ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.262
Committed: Sun Jan 4 01:06:15 2015 UTC (9 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.261: +2 -2 lines
Log Message:
use ReflectiveOperationException for Unsafe mechanics

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.io.Serializable;
11 import java.lang.reflect.ParameterizedType;
12 import java.lang.reflect.Type;
13 import java.util.AbstractMap;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Enumeration;
17 import java.util.HashMap;
18 import java.util.Hashtable;
19 import java.util.Iterator;
20 import java.util.Map;
21 import java.util.NoSuchElementException;
22 import java.util.Set;
23 import java.util.Spliterator;
24 import java.util.concurrent.atomic.AtomicReference;
25 import java.util.concurrent.locks.LockSupport;
26 import java.util.concurrent.locks.ReentrantLock;
27 import java.util.function.BiConsumer;
28 import java.util.function.BiFunction;
29 import java.util.function.Consumer;
30 import java.util.function.DoubleBinaryOperator;
31 import java.util.function.Function;
32 import java.util.function.IntBinaryOperator;
33 import java.util.function.LongBinaryOperator;
34 import java.util.function.ToDoubleBiFunction;
35 import java.util.function.ToDoubleFunction;
36 import java.util.function.ToIntBiFunction;
37 import java.util.function.ToIntFunction;
38 import java.util.function.ToLongBiFunction;
39 import java.util.function.ToLongFunction;
40 import java.util.stream.Stream;
41
42 /**
43 * A hash table supporting full concurrency of retrievals and
44 * high expected concurrency for updates. This class obeys the
45 * same functional specification as {@link java.util.Hashtable}, and
46 * includes versions of methods corresponding to each method of
47 * {@code Hashtable}. However, even though all operations are
48 * thread-safe, retrieval operations do <em>not</em> entail locking,
49 * and there is <em>not</em> any support for locking the entire table
50 * in a way that prevents all access. This class is fully
51 * interoperable with {@code Hashtable} in programs that rely on its
52 * thread safety but not on its synchronization details.
53 *
54 * <p>Retrieval operations (including {@code get}) generally do not
55 * block, so may overlap with update operations (including {@code put}
56 * and {@code remove}). Retrievals reflect the results of the most
57 * recently <em>completed</em> update operations holding upon their
58 * onset. (More formally, an update operation for a given key bears a
59 * <em>happens-before</em> relation with any (non-null) retrieval for
60 * that key reporting the updated value.) For aggregate operations
61 * such as {@code putAll} and {@code clear}, concurrent retrievals may
62 * reflect insertion or removal of only some entries. Similarly,
63 * Iterators, Spliterators and Enumerations return elements reflecting the
64 * state of the hash table at some point at or since the creation of the
65 * iterator/enumeration. They do <em>not</em> throw {@link
66 * java.util.ConcurrentModificationException ConcurrentModificationException}.
67 * However, iterators are designed to be used by only one thread at a time.
68 * Bear in mind that the results of aggregate status methods including
69 * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
70 * useful only when a map is not undergoing concurrent updates in other threads.
71 * Otherwise the results of these methods reflect transient states
72 * that may be adequate for monitoring or estimation purposes, but not
73 * for program control.
74 *
75 * <p>The table is dynamically expanded when there are too many
76 * collisions (i.e., keys that have distinct hash codes but fall into
77 * the same slot modulo the table size), with the expected average
78 * effect of maintaining roughly two bins per mapping (corresponding
79 * to a 0.75 load factor threshold for resizing). There may be much
80 * variance around this average as mappings are added and removed, but
81 * overall, this maintains a commonly accepted time/space tradeoff for
82 * hash tables. However, resizing this or any other kind of hash
83 * table may be a relatively slow operation. When possible, it is a
84 * good idea to provide a size estimate as an optional {@code
85 * initialCapacity} constructor argument. An additional optional
86 * {@code loadFactor} constructor argument provides a further means of
87 * customizing initial table capacity by specifying the table density
88 * to be used in calculating the amount of space to allocate for the
89 * given number of elements. Also, for compatibility with previous
90 * versions of this class, constructors may optionally specify an
91 * expected {@code concurrencyLevel} as an additional hint for
92 * internal sizing. Note that using many keys with exactly the same
93 * {@code hashCode()} is a sure way to slow down performance of any
94 * hash table. To ameliorate impact, when keys are {@link Comparable},
95 * this class may use comparison order among keys to help break ties.
96 *
97 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
98 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
99 * (using {@link #keySet(Object)} when only keys are of interest, and the
100 * mapped values are (perhaps transiently) not used or all take the
101 * same mapping value.
102 *
103 * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
104 * form of histogram or multiset) by using {@link
105 * java.util.concurrent.atomic.LongAdder} values and initializing via
106 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
107 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
108 * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
109 *
110 * <p>This class and its views and iterators implement all of the
111 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
112 * interfaces.
113 *
114 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
115 * does <em>not</em> allow {@code null} to be used as a key or value.
116 *
117 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
118 * operations that, unlike most {@link Stream} methods, are designed
119 * to be safely, and often sensibly, applied even with maps that are
120 * being concurrently updated by other threads; for example, when
121 * computing a snapshot summary of the values in a shared registry.
122 * There are three kinds of operation, each with four forms, accepting
123 * functions with Keys, Values, Entries, and (Key, Value) arguments
124 * and/or return values. Because the elements of a ConcurrentHashMap
125 * are not ordered in any particular way, and may be processed in
126 * different orders in different parallel executions, the correctness
127 * of supplied functions should not depend on any ordering, or on any
128 * other objects or values that may transiently change while
129 * computation is in progress; and except for forEach actions, should
130 * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
131 * objects do not support method {@code setValue}.
132 *
133 * <ul>
134 * <li> forEach: Perform a given action on each element.
135 * A variant form applies a given transformation on each element
136 * before performing the action.</li>
137 *
138 * <li> search: Return the first available non-null result of
139 * applying a given function on each element; skipping further
140 * search when a result is found.</li>
141 *
142 * <li> reduce: Accumulate each element. The supplied reduction
143 * function cannot rely on ordering (more formally, it should be
144 * both associative and commutative). There are five variants:
145 *
146 * <ul>
147 *
148 * <li> Plain reductions. (There is not a form of this method for
149 * (key, value) function arguments since there is no corresponding
150 * return type.)</li>
151 *
152 * <li> Mapped reductions that accumulate the results of a given
153 * function applied to each element.</li>
154 *
155 * <li> Reductions to scalar doubles, longs, and ints, using a
156 * given basis value.</li>
157 *
158 * </ul>
159 * </li>
160 * </ul>
161 *
162 * <p>These bulk operations accept a {@code parallelismThreshold}
163 * argument. Methods proceed sequentially if the current map size is
164 * estimated to be less than the given threshold. Using a value of
165 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
166 * of {@code 1} results in maximal parallelism by partitioning into
167 * enough subtasks to fully utilize the {@link
168 * ForkJoinPool#commonPool()} that is used for all parallel
169 * computations. Normally, you would initially choose one of these
170 * extreme values, and then measure performance of using in-between
171 * values that trade off overhead versus throughput.
172 *
173 * <p>The concurrency properties of bulk operations follow
174 * from those of ConcurrentHashMap: Any non-null result returned
175 * from {@code get(key)} and related access methods bears a
176 * happens-before relation with the associated insertion or
177 * update. The result of any bulk operation reflects the
178 * composition of these per-element relations (but is not
179 * necessarily atomic with respect to the map as a whole unless it
180 * is somehow known to be quiescent). Conversely, because keys
181 * and values in the map are never null, null serves as a reliable
182 * atomic indicator of the current lack of any result. To
183 * maintain this property, null serves as an implicit basis for
184 * all non-scalar reduction operations. For the double, long, and
185 * int versions, the basis should be one that, when combined with
186 * any other value, returns that other value (more formally, it
187 * should be the identity element for the reduction). Most common
188 * reductions have these properties; for example, computing a sum
189 * with basis 0 or a minimum with basis MAX_VALUE.
190 *
191 * <p>Search and transformation functions provided as arguments
192 * should similarly return null to indicate the lack of any result
193 * (in which case it is not used). In the case of mapped
194 * reductions, this also enables transformations to serve as
195 * filters, returning null (or, in the case of primitive
196 * specializations, the identity basis) if the element should not
197 * be combined. You can create compound transformations and
198 * filterings by composing them yourself under this "null means
199 * there is nothing there now" rule before using them in search or
200 * reduce operations.
201 *
202 * <p>Methods accepting and/or returning Entry arguments maintain
203 * key-value associations. They may be useful for example when
204 * finding the key for the greatest value. Note that "plain" Entry
205 * arguments can be supplied using {@code new
206 * AbstractMap.SimpleEntry(k,v)}.
207 *
208 * <p>Bulk operations may complete abruptly, throwing an
209 * exception encountered in the application of a supplied
210 * function. Bear in mind when handling such exceptions that other
211 * concurrently executing functions could also have thrown
212 * exceptions, or would have done so if the first exception had
213 * not occurred.
214 *
215 * <p>Speedups for parallel compared to sequential forms are common
216 * but not guaranteed. Parallel operations involving brief functions
217 * on small maps may execute more slowly than sequential forms if the
218 * underlying work to parallelize the computation is more expensive
219 * than the computation itself. Similarly, parallelization may not
220 * lead to much actual parallelism if all processors are busy
221 * performing unrelated tasks.
222 *
223 * <p>All arguments to all task methods must be non-null.
224 *
225 * <p>This class is a member of the
226 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
227 * Java Collections Framework</a>.
228 *
229 * @since 1.5
230 * @author Doug Lea
231 * @param <K> the type of keys maintained by this map
232 * @param <V> the type of mapped values
233 */
234 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
235 implements ConcurrentMap<K,V>, Serializable {
236 private static final long serialVersionUID = 7249069246763182397L;
237
238 /*
239 * Overview:
240 *
241 * The primary design goal of this hash table is to maintain
242 * concurrent readability (typically method get(), but also
243 * iterators and related methods) while minimizing update
244 * contention. Secondary goals are to keep space consumption about
245 * the same or better than java.util.HashMap, and to support high
246 * initial insertion rates on an empty table by many threads.
247 *
248 * This map usually acts as a binned (bucketed) hash table. Each
249 * key-value mapping is held in a Node. Most nodes are instances
250 * of the basic Node class with hash, key, value, and next
251 * fields. However, various subclasses exist: TreeNodes are
252 * arranged in balanced trees, not lists. TreeBins hold the roots
253 * of sets of TreeNodes. ForwardingNodes are placed at the heads
254 * of bins during resizing. ReservationNodes are used as
255 * placeholders while establishing values in computeIfAbsent and
256 * related methods. The types TreeBin, ForwardingNode, and
257 * ReservationNode do not hold normal user keys, values, or
258 * hashes, and are readily distinguishable during search etc
259 * because they have negative hash fields and null key and value
260 * fields. (These special nodes are either uncommon or transient,
261 * so the impact of carrying around some unused fields is
262 * insignificant.)
263 *
264 * The table is lazily initialized to a power-of-two size upon the
265 * first insertion. Each bin in the table normally contains a
266 * list of Nodes (most often, the list has only zero or one Node).
267 * Table accesses require volatile/atomic reads, writes, and
268 * CASes. Because there is no other way to arrange this without
269 * adding further indirections, we use intrinsics
270 * (sun.misc.Unsafe) operations.
271 *
272 * We use the top (sign) bit of Node hash fields for control
273 * purposes -- it is available anyway because of addressing
274 * constraints. Nodes with negative hash fields are specially
275 * handled or ignored in map methods.
276 *
277 * Insertion (via put or its variants) of the first node in an
278 * empty bin is performed by just CASing it to the bin. This is
279 * by far the most common case for put operations under most
280 * key/hash distributions. Other update operations (insert,
281 * delete, and replace) require locks. We do not want to waste
282 * the space required to associate a distinct lock object with
283 * each bin, so instead use the first node of a bin list itself as
284 * a lock. Locking support for these locks relies on builtin
285 * "synchronized" monitors.
286 *
287 * Using the first node of a list as a lock does not by itself
288 * suffice though: When a node is locked, any update must first
289 * validate that it is still the first node after locking it, and
290 * retry if not. Because new nodes are always appended to lists,
291 * once a node is first in a bin, it remains first until deleted
292 * or the bin becomes invalidated (upon resizing).
293 *
294 * The main disadvantage of per-bin locks is that other update
295 * operations on other nodes in a bin list protected by the same
296 * lock can stall, for example when user equals() or mapping
297 * functions take a long time. However, statistically, under
298 * random hash codes, this is not a common problem. Ideally, the
299 * frequency of nodes in bins follows a Poisson distribution
300 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
301 * parameter of about 0.5 on average, given the resizing threshold
302 * of 0.75, although with a large variance because of resizing
303 * granularity. Ignoring variance, the expected occurrences of
304 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
305 * first values are:
306 *
307 * 0: 0.60653066
308 * 1: 0.30326533
309 * 2: 0.07581633
310 * 3: 0.01263606
311 * 4: 0.00157952
312 * 5: 0.00015795
313 * 6: 0.00001316
314 * 7: 0.00000094
315 * 8: 0.00000006
316 * more: less than 1 in ten million
317 *
318 * Lock contention probability for two threads accessing distinct
319 * elements is roughly 1 / (8 * #elements) under random hashes.
320 *
321 * Actual hash code distributions encountered in practice
322 * sometimes deviate significantly from uniform randomness. This
323 * includes the case when N > (1<<30), so some keys MUST collide.
324 * Similarly for dumb or hostile usages in which multiple keys are
325 * designed to have identical hash codes or ones that differs only
326 * in masked-out high bits. So we use a secondary strategy that
327 * applies when the number of nodes in a bin exceeds a
328 * threshold. These TreeBins use a balanced tree to hold nodes (a
329 * specialized form of red-black trees), bounding search time to
330 * O(log N). Each search step in a TreeBin is at least twice as
331 * slow as in a regular list, but given that N cannot exceed
332 * (1<<64) (before running out of addresses) this bounds search
333 * steps, lock hold times, etc, to reasonable constants (roughly
334 * 100 nodes inspected per operation worst case) so long as keys
335 * are Comparable (which is very common -- String, Long, etc).
336 * TreeBin nodes (TreeNodes) also maintain the same "next"
337 * traversal pointers as regular nodes, so can be traversed in
338 * iterators in the same way.
339 *
340 * The table is resized when occupancy exceeds a percentage
341 * threshold (nominally, 0.75, but see below). Any thread
342 * noticing an overfull bin may assist in resizing after the
343 * initiating thread allocates and sets up the replacement array.
344 * However, rather than stalling, these other threads may proceed
345 * with insertions etc. The use of TreeBins shields us from the
346 * worst case effects of overfilling while resizes are in
347 * progress. Resizing proceeds by transferring bins, one by one,
348 * from the table to the next table. However, threads claim small
349 * blocks of indices to transfer (via field transferIndex) before
350 * doing so, reducing contention. A generation stamp in field
351 * sizeCtl ensures that resizings do not overlap. Because we are
352 * using power-of-two expansion, the elements from each bin must
353 * either stay at same index, or move with a power of two
354 * offset. We eliminate unnecessary node creation by catching
355 * cases where old nodes can be reused because their next fields
356 * won't change. On average, only about one-sixth of them need
357 * cloning when a table doubles. The nodes they replace will be
358 * garbage collectable as soon as they are no longer referenced by
359 * any reader thread that may be in the midst of concurrently
360 * traversing table. Upon transfer, the old table bin contains
361 * only a special forwarding node (with hash field "MOVED") that
362 * contains the next table as its key. On encountering a
363 * forwarding node, access and update operations restart, using
364 * the new table.
365 *
366 * Each bin transfer requires its bin lock, which can stall
367 * waiting for locks while resizing. However, because other
368 * threads can join in and help resize rather than contend for
369 * locks, average aggregate waits become shorter as resizing
370 * progresses. The transfer operation must also ensure that all
371 * accessible bins in both the old and new table are usable by any
372 * traversal. This is arranged in part by proceeding from the
373 * last bin (table.length - 1) up towards the first. Upon seeing
374 * a forwarding node, traversals (see class Traverser) arrange to
375 * move to the new table without revisiting nodes. To ensure that
376 * no intervening nodes are skipped even when moved out of order,
377 * a stack (see class TableStack) is created on first encounter of
378 * a forwarding node during a traversal, to maintain its place if
379 * later processing the current table. The need for these
380 * save/restore mechanics is relatively rare, but when one
381 * forwarding node is encountered, typically many more will be.
382 * So Traversers use a simple caching scheme to avoid creating so
383 * many new TableStack nodes. (Thanks to Peter Levart for
384 * suggesting use of a stack here.)
385 *
386 * The traversal scheme also applies to partial traversals of
387 * ranges of bins (via an alternate Traverser constructor)
388 * to support partitioned aggregate operations. Also, read-only
389 * operations give up if ever forwarded to a null table, which
390 * provides support for shutdown-style clearing, which is also not
391 * currently implemented.
392 *
393 * Lazy table initialization minimizes footprint until first use,
394 * and also avoids resizings when the first operation is from a
395 * putAll, constructor with map argument, or deserialization.
396 * These cases attempt to override the initial capacity settings,
397 * but harmlessly fail to take effect in cases of races.
398 *
399 * The element count is maintained using a specialization of
400 * LongAdder. We need to incorporate a specialization rather than
401 * just use a LongAdder in order to access implicit
402 * contention-sensing that leads to creation of multiple
403 * CounterCells. The counter mechanics avoid contention on
404 * updates but can encounter cache thrashing if read too
405 * frequently during concurrent access. To avoid reading so often,
406 * resizing under contention is attempted only upon adding to a
407 * bin already holding two or more nodes. Under uniform hash
408 * distributions, the probability of this occurring at threshold
409 * is around 13%, meaning that only about 1 in 8 puts check
410 * threshold (and after resizing, many fewer do so).
411 *
412 * TreeBins use a special form of comparison for search and
413 * related operations (which is the main reason we cannot use
414 * existing collections such as TreeMaps). TreeBins contain
415 * Comparable elements, but may contain others, as well as
416 * elements that are Comparable but not necessarily Comparable for
417 * the same T, so we cannot invoke compareTo among them. To handle
418 * this, the tree is ordered primarily by hash value, then by
419 * Comparable.compareTo order if applicable. On lookup at a node,
420 * if elements are not comparable or compare as 0 then both left
421 * and right children may need to be searched in the case of tied
422 * hash values. (This corresponds to the full list search that
423 * would be necessary if all elements were non-Comparable and had
424 * tied hashes.) On insertion, to keep a total ordering (or as
425 * close as is required here) across rebalancings, we compare
426 * classes and identityHashCodes as tie-breakers. The red-black
427 * balancing code is updated from pre-jdk-collections
428 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
429 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
430 * Algorithms" (CLR).
431 *
432 * TreeBins also require an additional locking mechanism. While
433 * list traversal is always possible by readers even during
434 * updates, tree traversal is not, mainly because of tree-rotations
435 * that may change the root node and/or its linkages. TreeBins
436 * include a simple read-write lock mechanism parasitic on the
437 * main bin-synchronization strategy: Structural adjustments
438 * associated with an insertion or removal are already bin-locked
439 * (and so cannot conflict with other writers) but must wait for
440 * ongoing readers to finish. Since there can be only one such
441 * waiter, we use a simple scheme using a single "waiter" field to
442 * block writers. However, readers need never block. If the root
443 * lock is held, they proceed along the slow traversal path (via
444 * next-pointers) until the lock becomes available or the list is
445 * exhausted, whichever comes first. These cases are not fast, but
446 * maximize aggregate expected throughput.
447 *
448 * Maintaining API and serialization compatibility with previous
449 * versions of this class introduces several oddities. Mainly: We
450 * leave untouched but unused constructor arguments refering to
451 * concurrencyLevel. We accept a loadFactor constructor argument,
452 * but apply it only to initial table capacity (which is the only
453 * time that we can guarantee to honor it.) We also declare an
454 * unused "Segment" class that is instantiated in minimal form
455 * only when serializing.
456 *
457 * Also, solely for compatibility with previous versions of this
458 * class, it extends AbstractMap, even though all of its methods
459 * are overridden, so it is just useless baggage.
460 *
461 * This file is organized to make things a little easier to follow
462 * while reading than they might otherwise: First the main static
463 * declarations and utilities, then fields, then main public
464 * methods (with a few factorings of multiple public methods into
465 * internal ones), then sizing methods, trees, traversers, and
466 * bulk operations.
467 */
468
469 /* ---------------- Constants -------------- */
470
471 /**
472 * The largest possible table capacity. This value must be
473 * exactly 1<<30 to stay within Java array allocation and indexing
474 * bounds for power of two table sizes, and is further required
475 * because the top two bits of 32bit hash fields are used for
476 * control purposes.
477 */
478 private static final int MAXIMUM_CAPACITY = 1 << 30;
479
480 /**
481 * The default initial table capacity. Must be a power of 2
482 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
483 */
484 private static final int DEFAULT_CAPACITY = 16;
485
486 /**
487 * The largest possible (non-power of two) array size.
488 * Needed by toArray and related methods.
489 */
490 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
491
492 /**
493 * The default concurrency level for this table. Unused but
494 * defined for compatibility with previous versions of this class.
495 */
496 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
497
498 /**
499 * The load factor for this table. Overrides of this value in
500 * constructors affect only the initial table capacity. The
501 * actual floating point value isn't normally used -- it is
502 * simpler to use expressions such as {@code n - (n >>> 2)} for
503 * the associated resizing threshold.
504 */
505 private static final float LOAD_FACTOR = 0.75f;
506
507 /**
508 * The bin count threshold for using a tree rather than list for a
509 * bin. Bins are converted to trees when adding an element to a
510 * bin with at least this many nodes. The value must be greater
511 * than 2, and should be at least 8 to mesh with assumptions in
512 * tree removal about conversion back to plain bins upon
513 * shrinkage.
514 */
515 static final int TREEIFY_THRESHOLD = 8;
516
517 /**
518 * The bin count threshold for untreeifying a (split) bin during a
519 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
520 * most 6 to mesh with shrinkage detection under removal.
521 */
522 static final int UNTREEIFY_THRESHOLD = 6;
523
524 /**
525 * The smallest table capacity for which bins may be treeified.
526 * (Otherwise the table is resized if too many nodes in a bin.)
527 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
528 * conflicts between resizing and treeification thresholds.
529 */
530 static final int MIN_TREEIFY_CAPACITY = 64;
531
532 /**
533 * Minimum number of rebinnings per transfer step. Ranges are
534 * subdivided to allow multiple resizer threads. This value
535 * serves as a lower bound to avoid resizers encountering
536 * excessive memory contention. The value should be at least
537 * DEFAULT_CAPACITY.
538 */
539 private static final int MIN_TRANSFER_STRIDE = 16;
540
541 /**
542 * The number of bits used for generation stamp in sizeCtl.
543 * Must be at least 6 for 32bit arrays.
544 */
545 private static int RESIZE_STAMP_BITS = 16;
546
547 /**
548 * The maximum number of threads that can help resize.
549 * Must fit in 32 - RESIZE_STAMP_BITS bits.
550 */
551 private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
552
553 /**
554 * The bit shift for recording size stamp in sizeCtl.
555 */
556 private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
557
558 /*
559 * Encodings for Node hash fields. See above for explanation.
560 */
561 static final int MOVED = -1; // hash for forwarding nodes
562 static final int TREEBIN = -2; // hash for roots of trees
563 static final int RESERVED = -3; // hash for transient reservations
564 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
565
566 /** Number of CPUS, to place bounds on some sizings */
567 static final int NCPU = Runtime.getRuntime().availableProcessors();
568
569 /** For serialization compatibility. */
570 private static final ObjectStreamField[] serialPersistentFields = {
571 new ObjectStreamField("segments", Segment[].class),
572 new ObjectStreamField("segmentMask", Integer.TYPE),
573 new ObjectStreamField("segmentShift", Integer.TYPE)
574 };
575
576 /* ---------------- Nodes -------------- */
577
578 /**
579 * Key-value entry. This class is never exported out as a
580 * user-mutable Map.Entry (i.e., one supporting setValue; see
581 * MapEntry below), but can be used for read-only traversals used
582 * in bulk tasks. Subclasses of Node with a negative hash field
583 * are special, and contain null keys and values (but are never
584 * exported). Otherwise, keys and vals are never null.
585 */
586 static class Node<K,V> implements Map.Entry<K,V> {
587 final int hash;
588 final K key;
589 volatile V val;
590 volatile Node<K,V> next;
591
592 Node(int hash, K key, V val, Node<K,V> next) {
593 this.hash = hash;
594 this.key = key;
595 this.val = val;
596 this.next = next;
597 }
598
599 public final K getKey() { return key; }
600 public final V getValue() { return val; }
601 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
602 public final String toString(){ return key + "=" + val; }
603 public final V setValue(V value) {
604 throw new UnsupportedOperationException();
605 }
606
607 public final boolean equals(Object o) {
608 Object k, v, u; Map.Entry<?,?> e;
609 return ((o instanceof Map.Entry) &&
610 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
611 (v = e.getValue()) != null &&
612 (k == key || k.equals(key)) &&
613 (v == (u = val) || v.equals(u)));
614 }
615
616 /**
617 * Virtualized support for map.get(); overridden in subclasses.
618 */
619 Node<K,V> find(int h, Object k) {
620 Node<K,V> e = this;
621 if (k != null) {
622 do {
623 K ek;
624 if (e.hash == h &&
625 ((ek = e.key) == k || (ek != null && k.equals(ek))))
626 return e;
627 } while ((e = e.next) != null);
628 }
629 return null;
630 }
631 }
632
633 /* ---------------- Static utilities -------------- */
634
635 /**
636 * Spreads (XORs) higher bits of hash to lower and also forces top
637 * bit to 0. Because the table uses power-of-two masking, sets of
638 * hashes that vary only in bits above the current mask will
639 * always collide. (Among known examples are sets of Float keys
640 * holding consecutive whole numbers in small tables.) So we
641 * apply a transform that spreads the impact of higher bits
642 * downward. There is a tradeoff between speed, utility, and
643 * quality of bit-spreading. Because many common sets of hashes
644 * are already reasonably distributed (so don't benefit from
645 * spreading), and because we use trees to handle large sets of
646 * collisions in bins, we just XOR some shifted bits in the
647 * cheapest possible way to reduce systematic lossage, as well as
648 * to incorporate impact of the highest bits that would otherwise
649 * never be used in index calculations because of table bounds.
650 */
651 static final int spread(int h) {
652 return (h ^ (h >>> 16)) & HASH_BITS;
653 }
654
655 /**
656 * Returns a power of two table size for the given desired capacity.
657 * See Hackers Delight, sec 3.2
658 */
659 private static final int tableSizeFor(int c) {
660 int n = c - 1;
661 n |= n >>> 1;
662 n |= n >>> 2;
663 n |= n >>> 4;
664 n |= n >>> 8;
665 n |= n >>> 16;
666 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
667 }
668
669 /**
670 * Returns x's Class if it is of the form "class C implements
671 * Comparable<C>", else null.
672 */
673 static Class<?> comparableClassFor(Object x) {
674 if (x instanceof Comparable) {
675 Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
676 if ((c = x.getClass()) == String.class) // bypass checks
677 return c;
678 if ((ts = c.getGenericInterfaces()) != null) {
679 for (int i = 0; i < ts.length; ++i) {
680 if (((t = ts[i]) instanceof ParameterizedType) &&
681 ((p = (ParameterizedType)t).getRawType() ==
682 Comparable.class) &&
683 (as = p.getActualTypeArguments()) != null &&
684 as.length == 1 && as[0] == c) // type arg is c
685 return c;
686 }
687 }
688 }
689 return null;
690 }
691
692 /**
693 * Returns k.compareTo(x) if x matches kc (k's screened comparable
694 * class), else 0.
695 */
696 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
697 static int compareComparables(Class<?> kc, Object k, Object x) {
698 return (x == null || x.getClass() != kc ? 0 :
699 ((Comparable)k).compareTo(x));
700 }
701
702 /* ---------------- Table element access -------------- */
703
704 /*
705 * Volatile access methods are used for table elements as well as
706 * elements of in-progress next table while resizing. All uses of
707 * the tab arguments must be null checked by callers. All callers
708 * also paranoically precheck that tab's length is not zero (or an
709 * equivalent check), thus ensuring that any index argument taking
710 * the form of a hash value anded with (length - 1) is a valid
711 * index. Note that, to be correct wrt arbitrary concurrency
712 * errors by users, these checks must operate on local variables,
713 * which accounts for some odd-looking inline assignments below.
714 * Note that calls to setTabAt always occur within locked regions,
715 * and so in principle require only release ordering, not
716 * full volatile semantics, but are currently coded as volatile
717 * writes to be conservative.
718 */
719
720 @SuppressWarnings("unchecked")
721 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
722 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
723 }
724
725 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
726 Node<K,V> c, Node<K,V> v) {
727 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
728 }
729
730 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
731 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
732 }
733
734 /* ---------------- Fields -------------- */
735
736 /**
737 * The array of bins. Lazily initialized upon first insertion.
738 * Size is always a power of two. Accessed directly by iterators.
739 */
740 transient volatile Node<K,V>[] table;
741
742 /**
743 * The next table to use; non-null only while resizing.
744 */
745 private transient volatile Node<K,V>[] nextTable;
746
747 /**
748 * Base counter value, used mainly when there is no contention,
749 * but also as a fallback during table initialization
750 * races. Updated via CAS.
751 */
752 private transient volatile long baseCount;
753
754 /**
755 * Table initialization and resizing control. When negative, the
756 * table is being initialized or resized: -1 for initialization,
757 * else -(1 + the number of active resizing threads). Otherwise,
758 * when table is null, holds the initial table size to use upon
759 * creation, or 0 for default. After initialization, holds the
760 * next element count value upon which to resize the table.
761 */
762 private transient volatile int sizeCtl;
763
764 /**
765 * The next table index (plus one) to split while resizing.
766 */
767 private transient volatile int transferIndex;
768
769 /**
770 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
771 */
772 private transient volatile int cellsBusy;
773
774 /**
775 * Table of counter cells. When non-null, size is a power of 2.
776 */
777 private transient volatile CounterCell[] counterCells;
778
779 // views
780 private transient KeySetView<K,V> keySet;
781 private transient ValuesView<K,V> values;
782 private transient EntrySetView<K,V> entrySet;
783
784
785 /* ---------------- Public operations -------------- */
786
787 /**
788 * Creates a new, empty map with the default initial table size (16).
789 */
790 public ConcurrentHashMap() {
791 }
792
793 /**
794 * Creates a new, empty map with an initial table size
795 * accommodating the specified number of elements without the need
796 * to dynamically resize.
797 *
798 * @param initialCapacity The implementation performs internal
799 * sizing to accommodate this many elements.
800 * @throws IllegalArgumentException if the initial capacity of
801 * elements is negative
802 */
803 public ConcurrentHashMap(int initialCapacity) {
804 if (initialCapacity < 0)
805 throw new IllegalArgumentException();
806 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
807 MAXIMUM_CAPACITY :
808 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
809 this.sizeCtl = cap;
810 }
811
812 /**
813 * Creates a new map with the same mappings as the given map.
814 *
815 * @param m the map
816 */
817 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
818 this.sizeCtl = DEFAULT_CAPACITY;
819 putAll(m);
820 }
821
822 /**
823 * Creates a new, empty map with an initial table size based on
824 * the given number of elements ({@code initialCapacity}) and
825 * initial table density ({@code loadFactor}).
826 *
827 * @param initialCapacity the initial capacity. The implementation
828 * performs internal sizing to accommodate this many elements,
829 * given the specified load factor.
830 * @param loadFactor the load factor (table density) for
831 * establishing the initial table size
832 * @throws IllegalArgumentException if the initial capacity of
833 * elements is negative or the load factor is nonpositive
834 *
835 * @since 1.6
836 */
837 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
838 this(initialCapacity, loadFactor, 1);
839 }
840
841 /**
842 * Creates a new, empty map with an initial table size based on
843 * the given number of elements ({@code initialCapacity}), table
844 * density ({@code loadFactor}), and number of concurrently
845 * updating threads ({@code concurrencyLevel}).
846 *
847 * @param initialCapacity the initial capacity. The implementation
848 * performs internal sizing to accommodate this many elements,
849 * given the specified load factor.
850 * @param loadFactor the load factor (table density) for
851 * establishing the initial table size
852 * @param concurrencyLevel the estimated number of concurrently
853 * updating threads. The implementation may use this value as
854 * a sizing hint.
855 * @throws IllegalArgumentException if the initial capacity is
856 * negative or the load factor or concurrencyLevel are
857 * nonpositive
858 */
859 public ConcurrentHashMap(int initialCapacity,
860 float loadFactor, int concurrencyLevel) {
861 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
862 throw new IllegalArgumentException();
863 if (initialCapacity < concurrencyLevel) // Use at least as many bins
864 initialCapacity = concurrencyLevel; // as estimated threads
865 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
866 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
867 MAXIMUM_CAPACITY : tableSizeFor((int)size);
868 this.sizeCtl = cap;
869 }
870
871 // Original (since JDK1.2) Map methods
872
873 /**
874 * {@inheritDoc}
875 */
876 public int size() {
877 long n = sumCount();
878 return ((n < 0L) ? 0 :
879 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
880 (int)n);
881 }
882
883 /**
884 * {@inheritDoc}
885 */
886 public boolean isEmpty() {
887 return sumCount() <= 0L; // ignore transient negative values
888 }
889
890 /**
891 * Returns the value to which the specified key is mapped,
892 * or {@code null} if this map contains no mapping for the key.
893 *
894 * <p>More formally, if this map contains a mapping from a key
895 * {@code k} to a value {@code v} such that {@code key.equals(k)},
896 * then this method returns {@code v}; otherwise it returns
897 * {@code null}. (There can be at most one such mapping.)
898 *
899 * @throws NullPointerException if the specified key is null
900 */
901 public V get(Object key) {
902 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
903 int h = spread(key.hashCode());
904 if ((tab = table) != null && (n = tab.length) > 0 &&
905 (e = tabAt(tab, (n - 1) & h)) != null) {
906 if ((eh = e.hash) == h) {
907 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
908 return e.val;
909 }
910 else if (eh < 0)
911 return (p = e.find(h, key)) != null ? p.val : null;
912 while ((e = e.next) != null) {
913 if (e.hash == h &&
914 ((ek = e.key) == key || (ek != null && key.equals(ek))))
915 return e.val;
916 }
917 }
918 return null;
919 }
920
921 /**
922 * Tests if the specified object is a key in this table.
923 *
924 * @param key possible key
925 * @return {@code true} if and only if the specified object
926 * is a key in this table, as determined by the
927 * {@code equals} method; {@code false} otherwise
928 * @throws NullPointerException if the specified key is null
929 */
930 public boolean containsKey(Object key) {
931 return get(key) != null;
932 }
933
934 /**
935 * Returns {@code true} if this map maps one or more keys to the
936 * specified value. Note: This method may require a full traversal
937 * of the map, and is much slower than method {@code containsKey}.
938 *
939 * @param value value whose presence in this map is to be tested
940 * @return {@code true} if this map maps one or more keys to the
941 * specified value
942 * @throws NullPointerException if the specified value is null
943 */
944 public boolean containsValue(Object value) {
945 if (value == null)
946 throw new NullPointerException();
947 Node<K,V>[] t;
948 if ((t = table) != null) {
949 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
950 for (Node<K,V> p; (p = it.advance()) != null; ) {
951 V v;
952 if ((v = p.val) == value || (v != null && value.equals(v)))
953 return true;
954 }
955 }
956 return false;
957 }
958
959 /**
960 * Maps the specified key to the specified value in this table.
961 * Neither the key nor the value can be null.
962 *
963 * <p>The value can be retrieved by calling the {@code get} method
964 * with a key that is equal to the original key.
965 *
966 * @param key key with which the specified value is to be associated
967 * @param value value to be associated with the specified key
968 * @return the previous value associated with {@code key}, or
969 * {@code null} if there was no mapping for {@code key}
970 * @throws NullPointerException if the specified key or value is null
971 */
972 public V put(K key, V value) {
973 return putVal(key, value, false);
974 }
975
976 /** Implementation for put and putIfAbsent */
977 final V putVal(K key, V value, boolean onlyIfAbsent) {
978 if (key == null || value == null) throw new NullPointerException();
979 int hash = spread(key.hashCode());
980 int binCount = 0;
981 for (Node<K,V>[] tab = table;;) {
982 Node<K,V> f; int n, i, fh;
983 if (tab == null || (n = tab.length) == 0)
984 tab = initTable();
985 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
986 if (casTabAt(tab, i, null,
987 new Node<K,V>(hash, key, value, null)))
988 break; // no lock when adding to empty bin
989 }
990 else if ((fh = f.hash) == MOVED)
991 tab = helpTransfer(tab, f);
992 else {
993 V oldVal = null;
994 synchronized (f) {
995 if (tabAt(tab, i) == f) {
996 if (fh >= 0) {
997 binCount = 1;
998 for (Node<K,V> e = f;; ++binCount) {
999 K ek;
1000 if (e.hash == hash &&
1001 ((ek = e.key) == key ||
1002 (ek != null && key.equals(ek)))) {
1003 oldVal = e.val;
1004 if (!onlyIfAbsent)
1005 e.val = value;
1006 break;
1007 }
1008 Node<K,V> pred = e;
1009 if ((e = e.next) == null) {
1010 pred.next = new Node<K,V>(hash, key,
1011 value, null);
1012 break;
1013 }
1014 }
1015 }
1016 else if (f instanceof TreeBin) {
1017 Node<K,V> p;
1018 binCount = 2;
1019 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1020 value)) != null) {
1021 oldVal = p.val;
1022 if (!onlyIfAbsent)
1023 p.val = value;
1024 }
1025 }
1026 else if (f instanceof ReservationNode)
1027 throw new IllegalStateException("Recursive update");
1028 }
1029 }
1030 if (binCount != 0) {
1031 if (binCount >= TREEIFY_THRESHOLD)
1032 treeifyBin(tab, i);
1033 if (oldVal != null)
1034 return oldVal;
1035 break;
1036 }
1037 }
1038 }
1039 addCount(1L, binCount);
1040 return null;
1041 }
1042
1043 /**
1044 * Copies all of the mappings from the specified map to this one.
1045 * These mappings replace any mappings that this map had for any of the
1046 * keys currently in the specified map.
1047 *
1048 * @param m mappings to be stored in this map
1049 */
1050 public void putAll(Map<? extends K, ? extends V> m) {
1051 tryPresize(m.size());
1052 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1053 putVal(e.getKey(), e.getValue(), false);
1054 }
1055
1056 /**
1057 * Removes the key (and its corresponding value) from this map.
1058 * This method does nothing if the key is not in the map.
1059 *
1060 * @param key the key that needs to be removed
1061 * @return the previous value associated with {@code key}, or
1062 * {@code null} if there was no mapping for {@code key}
1063 * @throws NullPointerException if the specified key is null
1064 */
1065 public V remove(Object key) {
1066 return replaceNode(key, null, null);
1067 }
1068
1069 /**
1070 * Implementation for the four public remove/replace methods:
1071 * Replaces node value with v, conditional upon match of cv if
1072 * non-null. If resulting value is null, delete.
1073 */
1074 final V replaceNode(Object key, V value, Object cv) {
1075 int hash = spread(key.hashCode());
1076 for (Node<K,V>[] tab = table;;) {
1077 Node<K,V> f; int n, i, fh;
1078 if (tab == null || (n = tab.length) == 0 ||
1079 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1080 break;
1081 else if ((fh = f.hash) == MOVED)
1082 tab = helpTransfer(tab, f);
1083 else {
1084 V oldVal = null;
1085 boolean validated = false;
1086 synchronized (f) {
1087 if (tabAt(tab, i) == f) {
1088 if (fh >= 0) {
1089 validated = true;
1090 for (Node<K,V> e = f, pred = null;;) {
1091 K ek;
1092 if (e.hash == hash &&
1093 ((ek = e.key) == key ||
1094 (ek != null && key.equals(ek)))) {
1095 V ev = e.val;
1096 if (cv == null || cv == ev ||
1097 (ev != null && cv.equals(ev))) {
1098 oldVal = ev;
1099 if (value != null)
1100 e.val = value;
1101 else if (pred != null)
1102 pred.next = e.next;
1103 else
1104 setTabAt(tab, i, e.next);
1105 }
1106 break;
1107 }
1108 pred = e;
1109 if ((e = e.next) == null)
1110 break;
1111 }
1112 }
1113 else if (f instanceof TreeBin) {
1114 validated = true;
1115 TreeBin<K,V> t = (TreeBin<K,V>)f;
1116 TreeNode<K,V> r, p;
1117 if ((r = t.root) != null &&
1118 (p = r.findTreeNode(hash, key, null)) != null) {
1119 V pv = p.val;
1120 if (cv == null || cv == pv ||
1121 (pv != null && cv.equals(pv))) {
1122 oldVal = pv;
1123 if (value != null)
1124 p.val = value;
1125 else if (t.removeTreeNode(p))
1126 setTabAt(tab, i, untreeify(t.first));
1127 }
1128 }
1129 }
1130 else if (f instanceof ReservationNode)
1131 throw new IllegalStateException("Recursive update");
1132 }
1133 }
1134 if (validated) {
1135 if (oldVal != null) {
1136 if (value == null)
1137 addCount(-1L, -1);
1138 return oldVal;
1139 }
1140 break;
1141 }
1142 }
1143 }
1144 return null;
1145 }
1146
1147 /**
1148 * Removes all of the mappings from this map.
1149 */
1150 public void clear() {
1151 long delta = 0L; // negative number of deletions
1152 int i = 0;
1153 Node<K,V>[] tab = table;
1154 while (tab != null && i < tab.length) {
1155 int fh;
1156 Node<K,V> f = tabAt(tab, i);
1157 if (f == null)
1158 ++i;
1159 else if ((fh = f.hash) == MOVED) {
1160 tab = helpTransfer(tab, f);
1161 i = 0; // restart
1162 }
1163 else {
1164 synchronized (f) {
1165 if (tabAt(tab, i) == f) {
1166 Node<K,V> p = (fh >= 0 ? f :
1167 (f instanceof TreeBin) ?
1168 ((TreeBin<K,V>)f).first : null);
1169 while (p != null) {
1170 --delta;
1171 p = p.next;
1172 }
1173 setTabAt(tab, i++, null);
1174 }
1175 }
1176 }
1177 }
1178 if (delta != 0L)
1179 addCount(delta, -1);
1180 }
1181
1182 /**
1183 * Returns a {@link Set} view of the keys contained in this map.
1184 * The set is backed by the map, so changes to the map are
1185 * reflected in the set, and vice-versa. The set supports element
1186 * removal, which removes the corresponding mapping from this map,
1187 * via the {@code Iterator.remove}, {@code Set.remove},
1188 * {@code removeAll}, {@code retainAll}, and {@code clear}
1189 * operations. It does not support the {@code add} or
1190 * {@code addAll} operations.
1191 *
1192 * <p>The view's iterators and spliterators are
1193 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1194 *
1195 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1196 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1197 *
1198 * @return the set view
1199 */
1200 public KeySetView<K,V> keySet() {
1201 KeySetView<K,V> ks;
1202 return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1203 }
1204
1205 /**
1206 * Returns a {@link Collection} view of the values contained in this map.
1207 * The collection is backed by the map, so changes to the map are
1208 * reflected in the collection, and vice-versa. The collection
1209 * supports element removal, which removes the corresponding
1210 * mapping from this map, via the {@code Iterator.remove},
1211 * {@code Collection.remove}, {@code removeAll},
1212 * {@code retainAll}, and {@code clear} operations. It does not
1213 * support the {@code add} or {@code addAll} operations.
1214 *
1215 * <p>The view's iterators and spliterators are
1216 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1217 *
1218 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1219 * and {@link Spliterator#NONNULL}.
1220 *
1221 * @return the collection view
1222 */
1223 public Collection<V> values() {
1224 ValuesView<K,V> vs;
1225 return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1226 }
1227
1228 /**
1229 * Returns a {@link Set} view of the mappings contained in this map.
1230 * The set is backed by the map, so changes to the map are
1231 * reflected in the set, and vice-versa. The set supports element
1232 * removal, which removes the corresponding mapping from the map,
1233 * via the {@code Iterator.remove}, {@code Set.remove},
1234 * {@code removeAll}, {@code retainAll}, and {@code clear}
1235 * operations.
1236 *
1237 * <p>The view's iterators and spliterators are
1238 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1239 *
1240 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1241 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1242 *
1243 * @return the set view
1244 */
1245 public Set<Map.Entry<K,V>> entrySet() {
1246 EntrySetView<K,V> es;
1247 return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1248 }
1249
1250 /**
1251 * Returns the hash code value for this {@link Map}, i.e.,
1252 * the sum of, for each key-value pair in the map,
1253 * {@code key.hashCode() ^ value.hashCode()}.
1254 *
1255 * @return the hash code value for this map
1256 */
1257 public int hashCode() {
1258 int h = 0;
1259 Node<K,V>[] t;
1260 if ((t = table) != null) {
1261 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1262 for (Node<K,V> p; (p = it.advance()) != null; )
1263 h += p.key.hashCode() ^ p.val.hashCode();
1264 }
1265 return h;
1266 }
1267
1268 /**
1269 * Returns a string representation of this map. The string
1270 * representation consists of a list of key-value mappings (in no
1271 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1272 * mappings are separated by the characters {@code ", "} (comma
1273 * and space). Each key-value mapping is rendered as the key
1274 * followed by an equals sign ("{@code =}") followed by the
1275 * associated value.
1276 *
1277 * @return a string representation of this map
1278 */
1279 public String toString() {
1280 Node<K,V>[] t;
1281 int f = (t = table) == null ? 0 : t.length;
1282 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1283 StringBuilder sb = new StringBuilder();
1284 sb.append('{');
1285 Node<K,V> p;
1286 if ((p = it.advance()) != null) {
1287 for (;;) {
1288 K k = p.key;
1289 V v = p.val;
1290 sb.append(k == this ? "(this Map)" : k);
1291 sb.append('=');
1292 sb.append(v == this ? "(this Map)" : v);
1293 if ((p = it.advance()) == null)
1294 break;
1295 sb.append(',').append(' ');
1296 }
1297 }
1298 return sb.append('}').toString();
1299 }
1300
1301 /**
1302 * Compares the specified object with this map for equality.
1303 * Returns {@code true} if the given object is a map with the same
1304 * mappings as this map. This operation may return misleading
1305 * results if either map is concurrently modified during execution
1306 * of this method.
1307 *
1308 * @param o object to be compared for equality with this map
1309 * @return {@code true} if the specified object is equal to this map
1310 */
1311 public boolean equals(Object o) {
1312 if (o != this) {
1313 if (!(o instanceof Map))
1314 return false;
1315 Map<?,?> m = (Map<?,?>) o;
1316 Node<K,V>[] t;
1317 int f = (t = table) == null ? 0 : t.length;
1318 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1319 for (Node<K,V> p; (p = it.advance()) != null; ) {
1320 V val = p.val;
1321 Object v = m.get(p.key);
1322 if (v == null || (v != val && !v.equals(val)))
1323 return false;
1324 }
1325 for (Map.Entry<?,?> e : m.entrySet()) {
1326 Object mk, mv, v;
1327 if ((mk = e.getKey()) == null ||
1328 (mv = e.getValue()) == null ||
1329 (v = get(mk)) == null ||
1330 (mv != v && !mv.equals(v)))
1331 return false;
1332 }
1333 }
1334 return true;
1335 }
1336
1337 /**
1338 * Stripped-down version of helper class used in previous version,
1339 * declared for the sake of serialization compatibility
1340 */
1341 static class Segment<K,V> extends ReentrantLock implements Serializable {
1342 private static final long serialVersionUID = 2249069246763182397L;
1343 final float loadFactor;
1344 Segment(float lf) { this.loadFactor = lf; }
1345 }
1346
1347 /**
1348 * Saves the state of the {@code ConcurrentHashMap} instance to a
1349 * stream (i.e., serializes it).
1350 * @param s the stream
1351 * @throws java.io.IOException if an I/O error occurs
1352 * @serialData
1353 * the key (Object) and value (Object)
1354 * for each key-value mapping, followed by a null pair.
1355 * The key-value mappings are emitted in no particular order.
1356 */
1357 private void writeObject(java.io.ObjectOutputStream s)
1358 throws java.io.IOException {
1359 // For serialization compatibility
1360 // Emulate segment calculation from previous version of this class
1361 int sshift = 0;
1362 int ssize = 1;
1363 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1364 ++sshift;
1365 ssize <<= 1;
1366 }
1367 int segmentShift = 32 - sshift;
1368 int segmentMask = ssize - 1;
1369 @SuppressWarnings("unchecked")
1370 Segment<K,V>[] segments = (Segment<K,V>[])
1371 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1372 for (int i = 0; i < segments.length; ++i)
1373 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1374 s.putFields().put("segments", segments);
1375 s.putFields().put("segmentShift", segmentShift);
1376 s.putFields().put("segmentMask", segmentMask);
1377 s.writeFields();
1378
1379 Node<K,V>[] t;
1380 if ((t = table) != null) {
1381 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1382 for (Node<K,V> p; (p = it.advance()) != null; ) {
1383 s.writeObject(p.key);
1384 s.writeObject(p.val);
1385 }
1386 }
1387 s.writeObject(null);
1388 s.writeObject(null);
1389 segments = null; // throw away
1390 }
1391
1392 /**
1393 * Reconstitutes the instance from a stream (that is, deserializes it).
1394 * @param s the stream
1395 * @throws ClassNotFoundException if the class of a serialized object
1396 * could not be found
1397 * @throws java.io.IOException if an I/O error occurs
1398 */
1399 private void readObject(java.io.ObjectInputStream s)
1400 throws java.io.IOException, ClassNotFoundException {
1401 /*
1402 * To improve performance in typical cases, we create nodes
1403 * while reading, then place in table once size is known.
1404 * However, we must also validate uniqueness and deal with
1405 * overpopulated bins while doing so, which requires
1406 * specialized versions of putVal mechanics.
1407 */
1408 sizeCtl = -1; // force exclusion for table construction
1409 s.defaultReadObject();
1410 long size = 0L;
1411 Node<K,V> p = null;
1412 for (;;) {
1413 @SuppressWarnings("unchecked")
1414 K k = (K) s.readObject();
1415 @SuppressWarnings("unchecked")
1416 V v = (V) s.readObject();
1417 if (k != null && v != null) {
1418 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1419 ++size;
1420 }
1421 else
1422 break;
1423 }
1424 if (size == 0L)
1425 sizeCtl = 0;
1426 else {
1427 int n;
1428 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1429 n = MAXIMUM_CAPACITY;
1430 else {
1431 int sz = (int)size;
1432 n = tableSizeFor(sz + (sz >>> 1) + 1);
1433 }
1434 @SuppressWarnings("unchecked")
1435 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1436 int mask = n - 1;
1437 long added = 0L;
1438 while (p != null) {
1439 boolean insertAtFront;
1440 Node<K,V> next = p.next, first;
1441 int h = p.hash, j = h & mask;
1442 if ((first = tabAt(tab, j)) == null)
1443 insertAtFront = true;
1444 else {
1445 K k = p.key;
1446 if (first.hash < 0) {
1447 TreeBin<K,V> t = (TreeBin<K,V>)first;
1448 if (t.putTreeVal(h, k, p.val) == null)
1449 ++added;
1450 insertAtFront = false;
1451 }
1452 else {
1453 int binCount = 0;
1454 insertAtFront = true;
1455 Node<K,V> q; K qk;
1456 for (q = first; q != null; q = q.next) {
1457 if (q.hash == h &&
1458 ((qk = q.key) == k ||
1459 (qk != null && k.equals(qk)))) {
1460 insertAtFront = false;
1461 break;
1462 }
1463 ++binCount;
1464 }
1465 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1466 insertAtFront = false;
1467 ++added;
1468 p.next = first;
1469 TreeNode<K,V> hd = null, tl = null;
1470 for (q = p; q != null; q = q.next) {
1471 TreeNode<K,V> t = new TreeNode<K,V>
1472 (q.hash, q.key, q.val, null, null);
1473 if ((t.prev = tl) == null)
1474 hd = t;
1475 else
1476 tl.next = t;
1477 tl = t;
1478 }
1479 setTabAt(tab, j, new TreeBin<K,V>(hd));
1480 }
1481 }
1482 }
1483 if (insertAtFront) {
1484 ++added;
1485 p.next = first;
1486 setTabAt(tab, j, p);
1487 }
1488 p = next;
1489 }
1490 table = tab;
1491 sizeCtl = n - (n >>> 2);
1492 baseCount = added;
1493 }
1494 }
1495
1496 // ConcurrentMap methods
1497
1498 /**
1499 * {@inheritDoc}
1500 *
1501 * @return the previous value associated with the specified key,
1502 * or {@code null} if there was no mapping for the key
1503 * @throws NullPointerException if the specified key or value is null
1504 */
1505 public V putIfAbsent(K key, V value) {
1506 return putVal(key, value, true);
1507 }
1508
1509 /**
1510 * {@inheritDoc}
1511 *
1512 * @throws NullPointerException if the specified key is null
1513 */
1514 public boolean remove(Object key, Object value) {
1515 if (key == null)
1516 throw new NullPointerException();
1517 return value != null && replaceNode(key, null, value) != null;
1518 }
1519
1520 /**
1521 * {@inheritDoc}
1522 *
1523 * @throws NullPointerException if any of the arguments are null
1524 */
1525 public boolean replace(K key, V oldValue, V newValue) {
1526 if (key == null || oldValue == null || newValue == null)
1527 throw new NullPointerException();
1528 return replaceNode(key, newValue, oldValue) != null;
1529 }
1530
1531 /**
1532 * {@inheritDoc}
1533 *
1534 * @return the previous value associated with the specified key,
1535 * or {@code null} if there was no mapping for the key
1536 * @throws NullPointerException if the specified key or value is null
1537 */
1538 public V replace(K key, V value) {
1539 if (key == null || value == null)
1540 throw new NullPointerException();
1541 return replaceNode(key, value, null);
1542 }
1543
1544 // Overrides of JDK8+ Map extension method defaults
1545
1546 /**
1547 * Returns the value to which the specified key is mapped, or the
1548 * given default value if this map contains no mapping for the
1549 * key.
1550 *
1551 * @param key the key whose associated value is to be returned
1552 * @param defaultValue the value to return if this map contains
1553 * no mapping for the given key
1554 * @return the mapping for the key, if present; else the default value
1555 * @throws NullPointerException if the specified key is null
1556 */
1557 public V getOrDefault(Object key, V defaultValue) {
1558 V v;
1559 return (v = get(key)) == null ? defaultValue : v;
1560 }
1561
1562 public void forEach(BiConsumer<? super K, ? super V> action) {
1563 if (action == null) throw new NullPointerException();
1564 Node<K,V>[] t;
1565 if ((t = table) != null) {
1566 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1567 for (Node<K,V> p; (p = it.advance()) != null; ) {
1568 action.accept(p.key, p.val);
1569 }
1570 }
1571 }
1572
1573 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1574 if (function == null) throw new NullPointerException();
1575 Node<K,V>[] t;
1576 if ((t = table) != null) {
1577 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1578 for (Node<K,V> p; (p = it.advance()) != null; ) {
1579 V oldValue = p.val;
1580 for (K key = p.key;;) {
1581 V newValue = function.apply(key, oldValue);
1582 if (newValue == null)
1583 throw new NullPointerException();
1584 if (replaceNode(key, newValue, oldValue) != null ||
1585 (oldValue = get(key)) == null)
1586 break;
1587 }
1588 }
1589 }
1590 }
1591
1592 /**
1593 * If the specified key is not already associated with a value,
1594 * attempts to compute its value using the given mapping function
1595 * and enters it into this map unless {@code null}. The entire
1596 * method invocation is performed atomically, so the function is
1597 * applied at most once per key. Some attempted update operations
1598 * on this map by other threads may be blocked while computation
1599 * is in progress, so the computation should be short and simple,
1600 * and must not attempt to update any other mappings of this map.
1601 *
1602 * @param key key with which the specified value is to be associated
1603 * @param mappingFunction the function to compute a value
1604 * @return the current (existing or computed) value associated with
1605 * the specified key, or null if the computed value is null
1606 * @throws NullPointerException if the specified key or mappingFunction
1607 * is null
1608 * @throws IllegalStateException if the computation detectably
1609 * attempts a recursive update to this map that would
1610 * otherwise never complete
1611 * @throws RuntimeException or Error if the mappingFunction does so,
1612 * in which case the mapping is left unestablished
1613 */
1614 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1615 if (key == null || mappingFunction == null)
1616 throw new NullPointerException();
1617 int h = spread(key.hashCode());
1618 V val = null;
1619 int binCount = 0;
1620 for (Node<K,V>[] tab = table;;) {
1621 Node<K,V> f; int n, i, fh;
1622 if (tab == null || (n = tab.length) == 0)
1623 tab = initTable();
1624 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1625 Node<K,V> r = new ReservationNode<K,V>();
1626 synchronized (r) {
1627 if (casTabAt(tab, i, null, r)) {
1628 binCount = 1;
1629 Node<K,V> node = null;
1630 try {
1631 if ((val = mappingFunction.apply(key)) != null)
1632 node = new Node<K,V>(h, key, val, null);
1633 } finally {
1634 setTabAt(tab, i, node);
1635 }
1636 }
1637 }
1638 if (binCount != 0)
1639 break;
1640 }
1641 else if ((fh = f.hash) == MOVED)
1642 tab = helpTransfer(tab, f);
1643 else {
1644 boolean added = false;
1645 synchronized (f) {
1646 if (tabAt(tab, i) == f) {
1647 if (fh >= 0) {
1648 binCount = 1;
1649 for (Node<K,V> e = f;; ++binCount) {
1650 K ek; V ev;
1651 if (e.hash == h &&
1652 ((ek = e.key) == key ||
1653 (ek != null && key.equals(ek)))) {
1654 val = e.val;
1655 break;
1656 }
1657 Node<K,V> pred = e;
1658 if ((e = e.next) == null) {
1659 if ((val = mappingFunction.apply(key)) != null) {
1660 if (pred.next != null)
1661 throw new IllegalStateException("Recursive update");
1662 added = true;
1663 pred.next = new Node<K,V>(h, key, val, null);
1664 }
1665 break;
1666 }
1667 }
1668 }
1669 else if (f instanceof TreeBin) {
1670 binCount = 2;
1671 TreeBin<K,V> t = (TreeBin<K,V>)f;
1672 TreeNode<K,V> r, p;
1673 if ((r = t.root) != null &&
1674 (p = r.findTreeNode(h, key, null)) != null)
1675 val = p.val;
1676 else if ((val = mappingFunction.apply(key)) != null) {
1677 added = true;
1678 t.putTreeVal(h, key, val);
1679 }
1680 }
1681 else if (f instanceof ReservationNode)
1682 throw new IllegalStateException("Recursive update");
1683 }
1684 }
1685 if (binCount != 0) {
1686 if (binCount >= TREEIFY_THRESHOLD)
1687 treeifyBin(tab, i);
1688 if (!added)
1689 return val;
1690 break;
1691 }
1692 }
1693 }
1694 if (val != null)
1695 addCount(1L, binCount);
1696 return val;
1697 }
1698
1699 /**
1700 * If the value for the specified key is present, attempts to
1701 * compute a new mapping given the key and its current mapped
1702 * value. The entire method invocation is performed atomically.
1703 * Some attempted update operations on this map by other threads
1704 * may be blocked while computation is in progress, so the
1705 * computation should be short and simple, and must not attempt to
1706 * update any other mappings of this map.
1707 *
1708 * @param key key with which a value may be associated
1709 * @param remappingFunction the function to compute a value
1710 * @return the new value associated with the specified key, or null if none
1711 * @throws NullPointerException if the specified key or remappingFunction
1712 * is null
1713 * @throws IllegalStateException if the computation detectably
1714 * attempts a recursive update to this map that would
1715 * otherwise never complete
1716 * @throws RuntimeException or Error if the remappingFunction does so,
1717 * in which case the mapping is unchanged
1718 */
1719 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1720 if (key == null || remappingFunction == null)
1721 throw new NullPointerException();
1722 int h = spread(key.hashCode());
1723 V val = null;
1724 int delta = 0;
1725 int binCount = 0;
1726 for (Node<K,V>[] tab = table;;) {
1727 Node<K,V> f; int n, i, fh;
1728 if (tab == null || (n = tab.length) == 0)
1729 tab = initTable();
1730 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1731 break;
1732 else if ((fh = f.hash) == MOVED)
1733 tab = helpTransfer(tab, f);
1734 else {
1735 synchronized (f) {
1736 if (tabAt(tab, i) == f) {
1737 if (fh >= 0) {
1738 binCount = 1;
1739 for (Node<K,V> e = f, pred = null;; ++binCount) {
1740 K ek;
1741 if (e.hash == h &&
1742 ((ek = e.key) == key ||
1743 (ek != null && key.equals(ek)))) {
1744 val = remappingFunction.apply(key, e.val);
1745 if (val != null)
1746 e.val = val;
1747 else {
1748 delta = -1;
1749 Node<K,V> en = e.next;
1750 if (pred != null)
1751 pred.next = en;
1752 else
1753 setTabAt(tab, i, en);
1754 }
1755 break;
1756 }
1757 pred = e;
1758 if ((e = e.next) == null)
1759 break;
1760 }
1761 }
1762 else if (f instanceof TreeBin) {
1763 binCount = 2;
1764 TreeBin<K,V> t = (TreeBin<K,V>)f;
1765 TreeNode<K,V> r, p;
1766 if ((r = t.root) != null &&
1767 (p = r.findTreeNode(h, key, null)) != null) {
1768 val = remappingFunction.apply(key, p.val);
1769 if (val != null)
1770 p.val = val;
1771 else {
1772 delta = -1;
1773 if (t.removeTreeNode(p))
1774 setTabAt(tab, i, untreeify(t.first));
1775 }
1776 }
1777 }
1778 else if (f instanceof ReservationNode)
1779 throw new IllegalStateException("Recursive update");
1780 }
1781 }
1782 if (binCount != 0)
1783 break;
1784 }
1785 }
1786 if (delta != 0)
1787 addCount((long)delta, binCount);
1788 return val;
1789 }
1790
1791 /**
1792 * Attempts to compute a mapping for the specified key and its
1793 * current mapped value (or {@code null} if there is no current
1794 * mapping). The entire method invocation is performed atomically.
1795 * Some attempted update operations on this map by other threads
1796 * may be blocked while computation is in progress, so the
1797 * computation should be short and simple, and must not attempt to
1798 * update any other mappings of this Map.
1799 *
1800 * @param key key with which the specified value is to be associated
1801 * @param remappingFunction the function to compute a value
1802 * @return the new value associated with the specified key, or null if none
1803 * @throws NullPointerException if the specified key or remappingFunction
1804 * is null
1805 * @throws IllegalStateException if the computation detectably
1806 * attempts a recursive update to this map that would
1807 * otherwise never complete
1808 * @throws RuntimeException or Error if the remappingFunction does so,
1809 * in which case the mapping is unchanged
1810 */
1811 public V compute(K key,
1812 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1813 if (key == null || remappingFunction == null)
1814 throw new NullPointerException();
1815 int h = spread(key.hashCode());
1816 V val = null;
1817 int delta = 0;
1818 int binCount = 0;
1819 for (Node<K,V>[] tab = table;;) {
1820 Node<K,V> f; int n, i, fh;
1821 if (tab == null || (n = tab.length) == 0)
1822 tab = initTable();
1823 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1824 Node<K,V> r = new ReservationNode<K,V>();
1825 synchronized (r) {
1826 if (casTabAt(tab, i, null, r)) {
1827 binCount = 1;
1828 Node<K,V> node = null;
1829 try {
1830 if ((val = remappingFunction.apply(key, null)) != null) {
1831 delta = 1;
1832 node = new Node<K,V>(h, key, val, null);
1833 }
1834 } finally {
1835 setTabAt(tab, i, node);
1836 }
1837 }
1838 }
1839 if (binCount != 0)
1840 break;
1841 }
1842 else if ((fh = f.hash) == MOVED)
1843 tab = helpTransfer(tab, f);
1844 else {
1845 synchronized (f) {
1846 if (tabAt(tab, i) == f) {
1847 if (fh >= 0) {
1848 binCount = 1;
1849 for (Node<K,V> e = f, pred = null;; ++binCount) {
1850 K ek;
1851 if (e.hash == h &&
1852 ((ek = e.key) == key ||
1853 (ek != null && key.equals(ek)))) {
1854 val = remappingFunction.apply(key, e.val);
1855 if (val != null)
1856 e.val = val;
1857 else {
1858 delta = -1;
1859 Node<K,V> en = e.next;
1860 if (pred != null)
1861 pred.next = en;
1862 else
1863 setTabAt(tab, i, en);
1864 }
1865 break;
1866 }
1867 pred = e;
1868 if ((e = e.next) == null) {
1869 val = remappingFunction.apply(key, null);
1870 if (val != null) {
1871 if (pred.next != null)
1872 throw new IllegalStateException("Recursive update");
1873 delta = 1;
1874 pred.next =
1875 new Node<K,V>(h, key, val, null);
1876 }
1877 break;
1878 }
1879 }
1880 }
1881 else if (f instanceof TreeBin) {
1882 binCount = 1;
1883 TreeBin<K,V> t = (TreeBin<K,V>)f;
1884 TreeNode<K,V> r, p;
1885 if ((r = t.root) != null)
1886 p = r.findTreeNode(h, key, null);
1887 else
1888 p = null;
1889 V pv = (p == null) ? null : p.val;
1890 val = remappingFunction.apply(key, pv);
1891 if (val != null) {
1892 if (p != null)
1893 p.val = val;
1894 else {
1895 delta = 1;
1896 t.putTreeVal(h, key, val);
1897 }
1898 }
1899 else if (p != null) {
1900 delta = -1;
1901 if (t.removeTreeNode(p))
1902 setTabAt(tab, i, untreeify(t.first));
1903 }
1904 }
1905 else if (f instanceof ReservationNode)
1906 throw new IllegalStateException("Recursive update");
1907 }
1908 }
1909 if (binCount != 0) {
1910 if (binCount >= TREEIFY_THRESHOLD)
1911 treeifyBin(tab, i);
1912 break;
1913 }
1914 }
1915 }
1916 if (delta != 0)
1917 addCount((long)delta, binCount);
1918 return val;
1919 }
1920
1921 /**
1922 * If the specified key is not already associated with a
1923 * (non-null) value, associates it with the given value.
1924 * Otherwise, replaces the value with the results of the given
1925 * remapping function, or removes if {@code null}. The entire
1926 * method invocation is performed atomically. Some attempted
1927 * update operations on this map by other threads may be blocked
1928 * while computation is in progress, so the computation should be
1929 * short and simple, and must not attempt to update any other
1930 * mappings of this Map.
1931 *
1932 * @param key key with which the specified value is to be associated
1933 * @param value the value to use if absent
1934 * @param remappingFunction the function to recompute a value if present
1935 * @return the new value associated with the specified key, or null if none
1936 * @throws NullPointerException if the specified key or the
1937 * remappingFunction is null
1938 * @throws RuntimeException or Error if the remappingFunction does so,
1939 * in which case the mapping is unchanged
1940 */
1941 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1942 if (key == null || value == null || remappingFunction == null)
1943 throw new NullPointerException();
1944 int h = spread(key.hashCode());
1945 V val = null;
1946 int delta = 0;
1947 int binCount = 0;
1948 for (Node<K,V>[] tab = table;;) {
1949 Node<K,V> f; int n, i, fh;
1950 if (tab == null || (n = tab.length) == 0)
1951 tab = initTable();
1952 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1953 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1954 delta = 1;
1955 val = value;
1956 break;
1957 }
1958 }
1959 else if ((fh = f.hash) == MOVED)
1960 tab = helpTransfer(tab, f);
1961 else {
1962 synchronized (f) {
1963 if (tabAt(tab, i) == f) {
1964 if (fh >= 0) {
1965 binCount = 1;
1966 for (Node<K,V> e = f, pred = null;; ++binCount) {
1967 K ek;
1968 if (e.hash == h &&
1969 ((ek = e.key) == key ||
1970 (ek != null && key.equals(ek)))) {
1971 val = remappingFunction.apply(e.val, value);
1972 if (val != null)
1973 e.val = val;
1974 else {
1975 delta = -1;
1976 Node<K,V> en = e.next;
1977 if (pred != null)
1978 pred.next = en;
1979 else
1980 setTabAt(tab, i, en);
1981 }
1982 break;
1983 }
1984 pred = e;
1985 if ((e = e.next) == null) {
1986 delta = 1;
1987 val = value;
1988 pred.next =
1989 new Node<K,V>(h, key, val, null);
1990 break;
1991 }
1992 }
1993 }
1994 else if (f instanceof TreeBin) {
1995 binCount = 2;
1996 TreeBin<K,V> t = (TreeBin<K,V>)f;
1997 TreeNode<K,V> r = t.root;
1998 TreeNode<K,V> p = (r == null) ? null :
1999 r.findTreeNode(h, key, null);
2000 val = (p == null) ? value :
2001 remappingFunction.apply(p.val, value);
2002 if (val != null) {
2003 if (p != null)
2004 p.val = val;
2005 else {
2006 delta = 1;
2007 t.putTreeVal(h, key, val);
2008 }
2009 }
2010 else if (p != null) {
2011 delta = -1;
2012 if (t.removeTreeNode(p))
2013 setTabAt(tab, i, untreeify(t.first));
2014 }
2015 }
2016 else if (f instanceof ReservationNode)
2017 throw new IllegalStateException("Recursive update");
2018 }
2019 }
2020 if (binCount != 0) {
2021 if (binCount >= TREEIFY_THRESHOLD)
2022 treeifyBin(tab, i);
2023 break;
2024 }
2025 }
2026 }
2027 if (delta != 0)
2028 addCount((long)delta, binCount);
2029 return val;
2030 }
2031
2032 // Hashtable legacy methods
2033
2034 /**
2035 * Legacy method testing if some key maps into the specified value
2036 * in this table.
2037 *
2038 * @deprecated This method is identical in functionality to
2039 * {@link #containsValue(Object)}, and exists solely to ensure
2040 * full compatibility with class {@link java.util.Hashtable},
2041 * which supported this method prior to introduction of the
2042 * Java Collections framework.
2043 *
2044 * @param value a value to search for
2045 * @return {@code true} if and only if some key maps to the
2046 * {@code value} argument in this table as
2047 * determined by the {@code equals} method;
2048 * {@code false} otherwise
2049 * @throws NullPointerException if the specified value is null
2050 */
2051 @Deprecated
2052 public boolean contains(Object value) {
2053 return containsValue(value);
2054 }
2055
2056 /**
2057 * Returns an enumeration of the keys in this table.
2058 *
2059 * @return an enumeration of the keys in this table
2060 * @see #keySet()
2061 */
2062 public Enumeration<K> keys() {
2063 Node<K,V>[] t;
2064 int f = (t = table) == null ? 0 : t.length;
2065 return new KeyIterator<K,V>(t, f, 0, f, this);
2066 }
2067
2068 /**
2069 * Returns an enumeration of the values in this table.
2070 *
2071 * @return an enumeration of the values in this table
2072 * @see #values()
2073 */
2074 public Enumeration<V> elements() {
2075 Node<K,V>[] t;
2076 int f = (t = table) == null ? 0 : t.length;
2077 return new ValueIterator<K,V>(t, f, 0, f, this);
2078 }
2079
2080 // ConcurrentHashMap-only methods
2081
2082 /**
2083 * Returns the number of mappings. This method should be used
2084 * instead of {@link #size} because a ConcurrentHashMap may
2085 * contain more mappings than can be represented as an int. The
2086 * value returned is an estimate; the actual count may differ if
2087 * there are concurrent insertions or removals.
2088 *
2089 * @return the number of mappings
2090 * @since 1.8
2091 */
2092 public long mappingCount() {
2093 long n = sumCount();
2094 return (n < 0L) ? 0L : n; // ignore transient negative values
2095 }
2096
2097 /**
2098 * Creates a new {@link Set} backed by a ConcurrentHashMap
2099 * from the given type to {@code Boolean.TRUE}.
2100 *
2101 * @param <K> the element type of the returned set
2102 * @return the new set
2103 * @since 1.8
2104 */
2105 public static <K> KeySetView<K,Boolean> newKeySet() {
2106 return new KeySetView<K,Boolean>
2107 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2108 }
2109
2110 /**
2111 * Creates a new {@link Set} backed by a ConcurrentHashMap
2112 * from the given type to {@code Boolean.TRUE}.
2113 *
2114 * @param initialCapacity The implementation performs internal
2115 * sizing to accommodate this many elements.
2116 * @param <K> the element type of the returned set
2117 * @return the new set
2118 * @throws IllegalArgumentException if the initial capacity of
2119 * elements is negative
2120 * @since 1.8
2121 */
2122 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2123 return new KeySetView<K,Boolean>
2124 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2125 }
2126
2127 /**
2128 * Returns a {@link Set} view of the keys in this map, using the
2129 * given common mapped value for any additions (i.e., {@link
2130 * Collection#add} and {@link Collection#addAll(Collection)}).
2131 * This is of course only appropriate if it is acceptable to use
2132 * the same value for all additions from this view.
2133 *
2134 * @param mappedValue the mapped value to use for any additions
2135 * @return the set view
2136 * @throws NullPointerException if the mappedValue is null
2137 */
2138 public KeySetView<K,V> keySet(V mappedValue) {
2139 if (mappedValue == null)
2140 throw new NullPointerException();
2141 return new KeySetView<K,V>(this, mappedValue);
2142 }
2143
2144 /* ---------------- Special Nodes -------------- */
2145
2146 /**
2147 * A node inserted at head of bins during transfer operations.
2148 */
2149 static final class ForwardingNode<K,V> extends Node<K,V> {
2150 final Node<K,V>[] nextTable;
2151 ForwardingNode(Node<K,V>[] tab) {
2152 super(MOVED, null, null, null);
2153 this.nextTable = tab;
2154 }
2155
2156 Node<K,V> find(int h, Object k) {
2157 // loop to avoid arbitrarily deep recursion on forwarding nodes
2158 outer: for (Node<K,V>[] tab = nextTable;;) {
2159 Node<K,V> e; int n;
2160 if (k == null || tab == null || (n = tab.length) == 0 ||
2161 (e = tabAt(tab, (n - 1) & h)) == null)
2162 return null;
2163 for (;;) {
2164 int eh; K ek;
2165 if ((eh = e.hash) == h &&
2166 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2167 return e;
2168 if (eh < 0) {
2169 if (e instanceof ForwardingNode) {
2170 tab = ((ForwardingNode<K,V>)e).nextTable;
2171 continue outer;
2172 }
2173 else
2174 return e.find(h, k);
2175 }
2176 if ((e = e.next) == null)
2177 return null;
2178 }
2179 }
2180 }
2181 }
2182
2183 /**
2184 * A place-holder node used in computeIfAbsent and compute
2185 */
2186 static final class ReservationNode<K,V> extends Node<K,V> {
2187 ReservationNode() {
2188 super(RESERVED, null, null, null);
2189 }
2190
2191 Node<K,V> find(int h, Object k) {
2192 return null;
2193 }
2194 }
2195
2196 /* ---------------- Table Initialization and Resizing -------------- */
2197
2198 /**
2199 * Returns the stamp bits for resizing a table of size n.
2200 * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2201 */
2202 static final int resizeStamp(int n) {
2203 return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2204 }
2205
2206 /**
2207 * Initializes table, using the size recorded in sizeCtl.
2208 */
2209 private final Node<K,V>[] initTable() {
2210 Node<K,V>[] tab; int sc;
2211 while ((tab = table) == null || tab.length == 0) {
2212 if ((sc = sizeCtl) < 0)
2213 Thread.yield(); // lost initialization race; just spin
2214 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2215 try {
2216 if ((tab = table) == null || tab.length == 0) {
2217 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2218 @SuppressWarnings("unchecked")
2219 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2220 table = tab = nt;
2221 sc = n - (n >>> 2);
2222 }
2223 } finally {
2224 sizeCtl = sc;
2225 }
2226 break;
2227 }
2228 }
2229 return tab;
2230 }
2231
2232 /**
2233 * Adds to count, and if table is too small and not already
2234 * resizing, initiates transfer. If already resizing, helps
2235 * perform transfer if work is available. Rechecks occupancy
2236 * after a transfer to see if another resize is already needed
2237 * because resizings are lagging additions.
2238 *
2239 * @param x the count to add
2240 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2241 */
2242 private final void addCount(long x, int check) {
2243 CounterCell[] as; long b, s;
2244 if ((as = counterCells) != null ||
2245 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2246 CounterCell a; long v; int m;
2247 boolean uncontended = true;
2248 if (as == null || (m = as.length - 1) < 0 ||
2249 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2250 !(uncontended =
2251 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2252 fullAddCount(x, uncontended);
2253 return;
2254 }
2255 if (check <= 1)
2256 return;
2257 s = sumCount();
2258 }
2259 if (check >= 0) {
2260 Node<K,V>[] tab, nt; int n, sc;
2261 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2262 (n = tab.length) < MAXIMUM_CAPACITY) {
2263 int rs = resizeStamp(n);
2264 if (sc < 0) {
2265 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2266 sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2267 transferIndex <= 0)
2268 break;
2269 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2270 transfer(tab, nt);
2271 }
2272 else if (U.compareAndSwapInt(this, SIZECTL, sc,
2273 (rs << RESIZE_STAMP_SHIFT) + 2))
2274 transfer(tab, null);
2275 s = sumCount();
2276 }
2277 }
2278 }
2279
2280 /**
2281 * Helps transfer if a resize is in progress.
2282 */
2283 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2284 Node<K,V>[] nextTab; int sc;
2285 if (tab != null && (f instanceof ForwardingNode) &&
2286 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2287 int rs = resizeStamp(tab.length);
2288 while (nextTab == nextTable && table == tab &&
2289 (sc = sizeCtl) < 0) {
2290 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2291 sc == rs + MAX_RESIZERS || transferIndex <= 0)
2292 break;
2293 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2294 transfer(tab, nextTab);
2295 break;
2296 }
2297 }
2298 return nextTab;
2299 }
2300 return table;
2301 }
2302
2303 /**
2304 * Tries to presize table to accommodate the given number of elements.
2305 *
2306 * @param size number of elements (doesn't need to be perfectly accurate)
2307 */
2308 private final void tryPresize(int size) {
2309 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2310 tableSizeFor(size + (size >>> 1) + 1);
2311 int sc;
2312 while ((sc = sizeCtl) >= 0) {
2313 Node<K,V>[] tab = table; int n;
2314 if (tab == null || (n = tab.length) == 0) {
2315 n = (sc > c) ? sc : c;
2316 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2317 try {
2318 if (table == tab) {
2319 @SuppressWarnings("unchecked")
2320 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2321 table = nt;
2322 sc = n - (n >>> 2);
2323 }
2324 } finally {
2325 sizeCtl = sc;
2326 }
2327 }
2328 }
2329 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2330 break;
2331 else if (tab == table) {
2332 int rs = resizeStamp(n);
2333 if (U.compareAndSwapInt(this, SIZECTL, sc,
2334 (rs << RESIZE_STAMP_SHIFT) + 2))
2335 transfer(tab, null);
2336 }
2337 }
2338 }
2339
2340 /**
2341 * Moves and/or copies the nodes in each bin to new table. See
2342 * above for explanation.
2343 */
2344 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2345 int n = tab.length, stride;
2346 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2347 stride = MIN_TRANSFER_STRIDE; // subdivide range
2348 if (nextTab == null) { // initiating
2349 try {
2350 @SuppressWarnings("unchecked")
2351 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2352 nextTab = nt;
2353 } catch (Throwable ex) { // try to cope with OOME
2354 sizeCtl = Integer.MAX_VALUE;
2355 return;
2356 }
2357 nextTable = nextTab;
2358 transferIndex = n;
2359 }
2360 int nextn = nextTab.length;
2361 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2362 boolean advance = true;
2363 boolean finishing = false; // to ensure sweep before committing nextTab
2364 for (int i = 0, bound = 0;;) {
2365 Node<K,V> f; int fh;
2366 while (advance) {
2367 int nextIndex, nextBound;
2368 if (--i >= bound || finishing)
2369 advance = false;
2370 else if ((nextIndex = transferIndex) <= 0) {
2371 i = -1;
2372 advance = false;
2373 }
2374 else if (U.compareAndSwapInt
2375 (this, TRANSFERINDEX, nextIndex,
2376 nextBound = (nextIndex > stride ?
2377 nextIndex - stride : 0))) {
2378 bound = nextBound;
2379 i = nextIndex - 1;
2380 advance = false;
2381 }
2382 }
2383 if (i < 0 || i >= n || i + n >= nextn) {
2384 int sc;
2385 if (finishing) {
2386 nextTable = null;
2387 table = nextTab;
2388 sizeCtl = (n << 1) - (n >>> 1);
2389 return;
2390 }
2391 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2392 if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2393 return;
2394 finishing = advance = true;
2395 i = n; // recheck before commit
2396 }
2397 }
2398 else if ((f = tabAt(tab, i)) == null)
2399 advance = casTabAt(tab, i, null, fwd);
2400 else if ((fh = f.hash) == MOVED)
2401 advance = true; // already processed
2402 else {
2403 synchronized (f) {
2404 if (tabAt(tab, i) == f) {
2405 Node<K,V> ln, hn;
2406 if (fh >= 0) {
2407 int runBit = fh & n;
2408 Node<K,V> lastRun = f;
2409 for (Node<K,V> p = f.next; p != null; p = p.next) {
2410 int b = p.hash & n;
2411 if (b != runBit) {
2412 runBit = b;
2413 lastRun = p;
2414 }
2415 }
2416 if (runBit == 0) {
2417 ln = lastRun;
2418 hn = null;
2419 }
2420 else {
2421 hn = lastRun;
2422 ln = null;
2423 }
2424 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2425 int ph = p.hash; K pk = p.key; V pv = p.val;
2426 if ((ph & n) == 0)
2427 ln = new Node<K,V>(ph, pk, pv, ln);
2428 else
2429 hn = new Node<K,V>(ph, pk, pv, hn);
2430 }
2431 setTabAt(nextTab, i, ln);
2432 setTabAt(nextTab, i + n, hn);
2433 setTabAt(tab, i, fwd);
2434 advance = true;
2435 }
2436 else if (f instanceof TreeBin) {
2437 TreeBin<K,V> t = (TreeBin<K,V>)f;
2438 TreeNode<K,V> lo = null, loTail = null;
2439 TreeNode<K,V> hi = null, hiTail = null;
2440 int lc = 0, hc = 0;
2441 for (Node<K,V> e = t.first; e != null; e = e.next) {
2442 int h = e.hash;
2443 TreeNode<K,V> p = new TreeNode<K,V>
2444 (h, e.key, e.val, null, null);
2445 if ((h & n) == 0) {
2446 if ((p.prev = loTail) == null)
2447 lo = p;
2448 else
2449 loTail.next = p;
2450 loTail = p;
2451 ++lc;
2452 }
2453 else {
2454 if ((p.prev = hiTail) == null)
2455 hi = p;
2456 else
2457 hiTail.next = p;
2458 hiTail = p;
2459 ++hc;
2460 }
2461 }
2462 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2463 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2464 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2465 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2466 setTabAt(nextTab, i, ln);
2467 setTabAt(nextTab, i + n, hn);
2468 setTabAt(tab, i, fwd);
2469 advance = true;
2470 }
2471 }
2472 }
2473 }
2474 }
2475 }
2476
2477 /* ---------------- Counter support -------------- */
2478
2479 /**
2480 * A padded cell for distributing counts. Adapted from LongAdder
2481 * and Striped64. See their internal docs for explanation.
2482 */
2483 @sun.misc.Contended static final class CounterCell {
2484 volatile long value;
2485 CounterCell(long x) { value = x; }
2486 }
2487
2488 final long sumCount() {
2489 CounterCell[] as = counterCells; CounterCell a;
2490 long sum = baseCount;
2491 if (as != null) {
2492 for (int i = 0; i < as.length; ++i) {
2493 if ((a = as[i]) != null)
2494 sum += a.value;
2495 }
2496 }
2497 return sum;
2498 }
2499
2500 // See LongAdder version for explanation
2501 private final void fullAddCount(long x, boolean wasUncontended) {
2502 int h;
2503 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2504 ThreadLocalRandom.localInit(); // force initialization
2505 h = ThreadLocalRandom.getProbe();
2506 wasUncontended = true;
2507 }
2508 boolean collide = false; // True if last slot nonempty
2509 for (;;) {
2510 CounterCell[] as; CounterCell a; int n; long v;
2511 if ((as = counterCells) != null && (n = as.length) > 0) {
2512 if ((a = as[(n - 1) & h]) == null) {
2513 if (cellsBusy == 0) { // Try to attach new Cell
2514 CounterCell r = new CounterCell(x); // Optimistic create
2515 if (cellsBusy == 0 &&
2516 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2517 boolean created = false;
2518 try { // Recheck under lock
2519 CounterCell[] rs; int m, j;
2520 if ((rs = counterCells) != null &&
2521 (m = rs.length) > 0 &&
2522 rs[j = (m - 1) & h] == null) {
2523 rs[j] = r;
2524 created = true;
2525 }
2526 } finally {
2527 cellsBusy = 0;
2528 }
2529 if (created)
2530 break;
2531 continue; // Slot is now non-empty
2532 }
2533 }
2534 collide = false;
2535 }
2536 else if (!wasUncontended) // CAS already known to fail
2537 wasUncontended = true; // Continue after rehash
2538 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2539 break;
2540 else if (counterCells != as || n >= NCPU)
2541 collide = false; // At max size or stale
2542 else if (!collide)
2543 collide = true;
2544 else if (cellsBusy == 0 &&
2545 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2546 try {
2547 if (counterCells == as) {// Expand table unless stale
2548 CounterCell[] rs = new CounterCell[n << 1];
2549 for (int i = 0; i < n; ++i)
2550 rs[i] = as[i];
2551 counterCells = rs;
2552 }
2553 } finally {
2554 cellsBusy = 0;
2555 }
2556 collide = false;
2557 continue; // Retry with expanded table
2558 }
2559 h = ThreadLocalRandom.advanceProbe(h);
2560 }
2561 else if (cellsBusy == 0 && counterCells == as &&
2562 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2563 boolean init = false;
2564 try { // Initialize table
2565 if (counterCells == as) {
2566 CounterCell[] rs = new CounterCell[2];
2567 rs[h & 1] = new CounterCell(x);
2568 counterCells = rs;
2569 init = true;
2570 }
2571 } finally {
2572 cellsBusy = 0;
2573 }
2574 if (init)
2575 break;
2576 }
2577 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2578 break; // Fall back on using base
2579 }
2580 }
2581
2582 /* ---------------- Conversion from/to TreeBins -------------- */
2583
2584 /**
2585 * Replaces all linked nodes in bin at given index unless table is
2586 * too small, in which case resizes instead.
2587 */
2588 private final void treeifyBin(Node<K,V>[] tab, int index) {
2589 Node<K,V> b; int n, sc;
2590 if (tab != null) {
2591 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2592 tryPresize(n << 1);
2593 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2594 synchronized (b) {
2595 if (tabAt(tab, index) == b) {
2596 TreeNode<K,V> hd = null, tl = null;
2597 for (Node<K,V> e = b; e != null; e = e.next) {
2598 TreeNode<K,V> p =
2599 new TreeNode<K,V>(e.hash, e.key, e.val,
2600 null, null);
2601 if ((p.prev = tl) == null)
2602 hd = p;
2603 else
2604 tl.next = p;
2605 tl = p;
2606 }
2607 setTabAt(tab, index, new TreeBin<K,V>(hd));
2608 }
2609 }
2610 }
2611 }
2612 }
2613
2614 /**
2615 * Returns a list on non-TreeNodes replacing those in given list.
2616 */
2617 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2618 Node<K,V> hd = null, tl = null;
2619 for (Node<K,V> q = b; q != null; q = q.next) {
2620 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2621 if (tl == null)
2622 hd = p;
2623 else
2624 tl.next = p;
2625 tl = p;
2626 }
2627 return hd;
2628 }
2629
2630 /* ---------------- TreeNodes -------------- */
2631
2632 /**
2633 * Nodes for use in TreeBins
2634 */
2635 static final class TreeNode<K,V> extends Node<K,V> {
2636 TreeNode<K,V> parent; // red-black tree links
2637 TreeNode<K,V> left;
2638 TreeNode<K,V> right;
2639 TreeNode<K,V> prev; // needed to unlink next upon deletion
2640 boolean red;
2641
2642 TreeNode(int hash, K key, V val, Node<K,V> next,
2643 TreeNode<K,V> parent) {
2644 super(hash, key, val, next);
2645 this.parent = parent;
2646 }
2647
2648 Node<K,V> find(int h, Object k) {
2649 return findTreeNode(h, k, null);
2650 }
2651
2652 /**
2653 * Returns the TreeNode (or null if not found) for the given key
2654 * starting at given root.
2655 */
2656 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2657 if (k != null) {
2658 TreeNode<K,V> p = this;
2659 do {
2660 int ph, dir; K pk; TreeNode<K,V> q;
2661 TreeNode<K,V> pl = p.left, pr = p.right;
2662 if ((ph = p.hash) > h)
2663 p = pl;
2664 else if (ph < h)
2665 p = pr;
2666 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2667 return p;
2668 else if (pl == null)
2669 p = pr;
2670 else if (pr == null)
2671 p = pl;
2672 else if ((kc != null ||
2673 (kc = comparableClassFor(k)) != null) &&
2674 (dir = compareComparables(kc, k, pk)) != 0)
2675 p = (dir < 0) ? pl : pr;
2676 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2677 return q;
2678 else
2679 p = pl;
2680 } while (p != null);
2681 }
2682 return null;
2683 }
2684 }
2685
2686 /* ---------------- TreeBins -------------- */
2687
2688 /**
2689 * TreeNodes used at the heads of bins. TreeBins do not hold user
2690 * keys or values, but instead point to list of TreeNodes and
2691 * their root. They also maintain a parasitic read-write lock
2692 * forcing writers (who hold bin lock) to wait for readers (who do
2693 * not) to complete before tree restructuring operations.
2694 */
2695 static final class TreeBin<K,V> extends Node<K,V> {
2696 TreeNode<K,V> root;
2697 volatile TreeNode<K,V> first;
2698 volatile Thread waiter;
2699 volatile int lockState;
2700 // values for lockState
2701 static final int WRITER = 1; // set while holding write lock
2702 static final int WAITER = 2; // set when waiting for write lock
2703 static final int READER = 4; // increment value for setting read lock
2704
2705 /**
2706 * Tie-breaking utility for ordering insertions when equal
2707 * hashCodes and non-comparable. We don't require a total
2708 * order, just a consistent insertion rule to maintain
2709 * equivalence across rebalancings. Tie-breaking further than
2710 * necessary simplifies testing a bit.
2711 */
2712 static int tieBreakOrder(Object a, Object b) {
2713 int d;
2714 if (a == null || b == null ||
2715 (d = a.getClass().getName().
2716 compareTo(b.getClass().getName())) == 0)
2717 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2718 -1 : 1);
2719 return d;
2720 }
2721
2722 /**
2723 * Creates bin with initial set of nodes headed by b.
2724 */
2725 TreeBin(TreeNode<K,V> b) {
2726 super(TREEBIN, null, null, null);
2727 this.first = b;
2728 TreeNode<K,V> r = null;
2729 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2730 next = (TreeNode<K,V>)x.next;
2731 x.left = x.right = null;
2732 if (r == null) {
2733 x.parent = null;
2734 x.red = false;
2735 r = x;
2736 }
2737 else {
2738 K k = x.key;
2739 int h = x.hash;
2740 Class<?> kc = null;
2741 for (TreeNode<K,V> p = r;;) {
2742 int dir, ph;
2743 K pk = p.key;
2744 if ((ph = p.hash) > h)
2745 dir = -1;
2746 else if (ph < h)
2747 dir = 1;
2748 else if ((kc == null &&
2749 (kc = comparableClassFor(k)) == null) ||
2750 (dir = compareComparables(kc, k, pk)) == 0)
2751 dir = tieBreakOrder(k, pk);
2752 TreeNode<K,V> xp = p;
2753 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2754 x.parent = xp;
2755 if (dir <= 0)
2756 xp.left = x;
2757 else
2758 xp.right = x;
2759 r = balanceInsertion(r, x);
2760 break;
2761 }
2762 }
2763 }
2764 }
2765 this.root = r;
2766 assert checkInvariants(root);
2767 }
2768
2769 /**
2770 * Acquires write lock for tree restructuring.
2771 */
2772 private final void lockRoot() {
2773 if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2774 contendedLock(); // offload to separate method
2775 }
2776
2777 /**
2778 * Releases write lock for tree restructuring.
2779 */
2780 private final void unlockRoot() {
2781 lockState = 0;
2782 }
2783
2784 /**
2785 * Possibly blocks awaiting root lock.
2786 */
2787 private final void contendedLock() {
2788 boolean waiting = false;
2789 for (int s;;) {
2790 if (((s = lockState) & ~WAITER) == 0) {
2791 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2792 if (waiting)
2793 waiter = null;
2794 return;
2795 }
2796 }
2797 else if ((s & WAITER) == 0) {
2798 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2799 waiting = true;
2800 waiter = Thread.currentThread();
2801 }
2802 }
2803 else if (waiting)
2804 LockSupport.park(this);
2805 }
2806 }
2807
2808 /**
2809 * Returns matching node or null if none. Tries to search
2810 * using tree comparisons from root, but continues linear
2811 * search when lock not available.
2812 */
2813 final Node<K,V> find(int h, Object k) {
2814 if (k != null) {
2815 for (Node<K,V> e = first; e != null; ) {
2816 int s; K ek;
2817 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2818 if (e.hash == h &&
2819 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2820 return e;
2821 e = e.next;
2822 }
2823 else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2824 s + READER)) {
2825 TreeNode<K,V> r, p;
2826 try {
2827 p = ((r = root) == null ? null :
2828 r.findTreeNode(h, k, null));
2829 } finally {
2830 Thread w;
2831 if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2832 (READER|WAITER) && (w = waiter) != null)
2833 LockSupport.unpark(w);
2834 }
2835 return p;
2836 }
2837 }
2838 }
2839 return null;
2840 }
2841
2842 /**
2843 * Finds or adds a node.
2844 * @return null if added
2845 */
2846 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2847 Class<?> kc = null;
2848 boolean searched = false;
2849 for (TreeNode<K,V> p = root;;) {
2850 int dir, ph; K pk;
2851 if (p == null) {
2852 first = root = new TreeNode<K,V>(h, k, v, null, null);
2853 break;
2854 }
2855 else if ((ph = p.hash) > h)
2856 dir = -1;
2857 else if (ph < h)
2858 dir = 1;
2859 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2860 return p;
2861 else if ((kc == null &&
2862 (kc = comparableClassFor(k)) == null) ||
2863 (dir = compareComparables(kc, k, pk)) == 0) {
2864 if (!searched) {
2865 TreeNode<K,V> q, ch;
2866 searched = true;
2867 if (((ch = p.left) != null &&
2868 (q = ch.findTreeNode(h, k, kc)) != null) ||
2869 ((ch = p.right) != null &&
2870 (q = ch.findTreeNode(h, k, kc)) != null))
2871 return q;
2872 }
2873 dir = tieBreakOrder(k, pk);
2874 }
2875
2876 TreeNode<K,V> xp = p;
2877 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2878 TreeNode<K,V> x, f = first;
2879 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2880 if (f != null)
2881 f.prev = x;
2882 if (dir <= 0)
2883 xp.left = x;
2884 else
2885 xp.right = x;
2886 if (!xp.red)
2887 x.red = true;
2888 else {
2889 lockRoot();
2890 try {
2891 root = balanceInsertion(root, x);
2892 } finally {
2893 unlockRoot();
2894 }
2895 }
2896 break;
2897 }
2898 }
2899 assert checkInvariants(root);
2900 return null;
2901 }
2902
2903 /**
2904 * Removes the given node, that must be present before this
2905 * call. This is messier than typical red-black deletion code
2906 * because we cannot swap the contents of an interior node
2907 * with a leaf successor that is pinned by "next" pointers
2908 * that are accessible independently of lock. So instead we
2909 * swap the tree linkages.
2910 *
2911 * @return true if now too small, so should be untreeified
2912 */
2913 final boolean removeTreeNode(TreeNode<K,V> p) {
2914 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2915 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2916 TreeNode<K,V> r, rl;
2917 if (pred == null)
2918 first = next;
2919 else
2920 pred.next = next;
2921 if (next != null)
2922 next.prev = pred;
2923 if (first == null) {
2924 root = null;
2925 return true;
2926 }
2927 if ((r = root) == null || r.right == null || // too small
2928 (rl = r.left) == null || rl.left == null)
2929 return true;
2930 lockRoot();
2931 try {
2932 TreeNode<K,V> replacement;
2933 TreeNode<K,V> pl = p.left;
2934 TreeNode<K,V> pr = p.right;
2935 if (pl != null && pr != null) {
2936 TreeNode<K,V> s = pr, sl;
2937 while ((sl = s.left) != null) // find successor
2938 s = sl;
2939 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2940 TreeNode<K,V> sr = s.right;
2941 TreeNode<K,V> pp = p.parent;
2942 if (s == pr) { // p was s's direct parent
2943 p.parent = s;
2944 s.right = p;
2945 }
2946 else {
2947 TreeNode<K,V> sp = s.parent;
2948 if ((p.parent = sp) != null) {
2949 if (s == sp.left)
2950 sp.left = p;
2951 else
2952 sp.right = p;
2953 }
2954 if ((s.right = pr) != null)
2955 pr.parent = s;
2956 }
2957 p.left = null;
2958 if ((p.right = sr) != null)
2959 sr.parent = p;
2960 if ((s.left = pl) != null)
2961 pl.parent = s;
2962 if ((s.parent = pp) == null)
2963 r = s;
2964 else if (p == pp.left)
2965 pp.left = s;
2966 else
2967 pp.right = s;
2968 if (sr != null)
2969 replacement = sr;
2970 else
2971 replacement = p;
2972 }
2973 else if (pl != null)
2974 replacement = pl;
2975 else if (pr != null)
2976 replacement = pr;
2977 else
2978 replacement = p;
2979 if (replacement != p) {
2980 TreeNode<K,V> pp = replacement.parent = p.parent;
2981 if (pp == null)
2982 r = replacement;
2983 else if (p == pp.left)
2984 pp.left = replacement;
2985 else
2986 pp.right = replacement;
2987 p.left = p.right = p.parent = null;
2988 }
2989
2990 root = (p.red) ? r : balanceDeletion(r, replacement);
2991
2992 if (p == replacement) { // detach pointers
2993 TreeNode<K,V> pp;
2994 if ((pp = p.parent) != null) {
2995 if (p == pp.left)
2996 pp.left = null;
2997 else if (p == pp.right)
2998 pp.right = null;
2999 p.parent = null;
3000 }
3001 }
3002 } finally {
3003 unlockRoot();
3004 }
3005 assert checkInvariants(root);
3006 return false;
3007 }
3008
3009 /* ------------------------------------------------------------ */
3010 // Red-black tree methods, all adapted from CLR
3011
3012 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3013 TreeNode<K,V> p) {
3014 TreeNode<K,V> r, pp, rl;
3015 if (p != null && (r = p.right) != null) {
3016 if ((rl = p.right = r.left) != null)
3017 rl.parent = p;
3018 if ((pp = r.parent = p.parent) == null)
3019 (root = r).red = false;
3020 else if (pp.left == p)
3021 pp.left = r;
3022 else
3023 pp.right = r;
3024 r.left = p;
3025 p.parent = r;
3026 }
3027 return root;
3028 }
3029
3030 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3031 TreeNode<K,V> p) {
3032 TreeNode<K,V> l, pp, lr;
3033 if (p != null && (l = p.left) != null) {
3034 if ((lr = p.left = l.right) != null)
3035 lr.parent = p;
3036 if ((pp = l.parent = p.parent) == null)
3037 (root = l).red = false;
3038 else if (pp.right == p)
3039 pp.right = l;
3040 else
3041 pp.left = l;
3042 l.right = p;
3043 p.parent = l;
3044 }
3045 return root;
3046 }
3047
3048 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3049 TreeNode<K,V> x) {
3050 x.red = true;
3051 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3052 if ((xp = x.parent) == null) {
3053 x.red = false;
3054 return x;
3055 }
3056 else if (!xp.red || (xpp = xp.parent) == null)
3057 return root;
3058 if (xp == (xppl = xpp.left)) {
3059 if ((xppr = xpp.right) != null && xppr.red) {
3060 xppr.red = false;
3061 xp.red = false;
3062 xpp.red = true;
3063 x = xpp;
3064 }
3065 else {
3066 if (x == xp.right) {
3067 root = rotateLeft(root, x = xp);
3068 xpp = (xp = x.parent) == null ? null : xp.parent;
3069 }
3070 if (xp != null) {
3071 xp.red = false;
3072 if (xpp != null) {
3073 xpp.red = true;
3074 root = rotateRight(root, xpp);
3075 }
3076 }
3077 }
3078 }
3079 else {
3080 if (xppl != null && xppl.red) {
3081 xppl.red = false;
3082 xp.red = false;
3083 xpp.red = true;
3084 x = xpp;
3085 }
3086 else {
3087 if (x == xp.left) {
3088 root = rotateRight(root, x = xp);
3089 xpp = (xp = x.parent) == null ? null : xp.parent;
3090 }
3091 if (xp != null) {
3092 xp.red = false;
3093 if (xpp != null) {
3094 xpp.red = true;
3095 root = rotateLeft(root, xpp);
3096 }
3097 }
3098 }
3099 }
3100 }
3101 }
3102
3103 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3104 TreeNode<K,V> x) {
3105 for (TreeNode<K,V> xp, xpl, xpr;;) {
3106 if (x == null || x == root)
3107 return root;
3108 else if ((xp = x.parent) == null) {
3109 x.red = false;
3110 return x;
3111 }
3112 else if (x.red) {
3113 x.red = false;
3114 return root;
3115 }
3116 else if ((xpl = xp.left) == x) {
3117 if ((xpr = xp.right) != null && xpr.red) {
3118 xpr.red = false;
3119 xp.red = true;
3120 root = rotateLeft(root, xp);
3121 xpr = (xp = x.parent) == null ? null : xp.right;
3122 }
3123 if (xpr == null)
3124 x = xp;
3125 else {
3126 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3127 if ((sr == null || !sr.red) &&
3128 (sl == null || !sl.red)) {
3129 xpr.red = true;
3130 x = xp;
3131 }
3132 else {
3133 if (sr == null || !sr.red) {
3134 if (sl != null)
3135 sl.red = false;
3136 xpr.red = true;
3137 root = rotateRight(root, xpr);
3138 xpr = (xp = x.parent) == null ?
3139 null : xp.right;
3140 }
3141 if (xpr != null) {
3142 xpr.red = (xp == null) ? false : xp.red;
3143 if ((sr = xpr.right) != null)
3144 sr.red = false;
3145 }
3146 if (xp != null) {
3147 xp.red = false;
3148 root = rotateLeft(root, xp);
3149 }
3150 x = root;
3151 }
3152 }
3153 }
3154 else { // symmetric
3155 if (xpl != null && xpl.red) {
3156 xpl.red = false;
3157 xp.red = true;
3158 root = rotateRight(root, xp);
3159 xpl = (xp = x.parent) == null ? null : xp.left;
3160 }
3161 if (xpl == null)
3162 x = xp;
3163 else {
3164 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3165 if ((sl == null || !sl.red) &&
3166 (sr == null || !sr.red)) {
3167 xpl.red = true;
3168 x = xp;
3169 }
3170 else {
3171 if (sl == null || !sl.red) {
3172 if (sr != null)
3173 sr.red = false;
3174 xpl.red = true;
3175 root = rotateLeft(root, xpl);
3176 xpl = (xp = x.parent) == null ?
3177 null : xp.left;
3178 }
3179 if (xpl != null) {
3180 xpl.red = (xp == null) ? false : xp.red;
3181 if ((sl = xpl.left) != null)
3182 sl.red = false;
3183 }
3184 if (xp != null) {
3185 xp.red = false;
3186 root = rotateRight(root, xp);
3187 }
3188 x = root;
3189 }
3190 }
3191 }
3192 }
3193 }
3194
3195 /**
3196 * Recursive invariant check
3197 */
3198 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3199 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3200 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3201 if (tb != null && tb.next != t)
3202 return false;
3203 if (tn != null && tn.prev != t)
3204 return false;
3205 if (tp != null && t != tp.left && t != tp.right)
3206 return false;
3207 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3208 return false;
3209 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3210 return false;
3211 if (t.red && tl != null && tl.red && tr != null && tr.red)
3212 return false;
3213 if (tl != null && !checkInvariants(tl))
3214 return false;
3215 if (tr != null && !checkInvariants(tr))
3216 return false;
3217 return true;
3218 }
3219
3220 private static final sun.misc.Unsafe U;
3221 private static final long LOCKSTATE;
3222 static {
3223 try {
3224 U = sun.misc.Unsafe.getUnsafe();
3225 Class<?> k = TreeBin.class;
3226 LOCKSTATE = U.objectFieldOffset
3227 (k.getDeclaredField("lockState"));
3228 } catch (ReflectiveOperationException e) {
3229 throw new Error(e);
3230 }
3231 }
3232 }
3233
3234 /* ----------------Table Traversal -------------- */
3235
3236 /**
3237 * Records the table, its length, and current traversal index for a
3238 * traverser that must process a region of a forwarded table before
3239 * proceeding with current table.
3240 */
3241 static final class TableStack<K,V> {
3242 int length;
3243 int index;
3244 Node<K,V>[] tab;
3245 TableStack<K,V> next;
3246 }
3247
3248 /**
3249 * Encapsulates traversal for methods such as containsValue; also
3250 * serves as a base class for other iterators and spliterators.
3251 *
3252 * Method advance visits once each still-valid node that was
3253 * reachable upon iterator construction. It might miss some that
3254 * were added to a bin after the bin was visited, which is OK wrt
3255 * consistency guarantees. Maintaining this property in the face
3256 * of possible ongoing resizes requires a fair amount of
3257 * bookkeeping state that is difficult to optimize away amidst
3258 * volatile accesses. Even so, traversal maintains reasonable
3259 * throughput.
3260 *
3261 * Normally, iteration proceeds bin-by-bin traversing lists.
3262 * However, if the table has been resized, then all future steps
3263 * must traverse both the bin at the current index as well as at
3264 * (index + baseSize); and so on for further resizings. To
3265 * paranoically cope with potential sharing by users of iterators
3266 * across threads, iteration terminates if a bounds checks fails
3267 * for a table read.
3268 */
3269 static class Traverser<K,V> {
3270 Node<K,V>[] tab; // current table; updated if resized
3271 Node<K,V> next; // the next entry to use
3272 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3273 int index; // index of bin to use next
3274 int baseIndex; // current index of initial table
3275 int baseLimit; // index bound for initial table
3276 final int baseSize; // initial table size
3277
3278 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3279 this.tab = tab;
3280 this.baseSize = size;
3281 this.baseIndex = this.index = index;
3282 this.baseLimit = limit;
3283 this.next = null;
3284 }
3285
3286 /**
3287 * Advances if possible, returning next valid node, or null if none.
3288 */
3289 final Node<K,V> advance() {
3290 Node<K,V> e;
3291 if ((e = next) != null)
3292 e = e.next;
3293 for (;;) {
3294 Node<K,V>[] t; int i, n; // must use locals in checks
3295 if (e != null)
3296 return next = e;
3297 if (baseIndex >= baseLimit || (t = tab) == null ||
3298 (n = t.length) <= (i = index) || i < 0)
3299 return next = null;
3300 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3301 if (e instanceof ForwardingNode) {
3302 tab = ((ForwardingNode<K,V>)e).nextTable;
3303 e = null;
3304 pushState(t, i, n);
3305 continue;
3306 }
3307 else if (e instanceof TreeBin)
3308 e = ((TreeBin<K,V>)e).first;
3309 else
3310 e = null;
3311 }
3312 if (stack != null)
3313 recoverState(n);
3314 else if ((index = i + baseSize) >= n)
3315 index = ++baseIndex; // visit upper slots if present
3316 }
3317 }
3318
3319 /**
3320 * Saves traversal state upon encountering a forwarding node.
3321 */
3322 private void pushState(Node<K,V>[] t, int i, int n) {
3323 TableStack<K,V> s = spare; // reuse if possible
3324 if (s != null)
3325 spare = s.next;
3326 else
3327 s = new TableStack<K,V>();
3328 s.tab = t;
3329 s.length = n;
3330 s.index = i;
3331 s.next = stack;
3332 stack = s;
3333 }
3334
3335 /**
3336 * Possibly pops traversal state.
3337 *
3338 * @param n length of current table
3339 */
3340 private void recoverState(int n) {
3341 TableStack<K,V> s; int len;
3342 while ((s = stack) != null && (index += (len = s.length)) >= n) {
3343 n = len;
3344 index = s.index;
3345 tab = s.tab;
3346 s.tab = null;
3347 TableStack<K,V> next = s.next;
3348 s.next = spare; // save for reuse
3349 stack = next;
3350 spare = s;
3351 }
3352 if (s == null && (index += baseSize) >= n)
3353 index = ++baseIndex;
3354 }
3355 }
3356
3357 /**
3358 * Base of key, value, and entry Iterators. Adds fields to
3359 * Traverser to support iterator.remove.
3360 */
3361 static class BaseIterator<K,V> extends Traverser<K,V> {
3362 final ConcurrentHashMap<K,V> map;
3363 Node<K,V> lastReturned;
3364 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3365 ConcurrentHashMap<K,V> map) {
3366 super(tab, size, index, limit);
3367 this.map = map;
3368 advance();
3369 }
3370
3371 public final boolean hasNext() { return next != null; }
3372 public final boolean hasMoreElements() { return next != null; }
3373
3374 public final void remove() {
3375 Node<K,V> p;
3376 if ((p = lastReturned) == null)
3377 throw new IllegalStateException();
3378 lastReturned = null;
3379 map.replaceNode(p.key, null, null);
3380 }
3381 }
3382
3383 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3384 implements Iterator<K>, Enumeration<K> {
3385 KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3386 ConcurrentHashMap<K,V> map) {
3387 super(tab, index, size, limit, map);
3388 }
3389
3390 public final K next() {
3391 Node<K,V> p;
3392 if ((p = next) == null)
3393 throw new NoSuchElementException();
3394 K k = p.key;
3395 lastReturned = p;
3396 advance();
3397 return k;
3398 }
3399
3400 public final K nextElement() { return next(); }
3401 }
3402
3403 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3404 implements Iterator<V>, Enumeration<V> {
3405 ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3406 ConcurrentHashMap<K,V> map) {
3407 super(tab, index, size, limit, map);
3408 }
3409
3410 public final V next() {
3411 Node<K,V> p;
3412 if ((p = next) == null)
3413 throw new NoSuchElementException();
3414 V v = p.val;
3415 lastReturned = p;
3416 advance();
3417 return v;
3418 }
3419
3420 public final V nextElement() { return next(); }
3421 }
3422
3423 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3424 implements Iterator<Map.Entry<K,V>> {
3425 EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3426 ConcurrentHashMap<K,V> map) {
3427 super(tab, index, size, limit, map);
3428 }
3429
3430 public final Map.Entry<K,V> next() {
3431 Node<K,V> p;
3432 if ((p = next) == null)
3433 throw new NoSuchElementException();
3434 K k = p.key;
3435 V v = p.val;
3436 lastReturned = p;
3437 advance();
3438 return new MapEntry<K,V>(k, v, map);
3439 }
3440 }
3441
3442 /**
3443 * Exported Entry for EntryIterator
3444 */
3445 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3446 final K key; // non-null
3447 V val; // non-null
3448 final ConcurrentHashMap<K,V> map;
3449 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3450 this.key = key;
3451 this.val = val;
3452 this.map = map;
3453 }
3454 public K getKey() { return key; }
3455 public V getValue() { return val; }
3456 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3457 public String toString() { return key + "=" + val; }
3458
3459 public boolean equals(Object o) {
3460 Object k, v; Map.Entry<?,?> e;
3461 return ((o instanceof Map.Entry) &&
3462 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3463 (v = e.getValue()) != null &&
3464 (k == key || k.equals(key)) &&
3465 (v == val || v.equals(val)));
3466 }
3467
3468 /**
3469 * Sets our entry's value and writes through to the map. The
3470 * value to return is somewhat arbitrary here. Since we do not
3471 * necessarily track asynchronous changes, the most recent
3472 * "previous" value could be different from what we return (or
3473 * could even have been removed, in which case the put will
3474 * re-establish). We do not and cannot guarantee more.
3475 */
3476 public V setValue(V value) {
3477 if (value == null) throw new NullPointerException();
3478 V v = val;
3479 val = value;
3480 map.put(key, value);
3481 return v;
3482 }
3483 }
3484
3485 static final class KeySpliterator<K,V> extends Traverser<K,V>
3486 implements Spliterator<K> {
3487 long est; // size estimate
3488 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3489 long est) {
3490 super(tab, size, index, limit);
3491 this.est = est;
3492 }
3493
3494 public Spliterator<K> trySplit() {
3495 int i, f, h;
3496 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3497 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3498 f, est >>>= 1);
3499 }
3500
3501 public void forEachRemaining(Consumer<? super K> action) {
3502 if (action == null) throw new NullPointerException();
3503 for (Node<K,V> p; (p = advance()) != null;)
3504 action.accept(p.key);
3505 }
3506
3507 public boolean tryAdvance(Consumer<? super K> action) {
3508 if (action == null) throw new NullPointerException();
3509 Node<K,V> p;
3510 if ((p = advance()) == null)
3511 return false;
3512 action.accept(p.key);
3513 return true;
3514 }
3515
3516 public long estimateSize() { return est; }
3517
3518 public int characteristics() {
3519 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3520 Spliterator.NONNULL;
3521 }
3522 }
3523
3524 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3525 implements Spliterator<V> {
3526 long est; // size estimate
3527 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3528 long est) {
3529 super(tab, size, index, limit);
3530 this.est = est;
3531 }
3532
3533 public Spliterator<V> trySplit() {
3534 int i, f, h;
3535 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3536 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3537 f, est >>>= 1);
3538 }
3539
3540 public void forEachRemaining(Consumer<? super V> action) {
3541 if (action == null) throw new NullPointerException();
3542 for (Node<K,V> p; (p = advance()) != null;)
3543 action.accept(p.val);
3544 }
3545
3546 public boolean tryAdvance(Consumer<? super V> action) {
3547 if (action == null) throw new NullPointerException();
3548 Node<K,V> p;
3549 if ((p = advance()) == null)
3550 return false;
3551 action.accept(p.val);
3552 return true;
3553 }
3554
3555 public long estimateSize() { return est; }
3556
3557 public int characteristics() {
3558 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3559 }
3560 }
3561
3562 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3563 implements Spliterator<Map.Entry<K,V>> {
3564 final ConcurrentHashMap<K,V> map; // To export MapEntry
3565 long est; // size estimate
3566 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3567 long est, ConcurrentHashMap<K,V> map) {
3568 super(tab, size, index, limit);
3569 this.map = map;
3570 this.est = est;
3571 }
3572
3573 public Spliterator<Map.Entry<K,V>> trySplit() {
3574 int i, f, h;
3575 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3576 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3577 f, est >>>= 1, map);
3578 }
3579
3580 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3581 if (action == null) throw new NullPointerException();
3582 for (Node<K,V> p; (p = advance()) != null; )
3583 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3584 }
3585
3586 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3587 if (action == null) throw new NullPointerException();
3588 Node<K,V> p;
3589 if ((p = advance()) == null)
3590 return false;
3591 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3592 return true;
3593 }
3594
3595 public long estimateSize() { return est; }
3596
3597 public int characteristics() {
3598 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3599 Spliterator.NONNULL;
3600 }
3601 }
3602
3603 // Parallel bulk operations
3604
3605 /**
3606 * Computes initial batch value for bulk tasks. The returned value
3607 * is approximately exp2 of the number of times (minus one) to
3608 * split task by two before executing leaf action. This value is
3609 * faster to compute and more convenient to use as a guide to
3610 * splitting than is the depth, since it is used while dividing by
3611 * two anyway.
3612 */
3613 final int batchFor(long b) {
3614 long n;
3615 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3616 return 0;
3617 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3618 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3619 }
3620
3621 /**
3622 * Performs the given action for each (key, value).
3623 *
3624 * @param parallelismThreshold the (estimated) number of elements
3625 * needed for this operation to be executed in parallel
3626 * @param action the action
3627 * @since 1.8
3628 */
3629 public void forEach(long parallelismThreshold,
3630 BiConsumer<? super K,? super V> action) {
3631 if (action == null) throw new NullPointerException();
3632 new ForEachMappingTask<K,V>
3633 (null, batchFor(parallelismThreshold), 0, 0, table,
3634 action).invoke();
3635 }
3636
3637 /**
3638 * Performs the given action for each non-null transformation
3639 * of each (key, value).
3640 *
3641 * @param parallelismThreshold the (estimated) number of elements
3642 * needed for this operation to be executed in parallel
3643 * @param transformer a function returning the transformation
3644 * for an element, or null if there is no transformation (in
3645 * which case the action is not applied)
3646 * @param action the action
3647 * @param <U> the return type of the transformer
3648 * @since 1.8
3649 */
3650 public <U> void forEach(long parallelismThreshold,
3651 BiFunction<? super K, ? super V, ? extends U> transformer,
3652 Consumer<? super U> action) {
3653 if (transformer == null || action == null)
3654 throw new NullPointerException();
3655 new ForEachTransformedMappingTask<K,V,U>
3656 (null, batchFor(parallelismThreshold), 0, 0, table,
3657 transformer, action).invoke();
3658 }
3659
3660 /**
3661 * Returns a non-null result from applying the given search
3662 * function on each (key, value), or null if none. Upon
3663 * success, further element processing is suppressed and the
3664 * results of any other parallel invocations of the search
3665 * function are ignored.
3666 *
3667 * @param parallelismThreshold the (estimated) number of elements
3668 * needed for this operation to be executed in parallel
3669 * @param searchFunction a function returning a non-null
3670 * result on success, else null
3671 * @param <U> the return type of the search function
3672 * @return a non-null result from applying the given search
3673 * function on each (key, value), or null if none
3674 * @since 1.8
3675 */
3676 public <U> U search(long parallelismThreshold,
3677 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3678 if (searchFunction == null) throw new NullPointerException();
3679 return new SearchMappingsTask<K,V,U>
3680 (null, batchFor(parallelismThreshold), 0, 0, table,
3681 searchFunction, new AtomicReference<U>()).invoke();
3682 }
3683
3684 /**
3685 * Returns the result of accumulating the given transformation
3686 * of all (key, value) pairs using the given reducer to
3687 * combine values, or null if none.
3688 *
3689 * @param parallelismThreshold the (estimated) number of elements
3690 * needed for this operation to be executed in parallel
3691 * @param transformer a function returning the transformation
3692 * for an element, or null if there is no transformation (in
3693 * which case it is not combined)
3694 * @param reducer a commutative associative combining function
3695 * @param <U> the return type of the transformer
3696 * @return the result of accumulating the given transformation
3697 * of all (key, value) pairs
3698 * @since 1.8
3699 */
3700 public <U> U reduce(long parallelismThreshold,
3701 BiFunction<? super K, ? super V, ? extends U> transformer,
3702 BiFunction<? super U, ? super U, ? extends U> reducer) {
3703 if (transformer == null || reducer == null)
3704 throw new NullPointerException();
3705 return new MapReduceMappingsTask<K,V,U>
3706 (null, batchFor(parallelismThreshold), 0, 0, table,
3707 null, transformer, reducer).invoke();
3708 }
3709
3710 /**
3711 * Returns the result of accumulating the given transformation
3712 * of all (key, value) pairs using the given reducer to
3713 * combine values, and the given basis as an identity value.
3714 *
3715 * @param parallelismThreshold the (estimated) number of elements
3716 * needed for this operation to be executed in parallel
3717 * @param transformer a function returning the transformation
3718 * for an element
3719 * @param basis the identity (initial default value) for the reduction
3720 * @param reducer a commutative associative combining function
3721 * @return the result of accumulating the given transformation
3722 * of all (key, value) pairs
3723 * @since 1.8
3724 */
3725 public double reduceToDouble(long parallelismThreshold,
3726 ToDoubleBiFunction<? super K, ? super V> transformer,
3727 double basis,
3728 DoubleBinaryOperator reducer) {
3729 if (transformer == null || reducer == null)
3730 throw new NullPointerException();
3731 return new MapReduceMappingsToDoubleTask<K,V>
3732 (null, batchFor(parallelismThreshold), 0, 0, table,
3733 null, transformer, basis, reducer).invoke();
3734 }
3735
3736 /**
3737 * Returns the result of accumulating the given transformation
3738 * of all (key, value) pairs using the given reducer to
3739 * combine values, and the given basis as an identity value.
3740 *
3741 * @param parallelismThreshold the (estimated) number of elements
3742 * needed for this operation to be executed in parallel
3743 * @param transformer a function returning the transformation
3744 * for an element
3745 * @param basis the identity (initial default value) for the reduction
3746 * @param reducer a commutative associative combining function
3747 * @return the result of accumulating the given transformation
3748 * of all (key, value) pairs
3749 * @since 1.8
3750 */
3751 public long reduceToLong(long parallelismThreshold,
3752 ToLongBiFunction<? super K, ? super V> transformer,
3753 long basis,
3754 LongBinaryOperator reducer) {
3755 if (transformer == null || reducer == null)
3756 throw new NullPointerException();
3757 return new MapReduceMappingsToLongTask<K,V>
3758 (null, batchFor(parallelismThreshold), 0, 0, table,
3759 null, transformer, basis, reducer).invoke();
3760 }
3761
3762 /**
3763 * Returns the result of accumulating the given transformation
3764 * of all (key, value) pairs using the given reducer to
3765 * combine values, and the given basis as an identity value.
3766 *
3767 * @param parallelismThreshold the (estimated) number of elements
3768 * needed for this operation to be executed in parallel
3769 * @param transformer a function returning the transformation
3770 * for an element
3771 * @param basis the identity (initial default value) for the reduction
3772 * @param reducer a commutative associative combining function
3773 * @return the result of accumulating the given transformation
3774 * of all (key, value) pairs
3775 * @since 1.8
3776 */
3777 public int reduceToInt(long parallelismThreshold,
3778 ToIntBiFunction<? super K, ? super V> transformer,
3779 int basis,
3780 IntBinaryOperator reducer) {
3781 if (transformer == null || reducer == null)
3782 throw new NullPointerException();
3783 return new MapReduceMappingsToIntTask<K,V>
3784 (null, batchFor(parallelismThreshold), 0, 0, table,
3785 null, transformer, basis, reducer).invoke();
3786 }
3787
3788 /**
3789 * Performs the given action for each key.
3790 *
3791 * @param parallelismThreshold the (estimated) number of elements
3792 * needed for this operation to be executed in parallel
3793 * @param action the action
3794 * @since 1.8
3795 */
3796 public void forEachKey(long parallelismThreshold,
3797 Consumer<? super K> action) {
3798 if (action == null) throw new NullPointerException();
3799 new ForEachKeyTask<K,V>
3800 (null, batchFor(parallelismThreshold), 0, 0, table,
3801 action).invoke();
3802 }
3803
3804 /**
3805 * Performs the given action for each non-null transformation
3806 * of each key.
3807 *
3808 * @param parallelismThreshold the (estimated) number of elements
3809 * needed for this operation to be executed in parallel
3810 * @param transformer a function returning the transformation
3811 * for an element, or null if there is no transformation (in
3812 * which case the action is not applied)
3813 * @param action the action
3814 * @param <U> the return type of the transformer
3815 * @since 1.8
3816 */
3817 public <U> void forEachKey(long parallelismThreshold,
3818 Function<? super K, ? extends U> transformer,
3819 Consumer<? super U> action) {
3820 if (transformer == null || action == null)
3821 throw new NullPointerException();
3822 new ForEachTransformedKeyTask<K,V,U>
3823 (null, batchFor(parallelismThreshold), 0, 0, table,
3824 transformer, action).invoke();
3825 }
3826
3827 /**
3828 * Returns a non-null result from applying the given search
3829 * function on each key, or null if none. Upon success,
3830 * further element processing is suppressed and the results of
3831 * any other parallel invocations of the search function are
3832 * ignored.
3833 *
3834 * @param parallelismThreshold the (estimated) number of elements
3835 * needed for this operation to be executed in parallel
3836 * @param searchFunction a function returning a non-null
3837 * result on success, else null
3838 * @param <U> the return type of the search function
3839 * @return a non-null result from applying the given search
3840 * function on each key, or null if none
3841 * @since 1.8
3842 */
3843 public <U> U searchKeys(long parallelismThreshold,
3844 Function<? super K, ? extends U> searchFunction) {
3845 if (searchFunction == null) throw new NullPointerException();
3846 return new SearchKeysTask<K,V,U>
3847 (null, batchFor(parallelismThreshold), 0, 0, table,
3848 searchFunction, new AtomicReference<U>()).invoke();
3849 }
3850
3851 /**
3852 * Returns the result of accumulating all keys using the given
3853 * reducer to combine values, or null if none.
3854 *
3855 * @param parallelismThreshold the (estimated) number of elements
3856 * needed for this operation to be executed in parallel
3857 * @param reducer a commutative associative combining function
3858 * @return the result of accumulating all keys using the given
3859 * reducer to combine values, or null if none
3860 * @since 1.8
3861 */
3862 public K reduceKeys(long parallelismThreshold,
3863 BiFunction<? super K, ? super K, ? extends K> reducer) {
3864 if (reducer == null) throw new NullPointerException();
3865 return new ReduceKeysTask<K,V>
3866 (null, batchFor(parallelismThreshold), 0, 0, table,
3867 null, reducer).invoke();
3868 }
3869
3870 /**
3871 * Returns the result of accumulating the given transformation
3872 * of all keys using the given reducer to combine values, or
3873 * null if none.
3874 *
3875 * @param parallelismThreshold the (estimated) number of elements
3876 * needed for this operation to be executed in parallel
3877 * @param transformer a function returning the transformation
3878 * for an element, or null if there is no transformation (in
3879 * which case it is not combined)
3880 * @param reducer a commutative associative combining function
3881 * @param <U> the return type of the transformer
3882 * @return the result of accumulating the given transformation
3883 * of all keys
3884 * @since 1.8
3885 */
3886 public <U> U reduceKeys(long parallelismThreshold,
3887 Function<? super K, ? extends U> transformer,
3888 BiFunction<? super U, ? super U, ? extends U> reducer) {
3889 if (transformer == null || reducer == null)
3890 throw new NullPointerException();
3891 return new MapReduceKeysTask<K,V,U>
3892 (null, batchFor(parallelismThreshold), 0, 0, table,
3893 null, transformer, reducer).invoke();
3894 }
3895
3896 /**
3897 * Returns the result of accumulating the given transformation
3898 * of all keys using the given reducer to combine values, and
3899 * the given basis as an identity value.
3900 *
3901 * @param parallelismThreshold the (estimated) number of elements
3902 * needed for this operation to be executed in parallel
3903 * @param transformer a function returning the transformation
3904 * for an element
3905 * @param basis the identity (initial default value) for the reduction
3906 * @param reducer a commutative associative combining function
3907 * @return the result of accumulating the given transformation
3908 * of all keys
3909 * @since 1.8
3910 */
3911 public double reduceKeysToDouble(long parallelismThreshold,
3912 ToDoubleFunction<? super K> transformer,
3913 double basis,
3914 DoubleBinaryOperator reducer) {
3915 if (transformer == null || reducer == null)
3916 throw new NullPointerException();
3917 return new MapReduceKeysToDoubleTask<K,V>
3918 (null, batchFor(parallelismThreshold), 0, 0, table,
3919 null, transformer, basis, reducer).invoke();
3920 }
3921
3922 /**
3923 * Returns the result of accumulating the given transformation
3924 * of all keys using the given reducer to combine values, and
3925 * the given basis as an identity value.
3926 *
3927 * @param parallelismThreshold the (estimated) number of elements
3928 * needed for this operation to be executed in parallel
3929 * @param transformer a function returning the transformation
3930 * for an element
3931 * @param basis the identity (initial default value) for the reduction
3932 * @param reducer a commutative associative combining function
3933 * @return the result of accumulating the given transformation
3934 * of all keys
3935 * @since 1.8
3936 */
3937 public long reduceKeysToLong(long parallelismThreshold,
3938 ToLongFunction<? super K> transformer,
3939 long basis,
3940 LongBinaryOperator reducer) {
3941 if (transformer == null || reducer == null)
3942 throw new NullPointerException();
3943 return new MapReduceKeysToLongTask<K,V>
3944 (null, batchFor(parallelismThreshold), 0, 0, table,
3945 null, transformer, basis, reducer).invoke();
3946 }
3947
3948 /**
3949 * Returns the result of accumulating the given transformation
3950 * of all keys using the given reducer to combine values, and
3951 * the given basis as an identity value.
3952 *
3953 * @param parallelismThreshold the (estimated) number of elements
3954 * needed for this operation to be executed in parallel
3955 * @param transformer a function returning the transformation
3956 * for an element
3957 * @param basis the identity (initial default value) for the reduction
3958 * @param reducer a commutative associative combining function
3959 * @return the result of accumulating the given transformation
3960 * of all keys
3961 * @since 1.8
3962 */
3963 public int reduceKeysToInt(long parallelismThreshold,
3964 ToIntFunction<? super K> transformer,
3965 int basis,
3966 IntBinaryOperator reducer) {
3967 if (transformer == null || reducer == null)
3968 throw new NullPointerException();
3969 return new MapReduceKeysToIntTask<K,V>
3970 (null, batchFor(parallelismThreshold), 0, 0, table,
3971 null, transformer, basis, reducer).invoke();
3972 }
3973
3974 /**
3975 * Performs the given action for each value.
3976 *
3977 * @param parallelismThreshold the (estimated) number of elements
3978 * needed for this operation to be executed in parallel
3979 * @param action the action
3980 * @since 1.8
3981 */
3982 public void forEachValue(long parallelismThreshold,
3983 Consumer<? super V> action) {
3984 if (action == null)
3985 throw new NullPointerException();
3986 new ForEachValueTask<K,V>
3987 (null, batchFor(parallelismThreshold), 0, 0, table,
3988 action).invoke();
3989 }
3990
3991 /**
3992 * Performs the given action for each non-null transformation
3993 * of each value.
3994 *
3995 * @param parallelismThreshold the (estimated) number of elements
3996 * needed for this operation to be executed in parallel
3997 * @param transformer a function returning the transformation
3998 * for an element, or null if there is no transformation (in
3999 * which case the action is not applied)
4000 * @param action the action
4001 * @param <U> the return type of the transformer
4002 * @since 1.8
4003 */
4004 public <U> void forEachValue(long parallelismThreshold,
4005 Function<? super V, ? extends U> transformer,
4006 Consumer<? super U> action) {
4007 if (transformer == null || action == null)
4008 throw new NullPointerException();
4009 new ForEachTransformedValueTask<K,V,U>
4010 (null, batchFor(parallelismThreshold), 0, 0, table,
4011 transformer, action).invoke();
4012 }
4013
4014 /**
4015 * Returns a non-null result from applying the given search
4016 * function on each value, or null if none. Upon success,
4017 * further element processing is suppressed and the results of
4018 * any other parallel invocations of the search function are
4019 * ignored.
4020 *
4021 * @param parallelismThreshold the (estimated) number of elements
4022 * needed for this operation to be executed in parallel
4023 * @param searchFunction a function returning a non-null
4024 * result on success, else null
4025 * @param <U> the return type of the search function
4026 * @return a non-null result from applying the given search
4027 * function on each value, or null if none
4028 * @since 1.8
4029 */
4030 public <U> U searchValues(long parallelismThreshold,
4031 Function<? super V, ? extends U> searchFunction) {
4032 if (searchFunction == null) throw new NullPointerException();
4033 return new SearchValuesTask<K,V,U>
4034 (null, batchFor(parallelismThreshold), 0, 0, table,
4035 searchFunction, new AtomicReference<U>()).invoke();
4036 }
4037
4038 /**
4039 * Returns the result of accumulating all values using the
4040 * given reducer to combine values, or null if none.
4041 *
4042 * @param parallelismThreshold the (estimated) number of elements
4043 * needed for this operation to be executed in parallel
4044 * @param reducer a commutative associative combining function
4045 * @return the result of accumulating all values
4046 * @since 1.8
4047 */
4048 public V reduceValues(long parallelismThreshold,
4049 BiFunction<? super V, ? super V, ? extends V> reducer) {
4050 if (reducer == null) throw new NullPointerException();
4051 return new ReduceValuesTask<K,V>
4052 (null, batchFor(parallelismThreshold), 0, 0, table,
4053 null, reducer).invoke();
4054 }
4055
4056 /**
4057 * Returns the result of accumulating the given transformation
4058 * of all values using the given reducer to combine values, or
4059 * null if none.
4060 *
4061 * @param parallelismThreshold the (estimated) number of elements
4062 * needed for this operation to be executed in parallel
4063 * @param transformer a function returning the transformation
4064 * for an element, or null if there is no transformation (in
4065 * which case it is not combined)
4066 * @param reducer a commutative associative combining function
4067 * @param <U> the return type of the transformer
4068 * @return the result of accumulating the given transformation
4069 * of all values
4070 * @since 1.8
4071 */
4072 public <U> U reduceValues(long parallelismThreshold,
4073 Function<? super V, ? extends U> transformer,
4074 BiFunction<? super U, ? super U, ? extends U> reducer) {
4075 if (transformer == null || reducer == null)
4076 throw new NullPointerException();
4077 return new MapReduceValuesTask<K,V,U>
4078 (null, batchFor(parallelismThreshold), 0, 0, table,
4079 null, transformer, reducer).invoke();
4080 }
4081
4082 /**
4083 * Returns the result of accumulating the given transformation
4084 * of all values using the given reducer to combine values,
4085 * and the given basis as an identity value.
4086 *
4087 * @param parallelismThreshold the (estimated) number of elements
4088 * needed for this operation to be executed in parallel
4089 * @param transformer a function returning the transformation
4090 * for an element
4091 * @param basis the identity (initial default value) for the reduction
4092 * @param reducer a commutative associative combining function
4093 * @return the result of accumulating the given transformation
4094 * of all values
4095 * @since 1.8
4096 */
4097 public double reduceValuesToDouble(long parallelismThreshold,
4098 ToDoubleFunction<? super V> transformer,
4099 double basis,
4100 DoubleBinaryOperator reducer) {
4101 if (transformer == null || reducer == null)
4102 throw new NullPointerException();
4103 return new MapReduceValuesToDoubleTask<K,V>
4104 (null, batchFor(parallelismThreshold), 0, 0, table,
4105 null, transformer, basis, reducer).invoke();
4106 }
4107
4108 /**
4109 * Returns the result of accumulating the given transformation
4110 * of all values using the given reducer to combine values,
4111 * and the given basis as an identity value.
4112 *
4113 * @param parallelismThreshold the (estimated) number of elements
4114 * needed for this operation to be executed in parallel
4115 * @param transformer a function returning the transformation
4116 * for an element
4117 * @param basis the identity (initial default value) for the reduction
4118 * @param reducer a commutative associative combining function
4119 * @return the result of accumulating the given transformation
4120 * of all values
4121 * @since 1.8
4122 */
4123 public long reduceValuesToLong(long parallelismThreshold,
4124 ToLongFunction<? super V> transformer,
4125 long basis,
4126 LongBinaryOperator reducer) {
4127 if (transformer == null || reducer == null)
4128 throw new NullPointerException();
4129 return new MapReduceValuesToLongTask<K,V>
4130 (null, batchFor(parallelismThreshold), 0, 0, table,
4131 null, transformer, basis, reducer).invoke();
4132 }
4133
4134 /**
4135 * Returns the result of accumulating the given transformation
4136 * of all values using the given reducer to combine values,
4137 * and the given basis as an identity value.
4138 *
4139 * @param parallelismThreshold the (estimated) number of elements
4140 * needed for this operation to be executed in parallel
4141 * @param transformer a function returning the transformation
4142 * for an element
4143 * @param basis the identity (initial default value) for the reduction
4144 * @param reducer a commutative associative combining function
4145 * @return the result of accumulating the given transformation
4146 * of all values
4147 * @since 1.8
4148 */
4149 public int reduceValuesToInt(long parallelismThreshold,
4150 ToIntFunction<? super V> transformer,
4151 int basis,
4152 IntBinaryOperator reducer) {
4153 if (transformer == null || reducer == null)
4154 throw new NullPointerException();
4155 return new MapReduceValuesToIntTask<K,V>
4156 (null, batchFor(parallelismThreshold), 0, 0, table,
4157 null, transformer, basis, reducer).invoke();
4158 }
4159
4160 /**
4161 * Performs the given action for each entry.
4162 *
4163 * @param parallelismThreshold the (estimated) number of elements
4164 * needed for this operation to be executed in parallel
4165 * @param action the action
4166 * @since 1.8
4167 */
4168 public void forEachEntry(long parallelismThreshold,
4169 Consumer<? super Map.Entry<K,V>> action) {
4170 if (action == null) throw new NullPointerException();
4171 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4172 action).invoke();
4173 }
4174
4175 /**
4176 * Performs the given action for each non-null transformation
4177 * of each entry.
4178 *
4179 * @param parallelismThreshold the (estimated) number of elements
4180 * needed for this operation to be executed in parallel
4181 * @param transformer a function returning the transformation
4182 * for an element, or null if there is no transformation (in
4183 * which case the action is not applied)
4184 * @param action the action
4185 * @param <U> the return type of the transformer
4186 * @since 1.8
4187 */
4188 public <U> void forEachEntry(long parallelismThreshold,
4189 Function<Map.Entry<K,V>, ? extends U> transformer,
4190 Consumer<? super U> action) {
4191 if (transformer == null || action == null)
4192 throw new NullPointerException();
4193 new ForEachTransformedEntryTask<K,V,U>
4194 (null, batchFor(parallelismThreshold), 0, 0, table,
4195 transformer, action).invoke();
4196 }
4197
4198 /**
4199 * Returns a non-null result from applying the given search
4200 * function on each entry, or null if none. Upon success,
4201 * further element processing is suppressed and the results of
4202 * any other parallel invocations of the search function are
4203 * ignored.
4204 *
4205 * @param parallelismThreshold the (estimated) number of elements
4206 * needed for this operation to be executed in parallel
4207 * @param searchFunction a function returning a non-null
4208 * result on success, else null
4209 * @param <U> the return type of the search function
4210 * @return a non-null result from applying the given search
4211 * function on each entry, or null if none
4212 * @since 1.8
4213 */
4214 public <U> U searchEntries(long parallelismThreshold,
4215 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4216 if (searchFunction == null) throw new NullPointerException();
4217 return new SearchEntriesTask<K,V,U>
4218 (null, batchFor(parallelismThreshold), 0, 0, table,
4219 searchFunction, new AtomicReference<U>()).invoke();
4220 }
4221
4222 /**
4223 * Returns the result of accumulating all entries using the
4224 * given reducer to combine values, or null if none.
4225 *
4226 * @param parallelismThreshold the (estimated) number of elements
4227 * needed for this operation to be executed in parallel
4228 * @param reducer a commutative associative combining function
4229 * @return the result of accumulating all entries
4230 * @since 1.8
4231 */
4232 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4233 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4234 if (reducer == null) throw new NullPointerException();
4235 return new ReduceEntriesTask<K,V>
4236 (null, batchFor(parallelismThreshold), 0, 0, table,
4237 null, reducer).invoke();
4238 }
4239
4240 /**
4241 * Returns the result of accumulating the given transformation
4242 * of all entries using the given reducer to combine values,
4243 * or null if none.
4244 *
4245 * @param parallelismThreshold the (estimated) number of elements
4246 * needed for this operation to be executed in parallel
4247 * @param transformer a function returning the transformation
4248 * for an element, or null if there is no transformation (in
4249 * which case it is not combined)
4250 * @param reducer a commutative associative combining function
4251 * @param <U> the return type of the transformer
4252 * @return the result of accumulating the given transformation
4253 * of all entries
4254 * @since 1.8
4255 */
4256 public <U> U reduceEntries(long parallelismThreshold,
4257 Function<Map.Entry<K,V>, ? extends U> transformer,
4258 BiFunction<? super U, ? super U, ? extends U> reducer) {
4259 if (transformer == null || reducer == null)
4260 throw new NullPointerException();
4261 return new MapReduceEntriesTask<K,V,U>
4262 (null, batchFor(parallelismThreshold), 0, 0, table,
4263 null, transformer, reducer).invoke();
4264 }
4265
4266 /**
4267 * Returns the result of accumulating the given transformation
4268 * of all entries using the given reducer to combine values,
4269 * and the given basis as an identity value.
4270 *
4271 * @param parallelismThreshold the (estimated) number of elements
4272 * needed for this operation to be executed in parallel
4273 * @param transformer a function returning the transformation
4274 * for an element
4275 * @param basis the identity (initial default value) for the reduction
4276 * @param reducer a commutative associative combining function
4277 * @return the result of accumulating the given transformation
4278 * of all entries
4279 * @since 1.8
4280 */
4281 public double reduceEntriesToDouble(long parallelismThreshold,
4282 ToDoubleFunction<Map.Entry<K,V>> transformer,
4283 double basis,
4284 DoubleBinaryOperator reducer) {
4285 if (transformer == null || reducer == null)
4286 throw new NullPointerException();
4287 return new MapReduceEntriesToDoubleTask<K,V>
4288 (null, batchFor(parallelismThreshold), 0, 0, table,
4289 null, transformer, basis, reducer).invoke();
4290 }
4291
4292 /**
4293 * Returns the result of accumulating the given transformation
4294 * of all entries using the given reducer to combine values,
4295 * and the given basis as an identity value.
4296 *
4297 * @param parallelismThreshold the (estimated) number of elements
4298 * needed for this operation to be executed in parallel
4299 * @param transformer a function returning the transformation
4300 * for an element
4301 * @param basis the identity (initial default value) for the reduction
4302 * @param reducer a commutative associative combining function
4303 * @return the result of accumulating the given transformation
4304 * of all entries
4305 * @since 1.8
4306 */
4307 public long reduceEntriesToLong(long parallelismThreshold,
4308 ToLongFunction<Map.Entry<K,V>> transformer,
4309 long basis,
4310 LongBinaryOperator reducer) {
4311 if (transformer == null || reducer == null)
4312 throw new NullPointerException();
4313 return new MapReduceEntriesToLongTask<K,V>
4314 (null, batchFor(parallelismThreshold), 0, 0, table,
4315 null, transformer, basis, reducer).invoke();
4316 }
4317
4318 /**
4319 * Returns the result of accumulating the given transformation
4320 * of all entries using the given reducer to combine values,
4321 * and the given basis as an identity value.
4322 *
4323 * @param parallelismThreshold the (estimated) number of elements
4324 * needed for this operation to be executed in parallel
4325 * @param transformer a function returning the transformation
4326 * for an element
4327 * @param basis the identity (initial default value) for the reduction
4328 * @param reducer a commutative associative combining function
4329 * @return the result of accumulating the given transformation
4330 * of all entries
4331 * @since 1.8
4332 */
4333 public int reduceEntriesToInt(long parallelismThreshold,
4334 ToIntFunction<Map.Entry<K,V>> transformer,
4335 int basis,
4336 IntBinaryOperator reducer) {
4337 if (transformer == null || reducer == null)
4338 throw new NullPointerException();
4339 return new MapReduceEntriesToIntTask<K,V>
4340 (null, batchFor(parallelismThreshold), 0, 0, table,
4341 null, transformer, basis, reducer).invoke();
4342 }
4343
4344
4345 /* ----------------Views -------------- */
4346
4347 /**
4348 * Base class for views.
4349 */
4350 abstract static class CollectionView<K,V,E>
4351 implements Collection<E>, java.io.Serializable {
4352 private static final long serialVersionUID = 7249069246763182397L;
4353 final ConcurrentHashMap<K,V> map;
4354 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4355
4356 /**
4357 * Returns the map backing this view.
4358 *
4359 * @return the map backing this view
4360 */
4361 public ConcurrentHashMap<K,V> getMap() { return map; }
4362
4363 /**
4364 * Removes all of the elements from this view, by removing all
4365 * the mappings from the map backing this view.
4366 */
4367 public final void clear() { map.clear(); }
4368 public final int size() { return map.size(); }
4369 public final boolean isEmpty() { return map.isEmpty(); }
4370
4371 // implementations below rely on concrete classes supplying these
4372 // abstract methods
4373 /**
4374 * Returns an iterator over the elements in this collection.
4375 *
4376 * <p>The returned iterator is
4377 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4378 *
4379 * @return an iterator over the elements in this collection
4380 */
4381 public abstract Iterator<E> iterator();
4382 public abstract boolean contains(Object o);
4383 public abstract boolean remove(Object o);
4384
4385 private static final String oomeMsg = "Required array size too large";
4386
4387 public final Object[] toArray() {
4388 long sz = map.mappingCount();
4389 if (sz > MAX_ARRAY_SIZE)
4390 throw new OutOfMemoryError(oomeMsg);
4391 int n = (int)sz;
4392 Object[] r = new Object[n];
4393 int i = 0;
4394 for (E e : this) {
4395 if (i == n) {
4396 if (n >= MAX_ARRAY_SIZE)
4397 throw new OutOfMemoryError(oomeMsg);
4398 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4399 n = MAX_ARRAY_SIZE;
4400 else
4401 n += (n >>> 1) + 1;
4402 r = Arrays.copyOf(r, n);
4403 }
4404 r[i++] = e;
4405 }
4406 return (i == n) ? r : Arrays.copyOf(r, i);
4407 }
4408
4409 @SuppressWarnings("unchecked")
4410 public final <T> T[] toArray(T[] a) {
4411 long sz = map.mappingCount();
4412 if (sz > MAX_ARRAY_SIZE)
4413 throw new OutOfMemoryError(oomeMsg);
4414 int m = (int)sz;
4415 T[] r = (a.length >= m) ? a :
4416 (T[])java.lang.reflect.Array
4417 .newInstance(a.getClass().getComponentType(), m);
4418 int n = r.length;
4419 int i = 0;
4420 for (E e : this) {
4421 if (i == n) {
4422 if (n >= MAX_ARRAY_SIZE)
4423 throw new OutOfMemoryError(oomeMsg);
4424 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4425 n = MAX_ARRAY_SIZE;
4426 else
4427 n += (n >>> 1) + 1;
4428 r = Arrays.copyOf(r, n);
4429 }
4430 r[i++] = (T)e;
4431 }
4432 if (a == r && i < n) {
4433 r[i] = null; // null-terminate
4434 return r;
4435 }
4436 return (i == n) ? r : Arrays.copyOf(r, i);
4437 }
4438
4439 /**
4440 * Returns a string representation of this collection.
4441 * The string representation consists of the string representations
4442 * of the collection's elements in the order they are returned by
4443 * its iterator, enclosed in square brackets ({@code "[]"}).
4444 * Adjacent elements are separated by the characters {@code ", "}
4445 * (comma and space). Elements are converted to strings as by
4446 * {@link String#valueOf(Object)}.
4447 *
4448 * @return a string representation of this collection
4449 */
4450 public final String toString() {
4451 StringBuilder sb = new StringBuilder();
4452 sb.append('[');
4453 Iterator<E> it = iterator();
4454 if (it.hasNext()) {
4455 for (;;) {
4456 Object e = it.next();
4457 sb.append(e == this ? "(this Collection)" : e);
4458 if (!it.hasNext())
4459 break;
4460 sb.append(',').append(' ');
4461 }
4462 }
4463 return sb.append(']').toString();
4464 }
4465
4466 public final boolean containsAll(Collection<?> c) {
4467 if (c != this) {
4468 for (Object e : c) {
4469 if (e == null || !contains(e))
4470 return false;
4471 }
4472 }
4473 return true;
4474 }
4475
4476 public final boolean removeAll(Collection<?> c) {
4477 if (c == null) throw new NullPointerException();
4478 boolean modified = false;
4479 for (Iterator<E> it = iterator(); it.hasNext();) {
4480 if (c.contains(it.next())) {
4481 it.remove();
4482 modified = true;
4483 }
4484 }
4485 return modified;
4486 }
4487
4488 public final boolean retainAll(Collection<?> c) {
4489 if (c == null) throw new NullPointerException();
4490 boolean modified = false;
4491 for (Iterator<E> it = iterator(); it.hasNext();) {
4492 if (!c.contains(it.next())) {
4493 it.remove();
4494 modified = true;
4495 }
4496 }
4497 return modified;
4498 }
4499
4500 }
4501
4502 /**
4503 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4504 * which additions may optionally be enabled by mapping to a
4505 * common value. This class cannot be directly instantiated.
4506 * See {@link #keySet() keySet()},
4507 * {@link #keySet(Object) keySet(V)},
4508 * {@link #newKeySet() newKeySet()},
4509 * {@link #newKeySet(int) newKeySet(int)}.
4510 *
4511 * @since 1.8
4512 */
4513 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4514 implements Set<K>, java.io.Serializable {
4515 private static final long serialVersionUID = 7249069246763182397L;
4516 private final V value;
4517 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4518 super(map);
4519 this.value = value;
4520 }
4521
4522 /**
4523 * Returns the default mapped value for additions,
4524 * or {@code null} if additions are not supported.
4525 *
4526 * @return the default mapped value for additions, or {@code null}
4527 * if not supported
4528 */
4529 public V getMappedValue() { return value; }
4530
4531 /**
4532 * {@inheritDoc}
4533 * @throws NullPointerException if the specified key is null
4534 */
4535 public boolean contains(Object o) { return map.containsKey(o); }
4536
4537 /**
4538 * Removes the key from this map view, by removing the key (and its
4539 * corresponding value) from the backing map. This method does
4540 * nothing if the key is not in the map.
4541 *
4542 * @param o the key to be removed from the backing map
4543 * @return {@code true} if the backing map contained the specified key
4544 * @throws NullPointerException if the specified key is null
4545 */
4546 public boolean remove(Object o) { return map.remove(o) != null; }
4547
4548 /**
4549 * @return an iterator over the keys of the backing map
4550 */
4551 public Iterator<K> iterator() {
4552 Node<K,V>[] t;
4553 ConcurrentHashMap<K,V> m = map;
4554 int f = (t = m.table) == null ? 0 : t.length;
4555 return new KeyIterator<K,V>(t, f, 0, f, m);
4556 }
4557
4558 /**
4559 * Adds the specified key to this set view by mapping the key to
4560 * the default mapped value in the backing map, if defined.
4561 *
4562 * @param e key to be added
4563 * @return {@code true} if this set changed as a result of the call
4564 * @throws NullPointerException if the specified key is null
4565 * @throws UnsupportedOperationException if no default mapped value
4566 * for additions was provided
4567 */
4568 public boolean add(K e) {
4569 V v;
4570 if ((v = value) == null)
4571 throw new UnsupportedOperationException();
4572 return map.putVal(e, v, true) == null;
4573 }
4574
4575 /**
4576 * Adds all of the elements in the specified collection to this set,
4577 * as if by calling {@link #add} on each one.
4578 *
4579 * @param c the elements to be inserted into this set
4580 * @return {@code true} if this set changed as a result of the call
4581 * @throws NullPointerException if the collection or any of its
4582 * elements are {@code null}
4583 * @throws UnsupportedOperationException if no default mapped value
4584 * for additions was provided
4585 */
4586 public boolean addAll(Collection<? extends K> c) {
4587 boolean added = false;
4588 V v;
4589 if ((v = value) == null)
4590 throw new UnsupportedOperationException();
4591 for (K e : c) {
4592 if (map.putVal(e, v, true) == null)
4593 added = true;
4594 }
4595 return added;
4596 }
4597
4598 public int hashCode() {
4599 int h = 0;
4600 for (K e : this)
4601 h += e.hashCode();
4602 return h;
4603 }
4604
4605 public boolean equals(Object o) {
4606 Set<?> c;
4607 return ((o instanceof Set) &&
4608 ((c = (Set<?>)o) == this ||
4609 (containsAll(c) && c.containsAll(this))));
4610 }
4611
4612 public Spliterator<K> spliterator() {
4613 Node<K,V>[] t;
4614 ConcurrentHashMap<K,V> m = map;
4615 long n = m.sumCount();
4616 int f = (t = m.table) == null ? 0 : t.length;
4617 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4618 }
4619
4620 public void forEach(Consumer<? super K> action) {
4621 if (action == null) throw new NullPointerException();
4622 Node<K,V>[] t;
4623 if ((t = map.table) != null) {
4624 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4625 for (Node<K,V> p; (p = it.advance()) != null; )
4626 action.accept(p.key);
4627 }
4628 }
4629 }
4630
4631 /**
4632 * A view of a ConcurrentHashMap as a {@link Collection} of
4633 * values, in which additions are disabled. This class cannot be
4634 * directly instantiated. See {@link #values()}.
4635 */
4636 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4637 implements Collection<V>, java.io.Serializable {
4638 private static final long serialVersionUID = 2249069246763182397L;
4639 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4640 public final boolean contains(Object o) {
4641 return map.containsValue(o);
4642 }
4643
4644 public final boolean remove(Object o) {
4645 if (o != null) {
4646 for (Iterator<V> it = iterator(); it.hasNext();) {
4647 if (o.equals(it.next())) {
4648 it.remove();
4649 return true;
4650 }
4651 }
4652 }
4653 return false;
4654 }
4655
4656 public final Iterator<V> iterator() {
4657 ConcurrentHashMap<K,V> m = map;
4658 Node<K,V>[] t;
4659 int f = (t = m.table) == null ? 0 : t.length;
4660 return new ValueIterator<K,V>(t, f, 0, f, m);
4661 }
4662
4663 public final boolean add(V e) {
4664 throw new UnsupportedOperationException();
4665 }
4666 public final boolean addAll(Collection<? extends V> c) {
4667 throw new UnsupportedOperationException();
4668 }
4669
4670 public Spliterator<V> spliterator() {
4671 Node<K,V>[] t;
4672 ConcurrentHashMap<K,V> m = map;
4673 long n = m.sumCount();
4674 int f = (t = m.table) == null ? 0 : t.length;
4675 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4676 }
4677
4678 public void forEach(Consumer<? super V> action) {
4679 if (action == null) throw new NullPointerException();
4680 Node<K,V>[] t;
4681 if ((t = map.table) != null) {
4682 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4683 for (Node<K,V> p; (p = it.advance()) != null; )
4684 action.accept(p.val);
4685 }
4686 }
4687 }
4688
4689 /**
4690 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4691 * entries. This class cannot be directly instantiated. See
4692 * {@link #entrySet()}.
4693 */
4694 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4695 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4696 private static final long serialVersionUID = 2249069246763182397L;
4697 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4698
4699 public boolean contains(Object o) {
4700 Object k, v, r; Map.Entry<?,?> e;
4701 return ((o instanceof Map.Entry) &&
4702 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4703 (r = map.get(k)) != null &&
4704 (v = e.getValue()) != null &&
4705 (v == r || v.equals(r)));
4706 }
4707
4708 public boolean remove(Object o) {
4709 Object k, v; Map.Entry<?,?> e;
4710 return ((o instanceof Map.Entry) &&
4711 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4712 (v = e.getValue()) != null &&
4713 map.remove(k, v));
4714 }
4715
4716 /**
4717 * @return an iterator over the entries of the backing map
4718 */
4719 public Iterator<Map.Entry<K,V>> iterator() {
4720 ConcurrentHashMap<K,V> m = map;
4721 Node<K,V>[] t;
4722 int f = (t = m.table) == null ? 0 : t.length;
4723 return new EntryIterator<K,V>(t, f, 0, f, m);
4724 }
4725
4726 public boolean add(Entry<K,V> e) {
4727 return map.putVal(e.getKey(), e.getValue(), false) == null;
4728 }
4729
4730 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4731 boolean added = false;
4732 for (Entry<K,V> e : c) {
4733 if (add(e))
4734 added = true;
4735 }
4736 return added;
4737 }
4738
4739 public final int hashCode() {
4740 int h = 0;
4741 Node<K,V>[] t;
4742 if ((t = map.table) != null) {
4743 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4744 for (Node<K,V> p; (p = it.advance()) != null; ) {
4745 h += p.hashCode();
4746 }
4747 }
4748 return h;
4749 }
4750
4751 public final boolean equals(Object o) {
4752 Set<?> c;
4753 return ((o instanceof Set) &&
4754 ((c = (Set<?>)o) == this ||
4755 (containsAll(c) && c.containsAll(this))));
4756 }
4757
4758 public Spliterator<Map.Entry<K,V>> spliterator() {
4759 Node<K,V>[] t;
4760 ConcurrentHashMap<K,V> m = map;
4761 long n = m.sumCount();
4762 int f = (t = m.table) == null ? 0 : t.length;
4763 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4764 }
4765
4766 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4767 if (action == null) throw new NullPointerException();
4768 Node<K,V>[] t;
4769 if ((t = map.table) != null) {
4770 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4771 for (Node<K,V> p; (p = it.advance()) != null; )
4772 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4773 }
4774 }
4775
4776 }
4777
4778 // -------------------------------------------------------
4779
4780 /**
4781 * Base class for bulk tasks. Repeats some fields and code from
4782 * class Traverser, because we need to subclass CountedCompleter.
4783 */
4784 @SuppressWarnings("serial")
4785 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4786 Node<K,V>[] tab; // same as Traverser
4787 Node<K,V> next;
4788 TableStack<K,V> stack, spare;
4789 int index;
4790 int baseIndex;
4791 int baseLimit;
4792 final int baseSize;
4793 int batch; // split control
4794
4795 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4796 super(par);
4797 this.batch = b;
4798 this.index = this.baseIndex = i;
4799 if ((this.tab = t) == null)
4800 this.baseSize = this.baseLimit = 0;
4801 else if (par == null)
4802 this.baseSize = this.baseLimit = t.length;
4803 else {
4804 this.baseLimit = f;
4805 this.baseSize = par.baseSize;
4806 }
4807 }
4808
4809 /**
4810 * Same as Traverser version
4811 */
4812 final Node<K,V> advance() {
4813 Node<K,V> e;
4814 if ((e = next) != null)
4815 e = e.next;
4816 for (;;) {
4817 Node<K,V>[] t; int i, n;
4818 if (e != null)
4819 return next = e;
4820 if (baseIndex >= baseLimit || (t = tab) == null ||
4821 (n = t.length) <= (i = index) || i < 0)
4822 return next = null;
4823 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4824 if (e instanceof ForwardingNode) {
4825 tab = ((ForwardingNode<K,V>)e).nextTable;
4826 e = null;
4827 pushState(t, i, n);
4828 continue;
4829 }
4830 else if (e instanceof TreeBin)
4831 e = ((TreeBin<K,V>)e).first;
4832 else
4833 e = null;
4834 }
4835 if (stack != null)
4836 recoverState(n);
4837 else if ((index = i + baseSize) >= n)
4838 index = ++baseIndex;
4839 }
4840 }
4841
4842 private void pushState(Node<K,V>[] t, int i, int n) {
4843 TableStack<K,V> s = spare;
4844 if (s != null)
4845 spare = s.next;
4846 else
4847 s = new TableStack<K,V>();
4848 s.tab = t;
4849 s.length = n;
4850 s.index = i;
4851 s.next = stack;
4852 stack = s;
4853 }
4854
4855 private void recoverState(int n) {
4856 TableStack<K,V> s; int len;
4857 while ((s = stack) != null && (index += (len = s.length)) >= n) {
4858 n = len;
4859 index = s.index;
4860 tab = s.tab;
4861 s.tab = null;
4862 TableStack<K,V> next = s.next;
4863 s.next = spare; // save for reuse
4864 stack = next;
4865 spare = s;
4866 }
4867 if (s == null && (index += baseSize) >= n)
4868 index = ++baseIndex;
4869 }
4870 }
4871
4872 /*
4873 * Task classes. Coded in a regular but ugly format/style to
4874 * simplify checks that each variant differs in the right way from
4875 * others. The null screenings exist because compilers cannot tell
4876 * that we've already null-checked task arguments, so we force
4877 * simplest hoisted bypass to help avoid convoluted traps.
4878 */
4879 @SuppressWarnings("serial")
4880 static final class ForEachKeyTask<K,V>
4881 extends BulkTask<K,V,Void> {
4882 final Consumer<? super K> action;
4883 ForEachKeyTask
4884 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4885 Consumer<? super K> action) {
4886 super(p, b, i, f, t);
4887 this.action = action;
4888 }
4889 public final void compute() {
4890 final Consumer<? super K> action;
4891 if ((action = this.action) != null) {
4892 for (int i = baseIndex, f, h; batch > 0 &&
4893 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4894 addToPendingCount(1);
4895 new ForEachKeyTask<K,V>
4896 (this, batch >>>= 1, baseLimit = h, f, tab,
4897 action).fork();
4898 }
4899 for (Node<K,V> p; (p = advance()) != null;)
4900 action.accept(p.key);
4901 propagateCompletion();
4902 }
4903 }
4904 }
4905
4906 @SuppressWarnings("serial")
4907 static final class ForEachValueTask<K,V>
4908 extends BulkTask<K,V,Void> {
4909 final Consumer<? super V> action;
4910 ForEachValueTask
4911 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4912 Consumer<? super V> action) {
4913 super(p, b, i, f, t);
4914 this.action = action;
4915 }
4916 public final void compute() {
4917 final Consumer<? super V> action;
4918 if ((action = this.action) != null) {
4919 for (int i = baseIndex, f, h; batch > 0 &&
4920 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4921 addToPendingCount(1);
4922 new ForEachValueTask<K,V>
4923 (this, batch >>>= 1, baseLimit = h, f, tab,
4924 action).fork();
4925 }
4926 for (Node<K,V> p; (p = advance()) != null;)
4927 action.accept(p.val);
4928 propagateCompletion();
4929 }
4930 }
4931 }
4932
4933 @SuppressWarnings("serial")
4934 static final class ForEachEntryTask<K,V>
4935 extends BulkTask<K,V,Void> {
4936 final Consumer<? super Entry<K,V>> action;
4937 ForEachEntryTask
4938 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4939 Consumer<? super Entry<K,V>> action) {
4940 super(p, b, i, f, t);
4941 this.action = action;
4942 }
4943 public final void compute() {
4944 final Consumer<? super Entry<K,V>> action;
4945 if ((action = this.action) != null) {
4946 for (int i = baseIndex, f, h; batch > 0 &&
4947 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4948 addToPendingCount(1);
4949 new ForEachEntryTask<K,V>
4950 (this, batch >>>= 1, baseLimit = h, f, tab,
4951 action).fork();
4952 }
4953 for (Node<K,V> p; (p = advance()) != null; )
4954 action.accept(p);
4955 propagateCompletion();
4956 }
4957 }
4958 }
4959
4960 @SuppressWarnings("serial")
4961 static final class ForEachMappingTask<K,V>
4962 extends BulkTask<K,V,Void> {
4963 final BiConsumer<? super K, ? super V> action;
4964 ForEachMappingTask
4965 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4966 BiConsumer<? super K,? super V> action) {
4967 super(p, b, i, f, t);
4968 this.action = action;
4969 }
4970 public final void compute() {
4971 final BiConsumer<? super K, ? super V> action;
4972 if ((action = this.action) != null) {
4973 for (int i = baseIndex, f, h; batch > 0 &&
4974 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4975 addToPendingCount(1);
4976 new ForEachMappingTask<K,V>
4977 (this, batch >>>= 1, baseLimit = h, f, tab,
4978 action).fork();
4979 }
4980 for (Node<K,V> p; (p = advance()) != null; )
4981 action.accept(p.key, p.val);
4982 propagateCompletion();
4983 }
4984 }
4985 }
4986
4987 @SuppressWarnings("serial")
4988 static final class ForEachTransformedKeyTask<K,V,U>
4989 extends BulkTask<K,V,Void> {
4990 final Function<? super K, ? extends U> transformer;
4991 final Consumer<? super U> action;
4992 ForEachTransformedKeyTask
4993 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4994 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4995 super(p, b, i, f, t);
4996 this.transformer = transformer; this.action = action;
4997 }
4998 public final void compute() {
4999 final Function<? super K, ? extends U> transformer;
5000 final Consumer<? super U> action;
5001 if ((transformer = this.transformer) != null &&
5002 (action = this.action) != null) {
5003 for (int i = baseIndex, f, h; batch > 0 &&
5004 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5005 addToPendingCount(1);
5006 new ForEachTransformedKeyTask<K,V,U>
5007 (this, batch >>>= 1, baseLimit = h, f, tab,
5008 transformer, action).fork();
5009 }
5010 for (Node<K,V> p; (p = advance()) != null; ) {
5011 U u;
5012 if ((u = transformer.apply(p.key)) != null)
5013 action.accept(u);
5014 }
5015 propagateCompletion();
5016 }
5017 }
5018 }
5019
5020 @SuppressWarnings("serial")
5021 static final class ForEachTransformedValueTask<K,V,U>
5022 extends BulkTask<K,V,Void> {
5023 final Function<? super V, ? extends U> transformer;
5024 final Consumer<? super U> action;
5025 ForEachTransformedValueTask
5026 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5027 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5028 super(p, b, i, f, t);
5029 this.transformer = transformer; this.action = action;
5030 }
5031 public final void compute() {
5032 final Function<? super V, ? extends U> transformer;
5033 final Consumer<? super U> action;
5034 if ((transformer = this.transformer) != null &&
5035 (action = this.action) != null) {
5036 for (int i = baseIndex, f, h; batch > 0 &&
5037 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5038 addToPendingCount(1);
5039 new ForEachTransformedValueTask<K,V,U>
5040 (this, batch >>>= 1, baseLimit = h, f, tab,
5041 transformer, action).fork();
5042 }
5043 for (Node<K,V> p; (p = advance()) != null; ) {
5044 U u;
5045 if ((u = transformer.apply(p.val)) != null)
5046 action.accept(u);
5047 }
5048 propagateCompletion();
5049 }
5050 }
5051 }
5052
5053 @SuppressWarnings("serial")
5054 static final class ForEachTransformedEntryTask<K,V,U>
5055 extends BulkTask<K,V,Void> {
5056 final Function<Map.Entry<K,V>, ? extends U> transformer;
5057 final Consumer<? super U> action;
5058 ForEachTransformedEntryTask
5059 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5060 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5061 super(p, b, i, f, t);
5062 this.transformer = transformer; this.action = action;
5063 }
5064 public final void compute() {
5065 final Function<Map.Entry<K,V>, ? extends U> transformer;
5066 final Consumer<? super U> action;
5067 if ((transformer = this.transformer) != null &&
5068 (action = this.action) != null) {
5069 for (int i = baseIndex, f, h; batch > 0 &&
5070 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5071 addToPendingCount(1);
5072 new ForEachTransformedEntryTask<K,V,U>
5073 (this, batch >>>= 1, baseLimit = h, f, tab,
5074 transformer, action).fork();
5075 }
5076 for (Node<K,V> p; (p = advance()) != null; ) {
5077 U u;
5078 if ((u = transformer.apply(p)) != null)
5079 action.accept(u);
5080 }
5081 propagateCompletion();
5082 }
5083 }
5084 }
5085
5086 @SuppressWarnings("serial")
5087 static final class ForEachTransformedMappingTask<K,V,U>
5088 extends BulkTask<K,V,Void> {
5089 final BiFunction<? super K, ? super V, ? extends U> transformer;
5090 final Consumer<? super U> action;
5091 ForEachTransformedMappingTask
5092 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5093 BiFunction<? super K, ? super V, ? extends U> transformer,
5094 Consumer<? super U> action) {
5095 super(p, b, i, f, t);
5096 this.transformer = transformer; this.action = action;
5097 }
5098 public final void compute() {
5099 final BiFunction<? super K, ? super V, ? extends U> transformer;
5100 final Consumer<? super U> action;
5101 if ((transformer = this.transformer) != null &&
5102 (action = this.action) != null) {
5103 for (int i = baseIndex, f, h; batch > 0 &&
5104 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5105 addToPendingCount(1);
5106 new ForEachTransformedMappingTask<K,V,U>
5107 (this, batch >>>= 1, baseLimit = h, f, tab,
5108 transformer, action).fork();
5109 }
5110 for (Node<K,V> p; (p = advance()) != null; ) {
5111 U u;
5112 if ((u = transformer.apply(p.key, p.val)) != null)
5113 action.accept(u);
5114 }
5115 propagateCompletion();
5116 }
5117 }
5118 }
5119
5120 @SuppressWarnings("serial")
5121 static final class SearchKeysTask<K,V,U>
5122 extends BulkTask<K,V,U> {
5123 final Function<? super K, ? extends U> searchFunction;
5124 final AtomicReference<U> result;
5125 SearchKeysTask
5126 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5127 Function<? super K, ? extends U> searchFunction,
5128 AtomicReference<U> result) {
5129 super(p, b, i, f, t);
5130 this.searchFunction = searchFunction; this.result = result;
5131 }
5132 public final U getRawResult() { return result.get(); }
5133 public final void compute() {
5134 final Function<? super K, ? extends U> searchFunction;
5135 final AtomicReference<U> result;
5136 if ((searchFunction = this.searchFunction) != null &&
5137 (result = this.result) != null) {
5138 for (int i = baseIndex, f, h; batch > 0 &&
5139 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5140 if (result.get() != null)
5141 return;
5142 addToPendingCount(1);
5143 new SearchKeysTask<K,V,U>
5144 (this, batch >>>= 1, baseLimit = h, f, tab,
5145 searchFunction, result).fork();
5146 }
5147 while (result.get() == null) {
5148 U u;
5149 Node<K,V> p;
5150 if ((p = advance()) == null) {
5151 propagateCompletion();
5152 break;
5153 }
5154 if ((u = searchFunction.apply(p.key)) != null) {
5155 if (result.compareAndSet(null, u))
5156 quietlyCompleteRoot();
5157 break;
5158 }
5159 }
5160 }
5161 }
5162 }
5163
5164 @SuppressWarnings("serial")
5165 static final class SearchValuesTask<K,V,U>
5166 extends BulkTask<K,V,U> {
5167 final Function<? super V, ? extends U> searchFunction;
5168 final AtomicReference<U> result;
5169 SearchValuesTask
5170 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5171 Function<? super V, ? extends U> searchFunction,
5172 AtomicReference<U> result) {
5173 super(p, b, i, f, t);
5174 this.searchFunction = searchFunction; this.result = result;
5175 }
5176 public final U getRawResult() { return result.get(); }
5177 public final void compute() {
5178 final Function<? super V, ? extends U> searchFunction;
5179 final AtomicReference<U> result;
5180 if ((searchFunction = this.searchFunction) != null &&
5181 (result = this.result) != null) {
5182 for (int i = baseIndex, f, h; batch > 0 &&
5183 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5184 if (result.get() != null)
5185 return;
5186 addToPendingCount(1);
5187 new SearchValuesTask<K,V,U>
5188 (this, batch >>>= 1, baseLimit = h, f, tab,
5189 searchFunction, result).fork();
5190 }
5191 while (result.get() == null) {
5192 U u;
5193 Node<K,V> p;
5194 if ((p = advance()) == null) {
5195 propagateCompletion();
5196 break;
5197 }
5198 if ((u = searchFunction.apply(p.val)) != null) {
5199 if (result.compareAndSet(null, u))
5200 quietlyCompleteRoot();
5201 break;
5202 }
5203 }
5204 }
5205 }
5206 }
5207
5208 @SuppressWarnings("serial")
5209 static final class SearchEntriesTask<K,V,U>
5210 extends BulkTask<K,V,U> {
5211 final Function<Entry<K,V>, ? extends U> searchFunction;
5212 final AtomicReference<U> result;
5213 SearchEntriesTask
5214 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5215 Function<Entry<K,V>, ? extends U> searchFunction,
5216 AtomicReference<U> result) {
5217 super(p, b, i, f, t);
5218 this.searchFunction = searchFunction; this.result = result;
5219 }
5220 public final U getRawResult() { return result.get(); }
5221 public final void compute() {
5222 final Function<Entry<K,V>, ? extends U> searchFunction;
5223 final AtomicReference<U> result;
5224 if ((searchFunction = this.searchFunction) != null &&
5225 (result = this.result) != null) {
5226 for (int i = baseIndex, f, h; batch > 0 &&
5227 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5228 if (result.get() != null)
5229 return;
5230 addToPendingCount(1);
5231 new SearchEntriesTask<K,V,U>
5232 (this, batch >>>= 1, baseLimit = h, f, tab,
5233 searchFunction, result).fork();
5234 }
5235 while (result.get() == null) {
5236 U u;
5237 Node<K,V> p;
5238 if ((p = advance()) == null) {
5239 propagateCompletion();
5240 break;
5241 }
5242 if ((u = searchFunction.apply(p)) != null) {
5243 if (result.compareAndSet(null, u))
5244 quietlyCompleteRoot();
5245 return;
5246 }
5247 }
5248 }
5249 }
5250 }
5251
5252 @SuppressWarnings("serial")
5253 static final class SearchMappingsTask<K,V,U>
5254 extends BulkTask<K,V,U> {
5255 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5256 final AtomicReference<U> result;
5257 SearchMappingsTask
5258 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5259 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5260 AtomicReference<U> result) {
5261 super(p, b, i, f, t);
5262 this.searchFunction = searchFunction; this.result = result;
5263 }
5264 public final U getRawResult() { return result.get(); }
5265 public final void compute() {
5266 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5267 final AtomicReference<U> result;
5268 if ((searchFunction = this.searchFunction) != null &&
5269 (result = this.result) != null) {
5270 for (int i = baseIndex, f, h; batch > 0 &&
5271 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5272 if (result.get() != null)
5273 return;
5274 addToPendingCount(1);
5275 new SearchMappingsTask<K,V,U>
5276 (this, batch >>>= 1, baseLimit = h, f, tab,
5277 searchFunction, result).fork();
5278 }
5279 while (result.get() == null) {
5280 U u;
5281 Node<K,V> p;
5282 if ((p = advance()) == null) {
5283 propagateCompletion();
5284 break;
5285 }
5286 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5287 if (result.compareAndSet(null, u))
5288 quietlyCompleteRoot();
5289 break;
5290 }
5291 }
5292 }
5293 }
5294 }
5295
5296 @SuppressWarnings("serial")
5297 static final class ReduceKeysTask<K,V>
5298 extends BulkTask<K,V,K> {
5299 final BiFunction<? super K, ? super K, ? extends K> reducer;
5300 K result;
5301 ReduceKeysTask<K,V> rights, nextRight;
5302 ReduceKeysTask
5303 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5304 ReduceKeysTask<K,V> nextRight,
5305 BiFunction<? super K, ? super K, ? extends K> reducer) {
5306 super(p, b, i, f, t); this.nextRight = nextRight;
5307 this.reducer = reducer;
5308 }
5309 public final K getRawResult() { return result; }
5310 public final void compute() {
5311 final BiFunction<? super K, ? super K, ? extends K> reducer;
5312 if ((reducer = this.reducer) != null) {
5313 for (int i = baseIndex, f, h; batch > 0 &&
5314 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5315 addToPendingCount(1);
5316 (rights = new ReduceKeysTask<K,V>
5317 (this, batch >>>= 1, baseLimit = h, f, tab,
5318 rights, reducer)).fork();
5319 }
5320 K r = null;
5321 for (Node<K,V> p; (p = advance()) != null; ) {
5322 K u = p.key;
5323 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5324 }
5325 result = r;
5326 CountedCompleter<?> c;
5327 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5328 @SuppressWarnings("unchecked")
5329 ReduceKeysTask<K,V>
5330 t = (ReduceKeysTask<K,V>)c,
5331 s = t.rights;
5332 while (s != null) {
5333 K tr, sr;
5334 if ((sr = s.result) != null)
5335 t.result = (((tr = t.result) == null) ? sr :
5336 reducer.apply(tr, sr));
5337 s = t.rights = s.nextRight;
5338 }
5339 }
5340 }
5341 }
5342 }
5343
5344 @SuppressWarnings("serial")
5345 static final class ReduceValuesTask<K,V>
5346 extends BulkTask<K,V,V> {
5347 final BiFunction<? super V, ? super V, ? extends V> reducer;
5348 V result;
5349 ReduceValuesTask<K,V> rights, nextRight;
5350 ReduceValuesTask
5351 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5352 ReduceValuesTask<K,V> nextRight,
5353 BiFunction<? super V, ? super V, ? extends V> reducer) {
5354 super(p, b, i, f, t); this.nextRight = nextRight;
5355 this.reducer = reducer;
5356 }
5357 public final V getRawResult() { return result; }
5358 public final void compute() {
5359 final BiFunction<? super V, ? super V, ? extends V> reducer;
5360 if ((reducer = this.reducer) != null) {
5361 for (int i = baseIndex, f, h; batch > 0 &&
5362 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5363 addToPendingCount(1);
5364 (rights = new ReduceValuesTask<K,V>
5365 (this, batch >>>= 1, baseLimit = h, f, tab,
5366 rights, reducer)).fork();
5367 }
5368 V r = null;
5369 for (Node<K,V> p; (p = advance()) != null; ) {
5370 V v = p.val;
5371 r = (r == null) ? v : reducer.apply(r, v);
5372 }
5373 result = r;
5374 CountedCompleter<?> c;
5375 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5376 @SuppressWarnings("unchecked")
5377 ReduceValuesTask<K,V>
5378 t = (ReduceValuesTask<K,V>)c,
5379 s = t.rights;
5380 while (s != null) {
5381 V tr, sr;
5382 if ((sr = s.result) != null)
5383 t.result = (((tr = t.result) == null) ? sr :
5384 reducer.apply(tr, sr));
5385 s = t.rights = s.nextRight;
5386 }
5387 }
5388 }
5389 }
5390 }
5391
5392 @SuppressWarnings("serial")
5393 static final class ReduceEntriesTask<K,V>
5394 extends BulkTask<K,V,Map.Entry<K,V>> {
5395 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5396 Map.Entry<K,V> result;
5397 ReduceEntriesTask<K,V> rights, nextRight;
5398 ReduceEntriesTask
5399 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5400 ReduceEntriesTask<K,V> nextRight,
5401 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5402 super(p, b, i, f, t); this.nextRight = nextRight;
5403 this.reducer = reducer;
5404 }
5405 public final Map.Entry<K,V> getRawResult() { return result; }
5406 public final void compute() {
5407 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5408 if ((reducer = this.reducer) != null) {
5409 for (int i = baseIndex, f, h; batch > 0 &&
5410 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5411 addToPendingCount(1);
5412 (rights = new ReduceEntriesTask<K,V>
5413 (this, batch >>>= 1, baseLimit = h, f, tab,
5414 rights, reducer)).fork();
5415 }
5416 Map.Entry<K,V> r = null;
5417 for (Node<K,V> p; (p = advance()) != null; )
5418 r = (r == null) ? p : reducer.apply(r, p);
5419 result = r;
5420 CountedCompleter<?> c;
5421 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5422 @SuppressWarnings("unchecked")
5423 ReduceEntriesTask<K,V>
5424 t = (ReduceEntriesTask<K,V>)c,
5425 s = t.rights;
5426 while (s != null) {
5427 Map.Entry<K,V> tr, sr;
5428 if ((sr = s.result) != null)
5429 t.result = (((tr = t.result) == null) ? sr :
5430 reducer.apply(tr, sr));
5431 s = t.rights = s.nextRight;
5432 }
5433 }
5434 }
5435 }
5436 }
5437
5438 @SuppressWarnings("serial")
5439 static final class MapReduceKeysTask<K,V,U>
5440 extends BulkTask<K,V,U> {
5441 final Function<? super K, ? extends U> transformer;
5442 final BiFunction<? super U, ? super U, ? extends U> reducer;
5443 U result;
5444 MapReduceKeysTask<K,V,U> rights, nextRight;
5445 MapReduceKeysTask
5446 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5447 MapReduceKeysTask<K,V,U> nextRight,
5448 Function<? super K, ? extends U> transformer,
5449 BiFunction<? super U, ? super U, ? extends U> reducer) {
5450 super(p, b, i, f, t); this.nextRight = nextRight;
5451 this.transformer = transformer;
5452 this.reducer = reducer;
5453 }
5454 public final U getRawResult() { return result; }
5455 public final void compute() {
5456 final Function<? super K, ? extends U> transformer;
5457 final BiFunction<? super U, ? super U, ? extends U> reducer;
5458 if ((transformer = this.transformer) != null &&
5459 (reducer = this.reducer) != null) {
5460 for (int i = baseIndex, f, h; batch > 0 &&
5461 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5462 addToPendingCount(1);
5463 (rights = new MapReduceKeysTask<K,V,U>
5464 (this, batch >>>= 1, baseLimit = h, f, tab,
5465 rights, transformer, reducer)).fork();
5466 }
5467 U r = null;
5468 for (Node<K,V> p; (p = advance()) != null; ) {
5469 U u;
5470 if ((u = transformer.apply(p.key)) != null)
5471 r = (r == null) ? u : reducer.apply(r, u);
5472 }
5473 result = r;
5474 CountedCompleter<?> c;
5475 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5476 @SuppressWarnings("unchecked")
5477 MapReduceKeysTask<K,V,U>
5478 t = (MapReduceKeysTask<K,V,U>)c,
5479 s = t.rights;
5480 while (s != null) {
5481 U tr, sr;
5482 if ((sr = s.result) != null)
5483 t.result = (((tr = t.result) == null) ? sr :
5484 reducer.apply(tr, sr));
5485 s = t.rights = s.nextRight;
5486 }
5487 }
5488 }
5489 }
5490 }
5491
5492 @SuppressWarnings("serial")
5493 static final class MapReduceValuesTask<K,V,U>
5494 extends BulkTask<K,V,U> {
5495 final Function<? super V, ? extends U> transformer;
5496 final BiFunction<? super U, ? super U, ? extends U> reducer;
5497 U result;
5498 MapReduceValuesTask<K,V,U> rights, nextRight;
5499 MapReduceValuesTask
5500 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5501 MapReduceValuesTask<K,V,U> nextRight,
5502 Function<? super V, ? extends U> transformer,
5503 BiFunction<? super U, ? super U, ? extends U> reducer) {
5504 super(p, b, i, f, t); this.nextRight = nextRight;
5505 this.transformer = transformer;
5506 this.reducer = reducer;
5507 }
5508 public final U getRawResult() { return result; }
5509 public final void compute() {
5510 final Function<? super V, ? extends U> transformer;
5511 final BiFunction<? super U, ? super U, ? extends U> reducer;
5512 if ((transformer = this.transformer) != null &&
5513 (reducer = this.reducer) != null) {
5514 for (int i = baseIndex, f, h; batch > 0 &&
5515 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5516 addToPendingCount(1);
5517 (rights = new MapReduceValuesTask<K,V,U>
5518 (this, batch >>>= 1, baseLimit = h, f, tab,
5519 rights, transformer, reducer)).fork();
5520 }
5521 U r = null;
5522 for (Node<K,V> p; (p = advance()) != null; ) {
5523 U u;
5524 if ((u = transformer.apply(p.val)) != null)
5525 r = (r == null) ? u : reducer.apply(r, u);
5526 }
5527 result = r;
5528 CountedCompleter<?> c;
5529 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5530 @SuppressWarnings("unchecked")
5531 MapReduceValuesTask<K,V,U>
5532 t = (MapReduceValuesTask<K,V,U>)c,
5533 s = t.rights;
5534 while (s != null) {
5535 U tr, sr;
5536 if ((sr = s.result) != null)
5537 t.result = (((tr = t.result) == null) ? sr :
5538 reducer.apply(tr, sr));
5539 s = t.rights = s.nextRight;
5540 }
5541 }
5542 }
5543 }
5544 }
5545
5546 @SuppressWarnings("serial")
5547 static final class MapReduceEntriesTask<K,V,U>
5548 extends BulkTask<K,V,U> {
5549 final Function<Map.Entry<K,V>, ? extends U> transformer;
5550 final BiFunction<? super U, ? super U, ? extends U> reducer;
5551 U result;
5552 MapReduceEntriesTask<K,V,U> rights, nextRight;
5553 MapReduceEntriesTask
5554 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5555 MapReduceEntriesTask<K,V,U> nextRight,
5556 Function<Map.Entry<K,V>, ? extends U> transformer,
5557 BiFunction<? super U, ? super U, ? extends U> reducer) {
5558 super(p, b, i, f, t); this.nextRight = nextRight;
5559 this.transformer = transformer;
5560 this.reducer = reducer;
5561 }
5562 public final U getRawResult() { return result; }
5563 public final void compute() {
5564 final Function<Map.Entry<K,V>, ? extends U> transformer;
5565 final BiFunction<? super U, ? super U, ? extends U> reducer;
5566 if ((transformer = this.transformer) != null &&
5567 (reducer = this.reducer) != null) {
5568 for (int i = baseIndex, f, h; batch > 0 &&
5569 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5570 addToPendingCount(1);
5571 (rights = new MapReduceEntriesTask<K,V,U>
5572 (this, batch >>>= 1, baseLimit = h, f, tab,
5573 rights, transformer, reducer)).fork();
5574 }
5575 U r = null;
5576 for (Node<K,V> p; (p = advance()) != null; ) {
5577 U u;
5578 if ((u = transformer.apply(p)) != null)
5579 r = (r == null) ? u : reducer.apply(r, u);
5580 }
5581 result = r;
5582 CountedCompleter<?> c;
5583 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5584 @SuppressWarnings("unchecked")
5585 MapReduceEntriesTask<K,V,U>
5586 t = (MapReduceEntriesTask<K,V,U>)c,
5587 s = t.rights;
5588 while (s != null) {
5589 U tr, sr;
5590 if ((sr = s.result) != null)
5591 t.result = (((tr = t.result) == null) ? sr :
5592 reducer.apply(tr, sr));
5593 s = t.rights = s.nextRight;
5594 }
5595 }
5596 }
5597 }
5598 }
5599
5600 @SuppressWarnings("serial")
5601 static final class MapReduceMappingsTask<K,V,U>
5602 extends BulkTask<K,V,U> {
5603 final BiFunction<? super K, ? super V, ? extends U> transformer;
5604 final BiFunction<? super U, ? super U, ? extends U> reducer;
5605 U result;
5606 MapReduceMappingsTask<K,V,U> rights, nextRight;
5607 MapReduceMappingsTask
5608 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5609 MapReduceMappingsTask<K,V,U> nextRight,
5610 BiFunction<? super K, ? super V, ? extends U> transformer,
5611 BiFunction<? super U, ? super U, ? extends U> reducer) {
5612 super(p, b, i, f, t); this.nextRight = nextRight;
5613 this.transformer = transformer;
5614 this.reducer = reducer;
5615 }
5616 public final U getRawResult() { return result; }
5617 public final void compute() {
5618 final BiFunction<? super K, ? super V, ? extends U> transformer;
5619 final BiFunction<? super U, ? super U, ? extends U> reducer;
5620 if ((transformer = this.transformer) != null &&
5621 (reducer = this.reducer) != null) {
5622 for (int i = baseIndex, f, h; batch > 0 &&
5623 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5624 addToPendingCount(1);
5625 (rights = new MapReduceMappingsTask<K,V,U>
5626 (this, batch >>>= 1, baseLimit = h, f, tab,
5627 rights, transformer, reducer)).fork();
5628 }
5629 U r = null;
5630 for (Node<K,V> p; (p = advance()) != null; ) {
5631 U u;
5632 if ((u = transformer.apply(p.key, p.val)) != null)
5633 r = (r == null) ? u : reducer.apply(r, u);
5634 }
5635 result = r;
5636 CountedCompleter<?> c;
5637 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5638 @SuppressWarnings("unchecked")
5639 MapReduceMappingsTask<K,V,U>
5640 t = (MapReduceMappingsTask<K,V,U>)c,
5641 s = t.rights;
5642 while (s != null) {
5643 U tr, sr;
5644 if ((sr = s.result) != null)
5645 t.result = (((tr = t.result) == null) ? sr :
5646 reducer.apply(tr, sr));
5647 s = t.rights = s.nextRight;
5648 }
5649 }
5650 }
5651 }
5652 }
5653
5654 @SuppressWarnings("serial")
5655 static final class MapReduceKeysToDoubleTask<K,V>
5656 extends BulkTask<K,V,Double> {
5657 final ToDoubleFunction<? super K> transformer;
5658 final DoubleBinaryOperator reducer;
5659 final double basis;
5660 double result;
5661 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5662 MapReduceKeysToDoubleTask
5663 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5664 MapReduceKeysToDoubleTask<K,V> nextRight,
5665 ToDoubleFunction<? super K> transformer,
5666 double basis,
5667 DoubleBinaryOperator reducer) {
5668 super(p, b, i, f, t); this.nextRight = nextRight;
5669 this.transformer = transformer;
5670 this.basis = basis; this.reducer = reducer;
5671 }
5672 public final Double getRawResult() { return result; }
5673 public final void compute() {
5674 final ToDoubleFunction<? super K> transformer;
5675 final DoubleBinaryOperator reducer;
5676 if ((transformer = this.transformer) != null &&
5677 (reducer = this.reducer) != null) {
5678 double r = this.basis;
5679 for (int i = baseIndex, f, h; batch > 0 &&
5680 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5681 addToPendingCount(1);
5682 (rights = new MapReduceKeysToDoubleTask<K,V>
5683 (this, batch >>>= 1, baseLimit = h, f, tab,
5684 rights, transformer, r, reducer)).fork();
5685 }
5686 for (Node<K,V> p; (p = advance()) != null; )
5687 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5688 result = r;
5689 CountedCompleter<?> c;
5690 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5691 @SuppressWarnings("unchecked")
5692 MapReduceKeysToDoubleTask<K,V>
5693 t = (MapReduceKeysToDoubleTask<K,V>)c,
5694 s = t.rights;
5695 while (s != null) {
5696 t.result = reducer.applyAsDouble(t.result, s.result);
5697 s = t.rights = s.nextRight;
5698 }
5699 }
5700 }
5701 }
5702 }
5703
5704 @SuppressWarnings("serial")
5705 static final class MapReduceValuesToDoubleTask<K,V>
5706 extends BulkTask<K,V,Double> {
5707 final ToDoubleFunction<? super V> transformer;
5708 final DoubleBinaryOperator reducer;
5709 final double basis;
5710 double result;
5711 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5712 MapReduceValuesToDoubleTask
5713 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5714 MapReduceValuesToDoubleTask<K,V> nextRight,
5715 ToDoubleFunction<? super V> transformer,
5716 double basis,
5717 DoubleBinaryOperator reducer) {
5718 super(p, b, i, f, t); this.nextRight = nextRight;
5719 this.transformer = transformer;
5720 this.basis = basis; this.reducer = reducer;
5721 }
5722 public final Double getRawResult() { return result; }
5723 public final void compute() {
5724 final ToDoubleFunction<? super V> transformer;
5725 final DoubleBinaryOperator reducer;
5726 if ((transformer = this.transformer) != null &&
5727 (reducer = this.reducer) != null) {
5728 double r = this.basis;
5729 for (int i = baseIndex, f, h; batch > 0 &&
5730 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5731 addToPendingCount(1);
5732 (rights = new MapReduceValuesToDoubleTask<K,V>
5733 (this, batch >>>= 1, baseLimit = h, f, tab,
5734 rights, transformer, r, reducer)).fork();
5735 }
5736 for (Node<K,V> p; (p = advance()) != null; )
5737 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5738 result = r;
5739 CountedCompleter<?> c;
5740 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5741 @SuppressWarnings("unchecked")
5742 MapReduceValuesToDoubleTask<K,V>
5743 t = (MapReduceValuesToDoubleTask<K,V>)c,
5744 s = t.rights;
5745 while (s != null) {
5746 t.result = reducer.applyAsDouble(t.result, s.result);
5747 s = t.rights = s.nextRight;
5748 }
5749 }
5750 }
5751 }
5752 }
5753
5754 @SuppressWarnings("serial")
5755 static final class MapReduceEntriesToDoubleTask<K,V>
5756 extends BulkTask<K,V,Double> {
5757 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5758 final DoubleBinaryOperator reducer;
5759 final double basis;
5760 double result;
5761 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5762 MapReduceEntriesToDoubleTask
5763 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5764 MapReduceEntriesToDoubleTask<K,V> nextRight,
5765 ToDoubleFunction<Map.Entry<K,V>> transformer,
5766 double basis,
5767 DoubleBinaryOperator reducer) {
5768 super(p, b, i, f, t); this.nextRight = nextRight;
5769 this.transformer = transformer;
5770 this.basis = basis; this.reducer = reducer;
5771 }
5772 public final Double getRawResult() { return result; }
5773 public final void compute() {
5774 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5775 final DoubleBinaryOperator reducer;
5776 if ((transformer = this.transformer) != null &&
5777 (reducer = this.reducer) != null) {
5778 double r = this.basis;
5779 for (int i = baseIndex, f, h; batch > 0 &&
5780 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5781 addToPendingCount(1);
5782 (rights = new MapReduceEntriesToDoubleTask<K,V>
5783 (this, batch >>>= 1, baseLimit = h, f, tab,
5784 rights, transformer, r, reducer)).fork();
5785 }
5786 for (Node<K,V> p; (p = advance()) != null; )
5787 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5788 result = r;
5789 CountedCompleter<?> c;
5790 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5791 @SuppressWarnings("unchecked")
5792 MapReduceEntriesToDoubleTask<K,V>
5793 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5794 s = t.rights;
5795 while (s != null) {
5796 t.result = reducer.applyAsDouble(t.result, s.result);
5797 s = t.rights = s.nextRight;
5798 }
5799 }
5800 }
5801 }
5802 }
5803
5804 @SuppressWarnings("serial")
5805 static final class MapReduceMappingsToDoubleTask<K,V>
5806 extends BulkTask<K,V,Double> {
5807 final ToDoubleBiFunction<? super K, ? super V> transformer;
5808 final DoubleBinaryOperator reducer;
5809 final double basis;
5810 double result;
5811 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5812 MapReduceMappingsToDoubleTask
5813 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5814 MapReduceMappingsToDoubleTask<K,V> nextRight,
5815 ToDoubleBiFunction<? super K, ? super V> transformer,
5816 double basis,
5817 DoubleBinaryOperator reducer) {
5818 super(p, b, i, f, t); this.nextRight = nextRight;
5819 this.transformer = transformer;
5820 this.basis = basis; this.reducer = reducer;
5821 }
5822 public final Double getRawResult() { return result; }
5823 public final void compute() {
5824 final ToDoubleBiFunction<? super K, ? super V> transformer;
5825 final DoubleBinaryOperator reducer;
5826 if ((transformer = this.transformer) != null &&
5827 (reducer = this.reducer) != null) {
5828 double r = this.basis;
5829 for (int i = baseIndex, f, h; batch > 0 &&
5830 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5831 addToPendingCount(1);
5832 (rights = new MapReduceMappingsToDoubleTask<K,V>
5833 (this, batch >>>= 1, baseLimit = h, f, tab,
5834 rights, transformer, r, reducer)).fork();
5835 }
5836 for (Node<K,V> p; (p = advance()) != null; )
5837 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5838 result = r;
5839 CountedCompleter<?> c;
5840 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5841 @SuppressWarnings("unchecked")
5842 MapReduceMappingsToDoubleTask<K,V>
5843 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5844 s = t.rights;
5845 while (s != null) {
5846 t.result = reducer.applyAsDouble(t.result, s.result);
5847 s = t.rights = s.nextRight;
5848 }
5849 }
5850 }
5851 }
5852 }
5853
5854 @SuppressWarnings("serial")
5855 static final class MapReduceKeysToLongTask<K,V>
5856 extends BulkTask<K,V,Long> {
5857 final ToLongFunction<? super K> transformer;
5858 final LongBinaryOperator reducer;
5859 final long basis;
5860 long result;
5861 MapReduceKeysToLongTask<K,V> rights, nextRight;
5862 MapReduceKeysToLongTask
5863 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5864 MapReduceKeysToLongTask<K,V> nextRight,
5865 ToLongFunction<? super K> transformer,
5866 long basis,
5867 LongBinaryOperator reducer) {
5868 super(p, b, i, f, t); this.nextRight = nextRight;
5869 this.transformer = transformer;
5870 this.basis = basis; this.reducer = reducer;
5871 }
5872 public final Long getRawResult() { return result; }
5873 public final void compute() {
5874 final ToLongFunction<? super K> transformer;
5875 final LongBinaryOperator reducer;
5876 if ((transformer = this.transformer) != null &&
5877 (reducer = this.reducer) != null) {
5878 long r = this.basis;
5879 for (int i = baseIndex, f, h; batch > 0 &&
5880 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5881 addToPendingCount(1);
5882 (rights = new MapReduceKeysToLongTask<K,V>
5883 (this, batch >>>= 1, baseLimit = h, f, tab,
5884 rights, transformer, r, reducer)).fork();
5885 }
5886 for (Node<K,V> p; (p = advance()) != null; )
5887 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5888 result = r;
5889 CountedCompleter<?> c;
5890 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5891 @SuppressWarnings("unchecked")
5892 MapReduceKeysToLongTask<K,V>
5893 t = (MapReduceKeysToLongTask<K,V>)c,
5894 s = t.rights;
5895 while (s != null) {
5896 t.result = reducer.applyAsLong(t.result, s.result);
5897 s = t.rights = s.nextRight;
5898 }
5899 }
5900 }
5901 }
5902 }
5903
5904 @SuppressWarnings("serial")
5905 static final class MapReduceValuesToLongTask<K,V>
5906 extends BulkTask<K,V,Long> {
5907 final ToLongFunction<? super V> transformer;
5908 final LongBinaryOperator reducer;
5909 final long basis;
5910 long result;
5911 MapReduceValuesToLongTask<K,V> rights, nextRight;
5912 MapReduceValuesToLongTask
5913 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5914 MapReduceValuesToLongTask<K,V> nextRight,
5915 ToLongFunction<? super V> transformer,
5916 long basis,
5917 LongBinaryOperator reducer) {
5918 super(p, b, i, f, t); this.nextRight = nextRight;
5919 this.transformer = transformer;
5920 this.basis = basis; this.reducer = reducer;
5921 }
5922 public final Long getRawResult() { return result; }
5923 public final void compute() {
5924 final ToLongFunction<? super V> transformer;
5925 final LongBinaryOperator reducer;
5926 if ((transformer = this.transformer) != null &&
5927 (reducer = this.reducer) != null) {
5928 long r = this.basis;
5929 for (int i = baseIndex, f, h; batch > 0 &&
5930 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5931 addToPendingCount(1);
5932 (rights = new MapReduceValuesToLongTask<K,V>
5933 (this, batch >>>= 1, baseLimit = h, f, tab,
5934 rights, transformer, r, reducer)).fork();
5935 }
5936 for (Node<K,V> p; (p = advance()) != null; )
5937 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5938 result = r;
5939 CountedCompleter<?> c;
5940 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5941 @SuppressWarnings("unchecked")
5942 MapReduceValuesToLongTask<K,V>
5943 t = (MapReduceValuesToLongTask<K,V>)c,
5944 s = t.rights;
5945 while (s != null) {
5946 t.result = reducer.applyAsLong(t.result, s.result);
5947 s = t.rights = s.nextRight;
5948 }
5949 }
5950 }
5951 }
5952 }
5953
5954 @SuppressWarnings("serial")
5955 static final class MapReduceEntriesToLongTask<K,V>
5956 extends BulkTask<K,V,Long> {
5957 final ToLongFunction<Map.Entry<K,V>> transformer;
5958 final LongBinaryOperator reducer;
5959 final long basis;
5960 long result;
5961 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5962 MapReduceEntriesToLongTask
5963 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5964 MapReduceEntriesToLongTask<K,V> nextRight,
5965 ToLongFunction<Map.Entry<K,V>> transformer,
5966 long basis,
5967 LongBinaryOperator reducer) {
5968 super(p, b, i, f, t); this.nextRight = nextRight;
5969 this.transformer = transformer;
5970 this.basis = basis; this.reducer = reducer;
5971 }
5972 public final Long getRawResult() { return result; }
5973 public final void compute() {
5974 final ToLongFunction<Map.Entry<K,V>> transformer;
5975 final LongBinaryOperator reducer;
5976 if ((transformer = this.transformer) != null &&
5977 (reducer = this.reducer) != null) {
5978 long r = this.basis;
5979 for (int i = baseIndex, f, h; batch > 0 &&
5980 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5981 addToPendingCount(1);
5982 (rights = new MapReduceEntriesToLongTask<K,V>
5983 (this, batch >>>= 1, baseLimit = h, f, tab,
5984 rights, transformer, r, reducer)).fork();
5985 }
5986 for (Node<K,V> p; (p = advance()) != null; )
5987 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5988 result = r;
5989 CountedCompleter<?> c;
5990 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5991 @SuppressWarnings("unchecked")
5992 MapReduceEntriesToLongTask<K,V>
5993 t = (MapReduceEntriesToLongTask<K,V>)c,
5994 s = t.rights;
5995 while (s != null) {
5996 t.result = reducer.applyAsLong(t.result, s.result);
5997 s = t.rights = s.nextRight;
5998 }
5999 }
6000 }
6001 }
6002 }
6003
6004 @SuppressWarnings("serial")
6005 static final class MapReduceMappingsToLongTask<K,V>
6006 extends BulkTask<K,V,Long> {
6007 final ToLongBiFunction<? super K, ? super V> transformer;
6008 final LongBinaryOperator reducer;
6009 final long basis;
6010 long result;
6011 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6012 MapReduceMappingsToLongTask
6013 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6014 MapReduceMappingsToLongTask<K,V> nextRight,
6015 ToLongBiFunction<? super K, ? super V> transformer,
6016 long basis,
6017 LongBinaryOperator reducer) {
6018 super(p, b, i, f, t); this.nextRight = nextRight;
6019 this.transformer = transformer;
6020 this.basis = basis; this.reducer = reducer;
6021 }
6022 public final Long getRawResult() { return result; }
6023 public final void compute() {
6024 final ToLongBiFunction<? super K, ? super V> transformer;
6025 final LongBinaryOperator reducer;
6026 if ((transformer = this.transformer) != null &&
6027 (reducer = this.reducer) != null) {
6028 long r = this.basis;
6029 for (int i = baseIndex, f, h; batch > 0 &&
6030 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6031 addToPendingCount(1);
6032 (rights = new MapReduceMappingsToLongTask<K,V>
6033 (this, batch >>>= 1, baseLimit = h, f, tab,
6034 rights, transformer, r, reducer)).fork();
6035 }
6036 for (Node<K,V> p; (p = advance()) != null; )
6037 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6038 result = r;
6039 CountedCompleter<?> c;
6040 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6041 @SuppressWarnings("unchecked")
6042 MapReduceMappingsToLongTask<K,V>
6043 t = (MapReduceMappingsToLongTask<K,V>)c,
6044 s = t.rights;
6045 while (s != null) {
6046 t.result = reducer.applyAsLong(t.result, s.result);
6047 s = t.rights = s.nextRight;
6048 }
6049 }
6050 }
6051 }
6052 }
6053
6054 @SuppressWarnings("serial")
6055 static final class MapReduceKeysToIntTask<K,V>
6056 extends BulkTask<K,V,Integer> {
6057 final ToIntFunction<? super K> transformer;
6058 final IntBinaryOperator reducer;
6059 final int basis;
6060 int result;
6061 MapReduceKeysToIntTask<K,V> rights, nextRight;
6062 MapReduceKeysToIntTask
6063 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6064 MapReduceKeysToIntTask<K,V> nextRight,
6065 ToIntFunction<? super K> transformer,
6066 int basis,
6067 IntBinaryOperator reducer) {
6068 super(p, b, i, f, t); this.nextRight = nextRight;
6069 this.transformer = transformer;
6070 this.basis = basis; this.reducer = reducer;
6071 }
6072 public final Integer getRawResult() { return result; }
6073 public final void compute() {
6074 final ToIntFunction<? super K> transformer;
6075 final IntBinaryOperator reducer;
6076 if ((transformer = this.transformer) != null &&
6077 (reducer = this.reducer) != null) {
6078 int r = this.basis;
6079 for (int i = baseIndex, f, h; batch > 0 &&
6080 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6081 addToPendingCount(1);
6082 (rights = new MapReduceKeysToIntTask<K,V>
6083 (this, batch >>>= 1, baseLimit = h, f, tab,
6084 rights, transformer, r, reducer)).fork();
6085 }
6086 for (Node<K,V> p; (p = advance()) != null; )
6087 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6088 result = r;
6089 CountedCompleter<?> c;
6090 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6091 @SuppressWarnings("unchecked")
6092 MapReduceKeysToIntTask<K,V>
6093 t = (MapReduceKeysToIntTask<K,V>)c,
6094 s = t.rights;
6095 while (s != null) {
6096 t.result = reducer.applyAsInt(t.result, s.result);
6097 s = t.rights = s.nextRight;
6098 }
6099 }
6100 }
6101 }
6102 }
6103
6104 @SuppressWarnings("serial")
6105 static final class MapReduceValuesToIntTask<K,V>
6106 extends BulkTask<K,V,Integer> {
6107 final ToIntFunction<? super V> transformer;
6108 final IntBinaryOperator reducer;
6109 final int basis;
6110 int result;
6111 MapReduceValuesToIntTask<K,V> rights, nextRight;
6112 MapReduceValuesToIntTask
6113 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6114 MapReduceValuesToIntTask<K,V> nextRight,
6115 ToIntFunction<? super V> transformer,
6116 int basis,
6117 IntBinaryOperator reducer) {
6118 super(p, b, i, f, t); this.nextRight = nextRight;
6119 this.transformer = transformer;
6120 this.basis = basis; this.reducer = reducer;
6121 }
6122 public final Integer getRawResult() { return result; }
6123 public final void compute() {
6124 final ToIntFunction<? super V> transformer;
6125 final IntBinaryOperator reducer;
6126 if ((transformer = this.transformer) != null &&
6127 (reducer = this.reducer) != null) {
6128 int r = this.basis;
6129 for (int i = baseIndex, f, h; batch > 0 &&
6130 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6131 addToPendingCount(1);
6132 (rights = new MapReduceValuesToIntTask<K,V>
6133 (this, batch >>>= 1, baseLimit = h, f, tab,
6134 rights, transformer, r, reducer)).fork();
6135 }
6136 for (Node<K,V> p; (p = advance()) != null; )
6137 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6138 result = r;
6139 CountedCompleter<?> c;
6140 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6141 @SuppressWarnings("unchecked")
6142 MapReduceValuesToIntTask<K,V>
6143 t = (MapReduceValuesToIntTask<K,V>)c,
6144 s = t.rights;
6145 while (s != null) {
6146 t.result = reducer.applyAsInt(t.result, s.result);
6147 s = t.rights = s.nextRight;
6148 }
6149 }
6150 }
6151 }
6152 }
6153
6154 @SuppressWarnings("serial")
6155 static final class MapReduceEntriesToIntTask<K,V>
6156 extends BulkTask<K,V,Integer> {
6157 final ToIntFunction<Map.Entry<K,V>> transformer;
6158 final IntBinaryOperator reducer;
6159 final int basis;
6160 int result;
6161 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6162 MapReduceEntriesToIntTask
6163 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6164 MapReduceEntriesToIntTask<K,V> nextRight,
6165 ToIntFunction<Map.Entry<K,V>> transformer,
6166 int basis,
6167 IntBinaryOperator reducer) {
6168 super(p, b, i, f, t); this.nextRight = nextRight;
6169 this.transformer = transformer;
6170 this.basis = basis; this.reducer = reducer;
6171 }
6172 public final Integer getRawResult() { return result; }
6173 public final void compute() {
6174 final ToIntFunction<Map.Entry<K,V>> transformer;
6175 final IntBinaryOperator reducer;
6176 if ((transformer = this.transformer) != null &&
6177 (reducer = this.reducer) != null) {
6178 int r = this.basis;
6179 for (int i = baseIndex, f, h; batch > 0 &&
6180 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6181 addToPendingCount(1);
6182 (rights = new MapReduceEntriesToIntTask<K,V>
6183 (this, batch >>>= 1, baseLimit = h, f, tab,
6184 rights, transformer, r, reducer)).fork();
6185 }
6186 for (Node<K,V> p; (p = advance()) != null; )
6187 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6188 result = r;
6189 CountedCompleter<?> c;
6190 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6191 @SuppressWarnings("unchecked")
6192 MapReduceEntriesToIntTask<K,V>
6193 t = (MapReduceEntriesToIntTask<K,V>)c,
6194 s = t.rights;
6195 while (s != null) {
6196 t.result = reducer.applyAsInt(t.result, s.result);
6197 s = t.rights = s.nextRight;
6198 }
6199 }
6200 }
6201 }
6202 }
6203
6204 @SuppressWarnings("serial")
6205 static final class MapReduceMappingsToIntTask<K,V>
6206 extends BulkTask<K,V,Integer> {
6207 final ToIntBiFunction<? super K, ? super V> transformer;
6208 final IntBinaryOperator reducer;
6209 final int basis;
6210 int result;
6211 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6212 MapReduceMappingsToIntTask
6213 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6214 MapReduceMappingsToIntTask<K,V> nextRight,
6215 ToIntBiFunction<? super K, ? super V> transformer,
6216 int basis,
6217 IntBinaryOperator reducer) {
6218 super(p, b, i, f, t); this.nextRight = nextRight;
6219 this.transformer = transformer;
6220 this.basis = basis; this.reducer = reducer;
6221 }
6222 public final Integer getRawResult() { return result; }
6223 public final void compute() {
6224 final ToIntBiFunction<? super K, ? super V> transformer;
6225 final IntBinaryOperator reducer;
6226 if ((transformer = this.transformer) != null &&
6227 (reducer = this.reducer) != null) {
6228 int r = this.basis;
6229 for (int i = baseIndex, f, h; batch > 0 &&
6230 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6231 addToPendingCount(1);
6232 (rights = new MapReduceMappingsToIntTask<K,V>
6233 (this, batch >>>= 1, baseLimit = h, f, tab,
6234 rights, transformer, r, reducer)).fork();
6235 }
6236 for (Node<K,V> p; (p = advance()) != null; )
6237 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6238 result = r;
6239 CountedCompleter<?> c;
6240 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6241 @SuppressWarnings("unchecked")
6242 MapReduceMappingsToIntTask<K,V>
6243 t = (MapReduceMappingsToIntTask<K,V>)c,
6244 s = t.rights;
6245 while (s != null) {
6246 t.result = reducer.applyAsInt(t.result, s.result);
6247 s = t.rights = s.nextRight;
6248 }
6249 }
6250 }
6251 }
6252 }
6253
6254 // Unsafe mechanics
6255 private static final sun.misc.Unsafe U;
6256 private static final long SIZECTL;
6257 private static final long TRANSFERINDEX;
6258 private static final long BASECOUNT;
6259 private static final long CELLSBUSY;
6260 private static final long CELLVALUE;
6261 private static final long ABASE;
6262 private static final int ASHIFT;
6263
6264 static {
6265 try {
6266 U = sun.misc.Unsafe.getUnsafe();
6267 Class<?> k = ConcurrentHashMap.class;
6268 SIZECTL = U.objectFieldOffset
6269 (k.getDeclaredField("sizeCtl"));
6270 TRANSFERINDEX = U.objectFieldOffset
6271 (k.getDeclaredField("transferIndex"));
6272 BASECOUNT = U.objectFieldOffset
6273 (k.getDeclaredField("baseCount"));
6274 CELLSBUSY = U.objectFieldOffset
6275 (k.getDeclaredField("cellsBusy"));
6276 Class<?> ck = CounterCell.class;
6277 CELLVALUE = U.objectFieldOffset
6278 (ck.getDeclaredField("value"));
6279 Class<?> ak = Node[].class;
6280 ABASE = U.arrayBaseOffset(ak);
6281 int scale = U.arrayIndexScale(ak);
6282 if ((scale & (scale - 1)) != 0)
6283 throw new Error("data type scale not a power of two");
6284 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6285 } catch (ReflectiveOperationException e) {
6286 throw new Error(e);
6287 }
6288 }
6289 }