ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.250
Committed: Sun Sep 1 05:22:49 2013 UTC (10 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.249: +3 -1 lines
Log Message:
use @deprecated in addition to @Deprecated

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.io.Serializable;
11 import java.lang.reflect.ParameterizedType;
12 import java.lang.reflect.Type;
13 import java.util.AbstractMap;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Comparator;
17 import java.util.Enumeration;
18 import java.util.HashMap;
19 import java.util.Hashtable;
20 import java.util.Iterator;
21 import java.util.Map;
22 import java.util.NoSuchElementException;
23 import java.util.Set;
24 import java.util.Spliterator;
25 import java.util.concurrent.ConcurrentMap;
26 import java.util.concurrent.ForkJoinPool;
27 import java.util.concurrent.atomic.AtomicReference;
28 import java.util.concurrent.locks.LockSupport;
29 import java.util.concurrent.locks.ReentrantLock;
30 import java.util.function.BiConsumer;
31 import java.util.function.BiFunction;
32 import java.util.function.BinaryOperator;
33 import java.util.function.Consumer;
34 import java.util.function.DoubleBinaryOperator;
35 import java.util.function.Function;
36 import java.util.function.IntBinaryOperator;
37 import java.util.function.LongBinaryOperator;
38 import java.util.function.ToDoubleBiFunction;
39 import java.util.function.ToDoubleFunction;
40 import java.util.function.ToIntBiFunction;
41 import java.util.function.ToIntFunction;
42 import java.util.function.ToLongBiFunction;
43 import java.util.function.ToLongFunction;
44 import java.util.stream.Stream;
45
46 /**
47 * A hash table supporting full concurrency of retrievals and
48 * high expected concurrency for updates. This class obeys the
49 * same functional specification as {@link java.util.Hashtable}, and
50 * includes versions of methods corresponding to each method of
51 * {@code Hashtable}. However, even though all operations are
52 * thread-safe, retrieval operations do <em>not</em> entail locking,
53 * and there is <em>not</em> any support for locking the entire table
54 * in a way that prevents all access. This class is fully
55 * interoperable with {@code Hashtable} in programs that rely on its
56 * thread safety but not on its synchronization details.
57 *
58 * <p>Retrieval operations (including {@code get}) generally do not
59 * block, so may overlap with update operations (including {@code put}
60 * and {@code remove}). Retrievals reflect the results of the most
61 * recently <em>completed</em> update operations holding upon their
62 * onset. (More formally, an update operation for a given key bears a
63 * <em>happens-before</em> relation with any (non-null) retrieval for
64 * that key reporting the updated value.) For aggregate operations
65 * such as {@code putAll} and {@code clear}, concurrent retrievals may
66 * reflect insertion or removal of only some entries. Similarly,
67 * Iterators, Spliterators and Enumerations return elements reflecting the
68 * state of the hash table at some point at or since the creation of the
69 * iterator/enumeration. They do <em>not</em> throw {@link
70 * java.util.ConcurrentModificationException ConcurrentModificationException}.
71 * However, iterators are designed to be used by only one thread at a time.
72 * Bear in mind that the results of aggregate status methods including
73 * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
74 * useful only when a map is not undergoing concurrent updates in other threads.
75 * Otherwise the results of these methods reflect transient states
76 * that may be adequate for monitoring or estimation purposes, but not
77 * for program control.
78 *
79 * <p>The table is dynamically expanded when there are too many
80 * collisions (i.e., keys that have distinct hash codes but fall into
81 * the same slot modulo the table size), with the expected average
82 * effect of maintaining roughly two bins per mapping (corresponding
83 * to a 0.75 load factor threshold for resizing). There may be much
84 * variance around this average as mappings are added and removed, but
85 * overall, this maintains a commonly accepted time/space tradeoff for
86 * hash tables. However, resizing this or any other kind of hash
87 * table may be a relatively slow operation. When possible, it is a
88 * good idea to provide a size estimate as an optional {@code
89 * initialCapacity} constructor argument. An additional optional
90 * {@code loadFactor} constructor argument provides a further means of
91 * customizing initial table capacity by specifying the table density
92 * to be used in calculating the amount of space to allocate for the
93 * given number of elements. Also, for compatibility with previous
94 * versions of this class, constructors may optionally specify an
95 * expected {@code concurrencyLevel} as an additional hint for
96 * internal sizing. Note that using many keys with exactly the same
97 * {@code hashCode()} is a sure way to slow down performance of any
98 * hash table. To ameliorate impact, when keys are {@link Comparable},
99 * this class may use comparison order among keys to help break ties.
100 *
101 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
102 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
103 * (using {@link #keySet(Object)} when only keys are of interest, and the
104 * mapped values are (perhaps transiently) not used or all take the
105 * same mapping value.
106 *
107 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
108 * form of histogram or multiset) by using {@link
109 * java.util.concurrent.atomic.LongAdder} values and initializing via
110 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
111 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
112 * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
113 *
114 * <p>This class and its views and iterators implement all of the
115 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
116 * interfaces.
117 *
118 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
119 * does <em>not</em> allow {@code null} to be used as a key or value.
120 *
121 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
122 * operations that, unlike most {@link Stream} methods, are designed
123 * to be safely, and often sensibly, applied even with maps that are
124 * being concurrently updated by other threads; for example, when
125 * computing a snapshot summary of the values in a shared registry.
126 * There are three kinds of operation, each with four forms, accepting
127 * functions with Keys, Values, Entries, and (Key, Value) arguments
128 * and/or return values. Because the elements of a ConcurrentHashMap
129 * are not ordered in any particular way, and may be processed in
130 * different orders in different parallel executions, the correctness
131 * of supplied functions should not depend on any ordering, or on any
132 * other objects or values that may transiently change while
133 * computation is in progress; and except for forEach actions, should
134 * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
135 * objects do not support method {@code setValue}.
136 *
137 * <ul>
138 * <li> forEach: Perform a given action on each element.
139 * A variant form applies a given transformation on each element
140 * before performing the action.</li>
141 *
142 * <li> search: Return the first available non-null result of
143 * applying a given function on each element; skipping further
144 * search when a result is found.</li>
145 *
146 * <li> reduce: Accumulate each element. The supplied reduction
147 * function cannot rely on ordering (more formally, it should be
148 * both associative and commutative). There are five variants:
149 *
150 * <ul>
151 *
152 * <li> Plain reductions. (There is not a form of this method for
153 * (key, value) function arguments since there is no corresponding
154 * return type.)</li>
155 *
156 * <li> Mapped reductions that accumulate the results of a given
157 * function applied to each element.</li>
158 *
159 * <li> Reductions to scalar doubles, longs, and ints, using a
160 * given basis value.</li>
161 *
162 * </ul>
163 * </li>
164 * </ul>
165 *
166 * <p>These bulk operations accept a {@code parallelismThreshold}
167 * argument. Methods proceed sequentially if the current map size is
168 * estimated to be less than the given threshold. Using a value of
169 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
170 * of {@code 1} results in maximal parallelism by partitioning into
171 * enough subtasks to fully utilize the {@link
172 * ForkJoinPool#commonPool()} that is used for all parallel
173 * computations. Normally, you would initially choose one of these
174 * extreme values, and then measure performance of using in-between
175 * values that trade off overhead versus throughput.
176 *
177 * <p>The concurrency properties of bulk operations follow
178 * from those of ConcurrentHashMap: Any non-null result returned
179 * from {@code get(key)} and related access methods bears a
180 * happens-before relation with the associated insertion or
181 * update. The result of any bulk operation reflects the
182 * composition of these per-element relations (but is not
183 * necessarily atomic with respect to the map as a whole unless it
184 * is somehow known to be quiescent). Conversely, because keys
185 * and values in the map are never null, null serves as a reliable
186 * atomic indicator of the current lack of any result. To
187 * maintain this property, null serves as an implicit basis for
188 * all non-scalar reduction operations. For the double, long, and
189 * int versions, the basis should be one that, when combined with
190 * any other value, returns that other value (more formally, it
191 * should be the identity element for the reduction). Most common
192 * reductions have these properties; for example, computing a sum
193 * with basis 0 or a minimum with basis MAX_VALUE.
194 *
195 * <p>Search and transformation functions provided as arguments
196 * should similarly return null to indicate the lack of any result
197 * (in which case it is not used). In the case of mapped
198 * reductions, this also enables transformations to serve as
199 * filters, returning null (or, in the case of primitive
200 * specializations, the identity basis) if the element should not
201 * be combined. You can create compound transformations and
202 * filterings by composing them yourself under this "null means
203 * there is nothing there now" rule before using them in search or
204 * reduce operations.
205 *
206 * <p>Methods accepting and/or returning Entry arguments maintain
207 * key-value associations. They may be useful for example when
208 * finding the key for the greatest value. Note that "plain" Entry
209 * arguments can be supplied using {@code new
210 * AbstractMap.SimpleEntry(k,v)}.
211 *
212 * <p>Bulk operations may complete abruptly, throwing an
213 * exception encountered in the application of a supplied
214 * function. Bear in mind when handling such exceptions that other
215 * concurrently executing functions could also have thrown
216 * exceptions, or would have done so if the first exception had
217 * not occurred.
218 *
219 * <p>Speedups for parallel compared to sequential forms are common
220 * but not guaranteed. Parallel operations involving brief functions
221 * on small maps may execute more slowly than sequential forms if the
222 * underlying work to parallelize the computation is more expensive
223 * than the computation itself. Similarly, parallelization may not
224 * lead to much actual parallelism if all processors are busy
225 * performing unrelated tasks.
226 *
227 * <p>All arguments to all task methods must be non-null.
228 *
229 * <p>This class is a member of the
230 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
231 * Java Collections Framework</a>.
232 *
233 * @since 1.5
234 * @author Doug Lea
235 * @param <K> the type of keys maintained by this map
236 * @param <V> the type of mapped values
237 */
238 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
239 implements ConcurrentMap<K,V>, Serializable {
240 private static final long serialVersionUID = 7249069246763182397L;
241
242 /*
243 * Overview:
244 *
245 * The primary design goal of this hash table is to maintain
246 * concurrent readability (typically method get(), but also
247 * iterators and related methods) while minimizing update
248 * contention. Secondary goals are to keep space consumption about
249 * the same or better than java.util.HashMap, and to support high
250 * initial insertion rates on an empty table by many threads.
251 *
252 * This map usually acts as a binned (bucketed) hash table. Each
253 * key-value mapping is held in a Node. Most nodes are instances
254 * of the basic Node class with hash, key, value, and next
255 * fields. However, various subclasses exist: TreeNodes are
256 * arranged in balanced trees, not lists. TreeBins hold the roots
257 * of sets of TreeNodes. ForwardingNodes are placed at the heads
258 * of bins during resizing. ReservationNodes are used as
259 * placeholders while establishing values in computeIfAbsent and
260 * related methods. The types TreeBin, ForwardingNode, and
261 * ReservationNode do not hold normal user keys, values, or
262 * hashes, and are readily distinguishable during search etc
263 * because they have negative hash fields and null key and value
264 * fields. (These special nodes are either uncommon or transient,
265 * so the impact of carrying around some unused fields is
266 * insignificant.)
267 *
268 * The table is lazily initialized to a power-of-two size upon the
269 * first insertion. Each bin in the table normally contains a
270 * list of Nodes (most often, the list has only zero or one Node).
271 * Table accesses require volatile/atomic reads, writes, and
272 * CASes. Because there is no other way to arrange this without
273 * adding further indirections, we use intrinsics
274 * (sun.misc.Unsafe) operations.
275 *
276 * We use the top (sign) bit of Node hash fields for control
277 * purposes -- it is available anyway because of addressing
278 * constraints. Nodes with negative hash fields are specially
279 * handled or ignored in map methods.
280 *
281 * Insertion (via put or its variants) of the first node in an
282 * empty bin is performed by just CASing it to the bin. This is
283 * by far the most common case for put operations under most
284 * key/hash distributions. Other update operations (insert,
285 * delete, and replace) require locks. We do not want to waste
286 * the space required to associate a distinct lock object with
287 * each bin, so instead use the first node of a bin list itself as
288 * a lock. Locking support for these locks relies on builtin
289 * "synchronized" monitors.
290 *
291 * Using the first node of a list as a lock does not by itself
292 * suffice though: When a node is locked, any update must first
293 * validate that it is still the first node after locking it, and
294 * retry if not. Because new nodes are always appended to lists,
295 * once a node is first in a bin, it remains first until deleted
296 * or the bin becomes invalidated (upon resizing).
297 *
298 * The main disadvantage of per-bin locks is that other update
299 * operations on other nodes in a bin list protected by the same
300 * lock can stall, for example when user equals() or mapping
301 * functions take a long time. However, statistically, under
302 * random hash codes, this is not a common problem. Ideally, the
303 * frequency of nodes in bins follows a Poisson distribution
304 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
305 * parameter of about 0.5 on average, given the resizing threshold
306 * of 0.75, although with a large variance because of resizing
307 * granularity. Ignoring variance, the expected occurrences of
308 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
309 * first values are:
310 *
311 * 0: 0.60653066
312 * 1: 0.30326533
313 * 2: 0.07581633
314 * 3: 0.01263606
315 * 4: 0.00157952
316 * 5: 0.00015795
317 * 6: 0.00001316
318 * 7: 0.00000094
319 * 8: 0.00000006
320 * more: less than 1 in ten million
321 *
322 * Lock contention probability for two threads accessing distinct
323 * elements is roughly 1 / (8 * #elements) under random hashes.
324 *
325 * Actual hash code distributions encountered in practice
326 * sometimes deviate significantly from uniform randomness. This
327 * includes the case when N > (1<<30), so some keys MUST collide.
328 * Similarly for dumb or hostile usages in which multiple keys are
329 * designed to have identical hash codes or ones that differs only
330 * in masked-out high bits. So we use a secondary strategy that
331 * applies when the number of nodes in a bin exceeds a
332 * threshold. These TreeBins use a balanced tree to hold nodes (a
333 * specialized form of red-black trees), bounding search time to
334 * O(log N). Each search step in a TreeBin is at least twice as
335 * slow as in a regular list, but given that N cannot exceed
336 * (1<<64) (before running out of addresses) this bounds search
337 * steps, lock hold times, etc, to reasonable constants (roughly
338 * 100 nodes inspected per operation worst case) so long as keys
339 * are Comparable (which is very common -- String, Long, etc).
340 * TreeBin nodes (TreeNodes) also maintain the same "next"
341 * traversal pointers as regular nodes, so can be traversed in
342 * iterators in the same way.
343 *
344 * The table is resized when occupancy exceeds a percentage
345 * threshold (nominally, 0.75, but see below). Any thread
346 * noticing an overfull bin may assist in resizing after the
347 * initiating thread allocates and sets up the replacement array.
348 * However, rather than stalling, these other threads may proceed
349 * with insertions etc. The use of TreeBins shields us from the
350 * worst case effects of overfilling while resizes are in
351 * progress. Resizing proceeds by transferring bins, one by one,
352 * from the table to the next table. However, threads claim small
353 * blocks of indices to transfer (via field transferIndex) before
354 * doing so, reducing contention. Because we are using
355 * power-of-two expansion, the elements from each bin must either
356 * stay at same index, or move with a power of two offset. We
357 * eliminate unnecessary node creation by catching cases where old
358 * nodes can be reused because their next fields won't change. On
359 * average, only about one-sixth of them need cloning when a table
360 * doubles. The nodes they replace will be garbage collectable as
361 * soon as they are no longer referenced by any reader thread that
362 * may be in the midst of concurrently traversing table. Upon
363 * transfer, the old table bin contains only a special forwarding
364 * node (with hash field "MOVED") that contains the next table as
365 * its key. On encountering a forwarding node, access and update
366 * operations restart, using the new table.
367 *
368 * Each bin transfer requires its bin lock, which can stall
369 * waiting for locks while resizing. However, because other
370 * threads can join in and help resize rather than contend for
371 * locks, average aggregate waits become shorter as resizing
372 * progresses. The transfer operation must also ensure that all
373 * accessible bins in both the old and new table are usable by any
374 * traversal. This is arranged in part by proceeding from the
375 * last bin (table.length - 1) up towards the first. Upon seeing
376 * a forwarding node, traversals (see class Traverser) arrange to
377 * move to the new table without revisiting nodes. To ensure that
378 * no intervening nodes are skipped even when moved out of order,
379 * a stack (see class TableStack) is created on first encounter of
380 * a forwarding node during a traversal, to maintain its place if
381 * later processing the current table. The need for these
382 * save/restore mechanics is relatively rare, but when one
383 * forwarding node is encountered, typically many more will be.
384 * So Traversers use a simple caching scheme to avoid creating so
385 * many new TableStack nodes. (Thanks to Peter Levart for
386 * suggesting use of a stack here.)
387 *
388 * The traversal scheme also applies to partial traversals of
389 * ranges of bins (via an alternate Traverser constructor)
390 * to support partitioned aggregate operations. Also, read-only
391 * operations give up if ever forwarded to a null table, which
392 * provides support for shutdown-style clearing, which is also not
393 * currently implemented.
394 *
395 * Lazy table initialization minimizes footprint until first use,
396 * and also avoids resizings when the first operation is from a
397 * putAll, constructor with map argument, or deserialization.
398 * These cases attempt to override the initial capacity settings,
399 * but harmlessly fail to take effect in cases of races.
400 *
401 * The element count is maintained using a specialization of
402 * LongAdder. We need to incorporate a specialization rather than
403 * just use a LongAdder in order to access implicit
404 * contention-sensing that leads to creation of multiple
405 * CounterCells. The counter mechanics avoid contention on
406 * updates but can encounter cache thrashing if read too
407 * frequently during concurrent access. To avoid reading so often,
408 * resizing under contention is attempted only upon adding to a
409 * bin already holding two or more nodes. Under uniform hash
410 * distributions, the probability of this occurring at threshold
411 * is around 13%, meaning that only about 1 in 8 puts check
412 * threshold (and after resizing, many fewer do so).
413 *
414 * TreeBins use a special form of comparison for search and
415 * related operations (which is the main reason we cannot use
416 * existing collections such as TreeMaps). TreeBins contain
417 * Comparable elements, but may contain others, as well as
418 * elements that are Comparable but not necessarily Comparable for
419 * the same T, so we cannot invoke compareTo among them. To handle
420 * this, the tree is ordered primarily by hash value, then by
421 * Comparable.compareTo order if applicable. On lookup at a node,
422 * if elements are not comparable or compare as 0 then both left
423 * and right children may need to be searched in the case of tied
424 * hash values. (This corresponds to the full list search that
425 * would be necessary if all elements were non-Comparable and had
426 * tied hashes.) On insertion, to keep a total ordering (or as
427 * close as is required here) across rebalancings, we compare
428 * classes and identityHashCodes as tie-breakers. The red-black
429 * balancing code is updated from pre-jdk-collections
430 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
431 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
432 * Algorithms" (CLR).
433 *
434 * TreeBins also require an additional locking mechanism. While
435 * list traversal is always possible by readers even during
436 * updates, tree traversal is not, mainly because of tree-rotations
437 * that may change the root node and/or its linkages. TreeBins
438 * include a simple read-write lock mechanism parasitic on the
439 * main bin-synchronization strategy: Structural adjustments
440 * associated with an insertion or removal are already bin-locked
441 * (and so cannot conflict with other writers) but must wait for
442 * ongoing readers to finish. Since there can be only one such
443 * waiter, we use a simple scheme using a single "waiter" field to
444 * block writers. However, readers need never block. If the root
445 * lock is held, they proceed along the slow traversal path (via
446 * next-pointers) until the lock becomes available or the list is
447 * exhausted, whichever comes first. These cases are not fast, but
448 * maximize aggregate expected throughput.
449 *
450 * Maintaining API and serialization compatibility with previous
451 * versions of this class introduces several oddities. Mainly: We
452 * leave untouched but unused constructor arguments refering to
453 * concurrencyLevel. We accept a loadFactor constructor argument,
454 * but apply it only to initial table capacity (which is the only
455 * time that we can guarantee to honor it.) We also declare an
456 * unused "Segment" class that is instantiated in minimal form
457 * only when serializing.
458 *
459 * Also, solely for compatibility with previous versions of this
460 * class, it extends AbstractMap, even though all of its methods
461 * are overridden, so it is just useless baggage.
462 *
463 * This file is organized to make things a little easier to follow
464 * while reading than they might otherwise: First the main static
465 * declarations and utilities, then fields, then main public
466 * methods (with a few factorings of multiple public methods into
467 * internal ones), then sizing methods, trees, traversers, and
468 * bulk operations.
469 */
470
471 /* ---------------- Constants -------------- */
472
473 /**
474 * The largest possible table capacity. This value must be
475 * exactly 1<<30 to stay within Java array allocation and indexing
476 * bounds for power of two table sizes, and is further required
477 * because the top two bits of 32bit hash fields are used for
478 * control purposes.
479 */
480 private static final int MAXIMUM_CAPACITY = 1 << 30;
481
482 /**
483 * The default initial table capacity. Must be a power of 2
484 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
485 */
486 private static final int DEFAULT_CAPACITY = 16;
487
488 /**
489 * The largest possible (non-power of two) array size.
490 * Needed by toArray and related methods.
491 */
492 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
493
494 /**
495 * The default concurrency level for this table. Unused but
496 * defined for compatibility with previous versions of this class.
497 */
498 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
499
500 /**
501 * The load factor for this table. Overrides of this value in
502 * constructors affect only the initial table capacity. The
503 * actual floating point value isn't normally used -- it is
504 * simpler to use expressions such as {@code n - (n >>> 2)} for
505 * the associated resizing threshold.
506 */
507 private static final float LOAD_FACTOR = 0.75f;
508
509 /**
510 * The bin count threshold for using a tree rather than list for a
511 * bin. Bins are converted to trees when adding an element to a
512 * bin with at least this many nodes. The value must be greater
513 * than 2, and should be at least 8 to mesh with assumptions in
514 * tree removal about conversion back to plain bins upon
515 * shrinkage.
516 */
517 static final int TREEIFY_THRESHOLD = 8;
518
519 /**
520 * The bin count threshold for untreeifying a (split) bin during a
521 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
522 * most 6 to mesh with shrinkage detection under removal.
523 */
524 static final int UNTREEIFY_THRESHOLD = 6;
525
526 /**
527 * The smallest table capacity for which bins may be treeified.
528 * (Otherwise the table is resized if too many nodes in a bin.)
529 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
530 * conflicts between resizing and treeification thresholds.
531 */
532 static final int MIN_TREEIFY_CAPACITY = 64;
533
534 /**
535 * Minimum number of rebinnings per transfer step. Ranges are
536 * subdivided to allow multiple resizer threads. This value
537 * serves as a lower bound to avoid resizers encountering
538 * excessive memory contention. The value should be at least
539 * DEFAULT_CAPACITY.
540 */
541 private static final int MIN_TRANSFER_STRIDE = 16;
542
543 /*
544 * Encodings for Node hash fields. See above for explanation.
545 */
546 static final int MOVED = -1; // hash for forwarding nodes
547 static final int TREEBIN = -2; // hash for roots of trees
548 static final int RESERVED = -3; // hash for transient reservations
549 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
550
551 /** Number of CPUS, to place bounds on some sizings */
552 static final int NCPU = Runtime.getRuntime().availableProcessors();
553
554 /** For serialization compatibility. */
555 private static final ObjectStreamField[] serialPersistentFields = {
556 new ObjectStreamField("segments", Segment[].class),
557 new ObjectStreamField("segmentMask", Integer.TYPE),
558 new ObjectStreamField("segmentShift", Integer.TYPE)
559 };
560
561 /* ---------------- Nodes -------------- */
562
563 /**
564 * Key-value entry. This class is never exported out as a
565 * user-mutable Map.Entry (i.e., one supporting setValue; see
566 * MapEntry below), but can be used for read-only traversals used
567 * in bulk tasks. Subclasses of Node with a negative hash field
568 * are special, and contain null keys and values (but are never
569 * exported). Otherwise, keys and vals are never null.
570 */
571 static class Node<K,V> implements Map.Entry<K,V> {
572 final int hash;
573 final K key;
574 volatile V val;
575 volatile Node<K,V> next;
576
577 Node(int hash, K key, V val, Node<K,V> next) {
578 this.hash = hash;
579 this.key = key;
580 this.val = val;
581 this.next = next;
582 }
583
584 public final K getKey() { return key; }
585 public final V getValue() { return val; }
586 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
587 public final String toString(){ return key + "=" + val; }
588 public final V setValue(V value) {
589 throw new UnsupportedOperationException();
590 }
591
592 public final boolean equals(Object o) {
593 Object k, v, u; Map.Entry<?,?> e;
594 return ((o instanceof Map.Entry) &&
595 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
596 (v = e.getValue()) != null &&
597 (k == key || k.equals(key)) &&
598 (v == (u = val) || v.equals(u)));
599 }
600
601 /**
602 * Virtualized support for map.get(); overridden in subclasses.
603 */
604 Node<K,V> find(int h, Object k) {
605 Node<K,V> e = this;
606 if (k != null) {
607 do {
608 K ek;
609 if (e.hash == h &&
610 ((ek = e.key) == k || (ek != null && k.equals(ek))))
611 return e;
612 } while ((e = e.next) != null);
613 }
614 return null;
615 }
616 }
617
618 /* ---------------- Static utilities -------------- */
619
620 /**
621 * Spreads (XORs) higher bits of hash to lower and also forces top
622 * bit to 0. Because the table uses power-of-two masking, sets of
623 * hashes that vary only in bits above the current mask will
624 * always collide. (Among known examples are sets of Float keys
625 * holding consecutive whole numbers in small tables.) So we
626 * apply a transform that spreads the impact of higher bits
627 * downward. There is a tradeoff between speed, utility, and
628 * quality of bit-spreading. Because many common sets of hashes
629 * are already reasonably distributed (so don't benefit from
630 * spreading), and because we use trees to handle large sets of
631 * collisions in bins, we just XOR some shifted bits in the
632 * cheapest possible way to reduce systematic lossage, as well as
633 * to incorporate impact of the highest bits that would otherwise
634 * never be used in index calculations because of table bounds.
635 */
636 static final int spread(int h) {
637 return (h ^ (h >>> 16)) & HASH_BITS;
638 }
639
640 /**
641 * Returns a power of two table size for the given desired capacity.
642 * See Hackers Delight, sec 3.2
643 */
644 private static final int tableSizeFor(int c) {
645 int n = c - 1;
646 n |= n >>> 1;
647 n |= n >>> 2;
648 n |= n >>> 4;
649 n |= n >>> 8;
650 n |= n >>> 16;
651 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
652 }
653
654 /**
655 * Returns x's Class if it is of the form "class C implements
656 * Comparable<C>", else null.
657 */
658 static Class<?> comparableClassFor(Object x) {
659 if (x instanceof Comparable) {
660 Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
661 if ((c = x.getClass()) == String.class) // bypass checks
662 return c;
663 if ((ts = c.getGenericInterfaces()) != null) {
664 for (int i = 0; i < ts.length; ++i) {
665 if (((t = ts[i]) instanceof ParameterizedType) &&
666 ((p = (ParameterizedType)t).getRawType() ==
667 Comparable.class) &&
668 (as = p.getActualTypeArguments()) != null &&
669 as.length == 1 && as[0] == c) // type arg is c
670 return c;
671 }
672 }
673 }
674 return null;
675 }
676
677 /**
678 * Returns k.compareTo(x) if x matches kc (k's screened comparable
679 * class), else 0.
680 */
681 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
682 static int compareComparables(Class<?> kc, Object k, Object x) {
683 return (x == null || x.getClass() != kc ? 0 :
684 ((Comparable)k).compareTo(x));
685 }
686
687 /* ---------------- Table element access -------------- */
688
689 /*
690 * Volatile access methods are used for table elements as well as
691 * elements of in-progress next table while resizing. All uses of
692 * the tab arguments must be null checked by callers. All callers
693 * also paranoically precheck that tab's length is not zero (or an
694 * equivalent check), thus ensuring that any index argument taking
695 * the form of a hash value anded with (length - 1) is a valid
696 * index. Note that, to be correct wrt arbitrary concurrency
697 * errors by users, these checks must operate on local variables,
698 * which accounts for some odd-looking inline assignments below.
699 * Note that calls to setTabAt always occur within locked regions,
700 * and so in principle require only release ordering, not need
701 * full volatile semantics, but are currently coded as volatile
702 * writes to be conservative.
703 */
704
705 @SuppressWarnings("unchecked")
706 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
707 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
708 }
709
710 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
711 Node<K,V> c, Node<K,V> v) {
712 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
713 }
714
715 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
716 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
717 }
718
719 /* ---------------- Fields -------------- */
720
721 /**
722 * The array of bins. Lazily initialized upon first insertion.
723 * Size is always a power of two. Accessed directly by iterators.
724 */
725 transient volatile Node<K,V>[] table;
726
727 /**
728 * The next table to use; non-null only while resizing.
729 */
730 private transient volatile Node<K,V>[] nextTable;
731
732 /**
733 * Base counter value, used mainly when there is no contention,
734 * but also as a fallback during table initialization
735 * races. Updated via CAS.
736 */
737 private transient volatile long baseCount;
738
739 /**
740 * Table initialization and resizing control. When negative, the
741 * table is being initialized or resized: -1 for initialization,
742 * else -(1 + the number of active resizing threads). Otherwise,
743 * when table is null, holds the initial table size to use upon
744 * creation, or 0 for default. After initialization, holds the
745 * next element count value upon which to resize the table.
746 */
747 private transient volatile int sizeCtl;
748
749 /**
750 * The next table index (plus one) to split while resizing.
751 */
752 private transient volatile int transferIndex;
753
754 /**
755 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
756 */
757 private transient volatile int cellsBusy;
758
759 /**
760 * Table of counter cells. When non-null, size is a power of 2.
761 */
762 private transient volatile CounterCell[] counterCells;
763
764 // views
765 private transient KeySetView<K,V> keySet;
766 private transient ValuesView<K,V> values;
767 private transient EntrySetView<K,V> entrySet;
768
769
770 /* ---------------- Public operations -------------- */
771
772 /**
773 * Creates a new, empty map with the default initial table size (16).
774 */
775 public ConcurrentHashMap() {
776 }
777
778 /**
779 * Creates a new, empty map with an initial table size
780 * accommodating the specified number of elements without the need
781 * to dynamically resize.
782 *
783 * @param initialCapacity The implementation performs internal
784 * sizing to accommodate this many elements.
785 * @throws IllegalArgumentException if the initial capacity of
786 * elements is negative
787 */
788 public ConcurrentHashMap(int initialCapacity) {
789 if (initialCapacity < 0)
790 throw new IllegalArgumentException();
791 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
792 MAXIMUM_CAPACITY :
793 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
794 this.sizeCtl = cap;
795 }
796
797 /**
798 * Creates a new map with the same mappings as the given map.
799 *
800 * @param m the map
801 */
802 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
803 this.sizeCtl = DEFAULT_CAPACITY;
804 putAll(m);
805 }
806
807 /**
808 * Creates a new, empty map with an initial table size based on
809 * the given number of elements ({@code initialCapacity}) and
810 * initial table density ({@code loadFactor}).
811 *
812 * @param initialCapacity the initial capacity. The implementation
813 * performs internal sizing to accommodate this many elements,
814 * given the specified load factor.
815 * @param loadFactor the load factor (table density) for
816 * establishing the initial table size
817 * @throws IllegalArgumentException if the initial capacity of
818 * elements is negative or the load factor is nonpositive
819 *
820 * @since 1.6
821 */
822 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
823 this(initialCapacity, loadFactor, 1);
824 }
825
826 /**
827 * Creates a new, empty map with an initial table size based on
828 * the given number of elements ({@code initialCapacity}), table
829 * density ({@code loadFactor}), and number of concurrently
830 * updating threads ({@code concurrencyLevel}).
831 *
832 * @param initialCapacity the initial capacity. The implementation
833 * performs internal sizing to accommodate this many elements,
834 * given the specified load factor.
835 * @param loadFactor the load factor (table density) for
836 * establishing the initial table size
837 * @param concurrencyLevel the estimated number of concurrently
838 * updating threads. The implementation may use this value as
839 * a sizing hint.
840 * @throws IllegalArgumentException if the initial capacity is
841 * negative or the load factor or concurrencyLevel are
842 * nonpositive
843 */
844 public ConcurrentHashMap(int initialCapacity,
845 float loadFactor, int concurrencyLevel) {
846 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
847 throw new IllegalArgumentException();
848 if (initialCapacity < concurrencyLevel) // Use at least as many bins
849 initialCapacity = concurrencyLevel; // as estimated threads
850 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
851 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
852 MAXIMUM_CAPACITY : tableSizeFor((int)size);
853 this.sizeCtl = cap;
854 }
855
856 // Original (since JDK1.2) Map methods
857
858 /**
859 * {@inheritDoc}
860 */
861 public int size() {
862 long n = sumCount();
863 return ((n < 0L) ? 0 :
864 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
865 (int)n);
866 }
867
868 /**
869 * {@inheritDoc}
870 */
871 public boolean isEmpty() {
872 return sumCount() <= 0L; // ignore transient negative values
873 }
874
875 /**
876 * Returns the value to which the specified key is mapped,
877 * or {@code null} if this map contains no mapping for the key.
878 *
879 * <p>More formally, if this map contains a mapping from a key
880 * {@code k} to a value {@code v} such that {@code key.equals(k)},
881 * then this method returns {@code v}; otherwise it returns
882 * {@code null}. (There can be at most one such mapping.)
883 *
884 * @throws NullPointerException if the specified key is null
885 */
886 public V get(Object key) {
887 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
888 int h = spread(key.hashCode());
889 if ((tab = table) != null && (n = tab.length) > 0 &&
890 (e = tabAt(tab, (n - 1) & h)) != null) {
891 if ((eh = e.hash) == h) {
892 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
893 return e.val;
894 }
895 else if (eh < 0)
896 return (p = e.find(h, key)) != null ? p.val : null;
897 while ((e = e.next) != null) {
898 if (e.hash == h &&
899 ((ek = e.key) == key || (ek != null && key.equals(ek))))
900 return e.val;
901 }
902 }
903 return null;
904 }
905
906 /**
907 * Tests if the specified object is a key in this table.
908 *
909 * @param key possible key
910 * @return {@code true} if and only if the specified object
911 * is a key in this table, as determined by the
912 * {@code equals} method; {@code false} otherwise
913 * @throws NullPointerException if the specified key is null
914 */
915 public boolean containsKey(Object key) {
916 return get(key) != null;
917 }
918
919 /**
920 * Returns {@code true} if this map maps one or more keys to the
921 * specified value. Note: This method may require a full traversal
922 * of the map, and is much slower than method {@code containsKey}.
923 *
924 * @param value value whose presence in this map is to be tested
925 * @return {@code true} if this map maps one or more keys to the
926 * specified value
927 * @throws NullPointerException if the specified value is null
928 */
929 public boolean containsValue(Object value) {
930 if (value == null)
931 throw new NullPointerException();
932 Node<K,V>[] t;
933 if ((t = table) != null) {
934 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
935 for (Node<K,V> p; (p = it.advance()) != null; ) {
936 V v;
937 if ((v = p.val) == value || (v != null && value.equals(v)))
938 return true;
939 }
940 }
941 return false;
942 }
943
944 /**
945 * Maps the specified key to the specified value in this table.
946 * Neither the key nor the value can be null.
947 *
948 * <p>The value can be retrieved by calling the {@code get} method
949 * with a key that is equal to the original key.
950 *
951 * @param key key with which the specified value is to be associated
952 * @param value value to be associated with the specified key
953 * @return the previous value associated with {@code key}, or
954 * {@code null} if there was no mapping for {@code key}
955 * @throws NullPointerException if the specified key or value is null
956 */
957 public V put(K key, V value) {
958 return putVal(key, value, false);
959 }
960
961 /** Implementation for put and putIfAbsent */
962 final V putVal(K key, V value, boolean onlyIfAbsent) {
963 if (key == null || value == null) throw new NullPointerException();
964 int hash = spread(key.hashCode());
965 int binCount = 0;
966 for (Node<K,V>[] tab = table;;) {
967 Node<K,V> f; int n, i, fh;
968 if (tab == null || (n = tab.length) == 0)
969 tab = initTable();
970 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
971 if (casTabAt(tab, i, null,
972 new Node<K,V>(hash, key, value, null)))
973 break; // no lock when adding to empty bin
974 }
975 else if ((fh = f.hash) == MOVED)
976 tab = helpTransfer(tab, f);
977 else {
978 V oldVal = null;
979 synchronized (f) {
980 if (tabAt(tab, i) == f) {
981 if (fh >= 0) {
982 binCount = 1;
983 for (Node<K,V> e = f;; ++binCount) {
984 K ek;
985 if (e.hash == hash &&
986 ((ek = e.key) == key ||
987 (ek != null && key.equals(ek)))) {
988 oldVal = e.val;
989 if (!onlyIfAbsent)
990 e.val = value;
991 break;
992 }
993 Node<K,V> pred = e;
994 if ((e = e.next) == null) {
995 pred.next = new Node<K,V>(hash, key,
996 value, null);
997 break;
998 }
999 }
1000 }
1001 else if (f instanceof TreeBin) {
1002 Node<K,V> p;
1003 binCount = 2;
1004 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1005 value)) != null) {
1006 oldVal = p.val;
1007 if (!onlyIfAbsent)
1008 p.val = value;
1009 }
1010 }
1011 }
1012 }
1013 if (binCount != 0) {
1014 if (binCount >= TREEIFY_THRESHOLD)
1015 treeifyBin(tab, i);
1016 if (oldVal != null)
1017 return oldVal;
1018 break;
1019 }
1020 }
1021 }
1022 addCount(1L, binCount);
1023 return null;
1024 }
1025
1026 /**
1027 * Copies all of the mappings from the specified map to this one.
1028 * These mappings replace any mappings that this map had for any of the
1029 * keys currently in the specified map.
1030 *
1031 * @param m mappings to be stored in this map
1032 */
1033 public void putAll(Map<? extends K, ? extends V> m) {
1034 tryPresize(m.size());
1035 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1036 putVal(e.getKey(), e.getValue(), false);
1037 }
1038
1039 /**
1040 * Removes the key (and its corresponding value) from this map.
1041 * This method does nothing if the key is not in the map.
1042 *
1043 * @param key the key that needs to be removed
1044 * @return the previous value associated with {@code key}, or
1045 * {@code null} if there was no mapping for {@code key}
1046 * @throws NullPointerException if the specified key is null
1047 */
1048 public V remove(Object key) {
1049 return replaceNode(key, null, null);
1050 }
1051
1052 /**
1053 * Implementation for the four public remove/replace methods:
1054 * Replaces node value with v, conditional upon match of cv if
1055 * non-null. If resulting value is null, delete.
1056 */
1057 final V replaceNode(Object key, V value, Object cv) {
1058 int hash = spread(key.hashCode());
1059 for (Node<K,V>[] tab = table;;) {
1060 Node<K,V> f; int n, i, fh;
1061 if (tab == null || (n = tab.length) == 0 ||
1062 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1063 break;
1064 else if ((fh = f.hash) == MOVED)
1065 tab = helpTransfer(tab, f);
1066 else {
1067 V oldVal = null;
1068 boolean validated = false;
1069 synchronized (f) {
1070 if (tabAt(tab, i) == f) {
1071 if (fh >= 0) {
1072 validated = true;
1073 for (Node<K,V> e = f, pred = null;;) {
1074 K ek;
1075 if (e.hash == hash &&
1076 ((ek = e.key) == key ||
1077 (ek != null && key.equals(ek)))) {
1078 V ev = e.val;
1079 if (cv == null || cv == ev ||
1080 (ev != null && cv.equals(ev))) {
1081 oldVal = ev;
1082 if (value != null)
1083 e.val = value;
1084 else if (pred != null)
1085 pred.next = e.next;
1086 else
1087 setTabAt(tab, i, e.next);
1088 }
1089 break;
1090 }
1091 pred = e;
1092 if ((e = e.next) == null)
1093 break;
1094 }
1095 }
1096 else if (f instanceof TreeBin) {
1097 validated = true;
1098 TreeBin<K,V> t = (TreeBin<K,V>)f;
1099 TreeNode<K,V> r, p;
1100 if ((r = t.root) != null &&
1101 (p = r.findTreeNode(hash, key, null)) != null) {
1102 V pv = p.val;
1103 if (cv == null || cv == pv ||
1104 (pv != null && cv.equals(pv))) {
1105 oldVal = pv;
1106 if (value != null)
1107 p.val = value;
1108 else if (t.removeTreeNode(p))
1109 setTabAt(tab, i, untreeify(t.first));
1110 }
1111 }
1112 }
1113 }
1114 }
1115 if (validated) {
1116 if (oldVal != null) {
1117 if (value == null)
1118 addCount(-1L, -1);
1119 return oldVal;
1120 }
1121 break;
1122 }
1123 }
1124 }
1125 return null;
1126 }
1127
1128 /**
1129 * Removes all of the mappings from this map.
1130 */
1131 public void clear() {
1132 long delta = 0L; // negative number of deletions
1133 int i = 0;
1134 Node<K,V>[] tab = table;
1135 while (tab != null && i < tab.length) {
1136 int fh;
1137 Node<K,V> f = tabAt(tab, i);
1138 if (f == null)
1139 ++i;
1140 else if ((fh = f.hash) == MOVED) {
1141 tab = helpTransfer(tab, f);
1142 i = 0; // restart
1143 }
1144 else {
1145 synchronized (f) {
1146 if (tabAt(tab, i) == f) {
1147 Node<K,V> p = (fh >= 0 ? f :
1148 (f instanceof TreeBin) ?
1149 ((TreeBin<K,V>)f).first : null);
1150 while (p != null) {
1151 --delta;
1152 p = p.next;
1153 }
1154 setTabAt(tab, i++, null);
1155 }
1156 }
1157 }
1158 }
1159 if (delta != 0L)
1160 addCount(delta, -1);
1161 }
1162
1163 /**
1164 * Returns a {@link Set} view of the keys contained in this map.
1165 * The set is backed by the map, so changes to the map are
1166 * reflected in the set, and vice-versa. The set supports element
1167 * removal, which removes the corresponding mapping from this map,
1168 * via the {@code Iterator.remove}, {@code Set.remove},
1169 * {@code removeAll}, {@code retainAll}, and {@code clear}
1170 * operations. It does not support the {@code add} or
1171 * {@code addAll} operations.
1172 *
1173 * <p>The view's iterators and spliterators are
1174 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1175 *
1176 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1177 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1178 *
1179 * @return the set view
1180 */
1181 public KeySetView<K,V> keySet() {
1182 KeySetView<K,V> ks;
1183 return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1184 }
1185
1186 /**
1187 * Returns a {@link Collection} view of the values contained in this map.
1188 * The collection is backed by the map, so changes to the map are
1189 * reflected in the collection, and vice-versa. The collection
1190 * supports element removal, which removes the corresponding
1191 * mapping from this map, via the {@code Iterator.remove},
1192 * {@code Collection.remove}, {@code removeAll},
1193 * {@code retainAll}, and {@code clear} operations. It does not
1194 * support the {@code add} or {@code addAll} operations.
1195 *
1196 * <p>The view's iterators and spliterators are
1197 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1198 *
1199 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1200 * and {@link Spliterator#NONNULL}.
1201 *
1202 * @return the collection view
1203 */
1204 public Collection<V> values() {
1205 ValuesView<K,V> vs;
1206 return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1207 }
1208
1209 /**
1210 * Returns a {@link Set} view of the mappings contained in this map.
1211 * The set is backed by the map, so changes to the map are
1212 * reflected in the set, and vice-versa. The set supports element
1213 * removal, which removes the corresponding mapping from the map,
1214 * via the {@code Iterator.remove}, {@code Set.remove},
1215 * {@code removeAll}, {@code retainAll}, and {@code clear}
1216 * operations.
1217 *
1218 * <p>The view's iterators and spliterators are
1219 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1220 *
1221 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1222 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1223 *
1224 * @return the set view
1225 */
1226 public Set<Map.Entry<K,V>> entrySet() {
1227 EntrySetView<K,V> es;
1228 return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1229 }
1230
1231 /**
1232 * Returns the hash code value for this {@link Map}, i.e.,
1233 * the sum of, for each key-value pair in the map,
1234 * {@code key.hashCode() ^ value.hashCode()}.
1235 *
1236 * @return the hash code value for this map
1237 */
1238 public int hashCode() {
1239 int h = 0;
1240 Node<K,V>[] t;
1241 if ((t = table) != null) {
1242 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1243 for (Node<K,V> p; (p = it.advance()) != null; )
1244 h += p.key.hashCode() ^ p.val.hashCode();
1245 }
1246 return h;
1247 }
1248
1249 /**
1250 * Returns a string representation of this map. The string
1251 * representation consists of a list of key-value mappings (in no
1252 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1253 * mappings are separated by the characters {@code ", "} (comma
1254 * and space). Each key-value mapping is rendered as the key
1255 * followed by an equals sign ("{@code =}") followed by the
1256 * associated value.
1257 *
1258 * @return a string representation of this map
1259 */
1260 public String toString() {
1261 Node<K,V>[] t;
1262 int f = (t = table) == null ? 0 : t.length;
1263 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1264 StringBuilder sb = new StringBuilder();
1265 sb.append('{');
1266 Node<K,V> p;
1267 if ((p = it.advance()) != null) {
1268 for (;;) {
1269 K k = p.key;
1270 V v = p.val;
1271 sb.append(k == this ? "(this Map)" : k);
1272 sb.append('=');
1273 sb.append(v == this ? "(this Map)" : v);
1274 if ((p = it.advance()) == null)
1275 break;
1276 sb.append(',').append(' ');
1277 }
1278 }
1279 return sb.append('}').toString();
1280 }
1281
1282 /**
1283 * Compares the specified object with this map for equality.
1284 * Returns {@code true} if the given object is a map with the same
1285 * mappings as this map. This operation may return misleading
1286 * results if either map is concurrently modified during execution
1287 * of this method.
1288 *
1289 * @param o object to be compared for equality with this map
1290 * @return {@code true} if the specified object is equal to this map
1291 */
1292 public boolean equals(Object o) {
1293 if (o != this) {
1294 if (!(o instanceof Map))
1295 return false;
1296 Map<?,?> m = (Map<?,?>) o;
1297 Node<K,V>[] t;
1298 int f = (t = table) == null ? 0 : t.length;
1299 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1300 for (Node<K,V> p; (p = it.advance()) != null; ) {
1301 V val = p.val;
1302 Object v = m.get(p.key);
1303 if (v == null || (v != val && !v.equals(val)))
1304 return false;
1305 }
1306 for (Map.Entry<?,?> e : m.entrySet()) {
1307 Object mk, mv, v;
1308 if ((mk = e.getKey()) == null ||
1309 (mv = e.getValue()) == null ||
1310 (v = get(mk)) == null ||
1311 (mv != v && !mv.equals(v)))
1312 return false;
1313 }
1314 }
1315 return true;
1316 }
1317
1318 /**
1319 * Stripped-down version of helper class used in previous version,
1320 * declared for the sake of serialization compatibility
1321 */
1322 static class Segment<K,V> extends ReentrantLock implements Serializable {
1323 private static final long serialVersionUID = 2249069246763182397L;
1324 final float loadFactor;
1325 Segment(float lf) { this.loadFactor = lf; }
1326 }
1327
1328 /**
1329 * Saves the state of the {@code ConcurrentHashMap} instance to a
1330 * stream (i.e., serializes it).
1331 * @param s the stream
1332 * @throws java.io.IOException if an I/O error occurs
1333 * @serialData
1334 * the key (Object) and value (Object)
1335 * for each key-value mapping, followed by a null pair.
1336 * The key-value mappings are emitted in no particular order.
1337 */
1338 private void writeObject(java.io.ObjectOutputStream s)
1339 throws java.io.IOException {
1340 // For serialization compatibility
1341 // Emulate segment calculation from previous version of this class
1342 int sshift = 0;
1343 int ssize = 1;
1344 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1345 ++sshift;
1346 ssize <<= 1;
1347 }
1348 int segmentShift = 32 - sshift;
1349 int segmentMask = ssize - 1;
1350 @SuppressWarnings("unchecked")
1351 Segment<K,V>[] segments = (Segment<K,V>[])
1352 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1353 for (int i = 0; i < segments.length; ++i)
1354 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1355 s.putFields().put("segments", segments);
1356 s.putFields().put("segmentShift", segmentShift);
1357 s.putFields().put("segmentMask", segmentMask);
1358 s.writeFields();
1359
1360 Node<K,V>[] t;
1361 if ((t = table) != null) {
1362 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1363 for (Node<K,V> p; (p = it.advance()) != null; ) {
1364 s.writeObject(p.key);
1365 s.writeObject(p.val);
1366 }
1367 }
1368 s.writeObject(null);
1369 s.writeObject(null);
1370 segments = null; // throw away
1371 }
1372
1373 /**
1374 * Reconstitutes the instance from a stream (that is, deserializes it).
1375 * @param s the stream
1376 * @throws ClassNotFoundException if the class of a serialized object
1377 * could not be found
1378 * @throws java.io.IOException if an I/O error occurs
1379 */
1380 private void readObject(java.io.ObjectInputStream s)
1381 throws java.io.IOException, ClassNotFoundException {
1382 /*
1383 * To improve performance in typical cases, we create nodes
1384 * while reading, then place in table once size is known.
1385 * However, we must also validate uniqueness and deal with
1386 * overpopulated bins while doing so, which requires
1387 * specialized versions of putVal mechanics.
1388 */
1389 sizeCtl = -1; // force exclusion for table construction
1390 s.defaultReadObject();
1391 long size = 0L;
1392 Node<K,V> p = null;
1393 for (;;) {
1394 @SuppressWarnings("unchecked")
1395 K k = (K) s.readObject();
1396 @SuppressWarnings("unchecked")
1397 V v = (V) s.readObject();
1398 if (k != null && v != null) {
1399 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1400 ++size;
1401 }
1402 else
1403 break;
1404 }
1405 if (size == 0L)
1406 sizeCtl = 0;
1407 else {
1408 int n;
1409 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1410 n = MAXIMUM_CAPACITY;
1411 else {
1412 int sz = (int)size;
1413 n = tableSizeFor(sz + (sz >>> 1) + 1);
1414 }
1415 @SuppressWarnings("unchecked")
1416 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1417 int mask = n - 1;
1418 long added = 0L;
1419 while (p != null) {
1420 boolean insertAtFront;
1421 Node<K,V> next = p.next, first;
1422 int h = p.hash, j = h & mask;
1423 if ((first = tabAt(tab, j)) == null)
1424 insertAtFront = true;
1425 else {
1426 K k = p.key;
1427 if (first.hash < 0) {
1428 TreeBin<K,V> t = (TreeBin<K,V>)first;
1429 if (t.putTreeVal(h, k, p.val) == null)
1430 ++added;
1431 insertAtFront = false;
1432 }
1433 else {
1434 int binCount = 0;
1435 insertAtFront = true;
1436 Node<K,V> q; K qk;
1437 for (q = first; q != null; q = q.next) {
1438 if (q.hash == h &&
1439 ((qk = q.key) == k ||
1440 (qk != null && k.equals(qk)))) {
1441 insertAtFront = false;
1442 break;
1443 }
1444 ++binCount;
1445 }
1446 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1447 insertAtFront = false;
1448 ++added;
1449 p.next = first;
1450 TreeNode<K,V> hd = null, tl = null;
1451 for (q = p; q != null; q = q.next) {
1452 TreeNode<K,V> t = new TreeNode<K,V>
1453 (q.hash, q.key, q.val, null, null);
1454 if ((t.prev = tl) == null)
1455 hd = t;
1456 else
1457 tl.next = t;
1458 tl = t;
1459 }
1460 setTabAt(tab, j, new TreeBin<K,V>(hd));
1461 }
1462 }
1463 }
1464 if (insertAtFront) {
1465 ++added;
1466 p.next = first;
1467 setTabAt(tab, j, p);
1468 }
1469 p = next;
1470 }
1471 table = tab;
1472 sizeCtl = n - (n >>> 2);
1473 baseCount = added;
1474 }
1475 }
1476
1477 // ConcurrentMap methods
1478
1479 /**
1480 * {@inheritDoc}
1481 *
1482 * @return the previous value associated with the specified key,
1483 * or {@code null} if there was no mapping for the key
1484 * @throws NullPointerException if the specified key or value is null
1485 */
1486 public V putIfAbsent(K key, V value) {
1487 return putVal(key, value, true);
1488 }
1489
1490 /**
1491 * {@inheritDoc}
1492 *
1493 * @throws NullPointerException if the specified key is null
1494 */
1495 public boolean remove(Object key, Object value) {
1496 if (key == null)
1497 throw new NullPointerException();
1498 return value != null && replaceNode(key, null, value) != null;
1499 }
1500
1501 /**
1502 * {@inheritDoc}
1503 *
1504 * @throws NullPointerException if any of the arguments are null
1505 */
1506 public boolean replace(K key, V oldValue, V newValue) {
1507 if (key == null || oldValue == null || newValue == null)
1508 throw new NullPointerException();
1509 return replaceNode(key, newValue, oldValue) != null;
1510 }
1511
1512 /**
1513 * {@inheritDoc}
1514 *
1515 * @return the previous value associated with the specified key,
1516 * or {@code null} if there was no mapping for the key
1517 * @throws NullPointerException if the specified key or value is null
1518 */
1519 public V replace(K key, V value) {
1520 if (key == null || value == null)
1521 throw new NullPointerException();
1522 return replaceNode(key, value, null);
1523 }
1524
1525 // Overrides of JDK8+ Map extension method defaults
1526
1527 /**
1528 * Returns the value to which the specified key is mapped, or the
1529 * given default value if this map contains no mapping for the
1530 * key.
1531 *
1532 * @param key the key whose associated value is to be returned
1533 * @param defaultValue the value to return if this map contains
1534 * no mapping for the given key
1535 * @return the mapping for the key, if present; else the default value
1536 * @throws NullPointerException if the specified key is null
1537 */
1538 public V getOrDefault(Object key, V defaultValue) {
1539 V v;
1540 return (v = get(key)) == null ? defaultValue : v;
1541 }
1542
1543 public void forEach(BiConsumer<? super K, ? super V> action) {
1544 if (action == null) throw new NullPointerException();
1545 Node<K,V>[] t;
1546 if ((t = table) != null) {
1547 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1548 for (Node<K,V> p; (p = it.advance()) != null; ) {
1549 action.accept(p.key, p.val);
1550 }
1551 }
1552 }
1553
1554 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1555 if (function == null) throw new NullPointerException();
1556 Node<K,V>[] t;
1557 if ((t = table) != null) {
1558 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1559 for (Node<K,V> p; (p = it.advance()) != null; ) {
1560 V oldValue = p.val;
1561 for (K key = p.key;;) {
1562 V newValue = function.apply(key, oldValue);
1563 if (newValue == null)
1564 throw new NullPointerException();
1565 if (replaceNode(key, newValue, oldValue) != null ||
1566 (oldValue = get(key)) == null)
1567 break;
1568 }
1569 }
1570 }
1571 }
1572
1573 /**
1574 * If the specified key is not already associated with a value,
1575 * attempts to compute its value using the given mapping function
1576 * and enters it into this map unless {@code null}. The entire
1577 * method invocation is performed atomically, so the function is
1578 * applied at most once per key. Some attempted update operations
1579 * on this map by other threads may be blocked while computation
1580 * is in progress, so the computation should be short and simple,
1581 * and must not attempt to update any other mappings of this map.
1582 *
1583 * @param key key with which the specified value is to be associated
1584 * @param mappingFunction the function to compute a value
1585 * @return the current (existing or computed) value associated with
1586 * the specified key, or null if the computed value is null
1587 * @throws NullPointerException if the specified key or mappingFunction
1588 * is null
1589 * @throws IllegalStateException if the computation detectably
1590 * attempts a recursive update to this map that would
1591 * otherwise never complete
1592 * @throws RuntimeException or Error if the mappingFunction does so,
1593 * in which case the mapping is left unestablished
1594 */
1595 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1596 if (key == null || mappingFunction == null)
1597 throw new NullPointerException();
1598 int h = spread(key.hashCode());
1599 V val = null;
1600 int binCount = 0;
1601 for (Node<K,V>[] tab = table;;) {
1602 Node<K,V> f; int n, i, fh;
1603 if (tab == null || (n = tab.length) == 0)
1604 tab = initTable();
1605 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1606 Node<K,V> r = new ReservationNode<K,V>();
1607 synchronized (r) {
1608 if (casTabAt(tab, i, null, r)) {
1609 binCount = 1;
1610 Node<K,V> node = null;
1611 try {
1612 if ((val = mappingFunction.apply(key)) != null)
1613 node = new Node<K,V>(h, key, val, null);
1614 } finally {
1615 setTabAt(tab, i, node);
1616 }
1617 }
1618 }
1619 if (binCount != 0)
1620 break;
1621 }
1622 else if ((fh = f.hash) == MOVED)
1623 tab = helpTransfer(tab, f);
1624 else {
1625 boolean added = false;
1626 synchronized (f) {
1627 if (tabAt(tab, i) == f) {
1628 if (fh >= 0) {
1629 binCount = 1;
1630 for (Node<K,V> e = f;; ++binCount) {
1631 K ek; V ev;
1632 if (e.hash == h &&
1633 ((ek = e.key) == key ||
1634 (ek != null && key.equals(ek)))) {
1635 val = e.val;
1636 break;
1637 }
1638 Node<K,V> pred = e;
1639 if ((e = e.next) == null) {
1640 if ((val = mappingFunction.apply(key)) != null) {
1641 added = true;
1642 pred.next = new Node<K,V>(h, key, val, null);
1643 }
1644 break;
1645 }
1646 }
1647 }
1648 else if (f instanceof TreeBin) {
1649 binCount = 2;
1650 TreeBin<K,V> t = (TreeBin<K,V>)f;
1651 TreeNode<K,V> r, p;
1652 if ((r = t.root) != null &&
1653 (p = r.findTreeNode(h, key, null)) != null)
1654 val = p.val;
1655 else if ((val = mappingFunction.apply(key)) != null) {
1656 added = true;
1657 t.putTreeVal(h, key, val);
1658 }
1659 }
1660 }
1661 }
1662 if (binCount != 0) {
1663 if (binCount >= TREEIFY_THRESHOLD)
1664 treeifyBin(tab, i);
1665 if (!added)
1666 return val;
1667 break;
1668 }
1669 }
1670 }
1671 if (val != null)
1672 addCount(1L, binCount);
1673 return val;
1674 }
1675
1676 /**
1677 * If the value for the specified key is present, attempts to
1678 * compute a new mapping given the key and its current mapped
1679 * value. The entire method invocation is performed atomically.
1680 * Some attempted update operations on this map by other threads
1681 * may be blocked while computation is in progress, so the
1682 * computation should be short and simple, and must not attempt to
1683 * update any other mappings of this map.
1684 *
1685 * @param key key with which a value may be associated
1686 * @param remappingFunction the function to compute a value
1687 * @return the new value associated with the specified key, or null if none
1688 * @throws NullPointerException if the specified key or remappingFunction
1689 * is null
1690 * @throws IllegalStateException if the computation detectably
1691 * attempts a recursive update to this map that would
1692 * otherwise never complete
1693 * @throws RuntimeException or Error if the remappingFunction does so,
1694 * in which case the mapping is unchanged
1695 */
1696 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1697 if (key == null || remappingFunction == null)
1698 throw new NullPointerException();
1699 int h = spread(key.hashCode());
1700 V val = null;
1701 int delta = 0;
1702 int binCount = 0;
1703 for (Node<K,V>[] tab = table;;) {
1704 Node<K,V> f; int n, i, fh;
1705 if (tab == null || (n = tab.length) == 0)
1706 tab = initTable();
1707 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1708 break;
1709 else if ((fh = f.hash) == MOVED)
1710 tab = helpTransfer(tab, f);
1711 else {
1712 synchronized (f) {
1713 if (tabAt(tab, i) == f) {
1714 if (fh >= 0) {
1715 binCount = 1;
1716 for (Node<K,V> e = f, pred = null;; ++binCount) {
1717 K ek;
1718 if (e.hash == h &&
1719 ((ek = e.key) == key ||
1720 (ek != null && key.equals(ek)))) {
1721 val = remappingFunction.apply(key, e.val);
1722 if (val != null)
1723 e.val = val;
1724 else {
1725 delta = -1;
1726 Node<K,V> en = e.next;
1727 if (pred != null)
1728 pred.next = en;
1729 else
1730 setTabAt(tab, i, en);
1731 }
1732 break;
1733 }
1734 pred = e;
1735 if ((e = e.next) == null)
1736 break;
1737 }
1738 }
1739 else if (f instanceof TreeBin) {
1740 binCount = 2;
1741 TreeBin<K,V> t = (TreeBin<K,V>)f;
1742 TreeNode<K,V> r, p;
1743 if ((r = t.root) != null &&
1744 (p = r.findTreeNode(h, key, null)) != null) {
1745 val = remappingFunction.apply(key, p.val);
1746 if (val != null)
1747 p.val = val;
1748 else {
1749 delta = -1;
1750 if (t.removeTreeNode(p))
1751 setTabAt(tab, i, untreeify(t.first));
1752 }
1753 }
1754 }
1755 }
1756 }
1757 if (binCount != 0)
1758 break;
1759 }
1760 }
1761 if (delta != 0)
1762 addCount((long)delta, binCount);
1763 return val;
1764 }
1765
1766 /**
1767 * Attempts to compute a mapping for the specified key and its
1768 * current mapped value (or {@code null} if there is no current
1769 * mapping). The entire method invocation is performed atomically.
1770 * Some attempted update operations on this map by other threads
1771 * may be blocked while computation is in progress, so the
1772 * computation should be short and simple, and must not attempt to
1773 * update any other mappings of this Map.
1774 *
1775 * @param key key with which the specified value is to be associated
1776 * @param remappingFunction the function to compute a value
1777 * @return the new value associated with the specified key, or null if none
1778 * @throws NullPointerException if the specified key or remappingFunction
1779 * is null
1780 * @throws IllegalStateException if the computation detectably
1781 * attempts a recursive update to this map that would
1782 * otherwise never complete
1783 * @throws RuntimeException or Error if the remappingFunction does so,
1784 * in which case the mapping is unchanged
1785 */
1786 public V compute(K key,
1787 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1788 if (key == null || remappingFunction == null)
1789 throw new NullPointerException();
1790 int h = spread(key.hashCode());
1791 V val = null;
1792 int delta = 0;
1793 int binCount = 0;
1794 for (Node<K,V>[] tab = table;;) {
1795 Node<K,V> f; int n, i, fh;
1796 if (tab == null || (n = tab.length) == 0)
1797 tab = initTable();
1798 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1799 Node<K,V> r = new ReservationNode<K,V>();
1800 synchronized (r) {
1801 if (casTabAt(tab, i, null, r)) {
1802 binCount = 1;
1803 Node<K,V> node = null;
1804 try {
1805 if ((val = remappingFunction.apply(key, null)) != null) {
1806 delta = 1;
1807 node = new Node<K,V>(h, key, val, null);
1808 }
1809 } finally {
1810 setTabAt(tab, i, node);
1811 }
1812 }
1813 }
1814 if (binCount != 0)
1815 break;
1816 }
1817 else if ((fh = f.hash) == MOVED)
1818 tab = helpTransfer(tab, f);
1819 else {
1820 synchronized (f) {
1821 if (tabAt(tab, i) == f) {
1822 if (fh >= 0) {
1823 binCount = 1;
1824 for (Node<K,V> e = f, pred = null;; ++binCount) {
1825 K ek;
1826 if (e.hash == h &&
1827 ((ek = e.key) == key ||
1828 (ek != null && key.equals(ek)))) {
1829 val = remappingFunction.apply(key, e.val);
1830 if (val != null)
1831 e.val = val;
1832 else {
1833 delta = -1;
1834 Node<K,V> en = e.next;
1835 if (pred != null)
1836 pred.next = en;
1837 else
1838 setTabAt(tab, i, en);
1839 }
1840 break;
1841 }
1842 pred = e;
1843 if ((e = e.next) == null) {
1844 val = remappingFunction.apply(key, null);
1845 if (val != null) {
1846 delta = 1;
1847 pred.next =
1848 new Node<K,V>(h, key, val, null);
1849 }
1850 break;
1851 }
1852 }
1853 }
1854 else if (f instanceof TreeBin) {
1855 binCount = 1;
1856 TreeBin<K,V> t = (TreeBin<K,V>)f;
1857 TreeNode<K,V> r, p;
1858 if ((r = t.root) != null)
1859 p = r.findTreeNode(h, key, null);
1860 else
1861 p = null;
1862 V pv = (p == null) ? null : p.val;
1863 val = remappingFunction.apply(key, pv);
1864 if (val != null) {
1865 if (p != null)
1866 p.val = val;
1867 else {
1868 delta = 1;
1869 t.putTreeVal(h, key, val);
1870 }
1871 }
1872 else if (p != null) {
1873 delta = -1;
1874 if (t.removeTreeNode(p))
1875 setTabAt(tab, i, untreeify(t.first));
1876 }
1877 }
1878 }
1879 }
1880 if (binCount != 0) {
1881 if (binCount >= TREEIFY_THRESHOLD)
1882 treeifyBin(tab, i);
1883 break;
1884 }
1885 }
1886 }
1887 if (delta != 0)
1888 addCount((long)delta, binCount);
1889 return val;
1890 }
1891
1892 /**
1893 * If the specified key is not already associated with a
1894 * (non-null) value, associates it with the given value.
1895 * Otherwise, replaces the value with the results of the given
1896 * remapping function, or removes if {@code null}. The entire
1897 * method invocation is performed atomically. Some attempted
1898 * update operations on this map by other threads may be blocked
1899 * while computation is in progress, so the computation should be
1900 * short and simple, and must not attempt to update any other
1901 * mappings of this Map.
1902 *
1903 * @param key key with which the specified value is to be associated
1904 * @param value the value to use if absent
1905 * @param remappingFunction the function to recompute a value if present
1906 * @return the new value associated with the specified key, or null if none
1907 * @throws NullPointerException if the specified key or the
1908 * remappingFunction is null
1909 * @throws RuntimeException or Error if the remappingFunction does so,
1910 * in which case the mapping is unchanged
1911 */
1912 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1913 if (key == null || value == null || remappingFunction == null)
1914 throw new NullPointerException();
1915 int h = spread(key.hashCode());
1916 V val = null;
1917 int delta = 0;
1918 int binCount = 0;
1919 for (Node<K,V>[] tab = table;;) {
1920 Node<K,V> f; int n, i, fh;
1921 if (tab == null || (n = tab.length) == 0)
1922 tab = initTable();
1923 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1924 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1925 delta = 1;
1926 val = value;
1927 break;
1928 }
1929 }
1930 else if ((fh = f.hash) == MOVED)
1931 tab = helpTransfer(tab, f);
1932 else {
1933 synchronized (f) {
1934 if (tabAt(tab, i) == f) {
1935 if (fh >= 0) {
1936 binCount = 1;
1937 for (Node<K,V> e = f, pred = null;; ++binCount) {
1938 K ek;
1939 if (e.hash == h &&
1940 ((ek = e.key) == key ||
1941 (ek != null && key.equals(ek)))) {
1942 val = remappingFunction.apply(e.val, value);
1943 if (val != null)
1944 e.val = val;
1945 else {
1946 delta = -1;
1947 Node<K,V> en = e.next;
1948 if (pred != null)
1949 pred.next = en;
1950 else
1951 setTabAt(tab, i, en);
1952 }
1953 break;
1954 }
1955 pred = e;
1956 if ((e = e.next) == null) {
1957 delta = 1;
1958 val = value;
1959 pred.next =
1960 new Node<K,V>(h, key, val, null);
1961 break;
1962 }
1963 }
1964 }
1965 else if (f instanceof TreeBin) {
1966 binCount = 2;
1967 TreeBin<K,V> t = (TreeBin<K,V>)f;
1968 TreeNode<K,V> r = t.root;
1969 TreeNode<K,V> p = (r == null) ? null :
1970 r.findTreeNode(h, key, null);
1971 val = (p == null) ? value :
1972 remappingFunction.apply(p.val, value);
1973 if (val != null) {
1974 if (p != null)
1975 p.val = val;
1976 else {
1977 delta = 1;
1978 t.putTreeVal(h, key, val);
1979 }
1980 }
1981 else if (p != null) {
1982 delta = -1;
1983 if (t.removeTreeNode(p))
1984 setTabAt(tab, i, untreeify(t.first));
1985 }
1986 }
1987 }
1988 }
1989 if (binCount != 0) {
1990 if (binCount >= TREEIFY_THRESHOLD)
1991 treeifyBin(tab, i);
1992 break;
1993 }
1994 }
1995 }
1996 if (delta != 0)
1997 addCount((long)delta, binCount);
1998 return val;
1999 }
2000
2001 // Hashtable legacy methods
2002
2003 /**
2004 * Legacy method testing if some key maps into the specified value
2005 * in this table.
2006 *
2007 * @deprecated This method is identical in functionality to
2008 * {@link #containsValue(Object)}, and exists solely to ensure
2009 * full compatibility with class {@link java.util.Hashtable},
2010 * which supported this method prior to introduction of the
2011 * Java Collections framework.
2012 *
2013 * @param value a value to search for
2014 * @return {@code true} if and only if some key maps to the
2015 * {@code value} argument in this table as
2016 * determined by the {@code equals} method;
2017 * {@code false} otherwise
2018 * @throws NullPointerException if the specified value is null
2019 */
2020 @Deprecated
2021 public boolean contains(Object value) {
2022 return containsValue(value);
2023 }
2024
2025 /**
2026 * Returns an enumeration of the keys in this table.
2027 *
2028 * @return an enumeration of the keys in this table
2029 * @see #keySet()
2030 */
2031 public Enumeration<K> keys() {
2032 Node<K,V>[] t;
2033 int f = (t = table) == null ? 0 : t.length;
2034 return new KeyIterator<K,V>(t, f, 0, f, this);
2035 }
2036
2037 /**
2038 * Returns an enumeration of the values in this table.
2039 *
2040 * @return an enumeration of the values in this table
2041 * @see #values()
2042 */
2043 public Enumeration<V> elements() {
2044 Node<K,V>[] t;
2045 int f = (t = table) == null ? 0 : t.length;
2046 return new ValueIterator<K,V>(t, f, 0, f, this);
2047 }
2048
2049 // ConcurrentHashMap-only methods
2050
2051 /**
2052 * Returns the number of mappings. This method should be used
2053 * instead of {@link #size} because a ConcurrentHashMap may
2054 * contain more mappings than can be represented as an int. The
2055 * value returned is an estimate; the actual count may differ if
2056 * there are concurrent insertions or removals.
2057 *
2058 * @return the number of mappings
2059 * @since 1.8
2060 */
2061 public long mappingCount() {
2062 long n = sumCount();
2063 return (n < 0L) ? 0L : n; // ignore transient negative values
2064 }
2065
2066 /**
2067 * Creates a new {@link Set} backed by a ConcurrentHashMap
2068 * from the given type to {@code Boolean.TRUE}.
2069 *
2070 * @param <K> the element type of the returned set
2071 * @return the new set
2072 * @since 1.8
2073 */
2074 public static <K> KeySetView<K,Boolean> newKeySet() {
2075 return new KeySetView<K,Boolean>
2076 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2077 }
2078
2079 /**
2080 * Creates a new {@link Set} backed by a ConcurrentHashMap
2081 * from the given type to {@code Boolean.TRUE}.
2082 *
2083 * @param initialCapacity The implementation performs internal
2084 * sizing to accommodate this many elements.
2085 * @param <K> the element type of the returned set
2086 * @return the new set
2087 * @throws IllegalArgumentException if the initial capacity of
2088 * elements is negative
2089 * @since 1.8
2090 */
2091 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2092 return new KeySetView<K,Boolean>
2093 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2094 }
2095
2096 /**
2097 * Returns a {@link Set} view of the keys in this map, using the
2098 * given common mapped value for any additions (i.e., {@link
2099 * Collection#add} and {@link Collection#addAll(Collection)}).
2100 * This is of course only appropriate if it is acceptable to use
2101 * the same value for all additions from this view.
2102 *
2103 * @param mappedValue the mapped value to use for any additions
2104 * @return the set view
2105 * @throws NullPointerException if the mappedValue is null
2106 */
2107 public KeySetView<K,V> keySet(V mappedValue) {
2108 if (mappedValue == null)
2109 throw new NullPointerException();
2110 return new KeySetView<K,V>(this, mappedValue);
2111 }
2112
2113 /* ---------------- Special Nodes -------------- */
2114
2115 /**
2116 * A node inserted at head of bins during transfer operations.
2117 */
2118 static final class ForwardingNode<K,V> extends Node<K,V> {
2119 final Node<K,V>[] nextTable;
2120 ForwardingNode(Node<K,V>[] tab) {
2121 super(MOVED, null, null, null);
2122 this.nextTable = tab;
2123 }
2124
2125 Node<K,V> find(int h, Object k) {
2126 // loop to avoid arbitrarily deep recursion on forwarding nodes
2127 outer: for (Node<K,V>[] tab = nextTable;;) {
2128 Node<K,V> e; int n;
2129 if (k == null || tab == null || (n = tab.length) == 0 ||
2130 (e = tabAt(tab, (n - 1) & h)) == null)
2131 return null;
2132 for (;;) {
2133 int eh; K ek;
2134 if ((eh = e.hash) == h &&
2135 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2136 return e;
2137 if (eh < 0) {
2138 if (e instanceof ForwardingNode) {
2139 tab = ((ForwardingNode<K,V>)e).nextTable;
2140 continue outer;
2141 }
2142 else
2143 return e.find(h, k);
2144 }
2145 if ((e = e.next) == null)
2146 return null;
2147 }
2148 }
2149 }
2150 }
2151
2152 /**
2153 * A place-holder node used in computeIfAbsent and compute
2154 */
2155 static final class ReservationNode<K,V> extends Node<K,V> {
2156 ReservationNode() {
2157 super(RESERVED, null, null, null);
2158 }
2159
2160 Node<K,V> find(int h, Object k) {
2161 return null;
2162 }
2163 }
2164
2165 /* ---------------- Table Initialization and Resizing -------------- */
2166
2167 /**
2168 * Initializes table, using the size recorded in sizeCtl.
2169 */
2170 private final Node<K,V>[] initTable() {
2171 Node<K,V>[] tab; int sc;
2172 while ((tab = table) == null || tab.length == 0) {
2173 if ((sc = sizeCtl) < 0)
2174 Thread.yield(); // lost initialization race; just spin
2175 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2176 try {
2177 if ((tab = table) == null || tab.length == 0) {
2178 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2179 @SuppressWarnings("unchecked")
2180 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2181 table = tab = nt;
2182 sc = n - (n >>> 2);
2183 }
2184 } finally {
2185 sizeCtl = sc;
2186 }
2187 break;
2188 }
2189 }
2190 return tab;
2191 }
2192
2193 /**
2194 * Adds to count, and if table is too small and not already
2195 * resizing, initiates transfer. If already resizing, helps
2196 * perform transfer if work is available. Rechecks occupancy
2197 * after a transfer to see if another resize is already needed
2198 * because resizings are lagging additions.
2199 *
2200 * @param x the count to add
2201 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2202 */
2203 private final void addCount(long x, int check) {
2204 CounterCell[] as; long b, s;
2205 if ((as = counterCells) != null ||
2206 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2207 CounterCell a; long v; int m;
2208 boolean uncontended = true;
2209 if (as == null || (m = as.length - 1) < 0 ||
2210 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2211 !(uncontended =
2212 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2213 fullAddCount(x, uncontended);
2214 return;
2215 }
2216 if (check <= 1)
2217 return;
2218 s = sumCount();
2219 }
2220 if (check >= 0) {
2221 Node<K,V>[] tab, nt; int sc;
2222 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2223 tab.length < MAXIMUM_CAPACITY) {
2224 if (sc < 0) {
2225 if (sc == -1 || transferIndex <= 0 ||
2226 (nt = nextTable) == null)
2227 break;
2228 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2229 transfer(tab, nt);
2230 }
2231 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2232 transfer(tab, null);
2233 s = sumCount();
2234 }
2235 }
2236 }
2237
2238 /**
2239 * Helps transfer if a resize is in progress.
2240 */
2241 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2242 Node<K,V>[] nextTab; int sc;
2243 if ((f instanceof ForwardingNode) &&
2244 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2245 while (transferIndex > 0 && nextTab == nextTable &&
2246 (sc = sizeCtl) < -1) {
2247 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1)) {
2248 transfer(tab, nextTab);
2249 break;
2250 }
2251 }
2252 return nextTab;
2253 }
2254 return table;
2255 }
2256
2257 /**
2258 * Tries to presize table to accommodate the given number of elements.
2259 *
2260 * @param size number of elements (doesn't need to be perfectly accurate)
2261 */
2262 private final void tryPresize(int size) {
2263 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2264 tableSizeFor(size + (size >>> 1) + 1);
2265 int sc;
2266 while ((sc = sizeCtl) >= 0) {
2267 Node<K,V>[] tab = table; int n;
2268 if (tab == null || (n = tab.length) == 0) {
2269 n = (sc > c) ? sc : c;
2270 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2271 try {
2272 if (table == tab) {
2273 @SuppressWarnings("unchecked")
2274 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2275 table = nt;
2276 sc = n - (n >>> 2);
2277 }
2278 } finally {
2279 sizeCtl = sc;
2280 }
2281 }
2282 }
2283 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2284 break;
2285 else if (tab == table &&
2286 U.compareAndSwapInt(this, SIZECTL, sc, -2))
2287 transfer(tab, null);
2288 }
2289 }
2290
2291 /**
2292 * Moves and/or copies the nodes in each bin to new table. See
2293 * above for explanation.
2294 */
2295 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2296 int n = tab.length, stride;
2297 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2298 stride = MIN_TRANSFER_STRIDE; // subdivide range
2299 if (nextTab == null) { // initiating
2300 try {
2301 @SuppressWarnings("unchecked")
2302 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2303 nextTab = nt;
2304 } catch (Throwable ex) { // try to cope with OOME
2305 sizeCtl = Integer.MAX_VALUE;
2306 return;
2307 }
2308 nextTable = nextTab;
2309 transferIndex = n;
2310 }
2311 int nextn = nextTab.length;
2312 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2313 boolean advance = true;
2314 boolean finishing = false; // to ensure sweep before committing nextTab
2315 for (int i = 0, bound = 0;;) {
2316 Node<K,V> f; int fh;
2317 while (advance) {
2318 int nextIndex, nextBound;
2319 if (--i >= bound || finishing)
2320 advance = false;
2321 else if ((nextIndex = transferIndex) <= 0) {
2322 i = -1;
2323 advance = false;
2324 }
2325 else if (U.compareAndSwapInt
2326 (this, TRANSFERINDEX, nextIndex,
2327 nextBound = (nextIndex > stride ?
2328 nextIndex - stride : 0))) {
2329 bound = nextBound;
2330 i = nextIndex - 1;
2331 advance = false;
2332 }
2333 }
2334 if (i < 0 || i >= n || i + n >= nextn) {
2335 int sc;
2336 if (finishing) {
2337 nextTable = null;
2338 table = nextTab;
2339 sizeCtl = (n << 1) - (n >>> 1);
2340 return;
2341 }
2342 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2343 if (sc != -1)
2344 return;
2345 finishing = advance = true;
2346 i = n; // recheck before commit
2347 }
2348 }
2349 else if ((f = tabAt(tab, i)) == null)
2350 advance = casTabAt(tab, i, null, fwd);
2351 else if ((fh = f.hash) == MOVED)
2352 advance = true; // already processed
2353 else {
2354 synchronized (f) {
2355 if (tabAt(tab, i) == f) {
2356 Node<K,V> ln, hn;
2357 if (fh >= 0) {
2358 int runBit = fh & n;
2359 Node<K,V> lastRun = f;
2360 for (Node<K,V> p = f.next; p != null; p = p.next) {
2361 int b = p.hash & n;
2362 if (b != runBit) {
2363 runBit = b;
2364 lastRun = p;
2365 }
2366 }
2367 if (runBit == 0) {
2368 ln = lastRun;
2369 hn = null;
2370 }
2371 else {
2372 hn = lastRun;
2373 ln = null;
2374 }
2375 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2376 int ph = p.hash; K pk = p.key; V pv = p.val;
2377 if ((ph & n) == 0)
2378 ln = new Node<K,V>(ph, pk, pv, ln);
2379 else
2380 hn = new Node<K,V>(ph, pk, pv, hn);
2381 }
2382 setTabAt(nextTab, i, ln);
2383 setTabAt(nextTab, i + n, hn);
2384 setTabAt(tab, i, fwd);
2385 advance = true;
2386 }
2387 else if (f instanceof TreeBin) {
2388 TreeBin<K,V> t = (TreeBin<K,V>)f;
2389 TreeNode<K,V> lo = null, loTail = null;
2390 TreeNode<K,V> hi = null, hiTail = null;
2391 int lc = 0, hc = 0;
2392 for (Node<K,V> e = t.first; e != null; e = e.next) {
2393 int h = e.hash;
2394 TreeNode<K,V> p = new TreeNode<K,V>
2395 (h, e.key, e.val, null, null);
2396 if ((h & n) == 0) {
2397 if ((p.prev = loTail) == null)
2398 lo = p;
2399 else
2400 loTail.next = p;
2401 loTail = p;
2402 ++lc;
2403 }
2404 else {
2405 if ((p.prev = hiTail) == null)
2406 hi = p;
2407 else
2408 hiTail.next = p;
2409 hiTail = p;
2410 ++hc;
2411 }
2412 }
2413 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2414 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2415 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2416 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2417 setTabAt(nextTab, i, ln);
2418 setTabAt(nextTab, i + n, hn);
2419 setTabAt(tab, i, fwd);
2420 advance = true;
2421 }
2422 }
2423 }
2424 }
2425 }
2426 }
2427
2428 /* ---------------- Counter support -------------- */
2429
2430 /**
2431 * A padded cell for distributing counts. Adapted from LongAdder
2432 * and Striped64. See their internal docs for explanation.
2433 */
2434 @sun.misc.Contended static final class CounterCell {
2435 volatile long value;
2436 CounterCell(long x) { value = x; }
2437 }
2438
2439 final long sumCount() {
2440 CounterCell[] as = counterCells; CounterCell a;
2441 long sum = baseCount;
2442 if (as != null) {
2443 for (int i = 0; i < as.length; ++i) {
2444 if ((a = as[i]) != null)
2445 sum += a.value;
2446 }
2447 }
2448 return sum;
2449 }
2450
2451 // See LongAdder version for explanation
2452 private final void fullAddCount(long x, boolean wasUncontended) {
2453 int h;
2454 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2455 ThreadLocalRandom.localInit(); // force initialization
2456 h = ThreadLocalRandom.getProbe();
2457 wasUncontended = true;
2458 }
2459 boolean collide = false; // True if last slot nonempty
2460 for (;;) {
2461 CounterCell[] as; CounterCell a; int n; long v;
2462 if ((as = counterCells) != null && (n = as.length) > 0) {
2463 if ((a = as[(n - 1) & h]) == null) {
2464 if (cellsBusy == 0) { // Try to attach new Cell
2465 CounterCell r = new CounterCell(x); // Optimistic create
2466 if (cellsBusy == 0 &&
2467 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2468 boolean created = false;
2469 try { // Recheck under lock
2470 CounterCell[] rs; int m, j;
2471 if ((rs = counterCells) != null &&
2472 (m = rs.length) > 0 &&
2473 rs[j = (m - 1) & h] == null) {
2474 rs[j] = r;
2475 created = true;
2476 }
2477 } finally {
2478 cellsBusy = 0;
2479 }
2480 if (created)
2481 break;
2482 continue; // Slot is now non-empty
2483 }
2484 }
2485 collide = false;
2486 }
2487 else if (!wasUncontended) // CAS already known to fail
2488 wasUncontended = true; // Continue after rehash
2489 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2490 break;
2491 else if (counterCells != as || n >= NCPU)
2492 collide = false; // At max size or stale
2493 else if (!collide)
2494 collide = true;
2495 else if (cellsBusy == 0 &&
2496 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2497 try {
2498 if (counterCells == as) {// Expand table unless stale
2499 CounterCell[] rs = new CounterCell[n << 1];
2500 for (int i = 0; i < n; ++i)
2501 rs[i] = as[i];
2502 counterCells = rs;
2503 }
2504 } finally {
2505 cellsBusy = 0;
2506 }
2507 collide = false;
2508 continue; // Retry with expanded table
2509 }
2510 h = ThreadLocalRandom.advanceProbe(h);
2511 }
2512 else if (cellsBusy == 0 && counterCells == as &&
2513 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2514 boolean init = false;
2515 try { // Initialize table
2516 if (counterCells == as) {
2517 CounterCell[] rs = new CounterCell[2];
2518 rs[h & 1] = new CounterCell(x);
2519 counterCells = rs;
2520 init = true;
2521 }
2522 } finally {
2523 cellsBusy = 0;
2524 }
2525 if (init)
2526 break;
2527 }
2528 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2529 break; // Fall back on using base
2530 }
2531 }
2532
2533 /* ---------------- Conversion from/to TreeBins -------------- */
2534
2535 /**
2536 * Replaces all linked nodes in bin at given index unless table is
2537 * too small, in which case resizes instead.
2538 */
2539 private final void treeifyBin(Node<K,V>[] tab, int index) {
2540 Node<K,V> b; int n, sc;
2541 if (tab != null) {
2542 if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2543 if (tab == table && (sc = sizeCtl) >= 0 &&
2544 U.compareAndSwapInt(this, SIZECTL, sc, -2))
2545 transfer(tab, null);
2546 }
2547 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2548 synchronized (b) {
2549 if (tabAt(tab, index) == b) {
2550 TreeNode<K,V> hd = null, tl = null;
2551 for (Node<K,V> e = b; e != null; e = e.next) {
2552 TreeNode<K,V> p =
2553 new TreeNode<K,V>(e.hash, e.key, e.val,
2554 null, null);
2555 if ((p.prev = tl) == null)
2556 hd = p;
2557 else
2558 tl.next = p;
2559 tl = p;
2560 }
2561 setTabAt(tab, index, new TreeBin<K,V>(hd));
2562 }
2563 }
2564 }
2565 }
2566 }
2567
2568 /**
2569 * Returns a list on non-TreeNodes replacing those in given list.
2570 */
2571 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2572 Node<K,V> hd = null, tl = null;
2573 for (Node<K,V> q = b; q != null; q = q.next) {
2574 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2575 if (tl == null)
2576 hd = p;
2577 else
2578 tl.next = p;
2579 tl = p;
2580 }
2581 return hd;
2582 }
2583
2584 /* ---------------- TreeNodes -------------- */
2585
2586 /**
2587 * Nodes for use in TreeBins
2588 */
2589 static final class TreeNode<K,V> extends Node<K,V> {
2590 TreeNode<K,V> parent; // red-black tree links
2591 TreeNode<K,V> left;
2592 TreeNode<K,V> right;
2593 TreeNode<K,V> prev; // needed to unlink next upon deletion
2594 boolean red;
2595
2596 TreeNode(int hash, K key, V val, Node<K,V> next,
2597 TreeNode<K,V> parent) {
2598 super(hash, key, val, next);
2599 this.parent = parent;
2600 }
2601
2602 Node<K,V> find(int h, Object k) {
2603 return findTreeNode(h, k, null);
2604 }
2605
2606 /**
2607 * Returns the TreeNode (or null if not found) for the given key
2608 * starting at given root.
2609 */
2610 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2611 if (k != null) {
2612 TreeNode<K,V> p = this;
2613 do {
2614 int ph, dir; K pk; TreeNode<K,V> q;
2615 TreeNode<K,V> pl = p.left, pr = p.right;
2616 if ((ph = p.hash) > h)
2617 p = pl;
2618 else if (ph < h)
2619 p = pr;
2620 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2621 return p;
2622 else if (pl == null)
2623 p = pr;
2624 else if (pr == null)
2625 p = pl;
2626 else if ((kc != null ||
2627 (kc = comparableClassFor(k)) != null) &&
2628 (dir = compareComparables(kc, k, pk)) != 0)
2629 p = (dir < 0) ? pl : pr;
2630 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2631 return q;
2632 else
2633 p = pl;
2634 } while (p != null);
2635 }
2636 return null;
2637 }
2638 }
2639
2640 /* ---------------- TreeBins -------------- */
2641
2642 /**
2643 * TreeNodes used at the heads of bins. TreeBins do not hold user
2644 * keys or values, but instead point to list of TreeNodes and
2645 * their root. They also maintain a parasitic read-write lock
2646 * forcing writers (who hold bin lock) to wait for readers (who do
2647 * not) to complete before tree restructuring operations.
2648 */
2649 static final class TreeBin<K,V> extends Node<K,V> {
2650 TreeNode<K,V> root;
2651 volatile TreeNode<K,V> first;
2652 volatile Thread waiter;
2653 volatile int lockState;
2654 // values for lockState
2655 static final int WRITER = 1; // set while holding write lock
2656 static final int WAITER = 2; // set when waiting for write lock
2657 static final int READER = 4; // increment value for setting read lock
2658
2659 /**
2660 * Tie-breaking utility for ordering insertions when equal
2661 * hashCodes and non-comparable. We don't require a total
2662 * order, just a consistent insertion rule to maintain
2663 * equivalence across rebalancings. Tie-breaking further than
2664 * necessary simplifies testing a bit.
2665 */
2666 static int tieBreakOrder(Object a, Object b) {
2667 int d;
2668 if (a == null || b == null ||
2669 (d = a.getClass().getName().
2670 compareTo(b.getClass().getName())) == 0)
2671 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2672 -1 : 1);
2673 return d;
2674 }
2675
2676 /**
2677 * Creates bin with initial set of nodes headed by b.
2678 */
2679 TreeBin(TreeNode<K,V> b) {
2680 super(TREEBIN, null, null, null);
2681 this.first = b;
2682 TreeNode<K,V> r = null;
2683 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2684 next = (TreeNode<K,V>)x.next;
2685 x.left = x.right = null;
2686 if (r == null) {
2687 x.parent = null;
2688 x.red = false;
2689 r = x;
2690 }
2691 else {
2692 K k = x.key;
2693 int h = x.hash;
2694 Class<?> kc = null;
2695 for (TreeNode<K,V> p = r;;) {
2696 int dir, ph;
2697 K pk = p.key;
2698 if ((ph = p.hash) > h)
2699 dir = -1;
2700 else if (ph < h)
2701 dir = 1;
2702 else if ((kc == null &&
2703 (kc = comparableClassFor(k)) == null) ||
2704 (dir = compareComparables(kc, k, pk)) == 0)
2705 dir = tieBreakOrder(k, pk);
2706 TreeNode<K,V> xp = p;
2707 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2708 x.parent = xp;
2709 if (dir <= 0)
2710 xp.left = x;
2711 else
2712 xp.right = x;
2713 r = balanceInsertion(r, x);
2714 break;
2715 }
2716 }
2717 }
2718 }
2719 this.root = r;
2720 assert checkInvariants(root);
2721 }
2722
2723 /**
2724 * Acquires write lock for tree restructuring.
2725 */
2726 private final void lockRoot() {
2727 if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2728 contendedLock(); // offload to separate method
2729 }
2730
2731 /**
2732 * Releases write lock for tree restructuring.
2733 */
2734 private final void unlockRoot() {
2735 lockState = 0;
2736 }
2737
2738 /**
2739 * Possibly blocks awaiting root lock.
2740 */
2741 private final void contendedLock() {
2742 boolean waiting = false;
2743 for (int s;;) {
2744 if (((s = lockState) & WRITER) == 0) {
2745 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2746 if (waiting)
2747 waiter = null;
2748 return;
2749 }
2750 }
2751 else if ((s & WAITER) == 0) {
2752 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2753 waiting = true;
2754 waiter = Thread.currentThread();
2755 }
2756 }
2757 else if (waiting)
2758 LockSupport.park(this);
2759 }
2760 }
2761
2762 /**
2763 * Returns matching node or null if none. Tries to search
2764 * using tree comparisons from root, but continues linear
2765 * search when lock not available.
2766 */
2767 final Node<K,V> find(int h, Object k) {
2768 if (k != null) {
2769 for (Node<K,V> e = first; e != null; e = e.next) {
2770 int s; K ek;
2771 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2772 if (e.hash == h &&
2773 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2774 return e;
2775 }
2776 else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2777 s + READER)) {
2778 TreeNode<K,V> r, p;
2779 try {
2780 p = ((r = root) == null ? null :
2781 r.findTreeNode(h, k, null));
2782 } finally {
2783 Thread w;
2784 if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2785 (READER|WAITER) && (w = waiter) != null)
2786 LockSupport.unpark(w);
2787 }
2788 return p;
2789 }
2790 }
2791 }
2792 return null;
2793 }
2794
2795 /**
2796 * Finds or adds a node.
2797 * @return null if added
2798 */
2799 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2800 Class<?> kc = null;
2801 boolean searched = false;
2802 for (TreeNode<K,V> p = root;;) {
2803 int dir, ph; K pk;
2804 if (p == null) {
2805 first = root = new TreeNode<K,V>(h, k, v, null, null);
2806 break;
2807 }
2808 else if ((ph = p.hash) > h)
2809 dir = -1;
2810 else if (ph < h)
2811 dir = 1;
2812 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2813 return p;
2814 else if ((kc == null &&
2815 (kc = comparableClassFor(k)) == null) ||
2816 (dir = compareComparables(kc, k, pk)) == 0) {
2817 if (!searched) {
2818 TreeNode<K,V> q, ch;
2819 searched = true;
2820 if (((ch = p.left) != null &&
2821 (q = ch.findTreeNode(h, k, kc)) != null) ||
2822 ((ch = p.right) != null &&
2823 (q = ch.findTreeNode(h, k, kc)) != null))
2824 return q;
2825 }
2826 dir = tieBreakOrder(k, pk);
2827 }
2828
2829 TreeNode<K,V> xp = p;
2830 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2831 TreeNode<K,V> x, f = first;
2832 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2833 if (f != null)
2834 f.prev = x;
2835 if (dir <= 0)
2836 xp.left = x;
2837 else
2838 xp.right = x;
2839 if (!xp.red)
2840 x.red = true;
2841 else {
2842 lockRoot();
2843 try {
2844 root = balanceInsertion(root, x);
2845 } finally {
2846 unlockRoot();
2847 }
2848 }
2849 break;
2850 }
2851 }
2852 assert checkInvariants(root);
2853 return null;
2854 }
2855
2856 /**
2857 * Removes the given node, that must be present before this
2858 * call. This is messier than typical red-black deletion code
2859 * because we cannot swap the contents of an interior node
2860 * with a leaf successor that is pinned by "next" pointers
2861 * that are accessible independently of lock. So instead we
2862 * swap the tree linkages.
2863 *
2864 * @return true if now too small, so should be untreeified
2865 */
2866 final boolean removeTreeNode(TreeNode<K,V> p) {
2867 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2868 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2869 TreeNode<K,V> r, rl;
2870 if (pred == null)
2871 first = next;
2872 else
2873 pred.next = next;
2874 if (next != null)
2875 next.prev = pred;
2876 if (first == null) {
2877 root = null;
2878 return true;
2879 }
2880 if ((r = root) == null || r.right == null || // too small
2881 (rl = r.left) == null || rl.left == null)
2882 return true;
2883 lockRoot();
2884 try {
2885 TreeNode<K,V> replacement;
2886 TreeNode<K,V> pl = p.left;
2887 TreeNode<K,V> pr = p.right;
2888 if (pl != null && pr != null) {
2889 TreeNode<K,V> s = pr, sl;
2890 while ((sl = s.left) != null) // find successor
2891 s = sl;
2892 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2893 TreeNode<K,V> sr = s.right;
2894 TreeNode<K,V> pp = p.parent;
2895 if (s == pr) { // p was s's direct parent
2896 p.parent = s;
2897 s.right = p;
2898 }
2899 else {
2900 TreeNode<K,V> sp = s.parent;
2901 if ((p.parent = sp) != null) {
2902 if (s == sp.left)
2903 sp.left = p;
2904 else
2905 sp.right = p;
2906 }
2907 if ((s.right = pr) != null)
2908 pr.parent = s;
2909 }
2910 p.left = null;
2911 if ((p.right = sr) != null)
2912 sr.parent = p;
2913 if ((s.left = pl) != null)
2914 pl.parent = s;
2915 if ((s.parent = pp) == null)
2916 r = s;
2917 else if (p == pp.left)
2918 pp.left = s;
2919 else
2920 pp.right = s;
2921 if (sr != null)
2922 replacement = sr;
2923 else
2924 replacement = p;
2925 }
2926 else if (pl != null)
2927 replacement = pl;
2928 else if (pr != null)
2929 replacement = pr;
2930 else
2931 replacement = p;
2932 if (replacement != p) {
2933 TreeNode<K,V> pp = replacement.parent = p.parent;
2934 if (pp == null)
2935 r = replacement;
2936 else if (p == pp.left)
2937 pp.left = replacement;
2938 else
2939 pp.right = replacement;
2940 p.left = p.right = p.parent = null;
2941 }
2942
2943 root = (p.red) ? r : balanceDeletion(r, replacement);
2944
2945 if (p == replacement) { // detach pointers
2946 TreeNode<K,V> pp;
2947 if ((pp = p.parent) != null) {
2948 if (p == pp.left)
2949 pp.left = null;
2950 else if (p == pp.right)
2951 pp.right = null;
2952 p.parent = null;
2953 }
2954 }
2955 } finally {
2956 unlockRoot();
2957 }
2958 assert checkInvariants(root);
2959 return false;
2960 }
2961
2962 /* ------------------------------------------------------------ */
2963 // Red-black tree methods, all adapted from CLR
2964
2965 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2966 TreeNode<K,V> p) {
2967 TreeNode<K,V> r, pp, rl;
2968 if (p != null && (r = p.right) != null) {
2969 if ((rl = p.right = r.left) != null)
2970 rl.parent = p;
2971 if ((pp = r.parent = p.parent) == null)
2972 (root = r).red = false;
2973 else if (pp.left == p)
2974 pp.left = r;
2975 else
2976 pp.right = r;
2977 r.left = p;
2978 p.parent = r;
2979 }
2980 return root;
2981 }
2982
2983 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2984 TreeNode<K,V> p) {
2985 TreeNode<K,V> l, pp, lr;
2986 if (p != null && (l = p.left) != null) {
2987 if ((lr = p.left = l.right) != null)
2988 lr.parent = p;
2989 if ((pp = l.parent = p.parent) == null)
2990 (root = l).red = false;
2991 else if (pp.right == p)
2992 pp.right = l;
2993 else
2994 pp.left = l;
2995 l.right = p;
2996 p.parent = l;
2997 }
2998 return root;
2999 }
3000
3001 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3002 TreeNode<K,V> x) {
3003 x.red = true;
3004 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3005 if ((xp = x.parent) == null) {
3006 x.red = false;
3007 return x;
3008 }
3009 else if (!xp.red || (xpp = xp.parent) == null)
3010 return root;
3011 if (xp == (xppl = xpp.left)) {
3012 if ((xppr = xpp.right) != null && xppr.red) {
3013 xppr.red = false;
3014 xp.red = false;
3015 xpp.red = true;
3016 x = xpp;
3017 }
3018 else {
3019 if (x == xp.right) {
3020 root = rotateLeft(root, x = xp);
3021 xpp = (xp = x.parent) == null ? null : xp.parent;
3022 }
3023 if (xp != null) {
3024 xp.red = false;
3025 if (xpp != null) {
3026 xpp.red = true;
3027 root = rotateRight(root, xpp);
3028 }
3029 }
3030 }
3031 }
3032 else {
3033 if (xppl != null && xppl.red) {
3034 xppl.red = false;
3035 xp.red = false;
3036 xpp.red = true;
3037 x = xpp;
3038 }
3039 else {
3040 if (x == xp.left) {
3041 root = rotateRight(root, x = xp);
3042 xpp = (xp = x.parent) == null ? null : xp.parent;
3043 }
3044 if (xp != null) {
3045 xp.red = false;
3046 if (xpp != null) {
3047 xpp.red = true;
3048 root = rotateLeft(root, xpp);
3049 }
3050 }
3051 }
3052 }
3053 }
3054 }
3055
3056 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3057 TreeNode<K,V> x) {
3058 for (TreeNode<K,V> xp, xpl, xpr;;) {
3059 if (x == null || x == root)
3060 return root;
3061 else if ((xp = x.parent) == null) {
3062 x.red = false;
3063 return x;
3064 }
3065 else if (x.red) {
3066 x.red = false;
3067 return root;
3068 }
3069 else if ((xpl = xp.left) == x) {
3070 if ((xpr = xp.right) != null && xpr.red) {
3071 xpr.red = false;
3072 xp.red = true;
3073 root = rotateLeft(root, xp);
3074 xpr = (xp = x.parent) == null ? null : xp.right;
3075 }
3076 if (xpr == null)
3077 x = xp;
3078 else {
3079 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3080 if ((sr == null || !sr.red) &&
3081 (sl == null || !sl.red)) {
3082 xpr.red = true;
3083 x = xp;
3084 }
3085 else {
3086 if (sr == null || !sr.red) {
3087 if (sl != null)
3088 sl.red = false;
3089 xpr.red = true;
3090 root = rotateRight(root, xpr);
3091 xpr = (xp = x.parent) == null ?
3092 null : xp.right;
3093 }
3094 if (xpr != null) {
3095 xpr.red = (xp == null) ? false : xp.red;
3096 if ((sr = xpr.right) != null)
3097 sr.red = false;
3098 }
3099 if (xp != null) {
3100 xp.red = false;
3101 root = rotateLeft(root, xp);
3102 }
3103 x = root;
3104 }
3105 }
3106 }
3107 else { // symmetric
3108 if (xpl != null && xpl.red) {
3109 xpl.red = false;
3110 xp.red = true;
3111 root = rotateRight(root, xp);
3112 xpl = (xp = x.parent) == null ? null : xp.left;
3113 }
3114 if (xpl == null)
3115 x = xp;
3116 else {
3117 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3118 if ((sl == null || !sl.red) &&
3119 (sr == null || !sr.red)) {
3120 xpl.red = true;
3121 x = xp;
3122 }
3123 else {
3124 if (sl == null || !sl.red) {
3125 if (sr != null)
3126 sr.red = false;
3127 xpl.red = true;
3128 root = rotateLeft(root, xpl);
3129 xpl = (xp = x.parent) == null ?
3130 null : xp.left;
3131 }
3132 if (xpl != null) {
3133 xpl.red = (xp == null) ? false : xp.red;
3134 if ((sl = xpl.left) != null)
3135 sl.red = false;
3136 }
3137 if (xp != null) {
3138 xp.red = false;
3139 root = rotateRight(root, xp);
3140 }
3141 x = root;
3142 }
3143 }
3144 }
3145 }
3146 }
3147
3148 /**
3149 * Recursive invariant check
3150 */
3151 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3152 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3153 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3154 if (tb != null && tb.next != t)
3155 return false;
3156 if (tn != null && tn.prev != t)
3157 return false;
3158 if (tp != null && t != tp.left && t != tp.right)
3159 return false;
3160 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3161 return false;
3162 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3163 return false;
3164 if (t.red && tl != null && tl.red && tr != null && tr.red)
3165 return false;
3166 if (tl != null && !checkInvariants(tl))
3167 return false;
3168 if (tr != null && !checkInvariants(tr))
3169 return false;
3170 return true;
3171 }
3172
3173 private static final sun.misc.Unsafe U;
3174 private static final long LOCKSTATE;
3175 static {
3176 try {
3177 U = sun.misc.Unsafe.getUnsafe();
3178 Class<?> k = TreeBin.class;
3179 LOCKSTATE = U.objectFieldOffset
3180 (k.getDeclaredField("lockState"));
3181 } catch (Exception e) {
3182 throw new Error(e);
3183 }
3184 }
3185 }
3186
3187 /* ----------------Table Traversal -------------- */
3188
3189 /**
3190 * Records the table, its length, and current traversal index for a
3191 * traverser that must process a region of a forwarded table before
3192 * proceeding with current table.
3193 */
3194 static final class TableStack<K,V> {
3195 int length;
3196 int index;
3197 Node<K,V>[] tab;
3198 TableStack<K,V> next;
3199 }
3200
3201 /**
3202 * Encapsulates traversal for methods such as containsValue; also
3203 * serves as a base class for other iterators and spliterators.
3204 *
3205 * Method advance visits once each still-valid node that was
3206 * reachable upon iterator construction. It might miss some that
3207 * were added to a bin after the bin was visited, which is OK wrt
3208 * consistency guarantees. Maintaining this property in the face
3209 * of possible ongoing resizes requires a fair amount of
3210 * bookkeeping state that is difficult to optimize away amidst
3211 * volatile accesses. Even so, traversal maintains reasonable
3212 * throughput.
3213 *
3214 * Normally, iteration proceeds bin-by-bin traversing lists.
3215 * However, if the table has been resized, then all future steps
3216 * must traverse both the bin at the current index as well as at
3217 * (index + baseSize); and so on for further resizings. To
3218 * paranoically cope with potential sharing by users of iterators
3219 * across threads, iteration terminates if a bounds checks fails
3220 * for a table read.
3221 */
3222 static class Traverser<K,V> {
3223 Node<K,V>[] tab; // current table; updated if resized
3224 Node<K,V> next; // the next entry to use
3225 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3226 int index; // index of bin to use next
3227 int baseIndex; // current index of initial table
3228 int baseLimit; // index bound for initial table
3229 final int baseSize; // initial table size
3230
3231 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3232 this.tab = tab;
3233 this.baseSize = size;
3234 this.baseIndex = this.index = index;
3235 this.baseLimit = limit;
3236 this.next = null;
3237 }
3238
3239 /**
3240 * Advances if possible, returning next valid node, or null if none.
3241 */
3242 final Node<K,V> advance() {
3243 Node<K,V> e;
3244 if ((e = next) != null)
3245 e = e.next;
3246 for (;;) {
3247 Node<K,V>[] t; int i, n; // must use locals in checks
3248 if (e != null)
3249 return next = e;
3250 if (baseIndex >= baseLimit || (t = tab) == null ||
3251 (n = t.length) <= (i = index) || i < 0)
3252 return next = null;
3253 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3254 if (e instanceof ForwardingNode) {
3255 tab = ((ForwardingNode<K,V>)e).nextTable;
3256 e = null;
3257 pushState(t, i, n);
3258 continue;
3259 }
3260 else if (e instanceof TreeBin)
3261 e = ((TreeBin<K,V>)e).first;
3262 else
3263 e = null;
3264 }
3265 if (stack != null)
3266 recoverState(n);
3267 else if ((index = i + baseSize) >= n)
3268 index = ++baseIndex; // visit upper slots if present
3269 }
3270 }
3271
3272 /**
3273 * Saves traversal state upon encountering a forwarding node.
3274 */
3275 private void pushState(Node<K,V>[] t, int i, int n) {
3276 TableStack<K,V> s = spare; // reuse if possible
3277 if (s != null)
3278 spare = s.next;
3279 else
3280 s = new TableStack<K,V>();
3281 s.tab = t;
3282 s.length = n;
3283 s.index = i;
3284 s.next = stack;
3285 stack = s;
3286 }
3287
3288 /**
3289 * Possibly pops traversal state.
3290 *
3291 * @param n length of current table
3292 */
3293 private void recoverState(int n) {
3294 TableStack<K,V> s; int len;
3295 while ((s = stack) != null && (index += (len = s.length)) >= n) {
3296 n = len;
3297 index = s.index;
3298 tab = s.tab;
3299 s.tab = null;
3300 TableStack<K,V> next = s.next;
3301 s.next = spare; // save for reuse
3302 stack = next;
3303 spare = s;
3304 }
3305 if (s == null && (index += baseSize) >= n)
3306 index = ++baseIndex;
3307 }
3308 }
3309
3310 /**
3311 * Base of key, value, and entry Iterators. Adds fields to
3312 * Traverser to support iterator.remove.
3313 */
3314 static class BaseIterator<K,V> extends Traverser<K,V> {
3315 final ConcurrentHashMap<K,V> map;
3316 Node<K,V> lastReturned;
3317 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3318 ConcurrentHashMap<K,V> map) {
3319 super(tab, size, index, limit);
3320 this.map = map;
3321 advance();
3322 }
3323
3324 public final boolean hasNext() { return next != null; }
3325 public final boolean hasMoreElements() { return next != null; }
3326
3327 public final void remove() {
3328 Node<K,V> p;
3329 if ((p = lastReturned) == null)
3330 throw new IllegalStateException();
3331 lastReturned = null;
3332 map.replaceNode(p.key, null, null);
3333 }
3334 }
3335
3336 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3337 implements Iterator<K>, Enumeration<K> {
3338 KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3339 ConcurrentHashMap<K,V> map) {
3340 super(tab, index, size, limit, map);
3341 }
3342
3343 public final K next() {
3344 Node<K,V> p;
3345 if ((p = next) == null)
3346 throw new NoSuchElementException();
3347 K k = p.key;
3348 lastReturned = p;
3349 advance();
3350 return k;
3351 }
3352
3353 public final K nextElement() { return next(); }
3354 }
3355
3356 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3357 implements Iterator<V>, Enumeration<V> {
3358 ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3359 ConcurrentHashMap<K,V> map) {
3360 super(tab, index, size, limit, map);
3361 }
3362
3363 public final V next() {
3364 Node<K,V> p;
3365 if ((p = next) == null)
3366 throw new NoSuchElementException();
3367 V v = p.val;
3368 lastReturned = p;
3369 advance();
3370 return v;
3371 }
3372
3373 public final V nextElement() { return next(); }
3374 }
3375
3376 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3377 implements Iterator<Map.Entry<K,V>> {
3378 EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3379 ConcurrentHashMap<K,V> map) {
3380 super(tab, index, size, limit, map);
3381 }
3382
3383 public final Map.Entry<K,V> next() {
3384 Node<K,V> p;
3385 if ((p = next) == null)
3386 throw new NoSuchElementException();
3387 K k = p.key;
3388 V v = p.val;
3389 lastReturned = p;
3390 advance();
3391 return new MapEntry<K,V>(k, v, map);
3392 }
3393 }
3394
3395 /**
3396 * Exported Entry for EntryIterator
3397 */
3398 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3399 final K key; // non-null
3400 V val; // non-null
3401 final ConcurrentHashMap<K,V> map;
3402 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3403 this.key = key;
3404 this.val = val;
3405 this.map = map;
3406 }
3407 public K getKey() { return key; }
3408 public V getValue() { return val; }
3409 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3410 public String toString() { return key + "=" + val; }
3411
3412 public boolean equals(Object o) {
3413 Object k, v; Map.Entry<?,?> e;
3414 return ((o instanceof Map.Entry) &&
3415 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3416 (v = e.getValue()) != null &&
3417 (k == key || k.equals(key)) &&
3418 (v == val || v.equals(val)));
3419 }
3420
3421 /**
3422 * Sets our entry's value and writes through to the map. The
3423 * value to return is somewhat arbitrary here. Since we do not
3424 * necessarily track asynchronous changes, the most recent
3425 * "previous" value could be different from what we return (or
3426 * could even have been removed, in which case the put will
3427 * re-establish). We do not and cannot guarantee more.
3428 */
3429 public V setValue(V value) {
3430 if (value == null) throw new NullPointerException();
3431 V v = val;
3432 val = value;
3433 map.put(key, value);
3434 return v;
3435 }
3436 }
3437
3438 static final class KeySpliterator<K,V> extends Traverser<K,V>
3439 implements Spliterator<K> {
3440 long est; // size estimate
3441 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3442 long est) {
3443 super(tab, size, index, limit);
3444 this.est = est;
3445 }
3446
3447 public Spliterator<K> trySplit() {
3448 int i, f, h;
3449 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3450 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3451 f, est >>>= 1);
3452 }
3453
3454 public void forEachRemaining(Consumer<? super K> action) {
3455 if (action == null) throw new NullPointerException();
3456 for (Node<K,V> p; (p = advance()) != null;)
3457 action.accept(p.key);
3458 }
3459
3460 public boolean tryAdvance(Consumer<? super K> action) {
3461 if (action == null) throw new NullPointerException();
3462 Node<K,V> p;
3463 if ((p = advance()) == null)
3464 return false;
3465 action.accept(p.key);
3466 return true;
3467 }
3468
3469 public long estimateSize() { return est; }
3470
3471 public int characteristics() {
3472 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3473 Spliterator.NONNULL;
3474 }
3475 }
3476
3477 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3478 implements Spliterator<V> {
3479 long est; // size estimate
3480 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3481 long est) {
3482 super(tab, size, index, limit);
3483 this.est = est;
3484 }
3485
3486 public Spliterator<V> trySplit() {
3487 int i, f, h;
3488 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3489 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3490 f, est >>>= 1);
3491 }
3492
3493 public void forEachRemaining(Consumer<? super V> action) {
3494 if (action == null) throw new NullPointerException();
3495 for (Node<K,V> p; (p = advance()) != null;)
3496 action.accept(p.val);
3497 }
3498
3499 public boolean tryAdvance(Consumer<? super V> action) {
3500 if (action == null) throw new NullPointerException();
3501 Node<K,V> p;
3502 if ((p = advance()) == null)
3503 return false;
3504 action.accept(p.val);
3505 return true;
3506 }
3507
3508 public long estimateSize() { return est; }
3509
3510 public int characteristics() {
3511 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3512 }
3513 }
3514
3515 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3516 implements Spliterator<Map.Entry<K,V>> {
3517 final ConcurrentHashMap<K,V> map; // To export MapEntry
3518 long est; // size estimate
3519 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3520 long est, ConcurrentHashMap<K,V> map) {
3521 super(tab, size, index, limit);
3522 this.map = map;
3523 this.est = est;
3524 }
3525
3526 public Spliterator<Map.Entry<K,V>> trySplit() {
3527 int i, f, h;
3528 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3529 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3530 f, est >>>= 1, map);
3531 }
3532
3533 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3534 if (action == null) throw new NullPointerException();
3535 for (Node<K,V> p; (p = advance()) != null; )
3536 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3537 }
3538
3539 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3540 if (action == null) throw new NullPointerException();
3541 Node<K,V> p;
3542 if ((p = advance()) == null)
3543 return false;
3544 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3545 return true;
3546 }
3547
3548 public long estimateSize() { return est; }
3549
3550 public int characteristics() {
3551 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3552 Spliterator.NONNULL;
3553 }
3554 }
3555
3556 // Parallel bulk operations
3557
3558 /**
3559 * Computes initial batch value for bulk tasks. The returned value
3560 * is approximately exp2 of the number of times (minus one) to
3561 * split task by two before executing leaf action. This value is
3562 * faster to compute and more convenient to use as a guide to
3563 * splitting than is the depth, since it is used while dividing by
3564 * two anyway.
3565 */
3566 final int batchFor(long b) {
3567 long n;
3568 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3569 return 0;
3570 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3571 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3572 }
3573
3574 /**
3575 * Performs the given action for each (key, value).
3576 *
3577 * @param parallelismThreshold the (estimated) number of elements
3578 * needed for this operation to be executed in parallel
3579 * @param action the action
3580 * @since 1.8
3581 */
3582 public void forEach(long parallelismThreshold,
3583 BiConsumer<? super K,? super V> action) {
3584 if (action == null) throw new NullPointerException();
3585 new ForEachMappingTask<K,V>
3586 (null, batchFor(parallelismThreshold), 0, 0, table,
3587 action).invoke();
3588 }
3589
3590 /**
3591 * Performs the given action for each non-null transformation
3592 * of each (key, value).
3593 *
3594 * @param parallelismThreshold the (estimated) number of elements
3595 * needed for this operation to be executed in parallel
3596 * @param transformer a function returning the transformation
3597 * for an element, or null if there is no transformation (in
3598 * which case the action is not applied)
3599 * @param action the action
3600 * @param <U> the return type of the transformer
3601 * @since 1.8
3602 */
3603 public <U> void forEach(long parallelismThreshold,
3604 BiFunction<? super K, ? super V, ? extends U> transformer,
3605 Consumer<? super U> action) {
3606 if (transformer == null || action == null)
3607 throw new NullPointerException();
3608 new ForEachTransformedMappingTask<K,V,U>
3609 (null, batchFor(parallelismThreshold), 0, 0, table,
3610 transformer, action).invoke();
3611 }
3612
3613 /**
3614 * Returns a non-null result from applying the given search
3615 * function on each (key, value), or null if none. Upon
3616 * success, further element processing is suppressed and the
3617 * results of any other parallel invocations of the search
3618 * function are ignored.
3619 *
3620 * @param parallelismThreshold the (estimated) number of elements
3621 * needed for this operation to be executed in parallel
3622 * @param searchFunction a function returning a non-null
3623 * result on success, else null
3624 * @param <U> the return type of the search function
3625 * @return a non-null result from applying the given search
3626 * function on each (key, value), or null if none
3627 * @since 1.8
3628 */
3629 public <U> U search(long parallelismThreshold,
3630 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3631 if (searchFunction == null) throw new NullPointerException();
3632 return new SearchMappingsTask<K,V,U>
3633 (null, batchFor(parallelismThreshold), 0, 0, table,
3634 searchFunction, new AtomicReference<U>()).invoke();
3635 }
3636
3637 /**
3638 * Returns the result of accumulating the given transformation
3639 * of all (key, value) pairs using the given reducer to
3640 * combine values, or null if none.
3641 *
3642 * @param parallelismThreshold the (estimated) number of elements
3643 * needed for this operation to be executed in parallel
3644 * @param transformer a function returning the transformation
3645 * for an element, or null if there is no transformation (in
3646 * which case it is not combined)
3647 * @param reducer a commutative associative combining function
3648 * @param <U> the return type of the transformer
3649 * @return the result of accumulating the given transformation
3650 * of all (key, value) pairs
3651 * @since 1.8
3652 */
3653 public <U> U reduce(long parallelismThreshold,
3654 BiFunction<? super K, ? super V, ? extends U> transformer,
3655 BiFunction<? super U, ? super U, ? extends U> reducer) {
3656 if (transformer == null || reducer == null)
3657 throw new NullPointerException();
3658 return new MapReduceMappingsTask<K,V,U>
3659 (null, batchFor(parallelismThreshold), 0, 0, table,
3660 null, transformer, reducer).invoke();
3661 }
3662
3663 /**
3664 * Returns the result of accumulating the given transformation
3665 * of all (key, value) pairs using the given reducer to
3666 * combine values, and the given basis as an identity value.
3667 *
3668 * @param parallelismThreshold the (estimated) number of elements
3669 * needed for this operation to be executed in parallel
3670 * @param transformer a function returning the transformation
3671 * for an element
3672 * @param basis the identity (initial default value) for the reduction
3673 * @param reducer a commutative associative combining function
3674 * @return the result of accumulating the given transformation
3675 * of all (key, value) pairs
3676 * @since 1.8
3677 */
3678 public double reduceToDouble(long parallelismThreshold,
3679 ToDoubleBiFunction<? super K, ? super V> transformer,
3680 double basis,
3681 DoubleBinaryOperator reducer) {
3682 if (transformer == null || reducer == null)
3683 throw new NullPointerException();
3684 return new MapReduceMappingsToDoubleTask<K,V>
3685 (null, batchFor(parallelismThreshold), 0, 0, table,
3686 null, transformer, basis, reducer).invoke();
3687 }
3688
3689 /**
3690 * Returns the result of accumulating the given transformation
3691 * of all (key, value) pairs using the given reducer to
3692 * combine values, and the given basis as an identity value.
3693 *
3694 * @param parallelismThreshold the (estimated) number of elements
3695 * needed for this operation to be executed in parallel
3696 * @param transformer a function returning the transformation
3697 * for an element
3698 * @param basis the identity (initial default value) for the reduction
3699 * @param reducer a commutative associative combining function
3700 * @return the result of accumulating the given transformation
3701 * of all (key, value) pairs
3702 * @since 1.8
3703 */
3704 public long reduceToLong(long parallelismThreshold,
3705 ToLongBiFunction<? super K, ? super V> transformer,
3706 long basis,
3707 LongBinaryOperator reducer) {
3708 if (transformer == null || reducer == null)
3709 throw new NullPointerException();
3710 return new MapReduceMappingsToLongTask<K,V>
3711 (null, batchFor(parallelismThreshold), 0, 0, table,
3712 null, transformer, basis, reducer).invoke();
3713 }
3714
3715 /**
3716 * Returns the result of accumulating the given transformation
3717 * of all (key, value) pairs using the given reducer to
3718 * combine values, and the given basis as an identity value.
3719 *
3720 * @param parallelismThreshold the (estimated) number of elements
3721 * needed for this operation to be executed in parallel
3722 * @param transformer a function returning the transformation
3723 * for an element
3724 * @param basis the identity (initial default value) for the reduction
3725 * @param reducer a commutative associative combining function
3726 * @return the result of accumulating the given transformation
3727 * of all (key, value) pairs
3728 * @since 1.8
3729 */
3730 public int reduceToInt(long parallelismThreshold,
3731 ToIntBiFunction<? super K, ? super V> transformer,
3732 int basis,
3733 IntBinaryOperator reducer) {
3734 if (transformer == null || reducer == null)
3735 throw new NullPointerException();
3736 return new MapReduceMappingsToIntTask<K,V>
3737 (null, batchFor(parallelismThreshold), 0, 0, table,
3738 null, transformer, basis, reducer).invoke();
3739 }
3740
3741 /**
3742 * Performs the given action for each key.
3743 *
3744 * @param parallelismThreshold the (estimated) number of elements
3745 * needed for this operation to be executed in parallel
3746 * @param action the action
3747 * @since 1.8
3748 */
3749 public void forEachKey(long parallelismThreshold,
3750 Consumer<? super K> action) {
3751 if (action == null) throw new NullPointerException();
3752 new ForEachKeyTask<K,V>
3753 (null, batchFor(parallelismThreshold), 0, 0, table,
3754 action).invoke();
3755 }
3756
3757 /**
3758 * Performs the given action for each non-null transformation
3759 * of each key.
3760 *
3761 * @param parallelismThreshold the (estimated) number of elements
3762 * needed for this operation to be executed in parallel
3763 * @param transformer a function returning the transformation
3764 * for an element, or null if there is no transformation (in
3765 * which case the action is not applied)
3766 * @param action the action
3767 * @param <U> the return type of the transformer
3768 * @since 1.8
3769 */
3770 public <U> void forEachKey(long parallelismThreshold,
3771 Function<? super K, ? extends U> transformer,
3772 Consumer<? super U> action) {
3773 if (transformer == null || action == null)
3774 throw new NullPointerException();
3775 new ForEachTransformedKeyTask<K,V,U>
3776 (null, batchFor(parallelismThreshold), 0, 0, table,
3777 transformer, action).invoke();
3778 }
3779
3780 /**
3781 * Returns a non-null result from applying the given search
3782 * function on each key, or null if none. Upon success,
3783 * further element processing is suppressed and the results of
3784 * any other parallel invocations of the search function are
3785 * ignored.
3786 *
3787 * @param parallelismThreshold the (estimated) number of elements
3788 * needed for this operation to be executed in parallel
3789 * @param searchFunction a function returning a non-null
3790 * result on success, else null
3791 * @param <U> the return type of the search function
3792 * @return a non-null result from applying the given search
3793 * function on each key, or null if none
3794 * @since 1.8
3795 */
3796 public <U> U searchKeys(long parallelismThreshold,
3797 Function<? super K, ? extends U> searchFunction) {
3798 if (searchFunction == null) throw new NullPointerException();
3799 return new SearchKeysTask<K,V,U>
3800 (null, batchFor(parallelismThreshold), 0, 0, table,
3801 searchFunction, new AtomicReference<U>()).invoke();
3802 }
3803
3804 /**
3805 * Returns the result of accumulating all keys using the given
3806 * reducer to combine values, or null if none.
3807 *
3808 * @param parallelismThreshold the (estimated) number of elements
3809 * needed for this operation to be executed in parallel
3810 * @param reducer a commutative associative combining function
3811 * @return the result of accumulating all keys using the given
3812 * reducer to combine values, or null if none
3813 * @since 1.8
3814 */
3815 public K reduceKeys(long parallelismThreshold,
3816 BiFunction<? super K, ? super K, ? extends K> reducer) {
3817 if (reducer == null) throw new NullPointerException();
3818 return new ReduceKeysTask<K,V>
3819 (null, batchFor(parallelismThreshold), 0, 0, table,
3820 null, reducer).invoke();
3821 }
3822
3823 /**
3824 * Returns the result of accumulating the given transformation
3825 * of all keys using the given reducer to combine values, or
3826 * null if none.
3827 *
3828 * @param parallelismThreshold the (estimated) number of elements
3829 * needed for this operation to be executed in parallel
3830 * @param transformer a function returning the transformation
3831 * for an element, or null if there is no transformation (in
3832 * which case it is not combined)
3833 * @param reducer a commutative associative combining function
3834 * @param <U> the return type of the transformer
3835 * @return the result of accumulating the given transformation
3836 * of all keys
3837 * @since 1.8
3838 */
3839 public <U> U reduceKeys(long parallelismThreshold,
3840 Function<? super K, ? extends U> transformer,
3841 BiFunction<? super U, ? super U, ? extends U> reducer) {
3842 if (transformer == null || reducer == null)
3843 throw new NullPointerException();
3844 return new MapReduceKeysTask<K,V,U>
3845 (null, batchFor(parallelismThreshold), 0, 0, table,
3846 null, transformer, reducer).invoke();
3847 }
3848
3849 /**
3850 * Returns the result of accumulating the given transformation
3851 * of all keys using the given reducer to combine values, and
3852 * the given basis as an identity value.
3853 *
3854 * @param parallelismThreshold the (estimated) number of elements
3855 * needed for this operation to be executed in parallel
3856 * @param transformer a function returning the transformation
3857 * for an element
3858 * @param basis the identity (initial default value) for the reduction
3859 * @param reducer a commutative associative combining function
3860 * @return the result of accumulating the given transformation
3861 * of all keys
3862 * @since 1.8
3863 */
3864 public double reduceKeysToDouble(long parallelismThreshold,
3865 ToDoubleFunction<? super K> transformer,
3866 double basis,
3867 DoubleBinaryOperator reducer) {
3868 if (transformer == null || reducer == null)
3869 throw new NullPointerException();
3870 return new MapReduceKeysToDoubleTask<K,V>
3871 (null, batchFor(parallelismThreshold), 0, 0, table,
3872 null, transformer, basis, reducer).invoke();
3873 }
3874
3875 /**
3876 * Returns the result of accumulating the given transformation
3877 * of all keys using the given reducer to combine values, and
3878 * the given basis as an identity value.
3879 *
3880 * @param parallelismThreshold the (estimated) number of elements
3881 * needed for this operation to be executed in parallel
3882 * @param transformer a function returning the transformation
3883 * for an element
3884 * @param basis the identity (initial default value) for the reduction
3885 * @param reducer a commutative associative combining function
3886 * @return the result of accumulating the given transformation
3887 * of all keys
3888 * @since 1.8
3889 */
3890 public long reduceKeysToLong(long parallelismThreshold,
3891 ToLongFunction<? super K> transformer,
3892 long basis,
3893 LongBinaryOperator reducer) {
3894 if (transformer == null || reducer == null)
3895 throw new NullPointerException();
3896 return new MapReduceKeysToLongTask<K,V>
3897 (null, batchFor(parallelismThreshold), 0, 0, table,
3898 null, transformer, basis, reducer).invoke();
3899 }
3900
3901 /**
3902 * Returns the result of accumulating the given transformation
3903 * of all keys using the given reducer to combine values, and
3904 * the given basis as an identity value.
3905 *
3906 * @param parallelismThreshold the (estimated) number of elements
3907 * needed for this operation to be executed in parallel
3908 * @param transformer a function returning the transformation
3909 * for an element
3910 * @param basis the identity (initial default value) for the reduction
3911 * @param reducer a commutative associative combining function
3912 * @return the result of accumulating the given transformation
3913 * of all keys
3914 * @since 1.8
3915 */
3916 public int reduceKeysToInt(long parallelismThreshold,
3917 ToIntFunction<? super K> transformer,
3918 int basis,
3919 IntBinaryOperator reducer) {
3920 if (transformer == null || reducer == null)
3921 throw new NullPointerException();
3922 return new MapReduceKeysToIntTask<K,V>
3923 (null, batchFor(parallelismThreshold), 0, 0, table,
3924 null, transformer, basis, reducer).invoke();
3925 }
3926
3927 /**
3928 * Performs the given action for each value.
3929 *
3930 * @param parallelismThreshold the (estimated) number of elements
3931 * needed for this operation to be executed in parallel
3932 * @param action the action
3933 * @since 1.8
3934 */
3935 public void forEachValue(long parallelismThreshold,
3936 Consumer<? super V> action) {
3937 if (action == null)
3938 throw new NullPointerException();
3939 new ForEachValueTask<K,V>
3940 (null, batchFor(parallelismThreshold), 0, 0, table,
3941 action).invoke();
3942 }
3943
3944 /**
3945 * Performs the given action for each non-null transformation
3946 * of each value.
3947 *
3948 * @param parallelismThreshold the (estimated) number of elements
3949 * needed for this operation to be executed in parallel
3950 * @param transformer a function returning the transformation
3951 * for an element, or null if there is no transformation (in
3952 * which case the action is not applied)
3953 * @param action the action
3954 * @param <U> the return type of the transformer
3955 * @since 1.8
3956 */
3957 public <U> void forEachValue(long parallelismThreshold,
3958 Function<? super V, ? extends U> transformer,
3959 Consumer<? super U> action) {
3960 if (transformer == null || action == null)
3961 throw new NullPointerException();
3962 new ForEachTransformedValueTask<K,V,U>
3963 (null, batchFor(parallelismThreshold), 0, 0, table,
3964 transformer, action).invoke();
3965 }
3966
3967 /**
3968 * Returns a non-null result from applying the given search
3969 * function on each value, or null if none. Upon success,
3970 * further element processing is suppressed and the results of
3971 * any other parallel invocations of the search function are
3972 * ignored.
3973 *
3974 * @param parallelismThreshold the (estimated) number of elements
3975 * needed for this operation to be executed in parallel
3976 * @param searchFunction a function returning a non-null
3977 * result on success, else null
3978 * @param <U> the return type of the search function
3979 * @return a non-null result from applying the given search
3980 * function on each value, or null if none
3981 * @since 1.8
3982 */
3983 public <U> U searchValues(long parallelismThreshold,
3984 Function<? super V, ? extends U> searchFunction) {
3985 if (searchFunction == null) throw new NullPointerException();
3986 return new SearchValuesTask<K,V,U>
3987 (null, batchFor(parallelismThreshold), 0, 0, table,
3988 searchFunction, new AtomicReference<U>()).invoke();
3989 }
3990
3991 /**
3992 * Returns the result of accumulating all values using the
3993 * given reducer to combine values, or null if none.
3994 *
3995 * @param parallelismThreshold the (estimated) number of elements
3996 * needed for this operation to be executed in parallel
3997 * @param reducer a commutative associative combining function
3998 * @return the result of accumulating all values
3999 * @since 1.8
4000 */
4001 public V reduceValues(long parallelismThreshold,
4002 BiFunction<? super V, ? super V, ? extends V> reducer) {
4003 if (reducer == null) throw new NullPointerException();
4004 return new ReduceValuesTask<K,V>
4005 (null, batchFor(parallelismThreshold), 0, 0, table,
4006 null, reducer).invoke();
4007 }
4008
4009 /**
4010 * Returns the result of accumulating the given transformation
4011 * of all values using the given reducer to combine values, or
4012 * null if none.
4013 *
4014 * @param parallelismThreshold the (estimated) number of elements
4015 * needed for this operation to be executed in parallel
4016 * @param transformer a function returning the transformation
4017 * for an element, or null if there is no transformation (in
4018 * which case it is not combined)
4019 * @param reducer a commutative associative combining function
4020 * @param <U> the return type of the transformer
4021 * @return the result of accumulating the given transformation
4022 * of all values
4023 * @since 1.8
4024 */
4025 public <U> U reduceValues(long parallelismThreshold,
4026 Function<? super V, ? extends U> transformer,
4027 BiFunction<? super U, ? super U, ? extends U> reducer) {
4028 if (transformer == null || reducer == null)
4029 throw new NullPointerException();
4030 return new MapReduceValuesTask<K,V,U>
4031 (null, batchFor(parallelismThreshold), 0, 0, table,
4032 null, transformer, reducer).invoke();
4033 }
4034
4035 /**
4036 * Returns the result of accumulating the given transformation
4037 * of all values using the given reducer to combine values,
4038 * and the given basis as an identity value.
4039 *
4040 * @param parallelismThreshold the (estimated) number of elements
4041 * needed for this operation to be executed in parallel
4042 * @param transformer a function returning the transformation
4043 * for an element
4044 * @param basis the identity (initial default value) for the reduction
4045 * @param reducer a commutative associative combining function
4046 * @return the result of accumulating the given transformation
4047 * of all values
4048 * @since 1.8
4049 */
4050 public double reduceValuesToDouble(long parallelismThreshold,
4051 ToDoubleFunction<? super V> transformer,
4052 double basis,
4053 DoubleBinaryOperator reducer) {
4054 if (transformer == null || reducer == null)
4055 throw new NullPointerException();
4056 return new MapReduceValuesToDoubleTask<K,V>
4057 (null, batchFor(parallelismThreshold), 0, 0, table,
4058 null, transformer, basis, reducer).invoke();
4059 }
4060
4061 /**
4062 * Returns the result of accumulating the given transformation
4063 * of all values using the given reducer to combine values,
4064 * and the given basis as an identity value.
4065 *
4066 * @param parallelismThreshold the (estimated) number of elements
4067 * needed for this operation to be executed in parallel
4068 * @param transformer a function returning the transformation
4069 * for an element
4070 * @param basis the identity (initial default value) for the reduction
4071 * @param reducer a commutative associative combining function
4072 * @return the result of accumulating the given transformation
4073 * of all values
4074 * @since 1.8
4075 */
4076 public long reduceValuesToLong(long parallelismThreshold,
4077 ToLongFunction<? super V> transformer,
4078 long basis,
4079 LongBinaryOperator reducer) {
4080 if (transformer == null || reducer == null)
4081 throw new NullPointerException();
4082 return new MapReduceValuesToLongTask<K,V>
4083 (null, batchFor(parallelismThreshold), 0, 0, table,
4084 null, transformer, basis, reducer).invoke();
4085 }
4086
4087 /**
4088 * Returns the result of accumulating the given transformation
4089 * of all values using the given reducer to combine values,
4090 * and the given basis as an identity value.
4091 *
4092 * @param parallelismThreshold the (estimated) number of elements
4093 * needed for this operation to be executed in parallel
4094 * @param transformer a function returning the transformation
4095 * for an element
4096 * @param basis the identity (initial default value) for the reduction
4097 * @param reducer a commutative associative combining function
4098 * @return the result of accumulating the given transformation
4099 * of all values
4100 * @since 1.8
4101 */
4102 public int reduceValuesToInt(long parallelismThreshold,
4103 ToIntFunction<? super V> transformer,
4104 int basis,
4105 IntBinaryOperator reducer) {
4106 if (transformer == null || reducer == null)
4107 throw new NullPointerException();
4108 return new MapReduceValuesToIntTask<K,V>
4109 (null, batchFor(parallelismThreshold), 0, 0, table,
4110 null, transformer, basis, reducer).invoke();
4111 }
4112
4113 /**
4114 * Performs the given action for each entry.
4115 *
4116 * @param parallelismThreshold the (estimated) number of elements
4117 * needed for this operation to be executed in parallel
4118 * @param action the action
4119 * @since 1.8
4120 */
4121 public void forEachEntry(long parallelismThreshold,
4122 Consumer<? super Map.Entry<K,V>> action) {
4123 if (action == null) throw new NullPointerException();
4124 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4125 action).invoke();
4126 }
4127
4128 /**
4129 * Performs the given action for each non-null transformation
4130 * of each entry.
4131 *
4132 * @param parallelismThreshold the (estimated) number of elements
4133 * needed for this operation to be executed in parallel
4134 * @param transformer a function returning the transformation
4135 * for an element, or null if there is no transformation (in
4136 * which case the action is not applied)
4137 * @param action the action
4138 * @param <U> the return type of the transformer
4139 * @since 1.8
4140 */
4141 public <U> void forEachEntry(long parallelismThreshold,
4142 Function<Map.Entry<K,V>, ? extends U> transformer,
4143 Consumer<? super U> action) {
4144 if (transformer == null || action == null)
4145 throw new NullPointerException();
4146 new ForEachTransformedEntryTask<K,V,U>
4147 (null, batchFor(parallelismThreshold), 0, 0, table,
4148 transformer, action).invoke();
4149 }
4150
4151 /**
4152 * Returns a non-null result from applying the given search
4153 * function on each entry, or null if none. Upon success,
4154 * further element processing is suppressed and the results of
4155 * any other parallel invocations of the search function are
4156 * ignored.
4157 *
4158 * @param parallelismThreshold the (estimated) number of elements
4159 * needed for this operation to be executed in parallel
4160 * @param searchFunction a function returning a non-null
4161 * result on success, else null
4162 * @param <U> the return type of the search function
4163 * @return a non-null result from applying the given search
4164 * function on each entry, or null if none
4165 * @since 1.8
4166 */
4167 public <U> U searchEntries(long parallelismThreshold,
4168 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4169 if (searchFunction == null) throw new NullPointerException();
4170 return new SearchEntriesTask<K,V,U>
4171 (null, batchFor(parallelismThreshold), 0, 0, table,
4172 searchFunction, new AtomicReference<U>()).invoke();
4173 }
4174
4175 /**
4176 * Returns the result of accumulating all entries using the
4177 * given reducer to combine values, or null if none.
4178 *
4179 * @param parallelismThreshold the (estimated) number of elements
4180 * needed for this operation to be executed in parallel
4181 * @param reducer a commutative associative combining function
4182 * @return the result of accumulating all entries
4183 * @since 1.8
4184 */
4185 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4186 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4187 if (reducer == null) throw new NullPointerException();
4188 return new ReduceEntriesTask<K,V>
4189 (null, batchFor(parallelismThreshold), 0, 0, table,
4190 null, reducer).invoke();
4191 }
4192
4193 /**
4194 * Returns the result of accumulating the given transformation
4195 * of all entries using the given reducer to combine values,
4196 * or null if none.
4197 *
4198 * @param parallelismThreshold the (estimated) number of elements
4199 * needed for this operation to be executed in parallel
4200 * @param transformer a function returning the transformation
4201 * for an element, or null if there is no transformation (in
4202 * which case it is not combined)
4203 * @param reducer a commutative associative combining function
4204 * @param <U> the return type of the transformer
4205 * @return the result of accumulating the given transformation
4206 * of all entries
4207 * @since 1.8
4208 */
4209 public <U> U reduceEntries(long parallelismThreshold,
4210 Function<Map.Entry<K,V>, ? extends U> transformer,
4211 BiFunction<? super U, ? super U, ? extends U> reducer) {
4212 if (transformer == null || reducer == null)
4213 throw new NullPointerException();
4214 return new MapReduceEntriesTask<K,V,U>
4215 (null, batchFor(parallelismThreshold), 0, 0, table,
4216 null, transformer, reducer).invoke();
4217 }
4218
4219 /**
4220 * Returns the result of accumulating the given transformation
4221 * of all entries using the given reducer to combine values,
4222 * and the given basis as an identity value.
4223 *
4224 * @param parallelismThreshold the (estimated) number of elements
4225 * needed for this operation to be executed in parallel
4226 * @param transformer a function returning the transformation
4227 * for an element
4228 * @param basis the identity (initial default value) for the reduction
4229 * @param reducer a commutative associative combining function
4230 * @return the result of accumulating the given transformation
4231 * of all entries
4232 * @since 1.8
4233 */
4234 public double reduceEntriesToDouble(long parallelismThreshold,
4235 ToDoubleFunction<Map.Entry<K,V>> transformer,
4236 double basis,
4237 DoubleBinaryOperator reducer) {
4238 if (transformer == null || reducer == null)
4239 throw new NullPointerException();
4240 return new MapReduceEntriesToDoubleTask<K,V>
4241 (null, batchFor(parallelismThreshold), 0, 0, table,
4242 null, transformer, basis, reducer).invoke();
4243 }
4244
4245 /**
4246 * Returns the result of accumulating the given transformation
4247 * of all entries using the given reducer to combine values,
4248 * and the given basis as an identity value.
4249 *
4250 * @param parallelismThreshold the (estimated) number of elements
4251 * needed for this operation to be executed in parallel
4252 * @param transformer a function returning the transformation
4253 * for an element
4254 * @param basis the identity (initial default value) for the reduction
4255 * @param reducer a commutative associative combining function
4256 * @return the result of accumulating the given transformation
4257 * of all entries
4258 * @since 1.8
4259 */
4260 public long reduceEntriesToLong(long parallelismThreshold,
4261 ToLongFunction<Map.Entry<K,V>> transformer,
4262 long basis,
4263 LongBinaryOperator reducer) {
4264 if (transformer == null || reducer == null)
4265 throw new NullPointerException();
4266 return new MapReduceEntriesToLongTask<K,V>
4267 (null, batchFor(parallelismThreshold), 0, 0, table,
4268 null, transformer, basis, reducer).invoke();
4269 }
4270
4271 /**
4272 * Returns the result of accumulating the given transformation
4273 * of all entries using the given reducer to combine values,
4274 * and the given basis as an identity value.
4275 *
4276 * @param parallelismThreshold the (estimated) number of elements
4277 * needed for this operation to be executed in parallel
4278 * @param transformer a function returning the transformation
4279 * for an element
4280 * @param basis the identity (initial default value) for the reduction
4281 * @param reducer a commutative associative combining function
4282 * @return the result of accumulating the given transformation
4283 * of all entries
4284 * @since 1.8
4285 */
4286 public int reduceEntriesToInt(long parallelismThreshold,
4287 ToIntFunction<Map.Entry<K,V>> transformer,
4288 int basis,
4289 IntBinaryOperator reducer) {
4290 if (transformer == null || reducer == null)
4291 throw new NullPointerException();
4292 return new MapReduceEntriesToIntTask<K,V>
4293 (null, batchFor(parallelismThreshold), 0, 0, table,
4294 null, transformer, basis, reducer).invoke();
4295 }
4296
4297
4298 /* ----------------Views -------------- */
4299
4300 /**
4301 * Base class for views.
4302 */
4303 abstract static class CollectionView<K,V,E>
4304 implements Collection<E>, java.io.Serializable {
4305 private static final long serialVersionUID = 7249069246763182397L;
4306 final ConcurrentHashMap<K,V> map;
4307 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4308
4309 /**
4310 * Returns the map backing this view.
4311 *
4312 * @return the map backing this view
4313 */
4314 public ConcurrentHashMap<K,V> getMap() { return map; }
4315
4316 /**
4317 * Removes all of the elements from this view, by removing all
4318 * the mappings from the map backing this view.
4319 */
4320 public final void clear() { map.clear(); }
4321 public final int size() { return map.size(); }
4322 public final boolean isEmpty() { return map.isEmpty(); }
4323
4324 // implementations below rely on concrete classes supplying these
4325 // abstract methods
4326 /**
4327 * Returns an iterator over the elements in this collection.
4328 *
4329 * <p>The returned iterator is
4330 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4331 *
4332 * @return an iterator over the elements in this collection
4333 */
4334 public abstract Iterator<E> iterator();
4335 public abstract boolean contains(Object o);
4336 public abstract boolean remove(Object o);
4337
4338 private static final String oomeMsg = "Required array size too large";
4339
4340 public final Object[] toArray() {
4341 long sz = map.mappingCount();
4342 if (sz > MAX_ARRAY_SIZE)
4343 throw new OutOfMemoryError(oomeMsg);
4344 int n = (int)sz;
4345 Object[] r = new Object[n];
4346 int i = 0;
4347 for (E e : this) {
4348 if (i == n) {
4349 if (n >= MAX_ARRAY_SIZE)
4350 throw new OutOfMemoryError(oomeMsg);
4351 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4352 n = MAX_ARRAY_SIZE;
4353 else
4354 n += (n >>> 1) + 1;
4355 r = Arrays.copyOf(r, n);
4356 }
4357 r[i++] = e;
4358 }
4359 return (i == n) ? r : Arrays.copyOf(r, i);
4360 }
4361
4362 @SuppressWarnings("unchecked")
4363 public final <T> T[] toArray(T[] a) {
4364 long sz = map.mappingCount();
4365 if (sz > MAX_ARRAY_SIZE)
4366 throw new OutOfMemoryError(oomeMsg);
4367 int m = (int)sz;
4368 T[] r = (a.length >= m) ? a :
4369 (T[])java.lang.reflect.Array
4370 .newInstance(a.getClass().getComponentType(), m);
4371 int n = r.length;
4372 int i = 0;
4373 for (E e : this) {
4374 if (i == n) {
4375 if (n >= MAX_ARRAY_SIZE)
4376 throw new OutOfMemoryError(oomeMsg);
4377 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4378 n = MAX_ARRAY_SIZE;
4379 else
4380 n += (n >>> 1) + 1;
4381 r = Arrays.copyOf(r, n);
4382 }
4383 r[i++] = (T)e;
4384 }
4385 if (a == r && i < n) {
4386 r[i] = null; // null-terminate
4387 return r;
4388 }
4389 return (i == n) ? r : Arrays.copyOf(r, i);
4390 }
4391
4392 /**
4393 * Returns a string representation of this collection.
4394 * The string representation consists of the string representations
4395 * of the collection's elements in the order they are returned by
4396 * its iterator, enclosed in square brackets ({@code "[]"}).
4397 * Adjacent elements are separated by the characters {@code ", "}
4398 * (comma and space). Elements are converted to strings as by
4399 * {@link String#valueOf(Object)}.
4400 *
4401 * @return a string representation of this collection
4402 */
4403 public final String toString() {
4404 StringBuilder sb = new StringBuilder();
4405 sb.append('[');
4406 Iterator<E> it = iterator();
4407 if (it.hasNext()) {
4408 for (;;) {
4409 Object e = it.next();
4410 sb.append(e == this ? "(this Collection)" : e);
4411 if (!it.hasNext())
4412 break;
4413 sb.append(',').append(' ');
4414 }
4415 }
4416 return sb.append(']').toString();
4417 }
4418
4419 public final boolean containsAll(Collection<?> c) {
4420 if (c != this) {
4421 for (Object e : c) {
4422 if (e == null || !contains(e))
4423 return false;
4424 }
4425 }
4426 return true;
4427 }
4428
4429 public final boolean removeAll(Collection<?> c) {
4430 boolean modified = false;
4431 for (Iterator<E> it = iterator(); it.hasNext();) {
4432 if (c.contains(it.next())) {
4433 it.remove();
4434 modified = true;
4435 }
4436 }
4437 return modified;
4438 }
4439
4440 public final boolean retainAll(Collection<?> c) {
4441 boolean modified = false;
4442 for (Iterator<E> it = iterator(); it.hasNext();) {
4443 if (!c.contains(it.next())) {
4444 it.remove();
4445 modified = true;
4446 }
4447 }
4448 return modified;
4449 }
4450
4451 }
4452
4453 /**
4454 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4455 * which additions may optionally be enabled by mapping to a
4456 * common value. This class cannot be directly instantiated.
4457 * See {@link #keySet() keySet()},
4458 * {@link #keySet(Object) keySet(V)},
4459 * {@link #newKeySet() newKeySet()},
4460 * {@link #newKeySet(int) newKeySet(int)}.
4461 *
4462 * @since 1.8
4463 */
4464 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4465 implements Set<K>, java.io.Serializable {
4466 private static final long serialVersionUID = 7249069246763182397L;
4467 private final V value;
4468 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4469 super(map);
4470 this.value = value;
4471 }
4472
4473 /**
4474 * Returns the default mapped value for additions,
4475 * or {@code null} if additions are not supported.
4476 *
4477 * @return the default mapped value for additions, or {@code null}
4478 * if not supported
4479 */
4480 public V getMappedValue() { return value; }
4481
4482 /**
4483 * {@inheritDoc}
4484 * @throws NullPointerException if the specified key is null
4485 */
4486 public boolean contains(Object o) { return map.containsKey(o); }
4487
4488 /**
4489 * Removes the key from this map view, by removing the key (and its
4490 * corresponding value) from the backing map. This method does
4491 * nothing if the key is not in the map.
4492 *
4493 * @param o the key to be removed from the backing map
4494 * @return {@code true} if the backing map contained the specified key
4495 * @throws NullPointerException if the specified key is null
4496 */
4497 public boolean remove(Object o) { return map.remove(o) != null; }
4498
4499 /**
4500 * @return an iterator over the keys of the backing map
4501 */
4502 public Iterator<K> iterator() {
4503 Node<K,V>[] t;
4504 ConcurrentHashMap<K,V> m = map;
4505 int f = (t = m.table) == null ? 0 : t.length;
4506 return new KeyIterator<K,V>(t, f, 0, f, m);
4507 }
4508
4509 /**
4510 * Adds the specified key to this set view by mapping the key to
4511 * the default mapped value in the backing map, if defined.
4512 *
4513 * @param e key to be added
4514 * @return {@code true} if this set changed as a result of the call
4515 * @throws NullPointerException if the specified key is null
4516 * @throws UnsupportedOperationException if no default mapped value
4517 * for additions was provided
4518 */
4519 public boolean add(K e) {
4520 V v;
4521 if ((v = value) == null)
4522 throw new UnsupportedOperationException();
4523 return map.putVal(e, v, true) == null;
4524 }
4525
4526 /**
4527 * Adds all of the elements in the specified collection to this set,
4528 * as if by calling {@link #add} on each one.
4529 *
4530 * @param c the elements to be inserted into this set
4531 * @return {@code true} if this set changed as a result of the call
4532 * @throws NullPointerException if the collection or any of its
4533 * elements are {@code null}
4534 * @throws UnsupportedOperationException if no default mapped value
4535 * for additions was provided
4536 */
4537 public boolean addAll(Collection<? extends K> c) {
4538 boolean added = false;
4539 V v;
4540 if ((v = value) == null)
4541 throw new UnsupportedOperationException();
4542 for (K e : c) {
4543 if (map.putVal(e, v, true) == null)
4544 added = true;
4545 }
4546 return added;
4547 }
4548
4549 public int hashCode() {
4550 int h = 0;
4551 for (K e : this)
4552 h += e.hashCode();
4553 return h;
4554 }
4555
4556 public boolean equals(Object o) {
4557 Set<?> c;
4558 return ((o instanceof Set) &&
4559 ((c = (Set<?>)o) == this ||
4560 (containsAll(c) && c.containsAll(this))));
4561 }
4562
4563 public Spliterator<K> spliterator() {
4564 Node<K,V>[] t;
4565 ConcurrentHashMap<K,V> m = map;
4566 long n = m.sumCount();
4567 int f = (t = m.table) == null ? 0 : t.length;
4568 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4569 }
4570
4571 public void forEach(Consumer<? super K> action) {
4572 if (action == null) throw new NullPointerException();
4573 Node<K,V>[] t;
4574 if ((t = map.table) != null) {
4575 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4576 for (Node<K,V> p; (p = it.advance()) != null; )
4577 action.accept(p.key);
4578 }
4579 }
4580 }
4581
4582 /**
4583 * A view of a ConcurrentHashMap as a {@link Collection} of
4584 * values, in which additions are disabled. This class cannot be
4585 * directly instantiated. See {@link #values()}.
4586 */
4587 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4588 implements Collection<V>, java.io.Serializable {
4589 private static final long serialVersionUID = 2249069246763182397L;
4590 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4591 public final boolean contains(Object o) {
4592 return map.containsValue(o);
4593 }
4594
4595 public final boolean remove(Object o) {
4596 if (o != null) {
4597 for (Iterator<V> it = iterator(); it.hasNext();) {
4598 if (o.equals(it.next())) {
4599 it.remove();
4600 return true;
4601 }
4602 }
4603 }
4604 return false;
4605 }
4606
4607 public final Iterator<V> iterator() {
4608 ConcurrentHashMap<K,V> m = map;
4609 Node<K,V>[] t;
4610 int f = (t = m.table) == null ? 0 : t.length;
4611 return new ValueIterator<K,V>(t, f, 0, f, m);
4612 }
4613
4614 public final boolean add(V e) {
4615 throw new UnsupportedOperationException();
4616 }
4617 public final boolean addAll(Collection<? extends V> c) {
4618 throw new UnsupportedOperationException();
4619 }
4620
4621 public Spliterator<V> spliterator() {
4622 Node<K,V>[] t;
4623 ConcurrentHashMap<K,V> m = map;
4624 long n = m.sumCount();
4625 int f = (t = m.table) == null ? 0 : t.length;
4626 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4627 }
4628
4629 public void forEach(Consumer<? super V> action) {
4630 if (action == null) throw new NullPointerException();
4631 Node<K,V>[] t;
4632 if ((t = map.table) != null) {
4633 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4634 for (Node<K,V> p; (p = it.advance()) != null; )
4635 action.accept(p.val);
4636 }
4637 }
4638 }
4639
4640 /**
4641 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4642 * entries. This class cannot be directly instantiated. See
4643 * {@link #entrySet()}.
4644 */
4645 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4646 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4647 private static final long serialVersionUID = 2249069246763182397L;
4648 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4649
4650 public boolean contains(Object o) {
4651 Object k, v, r; Map.Entry<?,?> e;
4652 return ((o instanceof Map.Entry) &&
4653 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4654 (r = map.get(k)) != null &&
4655 (v = e.getValue()) != null &&
4656 (v == r || v.equals(r)));
4657 }
4658
4659 public boolean remove(Object o) {
4660 Object k, v; Map.Entry<?,?> e;
4661 return ((o instanceof Map.Entry) &&
4662 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4663 (v = e.getValue()) != null &&
4664 map.remove(k, v));
4665 }
4666
4667 /**
4668 * @return an iterator over the entries of the backing map
4669 */
4670 public Iterator<Map.Entry<K,V>> iterator() {
4671 ConcurrentHashMap<K,V> m = map;
4672 Node<K,V>[] t;
4673 int f = (t = m.table) == null ? 0 : t.length;
4674 return new EntryIterator<K,V>(t, f, 0, f, m);
4675 }
4676
4677 public boolean add(Entry<K,V> e) {
4678 return map.putVal(e.getKey(), e.getValue(), false) == null;
4679 }
4680
4681 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4682 boolean added = false;
4683 for (Entry<K,V> e : c) {
4684 if (add(e))
4685 added = true;
4686 }
4687 return added;
4688 }
4689
4690 public final int hashCode() {
4691 int h = 0;
4692 Node<K,V>[] t;
4693 if ((t = map.table) != null) {
4694 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4695 for (Node<K,V> p; (p = it.advance()) != null; ) {
4696 h += p.hashCode();
4697 }
4698 }
4699 return h;
4700 }
4701
4702 public final boolean equals(Object o) {
4703 Set<?> c;
4704 return ((o instanceof Set) &&
4705 ((c = (Set<?>)o) == this ||
4706 (containsAll(c) && c.containsAll(this))));
4707 }
4708
4709 public Spliterator<Map.Entry<K,V>> spliterator() {
4710 Node<K,V>[] t;
4711 ConcurrentHashMap<K,V> m = map;
4712 long n = m.sumCount();
4713 int f = (t = m.table) == null ? 0 : t.length;
4714 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4715 }
4716
4717 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4718 if (action == null) throw new NullPointerException();
4719 Node<K,V>[] t;
4720 if ((t = map.table) != null) {
4721 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4722 for (Node<K,V> p; (p = it.advance()) != null; )
4723 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4724 }
4725 }
4726
4727 }
4728
4729 // -------------------------------------------------------
4730
4731 /**
4732 * Base class for bulk tasks. Repeats some fields and code from
4733 * class Traverser, because we need to subclass CountedCompleter.
4734 */
4735 @SuppressWarnings("serial")
4736 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4737 Node<K,V>[] tab; // same as Traverser
4738 Node<K,V> next;
4739 TableStack<K,V> stack, spare;
4740 int index;
4741 int baseIndex;
4742 int baseLimit;
4743 final int baseSize;
4744 int batch; // split control
4745
4746 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4747 super(par);
4748 this.batch = b;
4749 this.index = this.baseIndex = i;
4750 if ((this.tab = t) == null)
4751 this.baseSize = this.baseLimit = 0;
4752 else if (par == null)
4753 this.baseSize = this.baseLimit = t.length;
4754 else {
4755 this.baseLimit = f;
4756 this.baseSize = par.baseSize;
4757 }
4758 }
4759
4760 /**
4761 * Same as Traverser version
4762 */
4763 final Node<K,V> advance() {
4764 Node<K,V> e;
4765 if ((e = next) != null)
4766 e = e.next;
4767 for (;;) {
4768 Node<K,V>[] t; int i, n;
4769 if (e != null)
4770 return next = e;
4771 if (baseIndex >= baseLimit || (t = tab) == null ||
4772 (n = t.length) <= (i = index) || i < 0)
4773 return next = null;
4774 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4775 if (e instanceof ForwardingNode) {
4776 tab = ((ForwardingNode<K,V>)e).nextTable;
4777 e = null;
4778 pushState(t, i, n);
4779 continue;
4780 }
4781 else if (e instanceof TreeBin)
4782 e = ((TreeBin<K,V>)e).first;
4783 else
4784 e = null;
4785 }
4786 if (stack != null)
4787 recoverState(n);
4788 else if ((index = i + baseSize) >= n)
4789 index = ++baseIndex;
4790 }
4791 }
4792
4793 private void pushState(Node<K,V>[] t, int i, int n) {
4794 TableStack<K,V> s = spare;
4795 if (s != null)
4796 spare = s.next;
4797 else
4798 s = new TableStack<K,V>();
4799 s.tab = t;
4800 s.length = n;
4801 s.index = i;
4802 s.next = stack;
4803 stack = s;
4804 }
4805
4806 private void recoverState(int n) {
4807 TableStack<K,V> s; int len;
4808 while ((s = stack) != null && (index += (len = s.length)) >= n) {
4809 n = len;
4810 index = s.index;
4811 tab = s.tab;
4812 s.tab = null;
4813 TableStack<K,V> next = s.next;
4814 s.next = spare; // save for reuse
4815 stack = next;
4816 spare = s;
4817 }
4818 if (s == null && (index += baseSize) >= n)
4819 index = ++baseIndex;
4820 }
4821 }
4822
4823 /*
4824 * Task classes. Coded in a regular but ugly format/style to
4825 * simplify checks that each variant differs in the right way from
4826 * others. The null screenings exist because compilers cannot tell
4827 * that we've already null-checked task arguments, so we force
4828 * simplest hoisted bypass to help avoid convoluted traps.
4829 */
4830 @SuppressWarnings("serial")
4831 static final class ForEachKeyTask<K,V>
4832 extends BulkTask<K,V,Void> {
4833 final Consumer<? super K> action;
4834 ForEachKeyTask
4835 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4836 Consumer<? super K> action) {
4837 super(p, b, i, f, t);
4838 this.action = action;
4839 }
4840 public final void compute() {
4841 final Consumer<? super K> action;
4842 if ((action = this.action) != null) {
4843 for (int i = baseIndex, f, h; batch > 0 &&
4844 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4845 addToPendingCount(1);
4846 new ForEachKeyTask<K,V>
4847 (this, batch >>>= 1, baseLimit = h, f, tab,
4848 action).fork();
4849 }
4850 for (Node<K,V> p; (p = advance()) != null;)
4851 action.accept(p.key);
4852 propagateCompletion();
4853 }
4854 }
4855 }
4856
4857 @SuppressWarnings("serial")
4858 static final class ForEachValueTask<K,V>
4859 extends BulkTask<K,V,Void> {
4860 final Consumer<? super V> action;
4861 ForEachValueTask
4862 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4863 Consumer<? super V> action) {
4864 super(p, b, i, f, t);
4865 this.action = action;
4866 }
4867 public final void compute() {
4868 final Consumer<? super V> action;
4869 if ((action = this.action) != null) {
4870 for (int i = baseIndex, f, h; batch > 0 &&
4871 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4872 addToPendingCount(1);
4873 new ForEachValueTask<K,V>
4874 (this, batch >>>= 1, baseLimit = h, f, tab,
4875 action).fork();
4876 }
4877 for (Node<K,V> p; (p = advance()) != null;)
4878 action.accept(p.val);
4879 propagateCompletion();
4880 }
4881 }
4882 }
4883
4884 @SuppressWarnings("serial")
4885 static final class ForEachEntryTask<K,V>
4886 extends BulkTask<K,V,Void> {
4887 final Consumer<? super Entry<K,V>> action;
4888 ForEachEntryTask
4889 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4890 Consumer<? super Entry<K,V>> action) {
4891 super(p, b, i, f, t);
4892 this.action = action;
4893 }
4894 public final void compute() {
4895 final Consumer<? super Entry<K,V>> action;
4896 if ((action = this.action) != null) {
4897 for (int i = baseIndex, f, h; batch > 0 &&
4898 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4899 addToPendingCount(1);
4900 new ForEachEntryTask<K,V>
4901 (this, batch >>>= 1, baseLimit = h, f, tab,
4902 action).fork();
4903 }
4904 for (Node<K,V> p; (p = advance()) != null; )
4905 action.accept(p);
4906 propagateCompletion();
4907 }
4908 }
4909 }
4910
4911 @SuppressWarnings("serial")
4912 static final class ForEachMappingTask<K,V>
4913 extends BulkTask<K,V,Void> {
4914 final BiConsumer<? super K, ? super V> action;
4915 ForEachMappingTask
4916 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4917 BiConsumer<? super K,? super V> action) {
4918 super(p, b, i, f, t);
4919 this.action = action;
4920 }
4921 public final void compute() {
4922 final BiConsumer<? super K, ? super V> action;
4923 if ((action = this.action) != null) {
4924 for (int i = baseIndex, f, h; batch > 0 &&
4925 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4926 addToPendingCount(1);
4927 new ForEachMappingTask<K,V>
4928 (this, batch >>>= 1, baseLimit = h, f, tab,
4929 action).fork();
4930 }
4931 for (Node<K,V> p; (p = advance()) != null; )
4932 action.accept(p.key, p.val);
4933 propagateCompletion();
4934 }
4935 }
4936 }
4937
4938 @SuppressWarnings("serial")
4939 static final class ForEachTransformedKeyTask<K,V,U>
4940 extends BulkTask<K,V,Void> {
4941 final Function<? super K, ? extends U> transformer;
4942 final Consumer<? super U> action;
4943 ForEachTransformedKeyTask
4944 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4945 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4946 super(p, b, i, f, t);
4947 this.transformer = transformer; this.action = action;
4948 }
4949 public final void compute() {
4950 final Function<? super K, ? extends U> transformer;
4951 final Consumer<? super U> action;
4952 if ((transformer = this.transformer) != null &&
4953 (action = this.action) != null) {
4954 for (int i = baseIndex, f, h; batch > 0 &&
4955 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4956 addToPendingCount(1);
4957 new ForEachTransformedKeyTask<K,V,U>
4958 (this, batch >>>= 1, baseLimit = h, f, tab,
4959 transformer, action).fork();
4960 }
4961 for (Node<K,V> p; (p = advance()) != null; ) {
4962 U u;
4963 if ((u = transformer.apply(p.key)) != null)
4964 action.accept(u);
4965 }
4966 propagateCompletion();
4967 }
4968 }
4969 }
4970
4971 @SuppressWarnings("serial")
4972 static final class ForEachTransformedValueTask<K,V,U>
4973 extends BulkTask<K,V,Void> {
4974 final Function<? super V, ? extends U> transformer;
4975 final Consumer<? super U> action;
4976 ForEachTransformedValueTask
4977 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4978 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
4979 super(p, b, i, f, t);
4980 this.transformer = transformer; this.action = action;
4981 }
4982 public final void compute() {
4983 final Function<? super V, ? extends U> transformer;
4984 final Consumer<? super U> action;
4985 if ((transformer = this.transformer) != null &&
4986 (action = this.action) != null) {
4987 for (int i = baseIndex, f, h; batch > 0 &&
4988 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4989 addToPendingCount(1);
4990 new ForEachTransformedValueTask<K,V,U>
4991 (this, batch >>>= 1, baseLimit = h, f, tab,
4992 transformer, action).fork();
4993 }
4994 for (Node<K,V> p; (p = advance()) != null; ) {
4995 U u;
4996 if ((u = transformer.apply(p.val)) != null)
4997 action.accept(u);
4998 }
4999 propagateCompletion();
5000 }
5001 }
5002 }
5003
5004 @SuppressWarnings("serial")
5005 static final class ForEachTransformedEntryTask<K,V,U>
5006 extends BulkTask<K,V,Void> {
5007 final Function<Map.Entry<K,V>, ? extends U> transformer;
5008 final Consumer<? super U> action;
5009 ForEachTransformedEntryTask
5010 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5011 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5012 super(p, b, i, f, t);
5013 this.transformer = transformer; this.action = action;
5014 }
5015 public final void compute() {
5016 final Function<Map.Entry<K,V>, ? extends U> transformer;
5017 final Consumer<? super U> action;
5018 if ((transformer = this.transformer) != null &&
5019 (action = this.action) != null) {
5020 for (int i = baseIndex, f, h; batch > 0 &&
5021 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5022 addToPendingCount(1);
5023 new ForEachTransformedEntryTask<K,V,U>
5024 (this, batch >>>= 1, baseLimit = h, f, tab,
5025 transformer, action).fork();
5026 }
5027 for (Node<K,V> p; (p = advance()) != null; ) {
5028 U u;
5029 if ((u = transformer.apply(p)) != null)
5030 action.accept(u);
5031 }
5032 propagateCompletion();
5033 }
5034 }
5035 }
5036
5037 @SuppressWarnings("serial")
5038 static final class ForEachTransformedMappingTask<K,V,U>
5039 extends BulkTask<K,V,Void> {
5040 final BiFunction<? super K, ? super V, ? extends U> transformer;
5041 final Consumer<? super U> action;
5042 ForEachTransformedMappingTask
5043 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5044 BiFunction<? super K, ? super V, ? extends U> transformer,
5045 Consumer<? super U> action) {
5046 super(p, b, i, f, t);
5047 this.transformer = transformer; this.action = action;
5048 }
5049 public final void compute() {
5050 final BiFunction<? super K, ? super V, ? extends U> transformer;
5051 final Consumer<? super U> action;
5052 if ((transformer = this.transformer) != null &&
5053 (action = this.action) != null) {
5054 for (int i = baseIndex, f, h; batch > 0 &&
5055 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5056 addToPendingCount(1);
5057 new ForEachTransformedMappingTask<K,V,U>
5058 (this, batch >>>= 1, baseLimit = h, f, tab,
5059 transformer, action).fork();
5060 }
5061 for (Node<K,V> p; (p = advance()) != null; ) {
5062 U u;
5063 if ((u = transformer.apply(p.key, p.val)) != null)
5064 action.accept(u);
5065 }
5066 propagateCompletion();
5067 }
5068 }
5069 }
5070
5071 @SuppressWarnings("serial")
5072 static final class SearchKeysTask<K,V,U>
5073 extends BulkTask<K,V,U> {
5074 final Function<? super K, ? extends U> searchFunction;
5075 final AtomicReference<U> result;
5076 SearchKeysTask
5077 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5078 Function<? super K, ? extends U> searchFunction,
5079 AtomicReference<U> result) {
5080 super(p, b, i, f, t);
5081 this.searchFunction = searchFunction; this.result = result;
5082 }
5083 public final U getRawResult() { return result.get(); }
5084 public final void compute() {
5085 final Function<? super K, ? extends U> searchFunction;
5086 final AtomicReference<U> result;
5087 if ((searchFunction = this.searchFunction) != null &&
5088 (result = this.result) != null) {
5089 for (int i = baseIndex, f, h; batch > 0 &&
5090 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5091 if (result.get() != null)
5092 return;
5093 addToPendingCount(1);
5094 new SearchKeysTask<K,V,U>
5095 (this, batch >>>= 1, baseLimit = h, f, tab,
5096 searchFunction, result).fork();
5097 }
5098 while (result.get() == null) {
5099 U u;
5100 Node<K,V> p;
5101 if ((p = advance()) == null) {
5102 propagateCompletion();
5103 break;
5104 }
5105 if ((u = searchFunction.apply(p.key)) != null) {
5106 if (result.compareAndSet(null, u))
5107 quietlyCompleteRoot();
5108 break;
5109 }
5110 }
5111 }
5112 }
5113 }
5114
5115 @SuppressWarnings("serial")
5116 static final class SearchValuesTask<K,V,U>
5117 extends BulkTask<K,V,U> {
5118 final Function<? super V, ? extends U> searchFunction;
5119 final AtomicReference<U> result;
5120 SearchValuesTask
5121 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5122 Function<? super V, ? extends U> searchFunction,
5123 AtomicReference<U> result) {
5124 super(p, b, i, f, t);
5125 this.searchFunction = searchFunction; this.result = result;
5126 }
5127 public final U getRawResult() { return result.get(); }
5128 public final void compute() {
5129 final Function<? super V, ? extends U> searchFunction;
5130 final AtomicReference<U> result;
5131 if ((searchFunction = this.searchFunction) != null &&
5132 (result = this.result) != null) {
5133 for (int i = baseIndex, f, h; batch > 0 &&
5134 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5135 if (result.get() != null)
5136 return;
5137 addToPendingCount(1);
5138 new SearchValuesTask<K,V,U>
5139 (this, batch >>>= 1, baseLimit = h, f, tab,
5140 searchFunction, result).fork();
5141 }
5142 while (result.get() == null) {
5143 U u;
5144 Node<K,V> p;
5145 if ((p = advance()) == null) {
5146 propagateCompletion();
5147 break;
5148 }
5149 if ((u = searchFunction.apply(p.val)) != null) {
5150 if (result.compareAndSet(null, u))
5151 quietlyCompleteRoot();
5152 break;
5153 }
5154 }
5155 }
5156 }
5157 }
5158
5159 @SuppressWarnings("serial")
5160 static final class SearchEntriesTask<K,V,U>
5161 extends BulkTask<K,V,U> {
5162 final Function<Entry<K,V>, ? extends U> searchFunction;
5163 final AtomicReference<U> result;
5164 SearchEntriesTask
5165 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5166 Function<Entry<K,V>, ? extends U> searchFunction,
5167 AtomicReference<U> result) {
5168 super(p, b, i, f, t);
5169 this.searchFunction = searchFunction; this.result = result;
5170 }
5171 public final U getRawResult() { return result.get(); }
5172 public final void compute() {
5173 final Function<Entry<K,V>, ? extends U> searchFunction;
5174 final AtomicReference<U> result;
5175 if ((searchFunction = this.searchFunction) != null &&
5176 (result = this.result) != null) {
5177 for (int i = baseIndex, f, h; batch > 0 &&
5178 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5179 if (result.get() != null)
5180 return;
5181 addToPendingCount(1);
5182 new SearchEntriesTask<K,V,U>
5183 (this, batch >>>= 1, baseLimit = h, f, tab,
5184 searchFunction, result).fork();
5185 }
5186 while (result.get() == null) {
5187 U u;
5188 Node<K,V> p;
5189 if ((p = advance()) == null) {
5190 propagateCompletion();
5191 break;
5192 }
5193 if ((u = searchFunction.apply(p)) != null) {
5194 if (result.compareAndSet(null, u))
5195 quietlyCompleteRoot();
5196 return;
5197 }
5198 }
5199 }
5200 }
5201 }
5202
5203 @SuppressWarnings("serial")
5204 static final class SearchMappingsTask<K,V,U>
5205 extends BulkTask<K,V,U> {
5206 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5207 final AtomicReference<U> result;
5208 SearchMappingsTask
5209 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5210 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5211 AtomicReference<U> result) {
5212 super(p, b, i, f, t);
5213 this.searchFunction = searchFunction; this.result = result;
5214 }
5215 public final U getRawResult() { return result.get(); }
5216 public final void compute() {
5217 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5218 final AtomicReference<U> result;
5219 if ((searchFunction = this.searchFunction) != null &&
5220 (result = this.result) != null) {
5221 for (int i = baseIndex, f, h; batch > 0 &&
5222 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5223 if (result.get() != null)
5224 return;
5225 addToPendingCount(1);
5226 new SearchMappingsTask<K,V,U>
5227 (this, batch >>>= 1, baseLimit = h, f, tab,
5228 searchFunction, result).fork();
5229 }
5230 while (result.get() == null) {
5231 U u;
5232 Node<K,V> p;
5233 if ((p = advance()) == null) {
5234 propagateCompletion();
5235 break;
5236 }
5237 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5238 if (result.compareAndSet(null, u))
5239 quietlyCompleteRoot();
5240 break;
5241 }
5242 }
5243 }
5244 }
5245 }
5246
5247 @SuppressWarnings("serial")
5248 static final class ReduceKeysTask<K,V>
5249 extends BulkTask<K,V,K> {
5250 final BiFunction<? super K, ? super K, ? extends K> reducer;
5251 K result;
5252 ReduceKeysTask<K,V> rights, nextRight;
5253 ReduceKeysTask
5254 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5255 ReduceKeysTask<K,V> nextRight,
5256 BiFunction<? super K, ? super K, ? extends K> reducer) {
5257 super(p, b, i, f, t); this.nextRight = nextRight;
5258 this.reducer = reducer;
5259 }
5260 public final K getRawResult() { return result; }
5261 public final void compute() {
5262 final BiFunction<? super K, ? super K, ? extends K> reducer;
5263 if ((reducer = this.reducer) != null) {
5264 for (int i = baseIndex, f, h; batch > 0 &&
5265 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5266 addToPendingCount(1);
5267 (rights = new ReduceKeysTask<K,V>
5268 (this, batch >>>= 1, baseLimit = h, f, tab,
5269 rights, reducer)).fork();
5270 }
5271 K r = null;
5272 for (Node<K,V> p; (p = advance()) != null; ) {
5273 K u = p.key;
5274 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5275 }
5276 result = r;
5277 CountedCompleter<?> c;
5278 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5279 @SuppressWarnings("unchecked")
5280 ReduceKeysTask<K,V>
5281 t = (ReduceKeysTask<K,V>)c,
5282 s = t.rights;
5283 while (s != null) {
5284 K tr, sr;
5285 if ((sr = s.result) != null)
5286 t.result = (((tr = t.result) == null) ? sr :
5287 reducer.apply(tr, sr));
5288 s = t.rights = s.nextRight;
5289 }
5290 }
5291 }
5292 }
5293 }
5294
5295 @SuppressWarnings("serial")
5296 static final class ReduceValuesTask<K,V>
5297 extends BulkTask<K,V,V> {
5298 final BiFunction<? super V, ? super V, ? extends V> reducer;
5299 V result;
5300 ReduceValuesTask<K,V> rights, nextRight;
5301 ReduceValuesTask
5302 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5303 ReduceValuesTask<K,V> nextRight,
5304 BiFunction<? super V, ? super V, ? extends V> reducer) {
5305 super(p, b, i, f, t); this.nextRight = nextRight;
5306 this.reducer = reducer;
5307 }
5308 public final V getRawResult() { return result; }
5309 public final void compute() {
5310 final BiFunction<? super V, ? super V, ? extends V> reducer;
5311 if ((reducer = this.reducer) != null) {
5312 for (int i = baseIndex, f, h; batch > 0 &&
5313 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5314 addToPendingCount(1);
5315 (rights = new ReduceValuesTask<K,V>
5316 (this, batch >>>= 1, baseLimit = h, f, tab,
5317 rights, reducer)).fork();
5318 }
5319 V r = null;
5320 for (Node<K,V> p; (p = advance()) != null; ) {
5321 V v = p.val;
5322 r = (r == null) ? v : reducer.apply(r, v);
5323 }
5324 result = r;
5325 CountedCompleter<?> c;
5326 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5327 @SuppressWarnings("unchecked")
5328 ReduceValuesTask<K,V>
5329 t = (ReduceValuesTask<K,V>)c,
5330 s = t.rights;
5331 while (s != null) {
5332 V tr, sr;
5333 if ((sr = s.result) != null)
5334 t.result = (((tr = t.result) == null) ? sr :
5335 reducer.apply(tr, sr));
5336 s = t.rights = s.nextRight;
5337 }
5338 }
5339 }
5340 }
5341 }
5342
5343 @SuppressWarnings("serial")
5344 static final class ReduceEntriesTask<K,V>
5345 extends BulkTask<K,V,Map.Entry<K,V>> {
5346 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5347 Map.Entry<K,V> result;
5348 ReduceEntriesTask<K,V> rights, nextRight;
5349 ReduceEntriesTask
5350 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5351 ReduceEntriesTask<K,V> nextRight,
5352 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5353 super(p, b, i, f, t); this.nextRight = nextRight;
5354 this.reducer = reducer;
5355 }
5356 public final Map.Entry<K,V> getRawResult() { return result; }
5357 public final void compute() {
5358 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5359 if ((reducer = this.reducer) != null) {
5360 for (int i = baseIndex, f, h; batch > 0 &&
5361 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5362 addToPendingCount(1);
5363 (rights = new ReduceEntriesTask<K,V>
5364 (this, batch >>>= 1, baseLimit = h, f, tab,
5365 rights, reducer)).fork();
5366 }
5367 Map.Entry<K,V> r = null;
5368 for (Node<K,V> p; (p = advance()) != null; )
5369 r = (r == null) ? p : reducer.apply(r, p);
5370 result = r;
5371 CountedCompleter<?> c;
5372 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5373 @SuppressWarnings("unchecked")
5374 ReduceEntriesTask<K,V>
5375 t = (ReduceEntriesTask<K,V>)c,
5376 s = t.rights;
5377 while (s != null) {
5378 Map.Entry<K,V> tr, sr;
5379 if ((sr = s.result) != null)
5380 t.result = (((tr = t.result) == null) ? sr :
5381 reducer.apply(tr, sr));
5382 s = t.rights = s.nextRight;
5383 }
5384 }
5385 }
5386 }
5387 }
5388
5389 @SuppressWarnings("serial")
5390 static final class MapReduceKeysTask<K,V,U>
5391 extends BulkTask<K,V,U> {
5392 final Function<? super K, ? extends U> transformer;
5393 final BiFunction<? super U, ? super U, ? extends U> reducer;
5394 U result;
5395 MapReduceKeysTask<K,V,U> rights, nextRight;
5396 MapReduceKeysTask
5397 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5398 MapReduceKeysTask<K,V,U> nextRight,
5399 Function<? super K, ? extends U> transformer,
5400 BiFunction<? super U, ? super U, ? extends U> reducer) {
5401 super(p, b, i, f, t); this.nextRight = nextRight;
5402 this.transformer = transformer;
5403 this.reducer = reducer;
5404 }
5405 public final U getRawResult() { return result; }
5406 public final void compute() {
5407 final Function<? super K, ? extends U> transformer;
5408 final BiFunction<? super U, ? super U, ? extends U> reducer;
5409 if ((transformer = this.transformer) != null &&
5410 (reducer = this.reducer) != null) {
5411 for (int i = baseIndex, f, h; batch > 0 &&
5412 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5413 addToPendingCount(1);
5414 (rights = new MapReduceKeysTask<K,V,U>
5415 (this, batch >>>= 1, baseLimit = h, f, tab,
5416 rights, transformer, reducer)).fork();
5417 }
5418 U r = null;
5419 for (Node<K,V> p; (p = advance()) != null; ) {
5420 U u;
5421 if ((u = transformer.apply(p.key)) != null)
5422 r = (r == null) ? u : reducer.apply(r, u);
5423 }
5424 result = r;
5425 CountedCompleter<?> c;
5426 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5427 @SuppressWarnings("unchecked")
5428 MapReduceKeysTask<K,V,U>
5429 t = (MapReduceKeysTask<K,V,U>)c,
5430 s = t.rights;
5431 while (s != null) {
5432 U tr, sr;
5433 if ((sr = s.result) != null)
5434 t.result = (((tr = t.result) == null) ? sr :
5435 reducer.apply(tr, sr));
5436 s = t.rights = s.nextRight;
5437 }
5438 }
5439 }
5440 }
5441 }
5442
5443 @SuppressWarnings("serial")
5444 static final class MapReduceValuesTask<K,V,U>
5445 extends BulkTask<K,V,U> {
5446 final Function<? super V, ? extends U> transformer;
5447 final BiFunction<? super U, ? super U, ? extends U> reducer;
5448 U result;
5449 MapReduceValuesTask<K,V,U> rights, nextRight;
5450 MapReduceValuesTask
5451 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5452 MapReduceValuesTask<K,V,U> nextRight,
5453 Function<? super V, ? extends U> transformer,
5454 BiFunction<? super U, ? super U, ? extends U> reducer) {
5455 super(p, b, i, f, t); this.nextRight = nextRight;
5456 this.transformer = transformer;
5457 this.reducer = reducer;
5458 }
5459 public final U getRawResult() { return result; }
5460 public final void compute() {
5461 final Function<? super V, ? extends U> transformer;
5462 final BiFunction<? super U, ? super U, ? extends U> reducer;
5463 if ((transformer = this.transformer) != null &&
5464 (reducer = this.reducer) != null) {
5465 for (int i = baseIndex, f, h; batch > 0 &&
5466 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5467 addToPendingCount(1);
5468 (rights = new MapReduceValuesTask<K,V,U>
5469 (this, batch >>>= 1, baseLimit = h, f, tab,
5470 rights, transformer, reducer)).fork();
5471 }
5472 U r = null;
5473 for (Node<K,V> p; (p = advance()) != null; ) {
5474 U u;
5475 if ((u = transformer.apply(p.val)) != null)
5476 r = (r == null) ? u : reducer.apply(r, u);
5477 }
5478 result = r;
5479 CountedCompleter<?> c;
5480 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5481 @SuppressWarnings("unchecked")
5482 MapReduceValuesTask<K,V,U>
5483 t = (MapReduceValuesTask<K,V,U>)c,
5484 s = t.rights;
5485 while (s != null) {
5486 U tr, sr;
5487 if ((sr = s.result) != null)
5488 t.result = (((tr = t.result) == null) ? sr :
5489 reducer.apply(tr, sr));
5490 s = t.rights = s.nextRight;
5491 }
5492 }
5493 }
5494 }
5495 }
5496
5497 @SuppressWarnings("serial")
5498 static final class MapReduceEntriesTask<K,V,U>
5499 extends BulkTask<K,V,U> {
5500 final Function<Map.Entry<K,V>, ? extends U> transformer;
5501 final BiFunction<? super U, ? super U, ? extends U> reducer;
5502 U result;
5503 MapReduceEntriesTask<K,V,U> rights, nextRight;
5504 MapReduceEntriesTask
5505 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5506 MapReduceEntriesTask<K,V,U> nextRight,
5507 Function<Map.Entry<K,V>, ? extends U> transformer,
5508 BiFunction<? super U, ? super U, ? extends U> reducer) {
5509 super(p, b, i, f, t); this.nextRight = nextRight;
5510 this.transformer = transformer;
5511 this.reducer = reducer;
5512 }
5513 public final U getRawResult() { return result; }
5514 public final void compute() {
5515 final Function<Map.Entry<K,V>, ? extends U> transformer;
5516 final BiFunction<? super U, ? super U, ? extends U> reducer;
5517 if ((transformer = this.transformer) != null &&
5518 (reducer = this.reducer) != null) {
5519 for (int i = baseIndex, f, h; batch > 0 &&
5520 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5521 addToPendingCount(1);
5522 (rights = new MapReduceEntriesTask<K,V,U>
5523 (this, batch >>>= 1, baseLimit = h, f, tab,
5524 rights, transformer, reducer)).fork();
5525 }
5526 U r = null;
5527 for (Node<K,V> p; (p = advance()) != null; ) {
5528 U u;
5529 if ((u = transformer.apply(p)) != null)
5530 r = (r == null) ? u : reducer.apply(r, u);
5531 }
5532 result = r;
5533 CountedCompleter<?> c;
5534 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5535 @SuppressWarnings("unchecked")
5536 MapReduceEntriesTask<K,V,U>
5537 t = (MapReduceEntriesTask<K,V,U>)c,
5538 s = t.rights;
5539 while (s != null) {
5540 U tr, sr;
5541 if ((sr = s.result) != null)
5542 t.result = (((tr = t.result) == null) ? sr :
5543 reducer.apply(tr, sr));
5544 s = t.rights = s.nextRight;
5545 }
5546 }
5547 }
5548 }
5549 }
5550
5551 @SuppressWarnings("serial")
5552 static final class MapReduceMappingsTask<K,V,U>
5553 extends BulkTask<K,V,U> {
5554 final BiFunction<? super K, ? super V, ? extends U> transformer;
5555 final BiFunction<? super U, ? super U, ? extends U> reducer;
5556 U result;
5557 MapReduceMappingsTask<K,V,U> rights, nextRight;
5558 MapReduceMappingsTask
5559 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5560 MapReduceMappingsTask<K,V,U> nextRight,
5561 BiFunction<? super K, ? super V, ? extends U> transformer,
5562 BiFunction<? super U, ? super U, ? extends U> reducer) {
5563 super(p, b, i, f, t); this.nextRight = nextRight;
5564 this.transformer = transformer;
5565 this.reducer = reducer;
5566 }
5567 public final U getRawResult() { return result; }
5568 public final void compute() {
5569 final BiFunction<? super K, ? super V, ? extends U> transformer;
5570 final BiFunction<? super U, ? super U, ? extends U> reducer;
5571 if ((transformer = this.transformer) != null &&
5572 (reducer = this.reducer) != null) {
5573 for (int i = baseIndex, f, h; batch > 0 &&
5574 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5575 addToPendingCount(1);
5576 (rights = new MapReduceMappingsTask<K,V,U>
5577 (this, batch >>>= 1, baseLimit = h, f, tab,
5578 rights, transformer, reducer)).fork();
5579 }
5580 U r = null;
5581 for (Node<K,V> p; (p = advance()) != null; ) {
5582 U u;
5583 if ((u = transformer.apply(p.key, p.val)) != null)
5584 r = (r == null) ? u : reducer.apply(r, u);
5585 }
5586 result = r;
5587 CountedCompleter<?> c;
5588 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5589 @SuppressWarnings("unchecked")
5590 MapReduceMappingsTask<K,V,U>
5591 t = (MapReduceMappingsTask<K,V,U>)c,
5592 s = t.rights;
5593 while (s != null) {
5594 U tr, sr;
5595 if ((sr = s.result) != null)
5596 t.result = (((tr = t.result) == null) ? sr :
5597 reducer.apply(tr, sr));
5598 s = t.rights = s.nextRight;
5599 }
5600 }
5601 }
5602 }
5603 }
5604
5605 @SuppressWarnings("serial")
5606 static final class MapReduceKeysToDoubleTask<K,V>
5607 extends BulkTask<K,V,Double> {
5608 final ToDoubleFunction<? super K> transformer;
5609 final DoubleBinaryOperator reducer;
5610 final double basis;
5611 double result;
5612 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5613 MapReduceKeysToDoubleTask
5614 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5615 MapReduceKeysToDoubleTask<K,V> nextRight,
5616 ToDoubleFunction<? super K> transformer,
5617 double basis,
5618 DoubleBinaryOperator reducer) {
5619 super(p, b, i, f, t); this.nextRight = nextRight;
5620 this.transformer = transformer;
5621 this.basis = basis; this.reducer = reducer;
5622 }
5623 public final Double getRawResult() { return result; }
5624 public final void compute() {
5625 final ToDoubleFunction<? super K> transformer;
5626 final DoubleBinaryOperator reducer;
5627 if ((transformer = this.transformer) != null &&
5628 (reducer = this.reducer) != null) {
5629 double r = this.basis;
5630 for (int i = baseIndex, f, h; batch > 0 &&
5631 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5632 addToPendingCount(1);
5633 (rights = new MapReduceKeysToDoubleTask<K,V>
5634 (this, batch >>>= 1, baseLimit = h, f, tab,
5635 rights, transformer, r, reducer)).fork();
5636 }
5637 for (Node<K,V> p; (p = advance()) != null; )
5638 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5639 result = r;
5640 CountedCompleter<?> c;
5641 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5642 @SuppressWarnings("unchecked")
5643 MapReduceKeysToDoubleTask<K,V>
5644 t = (MapReduceKeysToDoubleTask<K,V>)c,
5645 s = t.rights;
5646 while (s != null) {
5647 t.result = reducer.applyAsDouble(t.result, s.result);
5648 s = t.rights = s.nextRight;
5649 }
5650 }
5651 }
5652 }
5653 }
5654
5655 @SuppressWarnings("serial")
5656 static final class MapReduceValuesToDoubleTask<K,V>
5657 extends BulkTask<K,V,Double> {
5658 final ToDoubleFunction<? super V> transformer;
5659 final DoubleBinaryOperator reducer;
5660 final double basis;
5661 double result;
5662 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5663 MapReduceValuesToDoubleTask
5664 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5665 MapReduceValuesToDoubleTask<K,V> nextRight,
5666 ToDoubleFunction<? super V> transformer,
5667 double basis,
5668 DoubleBinaryOperator reducer) {
5669 super(p, b, i, f, t); this.nextRight = nextRight;
5670 this.transformer = transformer;
5671 this.basis = basis; this.reducer = reducer;
5672 }
5673 public final Double getRawResult() { return result; }
5674 public final void compute() {
5675 final ToDoubleFunction<? super V> transformer;
5676 final DoubleBinaryOperator reducer;
5677 if ((transformer = this.transformer) != null &&
5678 (reducer = this.reducer) != null) {
5679 double r = this.basis;
5680 for (int i = baseIndex, f, h; batch > 0 &&
5681 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5682 addToPendingCount(1);
5683 (rights = new MapReduceValuesToDoubleTask<K,V>
5684 (this, batch >>>= 1, baseLimit = h, f, tab,
5685 rights, transformer, r, reducer)).fork();
5686 }
5687 for (Node<K,V> p; (p = advance()) != null; )
5688 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5689 result = r;
5690 CountedCompleter<?> c;
5691 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5692 @SuppressWarnings("unchecked")
5693 MapReduceValuesToDoubleTask<K,V>
5694 t = (MapReduceValuesToDoubleTask<K,V>)c,
5695 s = t.rights;
5696 while (s != null) {
5697 t.result = reducer.applyAsDouble(t.result, s.result);
5698 s = t.rights = s.nextRight;
5699 }
5700 }
5701 }
5702 }
5703 }
5704
5705 @SuppressWarnings("serial")
5706 static final class MapReduceEntriesToDoubleTask<K,V>
5707 extends BulkTask<K,V,Double> {
5708 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5709 final DoubleBinaryOperator reducer;
5710 final double basis;
5711 double result;
5712 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5713 MapReduceEntriesToDoubleTask
5714 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5715 MapReduceEntriesToDoubleTask<K,V> nextRight,
5716 ToDoubleFunction<Map.Entry<K,V>> transformer,
5717 double basis,
5718 DoubleBinaryOperator reducer) {
5719 super(p, b, i, f, t); this.nextRight = nextRight;
5720 this.transformer = transformer;
5721 this.basis = basis; this.reducer = reducer;
5722 }
5723 public final Double getRawResult() { return result; }
5724 public final void compute() {
5725 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5726 final DoubleBinaryOperator reducer;
5727 if ((transformer = this.transformer) != null &&
5728 (reducer = this.reducer) != null) {
5729 double r = this.basis;
5730 for (int i = baseIndex, f, h; batch > 0 &&
5731 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5732 addToPendingCount(1);
5733 (rights = new MapReduceEntriesToDoubleTask<K,V>
5734 (this, batch >>>= 1, baseLimit = h, f, tab,
5735 rights, transformer, r, reducer)).fork();
5736 }
5737 for (Node<K,V> p; (p = advance()) != null; )
5738 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5739 result = r;
5740 CountedCompleter<?> c;
5741 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5742 @SuppressWarnings("unchecked")
5743 MapReduceEntriesToDoubleTask<K,V>
5744 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5745 s = t.rights;
5746 while (s != null) {
5747 t.result = reducer.applyAsDouble(t.result, s.result);
5748 s = t.rights = s.nextRight;
5749 }
5750 }
5751 }
5752 }
5753 }
5754
5755 @SuppressWarnings("serial")
5756 static final class MapReduceMappingsToDoubleTask<K,V>
5757 extends BulkTask<K,V,Double> {
5758 final ToDoubleBiFunction<? super K, ? super V> transformer;
5759 final DoubleBinaryOperator reducer;
5760 final double basis;
5761 double result;
5762 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5763 MapReduceMappingsToDoubleTask
5764 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5765 MapReduceMappingsToDoubleTask<K,V> nextRight,
5766 ToDoubleBiFunction<? super K, ? super V> transformer,
5767 double basis,
5768 DoubleBinaryOperator reducer) {
5769 super(p, b, i, f, t); this.nextRight = nextRight;
5770 this.transformer = transformer;
5771 this.basis = basis; this.reducer = reducer;
5772 }
5773 public final Double getRawResult() { return result; }
5774 public final void compute() {
5775 final ToDoubleBiFunction<? super K, ? super V> transformer;
5776 final DoubleBinaryOperator reducer;
5777 if ((transformer = this.transformer) != null &&
5778 (reducer = this.reducer) != null) {
5779 double r = this.basis;
5780 for (int i = baseIndex, f, h; batch > 0 &&
5781 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5782 addToPendingCount(1);
5783 (rights = new MapReduceMappingsToDoubleTask<K,V>
5784 (this, batch >>>= 1, baseLimit = h, f, tab,
5785 rights, transformer, r, reducer)).fork();
5786 }
5787 for (Node<K,V> p; (p = advance()) != null; )
5788 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5789 result = r;
5790 CountedCompleter<?> c;
5791 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5792 @SuppressWarnings("unchecked")
5793 MapReduceMappingsToDoubleTask<K,V>
5794 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5795 s = t.rights;
5796 while (s != null) {
5797 t.result = reducer.applyAsDouble(t.result, s.result);
5798 s = t.rights = s.nextRight;
5799 }
5800 }
5801 }
5802 }
5803 }
5804
5805 @SuppressWarnings("serial")
5806 static final class MapReduceKeysToLongTask<K,V>
5807 extends BulkTask<K,V,Long> {
5808 final ToLongFunction<? super K> transformer;
5809 final LongBinaryOperator reducer;
5810 final long basis;
5811 long result;
5812 MapReduceKeysToLongTask<K,V> rights, nextRight;
5813 MapReduceKeysToLongTask
5814 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5815 MapReduceKeysToLongTask<K,V> nextRight,
5816 ToLongFunction<? super K> transformer,
5817 long basis,
5818 LongBinaryOperator reducer) {
5819 super(p, b, i, f, t); this.nextRight = nextRight;
5820 this.transformer = transformer;
5821 this.basis = basis; this.reducer = reducer;
5822 }
5823 public final Long getRawResult() { return result; }
5824 public final void compute() {
5825 final ToLongFunction<? super K> transformer;
5826 final LongBinaryOperator reducer;
5827 if ((transformer = this.transformer) != null &&
5828 (reducer = this.reducer) != null) {
5829 long r = this.basis;
5830 for (int i = baseIndex, f, h; batch > 0 &&
5831 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5832 addToPendingCount(1);
5833 (rights = new MapReduceKeysToLongTask<K,V>
5834 (this, batch >>>= 1, baseLimit = h, f, tab,
5835 rights, transformer, r, reducer)).fork();
5836 }
5837 for (Node<K,V> p; (p = advance()) != null; )
5838 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5839 result = r;
5840 CountedCompleter<?> c;
5841 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5842 @SuppressWarnings("unchecked")
5843 MapReduceKeysToLongTask<K,V>
5844 t = (MapReduceKeysToLongTask<K,V>)c,
5845 s = t.rights;
5846 while (s != null) {
5847 t.result = reducer.applyAsLong(t.result, s.result);
5848 s = t.rights = s.nextRight;
5849 }
5850 }
5851 }
5852 }
5853 }
5854
5855 @SuppressWarnings("serial")
5856 static final class MapReduceValuesToLongTask<K,V>
5857 extends BulkTask<K,V,Long> {
5858 final ToLongFunction<? super V> transformer;
5859 final LongBinaryOperator reducer;
5860 final long basis;
5861 long result;
5862 MapReduceValuesToLongTask<K,V> rights, nextRight;
5863 MapReduceValuesToLongTask
5864 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5865 MapReduceValuesToLongTask<K,V> nextRight,
5866 ToLongFunction<? super V> transformer,
5867 long basis,
5868 LongBinaryOperator reducer) {
5869 super(p, b, i, f, t); this.nextRight = nextRight;
5870 this.transformer = transformer;
5871 this.basis = basis; this.reducer = reducer;
5872 }
5873 public final Long getRawResult() { return result; }
5874 public final void compute() {
5875 final ToLongFunction<? super V> transformer;
5876 final LongBinaryOperator reducer;
5877 if ((transformer = this.transformer) != null &&
5878 (reducer = this.reducer) != null) {
5879 long r = this.basis;
5880 for (int i = baseIndex, f, h; batch > 0 &&
5881 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5882 addToPendingCount(1);
5883 (rights = new MapReduceValuesToLongTask<K,V>
5884 (this, batch >>>= 1, baseLimit = h, f, tab,
5885 rights, transformer, r, reducer)).fork();
5886 }
5887 for (Node<K,V> p; (p = advance()) != null; )
5888 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5889 result = r;
5890 CountedCompleter<?> c;
5891 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5892 @SuppressWarnings("unchecked")
5893 MapReduceValuesToLongTask<K,V>
5894 t = (MapReduceValuesToLongTask<K,V>)c,
5895 s = t.rights;
5896 while (s != null) {
5897 t.result = reducer.applyAsLong(t.result, s.result);
5898 s = t.rights = s.nextRight;
5899 }
5900 }
5901 }
5902 }
5903 }
5904
5905 @SuppressWarnings("serial")
5906 static final class MapReduceEntriesToLongTask<K,V>
5907 extends BulkTask<K,V,Long> {
5908 final ToLongFunction<Map.Entry<K,V>> transformer;
5909 final LongBinaryOperator reducer;
5910 final long basis;
5911 long result;
5912 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5913 MapReduceEntriesToLongTask
5914 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5915 MapReduceEntriesToLongTask<K,V> nextRight,
5916 ToLongFunction<Map.Entry<K,V>> transformer,
5917 long basis,
5918 LongBinaryOperator reducer) {
5919 super(p, b, i, f, t); this.nextRight = nextRight;
5920 this.transformer = transformer;
5921 this.basis = basis; this.reducer = reducer;
5922 }
5923 public final Long getRawResult() { return result; }
5924 public final void compute() {
5925 final ToLongFunction<Map.Entry<K,V>> transformer;
5926 final LongBinaryOperator reducer;
5927 if ((transformer = this.transformer) != null &&
5928 (reducer = this.reducer) != null) {
5929 long r = this.basis;
5930 for (int i = baseIndex, f, h; batch > 0 &&
5931 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5932 addToPendingCount(1);
5933 (rights = new MapReduceEntriesToLongTask<K,V>
5934 (this, batch >>>= 1, baseLimit = h, f, tab,
5935 rights, transformer, r, reducer)).fork();
5936 }
5937 for (Node<K,V> p; (p = advance()) != null; )
5938 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5939 result = r;
5940 CountedCompleter<?> c;
5941 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5942 @SuppressWarnings("unchecked")
5943 MapReduceEntriesToLongTask<K,V>
5944 t = (MapReduceEntriesToLongTask<K,V>)c,
5945 s = t.rights;
5946 while (s != null) {
5947 t.result = reducer.applyAsLong(t.result, s.result);
5948 s = t.rights = s.nextRight;
5949 }
5950 }
5951 }
5952 }
5953 }
5954
5955 @SuppressWarnings("serial")
5956 static final class MapReduceMappingsToLongTask<K,V>
5957 extends BulkTask<K,V,Long> {
5958 final ToLongBiFunction<? super K, ? super V> transformer;
5959 final LongBinaryOperator reducer;
5960 final long basis;
5961 long result;
5962 MapReduceMappingsToLongTask<K,V> rights, nextRight;
5963 MapReduceMappingsToLongTask
5964 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5965 MapReduceMappingsToLongTask<K,V> nextRight,
5966 ToLongBiFunction<? super K, ? super V> transformer,
5967 long basis,
5968 LongBinaryOperator reducer) {
5969 super(p, b, i, f, t); this.nextRight = nextRight;
5970 this.transformer = transformer;
5971 this.basis = basis; this.reducer = reducer;
5972 }
5973 public final Long getRawResult() { return result; }
5974 public final void compute() {
5975 final ToLongBiFunction<? super K, ? super V> transformer;
5976 final LongBinaryOperator reducer;
5977 if ((transformer = this.transformer) != null &&
5978 (reducer = this.reducer) != null) {
5979 long r = this.basis;
5980 for (int i = baseIndex, f, h; batch > 0 &&
5981 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5982 addToPendingCount(1);
5983 (rights = new MapReduceMappingsToLongTask<K,V>
5984 (this, batch >>>= 1, baseLimit = h, f, tab,
5985 rights, transformer, r, reducer)).fork();
5986 }
5987 for (Node<K,V> p; (p = advance()) != null; )
5988 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
5989 result = r;
5990 CountedCompleter<?> c;
5991 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5992 @SuppressWarnings("unchecked")
5993 MapReduceMappingsToLongTask<K,V>
5994 t = (MapReduceMappingsToLongTask<K,V>)c,
5995 s = t.rights;
5996 while (s != null) {
5997 t.result = reducer.applyAsLong(t.result, s.result);
5998 s = t.rights = s.nextRight;
5999 }
6000 }
6001 }
6002 }
6003 }
6004
6005 @SuppressWarnings("serial")
6006 static final class MapReduceKeysToIntTask<K,V>
6007 extends BulkTask<K,V,Integer> {
6008 final ToIntFunction<? super K> transformer;
6009 final IntBinaryOperator reducer;
6010 final int basis;
6011 int result;
6012 MapReduceKeysToIntTask<K,V> rights, nextRight;
6013 MapReduceKeysToIntTask
6014 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6015 MapReduceKeysToIntTask<K,V> nextRight,
6016 ToIntFunction<? super K> transformer,
6017 int basis,
6018 IntBinaryOperator reducer) {
6019 super(p, b, i, f, t); this.nextRight = nextRight;
6020 this.transformer = transformer;
6021 this.basis = basis; this.reducer = reducer;
6022 }
6023 public final Integer getRawResult() { return result; }
6024 public final void compute() {
6025 final ToIntFunction<? super K> transformer;
6026 final IntBinaryOperator reducer;
6027 if ((transformer = this.transformer) != null &&
6028 (reducer = this.reducer) != null) {
6029 int r = this.basis;
6030 for (int i = baseIndex, f, h; batch > 0 &&
6031 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6032 addToPendingCount(1);
6033 (rights = new MapReduceKeysToIntTask<K,V>
6034 (this, batch >>>= 1, baseLimit = h, f, tab,
6035 rights, transformer, r, reducer)).fork();
6036 }
6037 for (Node<K,V> p; (p = advance()) != null; )
6038 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6039 result = r;
6040 CountedCompleter<?> c;
6041 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6042 @SuppressWarnings("unchecked")
6043 MapReduceKeysToIntTask<K,V>
6044 t = (MapReduceKeysToIntTask<K,V>)c,
6045 s = t.rights;
6046 while (s != null) {
6047 t.result = reducer.applyAsInt(t.result, s.result);
6048 s = t.rights = s.nextRight;
6049 }
6050 }
6051 }
6052 }
6053 }
6054
6055 @SuppressWarnings("serial")
6056 static final class MapReduceValuesToIntTask<K,V>
6057 extends BulkTask<K,V,Integer> {
6058 final ToIntFunction<? super V> transformer;
6059 final IntBinaryOperator reducer;
6060 final int basis;
6061 int result;
6062 MapReduceValuesToIntTask<K,V> rights, nextRight;
6063 MapReduceValuesToIntTask
6064 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6065 MapReduceValuesToIntTask<K,V> nextRight,
6066 ToIntFunction<? super V> transformer,
6067 int basis,
6068 IntBinaryOperator reducer) {
6069 super(p, b, i, f, t); this.nextRight = nextRight;
6070 this.transformer = transformer;
6071 this.basis = basis; this.reducer = reducer;
6072 }
6073 public final Integer getRawResult() { return result; }
6074 public final void compute() {
6075 final ToIntFunction<? super V> transformer;
6076 final IntBinaryOperator reducer;
6077 if ((transformer = this.transformer) != null &&
6078 (reducer = this.reducer) != null) {
6079 int r = this.basis;
6080 for (int i = baseIndex, f, h; batch > 0 &&
6081 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6082 addToPendingCount(1);
6083 (rights = new MapReduceValuesToIntTask<K,V>
6084 (this, batch >>>= 1, baseLimit = h, f, tab,
6085 rights, transformer, r, reducer)).fork();
6086 }
6087 for (Node<K,V> p; (p = advance()) != null; )
6088 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6089 result = r;
6090 CountedCompleter<?> c;
6091 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6092 @SuppressWarnings("unchecked")
6093 MapReduceValuesToIntTask<K,V>
6094 t = (MapReduceValuesToIntTask<K,V>)c,
6095 s = t.rights;
6096 while (s != null) {
6097 t.result = reducer.applyAsInt(t.result, s.result);
6098 s = t.rights = s.nextRight;
6099 }
6100 }
6101 }
6102 }
6103 }
6104
6105 @SuppressWarnings("serial")
6106 static final class MapReduceEntriesToIntTask<K,V>
6107 extends BulkTask<K,V,Integer> {
6108 final ToIntFunction<Map.Entry<K,V>> transformer;
6109 final IntBinaryOperator reducer;
6110 final int basis;
6111 int result;
6112 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6113 MapReduceEntriesToIntTask
6114 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6115 MapReduceEntriesToIntTask<K,V> nextRight,
6116 ToIntFunction<Map.Entry<K,V>> transformer,
6117 int basis,
6118 IntBinaryOperator reducer) {
6119 super(p, b, i, f, t); this.nextRight = nextRight;
6120 this.transformer = transformer;
6121 this.basis = basis; this.reducer = reducer;
6122 }
6123 public final Integer getRawResult() { return result; }
6124 public final void compute() {
6125 final ToIntFunction<Map.Entry<K,V>> transformer;
6126 final IntBinaryOperator reducer;
6127 if ((transformer = this.transformer) != null &&
6128 (reducer = this.reducer) != null) {
6129 int r = this.basis;
6130 for (int i = baseIndex, f, h; batch > 0 &&
6131 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6132 addToPendingCount(1);
6133 (rights = new MapReduceEntriesToIntTask<K,V>
6134 (this, batch >>>= 1, baseLimit = h, f, tab,
6135 rights, transformer, r, reducer)).fork();
6136 }
6137 for (Node<K,V> p; (p = advance()) != null; )
6138 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6139 result = r;
6140 CountedCompleter<?> c;
6141 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6142 @SuppressWarnings("unchecked")
6143 MapReduceEntriesToIntTask<K,V>
6144 t = (MapReduceEntriesToIntTask<K,V>)c,
6145 s = t.rights;
6146 while (s != null) {
6147 t.result = reducer.applyAsInt(t.result, s.result);
6148 s = t.rights = s.nextRight;
6149 }
6150 }
6151 }
6152 }
6153 }
6154
6155 @SuppressWarnings("serial")
6156 static final class MapReduceMappingsToIntTask<K,V>
6157 extends BulkTask<K,V,Integer> {
6158 final ToIntBiFunction<? super K, ? super V> transformer;
6159 final IntBinaryOperator reducer;
6160 final int basis;
6161 int result;
6162 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6163 MapReduceMappingsToIntTask
6164 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6165 MapReduceMappingsToIntTask<K,V> nextRight,
6166 ToIntBiFunction<? super K, ? super V> transformer,
6167 int basis,
6168 IntBinaryOperator reducer) {
6169 super(p, b, i, f, t); this.nextRight = nextRight;
6170 this.transformer = transformer;
6171 this.basis = basis; this.reducer = reducer;
6172 }
6173 public final Integer getRawResult() { return result; }
6174 public final void compute() {
6175 final ToIntBiFunction<? super K, ? super V> transformer;
6176 final IntBinaryOperator reducer;
6177 if ((transformer = this.transformer) != null &&
6178 (reducer = this.reducer) != null) {
6179 int r = this.basis;
6180 for (int i = baseIndex, f, h; batch > 0 &&
6181 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6182 addToPendingCount(1);
6183 (rights = new MapReduceMappingsToIntTask<K,V>
6184 (this, batch >>>= 1, baseLimit = h, f, tab,
6185 rights, transformer, r, reducer)).fork();
6186 }
6187 for (Node<K,V> p; (p = advance()) != null; )
6188 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6189 result = r;
6190 CountedCompleter<?> c;
6191 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6192 @SuppressWarnings("unchecked")
6193 MapReduceMappingsToIntTask<K,V>
6194 t = (MapReduceMappingsToIntTask<K,V>)c,
6195 s = t.rights;
6196 while (s != null) {
6197 t.result = reducer.applyAsInt(t.result, s.result);
6198 s = t.rights = s.nextRight;
6199 }
6200 }
6201 }
6202 }
6203 }
6204
6205 // Unsafe mechanics
6206 private static final sun.misc.Unsafe U;
6207 private static final long SIZECTL;
6208 private static final long TRANSFERINDEX;
6209 private static final long BASECOUNT;
6210 private static final long CELLSBUSY;
6211 private static final long CELLVALUE;
6212 private static final long ABASE;
6213 private static final int ASHIFT;
6214
6215 static {
6216 try {
6217 U = sun.misc.Unsafe.getUnsafe();
6218 Class<?> k = ConcurrentHashMap.class;
6219 SIZECTL = U.objectFieldOffset
6220 (k.getDeclaredField("sizeCtl"));
6221 TRANSFERINDEX = U.objectFieldOffset
6222 (k.getDeclaredField("transferIndex"));
6223 BASECOUNT = U.objectFieldOffset
6224 (k.getDeclaredField("baseCount"));
6225 CELLSBUSY = U.objectFieldOffset
6226 (k.getDeclaredField("cellsBusy"));
6227 Class<?> ck = CounterCell.class;
6228 CELLVALUE = U.objectFieldOffset
6229 (ck.getDeclaredField("value"));
6230 Class<?> ak = Node[].class;
6231 ABASE = U.arrayBaseOffset(ak);
6232 int scale = U.arrayIndexScale(ak);
6233 if ((scale & (scale - 1)) != 0)
6234 throw new Error("data type scale not a power of two");
6235 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6236 } catch (Exception e) {
6237 throw new Error(e);
6238 }
6239 }
6240 }