ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.252
Committed: Sun Dec 1 13:38:58 2013 UTC (10 years, 6 months ago) by dl
Branch: MAIN
Changes since 1.251: +78 -35 lines
Log Message:
avoid overlapping resize generations; fix RW mask

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.io.Serializable;
11 import java.lang.reflect.ParameterizedType;
12 import java.lang.reflect.Type;
13 import java.util.AbstractMap;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Comparator;
17 import java.util.Enumeration;
18 import java.util.HashMap;
19 import java.util.Hashtable;
20 import java.util.Iterator;
21 import java.util.Map;
22 import java.util.NoSuchElementException;
23 import java.util.Set;
24 import java.util.Spliterator;
25 import java.util.concurrent.ConcurrentMap;
26 import java.util.concurrent.ForkJoinPool;
27 import java.util.concurrent.atomic.AtomicReference;
28 import java.util.concurrent.locks.LockSupport;
29 import java.util.concurrent.locks.ReentrantLock;
30 import java.util.function.BiConsumer;
31 import java.util.function.BiFunction;
32 import java.util.function.BinaryOperator;
33 import java.util.function.Consumer;
34 import java.util.function.DoubleBinaryOperator;
35 import java.util.function.Function;
36 import java.util.function.IntBinaryOperator;
37 import java.util.function.LongBinaryOperator;
38 import java.util.function.ToDoubleBiFunction;
39 import java.util.function.ToDoubleFunction;
40 import java.util.function.ToIntBiFunction;
41 import java.util.function.ToIntFunction;
42 import java.util.function.ToLongBiFunction;
43 import java.util.function.ToLongFunction;
44 import java.util.stream.Stream;
45
46 /**
47 * A hash table supporting full concurrency of retrievals and
48 * high expected concurrency for updates. This class obeys the
49 * same functional specification as {@link java.util.Hashtable}, and
50 * includes versions of methods corresponding to each method of
51 * {@code Hashtable}. However, even though all operations are
52 * thread-safe, retrieval operations do <em>not</em> entail locking,
53 * and there is <em>not</em> any support for locking the entire table
54 * in a way that prevents all access. This class is fully
55 * interoperable with {@code Hashtable} in programs that rely on its
56 * thread safety but not on its synchronization details.
57 *
58 * <p>Retrieval operations (including {@code get}) generally do not
59 * block, so may overlap with update operations (including {@code put}
60 * and {@code remove}). Retrievals reflect the results of the most
61 * recently <em>completed</em> update operations holding upon their
62 * onset. (More formally, an update operation for a given key bears a
63 * <em>happens-before</em> relation with any (non-null) retrieval for
64 * that key reporting the updated value.) For aggregate operations
65 * such as {@code putAll} and {@code clear}, concurrent retrievals may
66 * reflect insertion or removal of only some entries. Similarly,
67 * Iterators, Spliterators and Enumerations return elements reflecting the
68 * state of the hash table at some point at or since the creation of the
69 * iterator/enumeration. They do <em>not</em> throw {@link
70 * java.util.ConcurrentModificationException ConcurrentModificationException}.
71 * However, iterators are designed to be used by only one thread at a time.
72 * Bear in mind that the results of aggregate status methods including
73 * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
74 * useful only when a map is not undergoing concurrent updates in other threads.
75 * Otherwise the results of these methods reflect transient states
76 * that may be adequate for monitoring or estimation purposes, but not
77 * for program control.
78 *
79 * <p>The table is dynamically expanded when there are too many
80 * collisions (i.e., keys that have distinct hash codes but fall into
81 * the same slot modulo the table size), with the expected average
82 * effect of maintaining roughly two bins per mapping (corresponding
83 * to a 0.75 load factor threshold for resizing). There may be much
84 * variance around this average as mappings are added and removed, but
85 * overall, this maintains a commonly accepted time/space tradeoff for
86 * hash tables. However, resizing this or any other kind of hash
87 * table may be a relatively slow operation. When possible, it is a
88 * good idea to provide a size estimate as an optional {@code
89 * initialCapacity} constructor argument. An additional optional
90 * {@code loadFactor} constructor argument provides a further means of
91 * customizing initial table capacity by specifying the table density
92 * to be used in calculating the amount of space to allocate for the
93 * given number of elements. Also, for compatibility with previous
94 * versions of this class, constructors may optionally specify an
95 * expected {@code concurrencyLevel} as an additional hint for
96 * internal sizing. Note that using many keys with exactly the same
97 * {@code hashCode()} is a sure way to slow down performance of any
98 * hash table. To ameliorate impact, when keys are {@link Comparable},
99 * this class may use comparison order among keys to help break ties.
100 *
101 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
102 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
103 * (using {@link #keySet(Object)} when only keys are of interest, and the
104 * mapped values are (perhaps transiently) not used or all take the
105 * same mapping value.
106 *
107 * <p>A ConcurrentHashMap can be used as scalable frequency map (a
108 * form of histogram or multiset) by using {@link
109 * java.util.concurrent.atomic.LongAdder} values and initializing via
110 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
111 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
112 * {@code freqs.computeIfAbsent(k -> new LongAdder()).increment();}
113 *
114 * <p>This class and its views and iterators implement all of the
115 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
116 * interfaces.
117 *
118 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
119 * does <em>not</em> allow {@code null} to be used as a key or value.
120 *
121 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
122 * operations that, unlike most {@link Stream} methods, are designed
123 * to be safely, and often sensibly, applied even with maps that are
124 * being concurrently updated by other threads; for example, when
125 * computing a snapshot summary of the values in a shared registry.
126 * There are three kinds of operation, each with four forms, accepting
127 * functions with Keys, Values, Entries, and (Key, Value) arguments
128 * and/or return values. Because the elements of a ConcurrentHashMap
129 * are not ordered in any particular way, and may be processed in
130 * different orders in different parallel executions, the correctness
131 * of supplied functions should not depend on any ordering, or on any
132 * other objects or values that may transiently change while
133 * computation is in progress; and except for forEach actions, should
134 * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
135 * objects do not support method {@code setValue}.
136 *
137 * <ul>
138 * <li> forEach: Perform a given action on each element.
139 * A variant form applies a given transformation on each element
140 * before performing the action.</li>
141 *
142 * <li> search: Return the first available non-null result of
143 * applying a given function on each element; skipping further
144 * search when a result is found.</li>
145 *
146 * <li> reduce: Accumulate each element. The supplied reduction
147 * function cannot rely on ordering (more formally, it should be
148 * both associative and commutative). There are five variants:
149 *
150 * <ul>
151 *
152 * <li> Plain reductions. (There is not a form of this method for
153 * (key, value) function arguments since there is no corresponding
154 * return type.)</li>
155 *
156 * <li> Mapped reductions that accumulate the results of a given
157 * function applied to each element.</li>
158 *
159 * <li> Reductions to scalar doubles, longs, and ints, using a
160 * given basis value.</li>
161 *
162 * </ul>
163 * </li>
164 * </ul>
165 *
166 * <p>These bulk operations accept a {@code parallelismThreshold}
167 * argument. Methods proceed sequentially if the current map size is
168 * estimated to be less than the given threshold. Using a value of
169 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
170 * of {@code 1} results in maximal parallelism by partitioning into
171 * enough subtasks to fully utilize the {@link
172 * ForkJoinPool#commonPool()} that is used for all parallel
173 * computations. Normally, you would initially choose one of these
174 * extreme values, and then measure performance of using in-between
175 * values that trade off overhead versus throughput.
176 *
177 * <p>The concurrency properties of bulk operations follow
178 * from those of ConcurrentHashMap: Any non-null result returned
179 * from {@code get(key)} and related access methods bears a
180 * happens-before relation with the associated insertion or
181 * update. The result of any bulk operation reflects the
182 * composition of these per-element relations (but is not
183 * necessarily atomic with respect to the map as a whole unless it
184 * is somehow known to be quiescent). Conversely, because keys
185 * and values in the map are never null, null serves as a reliable
186 * atomic indicator of the current lack of any result. To
187 * maintain this property, null serves as an implicit basis for
188 * all non-scalar reduction operations. For the double, long, and
189 * int versions, the basis should be one that, when combined with
190 * any other value, returns that other value (more formally, it
191 * should be the identity element for the reduction). Most common
192 * reductions have these properties; for example, computing a sum
193 * with basis 0 or a minimum with basis MAX_VALUE.
194 *
195 * <p>Search and transformation functions provided as arguments
196 * should similarly return null to indicate the lack of any result
197 * (in which case it is not used). In the case of mapped
198 * reductions, this also enables transformations to serve as
199 * filters, returning null (or, in the case of primitive
200 * specializations, the identity basis) if the element should not
201 * be combined. You can create compound transformations and
202 * filterings by composing them yourself under this "null means
203 * there is nothing there now" rule before using them in search or
204 * reduce operations.
205 *
206 * <p>Methods accepting and/or returning Entry arguments maintain
207 * key-value associations. They may be useful for example when
208 * finding the key for the greatest value. Note that "plain" Entry
209 * arguments can be supplied using {@code new
210 * AbstractMap.SimpleEntry(k,v)}.
211 *
212 * <p>Bulk operations may complete abruptly, throwing an
213 * exception encountered in the application of a supplied
214 * function. Bear in mind when handling such exceptions that other
215 * concurrently executing functions could also have thrown
216 * exceptions, or would have done so if the first exception had
217 * not occurred.
218 *
219 * <p>Speedups for parallel compared to sequential forms are common
220 * but not guaranteed. Parallel operations involving brief functions
221 * on small maps may execute more slowly than sequential forms if the
222 * underlying work to parallelize the computation is more expensive
223 * than the computation itself. Similarly, parallelization may not
224 * lead to much actual parallelism if all processors are busy
225 * performing unrelated tasks.
226 *
227 * <p>All arguments to all task methods must be non-null.
228 *
229 * <p>This class is a member of the
230 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
231 * Java Collections Framework</a>.
232 *
233 * @since 1.5
234 * @author Doug Lea
235 * @param <K> the type of keys maintained by this map
236 * @param <V> the type of mapped values
237 */
238 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
239 implements ConcurrentMap<K,V>, Serializable {
240 private static final long serialVersionUID = 7249069246763182397L;
241
242 /*
243 * Overview:
244 *
245 * The primary design goal of this hash table is to maintain
246 * concurrent readability (typically method get(), but also
247 * iterators and related methods) while minimizing update
248 * contention. Secondary goals are to keep space consumption about
249 * the same or better than java.util.HashMap, and to support high
250 * initial insertion rates on an empty table by many threads.
251 *
252 * This map usually acts as a binned (bucketed) hash table. Each
253 * key-value mapping is held in a Node. Most nodes are instances
254 * of the basic Node class with hash, key, value, and next
255 * fields. However, various subclasses exist: TreeNodes are
256 * arranged in balanced trees, not lists. TreeBins hold the roots
257 * of sets of TreeNodes. ForwardingNodes are placed at the heads
258 * of bins during resizing. ReservationNodes are used as
259 * placeholders while establishing values in computeIfAbsent and
260 * related methods. The types TreeBin, ForwardingNode, and
261 * ReservationNode do not hold normal user keys, values, or
262 * hashes, and are readily distinguishable during search etc
263 * because they have negative hash fields and null key and value
264 * fields. (These special nodes are either uncommon or transient,
265 * so the impact of carrying around some unused fields is
266 * insignificant.)
267 *
268 * The table is lazily initialized to a power-of-two size upon the
269 * first insertion. Each bin in the table normally contains a
270 * list of Nodes (most often, the list has only zero or one Node).
271 * Table accesses require volatile/atomic reads, writes, and
272 * CASes. Because there is no other way to arrange this without
273 * adding further indirections, we use intrinsics
274 * (sun.misc.Unsafe) operations.
275 *
276 * We use the top (sign) bit of Node hash fields for control
277 * purposes -- it is available anyway because of addressing
278 * constraints. Nodes with negative hash fields are specially
279 * handled or ignored in map methods.
280 *
281 * Insertion (via put or its variants) of the first node in an
282 * empty bin is performed by just CASing it to the bin. This is
283 * by far the most common case for put operations under most
284 * key/hash distributions. Other update operations (insert,
285 * delete, and replace) require locks. We do not want to waste
286 * the space required to associate a distinct lock object with
287 * each bin, so instead use the first node of a bin list itself as
288 * a lock. Locking support for these locks relies on builtin
289 * "synchronized" monitors.
290 *
291 * Using the first node of a list as a lock does not by itself
292 * suffice though: When a node is locked, any update must first
293 * validate that it is still the first node after locking it, and
294 * retry if not. Because new nodes are always appended to lists,
295 * once a node is first in a bin, it remains first until deleted
296 * or the bin becomes invalidated (upon resizing).
297 *
298 * The main disadvantage of per-bin locks is that other update
299 * operations on other nodes in a bin list protected by the same
300 * lock can stall, for example when user equals() or mapping
301 * functions take a long time. However, statistically, under
302 * random hash codes, this is not a common problem. Ideally, the
303 * frequency of nodes in bins follows a Poisson distribution
304 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
305 * parameter of about 0.5 on average, given the resizing threshold
306 * of 0.75, although with a large variance because of resizing
307 * granularity. Ignoring variance, the expected occurrences of
308 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
309 * first values are:
310 *
311 * 0: 0.60653066
312 * 1: 0.30326533
313 * 2: 0.07581633
314 * 3: 0.01263606
315 * 4: 0.00157952
316 * 5: 0.00015795
317 * 6: 0.00001316
318 * 7: 0.00000094
319 * 8: 0.00000006
320 * more: less than 1 in ten million
321 *
322 * Lock contention probability for two threads accessing distinct
323 * elements is roughly 1 / (8 * #elements) under random hashes.
324 *
325 * Actual hash code distributions encountered in practice
326 * sometimes deviate significantly from uniform randomness. This
327 * includes the case when N > (1<<30), so some keys MUST collide.
328 * Similarly for dumb or hostile usages in which multiple keys are
329 * designed to have identical hash codes or ones that differs only
330 * in masked-out high bits. So we use a secondary strategy that
331 * applies when the number of nodes in a bin exceeds a
332 * threshold. These TreeBins use a balanced tree to hold nodes (a
333 * specialized form of red-black trees), bounding search time to
334 * O(log N). Each search step in a TreeBin is at least twice as
335 * slow as in a regular list, but given that N cannot exceed
336 * (1<<64) (before running out of addresses) this bounds search
337 * steps, lock hold times, etc, to reasonable constants (roughly
338 * 100 nodes inspected per operation worst case) so long as keys
339 * are Comparable (which is very common -- String, Long, etc).
340 * TreeBin nodes (TreeNodes) also maintain the same "next"
341 * traversal pointers as regular nodes, so can be traversed in
342 * iterators in the same way.
343 *
344 * The table is resized when occupancy exceeds a percentage
345 * threshold (nominally, 0.75, but see below). Any thread
346 * noticing an overfull bin may assist in resizing after the
347 * initiating thread allocates and sets up the replacement array.
348 * However, rather than stalling, these other threads may proceed
349 * with insertions etc. The use of TreeBins shields us from the
350 * worst case effects of overfilling while resizes are in
351 * progress. Resizing proceeds by transferring bins, one by one,
352 * from the table to the next table. However, threads claim small
353 * blocks of indices to transfer (via field transferIndex) before
354 * doing so, reducing contention. A generation stamp in field
355 * sizeCtl ensures that resizings do not overlap. Because we are
356 * using power-of-two expansion, the elements from each bin must
357 * either stay at same index, or move with a power of two
358 * offset. We eliminate unnecessary node creation by catching
359 * cases where old nodes can be reused because their next fields
360 * won't change. On average, only about one-sixth of them need
361 * cloning when a table doubles. The nodes they replace will be
362 * garbage collectable as soon as they are no longer referenced by
363 * any reader thread that may be in the midst of concurrently
364 * traversing table. Upon transfer, the old table bin contains
365 * only a special forwarding node (with hash field "MOVED") that
366 * contains the next table as its key. On encountering a
367 * forwarding node, access and update operations restart, using
368 * the new table.
369 *
370 * Each bin transfer requires its bin lock, which can stall
371 * waiting for locks while resizing. However, because other
372 * threads can join in and help resize rather than contend for
373 * locks, average aggregate waits become shorter as resizing
374 * progresses. The transfer operation must also ensure that all
375 * accessible bins in both the old and new table are usable by any
376 * traversal. This is arranged in part by proceeding from the
377 * last bin (table.length - 1) up towards the first. Upon seeing
378 * a forwarding node, traversals (see class Traverser) arrange to
379 * move to the new table without revisiting nodes. To ensure that
380 * no intervening nodes are skipped even when moved out of order,
381 * a stack (see class TableStack) is created on first encounter of
382 * a forwarding node during a traversal, to maintain its place if
383 * later processing the current table. The need for these
384 * save/restore mechanics is relatively rare, but when one
385 * forwarding node is encountered, typically many more will be.
386 * So Traversers use a simple caching scheme to avoid creating so
387 * many new TableStack nodes. (Thanks to Peter Levart for
388 * suggesting use of a stack here.)
389 *
390 * The traversal scheme also applies to partial traversals of
391 * ranges of bins (via an alternate Traverser constructor)
392 * to support partitioned aggregate operations. Also, read-only
393 * operations give up if ever forwarded to a null table, which
394 * provides support for shutdown-style clearing, which is also not
395 * currently implemented.
396 *
397 * Lazy table initialization minimizes footprint until first use,
398 * and also avoids resizings when the first operation is from a
399 * putAll, constructor with map argument, or deserialization.
400 * These cases attempt to override the initial capacity settings,
401 * but harmlessly fail to take effect in cases of races.
402 *
403 * The element count is maintained using a specialization of
404 * LongAdder. We need to incorporate a specialization rather than
405 * just use a LongAdder in order to access implicit
406 * contention-sensing that leads to creation of multiple
407 * CounterCells. The counter mechanics avoid contention on
408 * updates but can encounter cache thrashing if read too
409 * frequently during concurrent access. To avoid reading so often,
410 * resizing under contention is attempted only upon adding to a
411 * bin already holding two or more nodes. Under uniform hash
412 * distributions, the probability of this occurring at threshold
413 * is around 13%, meaning that only about 1 in 8 puts check
414 * threshold (and after resizing, many fewer do so).
415 *
416 * TreeBins use a special form of comparison for search and
417 * related operations (which is the main reason we cannot use
418 * existing collections such as TreeMaps). TreeBins contain
419 * Comparable elements, but may contain others, as well as
420 * elements that are Comparable but not necessarily Comparable for
421 * the same T, so we cannot invoke compareTo among them. To handle
422 * this, the tree is ordered primarily by hash value, then by
423 * Comparable.compareTo order if applicable. On lookup at a node,
424 * if elements are not comparable or compare as 0 then both left
425 * and right children may need to be searched in the case of tied
426 * hash values. (This corresponds to the full list search that
427 * would be necessary if all elements were non-Comparable and had
428 * tied hashes.) On insertion, to keep a total ordering (or as
429 * close as is required here) across rebalancings, we compare
430 * classes and identityHashCodes as tie-breakers. The red-black
431 * balancing code is updated from pre-jdk-collections
432 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
433 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
434 * Algorithms" (CLR).
435 *
436 * TreeBins also require an additional locking mechanism. While
437 * list traversal is always possible by readers even during
438 * updates, tree traversal is not, mainly because of tree-rotations
439 * that may change the root node and/or its linkages. TreeBins
440 * include a simple read-write lock mechanism parasitic on the
441 * main bin-synchronization strategy: Structural adjustments
442 * associated with an insertion or removal are already bin-locked
443 * (and so cannot conflict with other writers) but must wait for
444 * ongoing readers to finish. Since there can be only one such
445 * waiter, we use a simple scheme using a single "waiter" field to
446 * block writers. However, readers need never block. If the root
447 * lock is held, they proceed along the slow traversal path (via
448 * next-pointers) until the lock becomes available or the list is
449 * exhausted, whichever comes first. These cases are not fast, but
450 * maximize aggregate expected throughput.
451 *
452 * Maintaining API and serialization compatibility with previous
453 * versions of this class introduces several oddities. Mainly: We
454 * leave untouched but unused constructor arguments refering to
455 * concurrencyLevel. We accept a loadFactor constructor argument,
456 * but apply it only to initial table capacity (which is the only
457 * time that we can guarantee to honor it.) We also declare an
458 * unused "Segment" class that is instantiated in minimal form
459 * only when serializing.
460 *
461 * Also, solely for compatibility with previous versions of this
462 * class, it extends AbstractMap, even though all of its methods
463 * are overridden, so it is just useless baggage.
464 *
465 * This file is organized to make things a little easier to follow
466 * while reading than they might otherwise: First the main static
467 * declarations and utilities, then fields, then main public
468 * methods (with a few factorings of multiple public methods into
469 * internal ones), then sizing methods, trees, traversers, and
470 * bulk operations.
471 */
472
473 /* ---------------- Constants -------------- */
474
475 /**
476 * The largest possible table capacity. This value must be
477 * exactly 1<<30 to stay within Java array allocation and indexing
478 * bounds for power of two table sizes, and is further required
479 * because the top two bits of 32bit hash fields are used for
480 * control purposes.
481 */
482 private static final int MAXIMUM_CAPACITY = 1 << 30;
483
484 /**
485 * The default initial table capacity. Must be a power of 2
486 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
487 */
488 private static final int DEFAULT_CAPACITY = 16;
489
490 /**
491 * The largest possible (non-power of two) array size.
492 * Needed by toArray and related methods.
493 */
494 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
495
496 /**
497 * The default concurrency level for this table. Unused but
498 * defined for compatibility with previous versions of this class.
499 */
500 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
501
502 /**
503 * The load factor for this table. Overrides of this value in
504 * constructors affect only the initial table capacity. The
505 * actual floating point value isn't normally used -- it is
506 * simpler to use expressions such as {@code n - (n >>> 2)} for
507 * the associated resizing threshold.
508 */
509 private static final float LOAD_FACTOR = 0.75f;
510
511 /**
512 * The bin count threshold for using a tree rather than list for a
513 * bin. Bins are converted to trees when adding an element to a
514 * bin with at least this many nodes. The value must be greater
515 * than 2, and should be at least 8 to mesh with assumptions in
516 * tree removal about conversion back to plain bins upon
517 * shrinkage.
518 */
519 static final int TREEIFY_THRESHOLD = 8;
520
521 /**
522 * The bin count threshold for untreeifying a (split) bin during a
523 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
524 * most 6 to mesh with shrinkage detection under removal.
525 */
526 static final int UNTREEIFY_THRESHOLD = 6;
527
528 /**
529 * The smallest table capacity for which bins may be treeified.
530 * (Otherwise the table is resized if too many nodes in a bin.)
531 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
532 * conflicts between resizing and treeification thresholds.
533 */
534 static final int MIN_TREEIFY_CAPACITY = 64;
535
536 /**
537 * Minimum number of rebinnings per transfer step. Ranges are
538 * subdivided to allow multiple resizer threads. This value
539 * serves as a lower bound to avoid resizers encountering
540 * excessive memory contention. The value should be at least
541 * DEFAULT_CAPACITY.
542 */
543 private static final int MIN_TRANSFER_STRIDE = 16;
544
545 /**
546 * The number of bits used for generation stamp in sizeCtl.
547 * Must be at least 6 for 32bit arrays.
548 */
549 private static int RESIZE_STAMP_BITS = 16;
550
551 /**
552 * The maximum number of threads that can help resize.
553 * Must fit in 32 - RESIZE_STAMP_BITS bits.
554 */
555 private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
556
557 /**
558 * The bit shift for recording size stamp in sizeCtl.
559 */
560 private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
561
562 /*
563 * Encodings for Node hash fields. See above for explanation.
564 */
565 static final int MOVED = -1; // hash for forwarding nodes
566 static final int TREEBIN = -2; // hash for roots of trees
567 static final int RESERVED = -3; // hash for transient reservations
568 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
569
570 /** Number of CPUS, to place bounds on some sizings */
571 static final int NCPU = Runtime.getRuntime().availableProcessors();
572
573 /** For serialization compatibility. */
574 private static final ObjectStreamField[] serialPersistentFields = {
575 new ObjectStreamField("segments", Segment[].class),
576 new ObjectStreamField("segmentMask", Integer.TYPE),
577 new ObjectStreamField("segmentShift", Integer.TYPE)
578 };
579
580 /* ---------------- Nodes -------------- */
581
582 /**
583 * Key-value entry. This class is never exported out as a
584 * user-mutable Map.Entry (i.e., one supporting setValue; see
585 * MapEntry below), but can be used for read-only traversals used
586 * in bulk tasks. Subclasses of Node with a negative hash field
587 * are special, and contain null keys and values (but are never
588 * exported). Otherwise, keys and vals are never null.
589 */
590 static class Node<K,V> implements Map.Entry<K,V> {
591 final int hash;
592 final K key;
593 volatile V val;
594 volatile Node<K,V> next;
595
596 Node(int hash, K key, V val, Node<K,V> next) {
597 this.hash = hash;
598 this.key = key;
599 this.val = val;
600 this.next = next;
601 }
602
603 public final K getKey() { return key; }
604 public final V getValue() { return val; }
605 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
606 public final String toString(){ return key + "=" + val; }
607 public final V setValue(V value) {
608 throw new UnsupportedOperationException();
609 }
610
611 public final boolean equals(Object o) {
612 Object k, v, u; Map.Entry<?,?> e;
613 return ((o instanceof Map.Entry) &&
614 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
615 (v = e.getValue()) != null &&
616 (k == key || k.equals(key)) &&
617 (v == (u = val) || v.equals(u)));
618 }
619
620 /**
621 * Virtualized support for map.get(); overridden in subclasses.
622 */
623 Node<K,V> find(int h, Object k) {
624 Node<K,V> e = this;
625 if (k != null) {
626 do {
627 K ek;
628 if (e.hash == h &&
629 ((ek = e.key) == k || (ek != null && k.equals(ek))))
630 return e;
631 } while ((e = e.next) != null);
632 }
633 return null;
634 }
635 }
636
637 /* ---------------- Static utilities -------------- */
638
639 /**
640 * Spreads (XORs) higher bits of hash to lower and also forces top
641 * bit to 0. Because the table uses power-of-two masking, sets of
642 * hashes that vary only in bits above the current mask will
643 * always collide. (Among known examples are sets of Float keys
644 * holding consecutive whole numbers in small tables.) So we
645 * apply a transform that spreads the impact of higher bits
646 * downward. There is a tradeoff between speed, utility, and
647 * quality of bit-spreading. Because many common sets of hashes
648 * are already reasonably distributed (so don't benefit from
649 * spreading), and because we use trees to handle large sets of
650 * collisions in bins, we just XOR some shifted bits in the
651 * cheapest possible way to reduce systematic lossage, as well as
652 * to incorporate impact of the highest bits that would otherwise
653 * never be used in index calculations because of table bounds.
654 */
655 static final int spread(int h) {
656 return (h ^ (h >>> 16)) & HASH_BITS;
657 }
658
659 /**
660 * Returns a power of two table size for the given desired capacity.
661 * See Hackers Delight, sec 3.2
662 */
663 private static final int tableSizeFor(int c) {
664 int n = c - 1;
665 n |= n >>> 1;
666 n |= n >>> 2;
667 n |= n >>> 4;
668 n |= n >>> 8;
669 n |= n >>> 16;
670 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
671 }
672
673 /**
674 * Returns x's Class if it is of the form "class C implements
675 * Comparable<C>", else null.
676 */
677 static Class<?> comparableClassFor(Object x) {
678 if (x instanceof Comparable) {
679 Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
680 if ((c = x.getClass()) == String.class) // bypass checks
681 return c;
682 if ((ts = c.getGenericInterfaces()) != null) {
683 for (int i = 0; i < ts.length; ++i) {
684 if (((t = ts[i]) instanceof ParameterizedType) &&
685 ((p = (ParameterizedType)t).getRawType() ==
686 Comparable.class) &&
687 (as = p.getActualTypeArguments()) != null &&
688 as.length == 1 && as[0] == c) // type arg is c
689 return c;
690 }
691 }
692 }
693 return null;
694 }
695
696 /**
697 * Returns k.compareTo(x) if x matches kc (k's screened comparable
698 * class), else 0.
699 */
700 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
701 static int compareComparables(Class<?> kc, Object k, Object x) {
702 return (x == null || x.getClass() != kc ? 0 :
703 ((Comparable)k).compareTo(x));
704 }
705
706 /* ---------------- Table element access -------------- */
707
708 /*
709 * Volatile access methods are used for table elements as well as
710 * elements of in-progress next table while resizing. All uses of
711 * the tab arguments must be null checked by callers. All callers
712 * also paranoically precheck that tab's length is not zero (or an
713 * equivalent check), thus ensuring that any index argument taking
714 * the form of a hash value anded with (length - 1) is a valid
715 * index. Note that, to be correct wrt arbitrary concurrency
716 * errors by users, these checks must operate on local variables,
717 * which accounts for some odd-looking inline assignments below.
718 * Note that calls to setTabAt always occur within locked regions,
719 * and so in principle require only release ordering, not
720 * full volatile semantics, but are currently coded as volatile
721 * writes to be conservative.
722 */
723
724 @SuppressWarnings("unchecked")
725 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
726 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
727 }
728
729 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
730 Node<K,V> c, Node<K,V> v) {
731 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
732 }
733
734 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
735 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
736 }
737
738 /* ---------------- Fields -------------- */
739
740 /**
741 * The array of bins. Lazily initialized upon first insertion.
742 * Size is always a power of two. Accessed directly by iterators.
743 */
744 transient volatile Node<K,V>[] table;
745
746 /**
747 * The next table to use; non-null only while resizing.
748 */
749 private transient volatile Node<K,V>[] nextTable;
750
751 /**
752 * Base counter value, used mainly when there is no contention,
753 * but also as a fallback during table initialization
754 * races. Updated via CAS.
755 */
756 private transient volatile long baseCount;
757
758 /**
759 * Table initialization and resizing control. When negative, the
760 * table is being initialized or resized: -1 for initialization,
761 * else -(1 + the number of active resizing threads). Otherwise,
762 * when table is null, holds the initial table size to use upon
763 * creation, or 0 for default. After initialization, holds the
764 * next element count value upon which to resize the table.
765 */
766 private transient volatile int sizeCtl;
767
768 /**
769 * The next table index (plus one) to split while resizing.
770 */
771 private transient volatile int transferIndex;
772
773 /**
774 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
775 */
776 private transient volatile int cellsBusy;
777
778 /**
779 * Table of counter cells. When non-null, size is a power of 2.
780 */
781 private transient volatile CounterCell[] counterCells;
782
783 // views
784 private transient KeySetView<K,V> keySet;
785 private transient ValuesView<K,V> values;
786 private transient EntrySetView<K,V> entrySet;
787
788
789 /* ---------------- Public operations -------------- */
790
791 /**
792 * Creates a new, empty map with the default initial table size (16).
793 */
794 public ConcurrentHashMap() {
795 }
796
797 /**
798 * Creates a new, empty map with an initial table size
799 * accommodating the specified number of elements without the need
800 * to dynamically resize.
801 *
802 * @param initialCapacity The implementation performs internal
803 * sizing to accommodate this many elements.
804 * @throws IllegalArgumentException if the initial capacity of
805 * elements is negative
806 */
807 public ConcurrentHashMap(int initialCapacity) {
808 if (initialCapacity < 0)
809 throw new IllegalArgumentException();
810 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
811 MAXIMUM_CAPACITY :
812 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
813 this.sizeCtl = cap;
814 }
815
816 /**
817 * Creates a new map with the same mappings as the given map.
818 *
819 * @param m the map
820 */
821 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
822 this.sizeCtl = DEFAULT_CAPACITY;
823 putAll(m);
824 }
825
826 /**
827 * Creates a new, empty map with an initial table size based on
828 * the given number of elements ({@code initialCapacity}) and
829 * initial table density ({@code loadFactor}).
830 *
831 * @param initialCapacity the initial capacity. The implementation
832 * performs internal sizing to accommodate this many elements,
833 * given the specified load factor.
834 * @param loadFactor the load factor (table density) for
835 * establishing the initial table size
836 * @throws IllegalArgumentException if the initial capacity of
837 * elements is negative or the load factor is nonpositive
838 *
839 * @since 1.6
840 */
841 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
842 this(initialCapacity, loadFactor, 1);
843 }
844
845 /**
846 * Creates a new, empty map with an initial table size based on
847 * the given number of elements ({@code initialCapacity}), table
848 * density ({@code loadFactor}), and number of concurrently
849 * updating threads ({@code concurrencyLevel}).
850 *
851 * @param initialCapacity the initial capacity. The implementation
852 * performs internal sizing to accommodate this many elements,
853 * given the specified load factor.
854 * @param loadFactor the load factor (table density) for
855 * establishing the initial table size
856 * @param concurrencyLevel the estimated number of concurrently
857 * updating threads. The implementation may use this value as
858 * a sizing hint.
859 * @throws IllegalArgumentException if the initial capacity is
860 * negative or the load factor or concurrencyLevel are
861 * nonpositive
862 */
863 public ConcurrentHashMap(int initialCapacity,
864 float loadFactor, int concurrencyLevel) {
865 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
866 throw new IllegalArgumentException();
867 if (initialCapacity < concurrencyLevel) // Use at least as many bins
868 initialCapacity = concurrencyLevel; // as estimated threads
869 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
870 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
871 MAXIMUM_CAPACITY : tableSizeFor((int)size);
872 this.sizeCtl = cap;
873 }
874
875 // Original (since JDK1.2) Map methods
876
877 /**
878 * {@inheritDoc}
879 */
880 public int size() {
881 long n = sumCount();
882 return ((n < 0L) ? 0 :
883 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
884 (int)n);
885 }
886
887 /**
888 * {@inheritDoc}
889 */
890 public boolean isEmpty() {
891 return sumCount() <= 0L; // ignore transient negative values
892 }
893
894 /**
895 * Returns the value to which the specified key is mapped,
896 * or {@code null} if this map contains no mapping for the key.
897 *
898 * <p>More formally, if this map contains a mapping from a key
899 * {@code k} to a value {@code v} such that {@code key.equals(k)},
900 * then this method returns {@code v}; otherwise it returns
901 * {@code null}. (There can be at most one such mapping.)
902 *
903 * @throws NullPointerException if the specified key is null
904 */
905 public V get(Object key) {
906 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
907 int h = spread(key.hashCode());
908 if ((tab = table) != null && (n = tab.length) > 0 &&
909 (e = tabAt(tab, (n - 1) & h)) != null) {
910 if ((eh = e.hash) == h) {
911 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
912 return e.val;
913 }
914 else if (eh < 0)
915 return (p = e.find(h, key)) != null ? p.val : null;
916 while ((e = e.next) != null) {
917 if (e.hash == h &&
918 ((ek = e.key) == key || (ek != null && key.equals(ek))))
919 return e.val;
920 }
921 }
922 return null;
923 }
924
925 /**
926 * Tests if the specified object is a key in this table.
927 *
928 * @param key possible key
929 * @return {@code true} if and only if the specified object
930 * is a key in this table, as determined by the
931 * {@code equals} method; {@code false} otherwise
932 * @throws NullPointerException if the specified key is null
933 */
934 public boolean containsKey(Object key) {
935 return get(key) != null;
936 }
937
938 /**
939 * Returns {@code true} if this map maps one or more keys to the
940 * specified value. Note: This method may require a full traversal
941 * of the map, and is much slower than method {@code containsKey}.
942 *
943 * @param value value whose presence in this map is to be tested
944 * @return {@code true} if this map maps one or more keys to the
945 * specified value
946 * @throws NullPointerException if the specified value is null
947 */
948 public boolean containsValue(Object value) {
949 if (value == null)
950 throw new NullPointerException();
951 Node<K,V>[] t;
952 if ((t = table) != null) {
953 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
954 for (Node<K,V> p; (p = it.advance()) != null; ) {
955 V v;
956 if ((v = p.val) == value || (v != null && value.equals(v)))
957 return true;
958 }
959 }
960 return false;
961 }
962
963 /**
964 * Maps the specified key to the specified value in this table.
965 * Neither the key nor the value can be null.
966 *
967 * <p>The value can be retrieved by calling the {@code get} method
968 * with a key that is equal to the original key.
969 *
970 * @param key key with which the specified value is to be associated
971 * @param value value to be associated with the specified key
972 * @return the previous value associated with {@code key}, or
973 * {@code null} if there was no mapping for {@code key}
974 * @throws NullPointerException if the specified key or value is null
975 */
976 public V put(K key, V value) {
977 return putVal(key, value, false);
978 }
979
980 /** Implementation for put and putIfAbsent */
981 final V putVal(K key, V value, boolean onlyIfAbsent) {
982 if (key == null || value == null) throw new NullPointerException();
983 int hash = spread(key.hashCode());
984 int binCount = 0;
985 for (Node<K,V>[] tab = table;;) {
986 Node<K,V> f; int n, i, fh;
987 if (tab == null || (n = tab.length) == 0)
988 tab = initTable();
989 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
990 if (casTabAt(tab, i, null,
991 new Node<K,V>(hash, key, value, null)))
992 break; // no lock when adding to empty bin
993 }
994 else if ((fh = f.hash) == MOVED)
995 tab = helpTransfer(tab, f);
996 else {
997 V oldVal = null;
998 synchronized (f) {
999 if (tabAt(tab, i) == f) {
1000 if (fh >= 0) {
1001 binCount = 1;
1002 for (Node<K,V> e = f;; ++binCount) {
1003 K ek;
1004 if (e.hash == hash &&
1005 ((ek = e.key) == key ||
1006 (ek != null && key.equals(ek)))) {
1007 oldVal = e.val;
1008 if (!onlyIfAbsent)
1009 e.val = value;
1010 break;
1011 }
1012 Node<K,V> pred = e;
1013 if ((e = e.next) == null) {
1014 pred.next = new Node<K,V>(hash, key,
1015 value, null);
1016 break;
1017 }
1018 }
1019 }
1020 else if (f instanceof TreeBin) {
1021 Node<K,V> p;
1022 binCount = 2;
1023 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1024 value)) != null) {
1025 oldVal = p.val;
1026 if (!onlyIfAbsent)
1027 p.val = value;
1028 }
1029 }
1030 }
1031 }
1032 if (binCount != 0) {
1033 if (binCount >= TREEIFY_THRESHOLD)
1034 treeifyBin(tab, i);
1035 if (oldVal != null)
1036 return oldVal;
1037 break;
1038 }
1039 }
1040 }
1041 addCount(1L, binCount);
1042 return null;
1043 }
1044
1045 /**
1046 * Copies all of the mappings from the specified map to this one.
1047 * These mappings replace any mappings that this map had for any of the
1048 * keys currently in the specified map.
1049 *
1050 * @param m mappings to be stored in this map
1051 */
1052 public void putAll(Map<? extends K, ? extends V> m) {
1053 tryPresize(m.size());
1054 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1055 putVal(e.getKey(), e.getValue(), false);
1056 }
1057
1058 /**
1059 * Removes the key (and its corresponding value) from this map.
1060 * This method does nothing if the key is not in the map.
1061 *
1062 * @param key the key that needs to be removed
1063 * @return the previous value associated with {@code key}, or
1064 * {@code null} if there was no mapping for {@code key}
1065 * @throws NullPointerException if the specified key is null
1066 */
1067 public V remove(Object key) {
1068 return replaceNode(key, null, null);
1069 }
1070
1071 /**
1072 * Implementation for the four public remove/replace methods:
1073 * Replaces node value with v, conditional upon match of cv if
1074 * non-null. If resulting value is null, delete.
1075 */
1076 final V replaceNode(Object key, V value, Object cv) {
1077 int hash = spread(key.hashCode());
1078 for (Node<K,V>[] tab = table;;) {
1079 Node<K,V> f; int n, i, fh;
1080 if (tab == null || (n = tab.length) == 0 ||
1081 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1082 break;
1083 else if ((fh = f.hash) == MOVED)
1084 tab = helpTransfer(tab, f);
1085 else {
1086 V oldVal = null;
1087 boolean validated = false;
1088 synchronized (f) {
1089 if (tabAt(tab, i) == f) {
1090 if (fh >= 0) {
1091 validated = true;
1092 for (Node<K,V> e = f, pred = null;;) {
1093 K ek;
1094 if (e.hash == hash &&
1095 ((ek = e.key) == key ||
1096 (ek != null && key.equals(ek)))) {
1097 V ev = e.val;
1098 if (cv == null || cv == ev ||
1099 (ev != null && cv.equals(ev))) {
1100 oldVal = ev;
1101 if (value != null)
1102 e.val = value;
1103 else if (pred != null)
1104 pred.next = e.next;
1105 else
1106 setTabAt(tab, i, e.next);
1107 }
1108 break;
1109 }
1110 pred = e;
1111 if ((e = e.next) == null)
1112 break;
1113 }
1114 }
1115 else if (f instanceof TreeBin) {
1116 validated = true;
1117 TreeBin<K,V> t = (TreeBin<K,V>)f;
1118 TreeNode<K,V> r, p;
1119 if ((r = t.root) != null &&
1120 (p = r.findTreeNode(hash, key, null)) != null) {
1121 V pv = p.val;
1122 if (cv == null || cv == pv ||
1123 (pv != null && cv.equals(pv))) {
1124 oldVal = pv;
1125 if (value != null)
1126 p.val = value;
1127 else if (t.removeTreeNode(p))
1128 setTabAt(tab, i, untreeify(t.first));
1129 }
1130 }
1131 }
1132 }
1133 }
1134 if (validated) {
1135 if (oldVal != null) {
1136 if (value == null)
1137 addCount(-1L, -1);
1138 return oldVal;
1139 }
1140 break;
1141 }
1142 }
1143 }
1144 return null;
1145 }
1146
1147 /**
1148 * Removes all of the mappings from this map.
1149 */
1150 public void clear() {
1151 long delta = 0L; // negative number of deletions
1152 int i = 0;
1153 Node<K,V>[] tab = table;
1154 while (tab != null && i < tab.length) {
1155 int fh;
1156 Node<K,V> f = tabAt(tab, i);
1157 if (f == null)
1158 ++i;
1159 else if ((fh = f.hash) == MOVED) {
1160 tab = helpTransfer(tab, f);
1161 i = 0; // restart
1162 }
1163 else {
1164 synchronized (f) {
1165 if (tabAt(tab, i) == f) {
1166 Node<K,V> p = (fh >= 0 ? f :
1167 (f instanceof TreeBin) ?
1168 ((TreeBin<K,V>)f).first : null);
1169 while (p != null) {
1170 --delta;
1171 p = p.next;
1172 }
1173 setTabAt(tab, i++, null);
1174 }
1175 }
1176 }
1177 }
1178 if (delta != 0L)
1179 addCount(delta, -1);
1180 }
1181
1182 /**
1183 * Returns a {@link Set} view of the keys contained in this map.
1184 * The set is backed by the map, so changes to the map are
1185 * reflected in the set, and vice-versa. The set supports element
1186 * removal, which removes the corresponding mapping from this map,
1187 * via the {@code Iterator.remove}, {@code Set.remove},
1188 * {@code removeAll}, {@code retainAll}, and {@code clear}
1189 * operations. It does not support the {@code add} or
1190 * {@code addAll} operations.
1191 *
1192 * <p>The view's iterators and spliterators are
1193 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1194 *
1195 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1196 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1197 *
1198 * @return the set view
1199 */
1200 public KeySetView<K,V> keySet() {
1201 KeySetView<K,V> ks;
1202 return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1203 }
1204
1205 /**
1206 * Returns a {@link Collection} view of the values contained in this map.
1207 * The collection is backed by the map, so changes to the map are
1208 * reflected in the collection, and vice-versa. The collection
1209 * supports element removal, which removes the corresponding
1210 * mapping from this map, via the {@code Iterator.remove},
1211 * {@code Collection.remove}, {@code removeAll},
1212 * {@code retainAll}, and {@code clear} operations. It does not
1213 * support the {@code add} or {@code addAll} operations.
1214 *
1215 * <p>The view's iterators and spliterators are
1216 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1217 *
1218 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1219 * and {@link Spliterator#NONNULL}.
1220 *
1221 * @return the collection view
1222 */
1223 public Collection<V> values() {
1224 ValuesView<K,V> vs;
1225 return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1226 }
1227
1228 /**
1229 * Returns a {@link Set} view of the mappings contained in this map.
1230 * The set is backed by the map, so changes to the map are
1231 * reflected in the set, and vice-versa. The set supports element
1232 * removal, which removes the corresponding mapping from the map,
1233 * via the {@code Iterator.remove}, {@code Set.remove},
1234 * {@code removeAll}, {@code retainAll}, and {@code clear}
1235 * operations.
1236 *
1237 * <p>The view's iterators and spliterators are
1238 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1239 *
1240 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1241 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1242 *
1243 * @return the set view
1244 */
1245 public Set<Map.Entry<K,V>> entrySet() {
1246 EntrySetView<K,V> es;
1247 return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1248 }
1249
1250 /**
1251 * Returns the hash code value for this {@link Map}, i.e.,
1252 * the sum of, for each key-value pair in the map,
1253 * {@code key.hashCode() ^ value.hashCode()}.
1254 *
1255 * @return the hash code value for this map
1256 */
1257 public int hashCode() {
1258 int h = 0;
1259 Node<K,V>[] t;
1260 if ((t = table) != null) {
1261 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1262 for (Node<K,V> p; (p = it.advance()) != null; )
1263 h += p.key.hashCode() ^ p.val.hashCode();
1264 }
1265 return h;
1266 }
1267
1268 /**
1269 * Returns a string representation of this map. The string
1270 * representation consists of a list of key-value mappings (in no
1271 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1272 * mappings are separated by the characters {@code ", "} (comma
1273 * and space). Each key-value mapping is rendered as the key
1274 * followed by an equals sign ("{@code =}") followed by the
1275 * associated value.
1276 *
1277 * @return a string representation of this map
1278 */
1279 public String toString() {
1280 Node<K,V>[] t;
1281 int f = (t = table) == null ? 0 : t.length;
1282 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1283 StringBuilder sb = new StringBuilder();
1284 sb.append('{');
1285 Node<K,V> p;
1286 if ((p = it.advance()) != null) {
1287 for (;;) {
1288 K k = p.key;
1289 V v = p.val;
1290 sb.append(k == this ? "(this Map)" : k);
1291 sb.append('=');
1292 sb.append(v == this ? "(this Map)" : v);
1293 if ((p = it.advance()) == null)
1294 break;
1295 sb.append(',').append(' ');
1296 }
1297 }
1298 return sb.append('}').toString();
1299 }
1300
1301 /**
1302 * Compares the specified object with this map for equality.
1303 * Returns {@code true} if the given object is a map with the same
1304 * mappings as this map. This operation may return misleading
1305 * results if either map is concurrently modified during execution
1306 * of this method.
1307 *
1308 * @param o object to be compared for equality with this map
1309 * @return {@code true} if the specified object is equal to this map
1310 */
1311 public boolean equals(Object o) {
1312 if (o != this) {
1313 if (!(o instanceof Map))
1314 return false;
1315 Map<?,?> m = (Map<?,?>) o;
1316 Node<K,V>[] t;
1317 int f = (t = table) == null ? 0 : t.length;
1318 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1319 for (Node<K,V> p; (p = it.advance()) != null; ) {
1320 V val = p.val;
1321 Object v = m.get(p.key);
1322 if (v == null || (v != val && !v.equals(val)))
1323 return false;
1324 }
1325 for (Map.Entry<?,?> e : m.entrySet()) {
1326 Object mk, mv, v;
1327 if ((mk = e.getKey()) == null ||
1328 (mv = e.getValue()) == null ||
1329 (v = get(mk)) == null ||
1330 (mv != v && !mv.equals(v)))
1331 return false;
1332 }
1333 }
1334 return true;
1335 }
1336
1337 /**
1338 * Stripped-down version of helper class used in previous version,
1339 * declared for the sake of serialization compatibility
1340 */
1341 static class Segment<K,V> extends ReentrantLock implements Serializable {
1342 private static final long serialVersionUID = 2249069246763182397L;
1343 final float loadFactor;
1344 Segment(float lf) { this.loadFactor = lf; }
1345 }
1346
1347 /**
1348 * Saves the state of the {@code ConcurrentHashMap} instance to a
1349 * stream (i.e., serializes it).
1350 * @param s the stream
1351 * @throws java.io.IOException if an I/O error occurs
1352 * @serialData
1353 * the key (Object) and value (Object)
1354 * for each key-value mapping, followed by a null pair.
1355 * The key-value mappings are emitted in no particular order.
1356 */
1357 private void writeObject(java.io.ObjectOutputStream s)
1358 throws java.io.IOException {
1359 // For serialization compatibility
1360 // Emulate segment calculation from previous version of this class
1361 int sshift = 0;
1362 int ssize = 1;
1363 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1364 ++sshift;
1365 ssize <<= 1;
1366 }
1367 int segmentShift = 32 - sshift;
1368 int segmentMask = ssize - 1;
1369 @SuppressWarnings("unchecked")
1370 Segment<K,V>[] segments = (Segment<K,V>[])
1371 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1372 for (int i = 0; i < segments.length; ++i)
1373 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1374 s.putFields().put("segments", segments);
1375 s.putFields().put("segmentShift", segmentShift);
1376 s.putFields().put("segmentMask", segmentMask);
1377 s.writeFields();
1378
1379 Node<K,V>[] t;
1380 if ((t = table) != null) {
1381 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1382 for (Node<K,V> p; (p = it.advance()) != null; ) {
1383 s.writeObject(p.key);
1384 s.writeObject(p.val);
1385 }
1386 }
1387 s.writeObject(null);
1388 s.writeObject(null);
1389 segments = null; // throw away
1390 }
1391
1392 /**
1393 * Reconstitutes the instance from a stream (that is, deserializes it).
1394 * @param s the stream
1395 * @throws ClassNotFoundException if the class of a serialized object
1396 * could not be found
1397 * @throws java.io.IOException if an I/O error occurs
1398 */
1399 private void readObject(java.io.ObjectInputStream s)
1400 throws java.io.IOException, ClassNotFoundException {
1401 /*
1402 * To improve performance in typical cases, we create nodes
1403 * while reading, then place in table once size is known.
1404 * However, we must also validate uniqueness and deal with
1405 * overpopulated bins while doing so, which requires
1406 * specialized versions of putVal mechanics.
1407 */
1408 sizeCtl = -1; // force exclusion for table construction
1409 s.defaultReadObject();
1410 long size = 0L;
1411 Node<K,V> p = null;
1412 for (;;) {
1413 @SuppressWarnings("unchecked")
1414 K k = (K) s.readObject();
1415 @SuppressWarnings("unchecked")
1416 V v = (V) s.readObject();
1417 if (k != null && v != null) {
1418 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1419 ++size;
1420 }
1421 else
1422 break;
1423 }
1424 if (size == 0L)
1425 sizeCtl = 0;
1426 else {
1427 int n;
1428 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1429 n = MAXIMUM_CAPACITY;
1430 else {
1431 int sz = (int)size;
1432 n = tableSizeFor(sz + (sz >>> 1) + 1);
1433 }
1434 @SuppressWarnings("unchecked")
1435 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1436 int mask = n - 1;
1437 long added = 0L;
1438 while (p != null) {
1439 boolean insertAtFront;
1440 Node<K,V> next = p.next, first;
1441 int h = p.hash, j = h & mask;
1442 if ((first = tabAt(tab, j)) == null)
1443 insertAtFront = true;
1444 else {
1445 K k = p.key;
1446 if (first.hash < 0) {
1447 TreeBin<K,V> t = (TreeBin<K,V>)first;
1448 if (t.putTreeVal(h, k, p.val) == null)
1449 ++added;
1450 insertAtFront = false;
1451 }
1452 else {
1453 int binCount = 0;
1454 insertAtFront = true;
1455 Node<K,V> q; K qk;
1456 for (q = first; q != null; q = q.next) {
1457 if (q.hash == h &&
1458 ((qk = q.key) == k ||
1459 (qk != null && k.equals(qk)))) {
1460 insertAtFront = false;
1461 break;
1462 }
1463 ++binCount;
1464 }
1465 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1466 insertAtFront = false;
1467 ++added;
1468 p.next = first;
1469 TreeNode<K,V> hd = null, tl = null;
1470 for (q = p; q != null; q = q.next) {
1471 TreeNode<K,V> t = new TreeNode<K,V>
1472 (q.hash, q.key, q.val, null, null);
1473 if ((t.prev = tl) == null)
1474 hd = t;
1475 else
1476 tl.next = t;
1477 tl = t;
1478 }
1479 setTabAt(tab, j, new TreeBin<K,V>(hd));
1480 }
1481 }
1482 }
1483 if (insertAtFront) {
1484 ++added;
1485 p.next = first;
1486 setTabAt(tab, j, p);
1487 }
1488 p = next;
1489 }
1490 table = tab;
1491 sizeCtl = n - (n >>> 2);
1492 baseCount = added;
1493 }
1494 }
1495
1496 // ConcurrentMap methods
1497
1498 /**
1499 * {@inheritDoc}
1500 *
1501 * @return the previous value associated with the specified key,
1502 * or {@code null} if there was no mapping for the key
1503 * @throws NullPointerException if the specified key or value is null
1504 */
1505 public V putIfAbsent(K key, V value) {
1506 return putVal(key, value, true);
1507 }
1508
1509 /**
1510 * {@inheritDoc}
1511 *
1512 * @throws NullPointerException if the specified key is null
1513 */
1514 public boolean remove(Object key, Object value) {
1515 if (key == null)
1516 throw new NullPointerException();
1517 return value != null && replaceNode(key, null, value) != null;
1518 }
1519
1520 /**
1521 * {@inheritDoc}
1522 *
1523 * @throws NullPointerException if any of the arguments are null
1524 */
1525 public boolean replace(K key, V oldValue, V newValue) {
1526 if (key == null || oldValue == null || newValue == null)
1527 throw new NullPointerException();
1528 return replaceNode(key, newValue, oldValue) != null;
1529 }
1530
1531 /**
1532 * {@inheritDoc}
1533 *
1534 * @return the previous value associated with the specified key,
1535 * or {@code null} if there was no mapping for the key
1536 * @throws NullPointerException if the specified key or value is null
1537 */
1538 public V replace(K key, V value) {
1539 if (key == null || value == null)
1540 throw new NullPointerException();
1541 return replaceNode(key, value, null);
1542 }
1543
1544 // Overrides of JDK8+ Map extension method defaults
1545
1546 /**
1547 * Returns the value to which the specified key is mapped, or the
1548 * given default value if this map contains no mapping for the
1549 * key.
1550 *
1551 * @param key the key whose associated value is to be returned
1552 * @param defaultValue the value to return if this map contains
1553 * no mapping for the given key
1554 * @return the mapping for the key, if present; else the default value
1555 * @throws NullPointerException if the specified key is null
1556 */
1557 public V getOrDefault(Object key, V defaultValue) {
1558 V v;
1559 return (v = get(key)) == null ? defaultValue : v;
1560 }
1561
1562 public void forEach(BiConsumer<? super K, ? super V> action) {
1563 if (action == null) throw new NullPointerException();
1564 Node<K,V>[] t;
1565 if ((t = table) != null) {
1566 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1567 for (Node<K,V> p; (p = it.advance()) != null; ) {
1568 action.accept(p.key, p.val);
1569 }
1570 }
1571 }
1572
1573 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1574 if (function == null) throw new NullPointerException();
1575 Node<K,V>[] t;
1576 if ((t = table) != null) {
1577 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1578 for (Node<K,V> p; (p = it.advance()) != null; ) {
1579 V oldValue = p.val;
1580 for (K key = p.key;;) {
1581 V newValue = function.apply(key, oldValue);
1582 if (newValue == null)
1583 throw new NullPointerException();
1584 if (replaceNode(key, newValue, oldValue) != null ||
1585 (oldValue = get(key)) == null)
1586 break;
1587 }
1588 }
1589 }
1590 }
1591
1592 /**
1593 * If the specified key is not already associated with a value,
1594 * attempts to compute its value using the given mapping function
1595 * and enters it into this map unless {@code null}. The entire
1596 * method invocation is performed atomically, so the function is
1597 * applied at most once per key. Some attempted update operations
1598 * on this map by other threads may be blocked while computation
1599 * is in progress, so the computation should be short and simple,
1600 * and must not attempt to update any other mappings of this map.
1601 *
1602 * @param key key with which the specified value is to be associated
1603 * @param mappingFunction the function to compute a value
1604 * @return the current (existing or computed) value associated with
1605 * the specified key, or null if the computed value is null
1606 * @throws NullPointerException if the specified key or mappingFunction
1607 * is null
1608 * @throws IllegalStateException if the computation detectably
1609 * attempts a recursive update to this map that would
1610 * otherwise never complete
1611 * @throws RuntimeException or Error if the mappingFunction does so,
1612 * in which case the mapping is left unestablished
1613 */
1614 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1615 if (key == null || mappingFunction == null)
1616 throw new NullPointerException();
1617 int h = spread(key.hashCode());
1618 V val = null;
1619 int binCount = 0;
1620 for (Node<K,V>[] tab = table;;) {
1621 Node<K,V> f; int n, i, fh;
1622 if (tab == null || (n = tab.length) == 0)
1623 tab = initTable();
1624 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1625 Node<K,V> r = new ReservationNode<K,V>();
1626 synchronized (r) {
1627 if (casTabAt(tab, i, null, r)) {
1628 binCount = 1;
1629 Node<K,V> node = null;
1630 try {
1631 if ((val = mappingFunction.apply(key)) != null)
1632 node = new Node<K,V>(h, key, val, null);
1633 } finally {
1634 setTabAt(tab, i, node);
1635 }
1636 }
1637 }
1638 if (binCount != 0)
1639 break;
1640 }
1641 else if ((fh = f.hash) == MOVED)
1642 tab = helpTransfer(tab, f);
1643 else {
1644 boolean added = false;
1645 synchronized (f) {
1646 if (tabAt(tab, i) == f) {
1647 if (fh >= 0) {
1648 binCount = 1;
1649 for (Node<K,V> e = f;; ++binCount) {
1650 K ek; V ev;
1651 if (e.hash == h &&
1652 ((ek = e.key) == key ||
1653 (ek != null && key.equals(ek)))) {
1654 val = e.val;
1655 break;
1656 }
1657 Node<K,V> pred = e;
1658 if ((e = e.next) == null) {
1659 if ((val = mappingFunction.apply(key)) != null) {
1660 added = true;
1661 pred.next = new Node<K,V>(h, key, val, null);
1662 }
1663 break;
1664 }
1665 }
1666 }
1667 else if (f instanceof TreeBin) {
1668 binCount = 2;
1669 TreeBin<K,V> t = (TreeBin<K,V>)f;
1670 TreeNode<K,V> r, p;
1671 if ((r = t.root) != null &&
1672 (p = r.findTreeNode(h, key, null)) != null)
1673 val = p.val;
1674 else if ((val = mappingFunction.apply(key)) != null) {
1675 added = true;
1676 t.putTreeVal(h, key, val);
1677 }
1678 }
1679 }
1680 }
1681 if (binCount != 0) {
1682 if (binCount >= TREEIFY_THRESHOLD)
1683 treeifyBin(tab, i);
1684 if (!added)
1685 return val;
1686 break;
1687 }
1688 }
1689 }
1690 if (val != null)
1691 addCount(1L, binCount);
1692 return val;
1693 }
1694
1695 /**
1696 * If the value for the specified key is present, attempts to
1697 * compute a new mapping given the key and its current mapped
1698 * value. The entire method invocation is performed atomically.
1699 * Some attempted update operations on this map by other threads
1700 * may be blocked while computation is in progress, so the
1701 * computation should be short and simple, and must not attempt to
1702 * update any other mappings of this map.
1703 *
1704 * @param key key with which a value may be associated
1705 * @param remappingFunction the function to compute a value
1706 * @return the new value associated with the specified key, or null if none
1707 * @throws NullPointerException if the specified key or remappingFunction
1708 * is null
1709 * @throws IllegalStateException if the computation detectably
1710 * attempts a recursive update to this map that would
1711 * otherwise never complete
1712 * @throws RuntimeException or Error if the remappingFunction does so,
1713 * in which case the mapping is unchanged
1714 */
1715 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1716 if (key == null || remappingFunction == null)
1717 throw new NullPointerException();
1718 int h = spread(key.hashCode());
1719 V val = null;
1720 int delta = 0;
1721 int binCount = 0;
1722 for (Node<K,V>[] tab = table;;) {
1723 Node<K,V> f; int n, i, fh;
1724 if (tab == null || (n = tab.length) == 0)
1725 tab = initTable();
1726 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1727 break;
1728 else if ((fh = f.hash) == MOVED)
1729 tab = helpTransfer(tab, f);
1730 else {
1731 synchronized (f) {
1732 if (tabAt(tab, i) == f) {
1733 if (fh >= 0) {
1734 binCount = 1;
1735 for (Node<K,V> e = f, pred = null;; ++binCount) {
1736 K ek;
1737 if (e.hash == h &&
1738 ((ek = e.key) == key ||
1739 (ek != null && key.equals(ek)))) {
1740 val = remappingFunction.apply(key, e.val);
1741 if (val != null)
1742 e.val = val;
1743 else {
1744 delta = -1;
1745 Node<K,V> en = e.next;
1746 if (pred != null)
1747 pred.next = en;
1748 else
1749 setTabAt(tab, i, en);
1750 }
1751 break;
1752 }
1753 pred = e;
1754 if ((e = e.next) == null)
1755 break;
1756 }
1757 }
1758 else if (f instanceof TreeBin) {
1759 binCount = 2;
1760 TreeBin<K,V> t = (TreeBin<K,V>)f;
1761 TreeNode<K,V> r, p;
1762 if ((r = t.root) != null &&
1763 (p = r.findTreeNode(h, key, null)) != null) {
1764 val = remappingFunction.apply(key, p.val);
1765 if (val != null)
1766 p.val = val;
1767 else {
1768 delta = -1;
1769 if (t.removeTreeNode(p))
1770 setTabAt(tab, i, untreeify(t.first));
1771 }
1772 }
1773 }
1774 }
1775 }
1776 if (binCount != 0)
1777 break;
1778 }
1779 }
1780 if (delta != 0)
1781 addCount((long)delta, binCount);
1782 return val;
1783 }
1784
1785 /**
1786 * Attempts to compute a mapping for the specified key and its
1787 * current mapped value (or {@code null} if there is no current
1788 * mapping). The entire method invocation is performed atomically.
1789 * Some attempted update operations on this map by other threads
1790 * may be blocked while computation is in progress, so the
1791 * computation should be short and simple, and must not attempt to
1792 * update any other mappings of this Map.
1793 *
1794 * @param key key with which the specified value is to be associated
1795 * @param remappingFunction the function to compute a value
1796 * @return the new value associated with the specified key, or null if none
1797 * @throws NullPointerException if the specified key or remappingFunction
1798 * is null
1799 * @throws IllegalStateException if the computation detectably
1800 * attempts a recursive update to this map that would
1801 * otherwise never complete
1802 * @throws RuntimeException or Error if the remappingFunction does so,
1803 * in which case the mapping is unchanged
1804 */
1805 public V compute(K key,
1806 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1807 if (key == null || remappingFunction == null)
1808 throw new NullPointerException();
1809 int h = spread(key.hashCode());
1810 V val = null;
1811 int delta = 0;
1812 int binCount = 0;
1813 for (Node<K,V>[] tab = table;;) {
1814 Node<K,V> f; int n, i, fh;
1815 if (tab == null || (n = tab.length) == 0)
1816 tab = initTable();
1817 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1818 Node<K,V> r = new ReservationNode<K,V>();
1819 synchronized (r) {
1820 if (casTabAt(tab, i, null, r)) {
1821 binCount = 1;
1822 Node<K,V> node = null;
1823 try {
1824 if ((val = remappingFunction.apply(key, null)) != null) {
1825 delta = 1;
1826 node = new Node<K,V>(h, key, val, null);
1827 }
1828 } finally {
1829 setTabAt(tab, i, node);
1830 }
1831 }
1832 }
1833 if (binCount != 0)
1834 break;
1835 }
1836 else if ((fh = f.hash) == MOVED)
1837 tab = helpTransfer(tab, f);
1838 else {
1839 synchronized (f) {
1840 if (tabAt(tab, i) == f) {
1841 if (fh >= 0) {
1842 binCount = 1;
1843 for (Node<K,V> e = f, pred = null;; ++binCount) {
1844 K ek;
1845 if (e.hash == h &&
1846 ((ek = e.key) == key ||
1847 (ek != null && key.equals(ek)))) {
1848 val = remappingFunction.apply(key, e.val);
1849 if (val != null)
1850 e.val = val;
1851 else {
1852 delta = -1;
1853 Node<K,V> en = e.next;
1854 if (pred != null)
1855 pred.next = en;
1856 else
1857 setTabAt(tab, i, en);
1858 }
1859 break;
1860 }
1861 pred = e;
1862 if ((e = e.next) == null) {
1863 val = remappingFunction.apply(key, null);
1864 if (val != null) {
1865 delta = 1;
1866 pred.next =
1867 new Node<K,V>(h, key, val, null);
1868 }
1869 break;
1870 }
1871 }
1872 }
1873 else if (f instanceof TreeBin) {
1874 binCount = 1;
1875 TreeBin<K,V> t = (TreeBin<K,V>)f;
1876 TreeNode<K,V> r, p;
1877 if ((r = t.root) != null)
1878 p = r.findTreeNode(h, key, null);
1879 else
1880 p = null;
1881 V pv = (p == null) ? null : p.val;
1882 val = remappingFunction.apply(key, pv);
1883 if (val != null) {
1884 if (p != null)
1885 p.val = val;
1886 else {
1887 delta = 1;
1888 t.putTreeVal(h, key, val);
1889 }
1890 }
1891 else if (p != null) {
1892 delta = -1;
1893 if (t.removeTreeNode(p))
1894 setTabAt(tab, i, untreeify(t.first));
1895 }
1896 }
1897 }
1898 }
1899 if (binCount != 0) {
1900 if (binCount >= TREEIFY_THRESHOLD)
1901 treeifyBin(tab, i);
1902 break;
1903 }
1904 }
1905 }
1906 if (delta != 0)
1907 addCount((long)delta, binCount);
1908 return val;
1909 }
1910
1911 /**
1912 * If the specified key is not already associated with a
1913 * (non-null) value, associates it with the given value.
1914 * Otherwise, replaces the value with the results of the given
1915 * remapping function, or removes if {@code null}. The entire
1916 * method invocation is performed atomically. Some attempted
1917 * update operations on this map by other threads may be blocked
1918 * while computation is in progress, so the computation should be
1919 * short and simple, and must not attempt to update any other
1920 * mappings of this Map.
1921 *
1922 * @param key key with which the specified value is to be associated
1923 * @param value the value to use if absent
1924 * @param remappingFunction the function to recompute a value if present
1925 * @return the new value associated with the specified key, or null if none
1926 * @throws NullPointerException if the specified key or the
1927 * remappingFunction is null
1928 * @throws RuntimeException or Error if the remappingFunction does so,
1929 * in which case the mapping is unchanged
1930 */
1931 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1932 if (key == null || value == null || remappingFunction == null)
1933 throw new NullPointerException();
1934 int h = spread(key.hashCode());
1935 V val = null;
1936 int delta = 0;
1937 int binCount = 0;
1938 for (Node<K,V>[] tab = table;;) {
1939 Node<K,V> f; int n, i, fh;
1940 if (tab == null || (n = tab.length) == 0)
1941 tab = initTable();
1942 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1943 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1944 delta = 1;
1945 val = value;
1946 break;
1947 }
1948 }
1949 else if ((fh = f.hash) == MOVED)
1950 tab = helpTransfer(tab, f);
1951 else {
1952 synchronized (f) {
1953 if (tabAt(tab, i) == f) {
1954 if (fh >= 0) {
1955 binCount = 1;
1956 for (Node<K,V> e = f, pred = null;; ++binCount) {
1957 K ek;
1958 if (e.hash == h &&
1959 ((ek = e.key) == key ||
1960 (ek != null && key.equals(ek)))) {
1961 val = remappingFunction.apply(e.val, value);
1962 if (val != null)
1963 e.val = val;
1964 else {
1965 delta = -1;
1966 Node<K,V> en = e.next;
1967 if (pred != null)
1968 pred.next = en;
1969 else
1970 setTabAt(tab, i, en);
1971 }
1972 break;
1973 }
1974 pred = e;
1975 if ((e = e.next) == null) {
1976 delta = 1;
1977 val = value;
1978 pred.next =
1979 new Node<K,V>(h, key, val, null);
1980 break;
1981 }
1982 }
1983 }
1984 else if (f instanceof TreeBin) {
1985 binCount = 2;
1986 TreeBin<K,V> t = (TreeBin<K,V>)f;
1987 TreeNode<K,V> r = t.root;
1988 TreeNode<K,V> p = (r == null) ? null :
1989 r.findTreeNode(h, key, null);
1990 val = (p == null) ? value :
1991 remappingFunction.apply(p.val, value);
1992 if (val != null) {
1993 if (p != null)
1994 p.val = val;
1995 else {
1996 delta = 1;
1997 t.putTreeVal(h, key, val);
1998 }
1999 }
2000 else if (p != null) {
2001 delta = -1;
2002 if (t.removeTreeNode(p))
2003 setTabAt(tab, i, untreeify(t.first));
2004 }
2005 }
2006 }
2007 }
2008 if (binCount != 0) {
2009 if (binCount >= TREEIFY_THRESHOLD)
2010 treeifyBin(tab, i);
2011 break;
2012 }
2013 }
2014 }
2015 if (delta != 0)
2016 addCount((long)delta, binCount);
2017 return val;
2018 }
2019
2020 // Hashtable legacy methods
2021
2022 /**
2023 * Legacy method testing if some key maps into the specified value
2024 * in this table.
2025 *
2026 * @deprecated This method is identical in functionality to
2027 * {@link #containsValue(Object)}, and exists solely to ensure
2028 * full compatibility with class {@link java.util.Hashtable},
2029 * which supported this method prior to introduction of the
2030 * Java Collections framework.
2031 *
2032 * @param value a value to search for
2033 * @return {@code true} if and only if some key maps to the
2034 * {@code value} argument in this table as
2035 * determined by the {@code equals} method;
2036 * {@code false} otherwise
2037 * @throws NullPointerException if the specified value is null
2038 */
2039 @Deprecated
2040 public boolean contains(Object value) {
2041 return containsValue(value);
2042 }
2043
2044 /**
2045 * Returns an enumeration of the keys in this table.
2046 *
2047 * @return an enumeration of the keys in this table
2048 * @see #keySet()
2049 */
2050 public Enumeration<K> keys() {
2051 Node<K,V>[] t;
2052 int f = (t = table) == null ? 0 : t.length;
2053 return new KeyIterator<K,V>(t, f, 0, f, this);
2054 }
2055
2056 /**
2057 * Returns an enumeration of the values in this table.
2058 *
2059 * @return an enumeration of the values in this table
2060 * @see #values()
2061 */
2062 public Enumeration<V> elements() {
2063 Node<K,V>[] t;
2064 int f = (t = table) == null ? 0 : t.length;
2065 return new ValueIterator<K,V>(t, f, 0, f, this);
2066 }
2067
2068 // ConcurrentHashMap-only methods
2069
2070 /**
2071 * Returns the number of mappings. This method should be used
2072 * instead of {@link #size} because a ConcurrentHashMap may
2073 * contain more mappings than can be represented as an int. The
2074 * value returned is an estimate; the actual count may differ if
2075 * there are concurrent insertions or removals.
2076 *
2077 * @return the number of mappings
2078 * @since 1.8
2079 */
2080 public long mappingCount() {
2081 long n = sumCount();
2082 return (n < 0L) ? 0L : n; // ignore transient negative values
2083 }
2084
2085 /**
2086 * Creates a new {@link Set} backed by a ConcurrentHashMap
2087 * from the given type to {@code Boolean.TRUE}.
2088 *
2089 * @param <K> the element type of the returned set
2090 * @return the new set
2091 * @since 1.8
2092 */
2093 public static <K> KeySetView<K,Boolean> newKeySet() {
2094 return new KeySetView<K,Boolean>
2095 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2096 }
2097
2098 /**
2099 * Creates a new {@link Set} backed by a ConcurrentHashMap
2100 * from the given type to {@code Boolean.TRUE}.
2101 *
2102 * @param initialCapacity The implementation performs internal
2103 * sizing to accommodate this many elements.
2104 * @param <K> the element type of the returned set
2105 * @return the new set
2106 * @throws IllegalArgumentException if the initial capacity of
2107 * elements is negative
2108 * @since 1.8
2109 */
2110 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2111 return new KeySetView<K,Boolean>
2112 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2113 }
2114
2115 /**
2116 * Returns a {@link Set} view of the keys in this map, using the
2117 * given common mapped value for any additions (i.e., {@link
2118 * Collection#add} and {@link Collection#addAll(Collection)}).
2119 * This is of course only appropriate if it is acceptable to use
2120 * the same value for all additions from this view.
2121 *
2122 * @param mappedValue the mapped value to use for any additions
2123 * @return the set view
2124 * @throws NullPointerException if the mappedValue is null
2125 */
2126 public KeySetView<K,V> keySet(V mappedValue) {
2127 if (mappedValue == null)
2128 throw new NullPointerException();
2129 return new KeySetView<K,V>(this, mappedValue);
2130 }
2131
2132 /* ---------------- Special Nodes -------------- */
2133
2134 /**
2135 * A node inserted at head of bins during transfer operations.
2136 */
2137 static final class ForwardingNode<K,V> extends Node<K,V> {
2138 final Node<K,V>[] nextTable;
2139 ForwardingNode(Node<K,V>[] tab) {
2140 super(MOVED, null, null, null);
2141 this.nextTable = tab;
2142 }
2143
2144 Node<K,V> find(int h, Object k) {
2145 // loop to avoid arbitrarily deep recursion on forwarding nodes
2146 outer: for (Node<K,V>[] tab = nextTable;;) {
2147 Node<K,V> e; int n;
2148 if (k == null || tab == null || (n = tab.length) == 0 ||
2149 (e = tabAt(tab, (n - 1) & h)) == null)
2150 return null;
2151 for (;;) {
2152 int eh; K ek;
2153 if ((eh = e.hash) == h &&
2154 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2155 return e;
2156 if (eh < 0) {
2157 if (e instanceof ForwardingNode) {
2158 tab = ((ForwardingNode<K,V>)e).nextTable;
2159 continue outer;
2160 }
2161 else
2162 return e.find(h, k);
2163 }
2164 if ((e = e.next) == null)
2165 return null;
2166 }
2167 }
2168 }
2169 }
2170
2171 /**
2172 * A place-holder node used in computeIfAbsent and compute
2173 */
2174 static final class ReservationNode<K,V> extends Node<K,V> {
2175 ReservationNode() {
2176 super(RESERVED, null, null, null);
2177 }
2178
2179 Node<K,V> find(int h, Object k) {
2180 return null;
2181 }
2182 }
2183
2184 /* ---------------- Table Initialization and Resizing -------------- */
2185
2186 /**
2187 * Returns the stamp bits for resizing a table of size n.
2188 * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2189 */
2190 static final int resizeStamp(int n) {
2191 return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2192 }
2193
2194 /**
2195 * Initializes table, using the size recorded in sizeCtl.
2196 */
2197 private final Node<K,V>[] initTable() {
2198 Node<K,V>[] tab; int sc;
2199 while ((tab = table) == null || tab.length == 0) {
2200 if ((sc = sizeCtl) < 0)
2201 Thread.yield(); // lost initialization race; just spin
2202 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2203 try {
2204 if ((tab = table) == null || tab.length == 0) {
2205 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2206 @SuppressWarnings("unchecked")
2207 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2208 table = tab = nt;
2209 sc = n - (n >>> 2);
2210 }
2211 } finally {
2212 sizeCtl = sc;
2213 }
2214 break;
2215 }
2216 }
2217 return tab;
2218 }
2219
2220 /**
2221 * Adds to count, and if table is too small and not already
2222 * resizing, initiates transfer. If already resizing, helps
2223 * perform transfer if work is available. Rechecks occupancy
2224 * after a transfer to see if another resize is already needed
2225 * because resizings are lagging additions.
2226 *
2227 * @param x the count to add
2228 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2229 */
2230 private final void addCount(long x, int check) {
2231 CounterCell[] as; long b, s;
2232 if ((as = counterCells) != null ||
2233 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2234 CounterCell a; long v; int m;
2235 boolean uncontended = true;
2236 if (as == null || (m = as.length - 1) < 0 ||
2237 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2238 !(uncontended =
2239 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2240 fullAddCount(x, uncontended);
2241 return;
2242 }
2243 if (check <= 1)
2244 return;
2245 s = sumCount();
2246 }
2247 if (check >= 0) {
2248 Node<K,V>[] tab, nt; int n, sc;
2249 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2250 (n = tab.length) < MAXIMUM_CAPACITY) {
2251 int rs = resizeStamp(n);
2252 if (sc < 0) {
2253 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2254 sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2255 transferIndex <= 0)
2256 break;
2257 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2258 transfer(tab, nt);
2259 }
2260 else if (U.compareAndSwapInt(this, SIZECTL, sc,
2261 (rs << RESIZE_STAMP_SHIFT) + 2))
2262 transfer(tab, null);
2263 s = sumCount();
2264 }
2265 }
2266 }
2267
2268 /**
2269 * Helps transfer if a resize is in progress.
2270 */
2271 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2272 Node<K,V>[] nextTab; int sc;
2273 if (tab != null && (f instanceof ForwardingNode) &&
2274 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2275 int rs = resizeStamp(tab.length);
2276 while (nextTab == nextTable && table == tab &&
2277 (sc = sizeCtl) < 0) {
2278 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2279 sc == rs + MAX_RESIZERS || transferIndex <= 0)
2280 break;
2281 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2282 transfer(tab, nextTab);
2283 break;
2284 }
2285 }
2286 return nextTab;
2287 }
2288 return table;
2289 }
2290
2291 /**
2292 * Tries to presize table to accommodate the given number of elements.
2293 *
2294 * @param size number of elements (doesn't need to be perfectly accurate)
2295 */
2296 private final void tryPresize(int size) {
2297 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2298 tableSizeFor(size + (size >>> 1) + 1);
2299 int sc;
2300 while ((sc = sizeCtl) >= 0) {
2301 Node<K,V>[] tab = table; int n;
2302 if (tab == null || (n = tab.length) == 0) {
2303 n = (sc > c) ? sc : c;
2304 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2305 try {
2306 if (table == tab) {
2307 @SuppressWarnings("unchecked")
2308 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2309 table = nt;
2310 sc = n - (n >>> 2);
2311 }
2312 } finally {
2313 sizeCtl = sc;
2314 }
2315 }
2316 }
2317 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2318 break;
2319 else if (tab == table) {
2320 int rs = resizeStamp(n);
2321 if (sc < 0) {
2322 Node<K,V>[] nt;
2323 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2324 sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2325 transferIndex <= 0)
2326 break;
2327 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2328 transfer(tab, nt);
2329 }
2330 else if (U.compareAndSwapInt(this, SIZECTL, sc,
2331 (rs << RESIZE_STAMP_SHIFT) + 2))
2332 transfer(tab, null);
2333 }
2334 }
2335 }
2336
2337 /**
2338 * Moves and/or copies the nodes in each bin to new table. See
2339 * above for explanation.
2340 */
2341 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2342 int n = tab.length, stride;
2343 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2344 stride = MIN_TRANSFER_STRIDE; // subdivide range
2345 if (nextTab == null) { // initiating
2346 try {
2347 @SuppressWarnings("unchecked")
2348 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2349 nextTab = nt;
2350 } catch (Throwable ex) { // try to cope with OOME
2351 sizeCtl = Integer.MAX_VALUE;
2352 return;
2353 }
2354 nextTable = nextTab;
2355 transferIndex = n;
2356 }
2357 int nextn = nextTab.length;
2358 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2359 boolean advance = true;
2360 boolean finishing = false; // to ensure sweep before committing nextTab
2361 for (int i = 0, bound = 0;;) {
2362 Node<K,V> f; int fh;
2363 while (advance) {
2364 int nextIndex, nextBound;
2365 if (--i >= bound || finishing)
2366 advance = false;
2367 else if ((nextIndex = transferIndex) <= 0) {
2368 i = -1;
2369 advance = false;
2370 }
2371 else if (U.compareAndSwapInt
2372 (this, TRANSFERINDEX, nextIndex,
2373 nextBound = (nextIndex > stride ?
2374 nextIndex - stride : 0))) {
2375 bound = nextBound;
2376 i = nextIndex - 1;
2377 advance = false;
2378 }
2379 }
2380 if (i < 0 || i >= n || i + n >= nextn) {
2381 int sc;
2382 if (finishing) {
2383 nextTable = null;
2384 table = nextTab;
2385 sizeCtl = (n << 1) - (n >>> 1);
2386 return;
2387 }
2388 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2389 if ((sc - 2) != resizeStamp(n))
2390 return;
2391 finishing = advance = true;
2392 i = n; // recheck before commit
2393 }
2394 }
2395 else if ((f = tabAt(tab, i)) == null)
2396 advance = casTabAt(tab, i, null, fwd);
2397 else if ((fh = f.hash) == MOVED)
2398 advance = true; // already processed
2399 else {
2400 synchronized (f) {
2401 if (tabAt(tab, i) == f) {
2402 Node<K,V> ln, hn;
2403 if (fh >= 0) {
2404 int runBit = fh & n;
2405 Node<K,V> lastRun = f;
2406 for (Node<K,V> p = f.next; p != null; p = p.next) {
2407 int b = p.hash & n;
2408 if (b != runBit) {
2409 runBit = b;
2410 lastRun = p;
2411 }
2412 }
2413 if (runBit == 0) {
2414 ln = lastRun;
2415 hn = null;
2416 }
2417 else {
2418 hn = lastRun;
2419 ln = null;
2420 }
2421 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2422 int ph = p.hash; K pk = p.key; V pv = p.val;
2423 if ((ph & n) == 0)
2424 ln = new Node<K,V>(ph, pk, pv, ln);
2425 else
2426 hn = new Node<K,V>(ph, pk, pv, hn);
2427 }
2428 setTabAt(nextTab, i, ln);
2429 setTabAt(nextTab, i + n, hn);
2430 setTabAt(tab, i, fwd);
2431 advance = true;
2432 }
2433 else if (f instanceof TreeBin) {
2434 TreeBin<K,V> t = (TreeBin<K,V>)f;
2435 TreeNode<K,V> lo = null, loTail = null;
2436 TreeNode<K,V> hi = null, hiTail = null;
2437 int lc = 0, hc = 0;
2438 for (Node<K,V> e = t.first; e != null; e = e.next) {
2439 int h = e.hash;
2440 TreeNode<K,V> p = new TreeNode<K,V>
2441 (h, e.key, e.val, null, null);
2442 if ((h & n) == 0) {
2443 if ((p.prev = loTail) == null)
2444 lo = p;
2445 else
2446 loTail.next = p;
2447 loTail = p;
2448 ++lc;
2449 }
2450 else {
2451 if ((p.prev = hiTail) == null)
2452 hi = p;
2453 else
2454 hiTail.next = p;
2455 hiTail = p;
2456 ++hc;
2457 }
2458 }
2459 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2460 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2461 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2462 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2463 setTabAt(nextTab, i, ln);
2464 setTabAt(nextTab, i + n, hn);
2465 setTabAt(tab, i, fwd);
2466 advance = true;
2467 }
2468 }
2469 }
2470 }
2471 }
2472 }
2473
2474 /* ---------------- Counter support -------------- */
2475
2476 /**
2477 * A padded cell for distributing counts. Adapted from LongAdder
2478 * and Striped64. See their internal docs for explanation.
2479 */
2480 @sun.misc.Contended static final class CounterCell {
2481 volatile long value;
2482 CounterCell(long x) { value = x; }
2483 }
2484
2485 final long sumCount() {
2486 CounterCell[] as = counterCells; CounterCell a;
2487 long sum = baseCount;
2488 if (as != null) {
2489 for (int i = 0; i < as.length; ++i) {
2490 if ((a = as[i]) != null)
2491 sum += a.value;
2492 }
2493 }
2494 return sum;
2495 }
2496
2497 // See LongAdder version for explanation
2498 private final void fullAddCount(long x, boolean wasUncontended) {
2499 int h;
2500 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2501 ThreadLocalRandom.localInit(); // force initialization
2502 h = ThreadLocalRandom.getProbe();
2503 wasUncontended = true;
2504 }
2505 boolean collide = false; // True if last slot nonempty
2506 for (;;) {
2507 CounterCell[] as; CounterCell a; int n; long v;
2508 if ((as = counterCells) != null && (n = as.length) > 0) {
2509 if ((a = as[(n - 1) & h]) == null) {
2510 if (cellsBusy == 0) { // Try to attach new Cell
2511 CounterCell r = new CounterCell(x); // Optimistic create
2512 if (cellsBusy == 0 &&
2513 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2514 boolean created = false;
2515 try { // Recheck under lock
2516 CounterCell[] rs; int m, j;
2517 if ((rs = counterCells) != null &&
2518 (m = rs.length) > 0 &&
2519 rs[j = (m - 1) & h] == null) {
2520 rs[j] = r;
2521 created = true;
2522 }
2523 } finally {
2524 cellsBusy = 0;
2525 }
2526 if (created)
2527 break;
2528 continue; // Slot is now non-empty
2529 }
2530 }
2531 collide = false;
2532 }
2533 else if (!wasUncontended) // CAS already known to fail
2534 wasUncontended = true; // Continue after rehash
2535 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2536 break;
2537 else if (counterCells != as || n >= NCPU)
2538 collide = false; // At max size or stale
2539 else if (!collide)
2540 collide = true;
2541 else if (cellsBusy == 0 &&
2542 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2543 try {
2544 if (counterCells == as) {// Expand table unless stale
2545 CounterCell[] rs = new CounterCell[n << 1];
2546 for (int i = 0; i < n; ++i)
2547 rs[i] = as[i];
2548 counterCells = rs;
2549 }
2550 } finally {
2551 cellsBusy = 0;
2552 }
2553 collide = false;
2554 continue; // Retry with expanded table
2555 }
2556 h = ThreadLocalRandom.advanceProbe(h);
2557 }
2558 else if (cellsBusy == 0 && counterCells == as &&
2559 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2560 boolean init = false;
2561 try { // Initialize table
2562 if (counterCells == as) {
2563 CounterCell[] rs = new CounterCell[2];
2564 rs[h & 1] = new CounterCell(x);
2565 counterCells = rs;
2566 init = true;
2567 }
2568 } finally {
2569 cellsBusy = 0;
2570 }
2571 if (init)
2572 break;
2573 }
2574 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2575 break; // Fall back on using base
2576 }
2577 }
2578
2579 /* ---------------- Conversion from/to TreeBins -------------- */
2580
2581 /**
2582 * Replaces all linked nodes in bin at given index unless table is
2583 * too small, in which case resizes instead.
2584 */
2585 private final void treeifyBin(Node<K,V>[] tab, int index) {
2586 Node<K,V> b; int n, sc;
2587 if (tab != null) {
2588 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2589 tryPresize(n << 1);
2590 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2591 synchronized (b) {
2592 if (tabAt(tab, index) == b) {
2593 TreeNode<K,V> hd = null, tl = null;
2594 for (Node<K,V> e = b; e != null; e = e.next) {
2595 TreeNode<K,V> p =
2596 new TreeNode<K,V>(e.hash, e.key, e.val,
2597 null, null);
2598 if ((p.prev = tl) == null)
2599 hd = p;
2600 else
2601 tl.next = p;
2602 tl = p;
2603 }
2604 setTabAt(tab, index, new TreeBin<K,V>(hd));
2605 }
2606 }
2607 }
2608 }
2609 }
2610
2611 /**
2612 * Returns a list on non-TreeNodes replacing those in given list.
2613 */
2614 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2615 Node<K,V> hd = null, tl = null;
2616 for (Node<K,V> q = b; q != null; q = q.next) {
2617 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2618 if (tl == null)
2619 hd = p;
2620 else
2621 tl.next = p;
2622 tl = p;
2623 }
2624 return hd;
2625 }
2626
2627 /* ---------------- TreeNodes -------------- */
2628
2629 /**
2630 * Nodes for use in TreeBins
2631 */
2632 static final class TreeNode<K,V> extends Node<K,V> {
2633 TreeNode<K,V> parent; // red-black tree links
2634 TreeNode<K,V> left;
2635 TreeNode<K,V> right;
2636 TreeNode<K,V> prev; // needed to unlink next upon deletion
2637 boolean red;
2638
2639 TreeNode(int hash, K key, V val, Node<K,V> next,
2640 TreeNode<K,V> parent) {
2641 super(hash, key, val, next);
2642 this.parent = parent;
2643 }
2644
2645 Node<K,V> find(int h, Object k) {
2646 return findTreeNode(h, k, null);
2647 }
2648
2649 /**
2650 * Returns the TreeNode (or null if not found) for the given key
2651 * starting at given root.
2652 */
2653 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2654 if (k != null) {
2655 TreeNode<K,V> p = this;
2656 do {
2657 int ph, dir; K pk; TreeNode<K,V> q;
2658 TreeNode<K,V> pl = p.left, pr = p.right;
2659 if ((ph = p.hash) > h)
2660 p = pl;
2661 else if (ph < h)
2662 p = pr;
2663 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2664 return p;
2665 else if (pl == null)
2666 p = pr;
2667 else if (pr == null)
2668 p = pl;
2669 else if ((kc != null ||
2670 (kc = comparableClassFor(k)) != null) &&
2671 (dir = compareComparables(kc, k, pk)) != 0)
2672 p = (dir < 0) ? pl : pr;
2673 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2674 return q;
2675 else
2676 p = pl;
2677 } while (p != null);
2678 }
2679 return null;
2680 }
2681 }
2682
2683 /* ---------------- TreeBins -------------- */
2684
2685 /**
2686 * TreeNodes used at the heads of bins. TreeBins do not hold user
2687 * keys or values, but instead point to list of TreeNodes and
2688 * their root. They also maintain a parasitic read-write lock
2689 * forcing writers (who hold bin lock) to wait for readers (who do
2690 * not) to complete before tree restructuring operations.
2691 */
2692 static final class TreeBin<K,V> extends Node<K,V> {
2693 TreeNode<K,V> root;
2694 volatile TreeNode<K,V> first;
2695 volatile Thread waiter;
2696 volatile int lockState;
2697 // values for lockState
2698 static final int WRITER = 1; // set while holding write lock
2699 static final int WAITER = 2; // set when waiting for write lock
2700 static final int READER = 4; // increment value for setting read lock
2701
2702 /**
2703 * Tie-breaking utility for ordering insertions when equal
2704 * hashCodes and non-comparable. We don't require a total
2705 * order, just a consistent insertion rule to maintain
2706 * equivalence across rebalancings. Tie-breaking further than
2707 * necessary simplifies testing a bit.
2708 */
2709 static int tieBreakOrder(Object a, Object b) {
2710 int d;
2711 if (a == null || b == null ||
2712 (d = a.getClass().getName().
2713 compareTo(b.getClass().getName())) == 0)
2714 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2715 -1 : 1);
2716 return d;
2717 }
2718
2719 /**
2720 * Creates bin with initial set of nodes headed by b.
2721 */
2722 TreeBin(TreeNode<K,V> b) {
2723 super(TREEBIN, null, null, null);
2724 this.first = b;
2725 TreeNode<K,V> r = null;
2726 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2727 next = (TreeNode<K,V>)x.next;
2728 x.left = x.right = null;
2729 if (r == null) {
2730 x.parent = null;
2731 x.red = false;
2732 r = x;
2733 }
2734 else {
2735 K k = x.key;
2736 int h = x.hash;
2737 Class<?> kc = null;
2738 for (TreeNode<K,V> p = r;;) {
2739 int dir, ph;
2740 K pk = p.key;
2741 if ((ph = p.hash) > h)
2742 dir = -1;
2743 else if (ph < h)
2744 dir = 1;
2745 else if ((kc == null &&
2746 (kc = comparableClassFor(k)) == null) ||
2747 (dir = compareComparables(kc, k, pk)) == 0)
2748 dir = tieBreakOrder(k, pk);
2749 TreeNode<K,V> xp = p;
2750 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2751 x.parent = xp;
2752 if (dir <= 0)
2753 xp.left = x;
2754 else
2755 xp.right = x;
2756 r = balanceInsertion(r, x);
2757 break;
2758 }
2759 }
2760 }
2761 }
2762 this.root = r;
2763 assert checkInvariants(root);
2764 }
2765
2766 /**
2767 * Acquires write lock for tree restructuring.
2768 */
2769 private final void lockRoot() {
2770 if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2771 contendedLock(); // offload to separate method
2772 }
2773
2774 /**
2775 * Releases write lock for tree restructuring.
2776 */
2777 private final void unlockRoot() {
2778 lockState = 0;
2779 }
2780
2781 /**
2782 * Possibly blocks awaiting root lock.
2783 */
2784 private final void contendedLock() {
2785 boolean waiting = false;
2786 for (int s;;) {
2787 if (((s = lockState) & ~WAITER) == 0) {
2788 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2789 if (waiting)
2790 waiter = null;
2791 return;
2792 }
2793 }
2794 else if ((s & WAITER) == 0) {
2795 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2796 waiting = true;
2797 waiter = Thread.currentThread();
2798 }
2799 }
2800 else if (waiting)
2801 LockSupport.park(this);
2802 }
2803 }
2804
2805 /**
2806 * Returns matching node or null if none. Tries to search
2807 * using tree comparisons from root, but continues linear
2808 * search when lock not available.
2809 */
2810 final Node<K,V> find(int h, Object k) {
2811 if (k != null) {
2812 for (Node<K,V> e = first; e != null; e = e.next) {
2813 int s; K ek;
2814 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2815 if (e.hash == h &&
2816 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2817 return e;
2818 }
2819 else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2820 s + READER)) {
2821 TreeNode<K,V> r, p;
2822 try {
2823 p = ((r = root) == null ? null :
2824 r.findTreeNode(h, k, null));
2825 } finally {
2826 Thread w;
2827 if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2828 (READER|WAITER) && (w = waiter) != null)
2829 LockSupport.unpark(w);
2830 }
2831 return p;
2832 }
2833 }
2834 }
2835 return null;
2836 }
2837
2838 /**
2839 * Finds or adds a node.
2840 * @return null if added
2841 */
2842 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2843 Class<?> kc = null;
2844 boolean searched = false;
2845 for (TreeNode<K,V> p = root;;) {
2846 int dir, ph; K pk;
2847 if (p == null) {
2848 first = root = new TreeNode<K,V>(h, k, v, null, null);
2849 break;
2850 }
2851 else if ((ph = p.hash) > h)
2852 dir = -1;
2853 else if (ph < h)
2854 dir = 1;
2855 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2856 return p;
2857 else if ((kc == null &&
2858 (kc = comparableClassFor(k)) == null) ||
2859 (dir = compareComparables(kc, k, pk)) == 0) {
2860 if (!searched) {
2861 TreeNode<K,V> q, ch;
2862 searched = true;
2863 if (((ch = p.left) != null &&
2864 (q = ch.findTreeNode(h, k, kc)) != null) ||
2865 ((ch = p.right) != null &&
2866 (q = ch.findTreeNode(h, k, kc)) != null))
2867 return q;
2868 }
2869 dir = tieBreakOrder(k, pk);
2870 }
2871
2872 TreeNode<K,V> xp = p;
2873 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2874 TreeNode<K,V> x, f = first;
2875 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2876 if (f != null)
2877 f.prev = x;
2878 if (dir <= 0)
2879 xp.left = x;
2880 else
2881 xp.right = x;
2882 if (!xp.red)
2883 x.red = true;
2884 else {
2885 lockRoot();
2886 try {
2887 root = balanceInsertion(root, x);
2888 } finally {
2889 unlockRoot();
2890 }
2891 }
2892 break;
2893 }
2894 }
2895 assert checkInvariants(root);
2896 return null;
2897 }
2898
2899 /**
2900 * Removes the given node, that must be present before this
2901 * call. This is messier than typical red-black deletion code
2902 * because we cannot swap the contents of an interior node
2903 * with a leaf successor that is pinned by "next" pointers
2904 * that are accessible independently of lock. So instead we
2905 * swap the tree linkages.
2906 *
2907 * @return true if now too small, so should be untreeified
2908 */
2909 final boolean removeTreeNode(TreeNode<K,V> p) {
2910 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2911 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2912 TreeNode<K,V> r, rl;
2913 if (pred == null)
2914 first = next;
2915 else
2916 pred.next = next;
2917 if (next != null)
2918 next.prev = pred;
2919 if (first == null) {
2920 root = null;
2921 return true;
2922 }
2923 if ((r = root) == null || r.right == null || // too small
2924 (rl = r.left) == null || rl.left == null)
2925 return true;
2926 lockRoot();
2927 try {
2928 TreeNode<K,V> replacement;
2929 TreeNode<K,V> pl = p.left;
2930 TreeNode<K,V> pr = p.right;
2931 if (pl != null && pr != null) {
2932 TreeNode<K,V> s = pr, sl;
2933 while ((sl = s.left) != null) // find successor
2934 s = sl;
2935 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2936 TreeNode<K,V> sr = s.right;
2937 TreeNode<K,V> pp = p.parent;
2938 if (s == pr) { // p was s's direct parent
2939 p.parent = s;
2940 s.right = p;
2941 }
2942 else {
2943 TreeNode<K,V> sp = s.parent;
2944 if ((p.parent = sp) != null) {
2945 if (s == sp.left)
2946 sp.left = p;
2947 else
2948 sp.right = p;
2949 }
2950 if ((s.right = pr) != null)
2951 pr.parent = s;
2952 }
2953 p.left = null;
2954 if ((p.right = sr) != null)
2955 sr.parent = p;
2956 if ((s.left = pl) != null)
2957 pl.parent = s;
2958 if ((s.parent = pp) == null)
2959 r = s;
2960 else if (p == pp.left)
2961 pp.left = s;
2962 else
2963 pp.right = s;
2964 if (sr != null)
2965 replacement = sr;
2966 else
2967 replacement = p;
2968 }
2969 else if (pl != null)
2970 replacement = pl;
2971 else if (pr != null)
2972 replacement = pr;
2973 else
2974 replacement = p;
2975 if (replacement != p) {
2976 TreeNode<K,V> pp = replacement.parent = p.parent;
2977 if (pp == null)
2978 r = replacement;
2979 else if (p == pp.left)
2980 pp.left = replacement;
2981 else
2982 pp.right = replacement;
2983 p.left = p.right = p.parent = null;
2984 }
2985
2986 root = (p.red) ? r : balanceDeletion(r, replacement);
2987
2988 if (p == replacement) { // detach pointers
2989 TreeNode<K,V> pp;
2990 if ((pp = p.parent) != null) {
2991 if (p == pp.left)
2992 pp.left = null;
2993 else if (p == pp.right)
2994 pp.right = null;
2995 p.parent = null;
2996 }
2997 }
2998 } finally {
2999 unlockRoot();
3000 }
3001 assert checkInvariants(root);
3002 return false;
3003 }
3004
3005 /* ------------------------------------------------------------ */
3006 // Red-black tree methods, all adapted from CLR
3007
3008 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3009 TreeNode<K,V> p) {
3010 TreeNode<K,V> r, pp, rl;
3011 if (p != null && (r = p.right) != null) {
3012 if ((rl = p.right = r.left) != null)
3013 rl.parent = p;
3014 if ((pp = r.parent = p.parent) == null)
3015 (root = r).red = false;
3016 else if (pp.left == p)
3017 pp.left = r;
3018 else
3019 pp.right = r;
3020 r.left = p;
3021 p.parent = r;
3022 }
3023 return root;
3024 }
3025
3026 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3027 TreeNode<K,V> p) {
3028 TreeNode<K,V> l, pp, lr;
3029 if (p != null && (l = p.left) != null) {
3030 if ((lr = p.left = l.right) != null)
3031 lr.parent = p;
3032 if ((pp = l.parent = p.parent) == null)
3033 (root = l).red = false;
3034 else if (pp.right == p)
3035 pp.right = l;
3036 else
3037 pp.left = l;
3038 l.right = p;
3039 p.parent = l;
3040 }
3041 return root;
3042 }
3043
3044 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3045 TreeNode<K,V> x) {
3046 x.red = true;
3047 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3048 if ((xp = x.parent) == null) {
3049 x.red = false;
3050 return x;
3051 }
3052 else if (!xp.red || (xpp = xp.parent) == null)
3053 return root;
3054 if (xp == (xppl = xpp.left)) {
3055 if ((xppr = xpp.right) != null && xppr.red) {
3056 xppr.red = false;
3057 xp.red = false;
3058 xpp.red = true;
3059 x = xpp;
3060 }
3061 else {
3062 if (x == xp.right) {
3063 root = rotateLeft(root, x = xp);
3064 xpp = (xp = x.parent) == null ? null : xp.parent;
3065 }
3066 if (xp != null) {
3067 xp.red = false;
3068 if (xpp != null) {
3069 xpp.red = true;
3070 root = rotateRight(root, xpp);
3071 }
3072 }
3073 }
3074 }
3075 else {
3076 if (xppl != null && xppl.red) {
3077 xppl.red = false;
3078 xp.red = false;
3079 xpp.red = true;
3080 x = xpp;
3081 }
3082 else {
3083 if (x == xp.left) {
3084 root = rotateRight(root, x = xp);
3085 xpp = (xp = x.parent) == null ? null : xp.parent;
3086 }
3087 if (xp != null) {
3088 xp.red = false;
3089 if (xpp != null) {
3090 xpp.red = true;
3091 root = rotateLeft(root, xpp);
3092 }
3093 }
3094 }
3095 }
3096 }
3097 }
3098
3099 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3100 TreeNode<K,V> x) {
3101 for (TreeNode<K,V> xp, xpl, xpr;;) {
3102 if (x == null || x == root)
3103 return root;
3104 else if ((xp = x.parent) == null) {
3105 x.red = false;
3106 return x;
3107 }
3108 else if (x.red) {
3109 x.red = false;
3110 return root;
3111 }
3112 else if ((xpl = xp.left) == x) {
3113 if ((xpr = xp.right) != null && xpr.red) {
3114 xpr.red = false;
3115 xp.red = true;
3116 root = rotateLeft(root, xp);
3117 xpr = (xp = x.parent) == null ? null : xp.right;
3118 }
3119 if (xpr == null)
3120 x = xp;
3121 else {
3122 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3123 if ((sr == null || !sr.red) &&
3124 (sl == null || !sl.red)) {
3125 xpr.red = true;
3126 x = xp;
3127 }
3128 else {
3129 if (sr == null || !sr.red) {
3130 if (sl != null)
3131 sl.red = false;
3132 xpr.red = true;
3133 root = rotateRight(root, xpr);
3134 xpr = (xp = x.parent) == null ?
3135 null : xp.right;
3136 }
3137 if (xpr != null) {
3138 xpr.red = (xp == null) ? false : xp.red;
3139 if ((sr = xpr.right) != null)
3140 sr.red = false;
3141 }
3142 if (xp != null) {
3143 xp.red = false;
3144 root = rotateLeft(root, xp);
3145 }
3146 x = root;
3147 }
3148 }
3149 }
3150 else { // symmetric
3151 if (xpl != null && xpl.red) {
3152 xpl.red = false;
3153 xp.red = true;
3154 root = rotateRight(root, xp);
3155 xpl = (xp = x.parent) == null ? null : xp.left;
3156 }
3157 if (xpl == null)
3158 x = xp;
3159 else {
3160 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3161 if ((sl == null || !sl.red) &&
3162 (sr == null || !sr.red)) {
3163 xpl.red = true;
3164 x = xp;
3165 }
3166 else {
3167 if (sl == null || !sl.red) {
3168 if (sr != null)
3169 sr.red = false;
3170 xpl.red = true;
3171 root = rotateLeft(root, xpl);
3172 xpl = (xp = x.parent) == null ?
3173 null : xp.left;
3174 }
3175 if (xpl != null) {
3176 xpl.red = (xp == null) ? false : xp.red;
3177 if ((sl = xpl.left) != null)
3178 sl.red = false;
3179 }
3180 if (xp != null) {
3181 xp.red = false;
3182 root = rotateRight(root, xp);
3183 }
3184 x = root;
3185 }
3186 }
3187 }
3188 }
3189 }
3190
3191 /**
3192 * Recursive invariant check
3193 */
3194 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3195 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3196 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3197 if (tb != null && tb.next != t)
3198 return false;
3199 if (tn != null && tn.prev != t)
3200 return false;
3201 if (tp != null && t != tp.left && t != tp.right)
3202 return false;
3203 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3204 return false;
3205 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3206 return false;
3207 if (t.red && tl != null && tl.red && tr != null && tr.red)
3208 return false;
3209 if (tl != null && !checkInvariants(tl))
3210 return false;
3211 if (tr != null && !checkInvariants(tr))
3212 return false;
3213 return true;
3214 }
3215
3216 private static final sun.misc.Unsafe U;
3217 private static final long LOCKSTATE;
3218 static {
3219 try {
3220 U = sun.misc.Unsafe.getUnsafe();
3221 Class<?> k = TreeBin.class;
3222 LOCKSTATE = U.objectFieldOffset
3223 (k.getDeclaredField("lockState"));
3224 } catch (Exception e) {
3225 throw new Error(e);
3226 }
3227 }
3228 }
3229
3230 /* ----------------Table Traversal -------------- */
3231
3232 /**
3233 * Records the table, its length, and current traversal index for a
3234 * traverser that must process a region of a forwarded table before
3235 * proceeding with current table.
3236 */
3237 static final class TableStack<K,V> {
3238 int length;
3239 int index;
3240 Node<K,V>[] tab;
3241 TableStack<K,V> next;
3242 }
3243
3244 /**
3245 * Encapsulates traversal for methods such as containsValue; also
3246 * serves as a base class for other iterators and spliterators.
3247 *
3248 * Method advance visits once each still-valid node that was
3249 * reachable upon iterator construction. It might miss some that
3250 * were added to a bin after the bin was visited, which is OK wrt
3251 * consistency guarantees. Maintaining this property in the face
3252 * of possible ongoing resizes requires a fair amount of
3253 * bookkeeping state that is difficult to optimize away amidst
3254 * volatile accesses. Even so, traversal maintains reasonable
3255 * throughput.
3256 *
3257 * Normally, iteration proceeds bin-by-bin traversing lists.
3258 * However, if the table has been resized, then all future steps
3259 * must traverse both the bin at the current index as well as at
3260 * (index + baseSize); and so on for further resizings. To
3261 * paranoically cope with potential sharing by users of iterators
3262 * across threads, iteration terminates if a bounds checks fails
3263 * for a table read.
3264 */
3265 static class Traverser<K,V> {
3266 Node<K,V>[] tab; // current table; updated if resized
3267 Node<K,V> next; // the next entry to use
3268 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3269 int index; // index of bin to use next
3270 int baseIndex; // current index of initial table
3271 int baseLimit; // index bound for initial table
3272 final int baseSize; // initial table size
3273
3274 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3275 this.tab = tab;
3276 this.baseSize = size;
3277 this.baseIndex = this.index = index;
3278 this.baseLimit = limit;
3279 this.next = null;
3280 }
3281
3282 /**
3283 * Advances if possible, returning next valid node, or null if none.
3284 */
3285 final Node<K,V> advance() {
3286 Node<K,V> e;
3287 if ((e = next) != null)
3288 e = e.next;
3289 for (;;) {
3290 Node<K,V>[] t; int i, n; // must use locals in checks
3291 if (e != null)
3292 return next = e;
3293 if (baseIndex >= baseLimit || (t = tab) == null ||
3294 (n = t.length) <= (i = index) || i < 0)
3295 return next = null;
3296 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3297 if (e instanceof ForwardingNode) {
3298 tab = ((ForwardingNode<K,V>)e).nextTable;
3299 e = null;
3300 pushState(t, i, n);
3301 continue;
3302 }
3303 else if (e instanceof TreeBin)
3304 e = ((TreeBin<K,V>)e).first;
3305 else
3306 e = null;
3307 }
3308 if (stack != null)
3309 recoverState(n);
3310 else if ((index = i + baseSize) >= n)
3311 index = ++baseIndex; // visit upper slots if present
3312 }
3313 }
3314
3315 /**
3316 * Saves traversal state upon encountering a forwarding node.
3317 */
3318 private void pushState(Node<K,V>[] t, int i, int n) {
3319 TableStack<K,V> s = spare; // reuse if possible
3320 if (s != null)
3321 spare = s.next;
3322 else
3323 s = new TableStack<K,V>();
3324 s.tab = t;
3325 s.length = n;
3326 s.index = i;
3327 s.next = stack;
3328 stack = s;
3329 }
3330
3331 /**
3332 * Possibly pops traversal state.
3333 *
3334 * @param n length of current table
3335 */
3336 private void recoverState(int n) {
3337 TableStack<K,V> s; int len;
3338 while ((s = stack) != null && (index += (len = s.length)) >= n) {
3339 n = len;
3340 index = s.index;
3341 tab = s.tab;
3342 s.tab = null;
3343 TableStack<K,V> next = s.next;
3344 s.next = spare; // save for reuse
3345 stack = next;
3346 spare = s;
3347 }
3348 if (s == null && (index += baseSize) >= n)
3349 index = ++baseIndex;
3350 }
3351 }
3352
3353 /**
3354 * Base of key, value, and entry Iterators. Adds fields to
3355 * Traverser to support iterator.remove.
3356 */
3357 static class BaseIterator<K,V> extends Traverser<K,V> {
3358 final ConcurrentHashMap<K,V> map;
3359 Node<K,V> lastReturned;
3360 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3361 ConcurrentHashMap<K,V> map) {
3362 super(tab, size, index, limit);
3363 this.map = map;
3364 advance();
3365 }
3366
3367 public final boolean hasNext() { return next != null; }
3368 public final boolean hasMoreElements() { return next != null; }
3369
3370 public final void remove() {
3371 Node<K,V> p;
3372 if ((p = lastReturned) == null)
3373 throw new IllegalStateException();
3374 lastReturned = null;
3375 map.replaceNode(p.key, null, null);
3376 }
3377 }
3378
3379 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3380 implements Iterator<K>, Enumeration<K> {
3381 KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3382 ConcurrentHashMap<K,V> map) {
3383 super(tab, index, size, limit, map);
3384 }
3385
3386 public final K next() {
3387 Node<K,V> p;
3388 if ((p = next) == null)
3389 throw new NoSuchElementException();
3390 K k = p.key;
3391 lastReturned = p;
3392 advance();
3393 return k;
3394 }
3395
3396 public final K nextElement() { return next(); }
3397 }
3398
3399 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3400 implements Iterator<V>, Enumeration<V> {
3401 ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3402 ConcurrentHashMap<K,V> map) {
3403 super(tab, index, size, limit, map);
3404 }
3405
3406 public final V next() {
3407 Node<K,V> p;
3408 if ((p = next) == null)
3409 throw new NoSuchElementException();
3410 V v = p.val;
3411 lastReturned = p;
3412 advance();
3413 return v;
3414 }
3415
3416 public final V nextElement() { return next(); }
3417 }
3418
3419 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3420 implements Iterator<Map.Entry<K,V>> {
3421 EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3422 ConcurrentHashMap<K,V> map) {
3423 super(tab, index, size, limit, map);
3424 }
3425
3426 public final Map.Entry<K,V> next() {
3427 Node<K,V> p;
3428 if ((p = next) == null)
3429 throw new NoSuchElementException();
3430 K k = p.key;
3431 V v = p.val;
3432 lastReturned = p;
3433 advance();
3434 return new MapEntry<K,V>(k, v, map);
3435 }
3436 }
3437
3438 /**
3439 * Exported Entry for EntryIterator
3440 */
3441 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3442 final K key; // non-null
3443 V val; // non-null
3444 final ConcurrentHashMap<K,V> map;
3445 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3446 this.key = key;
3447 this.val = val;
3448 this.map = map;
3449 }
3450 public K getKey() { return key; }
3451 public V getValue() { return val; }
3452 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3453 public String toString() { return key + "=" + val; }
3454
3455 public boolean equals(Object o) {
3456 Object k, v; Map.Entry<?,?> e;
3457 return ((o instanceof Map.Entry) &&
3458 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3459 (v = e.getValue()) != null &&
3460 (k == key || k.equals(key)) &&
3461 (v == val || v.equals(val)));
3462 }
3463
3464 /**
3465 * Sets our entry's value and writes through to the map. The
3466 * value to return is somewhat arbitrary here. Since we do not
3467 * necessarily track asynchronous changes, the most recent
3468 * "previous" value could be different from what we return (or
3469 * could even have been removed, in which case the put will
3470 * re-establish). We do not and cannot guarantee more.
3471 */
3472 public V setValue(V value) {
3473 if (value == null) throw new NullPointerException();
3474 V v = val;
3475 val = value;
3476 map.put(key, value);
3477 return v;
3478 }
3479 }
3480
3481 static final class KeySpliterator<K,V> extends Traverser<K,V>
3482 implements Spliterator<K> {
3483 long est; // size estimate
3484 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3485 long est) {
3486 super(tab, size, index, limit);
3487 this.est = est;
3488 }
3489
3490 public Spliterator<K> trySplit() {
3491 int i, f, h;
3492 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3493 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3494 f, est >>>= 1);
3495 }
3496
3497 public void forEachRemaining(Consumer<? super K> action) {
3498 if (action == null) throw new NullPointerException();
3499 for (Node<K,V> p; (p = advance()) != null;)
3500 action.accept(p.key);
3501 }
3502
3503 public boolean tryAdvance(Consumer<? super K> action) {
3504 if (action == null) throw new NullPointerException();
3505 Node<K,V> p;
3506 if ((p = advance()) == null)
3507 return false;
3508 action.accept(p.key);
3509 return true;
3510 }
3511
3512 public long estimateSize() { return est; }
3513
3514 public int characteristics() {
3515 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3516 Spliterator.NONNULL;
3517 }
3518 }
3519
3520 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3521 implements Spliterator<V> {
3522 long est; // size estimate
3523 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3524 long est) {
3525 super(tab, size, index, limit);
3526 this.est = est;
3527 }
3528
3529 public Spliterator<V> trySplit() {
3530 int i, f, h;
3531 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3532 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3533 f, est >>>= 1);
3534 }
3535
3536 public void forEachRemaining(Consumer<? super V> action) {
3537 if (action == null) throw new NullPointerException();
3538 for (Node<K,V> p; (p = advance()) != null;)
3539 action.accept(p.val);
3540 }
3541
3542 public boolean tryAdvance(Consumer<? super V> action) {
3543 if (action == null) throw new NullPointerException();
3544 Node<K,V> p;
3545 if ((p = advance()) == null)
3546 return false;
3547 action.accept(p.val);
3548 return true;
3549 }
3550
3551 public long estimateSize() { return est; }
3552
3553 public int characteristics() {
3554 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3555 }
3556 }
3557
3558 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3559 implements Spliterator<Map.Entry<K,V>> {
3560 final ConcurrentHashMap<K,V> map; // To export MapEntry
3561 long est; // size estimate
3562 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3563 long est, ConcurrentHashMap<K,V> map) {
3564 super(tab, size, index, limit);
3565 this.map = map;
3566 this.est = est;
3567 }
3568
3569 public Spliterator<Map.Entry<K,V>> trySplit() {
3570 int i, f, h;
3571 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3572 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3573 f, est >>>= 1, map);
3574 }
3575
3576 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3577 if (action == null) throw new NullPointerException();
3578 for (Node<K,V> p; (p = advance()) != null; )
3579 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3580 }
3581
3582 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3583 if (action == null) throw new NullPointerException();
3584 Node<K,V> p;
3585 if ((p = advance()) == null)
3586 return false;
3587 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3588 return true;
3589 }
3590
3591 public long estimateSize() { return est; }
3592
3593 public int characteristics() {
3594 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3595 Spliterator.NONNULL;
3596 }
3597 }
3598
3599 // Parallel bulk operations
3600
3601 /**
3602 * Computes initial batch value for bulk tasks. The returned value
3603 * is approximately exp2 of the number of times (minus one) to
3604 * split task by two before executing leaf action. This value is
3605 * faster to compute and more convenient to use as a guide to
3606 * splitting than is the depth, since it is used while dividing by
3607 * two anyway.
3608 */
3609 final int batchFor(long b) {
3610 long n;
3611 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3612 return 0;
3613 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3614 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3615 }
3616
3617 /**
3618 * Performs the given action for each (key, value).
3619 *
3620 * @param parallelismThreshold the (estimated) number of elements
3621 * needed for this operation to be executed in parallel
3622 * @param action the action
3623 * @since 1.8
3624 */
3625 public void forEach(long parallelismThreshold,
3626 BiConsumer<? super K,? super V> action) {
3627 if (action == null) throw new NullPointerException();
3628 new ForEachMappingTask<K,V>
3629 (null, batchFor(parallelismThreshold), 0, 0, table,
3630 action).invoke();
3631 }
3632
3633 /**
3634 * Performs the given action for each non-null transformation
3635 * of each (key, value).
3636 *
3637 * @param parallelismThreshold the (estimated) number of elements
3638 * needed for this operation to be executed in parallel
3639 * @param transformer a function returning the transformation
3640 * for an element, or null if there is no transformation (in
3641 * which case the action is not applied)
3642 * @param action the action
3643 * @param <U> the return type of the transformer
3644 * @since 1.8
3645 */
3646 public <U> void forEach(long parallelismThreshold,
3647 BiFunction<? super K, ? super V, ? extends U> transformer,
3648 Consumer<? super U> action) {
3649 if (transformer == null || action == null)
3650 throw new NullPointerException();
3651 new ForEachTransformedMappingTask<K,V,U>
3652 (null, batchFor(parallelismThreshold), 0, 0, table,
3653 transformer, action).invoke();
3654 }
3655
3656 /**
3657 * Returns a non-null result from applying the given search
3658 * function on each (key, value), or null if none. Upon
3659 * success, further element processing is suppressed and the
3660 * results of any other parallel invocations of the search
3661 * function are ignored.
3662 *
3663 * @param parallelismThreshold the (estimated) number of elements
3664 * needed for this operation to be executed in parallel
3665 * @param searchFunction a function returning a non-null
3666 * result on success, else null
3667 * @param <U> the return type of the search function
3668 * @return a non-null result from applying the given search
3669 * function on each (key, value), or null if none
3670 * @since 1.8
3671 */
3672 public <U> U search(long parallelismThreshold,
3673 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3674 if (searchFunction == null) throw new NullPointerException();
3675 return new SearchMappingsTask<K,V,U>
3676 (null, batchFor(parallelismThreshold), 0, 0, table,
3677 searchFunction, new AtomicReference<U>()).invoke();
3678 }
3679
3680 /**
3681 * Returns the result of accumulating the given transformation
3682 * of all (key, value) pairs using the given reducer to
3683 * combine values, or null if none.
3684 *
3685 * @param parallelismThreshold the (estimated) number of elements
3686 * needed for this operation to be executed in parallel
3687 * @param transformer a function returning the transformation
3688 * for an element, or null if there is no transformation (in
3689 * which case it is not combined)
3690 * @param reducer a commutative associative combining function
3691 * @param <U> the return type of the transformer
3692 * @return the result of accumulating the given transformation
3693 * of all (key, value) pairs
3694 * @since 1.8
3695 */
3696 public <U> U reduce(long parallelismThreshold,
3697 BiFunction<? super K, ? super V, ? extends U> transformer,
3698 BiFunction<? super U, ? super U, ? extends U> reducer) {
3699 if (transformer == null || reducer == null)
3700 throw new NullPointerException();
3701 return new MapReduceMappingsTask<K,V,U>
3702 (null, batchFor(parallelismThreshold), 0, 0, table,
3703 null, transformer, reducer).invoke();
3704 }
3705
3706 /**
3707 * Returns the result of accumulating the given transformation
3708 * of all (key, value) pairs using the given reducer to
3709 * combine values, and the given basis as an identity value.
3710 *
3711 * @param parallelismThreshold the (estimated) number of elements
3712 * needed for this operation to be executed in parallel
3713 * @param transformer a function returning the transformation
3714 * for an element
3715 * @param basis the identity (initial default value) for the reduction
3716 * @param reducer a commutative associative combining function
3717 * @return the result of accumulating the given transformation
3718 * of all (key, value) pairs
3719 * @since 1.8
3720 */
3721 public double reduceToDouble(long parallelismThreshold,
3722 ToDoubleBiFunction<? super K, ? super V> transformer,
3723 double basis,
3724 DoubleBinaryOperator reducer) {
3725 if (transformer == null || reducer == null)
3726 throw new NullPointerException();
3727 return new MapReduceMappingsToDoubleTask<K,V>
3728 (null, batchFor(parallelismThreshold), 0, 0, table,
3729 null, transformer, basis, reducer).invoke();
3730 }
3731
3732 /**
3733 * Returns the result of accumulating the given transformation
3734 * of all (key, value) pairs using the given reducer to
3735 * combine values, and the given basis as an identity value.
3736 *
3737 * @param parallelismThreshold the (estimated) number of elements
3738 * needed for this operation to be executed in parallel
3739 * @param transformer a function returning the transformation
3740 * for an element
3741 * @param basis the identity (initial default value) for the reduction
3742 * @param reducer a commutative associative combining function
3743 * @return the result of accumulating the given transformation
3744 * of all (key, value) pairs
3745 * @since 1.8
3746 */
3747 public long reduceToLong(long parallelismThreshold,
3748 ToLongBiFunction<? super K, ? super V> transformer,
3749 long basis,
3750 LongBinaryOperator reducer) {
3751 if (transformer == null || reducer == null)
3752 throw new NullPointerException();
3753 return new MapReduceMappingsToLongTask<K,V>
3754 (null, batchFor(parallelismThreshold), 0, 0, table,
3755 null, transformer, basis, reducer).invoke();
3756 }
3757
3758 /**
3759 * Returns the result of accumulating the given transformation
3760 * of all (key, value) pairs using the given reducer to
3761 * combine values, and the given basis as an identity value.
3762 *
3763 * @param parallelismThreshold the (estimated) number of elements
3764 * needed for this operation to be executed in parallel
3765 * @param transformer a function returning the transformation
3766 * for an element
3767 * @param basis the identity (initial default value) for the reduction
3768 * @param reducer a commutative associative combining function
3769 * @return the result of accumulating the given transformation
3770 * of all (key, value) pairs
3771 * @since 1.8
3772 */
3773 public int reduceToInt(long parallelismThreshold,
3774 ToIntBiFunction<? super K, ? super V> transformer,
3775 int basis,
3776 IntBinaryOperator reducer) {
3777 if (transformer == null || reducer == null)
3778 throw new NullPointerException();
3779 return new MapReduceMappingsToIntTask<K,V>
3780 (null, batchFor(parallelismThreshold), 0, 0, table,
3781 null, transformer, basis, reducer).invoke();
3782 }
3783
3784 /**
3785 * Performs the given action for each key.
3786 *
3787 * @param parallelismThreshold the (estimated) number of elements
3788 * needed for this operation to be executed in parallel
3789 * @param action the action
3790 * @since 1.8
3791 */
3792 public void forEachKey(long parallelismThreshold,
3793 Consumer<? super K> action) {
3794 if (action == null) throw new NullPointerException();
3795 new ForEachKeyTask<K,V>
3796 (null, batchFor(parallelismThreshold), 0, 0, table,
3797 action).invoke();
3798 }
3799
3800 /**
3801 * Performs the given action for each non-null transformation
3802 * of each key.
3803 *
3804 * @param parallelismThreshold the (estimated) number of elements
3805 * needed for this operation to be executed in parallel
3806 * @param transformer a function returning the transformation
3807 * for an element, or null if there is no transformation (in
3808 * which case the action is not applied)
3809 * @param action the action
3810 * @param <U> the return type of the transformer
3811 * @since 1.8
3812 */
3813 public <U> void forEachKey(long parallelismThreshold,
3814 Function<? super K, ? extends U> transformer,
3815 Consumer<? super U> action) {
3816 if (transformer == null || action == null)
3817 throw new NullPointerException();
3818 new ForEachTransformedKeyTask<K,V,U>
3819 (null, batchFor(parallelismThreshold), 0, 0, table,
3820 transformer, action).invoke();
3821 }
3822
3823 /**
3824 * Returns a non-null result from applying the given search
3825 * function on each key, or null if none. Upon success,
3826 * further element processing is suppressed and the results of
3827 * any other parallel invocations of the search function are
3828 * ignored.
3829 *
3830 * @param parallelismThreshold the (estimated) number of elements
3831 * needed for this operation to be executed in parallel
3832 * @param searchFunction a function returning a non-null
3833 * result on success, else null
3834 * @param <U> the return type of the search function
3835 * @return a non-null result from applying the given search
3836 * function on each key, or null if none
3837 * @since 1.8
3838 */
3839 public <U> U searchKeys(long parallelismThreshold,
3840 Function<? super K, ? extends U> searchFunction) {
3841 if (searchFunction == null) throw new NullPointerException();
3842 return new SearchKeysTask<K,V,U>
3843 (null, batchFor(parallelismThreshold), 0, 0, table,
3844 searchFunction, new AtomicReference<U>()).invoke();
3845 }
3846
3847 /**
3848 * Returns the result of accumulating all keys using the given
3849 * reducer to combine values, or null if none.
3850 *
3851 * @param parallelismThreshold the (estimated) number of elements
3852 * needed for this operation to be executed in parallel
3853 * @param reducer a commutative associative combining function
3854 * @return the result of accumulating all keys using the given
3855 * reducer to combine values, or null if none
3856 * @since 1.8
3857 */
3858 public K reduceKeys(long parallelismThreshold,
3859 BiFunction<? super K, ? super K, ? extends K> reducer) {
3860 if (reducer == null) throw new NullPointerException();
3861 return new ReduceKeysTask<K,V>
3862 (null, batchFor(parallelismThreshold), 0, 0, table,
3863 null, reducer).invoke();
3864 }
3865
3866 /**
3867 * Returns the result of accumulating the given transformation
3868 * of all keys using the given reducer to combine values, or
3869 * null if none.
3870 *
3871 * @param parallelismThreshold the (estimated) number of elements
3872 * needed for this operation to be executed in parallel
3873 * @param transformer a function returning the transformation
3874 * for an element, or null if there is no transformation (in
3875 * which case it is not combined)
3876 * @param reducer a commutative associative combining function
3877 * @param <U> the return type of the transformer
3878 * @return the result of accumulating the given transformation
3879 * of all keys
3880 * @since 1.8
3881 */
3882 public <U> U reduceKeys(long parallelismThreshold,
3883 Function<? super K, ? extends U> transformer,
3884 BiFunction<? super U, ? super U, ? extends U> reducer) {
3885 if (transformer == null || reducer == null)
3886 throw new NullPointerException();
3887 return new MapReduceKeysTask<K,V,U>
3888 (null, batchFor(parallelismThreshold), 0, 0, table,
3889 null, transformer, reducer).invoke();
3890 }
3891
3892 /**
3893 * Returns the result of accumulating the given transformation
3894 * of all keys using the given reducer to combine values, and
3895 * the given basis as an identity value.
3896 *
3897 * @param parallelismThreshold the (estimated) number of elements
3898 * needed for this operation to be executed in parallel
3899 * @param transformer a function returning the transformation
3900 * for an element
3901 * @param basis the identity (initial default value) for the reduction
3902 * @param reducer a commutative associative combining function
3903 * @return the result of accumulating the given transformation
3904 * of all keys
3905 * @since 1.8
3906 */
3907 public double reduceKeysToDouble(long parallelismThreshold,
3908 ToDoubleFunction<? super K> transformer,
3909 double basis,
3910 DoubleBinaryOperator reducer) {
3911 if (transformer == null || reducer == null)
3912 throw new NullPointerException();
3913 return new MapReduceKeysToDoubleTask<K,V>
3914 (null, batchFor(parallelismThreshold), 0, 0, table,
3915 null, transformer, basis, reducer).invoke();
3916 }
3917
3918 /**
3919 * Returns the result of accumulating the given transformation
3920 * of all keys using the given reducer to combine values, and
3921 * the given basis as an identity value.
3922 *
3923 * @param parallelismThreshold the (estimated) number of elements
3924 * needed for this operation to be executed in parallel
3925 * @param transformer a function returning the transformation
3926 * for an element
3927 * @param basis the identity (initial default value) for the reduction
3928 * @param reducer a commutative associative combining function
3929 * @return the result of accumulating the given transformation
3930 * of all keys
3931 * @since 1.8
3932 */
3933 public long reduceKeysToLong(long parallelismThreshold,
3934 ToLongFunction<? super K> transformer,
3935 long basis,
3936 LongBinaryOperator reducer) {
3937 if (transformer == null || reducer == null)
3938 throw new NullPointerException();
3939 return new MapReduceKeysToLongTask<K,V>
3940 (null, batchFor(parallelismThreshold), 0, 0, table,
3941 null, transformer, basis, reducer).invoke();
3942 }
3943
3944 /**
3945 * Returns the result of accumulating the given transformation
3946 * of all keys using the given reducer to combine values, and
3947 * the given basis as an identity value.
3948 *
3949 * @param parallelismThreshold the (estimated) number of elements
3950 * needed for this operation to be executed in parallel
3951 * @param transformer a function returning the transformation
3952 * for an element
3953 * @param basis the identity (initial default value) for the reduction
3954 * @param reducer a commutative associative combining function
3955 * @return the result of accumulating the given transformation
3956 * of all keys
3957 * @since 1.8
3958 */
3959 public int reduceKeysToInt(long parallelismThreshold,
3960 ToIntFunction<? super K> transformer,
3961 int basis,
3962 IntBinaryOperator reducer) {
3963 if (transformer == null || reducer == null)
3964 throw new NullPointerException();
3965 return new MapReduceKeysToIntTask<K,V>
3966 (null, batchFor(parallelismThreshold), 0, 0, table,
3967 null, transformer, basis, reducer).invoke();
3968 }
3969
3970 /**
3971 * Performs the given action for each value.
3972 *
3973 * @param parallelismThreshold the (estimated) number of elements
3974 * needed for this operation to be executed in parallel
3975 * @param action the action
3976 * @since 1.8
3977 */
3978 public void forEachValue(long parallelismThreshold,
3979 Consumer<? super V> action) {
3980 if (action == null)
3981 throw new NullPointerException();
3982 new ForEachValueTask<K,V>
3983 (null, batchFor(parallelismThreshold), 0, 0, table,
3984 action).invoke();
3985 }
3986
3987 /**
3988 * Performs the given action for each non-null transformation
3989 * of each value.
3990 *
3991 * @param parallelismThreshold the (estimated) number of elements
3992 * needed for this operation to be executed in parallel
3993 * @param transformer a function returning the transformation
3994 * for an element, or null if there is no transformation (in
3995 * which case the action is not applied)
3996 * @param action the action
3997 * @param <U> the return type of the transformer
3998 * @since 1.8
3999 */
4000 public <U> void forEachValue(long parallelismThreshold,
4001 Function<? super V, ? extends U> transformer,
4002 Consumer<? super U> action) {
4003 if (transformer == null || action == null)
4004 throw new NullPointerException();
4005 new ForEachTransformedValueTask<K,V,U>
4006 (null, batchFor(parallelismThreshold), 0, 0, table,
4007 transformer, action).invoke();
4008 }
4009
4010 /**
4011 * Returns a non-null result from applying the given search
4012 * function on each value, or null if none. Upon success,
4013 * further element processing is suppressed and the results of
4014 * any other parallel invocations of the search function are
4015 * ignored.
4016 *
4017 * @param parallelismThreshold the (estimated) number of elements
4018 * needed for this operation to be executed in parallel
4019 * @param searchFunction a function returning a non-null
4020 * result on success, else null
4021 * @param <U> the return type of the search function
4022 * @return a non-null result from applying the given search
4023 * function on each value, or null if none
4024 * @since 1.8
4025 */
4026 public <U> U searchValues(long parallelismThreshold,
4027 Function<? super V, ? extends U> searchFunction) {
4028 if (searchFunction == null) throw new NullPointerException();
4029 return new SearchValuesTask<K,V,U>
4030 (null, batchFor(parallelismThreshold), 0, 0, table,
4031 searchFunction, new AtomicReference<U>()).invoke();
4032 }
4033
4034 /**
4035 * Returns the result of accumulating all values using the
4036 * given reducer to combine values, or null if none.
4037 *
4038 * @param parallelismThreshold the (estimated) number of elements
4039 * needed for this operation to be executed in parallel
4040 * @param reducer a commutative associative combining function
4041 * @return the result of accumulating all values
4042 * @since 1.8
4043 */
4044 public V reduceValues(long parallelismThreshold,
4045 BiFunction<? super V, ? super V, ? extends V> reducer) {
4046 if (reducer == null) throw new NullPointerException();
4047 return new ReduceValuesTask<K,V>
4048 (null, batchFor(parallelismThreshold), 0, 0, table,
4049 null, reducer).invoke();
4050 }
4051
4052 /**
4053 * Returns the result of accumulating the given transformation
4054 * of all values using the given reducer to combine values, or
4055 * null if none.
4056 *
4057 * @param parallelismThreshold the (estimated) number of elements
4058 * needed for this operation to be executed in parallel
4059 * @param transformer a function returning the transformation
4060 * for an element, or null if there is no transformation (in
4061 * which case it is not combined)
4062 * @param reducer a commutative associative combining function
4063 * @param <U> the return type of the transformer
4064 * @return the result of accumulating the given transformation
4065 * of all values
4066 * @since 1.8
4067 */
4068 public <U> U reduceValues(long parallelismThreshold,
4069 Function<? super V, ? extends U> transformer,
4070 BiFunction<? super U, ? super U, ? extends U> reducer) {
4071 if (transformer == null || reducer == null)
4072 throw new NullPointerException();
4073 return new MapReduceValuesTask<K,V,U>
4074 (null, batchFor(parallelismThreshold), 0, 0, table,
4075 null, transformer, reducer).invoke();
4076 }
4077
4078 /**
4079 * Returns the result of accumulating the given transformation
4080 * of all values using the given reducer to combine values,
4081 * and the given basis as an identity value.
4082 *
4083 * @param parallelismThreshold the (estimated) number of elements
4084 * needed for this operation to be executed in parallel
4085 * @param transformer a function returning the transformation
4086 * for an element
4087 * @param basis the identity (initial default value) for the reduction
4088 * @param reducer a commutative associative combining function
4089 * @return the result of accumulating the given transformation
4090 * of all values
4091 * @since 1.8
4092 */
4093 public double reduceValuesToDouble(long parallelismThreshold,
4094 ToDoubleFunction<? super V> transformer,
4095 double basis,
4096 DoubleBinaryOperator reducer) {
4097 if (transformer == null || reducer == null)
4098 throw new NullPointerException();
4099 return new MapReduceValuesToDoubleTask<K,V>
4100 (null, batchFor(parallelismThreshold), 0, 0, table,
4101 null, transformer, basis, reducer).invoke();
4102 }
4103
4104 /**
4105 * Returns the result of accumulating the given transformation
4106 * of all values using the given reducer to combine values,
4107 * and the given basis as an identity value.
4108 *
4109 * @param parallelismThreshold the (estimated) number of elements
4110 * needed for this operation to be executed in parallel
4111 * @param transformer a function returning the transformation
4112 * for an element
4113 * @param basis the identity (initial default value) for the reduction
4114 * @param reducer a commutative associative combining function
4115 * @return the result of accumulating the given transformation
4116 * of all values
4117 * @since 1.8
4118 */
4119 public long reduceValuesToLong(long parallelismThreshold,
4120 ToLongFunction<? super V> transformer,
4121 long basis,
4122 LongBinaryOperator reducer) {
4123 if (transformer == null || reducer == null)
4124 throw new NullPointerException();
4125 return new MapReduceValuesToLongTask<K,V>
4126 (null, batchFor(parallelismThreshold), 0, 0, table,
4127 null, transformer, basis, reducer).invoke();
4128 }
4129
4130 /**
4131 * Returns the result of accumulating the given transformation
4132 * of all values using the given reducer to combine values,
4133 * and the given basis as an identity value.
4134 *
4135 * @param parallelismThreshold the (estimated) number of elements
4136 * needed for this operation to be executed in parallel
4137 * @param transformer a function returning the transformation
4138 * for an element
4139 * @param basis the identity (initial default value) for the reduction
4140 * @param reducer a commutative associative combining function
4141 * @return the result of accumulating the given transformation
4142 * of all values
4143 * @since 1.8
4144 */
4145 public int reduceValuesToInt(long parallelismThreshold,
4146 ToIntFunction<? super V> transformer,
4147 int basis,
4148 IntBinaryOperator reducer) {
4149 if (transformer == null || reducer == null)
4150 throw new NullPointerException();
4151 return new MapReduceValuesToIntTask<K,V>
4152 (null, batchFor(parallelismThreshold), 0, 0, table,
4153 null, transformer, basis, reducer).invoke();
4154 }
4155
4156 /**
4157 * Performs the given action for each entry.
4158 *
4159 * @param parallelismThreshold the (estimated) number of elements
4160 * needed for this operation to be executed in parallel
4161 * @param action the action
4162 * @since 1.8
4163 */
4164 public void forEachEntry(long parallelismThreshold,
4165 Consumer<? super Map.Entry<K,V>> action) {
4166 if (action == null) throw new NullPointerException();
4167 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4168 action).invoke();
4169 }
4170
4171 /**
4172 * Performs the given action for each non-null transformation
4173 * of each entry.
4174 *
4175 * @param parallelismThreshold the (estimated) number of elements
4176 * needed for this operation to be executed in parallel
4177 * @param transformer a function returning the transformation
4178 * for an element, or null if there is no transformation (in
4179 * which case the action is not applied)
4180 * @param action the action
4181 * @param <U> the return type of the transformer
4182 * @since 1.8
4183 */
4184 public <U> void forEachEntry(long parallelismThreshold,
4185 Function<Map.Entry<K,V>, ? extends U> transformer,
4186 Consumer<? super U> action) {
4187 if (transformer == null || action == null)
4188 throw new NullPointerException();
4189 new ForEachTransformedEntryTask<K,V,U>
4190 (null, batchFor(parallelismThreshold), 0, 0, table,
4191 transformer, action).invoke();
4192 }
4193
4194 /**
4195 * Returns a non-null result from applying the given search
4196 * function on each entry, or null if none. Upon success,
4197 * further element processing is suppressed and the results of
4198 * any other parallel invocations of the search function are
4199 * ignored.
4200 *
4201 * @param parallelismThreshold the (estimated) number of elements
4202 * needed for this operation to be executed in parallel
4203 * @param searchFunction a function returning a non-null
4204 * result on success, else null
4205 * @param <U> the return type of the search function
4206 * @return a non-null result from applying the given search
4207 * function on each entry, or null if none
4208 * @since 1.8
4209 */
4210 public <U> U searchEntries(long parallelismThreshold,
4211 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4212 if (searchFunction == null) throw new NullPointerException();
4213 return new SearchEntriesTask<K,V,U>
4214 (null, batchFor(parallelismThreshold), 0, 0, table,
4215 searchFunction, new AtomicReference<U>()).invoke();
4216 }
4217
4218 /**
4219 * Returns the result of accumulating all entries using the
4220 * given reducer to combine values, or null if none.
4221 *
4222 * @param parallelismThreshold the (estimated) number of elements
4223 * needed for this operation to be executed in parallel
4224 * @param reducer a commutative associative combining function
4225 * @return the result of accumulating all entries
4226 * @since 1.8
4227 */
4228 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4229 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4230 if (reducer == null) throw new NullPointerException();
4231 return new ReduceEntriesTask<K,V>
4232 (null, batchFor(parallelismThreshold), 0, 0, table,
4233 null, reducer).invoke();
4234 }
4235
4236 /**
4237 * Returns the result of accumulating the given transformation
4238 * of all entries using the given reducer to combine values,
4239 * or null if none.
4240 *
4241 * @param parallelismThreshold the (estimated) number of elements
4242 * needed for this operation to be executed in parallel
4243 * @param transformer a function returning the transformation
4244 * for an element, or null if there is no transformation (in
4245 * which case it is not combined)
4246 * @param reducer a commutative associative combining function
4247 * @param <U> the return type of the transformer
4248 * @return the result of accumulating the given transformation
4249 * of all entries
4250 * @since 1.8
4251 */
4252 public <U> U reduceEntries(long parallelismThreshold,
4253 Function<Map.Entry<K,V>, ? extends U> transformer,
4254 BiFunction<? super U, ? super U, ? extends U> reducer) {
4255 if (transformer == null || reducer == null)
4256 throw new NullPointerException();
4257 return new MapReduceEntriesTask<K,V,U>
4258 (null, batchFor(parallelismThreshold), 0, 0, table,
4259 null, transformer, reducer).invoke();
4260 }
4261
4262 /**
4263 * Returns the result of accumulating the given transformation
4264 * of all entries using the given reducer to combine values,
4265 * and the given basis as an identity value.
4266 *
4267 * @param parallelismThreshold the (estimated) number of elements
4268 * needed for this operation to be executed in parallel
4269 * @param transformer a function returning the transformation
4270 * for an element
4271 * @param basis the identity (initial default value) for the reduction
4272 * @param reducer a commutative associative combining function
4273 * @return the result of accumulating the given transformation
4274 * of all entries
4275 * @since 1.8
4276 */
4277 public double reduceEntriesToDouble(long parallelismThreshold,
4278 ToDoubleFunction<Map.Entry<K,V>> transformer,
4279 double basis,
4280 DoubleBinaryOperator reducer) {
4281 if (transformer == null || reducer == null)
4282 throw new NullPointerException();
4283 return new MapReduceEntriesToDoubleTask<K,V>
4284 (null, batchFor(parallelismThreshold), 0, 0, table,
4285 null, transformer, basis, reducer).invoke();
4286 }
4287
4288 /**
4289 * Returns the result of accumulating the given transformation
4290 * of all entries using the given reducer to combine values,
4291 * and the given basis as an identity value.
4292 *
4293 * @param parallelismThreshold the (estimated) number of elements
4294 * needed for this operation to be executed in parallel
4295 * @param transformer a function returning the transformation
4296 * for an element
4297 * @param basis the identity (initial default value) for the reduction
4298 * @param reducer a commutative associative combining function
4299 * @return the result of accumulating the given transformation
4300 * of all entries
4301 * @since 1.8
4302 */
4303 public long reduceEntriesToLong(long parallelismThreshold,
4304 ToLongFunction<Map.Entry<K,V>> transformer,
4305 long basis,
4306 LongBinaryOperator reducer) {
4307 if (transformer == null || reducer == null)
4308 throw new NullPointerException();
4309 return new MapReduceEntriesToLongTask<K,V>
4310 (null, batchFor(parallelismThreshold), 0, 0, table,
4311 null, transformer, basis, reducer).invoke();
4312 }
4313
4314 /**
4315 * Returns the result of accumulating the given transformation
4316 * of all entries using the given reducer to combine values,
4317 * and the given basis as an identity value.
4318 *
4319 * @param parallelismThreshold the (estimated) number of elements
4320 * needed for this operation to be executed in parallel
4321 * @param transformer a function returning the transformation
4322 * for an element
4323 * @param basis the identity (initial default value) for the reduction
4324 * @param reducer a commutative associative combining function
4325 * @return the result of accumulating the given transformation
4326 * of all entries
4327 * @since 1.8
4328 */
4329 public int reduceEntriesToInt(long parallelismThreshold,
4330 ToIntFunction<Map.Entry<K,V>> transformer,
4331 int basis,
4332 IntBinaryOperator reducer) {
4333 if (transformer == null || reducer == null)
4334 throw new NullPointerException();
4335 return new MapReduceEntriesToIntTask<K,V>
4336 (null, batchFor(parallelismThreshold), 0, 0, table,
4337 null, transformer, basis, reducer).invoke();
4338 }
4339
4340
4341 /* ----------------Views -------------- */
4342
4343 /**
4344 * Base class for views.
4345 */
4346 abstract static class CollectionView<K,V,E>
4347 implements Collection<E>, java.io.Serializable {
4348 private static final long serialVersionUID = 7249069246763182397L;
4349 final ConcurrentHashMap<K,V> map;
4350 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4351
4352 /**
4353 * Returns the map backing this view.
4354 *
4355 * @return the map backing this view
4356 */
4357 public ConcurrentHashMap<K,V> getMap() { return map; }
4358
4359 /**
4360 * Removes all of the elements from this view, by removing all
4361 * the mappings from the map backing this view.
4362 */
4363 public final void clear() { map.clear(); }
4364 public final int size() { return map.size(); }
4365 public final boolean isEmpty() { return map.isEmpty(); }
4366
4367 // implementations below rely on concrete classes supplying these
4368 // abstract methods
4369 /**
4370 * Returns an iterator over the elements in this collection.
4371 *
4372 * <p>The returned iterator is
4373 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4374 *
4375 * @return an iterator over the elements in this collection
4376 */
4377 public abstract Iterator<E> iterator();
4378 public abstract boolean contains(Object o);
4379 public abstract boolean remove(Object o);
4380
4381 private static final String oomeMsg = "Required array size too large";
4382
4383 public final Object[] toArray() {
4384 long sz = map.mappingCount();
4385 if (sz > MAX_ARRAY_SIZE)
4386 throw new OutOfMemoryError(oomeMsg);
4387 int n = (int)sz;
4388 Object[] r = new Object[n];
4389 int i = 0;
4390 for (E e : this) {
4391 if (i == n) {
4392 if (n >= MAX_ARRAY_SIZE)
4393 throw new OutOfMemoryError(oomeMsg);
4394 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4395 n = MAX_ARRAY_SIZE;
4396 else
4397 n += (n >>> 1) + 1;
4398 r = Arrays.copyOf(r, n);
4399 }
4400 r[i++] = e;
4401 }
4402 return (i == n) ? r : Arrays.copyOf(r, i);
4403 }
4404
4405 @SuppressWarnings("unchecked")
4406 public final <T> T[] toArray(T[] a) {
4407 long sz = map.mappingCount();
4408 if (sz > MAX_ARRAY_SIZE)
4409 throw new OutOfMemoryError(oomeMsg);
4410 int m = (int)sz;
4411 T[] r = (a.length >= m) ? a :
4412 (T[])java.lang.reflect.Array
4413 .newInstance(a.getClass().getComponentType(), m);
4414 int n = r.length;
4415 int i = 0;
4416 for (E e : this) {
4417 if (i == n) {
4418 if (n >= MAX_ARRAY_SIZE)
4419 throw new OutOfMemoryError(oomeMsg);
4420 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4421 n = MAX_ARRAY_SIZE;
4422 else
4423 n += (n >>> 1) + 1;
4424 r = Arrays.copyOf(r, n);
4425 }
4426 r[i++] = (T)e;
4427 }
4428 if (a == r && i < n) {
4429 r[i] = null; // null-terminate
4430 return r;
4431 }
4432 return (i == n) ? r : Arrays.copyOf(r, i);
4433 }
4434
4435 /**
4436 * Returns a string representation of this collection.
4437 * The string representation consists of the string representations
4438 * of the collection's elements in the order they are returned by
4439 * its iterator, enclosed in square brackets ({@code "[]"}).
4440 * Adjacent elements are separated by the characters {@code ", "}
4441 * (comma and space). Elements are converted to strings as by
4442 * {@link String#valueOf(Object)}.
4443 *
4444 * @return a string representation of this collection
4445 */
4446 public final String toString() {
4447 StringBuilder sb = new StringBuilder();
4448 sb.append('[');
4449 Iterator<E> it = iterator();
4450 if (it.hasNext()) {
4451 for (;;) {
4452 Object e = it.next();
4453 sb.append(e == this ? "(this Collection)" : e);
4454 if (!it.hasNext())
4455 break;
4456 sb.append(',').append(' ');
4457 }
4458 }
4459 return sb.append(']').toString();
4460 }
4461
4462 public final boolean containsAll(Collection<?> c) {
4463 if (c != this) {
4464 for (Object e : c) {
4465 if (e == null || !contains(e))
4466 return false;
4467 }
4468 }
4469 return true;
4470 }
4471
4472 public final boolean removeAll(Collection<?> c) {
4473 if (c == null) throw new NullPointerException();
4474 boolean modified = false;
4475 for (Iterator<E> it = iterator(); it.hasNext();) {
4476 if (c.contains(it.next())) {
4477 it.remove();
4478 modified = true;
4479 }
4480 }
4481 return modified;
4482 }
4483
4484 public final boolean retainAll(Collection<?> c) {
4485 if (c == null) throw new NullPointerException();
4486 boolean modified = false;
4487 for (Iterator<E> it = iterator(); it.hasNext();) {
4488 if (!c.contains(it.next())) {
4489 it.remove();
4490 modified = true;
4491 }
4492 }
4493 return modified;
4494 }
4495
4496 }
4497
4498 /**
4499 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4500 * which additions may optionally be enabled by mapping to a
4501 * common value. This class cannot be directly instantiated.
4502 * See {@link #keySet() keySet()},
4503 * {@link #keySet(Object) keySet(V)},
4504 * {@link #newKeySet() newKeySet()},
4505 * {@link #newKeySet(int) newKeySet(int)}.
4506 *
4507 * @since 1.8
4508 */
4509 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4510 implements Set<K>, java.io.Serializable {
4511 private static final long serialVersionUID = 7249069246763182397L;
4512 private final V value;
4513 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4514 super(map);
4515 this.value = value;
4516 }
4517
4518 /**
4519 * Returns the default mapped value for additions,
4520 * or {@code null} if additions are not supported.
4521 *
4522 * @return the default mapped value for additions, or {@code null}
4523 * if not supported
4524 */
4525 public V getMappedValue() { return value; }
4526
4527 /**
4528 * {@inheritDoc}
4529 * @throws NullPointerException if the specified key is null
4530 */
4531 public boolean contains(Object o) { return map.containsKey(o); }
4532
4533 /**
4534 * Removes the key from this map view, by removing the key (and its
4535 * corresponding value) from the backing map. This method does
4536 * nothing if the key is not in the map.
4537 *
4538 * @param o the key to be removed from the backing map
4539 * @return {@code true} if the backing map contained the specified key
4540 * @throws NullPointerException if the specified key is null
4541 */
4542 public boolean remove(Object o) { return map.remove(o) != null; }
4543
4544 /**
4545 * @return an iterator over the keys of the backing map
4546 */
4547 public Iterator<K> iterator() {
4548 Node<K,V>[] t;
4549 ConcurrentHashMap<K,V> m = map;
4550 int f = (t = m.table) == null ? 0 : t.length;
4551 return new KeyIterator<K,V>(t, f, 0, f, m);
4552 }
4553
4554 /**
4555 * Adds the specified key to this set view by mapping the key to
4556 * the default mapped value in the backing map, if defined.
4557 *
4558 * @param e key to be added
4559 * @return {@code true} if this set changed as a result of the call
4560 * @throws NullPointerException if the specified key is null
4561 * @throws UnsupportedOperationException if no default mapped value
4562 * for additions was provided
4563 */
4564 public boolean add(K e) {
4565 V v;
4566 if ((v = value) == null)
4567 throw new UnsupportedOperationException();
4568 return map.putVal(e, v, true) == null;
4569 }
4570
4571 /**
4572 * Adds all of the elements in the specified collection to this set,
4573 * as if by calling {@link #add} on each one.
4574 *
4575 * @param c the elements to be inserted into this set
4576 * @return {@code true} if this set changed as a result of the call
4577 * @throws NullPointerException if the collection or any of its
4578 * elements are {@code null}
4579 * @throws UnsupportedOperationException if no default mapped value
4580 * for additions was provided
4581 */
4582 public boolean addAll(Collection<? extends K> c) {
4583 boolean added = false;
4584 V v;
4585 if ((v = value) == null)
4586 throw new UnsupportedOperationException();
4587 for (K e : c) {
4588 if (map.putVal(e, v, true) == null)
4589 added = true;
4590 }
4591 return added;
4592 }
4593
4594 public int hashCode() {
4595 int h = 0;
4596 for (K e : this)
4597 h += e.hashCode();
4598 return h;
4599 }
4600
4601 public boolean equals(Object o) {
4602 Set<?> c;
4603 return ((o instanceof Set) &&
4604 ((c = (Set<?>)o) == this ||
4605 (containsAll(c) && c.containsAll(this))));
4606 }
4607
4608 public Spliterator<K> spliterator() {
4609 Node<K,V>[] t;
4610 ConcurrentHashMap<K,V> m = map;
4611 long n = m.sumCount();
4612 int f = (t = m.table) == null ? 0 : t.length;
4613 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4614 }
4615
4616 public void forEach(Consumer<? super K> action) {
4617 if (action == null) throw new NullPointerException();
4618 Node<K,V>[] t;
4619 if ((t = map.table) != null) {
4620 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4621 for (Node<K,V> p; (p = it.advance()) != null; )
4622 action.accept(p.key);
4623 }
4624 }
4625 }
4626
4627 /**
4628 * A view of a ConcurrentHashMap as a {@link Collection} of
4629 * values, in which additions are disabled. This class cannot be
4630 * directly instantiated. See {@link #values()}.
4631 */
4632 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4633 implements Collection<V>, java.io.Serializable {
4634 private static final long serialVersionUID = 2249069246763182397L;
4635 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4636 public final boolean contains(Object o) {
4637 return map.containsValue(o);
4638 }
4639
4640 public final boolean remove(Object o) {
4641 if (o != null) {
4642 for (Iterator<V> it = iterator(); it.hasNext();) {
4643 if (o.equals(it.next())) {
4644 it.remove();
4645 return true;
4646 }
4647 }
4648 }
4649 return false;
4650 }
4651
4652 public final Iterator<V> iterator() {
4653 ConcurrentHashMap<K,V> m = map;
4654 Node<K,V>[] t;
4655 int f = (t = m.table) == null ? 0 : t.length;
4656 return new ValueIterator<K,V>(t, f, 0, f, m);
4657 }
4658
4659 public final boolean add(V e) {
4660 throw new UnsupportedOperationException();
4661 }
4662 public final boolean addAll(Collection<? extends V> c) {
4663 throw new UnsupportedOperationException();
4664 }
4665
4666 public Spliterator<V> spliterator() {
4667 Node<K,V>[] t;
4668 ConcurrentHashMap<K,V> m = map;
4669 long n = m.sumCount();
4670 int f = (t = m.table) == null ? 0 : t.length;
4671 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4672 }
4673
4674 public void forEach(Consumer<? super V> action) {
4675 if (action == null) throw new NullPointerException();
4676 Node<K,V>[] t;
4677 if ((t = map.table) != null) {
4678 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4679 for (Node<K,V> p; (p = it.advance()) != null; )
4680 action.accept(p.val);
4681 }
4682 }
4683 }
4684
4685 /**
4686 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4687 * entries. This class cannot be directly instantiated. See
4688 * {@link #entrySet()}.
4689 */
4690 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4691 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4692 private static final long serialVersionUID = 2249069246763182397L;
4693 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4694
4695 public boolean contains(Object o) {
4696 Object k, v, r; Map.Entry<?,?> e;
4697 return ((o instanceof Map.Entry) &&
4698 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4699 (r = map.get(k)) != null &&
4700 (v = e.getValue()) != null &&
4701 (v == r || v.equals(r)));
4702 }
4703
4704 public boolean remove(Object o) {
4705 Object k, v; Map.Entry<?,?> e;
4706 return ((o instanceof Map.Entry) &&
4707 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4708 (v = e.getValue()) != null &&
4709 map.remove(k, v));
4710 }
4711
4712 /**
4713 * @return an iterator over the entries of the backing map
4714 */
4715 public Iterator<Map.Entry<K,V>> iterator() {
4716 ConcurrentHashMap<K,V> m = map;
4717 Node<K,V>[] t;
4718 int f = (t = m.table) == null ? 0 : t.length;
4719 return new EntryIterator<K,V>(t, f, 0, f, m);
4720 }
4721
4722 public boolean add(Entry<K,V> e) {
4723 return map.putVal(e.getKey(), e.getValue(), false) == null;
4724 }
4725
4726 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4727 boolean added = false;
4728 for (Entry<K,V> e : c) {
4729 if (add(e))
4730 added = true;
4731 }
4732 return added;
4733 }
4734
4735 public final int hashCode() {
4736 int h = 0;
4737 Node<K,V>[] t;
4738 if ((t = map.table) != null) {
4739 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4740 for (Node<K,V> p; (p = it.advance()) != null; ) {
4741 h += p.hashCode();
4742 }
4743 }
4744 return h;
4745 }
4746
4747 public final boolean equals(Object o) {
4748 Set<?> c;
4749 return ((o instanceof Set) &&
4750 ((c = (Set<?>)o) == this ||
4751 (containsAll(c) && c.containsAll(this))));
4752 }
4753
4754 public Spliterator<Map.Entry<K,V>> spliterator() {
4755 Node<K,V>[] t;
4756 ConcurrentHashMap<K,V> m = map;
4757 long n = m.sumCount();
4758 int f = (t = m.table) == null ? 0 : t.length;
4759 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4760 }
4761
4762 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4763 if (action == null) throw new NullPointerException();
4764 Node<K,V>[] t;
4765 if ((t = map.table) != null) {
4766 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4767 for (Node<K,V> p; (p = it.advance()) != null; )
4768 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4769 }
4770 }
4771
4772 }
4773
4774 // -------------------------------------------------------
4775
4776 /**
4777 * Base class for bulk tasks. Repeats some fields and code from
4778 * class Traverser, because we need to subclass CountedCompleter.
4779 */
4780 @SuppressWarnings("serial")
4781 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4782 Node<K,V>[] tab; // same as Traverser
4783 Node<K,V> next;
4784 TableStack<K,V> stack, spare;
4785 int index;
4786 int baseIndex;
4787 int baseLimit;
4788 final int baseSize;
4789 int batch; // split control
4790
4791 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4792 super(par);
4793 this.batch = b;
4794 this.index = this.baseIndex = i;
4795 if ((this.tab = t) == null)
4796 this.baseSize = this.baseLimit = 0;
4797 else if (par == null)
4798 this.baseSize = this.baseLimit = t.length;
4799 else {
4800 this.baseLimit = f;
4801 this.baseSize = par.baseSize;
4802 }
4803 }
4804
4805 /**
4806 * Same as Traverser version
4807 */
4808 final Node<K,V> advance() {
4809 Node<K,V> e;
4810 if ((e = next) != null)
4811 e = e.next;
4812 for (;;) {
4813 Node<K,V>[] t; int i, n;
4814 if (e != null)
4815 return next = e;
4816 if (baseIndex >= baseLimit || (t = tab) == null ||
4817 (n = t.length) <= (i = index) || i < 0)
4818 return next = null;
4819 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4820 if (e instanceof ForwardingNode) {
4821 tab = ((ForwardingNode<K,V>)e).nextTable;
4822 e = null;
4823 pushState(t, i, n);
4824 continue;
4825 }
4826 else if (e instanceof TreeBin)
4827 e = ((TreeBin<K,V>)e).first;
4828 else
4829 e = null;
4830 }
4831 if (stack != null)
4832 recoverState(n);
4833 else if ((index = i + baseSize) >= n)
4834 index = ++baseIndex;
4835 }
4836 }
4837
4838 private void pushState(Node<K,V>[] t, int i, int n) {
4839 TableStack<K,V> s = spare;
4840 if (s != null)
4841 spare = s.next;
4842 else
4843 s = new TableStack<K,V>();
4844 s.tab = t;
4845 s.length = n;
4846 s.index = i;
4847 s.next = stack;
4848 stack = s;
4849 }
4850
4851 private void recoverState(int n) {
4852 TableStack<K,V> s; int len;
4853 while ((s = stack) != null && (index += (len = s.length)) >= n) {
4854 n = len;
4855 index = s.index;
4856 tab = s.tab;
4857 s.tab = null;
4858 TableStack<K,V> next = s.next;
4859 s.next = spare; // save for reuse
4860 stack = next;
4861 spare = s;
4862 }
4863 if (s == null && (index += baseSize) >= n)
4864 index = ++baseIndex;
4865 }
4866 }
4867
4868 /*
4869 * Task classes. Coded in a regular but ugly format/style to
4870 * simplify checks that each variant differs in the right way from
4871 * others. The null screenings exist because compilers cannot tell
4872 * that we've already null-checked task arguments, so we force
4873 * simplest hoisted bypass to help avoid convoluted traps.
4874 */
4875 @SuppressWarnings("serial")
4876 static final class ForEachKeyTask<K,V>
4877 extends BulkTask<K,V,Void> {
4878 final Consumer<? super K> action;
4879 ForEachKeyTask
4880 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4881 Consumer<? super K> action) {
4882 super(p, b, i, f, t);
4883 this.action = action;
4884 }
4885 public final void compute() {
4886 final Consumer<? super K> action;
4887 if ((action = this.action) != null) {
4888 for (int i = baseIndex, f, h; batch > 0 &&
4889 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4890 addToPendingCount(1);
4891 new ForEachKeyTask<K,V>
4892 (this, batch >>>= 1, baseLimit = h, f, tab,
4893 action).fork();
4894 }
4895 for (Node<K,V> p; (p = advance()) != null;)
4896 action.accept(p.key);
4897 propagateCompletion();
4898 }
4899 }
4900 }
4901
4902 @SuppressWarnings("serial")
4903 static final class ForEachValueTask<K,V>
4904 extends BulkTask<K,V,Void> {
4905 final Consumer<? super V> action;
4906 ForEachValueTask
4907 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4908 Consumer<? super V> action) {
4909 super(p, b, i, f, t);
4910 this.action = action;
4911 }
4912 public final void compute() {
4913 final Consumer<? super V> action;
4914 if ((action = this.action) != null) {
4915 for (int i = baseIndex, f, h; batch > 0 &&
4916 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4917 addToPendingCount(1);
4918 new ForEachValueTask<K,V>
4919 (this, batch >>>= 1, baseLimit = h, f, tab,
4920 action).fork();
4921 }
4922 for (Node<K,V> p; (p = advance()) != null;)
4923 action.accept(p.val);
4924 propagateCompletion();
4925 }
4926 }
4927 }
4928
4929 @SuppressWarnings("serial")
4930 static final class ForEachEntryTask<K,V>
4931 extends BulkTask<K,V,Void> {
4932 final Consumer<? super Entry<K,V>> action;
4933 ForEachEntryTask
4934 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4935 Consumer<? super Entry<K,V>> action) {
4936 super(p, b, i, f, t);
4937 this.action = action;
4938 }
4939 public final void compute() {
4940 final Consumer<? super Entry<K,V>> action;
4941 if ((action = this.action) != null) {
4942 for (int i = baseIndex, f, h; batch > 0 &&
4943 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4944 addToPendingCount(1);
4945 new ForEachEntryTask<K,V>
4946 (this, batch >>>= 1, baseLimit = h, f, tab,
4947 action).fork();
4948 }
4949 for (Node<K,V> p; (p = advance()) != null; )
4950 action.accept(p);
4951 propagateCompletion();
4952 }
4953 }
4954 }
4955
4956 @SuppressWarnings("serial")
4957 static final class ForEachMappingTask<K,V>
4958 extends BulkTask<K,V,Void> {
4959 final BiConsumer<? super K, ? super V> action;
4960 ForEachMappingTask
4961 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4962 BiConsumer<? super K,? super V> action) {
4963 super(p, b, i, f, t);
4964 this.action = action;
4965 }
4966 public final void compute() {
4967 final BiConsumer<? super K, ? super V> action;
4968 if ((action = this.action) != null) {
4969 for (int i = baseIndex, f, h; batch > 0 &&
4970 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4971 addToPendingCount(1);
4972 new ForEachMappingTask<K,V>
4973 (this, batch >>>= 1, baseLimit = h, f, tab,
4974 action).fork();
4975 }
4976 for (Node<K,V> p; (p = advance()) != null; )
4977 action.accept(p.key, p.val);
4978 propagateCompletion();
4979 }
4980 }
4981 }
4982
4983 @SuppressWarnings("serial")
4984 static final class ForEachTransformedKeyTask<K,V,U>
4985 extends BulkTask<K,V,Void> {
4986 final Function<? super K, ? extends U> transformer;
4987 final Consumer<? super U> action;
4988 ForEachTransformedKeyTask
4989 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4990 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4991 super(p, b, i, f, t);
4992 this.transformer = transformer; this.action = action;
4993 }
4994 public final void compute() {
4995 final Function<? super K, ? extends U> transformer;
4996 final Consumer<? super U> action;
4997 if ((transformer = this.transformer) != null &&
4998 (action = this.action) != null) {
4999 for (int i = baseIndex, f, h; batch > 0 &&
5000 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5001 addToPendingCount(1);
5002 new ForEachTransformedKeyTask<K,V,U>
5003 (this, batch >>>= 1, baseLimit = h, f, tab,
5004 transformer, action).fork();
5005 }
5006 for (Node<K,V> p; (p = advance()) != null; ) {
5007 U u;
5008 if ((u = transformer.apply(p.key)) != null)
5009 action.accept(u);
5010 }
5011 propagateCompletion();
5012 }
5013 }
5014 }
5015
5016 @SuppressWarnings("serial")
5017 static final class ForEachTransformedValueTask<K,V,U>
5018 extends BulkTask<K,V,Void> {
5019 final Function<? super V, ? extends U> transformer;
5020 final Consumer<? super U> action;
5021 ForEachTransformedValueTask
5022 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5023 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5024 super(p, b, i, f, t);
5025 this.transformer = transformer; this.action = action;
5026 }
5027 public final void compute() {
5028 final Function<? super V, ? extends U> transformer;
5029 final Consumer<? super U> action;
5030 if ((transformer = this.transformer) != null &&
5031 (action = this.action) != null) {
5032 for (int i = baseIndex, f, h; batch > 0 &&
5033 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5034 addToPendingCount(1);
5035 new ForEachTransformedValueTask<K,V,U>
5036 (this, batch >>>= 1, baseLimit = h, f, tab,
5037 transformer, action).fork();
5038 }
5039 for (Node<K,V> p; (p = advance()) != null; ) {
5040 U u;
5041 if ((u = transformer.apply(p.val)) != null)
5042 action.accept(u);
5043 }
5044 propagateCompletion();
5045 }
5046 }
5047 }
5048
5049 @SuppressWarnings("serial")
5050 static final class ForEachTransformedEntryTask<K,V,U>
5051 extends BulkTask<K,V,Void> {
5052 final Function<Map.Entry<K,V>, ? extends U> transformer;
5053 final Consumer<? super U> action;
5054 ForEachTransformedEntryTask
5055 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5056 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5057 super(p, b, i, f, t);
5058 this.transformer = transformer; this.action = action;
5059 }
5060 public final void compute() {
5061 final Function<Map.Entry<K,V>, ? extends U> transformer;
5062 final Consumer<? super U> action;
5063 if ((transformer = this.transformer) != null &&
5064 (action = this.action) != null) {
5065 for (int i = baseIndex, f, h; batch > 0 &&
5066 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5067 addToPendingCount(1);
5068 new ForEachTransformedEntryTask<K,V,U>
5069 (this, batch >>>= 1, baseLimit = h, f, tab,
5070 transformer, action).fork();
5071 }
5072 for (Node<K,V> p; (p = advance()) != null; ) {
5073 U u;
5074 if ((u = transformer.apply(p)) != null)
5075 action.accept(u);
5076 }
5077 propagateCompletion();
5078 }
5079 }
5080 }
5081
5082 @SuppressWarnings("serial")
5083 static final class ForEachTransformedMappingTask<K,V,U>
5084 extends BulkTask<K,V,Void> {
5085 final BiFunction<? super K, ? super V, ? extends U> transformer;
5086 final Consumer<? super U> action;
5087 ForEachTransformedMappingTask
5088 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5089 BiFunction<? super K, ? super V, ? extends U> transformer,
5090 Consumer<? super U> action) {
5091 super(p, b, i, f, t);
5092 this.transformer = transformer; this.action = action;
5093 }
5094 public final void compute() {
5095 final BiFunction<? super K, ? super V, ? extends U> transformer;
5096 final Consumer<? super U> action;
5097 if ((transformer = this.transformer) != null &&
5098 (action = this.action) != null) {
5099 for (int i = baseIndex, f, h; batch > 0 &&
5100 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5101 addToPendingCount(1);
5102 new ForEachTransformedMappingTask<K,V,U>
5103 (this, batch >>>= 1, baseLimit = h, f, tab,
5104 transformer, action).fork();
5105 }
5106 for (Node<K,V> p; (p = advance()) != null; ) {
5107 U u;
5108 if ((u = transformer.apply(p.key, p.val)) != null)
5109 action.accept(u);
5110 }
5111 propagateCompletion();
5112 }
5113 }
5114 }
5115
5116 @SuppressWarnings("serial")
5117 static final class SearchKeysTask<K,V,U>
5118 extends BulkTask<K,V,U> {
5119 final Function<? super K, ? extends U> searchFunction;
5120 final AtomicReference<U> result;
5121 SearchKeysTask
5122 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5123 Function<? super K, ? extends U> searchFunction,
5124 AtomicReference<U> result) {
5125 super(p, b, i, f, t);
5126 this.searchFunction = searchFunction; this.result = result;
5127 }
5128 public final U getRawResult() { return result.get(); }
5129 public final void compute() {
5130 final Function<? super K, ? extends U> searchFunction;
5131 final AtomicReference<U> result;
5132 if ((searchFunction = this.searchFunction) != null &&
5133 (result = this.result) != null) {
5134 for (int i = baseIndex, f, h; batch > 0 &&
5135 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5136 if (result.get() != null)
5137 return;
5138 addToPendingCount(1);
5139 new SearchKeysTask<K,V,U>
5140 (this, batch >>>= 1, baseLimit = h, f, tab,
5141 searchFunction, result).fork();
5142 }
5143 while (result.get() == null) {
5144 U u;
5145 Node<K,V> p;
5146 if ((p = advance()) == null) {
5147 propagateCompletion();
5148 break;
5149 }
5150 if ((u = searchFunction.apply(p.key)) != null) {
5151 if (result.compareAndSet(null, u))
5152 quietlyCompleteRoot();
5153 break;
5154 }
5155 }
5156 }
5157 }
5158 }
5159
5160 @SuppressWarnings("serial")
5161 static final class SearchValuesTask<K,V,U>
5162 extends BulkTask<K,V,U> {
5163 final Function<? super V, ? extends U> searchFunction;
5164 final AtomicReference<U> result;
5165 SearchValuesTask
5166 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5167 Function<? super V, ? extends U> searchFunction,
5168 AtomicReference<U> result) {
5169 super(p, b, i, f, t);
5170 this.searchFunction = searchFunction; this.result = result;
5171 }
5172 public final U getRawResult() { return result.get(); }
5173 public final void compute() {
5174 final Function<? super V, ? extends U> searchFunction;
5175 final AtomicReference<U> result;
5176 if ((searchFunction = this.searchFunction) != null &&
5177 (result = this.result) != null) {
5178 for (int i = baseIndex, f, h; batch > 0 &&
5179 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5180 if (result.get() != null)
5181 return;
5182 addToPendingCount(1);
5183 new SearchValuesTask<K,V,U>
5184 (this, batch >>>= 1, baseLimit = h, f, tab,
5185 searchFunction, result).fork();
5186 }
5187 while (result.get() == null) {
5188 U u;
5189 Node<K,V> p;
5190 if ((p = advance()) == null) {
5191 propagateCompletion();
5192 break;
5193 }
5194 if ((u = searchFunction.apply(p.val)) != null) {
5195 if (result.compareAndSet(null, u))
5196 quietlyCompleteRoot();
5197 break;
5198 }
5199 }
5200 }
5201 }
5202 }
5203
5204 @SuppressWarnings("serial")
5205 static final class SearchEntriesTask<K,V,U>
5206 extends BulkTask<K,V,U> {
5207 final Function<Entry<K,V>, ? extends U> searchFunction;
5208 final AtomicReference<U> result;
5209 SearchEntriesTask
5210 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5211 Function<Entry<K,V>, ? extends U> searchFunction,
5212 AtomicReference<U> result) {
5213 super(p, b, i, f, t);
5214 this.searchFunction = searchFunction; this.result = result;
5215 }
5216 public final U getRawResult() { return result.get(); }
5217 public final void compute() {
5218 final Function<Entry<K,V>, ? extends U> searchFunction;
5219 final AtomicReference<U> result;
5220 if ((searchFunction = this.searchFunction) != null &&
5221 (result = this.result) != null) {
5222 for (int i = baseIndex, f, h; batch > 0 &&
5223 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5224 if (result.get() != null)
5225 return;
5226 addToPendingCount(1);
5227 new SearchEntriesTask<K,V,U>
5228 (this, batch >>>= 1, baseLimit = h, f, tab,
5229 searchFunction, result).fork();
5230 }
5231 while (result.get() == null) {
5232 U u;
5233 Node<K,V> p;
5234 if ((p = advance()) == null) {
5235 propagateCompletion();
5236 break;
5237 }
5238 if ((u = searchFunction.apply(p)) != null) {
5239 if (result.compareAndSet(null, u))
5240 quietlyCompleteRoot();
5241 return;
5242 }
5243 }
5244 }
5245 }
5246 }
5247
5248 @SuppressWarnings("serial")
5249 static final class SearchMappingsTask<K,V,U>
5250 extends BulkTask<K,V,U> {
5251 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5252 final AtomicReference<U> result;
5253 SearchMappingsTask
5254 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5255 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5256 AtomicReference<U> result) {
5257 super(p, b, i, f, t);
5258 this.searchFunction = searchFunction; this.result = result;
5259 }
5260 public final U getRawResult() { return result.get(); }
5261 public final void compute() {
5262 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5263 final AtomicReference<U> result;
5264 if ((searchFunction = this.searchFunction) != null &&
5265 (result = this.result) != null) {
5266 for (int i = baseIndex, f, h; batch > 0 &&
5267 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5268 if (result.get() != null)
5269 return;
5270 addToPendingCount(1);
5271 new SearchMappingsTask<K,V,U>
5272 (this, batch >>>= 1, baseLimit = h, f, tab,
5273 searchFunction, result).fork();
5274 }
5275 while (result.get() == null) {
5276 U u;
5277 Node<K,V> p;
5278 if ((p = advance()) == null) {
5279 propagateCompletion();
5280 break;
5281 }
5282 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5283 if (result.compareAndSet(null, u))
5284 quietlyCompleteRoot();
5285 break;
5286 }
5287 }
5288 }
5289 }
5290 }
5291
5292 @SuppressWarnings("serial")
5293 static final class ReduceKeysTask<K,V>
5294 extends BulkTask<K,V,K> {
5295 final BiFunction<? super K, ? super K, ? extends K> reducer;
5296 K result;
5297 ReduceKeysTask<K,V> rights, nextRight;
5298 ReduceKeysTask
5299 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5300 ReduceKeysTask<K,V> nextRight,
5301 BiFunction<? super K, ? super K, ? extends K> reducer) {
5302 super(p, b, i, f, t); this.nextRight = nextRight;
5303 this.reducer = reducer;
5304 }
5305 public final K getRawResult() { return result; }
5306 public final void compute() {
5307 final BiFunction<? super K, ? super K, ? extends K> reducer;
5308 if ((reducer = this.reducer) != null) {
5309 for (int i = baseIndex, f, h; batch > 0 &&
5310 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5311 addToPendingCount(1);
5312 (rights = new ReduceKeysTask<K,V>
5313 (this, batch >>>= 1, baseLimit = h, f, tab,
5314 rights, reducer)).fork();
5315 }
5316 K r = null;
5317 for (Node<K,V> p; (p = advance()) != null; ) {
5318 K u = p.key;
5319 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5320 }
5321 result = r;
5322 CountedCompleter<?> c;
5323 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5324 @SuppressWarnings("unchecked")
5325 ReduceKeysTask<K,V>
5326 t = (ReduceKeysTask<K,V>)c,
5327 s = t.rights;
5328 while (s != null) {
5329 K tr, sr;
5330 if ((sr = s.result) != null)
5331 t.result = (((tr = t.result) == null) ? sr :
5332 reducer.apply(tr, sr));
5333 s = t.rights = s.nextRight;
5334 }
5335 }
5336 }
5337 }
5338 }
5339
5340 @SuppressWarnings("serial")
5341 static final class ReduceValuesTask<K,V>
5342 extends BulkTask<K,V,V> {
5343 final BiFunction<? super V, ? super V, ? extends V> reducer;
5344 V result;
5345 ReduceValuesTask<K,V> rights, nextRight;
5346 ReduceValuesTask
5347 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5348 ReduceValuesTask<K,V> nextRight,
5349 BiFunction<? super V, ? super V, ? extends V> reducer) {
5350 super(p, b, i, f, t); this.nextRight = nextRight;
5351 this.reducer = reducer;
5352 }
5353 public final V getRawResult() { return result; }
5354 public final void compute() {
5355 final BiFunction<? super V, ? super V, ? extends V> reducer;
5356 if ((reducer = this.reducer) != null) {
5357 for (int i = baseIndex, f, h; batch > 0 &&
5358 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5359 addToPendingCount(1);
5360 (rights = new ReduceValuesTask<K,V>
5361 (this, batch >>>= 1, baseLimit = h, f, tab,
5362 rights, reducer)).fork();
5363 }
5364 V r = null;
5365 for (Node<K,V> p; (p = advance()) != null; ) {
5366 V v = p.val;
5367 r = (r == null) ? v : reducer.apply(r, v);
5368 }
5369 result = r;
5370 CountedCompleter<?> c;
5371 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5372 @SuppressWarnings("unchecked")
5373 ReduceValuesTask<K,V>
5374 t = (ReduceValuesTask<K,V>)c,
5375 s = t.rights;
5376 while (s != null) {
5377 V tr, sr;
5378 if ((sr = s.result) != null)
5379 t.result = (((tr = t.result) == null) ? sr :
5380 reducer.apply(tr, sr));
5381 s = t.rights = s.nextRight;
5382 }
5383 }
5384 }
5385 }
5386 }
5387
5388 @SuppressWarnings("serial")
5389 static final class ReduceEntriesTask<K,V>
5390 extends BulkTask<K,V,Map.Entry<K,V>> {
5391 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5392 Map.Entry<K,V> result;
5393 ReduceEntriesTask<K,V> rights, nextRight;
5394 ReduceEntriesTask
5395 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5396 ReduceEntriesTask<K,V> nextRight,
5397 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5398 super(p, b, i, f, t); this.nextRight = nextRight;
5399 this.reducer = reducer;
5400 }
5401 public final Map.Entry<K,V> getRawResult() { return result; }
5402 public final void compute() {
5403 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5404 if ((reducer = this.reducer) != null) {
5405 for (int i = baseIndex, f, h; batch > 0 &&
5406 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5407 addToPendingCount(1);
5408 (rights = new ReduceEntriesTask<K,V>
5409 (this, batch >>>= 1, baseLimit = h, f, tab,
5410 rights, reducer)).fork();
5411 }
5412 Map.Entry<K,V> r = null;
5413 for (Node<K,V> p; (p = advance()) != null; )
5414 r = (r == null) ? p : reducer.apply(r, p);
5415 result = r;
5416 CountedCompleter<?> c;
5417 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5418 @SuppressWarnings("unchecked")
5419 ReduceEntriesTask<K,V>
5420 t = (ReduceEntriesTask<K,V>)c,
5421 s = t.rights;
5422 while (s != null) {
5423 Map.Entry<K,V> tr, sr;
5424 if ((sr = s.result) != null)
5425 t.result = (((tr = t.result) == null) ? sr :
5426 reducer.apply(tr, sr));
5427 s = t.rights = s.nextRight;
5428 }
5429 }
5430 }
5431 }
5432 }
5433
5434 @SuppressWarnings("serial")
5435 static final class MapReduceKeysTask<K,V,U>
5436 extends BulkTask<K,V,U> {
5437 final Function<? super K, ? extends U> transformer;
5438 final BiFunction<? super U, ? super U, ? extends U> reducer;
5439 U result;
5440 MapReduceKeysTask<K,V,U> rights, nextRight;
5441 MapReduceKeysTask
5442 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5443 MapReduceKeysTask<K,V,U> nextRight,
5444 Function<? super K, ? extends U> transformer,
5445 BiFunction<? super U, ? super U, ? extends U> reducer) {
5446 super(p, b, i, f, t); this.nextRight = nextRight;
5447 this.transformer = transformer;
5448 this.reducer = reducer;
5449 }
5450 public final U getRawResult() { return result; }
5451 public final void compute() {
5452 final Function<? super K, ? extends U> transformer;
5453 final BiFunction<? super U, ? super U, ? extends U> reducer;
5454 if ((transformer = this.transformer) != null &&
5455 (reducer = this.reducer) != null) {
5456 for (int i = baseIndex, f, h; batch > 0 &&
5457 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5458 addToPendingCount(1);
5459 (rights = new MapReduceKeysTask<K,V,U>
5460 (this, batch >>>= 1, baseLimit = h, f, tab,
5461 rights, transformer, reducer)).fork();
5462 }
5463 U r = null;
5464 for (Node<K,V> p; (p = advance()) != null; ) {
5465 U u;
5466 if ((u = transformer.apply(p.key)) != null)
5467 r = (r == null) ? u : reducer.apply(r, u);
5468 }
5469 result = r;
5470 CountedCompleter<?> c;
5471 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5472 @SuppressWarnings("unchecked")
5473 MapReduceKeysTask<K,V,U>
5474 t = (MapReduceKeysTask<K,V,U>)c,
5475 s = t.rights;
5476 while (s != null) {
5477 U tr, sr;
5478 if ((sr = s.result) != null)
5479 t.result = (((tr = t.result) == null) ? sr :
5480 reducer.apply(tr, sr));
5481 s = t.rights = s.nextRight;
5482 }
5483 }
5484 }
5485 }
5486 }
5487
5488 @SuppressWarnings("serial")
5489 static final class MapReduceValuesTask<K,V,U>
5490 extends BulkTask<K,V,U> {
5491 final Function<? super V, ? extends U> transformer;
5492 final BiFunction<? super U, ? super U, ? extends U> reducer;
5493 U result;
5494 MapReduceValuesTask<K,V,U> rights, nextRight;
5495 MapReduceValuesTask
5496 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5497 MapReduceValuesTask<K,V,U> nextRight,
5498 Function<? super V, ? extends U> transformer,
5499 BiFunction<? super U, ? super U, ? extends U> reducer) {
5500 super(p, b, i, f, t); this.nextRight = nextRight;
5501 this.transformer = transformer;
5502 this.reducer = reducer;
5503 }
5504 public final U getRawResult() { return result; }
5505 public final void compute() {
5506 final Function<? super V, ? extends U> transformer;
5507 final BiFunction<? super U, ? super U, ? extends U> reducer;
5508 if ((transformer = this.transformer) != null &&
5509 (reducer = this.reducer) != null) {
5510 for (int i = baseIndex, f, h; batch > 0 &&
5511 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5512 addToPendingCount(1);
5513 (rights = new MapReduceValuesTask<K,V,U>
5514 (this, batch >>>= 1, baseLimit = h, f, tab,
5515 rights, transformer, reducer)).fork();
5516 }
5517 U r = null;
5518 for (Node<K,V> p; (p = advance()) != null; ) {
5519 U u;
5520 if ((u = transformer.apply(p.val)) != null)
5521 r = (r == null) ? u : reducer.apply(r, u);
5522 }
5523 result = r;
5524 CountedCompleter<?> c;
5525 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5526 @SuppressWarnings("unchecked")
5527 MapReduceValuesTask<K,V,U>
5528 t = (MapReduceValuesTask<K,V,U>)c,
5529 s = t.rights;
5530 while (s != null) {
5531 U tr, sr;
5532 if ((sr = s.result) != null)
5533 t.result = (((tr = t.result) == null) ? sr :
5534 reducer.apply(tr, sr));
5535 s = t.rights = s.nextRight;
5536 }
5537 }
5538 }
5539 }
5540 }
5541
5542 @SuppressWarnings("serial")
5543 static final class MapReduceEntriesTask<K,V,U>
5544 extends BulkTask<K,V,U> {
5545 final Function<Map.Entry<K,V>, ? extends U> transformer;
5546 final BiFunction<? super U, ? super U, ? extends U> reducer;
5547 U result;
5548 MapReduceEntriesTask<K,V,U> rights, nextRight;
5549 MapReduceEntriesTask
5550 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5551 MapReduceEntriesTask<K,V,U> nextRight,
5552 Function<Map.Entry<K,V>, ? extends U> transformer,
5553 BiFunction<? super U, ? super U, ? extends U> reducer) {
5554 super(p, b, i, f, t); this.nextRight = nextRight;
5555 this.transformer = transformer;
5556 this.reducer = reducer;
5557 }
5558 public final U getRawResult() { return result; }
5559 public final void compute() {
5560 final Function<Map.Entry<K,V>, ? extends U> transformer;
5561 final BiFunction<? super U, ? super U, ? extends U> reducer;
5562 if ((transformer = this.transformer) != null &&
5563 (reducer = this.reducer) != null) {
5564 for (int i = baseIndex, f, h; batch > 0 &&
5565 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5566 addToPendingCount(1);
5567 (rights = new MapReduceEntriesTask<K,V,U>
5568 (this, batch >>>= 1, baseLimit = h, f, tab,
5569 rights, transformer, reducer)).fork();
5570 }
5571 U r = null;
5572 for (Node<K,V> p; (p = advance()) != null; ) {
5573 U u;
5574 if ((u = transformer.apply(p)) != null)
5575 r = (r == null) ? u : reducer.apply(r, u);
5576 }
5577 result = r;
5578 CountedCompleter<?> c;
5579 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5580 @SuppressWarnings("unchecked")
5581 MapReduceEntriesTask<K,V,U>
5582 t = (MapReduceEntriesTask<K,V,U>)c,
5583 s = t.rights;
5584 while (s != null) {
5585 U tr, sr;
5586 if ((sr = s.result) != null)
5587 t.result = (((tr = t.result) == null) ? sr :
5588 reducer.apply(tr, sr));
5589 s = t.rights = s.nextRight;
5590 }
5591 }
5592 }
5593 }
5594 }
5595
5596 @SuppressWarnings("serial")
5597 static final class MapReduceMappingsTask<K,V,U>
5598 extends BulkTask<K,V,U> {
5599 final BiFunction<? super K, ? super V, ? extends U> transformer;
5600 final BiFunction<? super U, ? super U, ? extends U> reducer;
5601 U result;
5602 MapReduceMappingsTask<K,V,U> rights, nextRight;
5603 MapReduceMappingsTask
5604 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5605 MapReduceMappingsTask<K,V,U> nextRight,
5606 BiFunction<? super K, ? super V, ? extends U> transformer,
5607 BiFunction<? super U, ? super U, ? extends U> reducer) {
5608 super(p, b, i, f, t); this.nextRight = nextRight;
5609 this.transformer = transformer;
5610 this.reducer = reducer;
5611 }
5612 public final U getRawResult() { return result; }
5613 public final void compute() {
5614 final BiFunction<? super K, ? super V, ? extends U> transformer;
5615 final BiFunction<? super U, ? super U, ? extends U> reducer;
5616 if ((transformer = this.transformer) != null &&
5617 (reducer = this.reducer) != null) {
5618 for (int i = baseIndex, f, h; batch > 0 &&
5619 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5620 addToPendingCount(1);
5621 (rights = new MapReduceMappingsTask<K,V,U>
5622 (this, batch >>>= 1, baseLimit = h, f, tab,
5623 rights, transformer, reducer)).fork();
5624 }
5625 U r = null;
5626 for (Node<K,V> p; (p = advance()) != null; ) {
5627 U u;
5628 if ((u = transformer.apply(p.key, p.val)) != null)
5629 r = (r == null) ? u : reducer.apply(r, u);
5630 }
5631 result = r;
5632 CountedCompleter<?> c;
5633 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5634 @SuppressWarnings("unchecked")
5635 MapReduceMappingsTask<K,V,U>
5636 t = (MapReduceMappingsTask<K,V,U>)c,
5637 s = t.rights;
5638 while (s != null) {
5639 U tr, sr;
5640 if ((sr = s.result) != null)
5641 t.result = (((tr = t.result) == null) ? sr :
5642 reducer.apply(tr, sr));
5643 s = t.rights = s.nextRight;
5644 }
5645 }
5646 }
5647 }
5648 }
5649
5650 @SuppressWarnings("serial")
5651 static final class MapReduceKeysToDoubleTask<K,V>
5652 extends BulkTask<K,V,Double> {
5653 final ToDoubleFunction<? super K> transformer;
5654 final DoubleBinaryOperator reducer;
5655 final double basis;
5656 double result;
5657 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5658 MapReduceKeysToDoubleTask
5659 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5660 MapReduceKeysToDoubleTask<K,V> nextRight,
5661 ToDoubleFunction<? super K> transformer,
5662 double basis,
5663 DoubleBinaryOperator reducer) {
5664 super(p, b, i, f, t); this.nextRight = nextRight;
5665 this.transformer = transformer;
5666 this.basis = basis; this.reducer = reducer;
5667 }
5668 public final Double getRawResult() { return result; }
5669 public final void compute() {
5670 final ToDoubleFunction<? super K> transformer;
5671 final DoubleBinaryOperator reducer;
5672 if ((transformer = this.transformer) != null &&
5673 (reducer = this.reducer) != null) {
5674 double r = this.basis;
5675 for (int i = baseIndex, f, h; batch > 0 &&
5676 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5677 addToPendingCount(1);
5678 (rights = new MapReduceKeysToDoubleTask<K,V>
5679 (this, batch >>>= 1, baseLimit = h, f, tab,
5680 rights, transformer, r, reducer)).fork();
5681 }
5682 for (Node<K,V> p; (p = advance()) != null; )
5683 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5684 result = r;
5685 CountedCompleter<?> c;
5686 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5687 @SuppressWarnings("unchecked")
5688 MapReduceKeysToDoubleTask<K,V>
5689 t = (MapReduceKeysToDoubleTask<K,V>)c,
5690 s = t.rights;
5691 while (s != null) {
5692 t.result = reducer.applyAsDouble(t.result, s.result);
5693 s = t.rights = s.nextRight;
5694 }
5695 }
5696 }
5697 }
5698 }
5699
5700 @SuppressWarnings("serial")
5701 static final class MapReduceValuesToDoubleTask<K,V>
5702 extends BulkTask<K,V,Double> {
5703 final ToDoubleFunction<? super V> transformer;
5704 final DoubleBinaryOperator reducer;
5705 final double basis;
5706 double result;
5707 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5708 MapReduceValuesToDoubleTask
5709 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5710 MapReduceValuesToDoubleTask<K,V> nextRight,
5711 ToDoubleFunction<? super V> transformer,
5712 double basis,
5713 DoubleBinaryOperator reducer) {
5714 super(p, b, i, f, t); this.nextRight = nextRight;
5715 this.transformer = transformer;
5716 this.basis = basis; this.reducer = reducer;
5717 }
5718 public final Double getRawResult() { return result; }
5719 public final void compute() {
5720 final ToDoubleFunction<? super V> transformer;
5721 final DoubleBinaryOperator reducer;
5722 if ((transformer = this.transformer) != null &&
5723 (reducer = this.reducer) != null) {
5724 double r = this.basis;
5725 for (int i = baseIndex, f, h; batch > 0 &&
5726 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5727 addToPendingCount(1);
5728 (rights = new MapReduceValuesToDoubleTask<K,V>
5729 (this, batch >>>= 1, baseLimit = h, f, tab,
5730 rights, transformer, r, reducer)).fork();
5731 }
5732 for (Node<K,V> p; (p = advance()) != null; )
5733 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5734 result = r;
5735 CountedCompleter<?> c;
5736 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5737 @SuppressWarnings("unchecked")
5738 MapReduceValuesToDoubleTask<K,V>
5739 t = (MapReduceValuesToDoubleTask<K,V>)c,
5740 s = t.rights;
5741 while (s != null) {
5742 t.result = reducer.applyAsDouble(t.result, s.result);
5743 s = t.rights = s.nextRight;
5744 }
5745 }
5746 }
5747 }
5748 }
5749
5750 @SuppressWarnings("serial")
5751 static final class MapReduceEntriesToDoubleTask<K,V>
5752 extends BulkTask<K,V,Double> {
5753 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5754 final DoubleBinaryOperator reducer;
5755 final double basis;
5756 double result;
5757 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5758 MapReduceEntriesToDoubleTask
5759 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5760 MapReduceEntriesToDoubleTask<K,V> nextRight,
5761 ToDoubleFunction<Map.Entry<K,V>> transformer,
5762 double basis,
5763 DoubleBinaryOperator reducer) {
5764 super(p, b, i, f, t); this.nextRight = nextRight;
5765 this.transformer = transformer;
5766 this.basis = basis; this.reducer = reducer;
5767 }
5768 public final Double getRawResult() { return result; }
5769 public final void compute() {
5770 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5771 final DoubleBinaryOperator reducer;
5772 if ((transformer = this.transformer) != null &&
5773 (reducer = this.reducer) != null) {
5774 double r = this.basis;
5775 for (int i = baseIndex, f, h; batch > 0 &&
5776 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5777 addToPendingCount(1);
5778 (rights = new MapReduceEntriesToDoubleTask<K,V>
5779 (this, batch >>>= 1, baseLimit = h, f, tab,
5780 rights, transformer, r, reducer)).fork();
5781 }
5782 for (Node<K,V> p; (p = advance()) != null; )
5783 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5784 result = r;
5785 CountedCompleter<?> c;
5786 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5787 @SuppressWarnings("unchecked")
5788 MapReduceEntriesToDoubleTask<K,V>
5789 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5790 s = t.rights;
5791 while (s != null) {
5792 t.result = reducer.applyAsDouble(t.result, s.result);
5793 s = t.rights = s.nextRight;
5794 }
5795 }
5796 }
5797 }
5798 }
5799
5800 @SuppressWarnings("serial")
5801 static final class MapReduceMappingsToDoubleTask<K,V>
5802 extends BulkTask<K,V,Double> {
5803 final ToDoubleBiFunction<? super K, ? super V> transformer;
5804 final DoubleBinaryOperator reducer;
5805 final double basis;
5806 double result;
5807 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5808 MapReduceMappingsToDoubleTask
5809 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5810 MapReduceMappingsToDoubleTask<K,V> nextRight,
5811 ToDoubleBiFunction<? super K, ? super V> transformer,
5812 double basis,
5813 DoubleBinaryOperator reducer) {
5814 super(p, b, i, f, t); this.nextRight = nextRight;
5815 this.transformer = transformer;
5816 this.basis = basis; this.reducer = reducer;
5817 }
5818 public final Double getRawResult() { return result; }
5819 public final void compute() {
5820 final ToDoubleBiFunction<? super K, ? super V> transformer;
5821 final DoubleBinaryOperator reducer;
5822 if ((transformer = this.transformer) != null &&
5823 (reducer = this.reducer) != null) {
5824 double r = this.basis;
5825 for (int i = baseIndex, f, h; batch > 0 &&
5826 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5827 addToPendingCount(1);
5828 (rights = new MapReduceMappingsToDoubleTask<K,V>
5829 (this, batch >>>= 1, baseLimit = h, f, tab,
5830 rights, transformer, r, reducer)).fork();
5831 }
5832 for (Node<K,V> p; (p = advance()) != null; )
5833 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5834 result = r;
5835 CountedCompleter<?> c;
5836 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5837 @SuppressWarnings("unchecked")
5838 MapReduceMappingsToDoubleTask<K,V>
5839 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5840 s = t.rights;
5841 while (s != null) {
5842 t.result = reducer.applyAsDouble(t.result, s.result);
5843 s = t.rights = s.nextRight;
5844 }
5845 }
5846 }
5847 }
5848 }
5849
5850 @SuppressWarnings("serial")
5851 static final class MapReduceKeysToLongTask<K,V>
5852 extends BulkTask<K,V,Long> {
5853 final ToLongFunction<? super K> transformer;
5854 final LongBinaryOperator reducer;
5855 final long basis;
5856 long result;
5857 MapReduceKeysToLongTask<K,V> rights, nextRight;
5858 MapReduceKeysToLongTask
5859 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5860 MapReduceKeysToLongTask<K,V> nextRight,
5861 ToLongFunction<? super K> transformer,
5862 long basis,
5863 LongBinaryOperator reducer) {
5864 super(p, b, i, f, t); this.nextRight = nextRight;
5865 this.transformer = transformer;
5866 this.basis = basis; this.reducer = reducer;
5867 }
5868 public final Long getRawResult() { return result; }
5869 public final void compute() {
5870 final ToLongFunction<? super K> transformer;
5871 final LongBinaryOperator reducer;
5872 if ((transformer = this.transformer) != null &&
5873 (reducer = this.reducer) != null) {
5874 long r = this.basis;
5875 for (int i = baseIndex, f, h; batch > 0 &&
5876 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5877 addToPendingCount(1);
5878 (rights = new MapReduceKeysToLongTask<K,V>
5879 (this, batch >>>= 1, baseLimit = h, f, tab,
5880 rights, transformer, r, reducer)).fork();
5881 }
5882 for (Node<K,V> p; (p = advance()) != null; )
5883 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5884 result = r;
5885 CountedCompleter<?> c;
5886 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5887 @SuppressWarnings("unchecked")
5888 MapReduceKeysToLongTask<K,V>
5889 t = (MapReduceKeysToLongTask<K,V>)c,
5890 s = t.rights;
5891 while (s != null) {
5892 t.result = reducer.applyAsLong(t.result, s.result);
5893 s = t.rights = s.nextRight;
5894 }
5895 }
5896 }
5897 }
5898 }
5899
5900 @SuppressWarnings("serial")
5901 static final class MapReduceValuesToLongTask<K,V>
5902 extends BulkTask<K,V,Long> {
5903 final ToLongFunction<? super V> transformer;
5904 final LongBinaryOperator reducer;
5905 final long basis;
5906 long result;
5907 MapReduceValuesToLongTask<K,V> rights, nextRight;
5908 MapReduceValuesToLongTask
5909 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5910 MapReduceValuesToLongTask<K,V> nextRight,
5911 ToLongFunction<? super V> transformer,
5912 long basis,
5913 LongBinaryOperator reducer) {
5914 super(p, b, i, f, t); this.nextRight = nextRight;
5915 this.transformer = transformer;
5916 this.basis = basis; this.reducer = reducer;
5917 }
5918 public final Long getRawResult() { return result; }
5919 public final void compute() {
5920 final ToLongFunction<? super V> transformer;
5921 final LongBinaryOperator reducer;
5922 if ((transformer = this.transformer) != null &&
5923 (reducer = this.reducer) != null) {
5924 long r = this.basis;
5925 for (int i = baseIndex, f, h; batch > 0 &&
5926 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5927 addToPendingCount(1);
5928 (rights = new MapReduceValuesToLongTask<K,V>
5929 (this, batch >>>= 1, baseLimit = h, f, tab,
5930 rights, transformer, r, reducer)).fork();
5931 }
5932 for (Node<K,V> p; (p = advance()) != null; )
5933 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5934 result = r;
5935 CountedCompleter<?> c;
5936 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5937 @SuppressWarnings("unchecked")
5938 MapReduceValuesToLongTask<K,V>
5939 t = (MapReduceValuesToLongTask<K,V>)c,
5940 s = t.rights;
5941 while (s != null) {
5942 t.result = reducer.applyAsLong(t.result, s.result);
5943 s = t.rights = s.nextRight;
5944 }
5945 }
5946 }
5947 }
5948 }
5949
5950 @SuppressWarnings("serial")
5951 static final class MapReduceEntriesToLongTask<K,V>
5952 extends BulkTask<K,V,Long> {
5953 final ToLongFunction<Map.Entry<K,V>> transformer;
5954 final LongBinaryOperator reducer;
5955 final long basis;
5956 long result;
5957 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5958 MapReduceEntriesToLongTask
5959 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5960 MapReduceEntriesToLongTask<K,V> nextRight,
5961 ToLongFunction<Map.Entry<K,V>> transformer,
5962 long basis,
5963 LongBinaryOperator reducer) {
5964 super(p, b, i, f, t); this.nextRight = nextRight;
5965 this.transformer = transformer;
5966 this.basis = basis; this.reducer = reducer;
5967 }
5968 public final Long getRawResult() { return result; }
5969 public final void compute() {
5970 final ToLongFunction<Map.Entry<K,V>> transformer;
5971 final LongBinaryOperator reducer;
5972 if ((transformer = this.transformer) != null &&
5973 (reducer = this.reducer) != null) {
5974 long r = this.basis;
5975 for (int i = baseIndex, f, h; batch > 0 &&
5976 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5977 addToPendingCount(1);
5978 (rights = new MapReduceEntriesToLongTask<K,V>
5979 (this, batch >>>= 1, baseLimit = h, f, tab,
5980 rights, transformer, r, reducer)).fork();
5981 }
5982 for (Node<K,V> p; (p = advance()) != null; )
5983 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5984 result = r;
5985 CountedCompleter<?> c;
5986 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5987 @SuppressWarnings("unchecked")
5988 MapReduceEntriesToLongTask<K,V>
5989 t = (MapReduceEntriesToLongTask<K,V>)c,
5990 s = t.rights;
5991 while (s != null) {
5992 t.result = reducer.applyAsLong(t.result, s.result);
5993 s = t.rights = s.nextRight;
5994 }
5995 }
5996 }
5997 }
5998 }
5999
6000 @SuppressWarnings("serial")
6001 static final class MapReduceMappingsToLongTask<K,V>
6002 extends BulkTask<K,V,Long> {
6003 final ToLongBiFunction<? super K, ? super V> transformer;
6004 final LongBinaryOperator reducer;
6005 final long basis;
6006 long result;
6007 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6008 MapReduceMappingsToLongTask
6009 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6010 MapReduceMappingsToLongTask<K,V> nextRight,
6011 ToLongBiFunction<? super K, ? super V> transformer,
6012 long basis,
6013 LongBinaryOperator reducer) {
6014 super(p, b, i, f, t); this.nextRight = nextRight;
6015 this.transformer = transformer;
6016 this.basis = basis; this.reducer = reducer;
6017 }
6018 public final Long getRawResult() { return result; }
6019 public final void compute() {
6020 final ToLongBiFunction<? super K, ? super V> transformer;
6021 final LongBinaryOperator reducer;
6022 if ((transformer = this.transformer) != null &&
6023 (reducer = this.reducer) != null) {
6024 long r = this.basis;
6025 for (int i = baseIndex, f, h; batch > 0 &&
6026 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6027 addToPendingCount(1);
6028 (rights = new MapReduceMappingsToLongTask<K,V>
6029 (this, batch >>>= 1, baseLimit = h, f, tab,
6030 rights, transformer, r, reducer)).fork();
6031 }
6032 for (Node<K,V> p; (p = advance()) != null; )
6033 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6034 result = r;
6035 CountedCompleter<?> c;
6036 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6037 @SuppressWarnings("unchecked")
6038 MapReduceMappingsToLongTask<K,V>
6039 t = (MapReduceMappingsToLongTask<K,V>)c,
6040 s = t.rights;
6041 while (s != null) {
6042 t.result = reducer.applyAsLong(t.result, s.result);
6043 s = t.rights = s.nextRight;
6044 }
6045 }
6046 }
6047 }
6048 }
6049
6050 @SuppressWarnings("serial")
6051 static final class MapReduceKeysToIntTask<K,V>
6052 extends BulkTask<K,V,Integer> {
6053 final ToIntFunction<? super K> transformer;
6054 final IntBinaryOperator reducer;
6055 final int basis;
6056 int result;
6057 MapReduceKeysToIntTask<K,V> rights, nextRight;
6058 MapReduceKeysToIntTask
6059 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6060 MapReduceKeysToIntTask<K,V> nextRight,
6061 ToIntFunction<? super K> transformer,
6062 int basis,
6063 IntBinaryOperator reducer) {
6064 super(p, b, i, f, t); this.nextRight = nextRight;
6065 this.transformer = transformer;
6066 this.basis = basis; this.reducer = reducer;
6067 }
6068 public final Integer getRawResult() { return result; }
6069 public final void compute() {
6070 final ToIntFunction<? super K> transformer;
6071 final IntBinaryOperator reducer;
6072 if ((transformer = this.transformer) != null &&
6073 (reducer = this.reducer) != null) {
6074 int r = this.basis;
6075 for (int i = baseIndex, f, h; batch > 0 &&
6076 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6077 addToPendingCount(1);
6078 (rights = new MapReduceKeysToIntTask<K,V>
6079 (this, batch >>>= 1, baseLimit = h, f, tab,
6080 rights, transformer, r, reducer)).fork();
6081 }
6082 for (Node<K,V> p; (p = advance()) != null; )
6083 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6084 result = r;
6085 CountedCompleter<?> c;
6086 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6087 @SuppressWarnings("unchecked")
6088 MapReduceKeysToIntTask<K,V>
6089 t = (MapReduceKeysToIntTask<K,V>)c,
6090 s = t.rights;
6091 while (s != null) {
6092 t.result = reducer.applyAsInt(t.result, s.result);
6093 s = t.rights = s.nextRight;
6094 }
6095 }
6096 }
6097 }
6098 }
6099
6100 @SuppressWarnings("serial")
6101 static final class MapReduceValuesToIntTask<K,V>
6102 extends BulkTask<K,V,Integer> {
6103 final ToIntFunction<? super V> transformer;
6104 final IntBinaryOperator reducer;
6105 final int basis;
6106 int result;
6107 MapReduceValuesToIntTask<K,V> rights, nextRight;
6108 MapReduceValuesToIntTask
6109 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6110 MapReduceValuesToIntTask<K,V> nextRight,
6111 ToIntFunction<? super V> transformer,
6112 int basis,
6113 IntBinaryOperator reducer) {
6114 super(p, b, i, f, t); this.nextRight = nextRight;
6115 this.transformer = transformer;
6116 this.basis = basis; this.reducer = reducer;
6117 }
6118 public final Integer getRawResult() { return result; }
6119 public final void compute() {
6120 final ToIntFunction<? super V> transformer;
6121 final IntBinaryOperator reducer;
6122 if ((transformer = this.transformer) != null &&
6123 (reducer = this.reducer) != null) {
6124 int r = this.basis;
6125 for (int i = baseIndex, f, h; batch > 0 &&
6126 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6127 addToPendingCount(1);
6128 (rights = new MapReduceValuesToIntTask<K,V>
6129 (this, batch >>>= 1, baseLimit = h, f, tab,
6130 rights, transformer, r, reducer)).fork();
6131 }
6132 for (Node<K,V> p; (p = advance()) != null; )
6133 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6134 result = r;
6135 CountedCompleter<?> c;
6136 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6137 @SuppressWarnings("unchecked")
6138 MapReduceValuesToIntTask<K,V>
6139 t = (MapReduceValuesToIntTask<K,V>)c,
6140 s = t.rights;
6141 while (s != null) {
6142 t.result = reducer.applyAsInt(t.result, s.result);
6143 s = t.rights = s.nextRight;
6144 }
6145 }
6146 }
6147 }
6148 }
6149
6150 @SuppressWarnings("serial")
6151 static final class MapReduceEntriesToIntTask<K,V>
6152 extends BulkTask<K,V,Integer> {
6153 final ToIntFunction<Map.Entry<K,V>> transformer;
6154 final IntBinaryOperator reducer;
6155 final int basis;
6156 int result;
6157 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6158 MapReduceEntriesToIntTask
6159 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6160 MapReduceEntriesToIntTask<K,V> nextRight,
6161 ToIntFunction<Map.Entry<K,V>> transformer,
6162 int basis,
6163 IntBinaryOperator reducer) {
6164 super(p, b, i, f, t); this.nextRight = nextRight;
6165 this.transformer = transformer;
6166 this.basis = basis; this.reducer = reducer;
6167 }
6168 public final Integer getRawResult() { return result; }
6169 public final void compute() {
6170 final ToIntFunction<Map.Entry<K,V>> transformer;
6171 final IntBinaryOperator reducer;
6172 if ((transformer = this.transformer) != null &&
6173 (reducer = this.reducer) != null) {
6174 int r = this.basis;
6175 for (int i = baseIndex, f, h; batch > 0 &&
6176 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6177 addToPendingCount(1);
6178 (rights = new MapReduceEntriesToIntTask<K,V>
6179 (this, batch >>>= 1, baseLimit = h, f, tab,
6180 rights, transformer, r, reducer)).fork();
6181 }
6182 for (Node<K,V> p; (p = advance()) != null; )
6183 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6184 result = r;
6185 CountedCompleter<?> c;
6186 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6187 @SuppressWarnings("unchecked")
6188 MapReduceEntriesToIntTask<K,V>
6189 t = (MapReduceEntriesToIntTask<K,V>)c,
6190 s = t.rights;
6191 while (s != null) {
6192 t.result = reducer.applyAsInt(t.result, s.result);
6193 s = t.rights = s.nextRight;
6194 }
6195 }
6196 }
6197 }
6198 }
6199
6200 @SuppressWarnings("serial")
6201 static final class MapReduceMappingsToIntTask<K,V>
6202 extends BulkTask<K,V,Integer> {
6203 final ToIntBiFunction<? super K, ? super V> transformer;
6204 final IntBinaryOperator reducer;
6205 final int basis;
6206 int result;
6207 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6208 MapReduceMappingsToIntTask
6209 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6210 MapReduceMappingsToIntTask<K,V> nextRight,
6211 ToIntBiFunction<? super K, ? super V> transformer,
6212 int basis,
6213 IntBinaryOperator reducer) {
6214 super(p, b, i, f, t); this.nextRight = nextRight;
6215 this.transformer = transformer;
6216 this.basis = basis; this.reducer = reducer;
6217 }
6218 public final Integer getRawResult() { return result; }
6219 public final void compute() {
6220 final ToIntBiFunction<? super K, ? super V> transformer;
6221 final IntBinaryOperator reducer;
6222 if ((transformer = this.transformer) != null &&
6223 (reducer = this.reducer) != null) {
6224 int r = this.basis;
6225 for (int i = baseIndex, f, h; batch > 0 &&
6226 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6227 addToPendingCount(1);
6228 (rights = new MapReduceMappingsToIntTask<K,V>
6229 (this, batch >>>= 1, baseLimit = h, f, tab,
6230 rights, transformer, r, reducer)).fork();
6231 }
6232 for (Node<K,V> p; (p = advance()) != null; )
6233 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6234 result = r;
6235 CountedCompleter<?> c;
6236 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6237 @SuppressWarnings("unchecked")
6238 MapReduceMappingsToIntTask<K,V>
6239 t = (MapReduceMappingsToIntTask<K,V>)c,
6240 s = t.rights;
6241 while (s != null) {
6242 t.result = reducer.applyAsInt(t.result, s.result);
6243 s = t.rights = s.nextRight;
6244 }
6245 }
6246 }
6247 }
6248 }
6249
6250 // Unsafe mechanics
6251 private static final sun.misc.Unsafe U;
6252 private static final long SIZECTL;
6253 private static final long TRANSFERINDEX;
6254 private static final long BASECOUNT;
6255 private static final long CELLSBUSY;
6256 private static final long CELLVALUE;
6257 private static final long ABASE;
6258 private static final int ASHIFT;
6259
6260 static {
6261 try {
6262 U = sun.misc.Unsafe.getUnsafe();
6263 Class<?> k = ConcurrentHashMap.class;
6264 SIZECTL = U.objectFieldOffset
6265 (k.getDeclaredField("sizeCtl"));
6266 TRANSFERINDEX = U.objectFieldOffset
6267 (k.getDeclaredField("transferIndex"));
6268 BASECOUNT = U.objectFieldOffset
6269 (k.getDeclaredField("baseCount"));
6270 CELLSBUSY = U.objectFieldOffset
6271 (k.getDeclaredField("cellsBusy"));
6272 Class<?> ck = CounterCell.class;
6273 CELLVALUE = U.objectFieldOffset
6274 (ck.getDeclaredField("value"));
6275 Class<?> ak = Node[].class;
6276 ABASE = U.arrayBaseOffset(ak);
6277 int scale = U.arrayIndexScale(ak);
6278 if ((scale & (scale - 1)) != 0)
6279 throw new Error("data type scale not a power of two");
6280 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6281 } catch (Exception e) {
6282 throw new Error(e);
6283 }
6284 }
6285 }