ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.25
Committed: Sun Oct 12 12:21:23 2003 UTC (20 years, 7 months ago) by dl
Branch: MAIN
Changes since 1.24: +14 -12 lines
Log Message:
doc clarifications

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain. Use, modify, and
4 * redistribute this code in any way without acknowledgement.
5 */
6
7 package java.util.concurrent;
8 import java.util.concurrent.locks.*;
9 import java.util.*;
10 import java.io.Serializable;
11 import java.io.IOException;
12 import java.io.ObjectInputStream;
13 import java.io.ObjectOutputStream;
14
15 /**
16 * A hash table supporting full concurrency of retrievals and
17 * adjustable expected concurrency for updates. This class obeys the
18 * same functional specification as {@link java.util.Hashtable}, and
19 * includes versions of methods corresponding to each method of
20 * <tt>Hashtable</tt>. However, even though all operations are
21 * thread-safe, retrieval operations do <em>not</em> entail locking,
22 * and there is <em>not</em> any support for locking the entire table
23 * in a way that prevents all access. This class is fully
24 * interoperable with <tt>Hashtable</tt> in programs that rely on its
25 * thread safety but not on its synchronization details.
26 *
27 * <p> Retrieval operations (including <tt>get</tt>) generally do not
28 * block, so may overlap with update operations (including
29 * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
30 * of the most recently <em>completed</em> update operations holding
31 * upon their onset. For aggregate operations such as <tt>putAll</tt>
32 * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
33 * removal of only some entries. Similarly, Iterators and
34 * Enumerations return elements reflecting the state of the hash table
35 * at some point at or since the creation of the iterator/enumeration.
36 * They do <em>not</em> throw
37 * <tt>ConcurrentModificationException</tt>. However, Iterators are
38 * designed to be used by only one thread at a time.
39 *
40 * <p> The allowed concurrency among update operations is guided by
41 * the optional <tt>concurrencyLevel</tt> constructor argument
42 * (default 16), which is used as a hint for internal sizing. The
43 * table is internally partitioned to try to permit the indicated
44 * number of concurrent updates without contention. Because placement
45 * in hash tables is essentially random, the actual concurrency will
46 * vary. Ideally, you should choose a value to accommodate as many
47 * threads as will ever concurrently modify the table. Using a
48 * significantly higher value than you need can waste space and time,
49 * and a significantly lower value can lead to thread contention. But
50 * overestimates and underestimates within an order of magnitude do
51 * not usually have much noticeable impact. A value of one is
52 * appropriate when it is known that only one thread will modify
53 * and all others will only read.
54 *
55 * <p>This class implements all of the <em>optional</em> methods
56 * of the {@link Map} and {@link Iterator} interfaces.
57 *
58 * <p> Like {@link java.util.Hashtable} but unlike {@link
59 * java.util.HashMap}, this class does NOT allow <tt>null</tt> to be
60 * used as a key or value.
61 *
62 * @since 1.5
63 * @author Doug Lea
64 */
65 public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
66 implements ConcurrentMap<K, V>, Cloneable, Serializable {
67 private static final long serialVersionUID = 7249069246763182397L;
68
69 /*
70 * The basic strategy is to subdivide the table among Segments,
71 * each of which itself is a concurrently readable hash table.
72 */
73
74 /* ---------------- Constants -------------- */
75
76 /**
77 * The default initial number of table slots for this table.
78 * Used when not otherwise specified in constructor.
79 */
80 private static int DEFAULT_INITIAL_CAPACITY = 16;
81
82 /**
83 * The maximum capacity, used if a higher value is implicitly
84 * specified by either of the constructors with arguments. MUST
85 * be a power of two <= 1<<30 to ensure that entries are indexible
86 * using ints.
87 */
88 static final int MAXIMUM_CAPACITY = 1 << 30;
89
90 /**
91 * The default load factor for this table. Used when not
92 * otherwise specified in constructor.
93 */
94 static final float DEFAULT_LOAD_FACTOR = 0.75f;
95
96 /**
97 * The default number of concurrency control segments.
98 **/
99 private static final int DEFAULT_SEGMENTS = 16;
100
101 /**
102 * The maximum number of segments to allow; used to bound ctor arguments.
103 */
104 private static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
105
106 /* ---------------- Fields -------------- */
107
108 /**
109 * Mask value for indexing into segments. The upper bits of a
110 * key's hash code are used to choose the segment.
111 **/
112 private final int segmentMask;
113
114 /**
115 * Shift value for indexing within segments.
116 **/
117 private final int segmentShift;
118
119 /**
120 * The segments, each of which is a specialized hash table
121 */
122 private final Segment[] segments;
123
124 private transient Set<K> keySet;
125 private transient Set<Map.Entry<K,V>> entrySet;
126 private transient Collection<V> values;
127
128 /* ---------------- Small Utilities -------------- */
129
130 /**
131 * Return a hash code for non-null Object x.
132 * Uses the same hash code spreader as most other j.u hash tables.
133 * @param x the object serving as a key
134 * @return the hash code
135 */
136 private static int hash(Object x) {
137 int h = x.hashCode();
138 h += ~(h << 9);
139 h ^= (h >>> 14);
140 h += (h << 4);
141 h ^= (h >>> 10);
142 return h;
143 }
144
145 /**
146 * Return the segment that should be used for key with given hash
147 */
148 private Segment<K,V> segmentFor(int hash) {
149 return (Segment<K,V>) segments[(hash >>> segmentShift) & segmentMask];
150 }
151
152 /* ---------------- Inner Classes -------------- */
153
154 /**
155 * Segments are specialized versions of hash tables. This
156 * subclasses from ReentrantLock opportunistically, just to
157 * simplify some locking and avoid separate construction.
158 **/
159 private static final class Segment<K,V> extends ReentrantLock implements Serializable {
160 /*
161 * Segments maintain a table of entry lists that are ALWAYS
162 * kept in a consistent state, so can be read without locking.
163 * Next fields of nodes are immutable (final). All list
164 * additions are performed at the front of each bin. This
165 * makes it easy to check changes, and also fast to traverse.
166 * When nodes would otherwise be changed, new nodes are
167 * created to replace them. This works well for hash tables
168 * since the bin lists tend to be short. (The average length
169 * is less than two for the default load factor threshold.)
170 *
171 * Read operations can thus proceed without locking, but rely
172 * on a memory barrier to ensure that completed write
173 * operations performed by other threads are
174 * noticed. Conveniently, the "count" field, tracking the
175 * number of elements, can also serve as the volatile variable
176 * providing proper read/write barriers. This is convenient
177 * because this field needs to be read in many read operations
178 * anyway.
179 *
180 * Implementors note. The basic rules for all this are:
181 *
182 * - All unsynchronized read operations must first read the
183 * "count" field, and should not look at table entries if
184 * it is 0.
185 *
186 * - All synchronized write operations should write to
187 * the "count" field after updating. The operations must not
188 * take any action that could even momentarily cause
189 * a concurrent read operation to see inconsistent
190 * data. This is made easier by the nature of the read
191 * operations in Map. For example, no operation
192 * can reveal that the table has grown but the threshold
193 * has not yet been updated, so there are no atomicity
194 * requirements for this with respect to reads.
195 *
196 * As a guide, all critical volatile reads and writes are marked
197 * in code comments.
198 */
199
200 private static final long serialVersionUID = 2249069246763182397L;
201
202 /**
203 * The number of elements in this segment's region.
204 **/
205 transient volatile int count;
206
207 /**
208 * Number of updates; used for checking lack of modifications
209 * in bulk-read methods.
210 */
211 transient int modCount;
212
213 /**
214 * The table is rehashed when its size exceeds this threshold.
215 * (The value of this field is always (int)(capacity *
216 * loadFactor).)
217 */
218 private transient int threshold;
219
220 /**
221 * The per-segment table
222 */
223 transient HashEntry[] table;
224
225 /**
226 * The load factor for the hash table. Even though this value
227 * is same for all segments, it is replicated to avoid needing
228 * links to outer object.
229 * @serial
230 */
231 private final float loadFactor;
232
233 Segment(int initialCapacity, float lf) {
234 loadFactor = lf;
235 setTable(new HashEntry[initialCapacity]);
236 }
237
238 /**
239 * Set table to new HashEntry array.
240 * Call only while holding lock or in constructor.
241 **/
242 private void setTable(HashEntry[] newTable) {
243 table = newTable;
244 threshold = (int)(newTable.length * loadFactor);
245 count = count; // write-volatile
246 }
247
248 /* Specialized implementations of map methods */
249
250 V get(K key, int hash) {
251 if (count != 0) { // read-volatile
252 HashEntry[] tab = table;
253 int index = hash & (tab.length - 1);
254 HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
255 while (e != null) {
256 if (e.hash == hash && key.equals(e.key))
257 return e.value;
258 e = e.next;
259 }
260 }
261 return null;
262 }
263
264 boolean containsKey(Object key, int hash) {
265 if (count != 0) { // read-volatile
266 HashEntry[] tab = table;
267 int index = hash & (tab.length - 1);
268 HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
269 while (e != null) {
270 if (e.hash == hash && key.equals(e.key))
271 return true;
272 e = e.next;
273 }
274 }
275 return false;
276 }
277
278 boolean containsValue(Object value) {
279 if (count != 0) { // read-volatile
280 HashEntry[] tab = table;
281 int len = tab.length;
282 for (int i = 0 ; i < len; i++)
283 for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i] ; e != null ; e = e.next)
284 if (value.equals(e.value))
285 return true;
286 }
287 return false;
288 }
289
290 V put(K key, int hash, V value, boolean onlyIfAbsent) {
291 lock();
292 try {
293 int c = count;
294 HashEntry[] tab = table;
295 int index = hash & (tab.length - 1);
296 HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
297
298 for (HashEntry<K,V> e = first; e != null; e = (HashEntry<K,V>) e.next) {
299 if (e.hash == hash && key.equals(e.key)) {
300 V oldValue = e.value;
301 if (!onlyIfAbsent)
302 e.value = value;
303 ++modCount;
304 count = c; // write-volatile
305 return oldValue;
306 }
307 }
308
309 tab[index] = new HashEntry<K,V>(hash, key, value, first);
310 ++modCount;
311 ++c;
312 count = c; // write-volatile
313 if (c > threshold)
314 setTable(rehash(tab));
315 return null;
316 } finally {
317 unlock();
318 }
319 }
320
321 private HashEntry[] rehash(HashEntry[] oldTable) {
322 int oldCapacity = oldTable.length;
323 if (oldCapacity >= MAXIMUM_CAPACITY)
324 return oldTable;
325
326 /*
327 * Reclassify nodes in each list to new Map. Because we are
328 * using power-of-two expansion, the elements from each bin
329 * must either stay at same index, or move with a power of two
330 * offset. We eliminate unnecessary node creation by catching
331 * cases where old nodes can be reused because their next
332 * fields won't change. Statistically, at the default
333 * threshhold, only about one-sixth of them need cloning when
334 * a table doubles. The nodes they replace will be garbage
335 * collectable as soon as they are no longer referenced by any
336 * reader thread that may be in the midst of traversing table
337 * right now.
338 */
339
340 HashEntry[] newTable = new HashEntry[oldCapacity << 1];
341 int sizeMask = newTable.length - 1;
342 for (int i = 0; i < oldCapacity ; i++) {
343 // We need to guarantee that any existing reads of old Map can
344 // proceed. So we cannot yet null out each bin.
345 HashEntry<K,V> e = (HashEntry<K,V>)oldTable[i];
346
347 if (e != null) {
348 HashEntry<K,V> next = e.next;
349 int idx = e.hash & sizeMask;
350
351 // Single node on list
352 if (next == null)
353 newTable[idx] = e;
354
355 else {
356 // Reuse trailing consecutive sequence at same slot
357 HashEntry<K,V> lastRun = e;
358 int lastIdx = idx;
359 for (HashEntry<K,V> last = next;
360 last != null;
361 last = last.next) {
362 int k = last.hash & sizeMask;
363 if (k != lastIdx) {
364 lastIdx = k;
365 lastRun = last;
366 }
367 }
368 newTable[lastIdx] = lastRun;
369
370 // Clone all remaining nodes
371 for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
372 int k = p.hash & sizeMask;
373 newTable[k] = new HashEntry<K,V>(p.hash,
374 p.key,
375 p.value,
376 (HashEntry<K,V>) newTable[k]);
377 }
378 }
379 }
380 }
381 return newTable;
382 }
383
384 /**
385 * Remove; match on key only if value null, else match both.
386 */
387 V remove(Object key, int hash, Object value) {
388 lock();
389 try {
390 int c = count;
391 HashEntry[] tab = table;
392 int index = hash & (tab.length - 1);
393 HashEntry<K,V> first = (HashEntry<K,V>)tab[index];
394
395 HashEntry<K,V> e = first;
396 for (;;) {
397 if (e == null)
398 return null;
399 if (e.hash == hash && key.equals(e.key))
400 break;
401 e = e.next;
402 }
403
404 V oldValue = e.value;
405 if (value != null && !value.equals(oldValue))
406 return null;
407
408 // All entries following removed node can stay in list, but
409 // all preceeding ones need to be cloned.
410 HashEntry<K,V> newFirst = e.next;
411 for (HashEntry<K,V> p = first; p != e; p = p.next)
412 newFirst = new HashEntry<K,V>(p.hash, p.key,
413 p.value, newFirst);
414 tab[index] = newFirst;
415 ++modCount;
416 count = c-1; // write-volatile
417 return oldValue;
418 } finally {
419 unlock();
420 }
421 }
422
423 void clear() {
424 lock();
425 try {
426 HashEntry[] tab = table;
427 for (int i = 0; i < tab.length ; i++)
428 tab[i] = null;
429 ++modCount;
430 count = 0; // write-volatile
431 } finally {
432 unlock();
433 }
434 }
435 }
436
437 /**
438 * ConcurrentHashMap list entry.
439 */
440 private static class HashEntry<K,V> implements Entry<K,V> {
441 private final K key;
442 private V value;
443 private final int hash;
444 private final HashEntry<K,V> next;
445
446 HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
447 this.value = value;
448 this.hash = hash;
449 this.key = key;
450 this.next = next;
451 }
452
453 public K getKey() {
454 return key;
455 }
456
457 public V getValue() {
458 return value;
459 }
460
461 public V setValue(V newValue) {
462 // We aren't required to, and don't provide any
463 // visibility barriers for setting value.
464 if (newValue == null)
465 throw new NullPointerException();
466 V oldValue = this.value;
467 this.value = newValue;
468 return oldValue;
469 }
470
471 public boolean equals(Object o) {
472 if (!(o instanceof Entry))
473 return false;
474 Entry<K,V> e = (Entry<K,V>)o;
475 return (key.equals(e.getKey()) && value.equals(e.getValue()));
476 }
477
478 public int hashCode() {
479 return key.hashCode() ^ value.hashCode();
480 }
481
482 public String toString() {
483 return key + "=" + value;
484 }
485 }
486
487
488 /* ---------------- Public operations -------------- */
489
490 /**
491 * Constructs a new, empty map with the specified initial
492 * capacity and the specified load factor.
493 *
494 * @param initialCapacity the initial capacity. The implementation
495 * performs internal sizing to accommodate this many elements.
496 * @param loadFactor the load factor threshold, used to control resizing.
497 * @param concurrencyLevel the estimated number of concurrently
498 * updating threads. The implementation performs internal sizing
499 * to try to accommodate this many threads.
500 * @throws IllegalArgumentException if the initial capacity is
501 * negative or the load factor or concurrencyLevel are
502 * nonpositive.
503 */
504 public ConcurrentHashMap(int initialCapacity,
505 float loadFactor, int concurrencyLevel) {
506 if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
507 throw new IllegalArgumentException();
508
509 if (concurrencyLevel > MAX_SEGMENTS)
510 concurrencyLevel = MAX_SEGMENTS;
511
512 // Find power-of-two sizes best matching arguments
513 int sshift = 0;
514 int ssize = 1;
515 while (ssize < concurrencyLevel) {
516 ++sshift;
517 ssize <<= 1;
518 }
519 segmentShift = 32 - sshift;
520 segmentMask = ssize - 1;
521 this.segments = new Segment[ssize];
522
523 if (initialCapacity > MAXIMUM_CAPACITY)
524 initialCapacity = MAXIMUM_CAPACITY;
525 int c = initialCapacity / ssize;
526 if (c * ssize < initialCapacity)
527 ++c;
528 int cap = 1;
529 while (cap < c)
530 cap <<= 1;
531
532 for (int i = 0; i < this.segments.length; ++i)
533 this.segments[i] = new Segment<K,V>(cap, loadFactor);
534 }
535
536 /**
537 * Constructs a new, empty map with the specified initial
538 * capacity, and with default load factor and concurrencyLevel.
539 *
540 * @param initialCapacity The implementation performs internal
541 * sizing to accommodate this many elements.
542 * @throws IllegalArgumentException if the initial capacity of
543 * elements is negative.
544 */
545 public ConcurrentHashMap(int initialCapacity) {
546 this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
547 }
548
549 /**
550 * Constructs a new, empty map with a default initial capacity,
551 * load factor, and concurrencyLevel.
552 */
553 public ConcurrentHashMap() {
554 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
555 }
556
557 /**
558 * Constructs a new map with the same mappings as the given map. The
559 * map is created with a capacity of twice the number of mappings in
560 * the given map or 11 (whichever is greater), and a default load factor.
561 */
562 public <A extends K, B extends V> ConcurrentHashMap(Map<A,B> t) {
563 this(Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1,
564 11),
565 DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
566 putAll(t);
567 }
568
569 // inherit Map javadoc
570 public boolean isEmpty() {
571 /*
572 * We need to keep track of per-segment modCounts to avoid ABA
573 * problems in which an element in one segment was added and
574 * in another removed during traversal, in which case the
575 * table was never actually empty at any point. Note the
576 * similar use of modCounts in the size() and containsValue()
577 * methods, which are the only other methods also susceptible
578 * to ABA problems.
579 */
580 int[] mc = new int[segments.length];
581 int mcsum = 0;
582 for (int i = 0; i < segments.length; ++i) {
583 if (segments[i].count != 0)
584 return false;
585 else
586 mcsum += mc[i] = segments[i].modCount;
587 }
588 // If mcsum happens to be zero, then we know we got a snapshot
589 // before any modifications at all were made. This is
590 // probably common enough to bother tracking.
591 if (mcsum != 0) {
592 for (int i = 0; i < segments.length; ++i) {
593 if (segments[i].count != 0 ||
594 mc[i] != segments[i].modCount)
595 return false;
596 }
597 }
598 return true;
599 }
600
601 // inherit Map javadoc
602 public int size() {
603 int[] mc = new int[segments.length];
604 for (;;) {
605 long sum = 0;
606 int mcsum = 0;
607 for (int i = 0; i < segments.length; ++i) {
608 sum += segments[i].count;
609 mcsum += mc[i] = segments[i].modCount;
610 }
611 int check = 0;
612 if (mcsum != 0) {
613 for (int i = 0; i < segments.length; ++i) {
614 check += segments[i].count;
615 if (mc[i] != segments[i].modCount) {
616 check = -1; // force retry
617 break;
618 }
619 }
620 }
621 if (check == sum) {
622 if (sum > Integer.MAX_VALUE)
623 return Integer.MAX_VALUE;
624 else
625 return (int)sum;
626 }
627 }
628 }
629
630
631 /**
632 * Returns the value to which the specified key is mapped in this table.
633 *
634 * @param key a key in the table.
635 * @return the value to which the key is mapped in this table;
636 * <tt>null</tt> if the key is not mapped to any value in
637 * this table.
638 * @throws NullPointerException if the key is
639 * <tt>null</tt>.
640 */
641 public V get(Object key) {
642 int hash = hash(key); // throws NullPointerException if key null
643 return segmentFor(hash).get((K) key, hash);
644 }
645
646 /**
647 * Tests if the specified object is a key in this table.
648 *
649 * @param key possible key.
650 * @return <tt>true</tt> if and only if the specified object
651 * is a key in this table, as determined by the
652 * <tt>equals</tt> method; <tt>false</tt> otherwise.
653 * @throws NullPointerException if the key is
654 * <tt>null</tt>.
655 */
656 public boolean containsKey(Object key) {
657 int hash = hash(key); // throws NullPointerException if key null
658 return segmentFor(hash).containsKey(key, hash);
659 }
660
661 /**
662 * Returns <tt>true</tt> if this map maps one or more keys to the
663 * specified value. Note: This method requires a full internal
664 * traversal of the hash table, and so is much slower than
665 * method <tt>containsKey</tt>.
666 *
667 * @param value value whose presence in this map is to be tested.
668 * @return <tt>true</tt> if this map maps one or more keys to the
669 * specified value.
670 * @throws NullPointerException if the value is <tt>null</tt>.
671 */
672 public boolean containsValue(Object value) {
673 if (value == null)
674 throw new NullPointerException();
675
676 int[] mc = new int[segments.length];
677 for (;;) {
678 int sum = 0;
679 int mcsum = 0;
680 for (int i = 0; i < segments.length; ++i) {
681 int c = segments[i].count;
682 mcsum += mc[i] = segments[i].modCount;
683 if (segments[i].containsValue(value))
684 return true;
685 }
686 boolean cleanSweep = true;
687 if (mcsum != 0) {
688 for (int i = 0; i < segments.length; ++i) {
689 int c = segments[i].count;
690 if (mc[i] != segments[i].modCount) {
691 cleanSweep = false;
692 break;
693 }
694 }
695 }
696 if (cleanSweep)
697 return false;
698 }
699 }
700
701 /**
702 * Legacy method testing if some key maps into the specified value
703 * in this table. This method is identical in functionality to
704 * {@link #containsValue}, and exists solely to ensure
705 * full compatibility with class {@link java.util.Hashtable},
706 * which supported this method prior to introduction of the
707 * Java Collections framework.
708
709 * @param value a value to search for.
710 * @return <tt>true</tt> if and only if some key maps to the
711 * <tt>value</tt> argument in this table as
712 * determined by the <tt>equals</tt> method;
713 * <tt>false</tt> otherwise.
714 * @throws NullPointerException if the value is <tt>null</tt>.
715 */
716 public boolean contains(Object value) {
717 return containsValue(value);
718 }
719
720 /**
721 * Maps the specified <tt>key</tt> to the specified
722 * <tt>value</tt> in this table. Neither the key nor the
723 * value can be <tt>null</tt>. <p>
724 *
725 * The value can be retrieved by calling the <tt>get</tt> method
726 * with a key that is equal to the original key.
727 *
728 * @param key the table key.
729 * @param value the value.
730 * @return the previous value of the specified key in this table,
731 * or <tt>null</tt> if it did not have one.
732 * @throws NullPointerException if the key or value is
733 * <tt>null</tt>.
734 */
735 public V put(K key, V value) {
736 if (value == null)
737 throw new NullPointerException();
738 int hash = hash(key);
739 return segmentFor(hash).put(key, hash, value, false);
740 }
741
742 /**
743 * If the specified key is not already associated
744 * with a value, associate it with the given value.
745 * This is equivalent to
746 * <pre>
747 * if (!map.containsKey(key))
748 * return map.put(key, value);
749 * else
750 * return map.get(key);
751 * </pre>
752 * Except that the action is performed atomically.
753 * @param key key with which the specified value is to be associated.
754 * @param value value to be associated with the specified key.
755 * @return previous value associated with specified key, or <tt>null</tt>
756 * if there was no mapping for key. A <tt>null</tt> return can
757 * also indicate that the map previously associated <tt>null</tt>
758 * with the specified key, if the implementation supports
759 * <tt>null</tt> values.
760 *
761 * @throws UnsupportedOperationException if the <tt>put</tt> operation is
762 * not supported by this map.
763 * @throws ClassCastException if the class of the specified key or value
764 * prevents it from being stored in this map.
765 * @throws NullPointerException if the specified key or value is
766 * <tt>null</tt>.
767 *
768 **/
769 public V putIfAbsent(K key, V value) {
770 if (value == null)
771 throw new NullPointerException();
772 int hash = hash(key);
773 return segmentFor(hash).put(key, hash, value, true);
774 }
775
776
777 /**
778 * Copies all of the mappings from the specified map to this one.
779 *
780 * These mappings replace any mappings that this map had for any of the
781 * keys currently in the specified Map.
782 *
783 * @param t Mappings to be stored in this map.
784 */
785 public void putAll(Map<? extends K, ? extends V> t) {
786 for (Iterator<Map.Entry<? extends K, ? extends V>> it = (Iterator<Map.Entry<? extends K, ? extends V>>) t.entrySet().iterator(); it.hasNext(); ) {
787 Entry<? extends K, ? extends V> e = it.next();
788 put(e.getKey(), e.getValue());
789 }
790 }
791
792 /**
793 * Removes the key (and its corresponding value) from this
794 * table. This method does nothing if the key is not in the table.
795 *
796 * @param key the key that needs to be removed.
797 * @return the value to which the key had been mapped in this table,
798 * or <tt>null</tt> if the key did not have a mapping.
799 * @throws NullPointerException if the key is
800 * <tt>null</tt>.
801 */
802 public V remove(Object key) {
803 int hash = hash(key);
804 return segmentFor(hash).remove(key, hash, null);
805 }
806
807 /**
808 * Remove entry for key only if currently mapped to given value.
809 * Acts as
810 * <pre>
811 * if (map.get(key).equals(value)) {
812 * map.remove(key);
813 * return true;
814 * } else return false;
815 * </pre>
816 * except that the action is performed atomically.
817 * @param key key with which the specified value is associated.
818 * @param value value associated with the specified key.
819 * @return true if the value was removed
820 * @throws NullPointerException if the specified key is
821 * <tt>null</tt>.
822 */
823 public boolean remove(Object key, Object value) {
824 int hash = hash(key);
825 return segmentFor(hash).remove(key, hash, value) != null;
826 }
827
828 /**
829 * Removes all mappings from this map.
830 */
831 public void clear() {
832 for (int i = 0; i < segments.length; ++i)
833 segments[i].clear();
834 }
835
836
837 /**
838 * Returns a shallow copy of this
839 * <tt>ConcurrentHashMap</tt> instance: the keys and
840 * values themselves are not cloned.
841 *
842 * @return a shallow copy of this map.
843 */
844 public Object clone() {
845 // We cannot call super.clone, since it would share final
846 // segments array, and there's no way to reassign finals.
847
848 float lf = segments[0].loadFactor;
849 int segs = segments.length;
850 int cap = (int)(size() / lf);
851 if (cap < segs) cap = segs;
852 ConcurrentHashMap<K,V> t = new ConcurrentHashMap<K,V>(cap, lf, segs);
853 t.putAll(this);
854 return t;
855 }
856
857 /**
858 * Returns a set view of the keys contained in this map. The set is
859 * backed by the map, so changes to the map are reflected in the set, and
860 * vice-versa. The set supports element removal, which removes the
861 * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
862 * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
863 * <tt>clear</tt> operations. It does not support the <tt>add</tt> or
864 * <tt>addAll</tt> operations.
865 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
866 * will never throw {@link java.util.ConcurrentModificationException},
867 * and guarantees to traverse elements as they existed upon
868 * construction of the iterator, and may (but is not guaranteed to)
869 * reflect any modifications subsequent to construction.
870 *
871 * @return a set view of the keys contained in this map.
872 */
873 public Set<K> keySet() {
874 Set<K> ks = keySet;
875 return (ks != null) ? ks : (keySet = new KeySet());
876 }
877
878
879 /**
880 * Returns a collection view of the values contained in this map. The
881 * collection is backed by the map, so changes to the map are reflected in
882 * the collection, and vice-versa. The collection supports element
883 * removal, which removes the corresponding mapping from this map, via the
884 * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
885 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
886 * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
887 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
888 * will never throw {@link java.util.ConcurrentModificationException},
889 * and guarantees to traverse elements as they existed upon
890 * construction of the iterator, and may (but is not guaranteed to)
891 * reflect any modifications subsequent to construction.
892 *
893 * @return a collection view of the values contained in this map.
894 */
895 public Collection<V> values() {
896 Collection<V> vs = values;
897 return (vs != null) ? vs : (values = new Values());
898 }
899
900
901 /**
902 * Returns a collection view of the mappings contained in this map. Each
903 * element in the returned collection is a <tt>Map.Entry</tt>. The
904 * collection is backed by the map, so changes to the map are reflected in
905 * the collection, and vice-versa. The collection supports element
906 * removal, which removes the corresponding mapping from the map, via the
907 * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
908 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
909 * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
910 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
911 * will never throw {@link java.util.ConcurrentModificationException},
912 * and guarantees to traverse elements as they existed upon
913 * construction of the iterator, and may (but is not guaranteed to)
914 * reflect any modifications subsequent to construction.
915 *
916 * @return a collection view of the mappings contained in this map.
917 */
918 public Set<Map.Entry<K,V>> entrySet() {
919 Set<Map.Entry<K,V>> es = entrySet;
920 return (es != null) ? es : (entrySet = (Set<Map.Entry<K,V>>) (Set) new EntrySet());
921 }
922
923
924 /**
925 * Returns an enumeration of the keys in this table.
926 *
927 * @return an enumeration of the keys in this table.
928 * @see #keySet
929 */
930 public Enumeration<K> keys() {
931 return new KeyIterator();
932 }
933
934 /**
935 * Returns an enumeration of the values in this table.
936 * Use the Enumeration methods on the returned object to fetch the elements
937 * sequentially.
938 *
939 * @return an enumeration of the values in this table.
940 * @see #values
941 */
942 public Enumeration<V> elements() {
943 return new ValueIterator();
944 }
945
946 /* ---------------- Iterator Support -------------- */
947
948 private abstract class HashIterator {
949 private int nextSegmentIndex;
950 private int nextTableIndex;
951 private HashEntry[] currentTable;
952 private HashEntry<K, V> nextEntry;
953 private HashEntry<K, V> lastReturned;
954
955 private HashIterator() {
956 nextSegmentIndex = segments.length - 1;
957 nextTableIndex = -1;
958 advance();
959 }
960
961 public boolean hasMoreElements() { return hasNext(); }
962
963 private void advance() {
964 if (nextEntry != null && (nextEntry = nextEntry.next) != null)
965 return;
966
967 while (nextTableIndex >= 0) {
968 if ( (nextEntry = (HashEntry<K,V>)currentTable[nextTableIndex--]) != null)
969 return;
970 }
971
972 while (nextSegmentIndex >= 0) {
973 Segment<K,V> seg = (Segment<K,V>)segments[nextSegmentIndex--];
974 if (seg.count != 0) {
975 currentTable = seg.table;
976 for (int j = currentTable.length - 1; j >= 0; --j) {
977 if ( (nextEntry = (HashEntry<K,V>)currentTable[j]) != null) {
978 nextTableIndex = j - 1;
979 return;
980 }
981 }
982 }
983 }
984 }
985
986 public boolean hasNext() { return nextEntry != null; }
987
988 HashEntry<K,V> nextEntry() {
989 if (nextEntry == null)
990 throw new NoSuchElementException();
991 lastReturned = nextEntry;
992 advance();
993 return lastReturned;
994 }
995
996 public void remove() {
997 if (lastReturned == null)
998 throw new IllegalStateException();
999 ConcurrentHashMap.this.remove(lastReturned.key);
1000 lastReturned = null;
1001 }
1002 }
1003
1004 private class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
1005 public K next() { return super.nextEntry().key; }
1006 public K nextElement() { return super.nextEntry().key; }
1007 }
1008
1009 private class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
1010 public V next() { return super.nextEntry().value; }
1011 public V nextElement() { return super.nextEntry().value; }
1012 }
1013
1014 private class EntryIterator extends HashIterator implements Iterator<Entry<K,V>> {
1015 public Map.Entry<K,V> next() { return super.nextEntry(); }
1016 }
1017
1018 private class KeySet extends AbstractSet<K> {
1019 public Iterator<K> iterator() {
1020 return new KeyIterator();
1021 }
1022 public int size() {
1023 return ConcurrentHashMap.this.size();
1024 }
1025 public boolean contains(Object o) {
1026 return ConcurrentHashMap.this.containsKey(o);
1027 }
1028 public boolean remove(Object o) {
1029 return ConcurrentHashMap.this.remove(o) != null;
1030 }
1031 public void clear() {
1032 ConcurrentHashMap.this.clear();
1033 }
1034 }
1035
1036 private class Values extends AbstractCollection<V> {
1037 public Iterator<V> iterator() {
1038 return new ValueIterator();
1039 }
1040 public int size() {
1041 return ConcurrentHashMap.this.size();
1042 }
1043 public boolean contains(Object o) {
1044 return ConcurrentHashMap.this.containsValue(o);
1045 }
1046 public void clear() {
1047 ConcurrentHashMap.this.clear();
1048 }
1049 }
1050
1051 private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1052 public Iterator<Map.Entry<K,V>> iterator() {
1053 return new EntryIterator();
1054 }
1055 public boolean contains(Object o) {
1056 if (!(o instanceof Map.Entry))
1057 return false;
1058 Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1059 V v = ConcurrentHashMap.this.get(e.getKey());
1060 return v != null && v.equals(e.getValue());
1061 }
1062 public boolean remove(Object o) {
1063 if (!(o instanceof Map.Entry))
1064 return false;
1065 Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1066 return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
1067 }
1068 public int size() {
1069 return ConcurrentHashMap.this.size();
1070 }
1071 public void clear() {
1072 ConcurrentHashMap.this.clear();
1073 }
1074 }
1075
1076 /* ---------------- Serialization Support -------------- */
1077
1078 /**
1079 * Save the state of the <tt>ConcurrentHashMap</tt>
1080 * instance to a stream (i.e.,
1081 * serialize it).
1082 * @param s the stream
1083 * @serialData
1084 * the key (Object) and value (Object)
1085 * for each key-value mapping, followed by a null pair.
1086 * The key-value mappings are emitted in no particular order.
1087 */
1088 private void writeObject(java.io.ObjectOutputStream s) throws IOException {
1089 s.defaultWriteObject();
1090
1091 for (int k = 0; k < segments.length; ++k) {
1092 Segment<K,V> seg = (Segment<K,V>)segments[k];
1093 seg.lock();
1094 try {
1095 HashEntry[] tab = seg.table;
1096 for (int i = 0; i < tab.length; ++i) {
1097 for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i]; e != null; e = e.next) {
1098 s.writeObject(e.key);
1099 s.writeObject(e.value);
1100 }
1101 }
1102 } finally {
1103 seg.unlock();
1104 }
1105 }
1106 s.writeObject(null);
1107 s.writeObject(null);
1108 }
1109
1110 /**
1111 * Reconstitute the <tt>ConcurrentHashMap</tt>
1112 * instance from a stream (i.e.,
1113 * deserialize it).
1114 * @param s the stream
1115 */
1116 private void readObject(java.io.ObjectInputStream s)
1117 throws IOException, ClassNotFoundException {
1118 s.defaultReadObject();
1119
1120 // Initialize each segment to be minimally sized, and let grow.
1121 for (int i = 0; i < segments.length; ++i) {
1122 segments[i].setTable(new HashEntry[1]);
1123 }
1124
1125 // Read the keys and values, and put the mappings in the table
1126 for (;;) {
1127 K key = (K) s.readObject();
1128 V value = (V) s.readObject();
1129 if (key == null)
1130 break;
1131 put(key, value);
1132 }
1133 }
1134 }
1135