeysTask<K,V>)c,
5280 s = t.rights;
5281 while (s != null) {
5282 K tr, sr;
5283 if ((sr = s.result) != null)
5284 t.result = (((tr = t.result) == null) ? sr :
5285 reducer.apply(tr, sr));
5286 s = t.rights = s.nextRight;
5287 }
5288 }
5289 }
5290 }
5291 }
5292
5293 @SuppressWarnings("serial")
5294 static final class ReduceValuesTask<K,V>
5295 extends BulkTask<K,V,V> {
5296 final BiFunction<? super V, ? super V, ? extends V> reducer;
5297 V result;
5298 ReduceValuesTask<K,V> rights, nextRight;
5299 ReduceValuesTask
5300 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5301 ReduceValuesTask<K,V> nextRight,
5302 BiFunction<? super V, ? super V, ? extends V> reducer) {
5303 super(p, b, i, f, t); this.nextRight = nextRight;
5304 this.reducer = reducer;
5305 }
5306 public final V getRawResult() { return result; }
5307 public final void compute() {
5308 final BiFunction<? super V, ? super V, ? extends V> reducer;
5309 if ((reducer = this.reducer) != null) {
5310 for (int i = baseIndex, f, h; batch > 0 &&
5311 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5312 addToPendingCount(1);
5313 (rights = new ReduceValuesTask<K,V>
5314 (this, batch >>>= 1, baseLimit = h, f, tab,
5315 rights, reducer)).fork();
5316 }
5317 V r = null;
5318 for (Node<K,V> p; (p = advance()) != null; ) {
5319 V v = p.val;
5320 r = (r == null) ? v : reducer.apply(r, v);
5321 }
5322 result = r;
5323 CountedCompleter<?> c;
5324 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5325 @SuppressWarnings("unchecked")
5326 ReduceValuesTask<K,V>
5327 t = (ReduceValuesTask<K,V>)c,
5328 s = t.rights;
5329 while (s != null) {
5330 V tr, sr;
5331 if ((sr = s.result) != null)
5332 t.result = (((tr = t.result) == null) ? sr :
5333 reducer.apply(tr, sr));
5334 s = t.rights = s.nextRight;
5335 }
5336 }
5337 }
5338 }
5339 }
5340
5341 @SuppressWarnings("serial")
5342 static final class ReduceEntriesTask<K,V>
5343 extends BulkTask<K,V,Map.Entry<K,V>> {
5344 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5345 Map.Entry<K,V> result;
5346 ReduceEntriesTask<K,V> rights, nextRight;
5347 ReduceEntriesTask
5348 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5349 ReduceEntriesTask<K,V> nextRight,
5350 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5351 super(p, b, i, f, t); this.nextRight = nextRight;
5352 this.reducer = reducer;
5353 }
5354 public final Map.Entry<K,V> getRawResult() { return result; }
5355 public final void compute() {
5356 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5357 if ((reducer = this.reducer) != null) {
5358 for (int i = baseIndex, f, h; batch > 0 &&
5359 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5360 addToPendingCount(1);
5361 (rights = new ReduceEntriesTask<K,V>
5362 (this, batch >>>= 1, baseLimit = h, f, tab,
5363 rights, reducer)).fork();
5364 }
5365 Map.Entry<K,V> r = null;
5366 for (Node<K,V> p; (p = advance()) != null; )
5367 r = (r == null) ? p : reducer.apply(r, p);
5368 result = r;
5369 CountedCompleter<?> c;
5370 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5371 @SuppressWarnings("unchecked")
5372 ReduceEntriesTask<K,V>
5373 t = (ReduceEntriesTask<K,V>)c,
5374 s = t.rights;
5375 while (s != null) {
5376 Map.Entry<K,V> tr, sr;
5377 if ((sr = s.result) != null)
5378 t.result = (((tr = t.result) == null) ? sr :
5379 reducer.apply(tr, sr));
5380 s = t.rights = s.nextRight;
5381 }
5382 }
5383 }
5384 }
5385 }
5386
5387 @SuppressWarnings("serial")
5388 static final class MapReduceKeysTask<K,V,U>
5389 extends BulkTask<K,V,U> {
5390 final Function<? super K, ? extends U> transformer;
5391 final BiFunction<? super U, ? super U, ? extends U> reducer;
5392 U result;
5393 MapReduceKeysTask<K,V,U> rights, nextRight;
5394 MapReduceKeysTask
5395 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5396 MapReduceKeysTask<K,V,U> nextRight,
5397 Function<? super K, ? extends U> transformer,
5398 BiFunction<? super U, ? super U, ? extends U> reducer) {
5399 super(p, b, i, f, t); this.nextRight = nextRight;
5400 this.transformer = transformer;
5401 this.reducer = reducer;
5402 }
5403 public final U getRawResult() { return result; }
5404 public final void compute() {
5405 final Function<? super K, ? extends U> transformer;
5406 final BiFunction<? super U, ? super U, ? extends U> reducer;
5407 if ((transformer = this.transformer) != null &&
5408 (reducer = this.reducer) != null) {
5409 for (int i = baseIndex, f, h; batch > 0 &&
5410 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5411 addToPendingCount(1);
5412 (rights = new MapReduceKeysTask<K,V,U>
5413 (this, batch >>>= 1, baseLimit = h, f, tab,
5414 rights, transformer, reducer)).fork();
5415 }
5416 U r = null;
5417 for (Node<K,V> p; (p = advance()) != null; ) {
5418 U u;
5419 if ((u = transformer.apply(p.key)) != null)
5420 r = (r == null) ? u : reducer.apply(r, u);
5421 }
5422 result = r;
5423 CountedCompleter<?> c;
5424 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5425 @SuppressWarnings("unchecked")
5426 MapReduceKeysTask<K,V,U>
5427 t = (MapReduceKeysTask<K,V,U>)c,
5428 s = t.rights;
5429 while (s != null) {
5430 U tr, sr;
5431 if ((sr = s.result) != null)
5432 t.result = (((tr = t.result) == null) ? sr :
5433 reducer.apply(tr, sr));
5434 s = t.rights = s.nextRight;
5435 }
5436 }
5437 }
5438 }
5439 }
5440
5441 @SuppressWarnings("serial")
5442 static final class MapReduceValuesTask<K,V,U>
5443 extends BulkTask<K,V,U> {
5444 final Function<? super V, ? extends U> transformer;
5445 final BiFunction<? super U, ? super U, ? extends U> reducer;
5446 U result;
5447 MapReduceValuesTask<K,V,U> rights, nextRight;
5448 MapReduceValuesTask
5449 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5450 MapReduceValuesTask<K,V,U> nextRight,
5451 Function<? super V, ? extends U> transformer,
5452 BiFunction<? super U, ? super U, ? extends U> reducer) {
5453 super(p, b, i, f, t); this.nextRight = nextRight;
5454 this.transformer = transformer;
5455 this.reducer = reducer;
5456 }
5457 public final U getRawResult() { return result; }
5458 public final void compute() {
5459 final Function<? super V, ? extends U> transformer;
5460 final BiFunction<? super U, ? super U, ? extends U> reducer;
5461 if ((transformer = this.transformer) != null &&
5462 (reducer = this.reducer) != null) {
5463 for (int i = baseIndex, f, h; batch > 0 &&
5464 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5465 addToPendingCount(1);
5466 (rights = new MapReduceValuesTask<K,V,U>
5467 (this, batch >>>= 1, baseLimit = h, f, tab,
5468 rights, transformer, reducer)).fork();
5469 }
5470 U r = null;
5471 for (Node<K,V> p; (p = advance()) != null; ) {
5472 U u;
5473 if ((u = transformer.apply(p.val)) != null)
5474 r = (r == null) ? u : reducer.apply(r, u);
5475 }
5476 result = r;
5477 CountedCompleter<?> c;
5478 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5479 @SuppressWarnings("unchecked")
5480 MapReduceValuesTask<K,V,U>
5481 t = (MapReduceValuesTask<K,V,U>)c,
5482 s = t.rights;
5483 while (s != null) {
5484 U tr, sr;
5485 if ((sr = s.result) != null)
5486 t.result = (((tr = t.result) == null) ? sr :
5487 reducer.apply(tr, sr));
5488 s = t.rights = s.nextRight;
5489 }
5490 }
5491 }
5492 }
5493 }
5494
5495 @SuppressWarnings("serial")
5496 static final class MapReduceEntriesTask<K,V,U>
5497 extends BulkTask<K,V,U> {
5498 final Function<Map.Entry<K,V>, ? extends U> transformer;
5499 final BiFunction<? super U, ? super U, ? extends U> reducer;
5500 U result;
5501 MapReduceEntriesTask<K,V,U> rights, nextRight;
5502 MapReduceEntriesTask
5503 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5504 MapReduceEntriesTask<K,V,U> nextRight,
5505 Function<Map.Entry<K,V>, ? extends U> transformer,
5506 BiFunction<? super U, ? super U, ? extends U> reducer) {
5507 super(p, b, i, f, t); this.nextRight = nextRight;
5508 this.transformer = transformer;
5509 this.reducer = reducer;
5510 }
5511 public final U getRawResult() { return result; }
5512 public final void compute() {
5513 final Function<Map.Entry<K,V>, ? extends U> transformer;
5514 final BiFunction<? super U, ? super U, ? extends U> reducer;
5515 if ((transformer = this.transformer) != null &&
5516 (reducer = this.reducer) != null) {
5517 for (int i = baseIndex, f, h; batch > 0 &&
5518 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5519 addToPendingCount(1);
5520 (rights = new MapReduceEntriesTask<K,V,U>
5521 (this, batch >>>= 1, baseLimit = h, f, tab,
5522 rights, transformer, reducer)).fork();
5523 }
5524 U r = null;
5525 for (Node<K,V> p; (p = advance()) != null; ) {
5526 U u;
5527 if ((u = transformer.apply(p)) != null)
5528 r = (r == null) ? u : reducer.apply(r, u);
5529 }
5530 result = r;
5531 CountedCompleter<?> c;
5532 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5533 @SuppressWarnings("unchecked")
5534 MapReduceEntriesTask<K,V,U>
5535 t = (MapReduceEntriesTask<K,V,U>)c,
5536 s = t.rights;
5537 while (s != null) {
5538 U tr, sr;
5539 if ((sr = s.result) != null)
5540 t.result = (((tr = t.result) == null) ? sr :
5541 reducer.apply(tr, sr));
5542 s = t.rights = s.nextRight;
5543 }
5544 }
5545 }
5546 }
5547 }
5548
5549 @SuppressWarnings("serial")
5550 static final class MapReduceMappingsTask<K,V,U>
5551 extends BulkTask<K,V,U> {
5552 final BiFunction<? super K, ? super V, ? extends U> transformer;
5553 final BiFunction<? super U, ? super U, ? extends U> reducer;
5554 U result;
5555 MapReduceMappingsTask<K,V,U> rights, nextRight;
5556 MapReduceMappingsTask
5557 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5558 MapReduceMappingsTask<K,V,U> nextRight,
5559 BiFunction<? super K, ? super V, ? extends U> transformer,
5560 BiFunction<? super U, ? super U, ? extends U> reducer) {
5561 super(p, b, i, f, t); this.nextRight = nextRight;
5562 this.transformer = transformer;
5563 this.reducer = reducer;
5564 }
5565 public final U getRawResult() { return result; }
5566 public final void compute() {
5567 final BiFunction<? super K, ? super V, ? extends U> transformer;
5568 final BiFunction<? super U, ? super U, ? extends U> reducer;
5569 if ((transformer = this.transformer) != null &&
5570 (reducer = this.reducer) != null) {
5571 for (int i = baseIndex, f, h; batch > 0 &&
5572 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5573 addToPendingCount(1);
5574 (rights = new MapReduceMappingsTask<K,V,U>
5575 (this, batch >>>= 1, baseLimit = h, f, tab,
5576 rights, transformer, reducer)).fork();
5577 }
5578 U r = null;
5579 for (Node<K,V> p; (p = advance()) != null; ) {
5580 U u;
5581 if ((u = transformer.apply(p.key, p.val)) != null)
5582 r = (r == null) ? u : reducer.apply(r, u);
5583 }
5584 result = r;
5585 CountedCompleter<?> c;
5586 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5587 @SuppressWarnings("unchecked")
5588 MapReduceMappingsTask<K,V,U>
5589 t = (MapReduceMappingsTask<K,V,U>)c,
5590 s = t.rights;
5591 while (s != null) {
5592 U tr, sr;
5593 if ((sr = s.result) != null)
5594 t.result = (((tr = t.result) == null) ? sr :
5595 reducer.apply(tr, sr));
5596 s = t.rights = s.nextRight;
5597 }
5598 }
5599 }
5600 }
5601 }
5602
5603 @SuppressWarnings("serial")
5604 static final class MapReduceKeysToDoubleTask<K,V>
5605 extends BulkTask<K,V,Double> {
5606 final ToDoubleFunction<? super K> transformer;
5607 final DoubleBinaryOperator reducer;
5608 final double basis;
5609 double result;
5610 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5611 MapReduceKeysToDoubleTask
5612 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5613 MapReduceKeysToDoubleTask<K,V> nextRight,
5614 ToDoubleFunction<? super K> transformer,
5615 double basis,
5616 DoubleBinaryOperator reducer) {
5617 super(p, b, i, f, t); this.nextRight = nextRight;
5618 this.transformer = transformer;
5619 this.basis = basis; this.reducer = reducer;
5620 }
5621 public final Double getRawResult() { return result; }
5622 public final void compute() {
5623 final ToDoubleFunction<? super K> transformer;
5624 final DoubleBinaryOperator reducer;
5625 if ((transformer = this.transformer) != null &&
5626 (reducer = this.reducer) != null) {
5627 double r = this.basis;
5628 for (int i = baseIndex, f, h; batch > 0 &&
5629 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5630 addToPendingCount(1);
5631 (rights = new MapReduceKeysToDoubleTask<K,V>
5632 (this, batch >>>= 1, baseLimit = h, f, tab,
5633 rights, transformer, r, reducer)).fork();
5634 }
5635 for (Node<K,V> p; (p = advance()) != null; )
5636 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5637 result = r;
5638 CountedCompleter<?> c;
5639 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5640 @SuppressWarnings("unchecked")
5641 MapReduceKeysToDoubleTask<K,V>
5642 t = (MapReduceKeysToDoubleTask<K,V>)c,
5643 s = t.rights;
5644 while (s != null) {
5645 t.result = reducer.applyAsDouble(t.result, s.result);
5646 s = t.rights = s.nextRight;
5647 }
5648 }
5649 }
5650 }
5651 }
5652
5653 @SuppressWarnings("serial")
5654 static final class MapReduceValuesToDoubleTask<K,V>
5655 extends BulkTask<K,V,Double> {
5656 final ToDoubleFunction<? super V> transformer;
5657 final DoubleBinaryOperator reducer;
5658 final double basis;
5659 double result;
5660 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5661 MapReduceValuesToDoubleTask
5662 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5663 MapReduceValuesToDoubleTask<K,V> nextRight,
5664 ToDoubleFunction<? super V> transformer,
5665 double basis,
5666 DoubleBinaryOperator reducer) {
5667 super(p, b, i, f, t); this.nextRight = nextRight;
5668 this.transformer = transformer;
5669 this.basis = basis; this.reducer = reducer;
5670 }
5671 public final Double getRawResult() { return result; }
5672 public final void compute() {
5673 final ToDoubleFunction<? super V> transformer;
5674 final DoubleBinaryOperator reducer;
5675 if ((transformer = this.transformer) != null &&
5676 (reducer = this.reducer) != null) {
5677 double r = this.basis;
5678 for (int i = baseIndex, f, h; batch > 0 &&
5679 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5680 addToPendingCount(1);
5681 (rights = new MapReduceValuesToDoubleTask<K,V>
5682 (this, batch >>>= 1, baseLimit = h, f, tab,
5683 rights, transformer, r, reducer)).fork();
5684 }
5685 for (Node<K,V> p; (p = advance()) != null; )
5686 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5687 result = r;
5688 CountedCompleter<?> c;
5689 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5690 @SuppressWarnings("unchecked")
5691 MapReduceValuesToDoubleTask<K,V>
5692 t = (MapReduceValuesToDoubleTask<K,V>)c,
5693 s = t.rights;
5694 while (s != null) {
5695 t.result = reducer.applyAsDouble(t.result, s.result);
5696 s = t.rights = s.nextRight;
5697 }
5698 }
5699 }
5700 }
5701 }
5702
5703 @SuppressWarnings("serial")
5704 static final class MapReduceEntriesToDoubleTask<K,V>
5705 extends BulkTask<K,V,Double> {
5706 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5707 final DoubleBinaryOperator reducer;
5708 final double basis;
5709 double result;
5710 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5711 MapReduceEntriesToDoubleTask
5712 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5713 MapReduceEntriesToDoubleTask<K,V> nextRight,
5714 ToDoubleFunction<Map.Entry<K,V>> transformer,
5715 double basis,
5716 DoubleBinaryOperator reducer) {
5717 super(p, b, i, f, t); this.nextRight = nextRight;
5718 this.transformer = transformer;
5719 this.basis = basis; this.reducer = reducer;
5720 }
5721 public final Double getRawResult() { return result; }
5722 public final void compute() {
5723 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5724 final DoubleBinaryOperator reducer;
5725 if ((transformer = this.transformer) != null &&
5726 (reducer = this.reducer) != null) {
5727 double r = this.basis;
5728 for (int i = baseIndex, f, h; batch > 0 &&
5729 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5730 addToPendingCount(1);
5731 (rights = new MapReduceEntriesToDoubleTask<K,V>
5732 (this, batch >>>= 1, baseLimit = h, f, tab,
5733 rights, transformer, r, reducer)).fork();
5734 }
5735 for (Node<K,V> p; (p = advance()) != null; )
5736 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5737 result = r;
5738 CountedCompleter<?> c;
5739 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5740 @SuppressWarnings("unchecked")
5741 MapReduceEntriesToDoubleTask<K,V>
5742 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5743 s = t.rights;
5744 while (s != null) {
5745 t.result = reducer.applyAsDouble(t.result, s.result);
5746 s = t.rights = s.nextRight;
5747 }
5748 }
5749 }
5750 }
5751 }
5752
5753 @SuppressWarnings("serial")
5754 static final class MapReduceMappingsToDoubleTask<K,V>
5755 extends BulkTask<K,V,Double> {
5756 final ToDoubleBiFunction<? super K, ? super V> transformer;
5757 final DoubleBinaryOperator reducer;
5758 final double basis;
5759 double result;
5760 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5761 MapReduceMappingsToDoubleTask
5762 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5763 MapReduceMappingsToDoubleTask<K,V> nextRight,
5764 ToDoubleBiFunction<? super K, ? super V> transformer,
5765 double basis,
5766 DoubleBinaryOperator reducer) {
5767 super(p, b, i, f, t); this.nextRight = nextRight;
5768 this.transformer = transformer;
5769 this.basis = basis; this.reducer = reducer;
5770 }
5771 public final Double getRawResult() { return result; }
5772 public final void compute() {
5773 final ToDoubleBiFunction<? super K, ? super V> transformer;
5774 final DoubleBinaryOperator reducer;
5775 if ((transformer = this.transformer) != null &&
5776 (reducer = this.reducer) != null) {
5777 double r = this.basis;
5778 for (int i = baseIndex, f, h; batch > 0 &&
5779 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5780 addToPendingCount(1);
5781 (rights = new MapReduceMappingsToDoubleTask<K,V>
5782 (this, batch >>>= 1, baseLimit = h, f, tab,
5783 rights, transformer, r, reducer)).fork();
5784 }
5785 for (Node<K,V> p; (p = advance()) != null; )
5786 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5787 result = r;
5788 CountedCompleter<?> c;
5789 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5790 @SuppressWarnings("unchecked")
5791 MapReduceMappingsToDoubleTask<K,V>
5792 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5793 s = t.rights;
5794 while (s != null) {
5795 t.result = reducer.applyAsDouble(t.result, s.result);
5796 s = t.rights = s.nextRight;
5797 }
5798 }
5799 }
5800 }
5801 }
5802
5803 @SuppressWarnings("serial")
5804 static final class MapReduceKeysToLongTask<K,V>
5805 extends BulkTask<K,V,Long> {
5806 final ToLongFunction<? super K> transformer;
5807 final LongBinaryOperator reducer;
5808 final long basis;
5809 long result;
5810 MapReduceKeysToLongTask<K,V> rights, nextRight;
5811 MapReduceKeysToLongTask
5812 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5813 MapReduceKeysToLongTask<K,V> nextRight,
5814 ToLongFunction<? super K> transformer,
5815 long basis,
5816 LongBinaryOperator reducer) {
5817 super(p, b, i, f, t); this.nextRight = nextRight;
5818 this.transformer = transformer;
5819 this.basis = basis; this.reducer = reducer;
5820 }
5821 public final Long getRawResult() { return result; }
5822 public final void compute() {
5823 final ToLongFunction<? super K> transformer;
5824 final LongBinaryOperator reducer;
5825 if ((transformer = this.transformer) != null &&
5826 (reducer = this.reducer) != null) {
5827 long r = this.basis;
5828 for (int i = baseIndex, f, h; batch > 0 &&
5829 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5830 addToPendingCount(1);
5831 (rights = new MapReduceKeysToLongTask<K,V>
5832 (this, batch >>>= 1, baseLimit = h, f, tab,
5833 rights, transformer, r, reducer)).fork();
5834 }
5835 for (Node<K,V> p; (p = advance()) != null; )
5836 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5837 result = r;
5838 CountedCompleter<?> c;
5839 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5840 @SuppressWarnings("unchecked")
5841 MapReduceKeysToLongTask<K,V>
5842 t = (MapReduceKeysToLongTask<K,V>)c,
5843 s = t.rights;
5844 while (s != null) {
5845 t.result = reducer.applyAsLong(t.result, s.result);
5846 s = t.rights = s.nextRight;
5847 }
5848 }
5849 }
5850 }
5851 }
5852
5853 @SuppressWarnings("serial")
5854 static final class MapReduceValuesToLongTask<K,V>
5855 extends BulkTask<K,V,Long> {
5856 final ToLongFunction<? super V> transformer;
5857 final LongBinaryOperator reducer;
5858 final long basis;
5859 long result;
5860 MapReduceValuesToLongTask<K,V> rights, nextRight;
5861 MapReduceValuesToLongTask
5862 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5863 MapReduceValuesToLongTask<K,V> nextRight,
5864 ToLongFunction<? super V> transformer,
5865 long basis,
5866 LongBinaryOperator reducer) {
5867 super(p, b, i, f, t); this.nextRight = nextRight;
5868 this.transformer = transformer;
5869 this.basis = basis; this.reducer = reducer;
5870 }
5871 public final Long getRawResult() { return result; }
5872 public final void compute() {
5873 final ToLongFunction<? super V> transformer;
5874 final LongBinaryOperator reducer;
5875 if ((transformer = this.transformer) != null &&
5876 (reducer = this.reducer) != null) {
5877 long r = this.basis;
5878 for (int i = baseIndex, f, h; batch > 0 &&
5879 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5880 addToPendingCount(1);
5881 (rights = new MapReduceValuesToLongTask<K,V>
5882 (this, batch >>>= 1, baseLimit = h, f, tab,
5883 rights, transformer, r, reducer)).fork();
5884 }
5885 for (Node<K,V> p; (p = advance()) != null; )
5886 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5887 result = r;
5888 CountedCompleter<?> c;
5889 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5890 @SuppressWarnings("unchecked")
5891 MapReduceValuesToLongTask<K,V>
5892 t = (MapReduceValuesToLongTask<K,V>)c,
5893 s = t.rights;
5894 while (s != null) {
5895 t.result = reducer.applyAsLong(t.result, s.result);
5896 s = t.rights = s.nextRight;
5897 }
5898 }
5899 }
5900 }
5901 }
5902
5903 @SuppressWarnings("serial")
5904 static final class MapReduceEntriesToLongTask<K,V>
5905 extends BulkTask<K,V,Long> {
5906 final ToLongFunction<Map.Entry<K,V>> transformer;
5907 final LongBinaryOperator reducer;
5908 final long basis;
5909 long result;
5910 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5911 MapReduceEntriesToLongTask
5912 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5913 MapReduceEntriesToLongTask<K,V> nextRight,
5914 ToLongFunction<Map.Entry<K,V>> transformer,
5915 long basis,
5916 LongBinaryOperator reducer) {
5917 super(p, b, i, f, t); this.nextRight = nextRight;
5918 this.transformer = transformer;
5919 this.basis = basis; this.reducer = reducer;
5920 }
5921 public final Long getRawResult() { return result; }
5922 public final void compute() {
5923 final ToLongFunction<Map.Entry<K,V>> transformer;
5924 final LongBinaryOperator reducer;
5925 if ((transformer = this.transformer) != null &&
5926 (reducer = this.reducer) != null) {
5927 long r = this.basis;
5928 for (int i = baseIndex, f, h; batch > 0 &&
5929 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5930 addToPendingCount(1);
5931 (rights = new MapReduceEntriesToLongTask<K,V>
5932 (this, batch >>>= 1, baseLimit = h, f, tab,
5933 rights, transformer, r, reducer)).fork();
5934 }
5935 for (Node<K,V> p; (p = advance()) != null; )
5936 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5937 result = r;
5938 CountedCompleter<?> c;
5939 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5940 @SuppressWarnings("unchecked")
5941 MapReduceEntriesToLongTask<K,V>
5942 t = (MapReduceEntriesToLongTask<K,V>)c,
5943 s = t.rights;
5944 while (s != null) {
5945 t.result = reducer.applyAsLong(t.result, s.result);
5946 s = t.rights = s.nextRight;
5947 }
5948 }
5949 }
5950 }
5951 }
5952
5953 @SuppressWarnings("serial")
5954 static final class MapReduceMappingsToLongTask<K,V>
5955 extends BulkTask<K,V,Long> {
5956 final ToLongBiFunction<? super K, ? super V> transformer;
5957 final LongBinaryOperator reducer;
5958 final long basis;
5959 long result;
5960 MapReduceMappingsToLongTask<K,V> rights, nextRight;
5961 MapReduceMappingsToLongTask
5962 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5963 MapReduceMappingsToLongTask<K,V> nextRight,
5964 ToLongBiFunction<? super K, ? super V> transformer,
5965 long basis,
5966 LongBinaryOperator reducer) {
5967 super(p, b, i, f, t); this.nextRight = nextRight;
5968 this.transformer = transformer;
5969 this.basis = basis; this.reducer = reducer;
5970 }
5971 public final Long getRawResult() { return result; }
5972 public final void compute() {
5973 final ToLongBiFunction<? super K, ? super V> transformer;
5974 final LongBinaryOperator reducer;
5975 if ((transformer = this.transformer) != null &&
5976 (reducer = this.reducer) != null) {
5977 long r = this.basis;
5978 for (int i = baseIndex, f, h; batch > 0 &&
5979 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5980 addToPendingCount(1);
5981 (rights = new MapReduceMappingsToLongTask<K,V>
5982 (this, batch >>>= 1, baseLimit = h, f, tab,
5983 rights, transformer, r, reducer)).fork();
5984 }
5985 for (Node<K,V> p; (p = advance()) != null; )
5986 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
5987 result = r;
5988 CountedCompleter<?> c;
5989 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5990 @SuppressWarnings("unchecked")
5991 MapReduceMappingsToLongTask<K,V>
5992 t = (MapReduceMappingsToLongTask<K,V>)c,
5993 s = t.rights;
5994 while (s != null) {
5995 t.result = reducer.applyAsLong(t.result, s.result);
5996 s = t.rights = s.nextRight;
5997 }
5998 }
5999 }
6000 }
6001 }
6002
6003 @SuppressWarnings("serial")
6004 static final class MapReduceKeysToIntTask<K,V>
6005 extends BulkTask<K,V,Integer> {
6006 final ToIntFunction<? super K> transformer;
6007 final IntBinaryOperator reducer;
6008 final int basis;
6009 int result;
6010 MapReduceKeysToIntTask<K,V> rights, nextRight;
6011 MapReduceKeysToIntTask
6012 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6013 MapReduceKeysToIntTask<K,V> nextRight,
6014 ToIntFunction<? super K> transformer,
6015 int basis,
6016 IntBinaryOperator reducer) {
6017 super(p, b, i, f, t); this.nextRight = nextRight;
6018 this.transformer = transformer;
6019 this.basis = basis; this.reducer = reducer;
6020 }
6021 public final Integer getRawResult() { return result; }
6022 public final void compute() {
6023 final ToIntFunction<? super K> transformer;
6024 final IntBinaryOperator reducer;
6025 if ((transformer = this.transformer) != null &&
6026 (reducer = this.reducer) != null) {
6027 int r = this.basis;
6028 for (int i = baseIndex, f, h; batch > 0 &&
6029 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6030 addToPendingCount(1);
6031 (rights = new MapReduceKeysToIntTask<K,V>
6032 (this, batch >>>= 1, baseLimit = h, f, tab,
6033 rights, transformer, r, reducer)).fork();
6034 }
6035 for (Node<K,V> p; (p = advance()) != null; )
6036 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6037 result = r;
6038 CountedCompleter<?> c;
6039 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6040 @SuppressWarnings("unchecked")
6041 MapReduceKeysToIntTask<K,V>
6042 t = (MapReduceKeysToIntTask<K,V>)c,
6043 s = t.rights;
6044 while (s != null) {
6045 t.result = reducer.applyAsInt(t.result, s.result);
6046 s = t.rights = s.nextRight;
6047 }
6048 }
6049 }
6050 }
6051 }
6052
6053 @SuppressWarnings("serial")
6054 static final class MapReduceValuesToIntTask<K,V>
6055 extends BulkTask<K,V,Integer> {
6056 final ToIntFunction<? super V> transformer;
6057 final IntBinaryOperator reducer;
6058 final int basis;
6059 int result;
6060 MapReduceValuesToIntTask<K,V> rights, nextRight;
6061 MapReduceValuesToIntTask
6062 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6063 MapReduceValuesToIntTask<K,V> nextRight,
6064 ToIntFunction<? super V> transformer,
6065 int basis,
6066 IntBinaryOperator reducer) {
6067 super(p, b, i, f, t); this.nextRight = nextRight;
6068 this.transformer = transformer;
6069 this.basis = basis; this.reducer = reducer;
6070 }
6071 public final Integer getRawResult() { return result; }
6072 public final void compute() {
6073 final ToIntFunction<? super V> transformer;
6074 final IntBinaryOperator reducer;
6075 if ((transformer = this.transformer) != null &&
6076 (reducer = this.reducer) != null) {
6077 int r = this.basis;
6078 for (int i = baseIndex, f, h; batch > 0 &&
6079 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6080 addToPendingCount(1);
6081 (rights = new MapReduceValuesToIntTask<K,V>
6082 (this, batch >>>= 1, baseLimit = h, f, tab,
6083 rights, transformer, r, reducer)).fork();
6084 }
6085 for (Node<K,V> p; (p = advance()) != null; )
6086 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6087 result = r;
6088 CountedCompleter<?> c;
6089 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6090 @SuppressWarnings("unchecked")
6091 MapReduceValuesToIntTask<K,V>
6092 t = (MapReduceValuesToIntTask<K,V>)c,
6093 s = t.rights;
6094 while (s != null) {
6095 t.result = reducer.applyAsInt(t.result, s.result);
6096 s = t.rights = s.nextRight;
6097 }
6098 }
6099 }
6100 }
6101 }
6102
6103 @SuppressWarnings("serial")
6104 static final class MapReduceEntriesToIntTask<K,V>
6105 extends BulkTask<K,V,Integer> {
6106 final ToIntFunction<Map.Entry<K,V>> transformer;
6107 final IntBinaryOperator reducer;
6108 final int basis;
6109 int result;
6110 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6111 MapReduceEntriesToIntTask
6112 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6113 MapReduceEntriesToIntTask<K,V> nextRight,
6114 ToIntFunction<Map.Entry<K,V>> transformer,
6115 int basis,
6116 IntBinaryOperator reducer) {
6117 super(p, b, i, f, t); this.nextRight = nextRight;
6118 this.transformer = transformer;
6119 this.basis = basis; this.reducer = reducer;
6120 }
6121 public final Integer getRawResult() { return result; }
6122 public final void compute() {
6123 final ToIntFunction<Map.Entry<K,V>> transformer;
6124 final IntBinaryOperator reducer;
6125 if ((transformer = this.transformer) != null &&
6126 (reducer = this.reducer) != null) {
6127 int r = this.basis;
6128 for (int i = baseIndex, f, h; batch > 0 &&
6129 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6130 addToPendingCount(1);
6131 (rights = new MapReduceEntriesToIntTask<K,V>
6132 (this, batch >>>= 1, baseLimit = h, f, tab,
6133 rights, transformer, r, reducer)).fork();
6134 }
6135 for (Node<K,V> p; (p = advance()) != null; )
6136 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6137 result = r;
6138 CountedCompleter<?> c;
6139 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6140 @SuppressWarnings("unchecked")
6141 MapReduceEntriesToIntTask<K,V>
6142 t = (MapReduceEntriesToIntTask<K,V>)c,
6143 s = t.rights;
6144 while (s != null) {
6145 t.result = reducer.applyAsInt(t.result, s.result);
6146 s = t.rights = s.nextRight;
6147 }
6148 }
6149 }
6150 }
6151 }
6152
6153 @SuppressWarnings("serial")
6154 static final class MapReduceMappingsToIntTask<K,V>
6155 extends BulkTask<K,V,Integer> {
6156 final ToIntBiFunction<? super K, ? super V> transformer;
6157 final IntBinaryOperator reducer;
6158 final int basis;
6159 int result;
6160 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6161 MapReduceMappingsToIntTask
6162 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6163 MapReduceMappingsToIntTask<K,V> nextRight,
6164 ToIntBiFunction<? super K, ? super V> transformer,
6165 int basis,
6166 IntBinaryOperator reducer) {
6167 super(p, b, i, f, t); this.nextRight = nextRight;
6168 this.transformer = transformer;
6169 this.basis = basis; this.reducer = reducer;
6170 }
6171 public final Integer getRawResult() { return result; }
6172 public final void compute() {
6173 final ToIntBiFunction<? super K, ? super V> transformer;
6174 final IntBinaryOperator reducer;
6175 if ((transformer = this.transformer) != null &&
6176 (reducer = this.reducer) != null) {
6177 int r = this.basis;
6178 for (int i = baseIndex, f, h; batch > 0 &&
6179 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6180 addToPendingCount(1);
6181 (rights = new MapReduceMappingsToIntTask<K,V>
6182 (this, batch >>>= 1, baseLimit = h, f, tab,
6183 rights, transformer, r, reducer)).fork();
6184 }
6185 for (Node<K,V> p; (p = advance()) != null; )
6186 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6187 result = r;
6188 CountedCompleter<?> c;
6189 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6190 @SuppressWarnings("unchecked")
6191 MapReduceMappingsToIntTask<K,V>
6192 t = (MapReduceMappingsToIntTask<K,V>)c,
6193 s = t.rights;
6194 while (s != null) {
6195 t.result = reducer.applyAsInt(t.result, s.result);
6196 s = t.rights = s.nextRight;
6197 }
6198 }
6199 }
6200 }
6201 }
6202
6203 // Unsafe mechanics
6204 private static final sun.misc.Unsafe U;
6205 private static final long SIZECTL;
6206 private static final long TRANSFERINDEX;
6207 private static final long BASECOUNT;
6208 private static final long CELLSBUSY;
6209 private static final long CELLVALUE;
6210 private static final long ABASE;
6211 private static final int ASHIFT;
6212
6213 static {
6214 try {
6215 U = sun.misc.Unsafe.getUnsafe();
6216 Class<?> k = ConcurrentHashMap.class;
6217 SIZECTL = U.objectFieldOffset
6218 (k.getDeclaredField("sizeCtl"));
6219 TRANSFERINDEX = U.objectFieldOffset
6220 (k.getDeclaredField("transferIndex"));
6221 BASECOUNT = U.objectFieldOffset
6222 (k.getDeclaredField("baseCount"));
6223 CELLSBUSY = U.objectFieldOffset
6224 (k.getDeclaredField("cellsBusy"));
6225 Class<?> ck = CounterCell.class;
6226 CELLVALUE = U.objectFieldOffset
6227 (ck.getDeclaredField("value"));
6228 Class<?> ak = Node[].class;
6229 ABASE = U.arrayBaseOffset(ak);
6230 int scale = U.arrayIndexScale(ak);
6231 if ((scale & (scale - 1)) != 0)
6232 throw new Error("data type scale not a power of two");
6233 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6234 } catch (Exception e) {
6235 throw new Error(e);
6236 }
6237 }
6238 }