ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.264
Committed: Sun Jan 4 09:15:11 2015 UTC (9 years, 4 months ago) by jsr166
Branch: MAIN
Changes since 1.263: +13 -17 lines
Log Message:
standardize Unsafe mechanics; slightly smaller bytecode

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.io.Serializable;
11 import java.lang.reflect.ParameterizedType;
12 import java.lang.reflect.Type;
13 import java.util.AbstractMap;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Enumeration;
17 import java.util.HashMap;
18 import java.util.Hashtable;
19 import java.util.Iterator;
20 import java.util.Map;
21 import java.util.NoSuchElementException;
22 import java.util.Set;
23 import java.util.Spliterator;
24 import java.util.concurrent.atomic.AtomicReference;
25 import java.util.concurrent.locks.LockSupport;
26 import java.util.concurrent.locks.ReentrantLock;
27 import java.util.function.BiConsumer;
28 import java.util.function.BiFunction;
29 import java.util.function.Consumer;
30 import java.util.function.DoubleBinaryOperator;
31 import java.util.function.Function;
32 import java.util.function.IntBinaryOperator;
33 import java.util.function.LongBinaryOperator;
34 import java.util.function.ToDoubleBiFunction;
35 import java.util.function.ToDoubleFunction;
36 import java.util.function.ToIntBiFunction;
37 import java.util.function.ToIntFunction;
38 import java.util.function.ToLongBiFunction;
39 import java.util.function.ToLongFunction;
40 import java.util.stream.Stream;
41
42 /**
43 * A hash table supporting full concurrency of retrievals and
44 * high expected concurrency for updates. This class obeys the
45 * same functional specification as {@link java.util.Hashtable}, and
46 * includes versions of methods corresponding to each method of
47 * {@code Hashtable}. However, even though all operations are
48 * thread-safe, retrieval operations do <em>not</em> entail locking,
49 * and there is <em>not</em> any support for locking the entire table
50 * in a way that prevents all access. This class is fully
51 * interoperable with {@code Hashtable} in programs that rely on its
52 * thread safety but not on its synchronization details.
53 *
54 * <p>Retrieval operations (including {@code get}) generally do not
55 * block, so may overlap with update operations (including {@code put}
56 * and {@code remove}). Retrievals reflect the results of the most
57 * recently <em>completed</em> update operations holding upon their
58 * onset. (More formally, an update operation for a given key bears a
59 * <em>happens-before</em> relation with any (non-null) retrieval for
60 * that key reporting the updated value.) For aggregate operations
61 * such as {@code putAll} and {@code clear}, concurrent retrievals may
62 * reflect insertion or removal of only some entries. Similarly,
63 * Iterators, Spliterators and Enumerations return elements reflecting the
64 * state of the hash table at some point at or since the creation of the
65 * iterator/enumeration. They do <em>not</em> throw {@link
66 * java.util.ConcurrentModificationException ConcurrentModificationException}.
67 * However, iterators are designed to be used by only one thread at a time.
68 * Bear in mind that the results of aggregate status methods including
69 * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
70 * useful only when a map is not undergoing concurrent updates in other threads.
71 * Otherwise the results of these methods reflect transient states
72 * that may be adequate for monitoring or estimation purposes, but not
73 * for program control.
74 *
75 * <p>The table is dynamically expanded when there are too many
76 * collisions (i.e., keys that have distinct hash codes but fall into
77 * the same slot modulo the table size), with the expected average
78 * effect of maintaining roughly two bins per mapping (corresponding
79 * to a 0.75 load factor threshold for resizing). There may be much
80 * variance around this average as mappings are added and removed, but
81 * overall, this maintains a commonly accepted time/space tradeoff for
82 * hash tables. However, resizing this or any other kind of hash
83 * table may be a relatively slow operation. When possible, it is a
84 * good idea to provide a size estimate as an optional {@code
85 * initialCapacity} constructor argument. An additional optional
86 * {@code loadFactor} constructor argument provides a further means of
87 * customizing initial table capacity by specifying the table density
88 * to be used in calculating the amount of space to allocate for the
89 * given number of elements. Also, for compatibility with previous
90 * versions of this class, constructors may optionally specify an
91 * expected {@code concurrencyLevel} as an additional hint for
92 * internal sizing. Note that using many keys with exactly the same
93 * {@code hashCode()} is a sure way to slow down performance of any
94 * hash table. To ameliorate impact, when keys are {@link Comparable},
95 * this class may use comparison order among keys to help break ties.
96 *
97 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
98 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
99 * (using {@link #keySet(Object)} when only keys are of interest, and the
100 * mapped values are (perhaps transiently) not used or all take the
101 * same mapping value.
102 *
103 * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
104 * form of histogram or multiset) by using {@link
105 * java.util.concurrent.atomic.LongAdder} values and initializing via
106 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
107 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
108 * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
109 *
110 * <p>This class and its views and iterators implement all of the
111 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
112 * interfaces.
113 *
114 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
115 * does <em>not</em> allow {@code null} to be used as a key or value.
116 *
117 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
118 * operations that, unlike most {@link Stream} methods, are designed
119 * to be safely, and often sensibly, applied even with maps that are
120 * being concurrently updated by other threads; for example, when
121 * computing a snapshot summary of the values in a shared registry.
122 * There are three kinds of operation, each with four forms, accepting
123 * functions with Keys, Values, Entries, and (Key, Value) arguments
124 * and/or return values. Because the elements of a ConcurrentHashMap
125 * are not ordered in any particular way, and may be processed in
126 * different orders in different parallel executions, the correctness
127 * of supplied functions should not depend on any ordering, or on any
128 * other objects or values that may transiently change while
129 * computation is in progress; and except for forEach actions, should
130 * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
131 * objects do not support method {@code setValue}.
132 *
133 * <ul>
134 * <li> forEach: Perform a given action on each element.
135 * A variant form applies a given transformation on each element
136 * before performing the action.</li>
137 *
138 * <li> search: Return the first available non-null result of
139 * applying a given function on each element; skipping further
140 * search when a result is found.</li>
141 *
142 * <li> reduce: Accumulate each element. The supplied reduction
143 * function cannot rely on ordering (more formally, it should be
144 * both associative and commutative). There are five variants:
145 *
146 * <ul>
147 *
148 * <li> Plain reductions. (There is not a form of this method for
149 * (key, value) function arguments since there is no corresponding
150 * return type.)</li>
151 *
152 * <li> Mapped reductions that accumulate the results of a given
153 * function applied to each element.</li>
154 *
155 * <li> Reductions to scalar doubles, longs, and ints, using a
156 * given basis value.</li>
157 *
158 * </ul>
159 * </li>
160 * </ul>
161 *
162 * <p>These bulk operations accept a {@code parallelismThreshold}
163 * argument. Methods proceed sequentially if the current map size is
164 * estimated to be less than the given threshold. Using a value of
165 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
166 * of {@code 1} results in maximal parallelism by partitioning into
167 * enough subtasks to fully utilize the {@link
168 * ForkJoinPool#commonPool()} that is used for all parallel
169 * computations. Normally, you would initially choose one of these
170 * extreme values, and then measure performance of using in-between
171 * values that trade off overhead versus throughput.
172 *
173 * <p>The concurrency properties of bulk operations follow
174 * from those of ConcurrentHashMap: Any non-null result returned
175 * from {@code get(key)} and related access methods bears a
176 * happens-before relation with the associated insertion or
177 * update. The result of any bulk operation reflects the
178 * composition of these per-element relations (but is not
179 * necessarily atomic with respect to the map as a whole unless it
180 * is somehow known to be quiescent). Conversely, because keys
181 * and values in the map are never null, null serves as a reliable
182 * atomic indicator of the current lack of any result. To
183 * maintain this property, null serves as an implicit basis for
184 * all non-scalar reduction operations. For the double, long, and
185 * int versions, the basis should be one that, when combined with
186 * any other value, returns that other value (more formally, it
187 * should be the identity element for the reduction). Most common
188 * reductions have these properties; for example, computing a sum
189 * with basis 0 or a minimum with basis MAX_VALUE.
190 *
191 * <p>Search and transformation functions provided as arguments
192 * should similarly return null to indicate the lack of any result
193 * (in which case it is not used). In the case of mapped
194 * reductions, this also enables transformations to serve as
195 * filters, returning null (or, in the case of primitive
196 * specializations, the identity basis) if the element should not
197 * be combined. You can create compound transformations and
198 * filterings by composing them yourself under this "null means
199 * there is nothing there now" rule before using them in search or
200 * reduce operations.
201 *
202 * <p>Methods accepting and/or returning Entry arguments maintain
203 * key-value associations. They may be useful for example when
204 * finding the key for the greatest value. Note that "plain" Entry
205 * arguments can be supplied using {@code new
206 * AbstractMap.SimpleEntry(k,v)}.
207 *
208 * <p>Bulk operations may complete abruptly, throwing an
209 * exception encountered in the application of a supplied
210 * function. Bear in mind when handling such exceptions that other
211 * concurrently executing functions could also have thrown
212 * exceptions, or would have done so if the first exception had
213 * not occurred.
214 *
215 * <p>Speedups for parallel compared to sequential forms are common
216 * but not guaranteed. Parallel operations involving brief functions
217 * on small maps may execute more slowly than sequential forms if the
218 * underlying work to parallelize the computation is more expensive
219 * than the computation itself. Similarly, parallelization may not
220 * lead to much actual parallelism if all processors are busy
221 * performing unrelated tasks.
222 *
223 * <p>All arguments to all task methods must be non-null.
224 *
225 * <p>This class is a member of the
226 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
227 * Java Collections Framework</a>.
228 *
229 * @since 1.5
230 * @author Doug Lea
231 * @param <K> the type of keys maintained by this map
232 * @param <V> the type of mapped values
233 */
234 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
235 implements ConcurrentMap<K,V>, Serializable {
236 private static final long serialVersionUID = 7249069246763182397L;
237
238 /*
239 * Overview:
240 *
241 * The primary design goal of this hash table is to maintain
242 * concurrent readability (typically method get(), but also
243 * iterators and related methods) while minimizing update
244 * contention. Secondary goals are to keep space consumption about
245 * the same or better than java.util.HashMap, and to support high
246 * initial insertion rates on an empty table by many threads.
247 *
248 * This map usually acts as a binned (bucketed) hash table. Each
249 * key-value mapping is held in a Node. Most nodes are instances
250 * of the basic Node class with hash, key, value, and next
251 * fields. However, various subclasses exist: TreeNodes are
252 * arranged in balanced trees, not lists. TreeBins hold the roots
253 * of sets of TreeNodes. ForwardingNodes are placed at the heads
254 * of bins during resizing. ReservationNodes are used as
255 * placeholders while establishing values in computeIfAbsent and
256 * related methods. The types TreeBin, ForwardingNode, and
257 * ReservationNode do not hold normal user keys, values, or
258 * hashes, and are readily distinguishable during search etc
259 * because they have negative hash fields and null key and value
260 * fields. (These special nodes are either uncommon or transient,
261 * so the impact of carrying around some unused fields is
262 * insignificant.)
263 *
264 * The table is lazily initialized to a power-of-two size upon the
265 * first insertion. Each bin in the table normally contains a
266 * list of Nodes (most often, the list has only zero or one Node).
267 * Table accesses require volatile/atomic reads, writes, and
268 * CASes. Because there is no other way to arrange this without
269 * adding further indirections, we use intrinsics
270 * (sun.misc.Unsafe) operations.
271 *
272 * We use the top (sign) bit of Node hash fields for control
273 * purposes -- it is available anyway because of addressing
274 * constraints. Nodes with negative hash fields are specially
275 * handled or ignored in map methods.
276 *
277 * Insertion (via put or its variants) of the first node in an
278 * empty bin is performed by just CASing it to the bin. This is
279 * by far the most common case for put operations under most
280 * key/hash distributions. Other update operations (insert,
281 * delete, and replace) require locks. We do not want to waste
282 * the space required to associate a distinct lock object with
283 * each bin, so instead use the first node of a bin list itself as
284 * a lock. Locking support for these locks relies on builtin
285 * "synchronized" monitors.
286 *
287 * Using the first node of a list as a lock does not by itself
288 * suffice though: When a node is locked, any update must first
289 * validate that it is still the first node after locking it, and
290 * retry if not. Because new nodes are always appended to lists,
291 * once a node is first in a bin, it remains first until deleted
292 * or the bin becomes invalidated (upon resizing).
293 *
294 * The main disadvantage of per-bin locks is that other update
295 * operations on other nodes in a bin list protected by the same
296 * lock can stall, for example when user equals() or mapping
297 * functions take a long time. However, statistically, under
298 * random hash codes, this is not a common problem. Ideally, the
299 * frequency of nodes in bins follows a Poisson distribution
300 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
301 * parameter of about 0.5 on average, given the resizing threshold
302 * of 0.75, although with a large variance because of resizing
303 * granularity. Ignoring variance, the expected occurrences of
304 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
305 * first values are:
306 *
307 * 0: 0.60653066
308 * 1: 0.30326533
309 * 2: 0.07581633
310 * 3: 0.01263606
311 * 4: 0.00157952
312 * 5: 0.00015795
313 * 6: 0.00001316
314 * 7: 0.00000094
315 * 8: 0.00000006
316 * more: less than 1 in ten million
317 *
318 * Lock contention probability for two threads accessing distinct
319 * elements is roughly 1 / (8 * #elements) under random hashes.
320 *
321 * Actual hash code distributions encountered in practice
322 * sometimes deviate significantly from uniform randomness. This
323 * includes the case when N > (1<<30), so some keys MUST collide.
324 * Similarly for dumb or hostile usages in which multiple keys are
325 * designed to have identical hash codes or ones that differs only
326 * in masked-out high bits. So we use a secondary strategy that
327 * applies when the number of nodes in a bin exceeds a
328 * threshold. These TreeBins use a balanced tree to hold nodes (a
329 * specialized form of red-black trees), bounding search time to
330 * O(log N). Each search step in a TreeBin is at least twice as
331 * slow as in a regular list, but given that N cannot exceed
332 * (1<<64) (before running out of addresses) this bounds search
333 * steps, lock hold times, etc, to reasonable constants (roughly
334 * 100 nodes inspected per operation worst case) so long as keys
335 * are Comparable (which is very common -- String, Long, etc).
336 * TreeBin nodes (TreeNodes) also maintain the same "next"
337 * traversal pointers as regular nodes, so can be traversed in
338 * iterators in the same way.
339 *
340 * The table is resized when occupancy exceeds a percentage
341 * threshold (nominally, 0.75, but see below). Any thread
342 * noticing an overfull bin may assist in resizing after the
343 * initiating thread allocates and sets up the replacement array.
344 * However, rather than stalling, these other threads may proceed
345 * with insertions etc. The use of TreeBins shields us from the
346 * worst case effects of overfilling while resizes are in
347 * progress. Resizing proceeds by transferring bins, one by one,
348 * from the table to the next table. However, threads claim small
349 * blocks of indices to transfer (via field transferIndex) before
350 * doing so, reducing contention. A generation stamp in field
351 * sizeCtl ensures that resizings do not overlap. Because we are
352 * using power-of-two expansion, the elements from each bin must
353 * either stay at same index, or move with a power of two
354 * offset. We eliminate unnecessary node creation by catching
355 * cases where old nodes can be reused because their next fields
356 * won't change. On average, only about one-sixth of them need
357 * cloning when a table doubles. The nodes they replace will be
358 * garbage collectable as soon as they are no longer referenced by
359 * any reader thread that may be in the midst of concurrently
360 * traversing table. Upon transfer, the old table bin contains
361 * only a special forwarding node (with hash field "MOVED") that
362 * contains the next table as its key. On encountering a
363 * forwarding node, access and update operations restart, using
364 * the new table.
365 *
366 * Each bin transfer requires its bin lock, which can stall
367 * waiting for locks while resizing. However, because other
368 * threads can join in and help resize rather than contend for
369 * locks, average aggregate waits become shorter as resizing
370 * progresses. The transfer operation must also ensure that all
371 * accessible bins in both the old and new table are usable by any
372 * traversal. This is arranged in part by proceeding from the
373 * last bin (table.length - 1) up towards the first. Upon seeing
374 * a forwarding node, traversals (see class Traverser) arrange to
375 * move to the new table without revisiting nodes. To ensure that
376 * no intervening nodes are skipped even when moved out of order,
377 * a stack (see class TableStack) is created on first encounter of
378 * a forwarding node during a traversal, to maintain its place if
379 * later processing the current table. The need for these
380 * save/restore mechanics is relatively rare, but when one
381 * forwarding node is encountered, typically many more will be.
382 * So Traversers use a simple caching scheme to avoid creating so
383 * many new TableStack nodes. (Thanks to Peter Levart for
384 * suggesting use of a stack here.)
385 *
386 * The traversal scheme also applies to partial traversals of
387 * ranges of bins (via an alternate Traverser constructor)
388 * to support partitioned aggregate operations. Also, read-only
389 * operations give up if ever forwarded to a null table, which
390 * provides support for shutdown-style clearing, which is also not
391 * currently implemented.
392 *
393 * Lazy table initialization minimizes footprint until first use,
394 * and also avoids resizings when the first operation is from a
395 * putAll, constructor with map argument, or deserialization.
396 * These cases attempt to override the initial capacity settings,
397 * but harmlessly fail to take effect in cases of races.
398 *
399 * The element count is maintained using a specialization of
400 * LongAdder. We need to incorporate a specialization rather than
401 * just use a LongAdder in order to access implicit
402 * contention-sensing that leads to creation of multiple
403 * CounterCells. The counter mechanics avoid contention on
404 * updates but can encounter cache thrashing if read too
405 * frequently during concurrent access. To avoid reading so often,
406 * resizing under contention is attempted only upon adding to a
407 * bin already holding two or more nodes. Under uniform hash
408 * distributions, the probability of this occurring at threshold
409 * is around 13%, meaning that only about 1 in 8 puts check
410 * threshold (and after resizing, many fewer do so).
411 *
412 * TreeBins use a special form of comparison for search and
413 * related operations (which is the main reason we cannot use
414 * existing collections such as TreeMaps). TreeBins contain
415 * Comparable elements, but may contain others, as well as
416 * elements that are Comparable but not necessarily Comparable for
417 * the same T, so we cannot invoke compareTo among them. To handle
418 * this, the tree is ordered primarily by hash value, then by
419 * Comparable.compareTo order if applicable. On lookup at a node,
420 * if elements are not comparable or compare as 0 then both left
421 * and right children may need to be searched in the case of tied
422 * hash values. (This corresponds to the full list search that
423 * would be necessary if all elements were non-Comparable and had
424 * tied hashes.) On insertion, to keep a total ordering (or as
425 * close as is required here) across rebalancings, we compare
426 * classes and identityHashCodes as tie-breakers. The red-black
427 * balancing code is updated from pre-jdk-collections
428 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
429 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
430 * Algorithms" (CLR).
431 *
432 * TreeBins also require an additional locking mechanism. While
433 * list traversal is always possible by readers even during
434 * updates, tree traversal is not, mainly because of tree-rotations
435 * that may change the root node and/or its linkages. TreeBins
436 * include a simple read-write lock mechanism parasitic on the
437 * main bin-synchronization strategy: Structural adjustments
438 * associated with an insertion or removal are already bin-locked
439 * (and so cannot conflict with other writers) but must wait for
440 * ongoing readers to finish. Since there can be only one such
441 * waiter, we use a simple scheme using a single "waiter" field to
442 * block writers. However, readers need never block. If the root
443 * lock is held, they proceed along the slow traversal path (via
444 * next-pointers) until the lock becomes available or the list is
445 * exhausted, whichever comes first. These cases are not fast, but
446 * maximize aggregate expected throughput.
447 *
448 * Maintaining API and serialization compatibility with previous
449 * versions of this class introduces several oddities. Mainly: We
450 * leave untouched but unused constructor arguments refering to
451 * concurrencyLevel. We accept a loadFactor constructor argument,
452 * but apply it only to initial table capacity (which is the only
453 * time that we can guarantee to honor it.) We also declare an
454 * unused "Segment" class that is instantiated in minimal form
455 * only when serializing.
456 *
457 * Also, solely for compatibility with previous versions of this
458 * class, it extends AbstractMap, even though all of its methods
459 * are overridden, so it is just useless baggage.
460 *
461 * This file is organized to make things a little easier to follow
462 * while reading than they might otherwise: First the main static
463 * declarations and utilities, then fields, then main public
464 * methods (with a few factorings of multiple public methods into
465 * internal ones), then sizing methods, trees, traversers, and
466 * bulk operations.
467 */
468
469 /* ---------------- Constants -------------- */
470
471 /**
472 * The largest possible table capacity. This value must be
473 * exactly 1<<30 to stay within Java array allocation and indexing
474 * bounds for power of two table sizes, and is further required
475 * because the top two bits of 32bit hash fields are used for
476 * control purposes.
477 */
478 private static final int MAXIMUM_CAPACITY = 1 << 30;
479
480 /**
481 * The default initial table capacity. Must be a power of 2
482 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
483 */
484 private static final int DEFAULT_CAPACITY = 16;
485
486 /**
487 * The largest possible (non-power of two) array size.
488 * Needed by toArray and related methods.
489 */
490 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
491
492 /**
493 * The default concurrency level for this table. Unused but
494 * defined for compatibility with previous versions of this class.
495 */
496 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
497
498 /**
499 * The load factor for this table. Overrides of this value in
500 * constructors affect only the initial table capacity. The
501 * actual floating point value isn't normally used -- it is
502 * simpler to use expressions such as {@code n - (n >>> 2)} for
503 * the associated resizing threshold.
504 */
505 private static final float LOAD_FACTOR = 0.75f;
506
507 /**
508 * The bin count threshold for using a tree rather than list for a
509 * bin. Bins are converted to trees when adding an element to a
510 * bin with at least this many nodes. The value must be greater
511 * than 2, and should be at least 8 to mesh with assumptions in
512 * tree removal about conversion back to plain bins upon
513 * shrinkage.
514 */
515 static final int TREEIFY_THRESHOLD = 8;
516
517 /**
518 * The bin count threshold for untreeifying a (split) bin during a
519 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
520 * most 6 to mesh with shrinkage detection under removal.
521 */
522 static final int UNTREEIFY_THRESHOLD = 6;
523
524 /**
525 * The smallest table capacity for which bins may be treeified.
526 * (Otherwise the table is resized if too many nodes in a bin.)
527 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
528 * conflicts between resizing and treeification thresholds.
529 */
530 static final int MIN_TREEIFY_CAPACITY = 64;
531
532 /**
533 * Minimum number of rebinnings per transfer step. Ranges are
534 * subdivided to allow multiple resizer threads. This value
535 * serves as a lower bound to avoid resizers encountering
536 * excessive memory contention. The value should be at least
537 * DEFAULT_CAPACITY.
538 */
539 private static final int MIN_TRANSFER_STRIDE = 16;
540
541 /**
542 * The number of bits used for generation stamp in sizeCtl.
543 * Must be at least 6 for 32bit arrays.
544 */
545 private static int RESIZE_STAMP_BITS = 16;
546
547 /**
548 * The maximum number of threads that can help resize.
549 * Must fit in 32 - RESIZE_STAMP_BITS bits.
550 */
551 private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
552
553 /**
554 * The bit shift for recording size stamp in sizeCtl.
555 */
556 private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
557
558 /*
559 * Encodings for Node hash fields. See above for explanation.
560 */
561 static final int MOVED = -1; // hash for forwarding nodes
562 static final int TREEBIN = -2; // hash for roots of trees
563 static final int RESERVED = -3; // hash for transient reservations
564 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
565
566 /** Number of CPUS, to place bounds on some sizings */
567 static final int NCPU = Runtime.getRuntime().availableProcessors();
568
569 /** For serialization compatibility. */
570 private static final ObjectStreamField[] serialPersistentFields = {
571 new ObjectStreamField("segments", Segment[].class),
572 new ObjectStreamField("segmentMask", Integer.TYPE),
573 new ObjectStreamField("segmentShift", Integer.TYPE)
574 };
575
576 /* ---------------- Nodes -------------- */
577
578 /**
579 * Key-value entry. This class is never exported out as a
580 * user-mutable Map.Entry (i.e., one supporting setValue; see
581 * MapEntry below), but can be used for read-only traversals used
582 * in bulk tasks. Subclasses of Node with a negative hash field
583 * are special, and contain null keys and values (but are never
584 * exported). Otherwise, keys and vals are never null.
585 */
586 static class Node<K,V> implements Map.Entry<K,V> {
587 final int hash;
588 final K key;
589 volatile V val;
590 volatile Node<K,V> next;
591
592 Node(int hash, K key, V val, Node<K,V> next) {
593 this.hash = hash;
594 this.key = key;
595 this.val = val;
596 this.next = next;
597 }
598
599 public final K getKey() { return key; }
600 public final V getValue() { return val; }
601 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
602 public final String toString(){ return key + "=" + val; }
603 public final V setValue(V value) {
604 throw new UnsupportedOperationException();
605 }
606
607 public final boolean equals(Object o) {
608 Object k, v, u; Map.Entry<?,?> e;
609 return ((o instanceof Map.Entry) &&
610 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
611 (v = e.getValue()) != null &&
612 (k == key || k.equals(key)) &&
613 (v == (u = val) || v.equals(u)));
614 }
615
616 /**
617 * Virtualized support for map.get(); overridden in subclasses.
618 */
619 Node<K,V> find(int h, Object k) {
620 Node<K,V> e = this;
621 if (k != null) {
622 do {
623 K ek;
624 if (e.hash == h &&
625 ((ek = e.key) == k || (ek != null && k.equals(ek))))
626 return e;
627 } while ((e = e.next) != null);
628 }
629 return null;
630 }
631 }
632
633 /* ---------------- Static utilities -------------- */
634
635 /**
636 * Spreads (XORs) higher bits of hash to lower and also forces top
637 * bit to 0. Because the table uses power-of-two masking, sets of
638 * hashes that vary only in bits above the current mask will
639 * always collide. (Among known examples are sets of Float keys
640 * holding consecutive whole numbers in small tables.) So we
641 * apply a transform that spreads the impact of higher bits
642 * downward. There is a tradeoff between speed, utility, and
643 * quality of bit-spreading. Because many common sets of hashes
644 * are already reasonably distributed (so don't benefit from
645 * spreading), and because we use trees to handle large sets of
646 * collisions in bins, we just XOR some shifted bits in the
647 * cheapest possible way to reduce systematic lossage, as well as
648 * to incorporate impact of the highest bits that would otherwise
649 * never be used in index calculations because of table bounds.
650 */
651 static final int spread(int h) {
652 return (h ^ (h >>> 16)) & HASH_BITS;
653 }
654
655 /**
656 * Returns a power of two table size for the given desired capacity.
657 * See Hackers Delight, sec 3.2
658 */
659 private static final int tableSizeFor(int c) {
660 int n = c - 1;
661 n |= n >>> 1;
662 n |= n >>> 2;
663 n |= n >>> 4;
664 n |= n >>> 8;
665 n |= n >>> 16;
666 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
667 }
668
669 /**
670 * Returns x's Class if it is of the form "class C implements
671 * Comparable<C>", else null.
672 */
673 static Class<?> comparableClassFor(Object x) {
674 if (x instanceof Comparable) {
675 Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
676 if ((c = x.getClass()) == String.class) // bypass checks
677 return c;
678 if ((ts = c.getGenericInterfaces()) != null) {
679 for (int i = 0; i < ts.length; ++i) {
680 if (((t = ts[i]) instanceof ParameterizedType) &&
681 ((p = (ParameterizedType)t).getRawType() ==
682 Comparable.class) &&
683 (as = p.getActualTypeArguments()) != null &&
684 as.length == 1 && as[0] == c) // type arg is c
685 return c;
686 }
687 }
688 }
689 return null;
690 }
691
692 /**
693 * Returns k.compareTo(x) if x matches kc (k's screened comparable
694 * class), else 0.
695 */
696 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
697 static int compareComparables(Class<?> kc, Object k, Object x) {
698 return (x == null || x.getClass() != kc ? 0 :
699 ((Comparable)k).compareTo(x));
700 }
701
702 /* ---------------- Table element access -------------- */
703
704 /*
705 * Volatile access methods are used for table elements as well as
706 * elements of in-progress next table while resizing. All uses of
707 * the tab arguments must be null checked by callers. All callers
708 * also paranoically precheck that tab's length is not zero (or an
709 * equivalent check), thus ensuring that any index argument taking
710 * the form of a hash value anded with (length - 1) is a valid
711 * index. Note that, to be correct wrt arbitrary concurrency
712 * errors by users, these checks must operate on local variables,
713 * which accounts for some odd-looking inline assignments below.
714 * Note that calls to setTabAt always occur within locked regions,
715 * and so in principle require only release ordering, not
716 * full volatile semantics, but are currently coded as volatile
717 * writes to be conservative.
718 */
719
720 @SuppressWarnings("unchecked")
721 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
722 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
723 }
724
725 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
726 Node<K,V> c, Node<K,V> v) {
727 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
728 }
729
730 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
731 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
732 }
733
734 /* ---------------- Fields -------------- */
735
736 /**
737 * The array of bins. Lazily initialized upon first insertion.
738 * Size is always a power of two. Accessed directly by iterators.
739 */
740 transient volatile Node<K,V>[] table;
741
742 /**
743 * The next table to use; non-null only while resizing.
744 */
745 private transient volatile Node<K,V>[] nextTable;
746
747 /**
748 * Base counter value, used mainly when there is no contention,
749 * but also as a fallback during table initialization
750 * races. Updated via CAS.
751 */
752 private transient volatile long baseCount;
753
754 /**
755 * Table initialization and resizing control. When negative, the
756 * table is being initialized or resized: -1 for initialization,
757 * else -(1 + the number of active resizing threads). Otherwise,
758 * when table is null, holds the initial table size to use upon
759 * creation, or 0 for default. After initialization, holds the
760 * next element count value upon which to resize the table.
761 */
762 private transient volatile int sizeCtl;
763
764 /**
765 * The next table index (plus one) to split while resizing.
766 */
767 private transient volatile int transferIndex;
768
769 /**
770 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
771 */
772 private transient volatile int cellsBusy;
773
774 /**
775 * Table of counter cells. When non-null, size is a power of 2.
776 */
777 private transient volatile CounterCell[] counterCells;
778
779 // views
780 private transient KeySetView<K,V> keySet;
781 private transient ValuesView<K,V> values;
782 private transient EntrySetView<K,V> entrySet;
783
784
785 /* ---------------- Public operations -------------- */
786
787 /**
788 * Creates a new, empty map with the default initial table size (16).
789 */
790 public ConcurrentHashMap() {
791 }
792
793 /**
794 * Creates a new, empty map with an initial table size
795 * accommodating the specified number of elements without the need
796 * to dynamically resize.
797 *
798 * @param initialCapacity The implementation performs internal
799 * sizing to accommodate this many elements.
800 * @throws IllegalArgumentException if the initial capacity of
801 * elements is negative
802 */
803 public ConcurrentHashMap(int initialCapacity) {
804 if (initialCapacity < 0)
805 throw new IllegalArgumentException();
806 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
807 MAXIMUM_CAPACITY :
808 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
809 this.sizeCtl = cap;
810 }
811
812 /**
813 * Creates a new map with the same mappings as the given map.
814 *
815 * @param m the map
816 */
817 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
818 this.sizeCtl = DEFAULT_CAPACITY;
819 putAll(m);
820 }
821
822 /**
823 * Creates a new, empty map with an initial table size based on
824 * the given number of elements ({@code initialCapacity}) and
825 * initial table density ({@code loadFactor}).
826 *
827 * @param initialCapacity the initial capacity. The implementation
828 * performs internal sizing to accommodate this many elements,
829 * given the specified load factor.
830 * @param loadFactor the load factor (table density) for
831 * establishing the initial table size
832 * @throws IllegalArgumentException if the initial capacity of
833 * elements is negative or the load factor is nonpositive
834 *
835 * @since 1.6
836 */
837 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
838 this(initialCapacity, loadFactor, 1);
839 }
840
841 /**
842 * Creates a new, empty map with an initial table size based on
843 * the given number of elements ({@code initialCapacity}), table
844 * density ({@code loadFactor}), and number of concurrently
845 * updating threads ({@code concurrencyLevel}).
846 *
847 * @param initialCapacity the initial capacity. The implementation
848 * performs internal sizing to accommodate this many elements,
849 * given the specified load factor.
850 * @param loadFactor the load factor (table density) for
851 * establishing the initial table size
852 * @param concurrencyLevel the estimated number of concurrently
853 * updating threads. The implementation may use this value as
854 * a sizing hint.
855 * @throws IllegalArgumentException if the initial capacity is
856 * negative or the load factor or concurrencyLevel are
857 * nonpositive
858 */
859 public ConcurrentHashMap(int initialCapacity,
860 float loadFactor, int concurrencyLevel) {
861 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
862 throw new IllegalArgumentException();
863 if (initialCapacity < concurrencyLevel) // Use at least as many bins
864 initialCapacity = concurrencyLevel; // as estimated threads
865 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
866 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
867 MAXIMUM_CAPACITY : tableSizeFor((int)size);
868 this.sizeCtl = cap;
869 }
870
871 // Original (since JDK1.2) Map methods
872
873 /**
874 * {@inheritDoc}
875 */
876 public int size() {
877 long n = sumCount();
878 return ((n < 0L) ? 0 :
879 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
880 (int)n);
881 }
882
883 /**
884 * {@inheritDoc}
885 */
886 public boolean isEmpty() {
887 return sumCount() <= 0L; // ignore transient negative values
888 }
889
890 /**
891 * Returns the value to which the specified key is mapped,
892 * or {@code null} if this map contains no mapping for the key.
893 *
894 * <p>More formally, if this map contains a mapping from a key
895 * {@code k} to a value {@code v} such that {@code key.equals(k)},
896 * then this method returns {@code v}; otherwise it returns
897 * {@code null}. (There can be at most one such mapping.)
898 *
899 * @throws NullPointerException if the specified key is null
900 */
901 public V get(Object key) {
902 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
903 int h = spread(key.hashCode());
904 if ((tab = table) != null && (n = tab.length) > 0 &&
905 (e = tabAt(tab, (n - 1) & h)) != null) {
906 if ((eh = e.hash) == h) {
907 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
908 return e.val;
909 }
910 else if (eh < 0)
911 return (p = e.find(h, key)) != null ? p.val : null;
912 while ((e = e.next) != null) {
913 if (e.hash == h &&
914 ((ek = e.key) == key || (ek != null && key.equals(ek))))
915 return e.val;
916 }
917 }
918 return null;
919 }
920
921 /**
922 * Tests if the specified object is a key in this table.
923 *
924 * @param key possible key
925 * @return {@code true} if and only if the specified object
926 * is a key in this table, as determined by the
927 * {@code equals} method; {@code false} otherwise
928 * @throws NullPointerException if the specified key is null
929 */
930 public boolean containsKey(Object key) {
931 return get(key) != null;
932 }
933
934 /**
935 * Returns {@code true} if this map maps one or more keys to the
936 * specified value. Note: This method may require a full traversal
937 * of the map, and is much slower than method {@code containsKey}.
938 *
939 * @param value value whose presence in this map is to be tested
940 * @return {@code true} if this map maps one or more keys to the
941 * specified value
942 * @throws NullPointerException if the specified value is null
943 */
944 public boolean containsValue(Object value) {
945 if (value == null)
946 throw new NullPointerException();
947 Node<K,V>[] t;
948 if ((t = table) != null) {
949 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
950 for (Node<K,V> p; (p = it.advance()) != null; ) {
951 V v;
952 if ((v = p.val) == value || (v != null && value.equals(v)))
953 return true;
954 }
955 }
956 return false;
957 }
958
959 /**
960 * Maps the specified key to the specified value in this table.
961 * Neither the key nor the value can be null.
962 *
963 * <p>The value can be retrieved by calling the {@code get} method
964 * with a key that is equal to the original key.
965 *
966 * @param key key with which the specified value is to be associated
967 * @param value value to be associated with the specified key
968 * @return the previous value associated with {@code key}, or
969 * {@code null} if there was no mapping for {@code key}
970 * @throws NullPointerException if the specified key or value is null
971 */
972 public V put(K key, V value) {
973 return putVal(key, value, false);
974 }
975
976 /** Implementation for put and putIfAbsent */
977 final V putVal(K key, V value, boolean onlyIfAbsent) {
978 if (key == null || value == null) throw new NullPointerException();
979 int hash = spread(key.hashCode());
980 int binCount = 0;
981 for (Node<K,V>[] tab = table;;) {
982 Node<K,V> f; int n, i, fh;
983 if (tab == null || (n = tab.length) == 0)
984 tab = initTable();
985 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
986 if (casTabAt(tab, i, null,
987 new Node<K,V>(hash, key, value, null)))
988 break; // no lock when adding to empty bin
989 }
990 else if ((fh = f.hash) == MOVED)
991 tab = helpTransfer(tab, f);
992 else {
993 V oldVal = null;
994 synchronized (f) {
995 if (tabAt(tab, i) == f) {
996 if (fh >= 0) {
997 binCount = 1;
998 for (Node<K,V> e = f;; ++binCount) {
999 K ek;
1000 if (e.hash == hash &&
1001 ((ek = e.key) == key ||
1002 (ek != null && key.equals(ek)))) {
1003 oldVal = e.val;
1004 if (!onlyIfAbsent)
1005 e.val = value;
1006 break;
1007 }
1008 Node<K,V> pred = e;
1009 if ((e = e.next) == null) {
1010 pred.next = new Node<K,V>(hash, key,
1011 value, null);
1012 break;
1013 }
1014 }
1015 }
1016 else if (f instanceof TreeBin) {
1017 Node<K,V> p;
1018 binCount = 2;
1019 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1020 value)) != null) {
1021 oldVal = p.val;
1022 if (!onlyIfAbsent)
1023 p.val = value;
1024 }
1025 }
1026 else if (f instanceof ReservationNode)
1027 throw new IllegalStateException("Recursive update");
1028 }
1029 }
1030 if (binCount != 0) {
1031 if (binCount >= TREEIFY_THRESHOLD)
1032 treeifyBin(tab, i);
1033 if (oldVal != null)
1034 return oldVal;
1035 break;
1036 }
1037 }
1038 }
1039 addCount(1L, binCount);
1040 return null;
1041 }
1042
1043 /**
1044 * Copies all of the mappings from the specified map to this one.
1045 * These mappings replace any mappings that this map had for any of the
1046 * keys currently in the specified map.
1047 *
1048 * @param m mappings to be stored in this map
1049 */
1050 public void putAll(Map<? extends K, ? extends V> m) {
1051 tryPresize(m.size());
1052 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1053 putVal(e.getKey(), e.getValue(), false);
1054 }
1055
1056 /**
1057 * Removes the key (and its corresponding value) from this map.
1058 * This method does nothing if the key is not in the map.
1059 *
1060 * @param key the key that needs to be removed
1061 * @return the previous value associated with {@code key}, or
1062 * {@code null} if there was no mapping for {@code key}
1063 * @throws NullPointerException if the specified key is null
1064 */
1065 public V remove(Object key) {
1066 return replaceNode(key, null, null);
1067 }
1068
1069 /**
1070 * Implementation for the four public remove/replace methods:
1071 * Replaces node value with v, conditional upon match of cv if
1072 * non-null. If resulting value is null, delete.
1073 */
1074 final V replaceNode(Object key, V value, Object cv) {
1075 int hash = spread(key.hashCode());
1076 for (Node<K,V>[] tab = table;;) {
1077 Node<K,V> f; int n, i, fh;
1078 if (tab == null || (n = tab.length) == 0 ||
1079 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1080 break;
1081 else if ((fh = f.hash) == MOVED)
1082 tab = helpTransfer(tab, f);
1083 else {
1084 V oldVal = null;
1085 boolean validated = false;
1086 synchronized (f) {
1087 if (tabAt(tab, i) == f) {
1088 if (fh >= 0) {
1089 validated = true;
1090 for (Node<K,V> e = f, pred = null;;) {
1091 K ek;
1092 if (e.hash == hash &&
1093 ((ek = e.key) == key ||
1094 (ek != null && key.equals(ek)))) {
1095 V ev = e.val;
1096 if (cv == null || cv == ev ||
1097 (ev != null && cv.equals(ev))) {
1098 oldVal = ev;
1099 if (value != null)
1100 e.val = value;
1101 else if (pred != null)
1102 pred.next = e.next;
1103 else
1104 setTabAt(tab, i, e.next);
1105 }
1106 break;
1107 }
1108 pred = e;
1109 if ((e = e.next) == null)
1110 break;
1111 }
1112 }
1113 else if (f instanceof TreeBin) {
1114 validated = true;
1115 TreeBin<K,V> t = (TreeBin<K,V>)f;
1116 TreeNode<K,V> r, p;
1117 if ((r = t.root) != null &&
1118 (p = r.findTreeNode(hash, key, null)) != null) {
1119 V pv = p.val;
1120 if (cv == null || cv == pv ||
1121 (pv != null && cv.equals(pv))) {
1122 oldVal = pv;
1123 if (value != null)
1124 p.val = value;
1125 else if (t.removeTreeNode(p))
1126 setTabAt(tab, i, untreeify(t.first));
1127 }
1128 }
1129 }
1130 else if (f instanceof ReservationNode)
1131 throw new IllegalStateException("Recursive update");
1132 }
1133 }
1134 if (validated) {
1135 if (oldVal != null) {
1136 if (value == null)
1137 addCount(-1L, -1);
1138 return oldVal;
1139 }
1140 break;
1141 }
1142 }
1143 }
1144 return null;
1145 }
1146
1147 /**
1148 * Removes all of the mappings from this map.
1149 */
1150 public void clear() {
1151 long delta = 0L; // negative number of deletions
1152 int i = 0;
1153 Node<K,V>[] tab = table;
1154 while (tab != null && i < tab.length) {
1155 int fh;
1156 Node<K,V> f = tabAt(tab, i);
1157 if (f == null)
1158 ++i;
1159 else if ((fh = f.hash) == MOVED) {
1160 tab = helpTransfer(tab, f);
1161 i = 0; // restart
1162 }
1163 else {
1164 synchronized (f) {
1165 if (tabAt(tab, i) == f) {
1166 Node<K,V> p = (fh >= 0 ? f :
1167 (f instanceof TreeBin) ?
1168 ((TreeBin<K,V>)f).first : null);
1169 while (p != null) {
1170 --delta;
1171 p = p.next;
1172 }
1173 setTabAt(tab, i++, null);
1174 }
1175 }
1176 }
1177 }
1178 if (delta != 0L)
1179 addCount(delta, -1);
1180 }
1181
1182 /**
1183 * Returns a {@link Set} view of the keys contained in this map.
1184 * The set is backed by the map, so changes to the map are
1185 * reflected in the set, and vice-versa. The set supports element
1186 * removal, which removes the corresponding mapping from this map,
1187 * via the {@code Iterator.remove}, {@code Set.remove},
1188 * {@code removeAll}, {@code retainAll}, and {@code clear}
1189 * operations. It does not support the {@code add} or
1190 * {@code addAll} operations.
1191 *
1192 * <p>The view's iterators and spliterators are
1193 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1194 *
1195 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1196 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1197 *
1198 * @return the set view
1199 */
1200 public KeySetView<K,V> keySet() {
1201 KeySetView<K,V> ks;
1202 return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1203 }
1204
1205 /**
1206 * Returns a {@link Collection} view of the values contained in this map.
1207 * The collection is backed by the map, so changes to the map are
1208 * reflected in the collection, and vice-versa. The collection
1209 * supports element removal, which removes the corresponding
1210 * mapping from this map, via the {@code Iterator.remove},
1211 * {@code Collection.remove}, {@code removeAll},
1212 * {@code retainAll}, and {@code clear} operations. It does not
1213 * support the {@code add} or {@code addAll} operations.
1214 *
1215 * <p>The view's iterators and spliterators are
1216 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1217 *
1218 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1219 * and {@link Spliterator#NONNULL}.
1220 *
1221 * @return the collection view
1222 */
1223 public Collection<V> values() {
1224 ValuesView<K,V> vs;
1225 return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1226 }
1227
1228 /**
1229 * Returns a {@link Set} view of the mappings contained in this map.
1230 * The set is backed by the map, so changes to the map are
1231 * reflected in the set, and vice-versa. The set supports element
1232 * removal, which removes the corresponding mapping from the map,
1233 * via the {@code Iterator.remove}, {@code Set.remove},
1234 * {@code removeAll}, {@code retainAll}, and {@code clear}
1235 * operations.
1236 *
1237 * <p>The view's iterators and spliterators are
1238 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1239 *
1240 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1241 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1242 *
1243 * @return the set view
1244 */
1245 public Set<Map.Entry<K,V>> entrySet() {
1246 EntrySetView<K,V> es;
1247 return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1248 }
1249
1250 /**
1251 * Returns the hash code value for this {@link Map}, i.e.,
1252 * the sum of, for each key-value pair in the map,
1253 * {@code key.hashCode() ^ value.hashCode()}.
1254 *
1255 * @return the hash code value for this map
1256 */
1257 public int hashCode() {
1258 int h = 0;
1259 Node<K,V>[] t;
1260 if ((t = table) != null) {
1261 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1262 for (Node<K,V> p; (p = it.advance()) != null; )
1263 h += p.key.hashCode() ^ p.val.hashCode();
1264 }
1265 return h;
1266 }
1267
1268 /**
1269 * Returns a string representation of this map. The string
1270 * representation consists of a list of key-value mappings (in no
1271 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1272 * mappings are separated by the characters {@code ", "} (comma
1273 * and space). Each key-value mapping is rendered as the key
1274 * followed by an equals sign ("{@code =}") followed by the
1275 * associated value.
1276 *
1277 * @return a string representation of this map
1278 */
1279 public String toString() {
1280 Node<K,V>[] t;
1281 int f = (t = table) == null ? 0 : t.length;
1282 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1283 StringBuilder sb = new StringBuilder();
1284 sb.append('{');
1285 Node<K,V> p;
1286 if ((p = it.advance()) != null) {
1287 for (;;) {
1288 K k = p.key;
1289 V v = p.val;
1290 sb.append(k == this ? "(this Map)" : k);
1291 sb.append('=');
1292 sb.append(v == this ? "(this Map)" : v);
1293 if ((p = it.advance()) == null)
1294 break;
1295 sb.append(',').append(' ');
1296 }
1297 }
1298 return sb.append('}').toString();
1299 }
1300
1301 /**
1302 * Compares the specified object with this map for equality.
1303 * Returns {@code true} if the given object is a map with the same
1304 * mappings as this map. This operation may return misleading
1305 * results if either map is concurrently modified during execution
1306 * of this method.
1307 *
1308 * @param o object to be compared for equality with this map
1309 * @return {@code true} if the specified object is equal to this map
1310 */
1311 public boolean equals(Object o) {
1312 if (o != this) {
1313 if (!(o instanceof Map))
1314 return false;
1315 Map<?,?> m = (Map<?,?>) o;
1316 Node<K,V>[] t;
1317 int f = (t = table) == null ? 0 : t.length;
1318 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1319 for (Node<K,V> p; (p = it.advance()) != null; ) {
1320 V val = p.val;
1321 Object v = m.get(p.key);
1322 if (v == null || (v != val && !v.equals(val)))
1323 return false;
1324 }
1325 for (Map.Entry<?,?> e : m.entrySet()) {
1326 Object mk, mv, v;
1327 if ((mk = e.getKey()) == null ||
1328 (mv = e.getValue()) == null ||
1329 (v = get(mk)) == null ||
1330 (mv != v && !mv.equals(v)))
1331 return false;
1332 }
1333 }
1334 return true;
1335 }
1336
1337 /**
1338 * Stripped-down version of helper class used in previous version,
1339 * declared for the sake of serialization compatibility
1340 */
1341 static class Segment<K,V> extends ReentrantLock implements Serializable {
1342 private static final long serialVersionUID = 2249069246763182397L;
1343 final float loadFactor;
1344 Segment(float lf) { this.loadFactor = lf; }
1345 }
1346
1347 /**
1348 * Saves the state of the {@code ConcurrentHashMap} instance to a
1349 * stream (i.e., serializes it).
1350 * @param s the stream
1351 * @throws java.io.IOException if an I/O error occurs
1352 * @serialData
1353 * the key (Object) and value (Object)
1354 * for each key-value mapping, followed by a null pair.
1355 * The key-value mappings are emitted in no particular order.
1356 */
1357 private void writeObject(java.io.ObjectOutputStream s)
1358 throws java.io.IOException {
1359 // For serialization compatibility
1360 // Emulate segment calculation from previous version of this class
1361 int sshift = 0;
1362 int ssize = 1;
1363 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1364 ++sshift;
1365 ssize <<= 1;
1366 }
1367 int segmentShift = 32 - sshift;
1368 int segmentMask = ssize - 1;
1369 @SuppressWarnings("unchecked")
1370 Segment<K,V>[] segments = (Segment<K,V>[])
1371 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1372 for (int i = 0; i < segments.length; ++i)
1373 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1374 s.putFields().put("segments", segments);
1375 s.putFields().put("segmentShift", segmentShift);
1376 s.putFields().put("segmentMask", segmentMask);
1377 s.writeFields();
1378
1379 Node<K,V>[] t;
1380 if ((t = table) != null) {
1381 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1382 for (Node<K,V> p; (p = it.advance()) != null; ) {
1383 s.writeObject(p.key);
1384 s.writeObject(p.val);
1385 }
1386 }
1387 s.writeObject(null);
1388 s.writeObject(null);
1389 segments = null; // throw away
1390 }
1391
1392 /**
1393 * Reconstitutes the instance from a stream (that is, deserializes it).
1394 * @param s the stream
1395 * @throws ClassNotFoundException if the class of a serialized object
1396 * could not be found
1397 * @throws java.io.IOException if an I/O error occurs
1398 */
1399 private void readObject(java.io.ObjectInputStream s)
1400 throws java.io.IOException, ClassNotFoundException {
1401 /*
1402 * To improve performance in typical cases, we create nodes
1403 * while reading, then place in table once size is known.
1404 * However, we must also validate uniqueness and deal with
1405 * overpopulated bins while doing so, which requires
1406 * specialized versions of putVal mechanics.
1407 */
1408 sizeCtl = -1; // force exclusion for table construction
1409 s.defaultReadObject();
1410 long size = 0L;
1411 Node<K,V> p = null;
1412 for (;;) {
1413 @SuppressWarnings("unchecked")
1414 K k = (K) s.readObject();
1415 @SuppressWarnings("unchecked")
1416 V v = (V) s.readObject();
1417 if (k != null && v != null) {
1418 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1419 ++size;
1420 }
1421 else
1422 break;
1423 }
1424 if (size == 0L)
1425 sizeCtl = 0;
1426 else {
1427 int n;
1428 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1429 n = MAXIMUM_CAPACITY;
1430 else {
1431 int sz = (int)size;
1432 n = tableSizeFor(sz + (sz >>> 1) + 1);
1433 }
1434 @SuppressWarnings("unchecked")
1435 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1436 int mask = n - 1;
1437 long added = 0L;
1438 while (p != null) {
1439 boolean insertAtFront;
1440 Node<K,V> next = p.next, first;
1441 int h = p.hash, j = h & mask;
1442 if ((first = tabAt(tab, j)) == null)
1443 insertAtFront = true;
1444 else {
1445 K k = p.key;
1446 if (first.hash < 0) {
1447 TreeBin<K,V> t = (TreeBin<K,V>)first;
1448 if (t.putTreeVal(h, k, p.val) == null)
1449 ++added;
1450 insertAtFront = false;
1451 }
1452 else {
1453 int binCount = 0;
1454 insertAtFront = true;
1455 Node<K,V> q; K qk;
1456 for (q = first; q != null; q = q.next) {
1457 if (q.hash == h &&
1458 ((qk = q.key) == k ||
1459 (qk != null && k.equals(qk)))) {
1460 insertAtFront = false;
1461 break;
1462 }
1463 ++binCount;
1464 }
1465 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1466 insertAtFront = false;
1467 ++added;
1468 p.next = first;
1469 TreeNode<K,V> hd = null, tl = null;
1470 for (q = p; q != null; q = q.next) {
1471 TreeNode<K,V> t = new TreeNode<K,V>
1472 (q.hash, q.key, q.val, null, null);
1473 if ((t.prev = tl) == null)
1474 hd = t;
1475 else
1476 tl.next = t;
1477 tl = t;
1478 }
1479 setTabAt(tab, j, new TreeBin<K,V>(hd));
1480 }
1481 }
1482 }
1483 if (insertAtFront) {
1484 ++added;
1485 p.next = first;
1486 setTabAt(tab, j, p);
1487 }
1488 p = next;
1489 }
1490 table = tab;
1491 sizeCtl = n - (n >>> 2);
1492 baseCount = added;
1493 }
1494 }
1495
1496 // ConcurrentMap methods
1497
1498 /**
1499 * {@inheritDoc}
1500 *
1501 * @return the previous value associated with the specified key,
1502 * or {@code null} if there was no mapping for the key
1503 * @throws NullPointerException if the specified key or value is null
1504 */
1505 public V putIfAbsent(K key, V value) {
1506 return putVal(key, value, true);
1507 }
1508
1509 /**
1510 * {@inheritDoc}
1511 *
1512 * @throws NullPointerException if the specified key is null
1513 */
1514 public boolean remove(Object key, Object value) {
1515 if (key == null)
1516 throw new NullPointerException();
1517 return value != null && replaceNode(key, null, value) != null;
1518 }
1519
1520 /**
1521 * {@inheritDoc}
1522 *
1523 * @throws NullPointerException if any of the arguments are null
1524 */
1525 public boolean replace(K key, V oldValue, V newValue) {
1526 if (key == null || oldValue == null || newValue == null)
1527 throw new NullPointerException();
1528 return replaceNode(key, newValue, oldValue) != null;
1529 }
1530
1531 /**
1532 * {@inheritDoc}
1533 *
1534 * @return the previous value associated with the specified key,
1535 * or {@code null} if there was no mapping for the key
1536 * @throws NullPointerException if the specified key or value is null
1537 */
1538 public V replace(K key, V value) {
1539 if (key == null || value == null)
1540 throw new NullPointerException();
1541 return replaceNode(key, value, null);
1542 }
1543
1544 // Overrides of JDK8+ Map extension method defaults
1545
1546 /**
1547 * Returns the value to which the specified key is mapped, or the
1548 * given default value if this map contains no mapping for the
1549 * key.
1550 *
1551 * @param key the key whose associated value is to be returned
1552 * @param defaultValue the value to return if this map contains
1553 * no mapping for the given key
1554 * @return the mapping for the key, if present; else the default value
1555 * @throws NullPointerException if the specified key is null
1556 */
1557 public V getOrDefault(Object key, V defaultValue) {
1558 V v;
1559 return (v = get(key)) == null ? defaultValue : v;
1560 }
1561
1562 public void forEach(BiConsumer<? super K, ? super V> action) {
1563 if (action == null) throw new NullPointerException();
1564 Node<K,V>[] t;
1565 if ((t = table) != null) {
1566 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1567 for (Node<K,V> p; (p = it.advance()) != null; ) {
1568 action.accept(p.key, p.val);
1569 }
1570 }
1571 }
1572
1573 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1574 if (function == null) throw new NullPointerException();
1575 Node<K,V>[] t;
1576 if ((t = table) != null) {
1577 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1578 for (Node<K,V> p; (p = it.advance()) != null; ) {
1579 V oldValue = p.val;
1580 for (K key = p.key;;) {
1581 V newValue = function.apply(key, oldValue);
1582 if (newValue == null)
1583 throw new NullPointerException();
1584 if (replaceNode(key, newValue, oldValue) != null ||
1585 (oldValue = get(key)) == null)
1586 break;
1587 }
1588 }
1589 }
1590 }
1591
1592 /**
1593 * If the specified key is not already associated with a value,
1594 * attempts to compute its value using the given mapping function
1595 * and enters it into this map unless {@code null}. The entire
1596 * method invocation is performed atomically, so the function is
1597 * applied at most once per key. Some attempted update operations
1598 * on this map by other threads may be blocked while computation
1599 * is in progress, so the computation should be short and simple,
1600 * and must not attempt to update any other mappings of this map.
1601 *
1602 * @param key key with which the specified value is to be associated
1603 * @param mappingFunction the function to compute a value
1604 * @return the current (existing or computed) value associated with
1605 * the specified key, or null if the computed value is null
1606 * @throws NullPointerException if the specified key or mappingFunction
1607 * is null
1608 * @throws IllegalStateException if the computation detectably
1609 * attempts a recursive update to this map that would
1610 * otherwise never complete
1611 * @throws RuntimeException or Error if the mappingFunction does so,
1612 * in which case the mapping is left unestablished
1613 */
1614 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1615 if (key == null || mappingFunction == null)
1616 throw new NullPointerException();
1617 int h = spread(key.hashCode());
1618 V val = null;
1619 int binCount = 0;
1620 for (Node<K,V>[] tab = table;;) {
1621 Node<K,V> f; int n, i, fh;
1622 if (tab == null || (n = tab.length) == 0)
1623 tab = initTable();
1624 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1625 Node<K,V> r = new ReservationNode<K,V>();
1626 synchronized (r) {
1627 if (casTabAt(tab, i, null, r)) {
1628 binCount = 1;
1629 Node<K,V> node = null;
1630 try {
1631 if ((val = mappingFunction.apply(key)) != null)
1632 node = new Node<K,V>(h, key, val, null);
1633 } finally {
1634 setTabAt(tab, i, node);
1635 }
1636 }
1637 }
1638 if (binCount != 0)
1639 break;
1640 }
1641 else if ((fh = f.hash) == MOVED)
1642 tab = helpTransfer(tab, f);
1643 else {
1644 boolean added = false;
1645 synchronized (f) {
1646 if (tabAt(tab, i) == f) {
1647 if (fh >= 0) {
1648 binCount = 1;
1649 for (Node<K,V> e = f;; ++binCount) {
1650 K ek; V ev;
1651 if (e.hash == h &&
1652 ((ek = e.key) == key ||
1653 (ek != null && key.equals(ek)))) {
1654 val = e.val;
1655 break;
1656 }
1657 Node<K,V> pred = e;
1658 if ((e = e.next) == null) {
1659 if ((val = mappingFunction.apply(key)) != null) {
1660 if (pred.next != null)
1661 throw new IllegalStateException("Recursive update");
1662 added = true;
1663 pred.next = new Node<K,V>(h, key, val, null);
1664 }
1665 break;
1666 }
1667 }
1668 }
1669 else if (f instanceof TreeBin) {
1670 binCount = 2;
1671 TreeBin<K,V> t = (TreeBin<K,V>)f;
1672 TreeNode<K,V> r, p;
1673 if ((r = t.root) != null &&
1674 (p = r.findTreeNode(h, key, null)) != null)
1675 val = p.val;
1676 else if ((val = mappingFunction.apply(key)) != null) {
1677 added = true;
1678 t.putTreeVal(h, key, val);
1679 }
1680 }
1681 else if (f instanceof ReservationNode)
1682 throw new IllegalStateException("Recursive update");
1683 }
1684 }
1685 if (binCount != 0) {
1686 if (binCount >= TREEIFY_THRESHOLD)
1687 treeifyBin(tab, i);
1688 if (!added)
1689 return val;
1690 break;
1691 }
1692 }
1693 }
1694 if (val != null)
1695 addCount(1L, binCount);
1696 return val;
1697 }
1698
1699 /**
1700 * If the value for the specified key is present, attempts to
1701 * compute a new mapping given the key and its current mapped
1702 * value. The entire method invocation is performed atomically.
1703 * Some attempted update operations on this map by other threads
1704 * may be blocked while computation is in progress, so the
1705 * computation should be short and simple, and must not attempt to
1706 * update any other mappings of this map.
1707 *
1708 * @param key key with which a value may be associated
1709 * @param remappingFunction the function to compute a value
1710 * @return the new value associated with the specified key, or null if none
1711 * @throws NullPointerException if the specified key or remappingFunction
1712 * is null
1713 * @throws IllegalStateException if the computation detectably
1714 * attempts a recursive update to this map that would
1715 * otherwise never complete
1716 * @throws RuntimeException or Error if the remappingFunction does so,
1717 * in which case the mapping is unchanged
1718 */
1719 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1720 if (key == null || remappingFunction == null)
1721 throw new NullPointerException();
1722 int h = spread(key.hashCode());
1723 V val = null;
1724 int delta = 0;
1725 int binCount = 0;
1726 for (Node<K,V>[] tab = table;;) {
1727 Node<K,V> f; int n, i, fh;
1728 if (tab == null || (n = tab.length) == 0)
1729 tab = initTable();
1730 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1731 break;
1732 else if ((fh = f.hash) == MOVED)
1733 tab = helpTransfer(tab, f);
1734 else {
1735 synchronized (f) {
1736 if (tabAt(tab, i) == f) {
1737 if (fh >= 0) {
1738 binCount = 1;
1739 for (Node<K,V> e = f, pred = null;; ++binCount) {
1740 K ek;
1741 if (e.hash == h &&
1742 ((ek = e.key) == key ||
1743 (ek != null && key.equals(ek)))) {
1744 val = remappingFunction.apply(key, e.val);
1745 if (val != null)
1746 e.val = val;
1747 else {
1748 delta = -1;
1749 Node<K,V> en = e.next;
1750 if (pred != null)
1751 pred.next = en;
1752 else
1753 setTabAt(tab, i, en);
1754 }
1755 break;
1756 }
1757 pred = e;
1758 if ((e = e.next) == null)
1759 break;
1760 }
1761 }
1762 else if (f instanceof TreeBin) {
1763 binCount = 2;
1764 TreeBin<K,V> t = (TreeBin<K,V>)f;
1765 TreeNode<K,V> r, p;
1766 if ((r = t.root) != null &&
1767 (p = r.findTreeNode(h, key, null)) != null) {
1768 val = remappingFunction.apply(key, p.val);
1769 if (val != null)
1770 p.val = val;
1771 else {
1772 delta = -1;
1773 if (t.removeTreeNode(p))
1774 setTabAt(tab, i, untreeify(t.first));
1775 }
1776 }
1777 }
1778 else if (f instanceof ReservationNode)
1779 throw new IllegalStateException("Recursive update");
1780 }
1781 }
1782 if (binCount != 0)
1783 break;
1784 }
1785 }
1786 if (delta != 0)
1787 addCount((long)delta, binCount);
1788 return val;
1789 }
1790
1791 /**
1792 * Attempts to compute a mapping for the specified key and its
1793 * current mapped value (or {@code null} if there is no current
1794 * mapping). The entire method invocation is performed atomically.
1795 * Some attempted update operations on this map by other threads
1796 * may be blocked while computation is in progress, so the
1797 * computation should be short and simple, and must not attempt to
1798 * update any other mappings of this Map.
1799 *
1800 * @param key key with which the specified value is to be associated
1801 * @param remappingFunction the function to compute a value
1802 * @return the new value associated with the specified key, or null if none
1803 * @throws NullPointerException if the specified key or remappingFunction
1804 * is null
1805 * @throws IllegalStateException if the computation detectably
1806 * attempts a recursive update to this map that would
1807 * otherwise never complete
1808 * @throws RuntimeException or Error if the remappingFunction does so,
1809 * in which case the mapping is unchanged
1810 */
1811 public V compute(K key,
1812 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1813 if (key == null || remappingFunction == null)
1814 throw new NullPointerException();
1815 int h = spread(key.hashCode());
1816 V val = null;
1817 int delta = 0;
1818 int binCount = 0;
1819 for (Node<K,V>[] tab = table;;) {
1820 Node<K,V> f; int n, i, fh;
1821 if (tab == null || (n = tab.length) == 0)
1822 tab = initTable();
1823 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1824 Node<K,V> r = new ReservationNode<K,V>();
1825 synchronized (r) {
1826 if (casTabAt(tab, i, null, r)) {
1827 binCount = 1;
1828 Node<K,V> node = null;
1829 try {
1830 if ((val = remappingFunction.apply(key, null)) != null) {
1831 delta = 1;
1832 node = new Node<K,V>(h, key, val, null);
1833 }
1834 } finally {
1835 setTabAt(tab, i, node);
1836 }
1837 }
1838 }
1839 if (binCount != 0)
1840 break;
1841 }
1842 else if ((fh = f.hash) == MOVED)
1843 tab = helpTransfer(tab, f);
1844 else {
1845 synchronized (f) {
1846 if (tabAt(tab, i) == f) {
1847 if (fh >= 0) {
1848 binCount = 1;
1849 for (Node<K,V> e = f, pred = null;; ++binCount) {
1850 K ek;
1851 if (e.hash == h &&
1852 ((ek = e.key) == key ||
1853 (ek != null && key.equals(ek)))) {
1854 val = remappingFunction.apply(key, e.val);
1855 if (val != null)
1856 e.val = val;
1857 else {
1858 delta = -1;
1859 Node<K,V> en = e.next;
1860 if (pred != null)
1861 pred.next = en;
1862 else
1863 setTabAt(tab, i, en);
1864 }
1865 break;
1866 }
1867 pred = e;
1868 if ((e = e.next) == null) {
1869 val = remappingFunction.apply(key, null);
1870 if (val != null) {
1871 if (pred.next != null)
1872 throw new IllegalStateException("Recursive update");
1873 delta = 1;
1874 pred.next =
1875 new Node<K,V>(h, key, val, null);
1876 }
1877 break;
1878 }
1879 }
1880 }
1881 else if (f instanceof TreeBin) {
1882 binCount = 1;
1883 TreeBin<K,V> t = (TreeBin<K,V>)f;
1884 TreeNode<K,V> r, p;
1885 if ((r = t.root) != null)
1886 p = r.findTreeNode(h, key, null);
1887 else
1888 p = null;
1889 V pv = (p == null) ? null : p.val;
1890 val = remappingFunction.apply(key, pv);
1891 if (val != null) {
1892 if (p != null)
1893 p.val = val;
1894 else {
1895 delta = 1;
1896 t.putTreeVal(h, key, val);
1897 }
1898 }
1899 else if (p != null) {
1900 delta = -1;
1901 if (t.removeTreeNode(p))
1902 setTabAt(tab, i, untreeify(t.first));
1903 }
1904 }
1905 else if (f instanceof ReservationNode)
1906 throw new IllegalStateException("Recursive update");
1907 }
1908 }
1909 if (binCount != 0) {
1910 if (binCount >= TREEIFY_THRESHOLD)
1911 treeifyBin(tab, i);
1912 break;
1913 }
1914 }
1915 }
1916 if (delta != 0)
1917 addCount((long)delta, binCount);
1918 return val;
1919 }
1920
1921 /**
1922 * If the specified key is not already associated with a
1923 * (non-null) value, associates it with the given value.
1924 * Otherwise, replaces the value with the results of the given
1925 * remapping function, or removes if {@code null}. The entire
1926 * method invocation is performed atomically. Some attempted
1927 * update operations on this map by other threads may be blocked
1928 * while computation is in progress, so the computation should be
1929 * short and simple, and must not attempt to update any other
1930 * mappings of this Map.
1931 *
1932 * @param key key with which the specified value is to be associated
1933 * @param value the value to use if absent
1934 * @param remappingFunction the function to recompute a value if present
1935 * @return the new value associated with the specified key, or null if none
1936 * @throws NullPointerException if the specified key or the
1937 * remappingFunction is null
1938 * @throws RuntimeException or Error if the remappingFunction does so,
1939 * in which case the mapping is unchanged
1940 */
1941 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1942 if (key == null || value == null || remappingFunction == null)
1943 throw new NullPointerException();
1944 int h = spread(key.hashCode());
1945 V val = null;
1946 int delta = 0;
1947 int binCount = 0;
1948 for (Node<K,V>[] tab = table;;) {
1949 Node<K,V> f; int n, i, fh;
1950 if (tab == null || (n = tab.length) == 0)
1951 tab = initTable();
1952 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1953 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1954 delta = 1;
1955 val = value;
1956 break;
1957 }
1958 }
1959 else if ((fh = f.hash) == MOVED)
1960 tab = helpTransfer(tab, f);
1961 else {
1962 synchronized (f) {
1963 if (tabAt(tab, i) == f) {
1964 if (fh >= 0) {
1965 binCount = 1;
1966 for (Node<K,V> e = f, pred = null;; ++binCount) {
1967 K ek;
1968 if (e.hash == h &&
1969 ((ek = e.key) == key ||
1970 (ek != null && key.equals(ek)))) {
1971 val = remappingFunction.apply(e.val, value);
1972 if (val != null)
1973 e.val = val;
1974 else {
1975 delta = -1;
1976 Node<K,V> en = e.next;
1977 if (pred != null)
1978 pred.next = en;
1979 else
1980 setTabAt(tab, i, en);
1981 }
1982 break;
1983 }
1984 pred = e;
1985 if ((e = e.next) == null) {
1986 delta = 1;
1987 val = value;
1988 pred.next =
1989 new Node<K,V>(h, key, val, null);
1990 break;
1991 }
1992 }
1993 }
1994 else if (f instanceof TreeBin) {
1995 binCount = 2;
1996 TreeBin<K,V> t = (TreeBin<K,V>)f;
1997 TreeNode<K,V> r = t.root;
1998 TreeNode<K,V> p = (r == null) ? null :
1999 r.findTreeNode(h, key, null);
2000 val = (p == null) ? value :
2001 remappingFunction.apply(p.val, value);
2002 if (val != null) {
2003 if (p != null)
2004 p.val = val;
2005 else {
2006 delta = 1;
2007 t.putTreeVal(h, key, val);
2008 }
2009 }
2010 else if (p != null) {
2011 delta = -1;
2012 if (t.removeTreeNode(p))
2013 setTabAt(tab, i, untreeify(t.first));
2014 }
2015 }
2016 else if (f instanceof ReservationNode)
2017 throw new IllegalStateException("Recursive update");
2018 }
2019 }
2020 if (binCount != 0) {
2021 if (binCount >= TREEIFY_THRESHOLD)
2022 treeifyBin(tab, i);
2023 break;
2024 }
2025 }
2026 }
2027 if (delta != 0)
2028 addCount((long)delta, binCount);
2029 return val;
2030 }
2031
2032 // Hashtable legacy methods
2033
2034 /**
2035 * Legacy method testing if some key maps into the specified value
2036 * in this table.
2037 *
2038 * @deprecated This method is identical in functionality to
2039 * {@link #containsValue(Object)}, and exists solely to ensure
2040 * full compatibility with class {@link java.util.Hashtable},
2041 * which supported this method prior to introduction of the
2042 * Java Collections framework.
2043 *
2044 * @param value a value to search for
2045 * @return {@code true} if and only if some key maps to the
2046 * {@code value} argument in this table as
2047 * determined by the {@code equals} method;
2048 * {@code false} otherwise
2049 * @throws NullPointerException if the specified value is null
2050 */
2051 @Deprecated
2052 public boolean contains(Object value) {
2053 return containsValue(value);
2054 }
2055
2056 /**
2057 * Returns an enumeration of the keys in this table.
2058 *
2059 * @return an enumeration of the keys in this table
2060 * @see #keySet()
2061 */
2062 public Enumeration<K> keys() {
2063 Node<K,V>[] t;
2064 int f = (t = table) == null ? 0 : t.length;
2065 return new KeyIterator<K,V>(t, f, 0, f, this);
2066 }
2067
2068 /**
2069 * Returns an enumeration of the values in this table.
2070 *
2071 * @return an enumeration of the values in this table
2072 * @see #values()
2073 */
2074 public Enumeration<V> elements() {
2075 Node<K,V>[] t;
2076 int f = (t = table) == null ? 0 : t.length;
2077 return new ValueIterator<K,V>(t, f, 0, f, this);
2078 }
2079
2080 // ConcurrentHashMap-only methods
2081
2082 /**
2083 * Returns the number of mappings. This method should be used
2084 * instead of {@link #size} because a ConcurrentHashMap may
2085 * contain more mappings than can be represented as an int. The
2086 * value returned is an estimate; the actual count may differ if
2087 * there are concurrent insertions or removals.
2088 *
2089 * @return the number of mappings
2090 * @since 1.8
2091 */
2092 public long mappingCount() {
2093 long n = sumCount();
2094 return (n < 0L) ? 0L : n; // ignore transient negative values
2095 }
2096
2097 /**
2098 * Creates a new {@link Set} backed by a ConcurrentHashMap
2099 * from the given type to {@code Boolean.TRUE}.
2100 *
2101 * @param <K> the element type of the returned set
2102 * @return the new set
2103 * @since 1.8
2104 */
2105 public static <K> KeySetView<K,Boolean> newKeySet() {
2106 return new KeySetView<K,Boolean>
2107 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2108 }
2109
2110 /**
2111 * Creates a new {@link Set} backed by a ConcurrentHashMap
2112 * from the given type to {@code Boolean.TRUE}.
2113 *
2114 * @param initialCapacity The implementation performs internal
2115 * sizing to accommodate this many elements.
2116 * @param <K> the element type of the returned set
2117 * @return the new set
2118 * @throws IllegalArgumentException if the initial capacity of
2119 * elements is negative
2120 * @since 1.8
2121 */
2122 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2123 return new KeySetView<K,Boolean>
2124 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2125 }
2126
2127 /**
2128 * Returns a {@link Set} view of the keys in this map, using the
2129 * given common mapped value for any additions (i.e., {@link
2130 * Collection#add} and {@link Collection#addAll(Collection)}).
2131 * This is of course only appropriate if it is acceptable to use
2132 * the same value for all additions from this view.
2133 *
2134 * @param mappedValue the mapped value to use for any additions
2135 * @return the set view
2136 * @throws NullPointerException if the mappedValue is null
2137 */
2138 public KeySetView<K,V> keySet(V mappedValue) {
2139 if (mappedValue == null)
2140 throw new NullPointerException();
2141 return new KeySetView<K,V>(this, mappedValue);
2142 }
2143
2144 /* ---------------- Special Nodes -------------- */
2145
2146 /**
2147 * A node inserted at head of bins during transfer operations.
2148 */
2149 static final class ForwardingNode<K,V> extends Node<K,V> {
2150 final Node<K,V>[] nextTable;
2151 ForwardingNode(Node<K,V>[] tab) {
2152 super(MOVED, null, null, null);
2153 this.nextTable = tab;
2154 }
2155
2156 Node<K,V> find(int h, Object k) {
2157 // loop to avoid arbitrarily deep recursion on forwarding nodes
2158 outer: for (Node<K,V>[] tab = nextTable;;) {
2159 Node<K,V> e; int n;
2160 if (k == null || tab == null || (n = tab.length) == 0 ||
2161 (e = tabAt(tab, (n - 1) & h)) == null)
2162 return null;
2163 for (;;) {
2164 int eh; K ek;
2165 if ((eh = e.hash) == h &&
2166 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2167 return e;
2168 if (eh < 0) {
2169 if (e instanceof ForwardingNode) {
2170 tab = ((ForwardingNode<K,V>)e).nextTable;
2171 continue outer;
2172 }
2173 else
2174 return e.find(h, k);
2175 }
2176 if ((e = e.next) == null)
2177 return null;
2178 }
2179 }
2180 }
2181 }
2182
2183 /**
2184 * A place-holder node used in computeIfAbsent and compute
2185 */
2186 static final class ReservationNode<K,V> extends Node<K,V> {
2187 ReservationNode() {
2188 super(RESERVED, null, null, null);
2189 }
2190
2191 Node<K,V> find(int h, Object k) {
2192 return null;
2193 }
2194 }
2195
2196 /* ---------------- Table Initialization and Resizing -------------- */
2197
2198 /**
2199 * Returns the stamp bits for resizing a table of size n.
2200 * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2201 */
2202 static final int resizeStamp(int n) {
2203 return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2204 }
2205
2206 /**
2207 * Initializes table, using the size recorded in sizeCtl.
2208 */
2209 private final Node<K,V>[] initTable() {
2210 Node<K,V>[] tab; int sc;
2211 while ((tab = table) == null || tab.length == 0) {
2212 if ((sc = sizeCtl) < 0)
2213 Thread.yield(); // lost initialization race; just spin
2214 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2215 try {
2216 if ((tab = table) == null || tab.length == 0) {
2217 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2218 @SuppressWarnings("unchecked")
2219 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2220 table = tab = nt;
2221 sc = n - (n >>> 2);
2222 }
2223 } finally {
2224 sizeCtl = sc;
2225 }
2226 break;
2227 }
2228 }
2229 return tab;
2230 }
2231
2232 /**
2233 * Adds to count, and if table is too small and not already
2234 * resizing, initiates transfer. If already resizing, helps
2235 * perform transfer if work is available. Rechecks occupancy
2236 * after a transfer to see if another resize is already needed
2237 * because resizings are lagging additions.
2238 *
2239 * @param x the count to add
2240 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2241 */
2242 private final void addCount(long x, int check) {
2243 CounterCell[] as; long b, s;
2244 if ((as = counterCells) != null ||
2245 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2246 CounterCell a; long v; int m;
2247 boolean uncontended = true;
2248 if (as == null || (m = as.length - 1) < 0 ||
2249 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2250 !(uncontended =
2251 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2252 fullAddCount(x, uncontended);
2253 return;
2254 }
2255 if (check <= 1)
2256 return;
2257 s = sumCount();
2258 }
2259 if (check >= 0) {
2260 Node<K,V>[] tab, nt; int n, sc;
2261 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2262 (n = tab.length) < MAXIMUM_CAPACITY) {
2263 int rs = resizeStamp(n);
2264 if (sc < 0) {
2265 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2266 sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2267 transferIndex <= 0)
2268 break;
2269 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2270 transfer(tab, nt);
2271 }
2272 else if (U.compareAndSwapInt(this, SIZECTL, sc,
2273 (rs << RESIZE_STAMP_SHIFT) + 2))
2274 transfer(tab, null);
2275 s = sumCount();
2276 }
2277 }
2278 }
2279
2280 /**
2281 * Helps transfer if a resize is in progress.
2282 */
2283 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2284 Node<K,V>[] nextTab; int sc;
2285 if (tab != null && (f instanceof ForwardingNode) &&
2286 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2287 int rs = resizeStamp(tab.length);
2288 while (nextTab == nextTable && table == tab &&
2289 (sc = sizeCtl) < 0) {
2290 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2291 sc == rs + MAX_RESIZERS || transferIndex <= 0)
2292 break;
2293 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2294 transfer(tab, nextTab);
2295 break;
2296 }
2297 }
2298 return nextTab;
2299 }
2300 return table;
2301 }
2302
2303 /**
2304 * Tries to presize table to accommodate the given number of elements.
2305 *
2306 * @param size number of elements (doesn't need to be perfectly accurate)
2307 */
2308 private final void tryPresize(int size) {
2309 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2310 tableSizeFor(size + (size >>> 1) + 1);
2311 int sc;
2312 while ((sc = sizeCtl) >= 0) {
2313 Node<K,V>[] tab = table; int n;
2314 if (tab == null || (n = tab.length) == 0) {
2315 n = (sc > c) ? sc : c;
2316 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2317 try {
2318 if (table == tab) {
2319 @SuppressWarnings("unchecked")
2320 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2321 table = nt;
2322 sc = n - (n >>> 2);
2323 }
2324 } finally {
2325 sizeCtl = sc;
2326 }
2327 }
2328 }
2329 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2330 break;
2331 else if (tab == table) {
2332 int rs = resizeStamp(n);
2333 if (U.compareAndSwapInt(this, SIZECTL, sc,
2334 (rs << RESIZE_STAMP_SHIFT) + 2))
2335 transfer(tab, null);
2336 }
2337 }
2338 }
2339
2340 /**
2341 * Moves and/or copies the nodes in each bin to new table. See
2342 * above for explanation.
2343 */
2344 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2345 int n = tab.length, stride;
2346 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2347 stride = MIN_TRANSFER_STRIDE; // subdivide range
2348 if (nextTab == null) { // initiating
2349 try {
2350 @SuppressWarnings("unchecked")
2351 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2352 nextTab = nt;
2353 } catch (Throwable ex) { // try to cope with OOME
2354 sizeCtl = Integer.MAX_VALUE;
2355 return;
2356 }
2357 nextTable = nextTab;
2358 transferIndex = n;
2359 }
2360 int nextn = nextTab.length;
2361 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2362 boolean advance = true;
2363 boolean finishing = false; // to ensure sweep before committing nextTab
2364 for (int i = 0, bound = 0;;) {
2365 Node<K,V> f; int fh;
2366 while (advance) {
2367 int nextIndex, nextBound;
2368 if (--i >= bound || finishing)
2369 advance = false;
2370 else if ((nextIndex = transferIndex) <= 0) {
2371 i = -1;
2372 advance = false;
2373 }
2374 else if (U.compareAndSwapInt
2375 (this, TRANSFERINDEX, nextIndex,
2376 nextBound = (nextIndex > stride ?
2377 nextIndex - stride : 0))) {
2378 bound = nextBound;
2379 i = nextIndex - 1;
2380 advance = false;
2381 }
2382 }
2383 if (i < 0 || i >= n || i + n >= nextn) {
2384 int sc;
2385 if (finishing) {
2386 nextTable = null;
2387 table = nextTab;
2388 sizeCtl = (n << 1) - (n >>> 1);
2389 return;
2390 }
2391 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2392 if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2393 return;
2394 finishing = advance = true;
2395 i = n; // recheck before commit
2396 }
2397 }
2398 else if ((f = tabAt(tab, i)) == null)
2399 advance = casTabAt(tab, i, null, fwd);
2400 else if ((fh = f.hash) == MOVED)
2401 advance = true; // already processed
2402 else {
2403 synchronized (f) {
2404 if (tabAt(tab, i) == f) {
2405 Node<K,V> ln, hn;
2406 if (fh >= 0) {
2407 int runBit = fh & n;
2408 Node<K,V> lastRun = f;
2409 for (Node<K,V> p = f.next; p != null; p = p.next) {
2410 int b = p.hash & n;
2411 if (b != runBit) {
2412 runBit = b;
2413 lastRun = p;
2414 }
2415 }
2416 if (runBit == 0) {
2417 ln = lastRun;
2418 hn = null;
2419 }
2420 else {
2421 hn = lastRun;
2422 ln = null;
2423 }
2424 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2425 int ph = p.hash; K pk = p.key; V pv = p.val;
2426 if ((ph & n) == 0)
2427 ln = new Node<K,V>(ph, pk, pv, ln);
2428 else
2429 hn = new Node<K,V>(ph, pk, pv, hn);
2430 }
2431 setTabAt(nextTab, i, ln);
2432 setTabAt(nextTab, i + n, hn);
2433 setTabAt(tab, i, fwd);
2434 advance = true;
2435 }
2436 else if (f instanceof TreeBin) {
2437 TreeBin<K,V> t = (TreeBin<K,V>)f;
2438 TreeNode<K,V> lo = null, loTail = null;
2439 TreeNode<K,V> hi = null, hiTail = null;
2440 int lc = 0, hc = 0;
2441 for (Node<K,V> e = t.first; e != null; e = e.next) {
2442 int h = e.hash;
2443 TreeNode<K,V> p = new TreeNode<K,V>
2444 (h, e.key, e.val, null, null);
2445 if ((h & n) == 0) {
2446 if ((p.prev = loTail) == null)
2447 lo = p;
2448 else
2449 loTail.next = p;
2450 loTail = p;
2451 ++lc;
2452 }
2453 else {
2454 if ((p.prev = hiTail) == null)
2455 hi = p;
2456 else
2457 hiTail.next = p;
2458 hiTail = p;
2459 ++hc;
2460 }
2461 }
2462 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2463 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2464 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2465 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2466 setTabAt(nextTab, i, ln);
2467 setTabAt(nextTab, i + n, hn);
2468 setTabAt(tab, i, fwd);
2469 advance = true;
2470 }
2471 }
2472 }
2473 }
2474 }
2475 }
2476
2477 /* ---------------- Counter support -------------- */
2478
2479 /**
2480 * A padded cell for distributing counts. Adapted from LongAdder
2481 * and Striped64. See their internal docs for explanation.
2482 */
2483 @sun.misc.Contended static final class CounterCell {
2484 volatile long value;
2485 CounterCell(long x) { value = x; }
2486 }
2487
2488 final long sumCount() {
2489 CounterCell[] as = counterCells; CounterCell a;
2490 long sum = baseCount;
2491 if (as != null) {
2492 for (int i = 0; i < as.length; ++i) {
2493 if ((a = as[i]) != null)
2494 sum += a.value;
2495 }
2496 }
2497 return sum;
2498 }
2499
2500 // See LongAdder version for explanation
2501 private final void fullAddCount(long x, boolean wasUncontended) {
2502 int h;
2503 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2504 ThreadLocalRandom.localInit(); // force initialization
2505 h = ThreadLocalRandom.getProbe();
2506 wasUncontended = true;
2507 }
2508 boolean collide = false; // True if last slot nonempty
2509 for (;;) {
2510 CounterCell[] as; CounterCell a; int n; long v;
2511 if ((as = counterCells) != null && (n = as.length) > 0) {
2512 if ((a = as[(n - 1) & h]) == null) {
2513 if (cellsBusy == 0) { // Try to attach new Cell
2514 CounterCell r = new CounterCell(x); // Optimistic create
2515 if (cellsBusy == 0 &&
2516 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2517 boolean created = false;
2518 try { // Recheck under lock
2519 CounterCell[] rs; int m, j;
2520 if ((rs = counterCells) != null &&
2521 (m = rs.length) > 0 &&
2522 rs[j = (m - 1) & h] == null) {
2523 rs[j] = r;
2524 created = true;
2525 }
2526 } finally {
2527 cellsBusy = 0;
2528 }
2529 if (created)
2530 break;
2531 continue; // Slot is now non-empty
2532 }
2533 }
2534 collide = false;
2535 }
2536 else if (!wasUncontended) // CAS already known to fail
2537 wasUncontended = true; // Continue after rehash
2538 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2539 break;
2540 else if (counterCells != as || n >= NCPU)
2541 collide = false; // At max size or stale
2542 else if (!collide)
2543 collide = true;
2544 else if (cellsBusy == 0 &&
2545 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2546 try {
2547 if (counterCells == as) {// Expand table unless stale
2548 CounterCell[] rs = new CounterCell[n << 1];
2549 for (int i = 0; i < n; ++i)
2550 rs[i] = as[i];
2551 counterCells = rs;
2552 }
2553 } finally {
2554 cellsBusy = 0;
2555 }
2556 collide = false;
2557 continue; // Retry with expanded table
2558 }
2559 h = ThreadLocalRandom.advanceProbe(h);
2560 }
2561 else if (cellsBusy == 0 && counterCells == as &&
2562 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2563 boolean init = false;
2564 try { // Initialize table
2565 if (counterCells == as) {
2566 CounterCell[] rs = new CounterCell[2];
2567 rs[h & 1] = new CounterCell(x);
2568 counterCells = rs;
2569 init = true;
2570 }
2571 } finally {
2572 cellsBusy = 0;
2573 }
2574 if (init)
2575 break;
2576 }
2577 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2578 break; // Fall back on using base
2579 }
2580 }
2581
2582 /* ---------------- Conversion from/to TreeBins -------------- */
2583
2584 /**
2585 * Replaces all linked nodes in bin at given index unless table is
2586 * too small, in which case resizes instead.
2587 */
2588 private final void treeifyBin(Node<K,V>[] tab, int index) {
2589 Node<K,V> b; int n, sc;
2590 if (tab != null) {
2591 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2592 tryPresize(n << 1);
2593 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2594 synchronized (b) {
2595 if (tabAt(tab, index) == b) {
2596 TreeNode<K,V> hd = null, tl = null;
2597 for (Node<K,V> e = b; e != null; e = e.next) {
2598 TreeNode<K,V> p =
2599 new TreeNode<K,V>(e.hash, e.key, e.val,
2600 null, null);
2601 if ((p.prev = tl) == null)
2602 hd = p;
2603 else
2604 tl.next = p;
2605 tl = p;
2606 }
2607 setTabAt(tab, index, new TreeBin<K,V>(hd));
2608 }
2609 }
2610 }
2611 }
2612 }
2613
2614 /**
2615 * Returns a list on non-TreeNodes replacing those in given list.
2616 */
2617 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2618 Node<K,V> hd = null, tl = null;
2619 for (Node<K,V> q = b; q != null; q = q.next) {
2620 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2621 if (tl == null)
2622 hd = p;
2623 else
2624 tl.next = p;
2625 tl = p;
2626 }
2627 return hd;
2628 }
2629
2630 /* ---------------- TreeNodes -------------- */
2631
2632 /**
2633 * Nodes for use in TreeBins
2634 */
2635 static final class TreeNode<K,V> extends Node<K,V> {
2636 TreeNode<K,V> parent; // red-black tree links
2637 TreeNode<K,V> left;
2638 TreeNode<K,V> right;
2639 TreeNode<K,V> prev; // needed to unlink next upon deletion
2640 boolean red;
2641
2642 TreeNode(int hash, K key, V val, Node<K,V> next,
2643 TreeNode<K,V> parent) {
2644 super(hash, key, val, next);
2645 this.parent = parent;
2646 }
2647
2648 Node<K,V> find(int h, Object k) {
2649 return findTreeNode(h, k, null);
2650 }
2651
2652 /**
2653 * Returns the TreeNode (or null if not found) for the given key
2654 * starting at given root.
2655 */
2656 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2657 if (k != null) {
2658 TreeNode<K,V> p = this;
2659 do {
2660 int ph, dir; K pk; TreeNode<K,V> q;
2661 TreeNode<K,V> pl = p.left, pr = p.right;
2662 if ((ph = p.hash) > h)
2663 p = pl;
2664 else if (ph < h)
2665 p = pr;
2666 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2667 return p;
2668 else if (pl == null)
2669 p = pr;
2670 else if (pr == null)
2671 p = pl;
2672 else if ((kc != null ||
2673 (kc = comparableClassFor(k)) != null) &&
2674 (dir = compareComparables(kc, k, pk)) != 0)
2675 p = (dir < 0) ? pl : pr;
2676 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2677 return q;
2678 else
2679 p = pl;
2680 } while (p != null);
2681 }
2682 return null;
2683 }
2684 }
2685
2686 /* ---------------- TreeBins -------------- */
2687
2688 /**
2689 * TreeNodes used at the heads of bins. TreeBins do not hold user
2690 * keys or values, but instead point to list of TreeNodes and
2691 * their root. They also maintain a parasitic read-write lock
2692 * forcing writers (who hold bin lock) to wait for readers (who do
2693 * not) to complete before tree restructuring operations.
2694 */
2695 static final class TreeBin<K,V> extends Node<K,V> {
2696 TreeNode<K,V> root;
2697 volatile TreeNode<K,V> first;
2698 volatile Thread waiter;
2699 volatile int lockState;
2700 // values for lockState
2701 static final int WRITER = 1; // set while holding write lock
2702 static final int WAITER = 2; // set when waiting for write lock
2703 static final int READER = 4; // increment value for setting read lock
2704
2705 /**
2706 * Tie-breaking utility for ordering insertions when equal
2707 * hashCodes and non-comparable. We don't require a total
2708 * order, just a consistent insertion rule to maintain
2709 * equivalence across rebalancings. Tie-breaking further than
2710 * necessary simplifies testing a bit.
2711 */
2712 static int tieBreakOrder(Object a, Object b) {
2713 int d;
2714 if (a == null || b == null ||
2715 (d = a.getClass().getName().
2716 compareTo(b.getClass().getName())) == 0)
2717 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2718 -1 : 1);
2719 return d;
2720 }
2721
2722 /**
2723 * Creates bin with initial set of nodes headed by b.
2724 */
2725 TreeBin(TreeNode<K,V> b) {
2726 super(TREEBIN, null, null, null);
2727 this.first = b;
2728 TreeNode<K,V> r = null;
2729 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2730 next = (TreeNode<K,V>)x.next;
2731 x.left = x.right = null;
2732 if (r == null) {
2733 x.parent = null;
2734 x.red = false;
2735 r = x;
2736 }
2737 else {
2738 K k = x.key;
2739 int h = x.hash;
2740 Class<?> kc = null;
2741 for (TreeNode<K,V> p = r;;) {
2742 int dir, ph;
2743 K pk = p.key;
2744 if ((ph = p.hash) > h)
2745 dir = -1;
2746 else if (ph < h)
2747 dir = 1;
2748 else if ((kc == null &&
2749 (kc = comparableClassFor(k)) == null) ||
2750 (dir = compareComparables(kc, k, pk)) == 0)
2751 dir = tieBreakOrder(k, pk);
2752 TreeNode<K,V> xp = p;
2753 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2754 x.parent = xp;
2755 if (dir <= 0)
2756 xp.left = x;
2757 else
2758 xp.right = x;
2759 r = balanceInsertion(r, x);
2760 break;
2761 }
2762 }
2763 }
2764 }
2765 this.root = r;
2766 assert checkInvariants(root);
2767 }
2768
2769 /**
2770 * Acquires write lock for tree restructuring.
2771 */
2772 private final void lockRoot() {
2773 if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2774 contendedLock(); // offload to separate method
2775 }
2776
2777 /**
2778 * Releases write lock for tree restructuring.
2779 */
2780 private final void unlockRoot() {
2781 lockState = 0;
2782 }
2783
2784 /**
2785 * Possibly blocks awaiting root lock.
2786 */
2787 private final void contendedLock() {
2788 boolean waiting = false;
2789 for (int s;;) {
2790 if (((s = lockState) & ~WAITER) == 0) {
2791 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2792 if (waiting)
2793 waiter = null;
2794 return;
2795 }
2796 }
2797 else if ((s & WAITER) == 0) {
2798 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2799 waiting = true;
2800 waiter = Thread.currentThread();
2801 }
2802 }
2803 else if (waiting)
2804 LockSupport.park(this);
2805 }
2806 }
2807
2808 /**
2809 * Returns matching node or null if none. Tries to search
2810 * using tree comparisons from root, but continues linear
2811 * search when lock not available.
2812 */
2813 final Node<K,V> find(int h, Object k) {
2814 if (k != null) {
2815 for (Node<K,V> e = first; e != null; ) {
2816 int s; K ek;
2817 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2818 if (e.hash == h &&
2819 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2820 return e;
2821 e = e.next;
2822 }
2823 else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2824 s + READER)) {
2825 TreeNode<K,V> r, p;
2826 try {
2827 p = ((r = root) == null ? null :
2828 r.findTreeNode(h, k, null));
2829 } finally {
2830 Thread w;
2831 if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2832 (READER|WAITER) && (w = waiter) != null)
2833 LockSupport.unpark(w);
2834 }
2835 return p;
2836 }
2837 }
2838 }
2839 return null;
2840 }
2841
2842 /**
2843 * Finds or adds a node.
2844 * @return null if added
2845 */
2846 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2847 Class<?> kc = null;
2848 boolean searched = false;
2849 for (TreeNode<K,V> p = root;;) {
2850 int dir, ph; K pk;
2851 if (p == null) {
2852 first = root = new TreeNode<K,V>(h, k, v, null, null);
2853 break;
2854 }
2855 else if ((ph = p.hash) > h)
2856 dir = -1;
2857 else if (ph < h)
2858 dir = 1;
2859 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2860 return p;
2861 else if ((kc == null &&
2862 (kc = comparableClassFor(k)) == null) ||
2863 (dir = compareComparables(kc, k, pk)) == 0) {
2864 if (!searched) {
2865 TreeNode<K,V> q, ch;
2866 searched = true;
2867 if (((ch = p.left) != null &&
2868 (q = ch.findTreeNode(h, k, kc)) != null) ||
2869 ((ch = p.right) != null &&
2870 (q = ch.findTreeNode(h, k, kc)) != null))
2871 return q;
2872 }
2873 dir = tieBreakOrder(k, pk);
2874 }
2875
2876 TreeNode<K,V> xp = p;
2877 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2878 TreeNode<K,V> x, f = first;
2879 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2880 if (f != null)
2881 f.prev = x;
2882 if (dir <= 0)
2883 xp.left = x;
2884 else
2885 xp.right = x;
2886 if (!xp.red)
2887 x.red = true;
2888 else {
2889 lockRoot();
2890 try {
2891 root = balanceInsertion(root, x);
2892 } finally {
2893 unlockRoot();
2894 }
2895 }
2896 break;
2897 }
2898 }
2899 assert checkInvariants(root);
2900 return null;
2901 }
2902
2903 /**
2904 * Removes the given node, that must be present before this
2905 * call. This is messier than typical red-black deletion code
2906 * because we cannot swap the contents of an interior node
2907 * with a leaf successor that is pinned by "next" pointers
2908 * that are accessible independently of lock. So instead we
2909 * swap the tree linkages.
2910 *
2911 * @return true if now too small, so should be untreeified
2912 */
2913 final boolean removeTreeNode(TreeNode<K,V> p) {
2914 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2915 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2916 TreeNode<K,V> r, rl;
2917 if (pred == null)
2918 first = next;
2919 else
2920 pred.next = next;
2921 if (next != null)
2922 next.prev = pred;
2923 if (first == null) {
2924 root = null;
2925 return true;
2926 }
2927 if ((r = root) == null || r.right == null || // too small
2928 (rl = r.left) == null || rl.left == null)
2929 return true;
2930 lockRoot();
2931 try {
2932 TreeNode<K,V> replacement;
2933 TreeNode<K,V> pl = p.left;
2934 TreeNode<K,V> pr = p.right;
2935 if (pl != null && pr != null) {
2936 TreeNode<K,V> s = pr, sl;
2937 while ((sl = s.left) != null) // find successor
2938 s = sl;
2939 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2940 TreeNode<K,V> sr = s.right;
2941 TreeNode<K,V> pp = p.parent;
2942 if (s == pr) { // p was s's direct parent
2943 p.parent = s;
2944 s.right = p;
2945 }
2946 else {
2947 TreeNode<K,V> sp = s.parent;
2948 if ((p.parent = sp) != null) {
2949 if (s == sp.left)
2950 sp.left = p;
2951 else
2952 sp.right = p;
2953 }
2954 if ((s.right = pr) != null)
2955 pr.parent = s;
2956 }
2957 p.left = null;
2958 if ((p.right = sr) != null)
2959 sr.parent = p;
2960 if ((s.left = pl) != null)
2961 pl.parent = s;
2962 if ((s.parent = pp) == null)
2963 r = s;
2964 else if (p == pp.left)
2965 pp.left = s;
2966 else
2967 pp.right = s;
2968 if (sr != null)
2969 replacement = sr;
2970 else
2971 replacement = p;
2972 }
2973 else if (pl != null)
2974 replacement = pl;
2975 else if (pr != null)
2976 replacement = pr;
2977 else
2978 replacement = p;
2979 if (replacement != p) {
2980 TreeNode<K,V> pp = replacement.parent = p.parent;
2981 if (pp == null)
2982 r = replacement;
2983 else if (p == pp.left)
2984 pp.left = replacement;
2985 else
2986 pp.right = replacement;
2987 p.left = p.right = p.parent = null;
2988 }
2989
2990 root = (p.red) ? r : balanceDeletion(r, replacement);
2991
2992 if (p == replacement) { // detach pointers
2993 TreeNode<K,V> pp;
2994 if ((pp = p.parent) != null) {
2995 if (p == pp.left)
2996 pp.left = null;
2997 else if (p == pp.right)
2998 pp.right = null;
2999 p.parent = null;
3000 }
3001 }
3002 } finally {
3003 unlockRoot();
3004 }
3005 assert checkInvariants(root);
3006 return false;
3007 }
3008
3009 /* ------------------------------------------------------------ */
3010 // Red-black tree methods, all adapted from CLR
3011
3012 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3013 TreeNode<K,V> p) {
3014 TreeNode<K,V> r, pp, rl;
3015 if (p != null && (r = p.right) != null) {
3016 if ((rl = p.right = r.left) != null)
3017 rl.parent = p;
3018 if ((pp = r.parent = p.parent) == null)
3019 (root = r).red = false;
3020 else if (pp.left == p)
3021 pp.left = r;
3022 else
3023 pp.right = r;
3024 r.left = p;
3025 p.parent = r;
3026 }
3027 return root;
3028 }
3029
3030 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3031 TreeNode<K,V> p) {
3032 TreeNode<K,V> l, pp, lr;
3033 if (p != null && (l = p.left) != null) {
3034 if ((lr = p.left = l.right) != null)
3035 lr.parent = p;
3036 if ((pp = l.parent = p.parent) == null)
3037 (root = l).red = false;
3038 else if (pp.right == p)
3039 pp.right = l;
3040 else
3041 pp.left = l;
3042 l.right = p;
3043 p.parent = l;
3044 }
3045 return root;
3046 }
3047
3048 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3049 TreeNode<K,V> x) {
3050 x.red = true;
3051 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3052 if ((xp = x.parent) == null) {
3053 x.red = false;
3054 return x;
3055 }
3056 else if (!xp.red || (xpp = xp.parent) == null)
3057 return root;
3058 if (xp == (xppl = xpp.left)) {
3059 if ((xppr = xpp.right) != null && xppr.red) {
3060 xppr.red = false;
3061 xp.red = false;
3062 xpp.red = true;
3063 x = xpp;
3064 }
3065 else {
3066 if (x == xp.right) {
3067 root = rotateLeft(root, x = xp);
3068 xpp = (xp = x.parent) == null ? null : xp.parent;
3069 }
3070 if (xp != null) {
3071 xp.red = false;
3072 if (xpp != null) {
3073 xpp.red = true;
3074 root = rotateRight(root, xpp);
3075 }
3076 }
3077 }
3078 }
3079 else {
3080 if (xppl != null && xppl.red) {
3081 xppl.red = false;
3082 xp.red = false;
3083 xpp.red = true;
3084 x = xpp;
3085 }
3086 else {
3087 if (x == xp.left) {
3088 root = rotateRight(root, x = xp);
3089 xpp = (xp = x.parent) == null ? null : xp.parent;
3090 }
3091 if (xp != null) {
3092 xp.red = false;
3093 if (xpp != null) {
3094 xpp.red = true;
3095 root = rotateLeft(root, xpp);
3096 }
3097 }
3098 }
3099 }
3100 }
3101 }
3102
3103 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3104 TreeNode<K,V> x) {
3105 for (TreeNode<K,V> xp, xpl, xpr;;) {
3106 if (x == null || x == root)
3107 return root;
3108 else if ((xp = x.parent) == null) {
3109 x.red = false;
3110 return x;
3111 }
3112 else if (x.red) {
3113 x.red = false;
3114 return root;
3115 }
3116 else if ((xpl = xp.left) == x) {
3117 if ((xpr = xp.right) != null && xpr.red) {
3118 xpr.red = false;
3119 xp.red = true;
3120 root = rotateLeft(root, xp);
3121 xpr = (xp = x.parent) == null ? null : xp.right;
3122 }
3123 if (xpr == null)
3124 x = xp;
3125 else {
3126 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3127 if ((sr == null || !sr.red) &&
3128 (sl == null || !sl.red)) {
3129 xpr.red = true;
3130 x = xp;
3131 }
3132 else {
3133 if (sr == null || !sr.red) {
3134 if (sl != null)
3135 sl.red = false;
3136 xpr.red = true;
3137 root = rotateRight(root, xpr);
3138 xpr = (xp = x.parent) == null ?
3139 null : xp.right;
3140 }
3141 if (xpr != null) {
3142 xpr.red = (xp == null) ? false : xp.red;
3143 if ((sr = xpr.right) != null)
3144 sr.red = false;
3145 }
3146 if (xp != null) {
3147 xp.red = false;
3148 root = rotateLeft(root, xp);
3149 }
3150 x = root;
3151 }
3152 }
3153 }
3154 else { // symmetric
3155 if (xpl != null && xpl.red) {
3156 xpl.red = false;
3157 xp.red = true;
3158 root = rotateRight(root, xp);
3159 xpl = (xp = x.parent) == null ? null : xp.left;
3160 }
3161 if (xpl == null)
3162 x = xp;
3163 else {
3164 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3165 if ((sl == null || !sl.red) &&
3166 (sr == null || !sr.red)) {
3167 xpl.red = true;
3168 x = xp;
3169 }
3170 else {
3171 if (sl == null || !sl.red) {
3172 if (sr != null)
3173 sr.red = false;
3174 xpl.red = true;
3175 root = rotateLeft(root, xpl);
3176 xpl = (xp = x.parent) == null ?
3177 null : xp.left;
3178 }
3179 if (xpl != null) {
3180 xpl.red = (xp == null) ? false : xp.red;
3181 if ((sl = xpl.left) != null)
3182 sl.red = false;
3183 }
3184 if (xp != null) {
3185 xp.red = false;
3186 root = rotateRight(root, xp);
3187 }
3188 x = root;
3189 }
3190 }
3191 }
3192 }
3193 }
3194
3195 /**
3196 * Recursive invariant check
3197 */
3198 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3199 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3200 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3201 if (tb != null && tb.next != t)
3202 return false;
3203 if (tn != null && tn.prev != t)
3204 return false;
3205 if (tp != null && t != tp.left && t != tp.right)
3206 return false;
3207 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3208 return false;
3209 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3210 return false;
3211 if (t.red && tl != null && tl.red && tr != null && tr.red)
3212 return false;
3213 if (tl != null && !checkInvariants(tl))
3214 return false;
3215 if (tr != null && !checkInvariants(tr))
3216 return false;
3217 return true;
3218 }
3219
3220 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3221 private static final long LOCKSTATE;
3222 static {
3223 try {
3224 LOCKSTATE = U.objectFieldOffset
3225 (TreeBin.class.getDeclaredField("lockState"));
3226 } catch (ReflectiveOperationException e) {
3227 throw new Error(e);
3228 }
3229 }
3230 }
3231
3232 /* ----------------Table Traversal -------------- */
3233
3234 /**
3235 * Records the table, its length, and current traversal index for a
3236 * traverser that must process a region of a forwarded table before
3237 * proceeding with current table.
3238 */
3239 static final class TableStack<K,V> {
3240 int length;
3241 int index;
3242 Node<K,V>[] tab;
3243 TableStack<K,V> next;
3244 }
3245
3246 /**
3247 * Encapsulates traversal for methods such as containsValue; also
3248 * serves as a base class for other iterators and spliterators.
3249 *
3250 * Method advance visits once each still-valid node that was
3251 * reachable upon iterator construction. It might miss some that
3252 * were added to a bin after the bin was visited, which is OK wrt
3253 * consistency guarantees. Maintaining this property in the face
3254 * of possible ongoing resizes requires a fair amount of
3255 * bookkeeping state that is difficult to optimize away amidst
3256 * volatile accesses. Even so, traversal maintains reasonable
3257 * throughput.
3258 *
3259 * Normally, iteration proceeds bin-by-bin traversing lists.
3260 * However, if the table has been resized, then all future steps
3261 * must traverse both the bin at the current index as well as at
3262 * (index + baseSize); and so on for further resizings. To
3263 * paranoically cope with potential sharing by users of iterators
3264 * across threads, iteration terminates if a bounds checks fails
3265 * for a table read.
3266 */
3267 static class Traverser<K,V> {
3268 Node<K,V>[] tab; // current table; updated if resized
3269 Node<K,V> next; // the next entry to use
3270 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3271 int index; // index of bin to use next
3272 int baseIndex; // current index of initial table
3273 int baseLimit; // index bound for initial table
3274 final int baseSize; // initial table size
3275
3276 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3277 this.tab = tab;
3278 this.baseSize = size;
3279 this.baseIndex = this.index = index;
3280 this.baseLimit = limit;
3281 this.next = null;
3282 }
3283
3284 /**
3285 * Advances if possible, returning next valid node, or null if none.
3286 */
3287 final Node<K,V> advance() {
3288 Node<K,V> e;
3289 if ((e = next) != null)
3290 e = e.next;
3291 for (;;) {
3292 Node<K,V>[] t; int i, n; // must use locals in checks
3293 if (e != null)
3294 return next = e;
3295 if (baseIndex >= baseLimit || (t = tab) == null ||
3296 (n = t.length) <= (i = index) || i < 0)
3297 return next = null;
3298 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3299 if (e instanceof ForwardingNode) {
3300 tab = ((ForwardingNode<K,V>)e).nextTable;
3301 e = null;
3302 pushState(t, i, n);
3303 continue;
3304 }
3305 else if (e instanceof TreeBin)
3306 e = ((TreeBin<K,V>)e).first;
3307 else
3308 e = null;
3309 }
3310 if (stack != null)
3311 recoverState(n);
3312 else if ((index = i + baseSize) >= n)
3313 index = ++baseIndex; // visit upper slots if present
3314 }
3315 }
3316
3317 /**
3318 * Saves traversal state upon encountering a forwarding node.
3319 */
3320 private void pushState(Node<K,V>[] t, int i, int n) {
3321 TableStack<K,V> s = spare; // reuse if possible
3322 if (s != null)
3323 spare = s.next;
3324 else
3325 s = new TableStack<K,V>();
3326 s.tab = t;
3327 s.length = n;
3328 s.index = i;
3329 s.next = stack;
3330 stack = s;
3331 }
3332
3333 /**
3334 * Possibly pops traversal state.
3335 *
3336 * @param n length of current table
3337 */
3338 private void recoverState(int n) {
3339 TableStack<K,V> s; int len;
3340 while ((s = stack) != null && (index += (len = s.length)) >= n) {
3341 n = len;
3342 index = s.index;
3343 tab = s.tab;
3344 s.tab = null;
3345 TableStack<K,V> next = s.next;
3346 s.next = spare; // save for reuse
3347 stack = next;
3348 spare = s;
3349 }
3350 if (s == null && (index += baseSize) >= n)
3351 index = ++baseIndex;
3352 }
3353 }
3354
3355 /**
3356 * Base of key, value, and entry Iterators. Adds fields to
3357 * Traverser to support iterator.remove.
3358 */
3359 static class BaseIterator<K,V> extends Traverser<K,V> {
3360 final ConcurrentHashMap<K,V> map;
3361 Node<K,V> lastReturned;
3362 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3363 ConcurrentHashMap<K,V> map) {
3364 super(tab, size, index, limit);
3365 this.map = map;
3366 advance();
3367 }
3368
3369 public final boolean hasNext() { return next != null; }
3370 public final boolean hasMoreElements() { return next != null; }
3371
3372 public final void remove() {
3373 Node<K,V> p;
3374 if ((p = lastReturned) == null)
3375 throw new IllegalStateException();
3376 lastReturned = null;
3377 map.replaceNode(p.key, null, null);
3378 }
3379 }
3380
3381 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3382 implements Iterator<K>, Enumeration<K> {
3383 KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3384 ConcurrentHashMap<K,V> map) {
3385 super(tab, index, size, limit, map);
3386 }
3387
3388 public final K next() {
3389 Node<K,V> p;
3390 if ((p = next) == null)
3391 throw new NoSuchElementException();
3392 K k = p.key;
3393 lastReturned = p;
3394 advance();
3395 return k;
3396 }
3397
3398 public final K nextElement() { return next(); }
3399 }
3400
3401 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3402 implements Iterator<V>, Enumeration<V> {
3403 ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3404 ConcurrentHashMap<K,V> map) {
3405 super(tab, index, size, limit, map);
3406 }
3407
3408 public final V next() {
3409 Node<K,V> p;
3410 if ((p = next) == null)
3411 throw new NoSuchElementException();
3412 V v = p.val;
3413 lastReturned = p;
3414 advance();
3415 return v;
3416 }
3417
3418 public final V nextElement() { return next(); }
3419 }
3420
3421 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3422 implements Iterator<Map.Entry<K,V>> {
3423 EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3424 ConcurrentHashMap<K,V> map) {
3425 super(tab, index, size, limit, map);
3426 }
3427
3428 public final Map.Entry<K,V> next() {
3429 Node<K,V> p;
3430 if ((p = next) == null)
3431 throw new NoSuchElementException();
3432 K k = p.key;
3433 V v = p.val;
3434 lastReturned = p;
3435 advance();
3436 return new MapEntry<K,V>(k, v, map);
3437 }
3438 }
3439
3440 /**
3441 * Exported Entry for EntryIterator
3442 */
3443 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3444 final K key; // non-null
3445 V val; // non-null
3446 final ConcurrentHashMap<K,V> map;
3447 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3448 this.key = key;
3449 this.val = val;
3450 this.map = map;
3451 }
3452 public K getKey() { return key; }
3453 public V getValue() { return val; }
3454 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3455 public String toString() { return key + "=" + val; }
3456
3457 public boolean equals(Object o) {
3458 Object k, v; Map.Entry<?,?> e;
3459 return ((o instanceof Map.Entry) &&
3460 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3461 (v = e.getValue()) != null &&
3462 (k == key || k.equals(key)) &&
3463 (v == val || v.equals(val)));
3464 }
3465
3466 /**
3467 * Sets our entry's value and writes through to the map. The
3468 * value to return is somewhat arbitrary here. Since we do not
3469 * necessarily track asynchronous changes, the most recent
3470 * "previous" value could be different from what we return (or
3471 * could even have been removed, in which case the put will
3472 * re-establish). We do not and cannot guarantee more.
3473 */
3474 public V setValue(V value) {
3475 if (value == null) throw new NullPointerException();
3476 V v = val;
3477 val = value;
3478 map.put(key, value);
3479 return v;
3480 }
3481 }
3482
3483 static final class KeySpliterator<K,V> extends Traverser<K,V>
3484 implements Spliterator<K> {
3485 long est; // size estimate
3486 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3487 long est) {
3488 super(tab, size, index, limit);
3489 this.est = est;
3490 }
3491
3492 public Spliterator<K> trySplit() {
3493 int i, f, h;
3494 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3495 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3496 f, est >>>= 1);
3497 }
3498
3499 public void forEachRemaining(Consumer<? super K> action) {
3500 if (action == null) throw new NullPointerException();
3501 for (Node<K,V> p; (p = advance()) != null;)
3502 action.accept(p.key);
3503 }
3504
3505 public boolean tryAdvance(Consumer<? super K> action) {
3506 if (action == null) throw new NullPointerException();
3507 Node<K,V> p;
3508 if ((p = advance()) == null)
3509 return false;
3510 action.accept(p.key);
3511 return true;
3512 }
3513
3514 public long estimateSize() { return est; }
3515
3516 public int characteristics() {
3517 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3518 Spliterator.NONNULL;
3519 }
3520 }
3521
3522 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3523 implements Spliterator<V> {
3524 long est; // size estimate
3525 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3526 long est) {
3527 super(tab, size, index, limit);
3528 this.est = est;
3529 }
3530
3531 public Spliterator<V> trySplit() {
3532 int i, f, h;
3533 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3534 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3535 f, est >>>= 1);
3536 }
3537
3538 public void forEachRemaining(Consumer<? super V> action) {
3539 if (action == null) throw new NullPointerException();
3540 for (Node<K,V> p; (p = advance()) != null;)
3541 action.accept(p.val);
3542 }
3543
3544 public boolean tryAdvance(Consumer<? super V> action) {
3545 if (action == null) throw new NullPointerException();
3546 Node<K,V> p;
3547 if ((p = advance()) == null)
3548 return false;
3549 action.accept(p.val);
3550 return true;
3551 }
3552
3553 public long estimateSize() { return est; }
3554
3555 public int characteristics() {
3556 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3557 }
3558 }
3559
3560 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3561 implements Spliterator<Map.Entry<K,V>> {
3562 final ConcurrentHashMap<K,V> map; // To export MapEntry
3563 long est; // size estimate
3564 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3565 long est, ConcurrentHashMap<K,V> map) {
3566 super(tab, size, index, limit);
3567 this.map = map;
3568 this.est = est;
3569 }
3570
3571 public Spliterator<Map.Entry<K,V>> trySplit() {
3572 int i, f, h;
3573 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3574 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3575 f, est >>>= 1, map);
3576 }
3577
3578 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3579 if (action == null) throw new NullPointerException();
3580 for (Node<K,V> p; (p = advance()) != null; )
3581 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3582 }
3583
3584 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3585 if (action == null) throw new NullPointerException();
3586 Node<K,V> p;
3587 if ((p = advance()) == null)
3588 return false;
3589 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3590 return true;
3591 }
3592
3593 public long estimateSize() { return est; }
3594
3595 public int characteristics() {
3596 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3597 Spliterator.NONNULL;
3598 }
3599 }
3600
3601 // Parallel bulk operations
3602
3603 /**
3604 * Computes initial batch value for bulk tasks. The returned value
3605 * is approximately exp2 of the number of times (minus one) to
3606 * split task by two before executing leaf action. This value is
3607 * faster to compute and more convenient to use as a guide to
3608 * splitting than is the depth, since it is used while dividing by
3609 * two anyway.
3610 */
3611 final int batchFor(long b) {
3612 long n;
3613 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3614 return 0;
3615 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3616 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3617 }
3618
3619 /**
3620 * Performs the given action for each (key, value).
3621 *
3622 * @param parallelismThreshold the (estimated) number of elements
3623 * needed for this operation to be executed in parallel
3624 * @param action the action
3625 * @since 1.8
3626 */
3627 public void forEach(long parallelismThreshold,
3628 BiConsumer<? super K,? super V> action) {
3629 if (action == null) throw new NullPointerException();
3630 new ForEachMappingTask<K,V>
3631 (null, batchFor(parallelismThreshold), 0, 0, table,
3632 action).invoke();
3633 }
3634
3635 /**
3636 * Performs the given action for each non-null transformation
3637 * of each (key, value).
3638 *
3639 * @param parallelismThreshold the (estimated) number of elements
3640 * needed for this operation to be executed in parallel
3641 * @param transformer a function returning the transformation
3642 * for an element, or null if there is no transformation (in
3643 * which case the action is not applied)
3644 * @param action the action
3645 * @param <U> the return type of the transformer
3646 * @since 1.8
3647 */
3648 public <U> void forEach(long parallelismThreshold,
3649 BiFunction<? super K, ? super V, ? extends U> transformer,
3650 Consumer<? super U> action) {
3651 if (transformer == null || action == null)
3652 throw new NullPointerException();
3653 new ForEachTransformedMappingTask<K,V,U>
3654 (null, batchFor(parallelismThreshold), 0, 0, table,
3655 transformer, action).invoke();
3656 }
3657
3658 /**
3659 * Returns a non-null result from applying the given search
3660 * function on each (key, value), or null if none. Upon
3661 * success, further element processing is suppressed and the
3662 * results of any other parallel invocations of the search
3663 * function are ignored.
3664 *
3665 * @param parallelismThreshold the (estimated) number of elements
3666 * needed for this operation to be executed in parallel
3667 * @param searchFunction a function returning a non-null
3668 * result on success, else null
3669 * @param <U> the return type of the search function
3670 * @return a non-null result from applying the given search
3671 * function on each (key, value), or null if none
3672 * @since 1.8
3673 */
3674 public <U> U search(long parallelismThreshold,
3675 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3676 if (searchFunction == null) throw new NullPointerException();
3677 return new SearchMappingsTask<K,V,U>
3678 (null, batchFor(parallelismThreshold), 0, 0, table,
3679 searchFunction, new AtomicReference<U>()).invoke();
3680 }
3681
3682 /**
3683 * Returns the result of accumulating the given transformation
3684 * of all (key, value) pairs using the given reducer to
3685 * combine values, or null if none.
3686 *
3687 * @param parallelismThreshold the (estimated) number of elements
3688 * needed for this operation to be executed in parallel
3689 * @param transformer a function returning the transformation
3690 * for an element, or null if there is no transformation (in
3691 * which case it is not combined)
3692 * @param reducer a commutative associative combining function
3693 * @param <U> the return type of the transformer
3694 * @return the result of accumulating the given transformation
3695 * of all (key, value) pairs
3696 * @since 1.8
3697 */
3698 public <U> U reduce(long parallelismThreshold,
3699 BiFunction<? super K, ? super V, ? extends U> transformer,
3700 BiFunction<? super U, ? super U, ? extends U> reducer) {
3701 if (transformer == null || reducer == null)
3702 throw new NullPointerException();
3703 return new MapReduceMappingsTask<K,V,U>
3704 (null, batchFor(parallelismThreshold), 0, 0, table,
3705 null, transformer, reducer).invoke();
3706 }
3707
3708 /**
3709 * Returns the result of accumulating the given transformation
3710 * of all (key, value) pairs using the given reducer to
3711 * combine values, and the given basis as an identity value.
3712 *
3713 * @param parallelismThreshold the (estimated) number of elements
3714 * needed for this operation to be executed in parallel
3715 * @param transformer a function returning the transformation
3716 * for an element
3717 * @param basis the identity (initial default value) for the reduction
3718 * @param reducer a commutative associative combining function
3719 * @return the result of accumulating the given transformation
3720 * of all (key, value) pairs
3721 * @since 1.8
3722 */
3723 public double reduceToDouble(long parallelismThreshold,
3724 ToDoubleBiFunction<? super K, ? super V> transformer,
3725 double basis,
3726 DoubleBinaryOperator reducer) {
3727 if (transformer == null || reducer == null)
3728 throw new NullPointerException();
3729 return new MapReduceMappingsToDoubleTask<K,V>
3730 (null, batchFor(parallelismThreshold), 0, 0, table,
3731 null, transformer, basis, reducer).invoke();
3732 }
3733
3734 /**
3735 * Returns the result of accumulating the given transformation
3736 * of all (key, value) pairs using the given reducer to
3737 * combine values, and the given basis as an identity value.
3738 *
3739 * @param parallelismThreshold the (estimated) number of elements
3740 * needed for this operation to be executed in parallel
3741 * @param transformer a function returning the transformation
3742 * for an element
3743 * @param basis the identity (initial default value) for the reduction
3744 * @param reducer a commutative associative combining function
3745 * @return the result of accumulating the given transformation
3746 * of all (key, value) pairs
3747 * @since 1.8
3748 */
3749 public long reduceToLong(long parallelismThreshold,
3750 ToLongBiFunction<? super K, ? super V> transformer,
3751 long basis,
3752 LongBinaryOperator reducer) {
3753 if (transformer == null || reducer == null)
3754 throw new NullPointerException();
3755 return new MapReduceMappingsToLongTask<K,V>
3756 (null, batchFor(parallelismThreshold), 0, 0, table,
3757 null, transformer, basis, reducer).invoke();
3758 }
3759
3760 /**
3761 * Returns the result of accumulating the given transformation
3762 * of all (key, value) pairs using the given reducer to
3763 * combine values, and the given basis as an identity value.
3764 *
3765 * @param parallelismThreshold the (estimated) number of elements
3766 * needed for this operation to be executed in parallel
3767 * @param transformer a function returning the transformation
3768 * for an element
3769 * @param basis the identity (initial default value) for the reduction
3770 * @param reducer a commutative associative combining function
3771 * @return the result of accumulating the given transformation
3772 * of all (key, value) pairs
3773 * @since 1.8
3774 */
3775 public int reduceToInt(long parallelismThreshold,
3776 ToIntBiFunction<? super K, ? super V> transformer,
3777 int basis,
3778 IntBinaryOperator reducer) {
3779 if (transformer == null || reducer == null)
3780 throw new NullPointerException();
3781 return new MapReduceMappingsToIntTask<K,V>
3782 (null, batchFor(parallelismThreshold), 0, 0, table,
3783 null, transformer, basis, reducer).invoke();
3784 }
3785
3786 /**
3787 * Performs the given action for each key.
3788 *
3789 * @param parallelismThreshold the (estimated) number of elements
3790 * needed for this operation to be executed in parallel
3791 * @param action the action
3792 * @since 1.8
3793 */
3794 public void forEachKey(long parallelismThreshold,
3795 Consumer<? super K> action) {
3796 if (action == null) throw new NullPointerException();
3797 new ForEachKeyTask<K,V>
3798 (null, batchFor(parallelismThreshold), 0, 0, table,
3799 action).invoke();
3800 }
3801
3802 /**
3803 * Performs the given action for each non-null transformation
3804 * of each key.
3805 *
3806 * @param parallelismThreshold the (estimated) number of elements
3807 * needed for this operation to be executed in parallel
3808 * @param transformer a function returning the transformation
3809 * for an element, or null if there is no transformation (in
3810 * which case the action is not applied)
3811 * @param action the action
3812 * @param <U> the return type of the transformer
3813 * @since 1.8
3814 */
3815 public <U> void forEachKey(long parallelismThreshold,
3816 Function<? super K, ? extends U> transformer,
3817 Consumer<? super U> action) {
3818 if (transformer == null || action == null)
3819 throw new NullPointerException();
3820 new ForEachTransformedKeyTask<K,V,U>
3821 (null, batchFor(parallelismThreshold), 0, 0, table,
3822 transformer, action).invoke();
3823 }
3824
3825 /**
3826 * Returns a non-null result from applying the given search
3827 * function on each key, or null if none. Upon success,
3828 * further element processing is suppressed and the results of
3829 * any other parallel invocations of the search function are
3830 * ignored.
3831 *
3832 * @param parallelismThreshold the (estimated) number of elements
3833 * needed for this operation to be executed in parallel
3834 * @param searchFunction a function returning a non-null
3835 * result on success, else null
3836 * @param <U> the return type of the search function
3837 * @return a non-null result from applying the given search
3838 * function on each key, or null if none
3839 * @since 1.8
3840 */
3841 public <U> U searchKeys(long parallelismThreshold,
3842 Function<? super K, ? extends U> searchFunction) {
3843 if (searchFunction == null) throw new NullPointerException();
3844 return new SearchKeysTask<K,V,U>
3845 (null, batchFor(parallelismThreshold), 0, 0, table,
3846 searchFunction, new AtomicReference<U>()).invoke();
3847 }
3848
3849 /**
3850 * Returns the result of accumulating all keys using the given
3851 * reducer to combine values, or null if none.
3852 *
3853 * @param parallelismThreshold the (estimated) number of elements
3854 * needed for this operation to be executed in parallel
3855 * @param reducer a commutative associative combining function
3856 * @return the result of accumulating all keys using the given
3857 * reducer to combine values, or null if none
3858 * @since 1.8
3859 */
3860 public K reduceKeys(long parallelismThreshold,
3861 BiFunction<? super K, ? super K, ? extends K> reducer) {
3862 if (reducer == null) throw new NullPointerException();
3863 return new ReduceKeysTask<K,V>
3864 (null, batchFor(parallelismThreshold), 0, 0, table,
3865 null, reducer).invoke();
3866 }
3867
3868 /**
3869 * Returns the result of accumulating the given transformation
3870 * of all keys using the given reducer to combine values, or
3871 * null if none.
3872 *
3873 * @param parallelismThreshold the (estimated) number of elements
3874 * needed for this operation to be executed in parallel
3875 * @param transformer a function returning the transformation
3876 * for an element, or null if there is no transformation (in
3877 * which case it is not combined)
3878 * @param reducer a commutative associative combining function
3879 * @param <U> the return type of the transformer
3880 * @return the result of accumulating the given transformation
3881 * of all keys
3882 * @since 1.8
3883 */
3884 public <U> U reduceKeys(long parallelismThreshold,
3885 Function<? super K, ? extends U> transformer,
3886 BiFunction<? super U, ? super U, ? extends U> reducer) {
3887 if (transformer == null || reducer == null)
3888 throw new NullPointerException();
3889 return new MapReduceKeysTask<K,V,U>
3890 (null, batchFor(parallelismThreshold), 0, 0, table,
3891 null, transformer, reducer).invoke();
3892 }
3893
3894 /**
3895 * Returns the result of accumulating the given transformation
3896 * of all keys using the given reducer to combine values, and
3897 * the given basis as an identity value.
3898 *
3899 * @param parallelismThreshold the (estimated) number of elements
3900 * needed for this operation to be executed in parallel
3901 * @param transformer a function returning the transformation
3902 * for an element
3903 * @param basis the identity (initial default value) for the reduction
3904 * @param reducer a commutative associative combining function
3905 * @return the result of accumulating the given transformation
3906 * of all keys
3907 * @since 1.8
3908 */
3909 public double reduceKeysToDouble(long parallelismThreshold,
3910 ToDoubleFunction<? super K> transformer,
3911 double basis,
3912 DoubleBinaryOperator reducer) {
3913 if (transformer == null || reducer == null)
3914 throw new NullPointerException();
3915 return new MapReduceKeysToDoubleTask<K,V>
3916 (null, batchFor(parallelismThreshold), 0, 0, table,
3917 null, transformer, basis, reducer).invoke();
3918 }
3919
3920 /**
3921 * Returns the result of accumulating the given transformation
3922 * of all keys using the given reducer to combine values, and
3923 * the given basis as an identity value.
3924 *
3925 * @param parallelismThreshold the (estimated) number of elements
3926 * needed for this operation to be executed in parallel
3927 * @param transformer a function returning the transformation
3928 * for an element
3929 * @param basis the identity (initial default value) for the reduction
3930 * @param reducer a commutative associative combining function
3931 * @return the result of accumulating the given transformation
3932 * of all keys
3933 * @since 1.8
3934 */
3935 public long reduceKeysToLong(long parallelismThreshold,
3936 ToLongFunction<? super K> transformer,
3937 long basis,
3938 LongBinaryOperator reducer) {
3939 if (transformer == null || reducer == null)
3940 throw new NullPointerException();
3941 return new MapReduceKeysToLongTask<K,V>
3942 (null, batchFor(parallelismThreshold), 0, 0, table,
3943 null, transformer, basis, reducer).invoke();
3944 }
3945
3946 /**
3947 * Returns the result of accumulating the given transformation
3948 * of all keys using the given reducer to combine values, and
3949 * the given basis as an identity value.
3950 *
3951 * @param parallelismThreshold the (estimated) number of elements
3952 * needed for this operation to be executed in parallel
3953 * @param transformer a function returning the transformation
3954 * for an element
3955 * @param basis the identity (initial default value) for the reduction
3956 * @param reducer a commutative associative combining function
3957 * @return the result of accumulating the given transformation
3958 * of all keys
3959 * @since 1.8
3960 */
3961 public int reduceKeysToInt(long parallelismThreshold,
3962 ToIntFunction<? super K> transformer,
3963 int basis,
3964 IntBinaryOperator reducer) {
3965 if (transformer == null || reducer == null)
3966 throw new NullPointerException();
3967 return new MapReduceKeysToIntTask<K,V>
3968 (null, batchFor(parallelismThreshold), 0, 0, table,
3969 null, transformer, basis, reducer).invoke();
3970 }
3971
3972 /**
3973 * Performs the given action for each value.
3974 *
3975 * @param parallelismThreshold the (estimated) number of elements
3976 * needed for this operation to be executed in parallel
3977 * @param action the action
3978 * @since 1.8
3979 */
3980 public void forEachValue(long parallelismThreshold,
3981 Consumer<? super V> action) {
3982 if (action == null)
3983 throw new NullPointerException();
3984 new ForEachValueTask<K,V>
3985 (null, batchFor(parallelismThreshold), 0, 0, table,
3986 action).invoke();
3987 }
3988
3989 /**
3990 * Performs the given action for each non-null transformation
3991 * of each value.
3992 *
3993 * @param parallelismThreshold the (estimated) number of elements
3994 * needed for this operation to be executed in parallel
3995 * @param transformer a function returning the transformation
3996 * for an element, or null if there is no transformation (in
3997 * which case the action is not applied)
3998 * @param action the action
3999 * @param <U> the return type of the transformer
4000 * @since 1.8
4001 */
4002 public <U> void forEachValue(long parallelismThreshold,
4003 Function<? super V, ? extends U> transformer,
4004 Consumer<? super U> action) {
4005 if (transformer == null || action == null)
4006 throw new NullPointerException();
4007 new ForEachTransformedValueTask<K,V,U>
4008 (null, batchFor(parallelismThreshold), 0, 0, table,
4009 transformer, action).invoke();
4010 }
4011
4012 /**
4013 * Returns a non-null result from applying the given search
4014 * function on each value, or null if none. Upon success,
4015 * further element processing is suppressed and the results of
4016 * any other parallel invocations of the search function are
4017 * ignored.
4018 *
4019 * @param parallelismThreshold the (estimated) number of elements
4020 * needed for this operation to be executed in parallel
4021 * @param searchFunction a function returning a non-null
4022 * result on success, else null
4023 * @param <U> the return type of the search function
4024 * @return a non-null result from applying the given search
4025 * function on each value, or null if none
4026 * @since 1.8
4027 */
4028 public <U> U searchValues(long parallelismThreshold,
4029 Function<? super V, ? extends U> searchFunction) {
4030 if (searchFunction == null) throw new NullPointerException();
4031 return new SearchValuesTask<K,V,U>
4032 (null, batchFor(parallelismThreshold), 0, 0, table,
4033 searchFunction, new AtomicReference<U>()).invoke();
4034 }
4035
4036 /**
4037 * Returns the result of accumulating all values using the
4038 * given reducer to combine values, or null if none.
4039 *
4040 * @param parallelismThreshold the (estimated) number of elements
4041 * needed for this operation to be executed in parallel
4042 * @param reducer a commutative associative combining function
4043 * @return the result of accumulating all values
4044 * @since 1.8
4045 */
4046 public V reduceValues(long parallelismThreshold,
4047 BiFunction<? super V, ? super V, ? extends V> reducer) {
4048 if (reducer == null) throw new NullPointerException();
4049 return new ReduceValuesTask<K,V>
4050 (null, batchFor(parallelismThreshold), 0, 0, table,
4051 null, reducer).invoke();
4052 }
4053
4054 /**
4055 * Returns the result of accumulating the given transformation
4056 * of all values using the given reducer to combine values, or
4057 * null if none.
4058 *
4059 * @param parallelismThreshold the (estimated) number of elements
4060 * needed for this operation to be executed in parallel
4061 * @param transformer a function returning the transformation
4062 * for an element, or null if there is no transformation (in
4063 * which case it is not combined)
4064 * @param reducer a commutative associative combining function
4065 * @param <U> the return type of the transformer
4066 * @return the result of accumulating the given transformation
4067 * of all values
4068 * @since 1.8
4069 */
4070 public <U> U reduceValues(long parallelismThreshold,
4071 Function<? super V, ? extends U> transformer,
4072 BiFunction<? super U, ? super U, ? extends U> reducer) {
4073 if (transformer == null || reducer == null)
4074 throw new NullPointerException();
4075 return new MapReduceValuesTask<K,V,U>
4076 (null, batchFor(parallelismThreshold), 0, 0, table,
4077 null, transformer, reducer).invoke();
4078 }
4079
4080 /**
4081 * Returns the result of accumulating the given transformation
4082 * of all values using the given reducer to combine values,
4083 * and the given basis as an identity value.
4084 *
4085 * @param parallelismThreshold the (estimated) number of elements
4086 * needed for this operation to be executed in parallel
4087 * @param transformer a function returning the transformation
4088 * for an element
4089 * @param basis the identity (initial default value) for the reduction
4090 * @param reducer a commutative associative combining function
4091 * @return the result of accumulating the given transformation
4092 * of all values
4093 * @since 1.8
4094 */
4095 public double reduceValuesToDouble(long parallelismThreshold,
4096 ToDoubleFunction<? super V> transformer,
4097 double basis,
4098 DoubleBinaryOperator reducer) {
4099 if (transformer == null || reducer == null)
4100 throw new NullPointerException();
4101 return new MapReduceValuesToDoubleTask<K,V>
4102 (null, batchFor(parallelismThreshold), 0, 0, table,
4103 null, transformer, basis, reducer).invoke();
4104 }
4105
4106 /**
4107 * Returns the result of accumulating the given transformation
4108 * of all values using the given reducer to combine values,
4109 * and the given basis as an identity value.
4110 *
4111 * @param parallelismThreshold the (estimated) number of elements
4112 * needed for this operation to be executed in parallel
4113 * @param transformer a function returning the transformation
4114 * for an element
4115 * @param basis the identity (initial default value) for the reduction
4116 * @param reducer a commutative associative combining function
4117 * @return the result of accumulating the given transformation
4118 * of all values
4119 * @since 1.8
4120 */
4121 public long reduceValuesToLong(long parallelismThreshold,
4122 ToLongFunction<? super V> transformer,
4123 long basis,
4124 LongBinaryOperator reducer) {
4125 if (transformer == null || reducer == null)
4126 throw new NullPointerException();
4127 return new MapReduceValuesToLongTask<K,V>
4128 (null, batchFor(parallelismThreshold), 0, 0, table,
4129 null, transformer, basis, reducer).invoke();
4130 }
4131
4132 /**
4133 * Returns the result of accumulating the given transformation
4134 * of all values using the given reducer to combine values,
4135 * and the given basis as an identity value.
4136 *
4137 * @param parallelismThreshold the (estimated) number of elements
4138 * needed for this operation to be executed in parallel
4139 * @param transformer a function returning the transformation
4140 * for an element
4141 * @param basis the identity (initial default value) for the reduction
4142 * @param reducer a commutative associative combining function
4143 * @return the result of accumulating the given transformation
4144 * of all values
4145 * @since 1.8
4146 */
4147 public int reduceValuesToInt(long parallelismThreshold,
4148 ToIntFunction<? super V> transformer,
4149 int basis,
4150 IntBinaryOperator reducer) {
4151 if (transformer == null || reducer == null)
4152 throw new NullPointerException();
4153 return new MapReduceValuesToIntTask<K,V>
4154 (null, batchFor(parallelismThreshold), 0, 0, table,
4155 null, transformer, basis, reducer).invoke();
4156 }
4157
4158 /**
4159 * Performs the given action for each entry.
4160 *
4161 * @param parallelismThreshold the (estimated) number of elements
4162 * needed for this operation to be executed in parallel
4163 * @param action the action
4164 * @since 1.8
4165 */
4166 public void forEachEntry(long parallelismThreshold,
4167 Consumer<? super Map.Entry<K,V>> action) {
4168 if (action == null) throw new NullPointerException();
4169 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4170 action).invoke();
4171 }
4172
4173 /**
4174 * Performs the given action for each non-null transformation
4175 * of each entry.
4176 *
4177 * @param parallelismThreshold the (estimated) number of elements
4178 * needed for this operation to be executed in parallel
4179 * @param transformer a function returning the transformation
4180 * for an element, or null if there is no transformation (in
4181 * which case the action is not applied)
4182 * @param action the action
4183 * @param <U> the return type of the transformer
4184 * @since 1.8
4185 */
4186 public <U> void forEachEntry(long parallelismThreshold,
4187 Function<Map.Entry<K,V>, ? extends U> transformer,
4188 Consumer<? super U> action) {
4189 if (transformer == null || action == null)
4190 throw new NullPointerException();
4191 new ForEachTransformedEntryTask<K,V,U>
4192 (null, batchFor(parallelismThreshold), 0, 0, table,
4193 transformer, action).invoke();
4194 }
4195
4196 /**
4197 * Returns a non-null result from applying the given search
4198 * function on each entry, or null if none. Upon success,
4199 * further element processing is suppressed and the results of
4200 * any other parallel invocations of the search function are
4201 * ignored.
4202 *
4203 * @param parallelismThreshold the (estimated) number of elements
4204 * needed for this operation to be executed in parallel
4205 * @param searchFunction a function returning a non-null
4206 * result on success, else null
4207 * @param <U> the return type of the search function
4208 * @return a non-null result from applying the given search
4209 * function on each entry, or null if none
4210 * @since 1.8
4211 */
4212 public <U> U searchEntries(long parallelismThreshold,
4213 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4214 if (searchFunction == null) throw new NullPointerException();
4215 return new SearchEntriesTask<K,V,U>
4216 (null, batchFor(parallelismThreshold), 0, 0, table,
4217 searchFunction, new AtomicReference<U>()).invoke();
4218 }
4219
4220 /**
4221 * Returns the result of accumulating all entries using the
4222 * given reducer to combine values, or null if none.
4223 *
4224 * @param parallelismThreshold the (estimated) number of elements
4225 * needed for this operation to be executed in parallel
4226 * @param reducer a commutative associative combining function
4227 * @return the result of accumulating all entries
4228 * @since 1.8
4229 */
4230 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4231 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4232 if (reducer == null) throw new NullPointerException();
4233 return new ReduceEntriesTask<K,V>
4234 (null, batchFor(parallelismThreshold), 0, 0, table,
4235 null, reducer).invoke();
4236 }
4237
4238 /**
4239 * Returns the result of accumulating the given transformation
4240 * of all entries using the given reducer to combine values,
4241 * or null if none.
4242 *
4243 * @param parallelismThreshold the (estimated) number of elements
4244 * needed for this operation to be executed in parallel
4245 * @param transformer a function returning the transformation
4246 * for an element, or null if there is no transformation (in
4247 * which case it is not combined)
4248 * @param reducer a commutative associative combining function
4249 * @param <U> the return type of the transformer
4250 * @return the result of accumulating the given transformation
4251 * of all entries
4252 * @since 1.8
4253 */
4254 public <U> U reduceEntries(long parallelismThreshold,
4255 Function<Map.Entry<K,V>, ? extends U> transformer,
4256 BiFunction<? super U, ? super U, ? extends U> reducer) {
4257 if (transformer == null || reducer == null)
4258 throw new NullPointerException();
4259 return new MapReduceEntriesTask<K,V,U>
4260 (null, batchFor(parallelismThreshold), 0, 0, table,
4261 null, transformer, reducer).invoke();
4262 }
4263
4264 /**
4265 * Returns the result of accumulating the given transformation
4266 * of all entries using the given reducer to combine values,
4267 * and the given basis as an identity value.
4268 *
4269 * @param parallelismThreshold the (estimated) number of elements
4270 * needed for this operation to be executed in parallel
4271 * @param transformer a function returning the transformation
4272 * for an element
4273 * @param basis the identity (initial default value) for the reduction
4274 * @param reducer a commutative associative combining function
4275 * @return the result of accumulating the given transformation
4276 * of all entries
4277 * @since 1.8
4278 */
4279 public double reduceEntriesToDouble(long parallelismThreshold,
4280 ToDoubleFunction<Map.Entry<K,V>> transformer,
4281 double basis,
4282 DoubleBinaryOperator reducer) {
4283 if (transformer == null || reducer == null)
4284 throw new NullPointerException();
4285 return new MapReduceEntriesToDoubleTask<K,V>
4286 (null, batchFor(parallelismThreshold), 0, 0, table,
4287 null, transformer, basis, reducer).invoke();
4288 }
4289
4290 /**
4291 * Returns the result of accumulating the given transformation
4292 * of all entries using the given reducer to combine values,
4293 * and the given basis as an identity value.
4294 *
4295 * @param parallelismThreshold the (estimated) number of elements
4296 * needed for this operation to be executed in parallel
4297 * @param transformer a function returning the transformation
4298 * for an element
4299 * @param basis the identity (initial default value) for the reduction
4300 * @param reducer a commutative associative combining function
4301 * @return the result of accumulating the given transformation
4302 * of all entries
4303 * @since 1.8
4304 */
4305 public long reduceEntriesToLong(long parallelismThreshold,
4306 ToLongFunction<Map.Entry<K,V>> transformer,
4307 long basis,
4308 LongBinaryOperator reducer) {
4309 if (transformer == null || reducer == null)
4310 throw new NullPointerException();
4311 return new MapReduceEntriesToLongTask<K,V>
4312 (null, batchFor(parallelismThreshold), 0, 0, table,
4313 null, transformer, basis, reducer).invoke();
4314 }
4315
4316 /**
4317 * Returns the result of accumulating the given transformation
4318 * of all entries using the given reducer to combine values,
4319 * and the given basis as an identity value.
4320 *
4321 * @param parallelismThreshold the (estimated) number of elements
4322 * needed for this operation to be executed in parallel
4323 * @param transformer a function returning the transformation
4324 * for an element
4325 * @param basis the identity (initial default value) for the reduction
4326 * @param reducer a commutative associative combining function
4327 * @return the result of accumulating the given transformation
4328 * of all entries
4329 * @since 1.8
4330 */
4331 public int reduceEntriesToInt(long parallelismThreshold,
4332 ToIntFunction<Map.Entry<K,V>> transformer,
4333 int basis,
4334 IntBinaryOperator reducer) {
4335 if (transformer == null || reducer == null)
4336 throw new NullPointerException();
4337 return new MapReduceEntriesToIntTask<K,V>
4338 (null, batchFor(parallelismThreshold), 0, 0, table,
4339 null, transformer, basis, reducer).invoke();
4340 }
4341
4342
4343 /* ----------------Views -------------- */
4344
4345 /**
4346 * Base class for views.
4347 */
4348 abstract static class CollectionView<K,V,E>
4349 implements Collection<E>, java.io.Serializable {
4350 private static final long serialVersionUID = 7249069246763182397L;
4351 final ConcurrentHashMap<K,V> map;
4352 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4353
4354 /**
4355 * Returns the map backing this view.
4356 *
4357 * @return the map backing this view
4358 */
4359 public ConcurrentHashMap<K,V> getMap() { return map; }
4360
4361 /**
4362 * Removes all of the elements from this view, by removing all
4363 * the mappings from the map backing this view.
4364 */
4365 public final void clear() { map.clear(); }
4366 public final int size() { return map.size(); }
4367 public final boolean isEmpty() { return map.isEmpty(); }
4368
4369 // implementations below rely on concrete classes supplying these
4370 // abstract methods
4371 /**
4372 * Returns an iterator over the elements in this collection.
4373 *
4374 * <p>The returned iterator is
4375 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4376 *
4377 * @return an iterator over the elements in this collection
4378 */
4379 public abstract Iterator<E> iterator();
4380 public abstract boolean contains(Object o);
4381 public abstract boolean remove(Object o);
4382
4383 private static final String oomeMsg = "Required array size too large";
4384
4385 public final Object[] toArray() {
4386 long sz = map.mappingCount();
4387 if (sz > MAX_ARRAY_SIZE)
4388 throw new OutOfMemoryError(oomeMsg);
4389 int n = (int)sz;
4390 Object[] r = new Object[n];
4391 int i = 0;
4392 for (E e : this) {
4393 if (i == n) {
4394 if (n >= MAX_ARRAY_SIZE)
4395 throw new OutOfMemoryError(oomeMsg);
4396 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4397 n = MAX_ARRAY_SIZE;
4398 else
4399 n += (n >>> 1) + 1;
4400 r = Arrays.copyOf(r, n);
4401 }
4402 r[i++] = e;
4403 }
4404 return (i == n) ? r : Arrays.copyOf(r, i);
4405 }
4406
4407 @SuppressWarnings("unchecked")
4408 public final <T> T[] toArray(T[] a) {
4409 long sz = map.mappingCount();
4410 if (sz > MAX_ARRAY_SIZE)
4411 throw new OutOfMemoryError(oomeMsg);
4412 int m = (int)sz;
4413 T[] r = (a.length >= m) ? a :
4414 (T[])java.lang.reflect.Array
4415 .newInstance(a.getClass().getComponentType(), m);
4416 int n = r.length;
4417 int i = 0;
4418 for (E e : this) {
4419 if (i == n) {
4420 if (n >= MAX_ARRAY_SIZE)
4421 throw new OutOfMemoryError(oomeMsg);
4422 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4423 n = MAX_ARRAY_SIZE;
4424 else
4425 n += (n >>> 1) + 1;
4426 r = Arrays.copyOf(r, n);
4427 }
4428 r[i++] = (T)e;
4429 }
4430 if (a == r && i < n) {
4431 r[i] = null; // null-terminate
4432 return r;
4433 }
4434 return (i == n) ? r : Arrays.copyOf(r, i);
4435 }
4436
4437 /**
4438 * Returns a string representation of this collection.
4439 * The string representation consists of the string representations
4440 * of the collection's elements in the order they are returned by
4441 * its iterator, enclosed in square brackets ({@code "[]"}).
4442 * Adjacent elements are separated by the characters {@code ", "}
4443 * (comma and space). Elements are converted to strings as by
4444 * {@link String#valueOf(Object)}.
4445 *
4446 * @return a string representation of this collection
4447 */
4448 public final String toString() {
4449 StringBuilder sb = new StringBuilder();
4450 sb.append('[');
4451 Iterator<E> it = iterator();
4452 if (it.hasNext()) {
4453 for (;;) {
4454 Object e = it.next();
4455 sb.append(e == this ? "(this Collection)" : e);
4456 if (!it.hasNext())
4457 break;
4458 sb.append(',').append(' ');
4459 }
4460 }
4461 return sb.append(']').toString();
4462 }
4463
4464 public final boolean containsAll(Collection<?> c) {
4465 if (c != this) {
4466 for (Object e : c) {
4467 if (e == null || !contains(e))
4468 return false;
4469 }
4470 }
4471 return true;
4472 }
4473
4474 public final boolean removeAll(Collection<?> c) {
4475 if (c == null) throw new NullPointerException();
4476 boolean modified = false;
4477 for (Iterator<E> it = iterator(); it.hasNext();) {
4478 if (c.contains(it.next())) {
4479 it.remove();
4480 modified = true;
4481 }
4482 }
4483 return modified;
4484 }
4485
4486 public final boolean retainAll(Collection<?> c) {
4487 if (c == null) throw new NullPointerException();
4488 boolean modified = false;
4489 for (Iterator<E> it = iterator(); it.hasNext();) {
4490 if (!c.contains(it.next())) {
4491 it.remove();
4492 modified = true;
4493 }
4494 }
4495 return modified;
4496 }
4497
4498 }
4499
4500 /**
4501 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4502 * which additions may optionally be enabled by mapping to a
4503 * common value. This class cannot be directly instantiated.
4504 * See {@link #keySet() keySet()},
4505 * {@link #keySet(Object) keySet(V)},
4506 * {@link #newKeySet() newKeySet()},
4507 * {@link #newKeySet(int) newKeySet(int)}.
4508 *
4509 * @since 1.8
4510 */
4511 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4512 implements Set<K>, java.io.Serializable {
4513 private static final long serialVersionUID = 7249069246763182397L;
4514 private final V value;
4515 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4516 super(map);
4517 this.value = value;
4518 }
4519
4520 /**
4521 * Returns the default mapped value for additions,
4522 * or {@code null} if additions are not supported.
4523 *
4524 * @return the default mapped value for additions, or {@code null}
4525 * if not supported
4526 */
4527 public V getMappedValue() { return value; }
4528
4529 /**
4530 * {@inheritDoc}
4531 * @throws NullPointerException if the specified key is null
4532 */
4533 public boolean contains(Object o) { return map.containsKey(o); }
4534
4535 /**
4536 * Removes the key from this map view, by removing the key (and its
4537 * corresponding value) from the backing map. This method does
4538 * nothing if the key is not in the map.
4539 *
4540 * @param o the key to be removed from the backing map
4541 * @return {@code true} if the backing map contained the specified key
4542 * @throws NullPointerException if the specified key is null
4543 */
4544 public boolean remove(Object o) { return map.remove(o) != null; }
4545
4546 /**
4547 * @return an iterator over the keys of the backing map
4548 */
4549 public Iterator<K> iterator() {
4550 Node<K,V>[] t;
4551 ConcurrentHashMap<K,V> m = map;
4552 int f = (t = m.table) == null ? 0 : t.length;
4553 return new KeyIterator<K,V>(t, f, 0, f, m);
4554 }
4555
4556 /**
4557 * Adds the specified key to this set view by mapping the key to
4558 * the default mapped value in the backing map, if defined.
4559 *
4560 * @param e key to be added
4561 * @return {@code true} if this set changed as a result of the call
4562 * @throws NullPointerException if the specified key is null
4563 * @throws UnsupportedOperationException if no default mapped value
4564 * for additions was provided
4565 */
4566 public boolean add(K e) {
4567 V v;
4568 if ((v = value) == null)
4569 throw new UnsupportedOperationException();
4570 return map.putVal(e, v, true) == null;
4571 }
4572
4573 /**
4574 * Adds all of the elements in the specified collection to this set,
4575 * as if by calling {@link #add} on each one.
4576 *
4577 * @param c the elements to be inserted into this set
4578 * @return {@code true} if this set changed as a result of the call
4579 * @throws NullPointerException if the collection or any of its
4580 * elements are {@code null}
4581 * @throws UnsupportedOperationException if no default mapped value
4582 * for additions was provided
4583 */
4584 public boolean addAll(Collection<? extends K> c) {
4585 boolean added = false;
4586 V v;
4587 if ((v = value) == null)
4588 throw new UnsupportedOperationException();
4589 for (K e : c) {
4590 if (map.putVal(e, v, true) == null)
4591 added = true;
4592 }
4593 return added;
4594 }
4595
4596 public int hashCode() {
4597 int h = 0;
4598 for (K e : this)
4599 h += e.hashCode();
4600 return h;
4601 }
4602
4603 public boolean equals(Object o) {
4604 Set<?> c;
4605 return ((o instanceof Set) &&
4606 ((c = (Set<?>)o) == this ||
4607 (containsAll(c) && c.containsAll(this))));
4608 }
4609
4610 public Spliterator<K> spliterator() {
4611 Node<K,V>[] t;
4612 ConcurrentHashMap<K,V> m = map;
4613 long n = m.sumCount();
4614 int f = (t = m.table) == null ? 0 : t.length;
4615 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4616 }
4617
4618 public void forEach(Consumer<? super K> action) {
4619 if (action == null) throw new NullPointerException();
4620 Node<K,V>[] t;
4621 if ((t = map.table) != null) {
4622 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4623 for (Node<K,V> p; (p = it.advance()) != null; )
4624 action.accept(p.key);
4625 }
4626 }
4627 }
4628
4629 /**
4630 * A view of a ConcurrentHashMap as a {@link Collection} of
4631 * values, in which additions are disabled. This class cannot be
4632 * directly instantiated. See {@link #values()}.
4633 */
4634 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4635 implements Collection<V>, java.io.Serializable {
4636 private static final long serialVersionUID = 2249069246763182397L;
4637 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4638 public final boolean contains(Object o) {
4639 return map.containsValue(o);
4640 }
4641
4642 public final boolean remove(Object o) {
4643 if (o != null) {
4644 for (Iterator<V> it = iterator(); it.hasNext();) {
4645 if (o.equals(it.next())) {
4646 it.remove();
4647 return true;
4648 }
4649 }
4650 }
4651 return false;
4652 }
4653
4654 public final Iterator<V> iterator() {
4655 ConcurrentHashMap<K,V> m = map;
4656 Node<K,V>[] t;
4657 int f = (t = m.table) == null ? 0 : t.length;
4658 return new ValueIterator<K,V>(t, f, 0, f, m);
4659 }
4660
4661 public final boolean add(V e) {
4662 throw new UnsupportedOperationException();
4663 }
4664 public final boolean addAll(Collection<? extends V> c) {
4665 throw new UnsupportedOperationException();
4666 }
4667
4668 public Spliterator<V> spliterator() {
4669 Node<K,V>[] t;
4670 ConcurrentHashMap<K,V> m = map;
4671 long n = m.sumCount();
4672 int f = (t = m.table) == null ? 0 : t.length;
4673 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4674 }
4675
4676 public void forEach(Consumer<? super V> action) {
4677 if (action == null) throw new NullPointerException();
4678 Node<K,V>[] t;
4679 if ((t = map.table) != null) {
4680 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4681 for (Node<K,V> p; (p = it.advance()) != null; )
4682 action.accept(p.val);
4683 }
4684 }
4685 }
4686
4687 /**
4688 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4689 * entries. This class cannot be directly instantiated. See
4690 * {@link #entrySet()}.
4691 */
4692 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4693 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4694 private static final long serialVersionUID = 2249069246763182397L;
4695 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4696
4697 public boolean contains(Object o) {
4698 Object k, v, r; Map.Entry<?,?> e;
4699 return ((o instanceof Map.Entry) &&
4700 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4701 (r = map.get(k)) != null &&
4702 (v = e.getValue()) != null &&
4703 (v == r || v.equals(r)));
4704 }
4705
4706 public boolean remove(Object o) {
4707 Object k, v; Map.Entry<?,?> e;
4708 return ((o instanceof Map.Entry) &&
4709 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4710 (v = e.getValue()) != null &&
4711 map.remove(k, v));
4712 }
4713
4714 /**
4715 * @return an iterator over the entries of the backing map
4716 */
4717 public Iterator<Map.Entry<K,V>> iterator() {
4718 ConcurrentHashMap<K,V> m = map;
4719 Node<K,V>[] t;
4720 int f = (t = m.table) == null ? 0 : t.length;
4721 return new EntryIterator<K,V>(t, f, 0, f, m);
4722 }
4723
4724 public boolean add(Entry<K,V> e) {
4725 return map.putVal(e.getKey(), e.getValue(), false) == null;
4726 }
4727
4728 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4729 boolean added = false;
4730 for (Entry<K,V> e : c) {
4731 if (add(e))
4732 added = true;
4733 }
4734 return added;
4735 }
4736
4737 public final int hashCode() {
4738 int h = 0;
4739 Node<K,V>[] t;
4740 if ((t = map.table) != null) {
4741 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4742 for (Node<K,V> p; (p = it.advance()) != null; ) {
4743 h += p.hashCode();
4744 }
4745 }
4746 return h;
4747 }
4748
4749 public final boolean equals(Object o) {
4750 Set<?> c;
4751 return ((o instanceof Set) &&
4752 ((c = (Set<?>)o) == this ||
4753 (containsAll(c) && c.containsAll(this))));
4754 }
4755
4756 public Spliterator<Map.Entry<K,V>> spliterator() {
4757 Node<K,V>[] t;
4758 ConcurrentHashMap<K,V> m = map;
4759 long n = m.sumCount();
4760 int f = (t = m.table) == null ? 0 : t.length;
4761 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4762 }
4763
4764 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4765 if (action == null) throw new NullPointerException();
4766 Node<K,V>[] t;
4767 if ((t = map.table) != null) {
4768 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4769 for (Node<K,V> p; (p = it.advance()) != null; )
4770 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4771 }
4772 }
4773
4774 }
4775
4776 // -------------------------------------------------------
4777
4778 /**
4779 * Base class for bulk tasks. Repeats some fields and code from
4780 * class Traverser, because we need to subclass CountedCompleter.
4781 */
4782 @SuppressWarnings("serial")
4783 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4784 Node<K,V>[] tab; // same as Traverser
4785 Node<K,V> next;
4786 TableStack<K,V> stack, spare;
4787 int index;
4788 int baseIndex;
4789 int baseLimit;
4790 final int baseSize;
4791 int batch; // split control
4792
4793 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4794 super(par);
4795 this.batch = b;
4796 this.index = this.baseIndex = i;
4797 if ((this.tab = t) == null)
4798 this.baseSize = this.baseLimit = 0;
4799 else if (par == null)
4800 this.baseSize = this.baseLimit = t.length;
4801 else {
4802 this.baseLimit = f;
4803 this.baseSize = par.baseSize;
4804 }
4805 }
4806
4807 /**
4808 * Same as Traverser version
4809 */
4810 final Node<K,V> advance() {
4811 Node<K,V> e;
4812 if ((e = next) != null)
4813 e = e.next;
4814 for (;;) {
4815 Node<K,V>[] t; int i, n;
4816 if (e != null)
4817 return next = e;
4818 if (baseIndex >= baseLimit || (t = tab) == null ||
4819 (n = t.length) <= (i = index) || i < 0)
4820 return next = null;
4821 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4822 if (e instanceof ForwardingNode) {
4823 tab = ((ForwardingNode<K,V>)e).nextTable;
4824 e = null;
4825 pushState(t, i, n);
4826 continue;
4827 }
4828 else if (e instanceof TreeBin)
4829 e = ((TreeBin<K,V>)e).first;
4830 else
4831 e = null;
4832 }
4833 if (stack != null)
4834 recoverState(n);
4835 else if ((index = i + baseSize) >= n)
4836 index = ++baseIndex;
4837 }
4838 }
4839
4840 private void pushState(Node<K,V>[] t, int i, int n) {
4841 TableStack<K,V> s = spare;
4842 if (s != null)
4843 spare = s.next;
4844 else
4845 s = new TableStack<K,V>();
4846 s.tab = t;
4847 s.length = n;
4848 s.index = i;
4849 s.next = stack;
4850 stack = s;
4851 }
4852
4853 private void recoverState(int n) {
4854 TableStack<K,V> s; int len;
4855 while ((s = stack) != null && (index += (len = s.length)) >= n) {
4856 n = len;
4857 index = s.index;
4858 tab = s.tab;
4859 s.tab = null;
4860 TableStack<K,V> next = s.next;
4861 s.next = spare; // save for reuse
4862 stack = next;
4863 spare = s;
4864 }
4865 if (s == null && (index += baseSize) >= n)
4866 index = ++baseIndex;
4867 }
4868 }
4869
4870 /*
4871 * Task classes. Coded in a regular but ugly format/style to
4872 * simplify checks that each variant differs in the right way from
4873 * others. The null screenings exist because compilers cannot tell
4874 * that we've already null-checked task arguments, so we force
4875 * simplest hoisted bypass to help avoid convoluted traps.
4876 */
4877 @SuppressWarnings("serial")
4878 static final class ForEachKeyTask<K,V>
4879 extends BulkTask<K,V,Void> {
4880 final Consumer<? super K> action;
4881 ForEachKeyTask
4882 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4883 Consumer<? super K> action) {
4884 super(p, b, i, f, t);
4885 this.action = action;
4886 }
4887 public final void compute() {
4888 final Consumer<? super K> action;
4889 if ((action = this.action) != null) {
4890 for (int i = baseIndex, f, h; batch > 0 &&
4891 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4892 addToPendingCount(1);
4893 new ForEachKeyTask<K,V>
4894 (this, batch >>>= 1, baseLimit = h, f, tab,
4895 action).fork();
4896 }
4897 for (Node<K,V> p; (p = advance()) != null;)
4898 action.accept(p.key);
4899 propagateCompletion();
4900 }
4901 }
4902 }
4903
4904 @SuppressWarnings("serial")
4905 static final class ForEachValueTask<K,V>
4906 extends BulkTask<K,V,Void> {
4907 final Consumer<? super V> action;
4908 ForEachValueTask
4909 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4910 Consumer<? super V> action) {
4911 super(p, b, i, f, t);
4912 this.action = action;
4913 }
4914 public final void compute() {
4915 final Consumer<? super V> action;
4916 if ((action = this.action) != null) {
4917 for (int i = baseIndex, f, h; batch > 0 &&
4918 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4919 addToPendingCount(1);
4920 new ForEachValueTask<K,V>
4921 (this, batch >>>= 1, baseLimit = h, f, tab,
4922 action).fork();
4923 }
4924 for (Node<K,V> p; (p = advance()) != null;)
4925 action.accept(p.val);
4926 propagateCompletion();
4927 }
4928 }
4929 }
4930
4931 @SuppressWarnings("serial")
4932 static final class ForEachEntryTask<K,V>
4933 extends BulkTask<K,V,Void> {
4934 final Consumer<? super Entry<K,V>> action;
4935 ForEachEntryTask
4936 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4937 Consumer<? super Entry<K,V>> action) {
4938 super(p, b, i, f, t);
4939 this.action = action;
4940 }
4941 public final void compute() {
4942 final Consumer<? super Entry<K,V>> action;
4943 if ((action = this.action) != null) {
4944 for (int i = baseIndex, f, h; batch > 0 &&
4945 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4946 addToPendingCount(1);
4947 new ForEachEntryTask<K,V>
4948 (this, batch >>>= 1, baseLimit = h, f, tab,
4949 action).fork();
4950 }
4951 for (Node<K,V> p; (p = advance()) != null; )
4952 action.accept(p);
4953 propagateCompletion();
4954 }
4955 }
4956 }
4957
4958 @SuppressWarnings("serial")
4959 static final class ForEachMappingTask<K,V>
4960 extends BulkTask<K,V,Void> {
4961 final BiConsumer<? super K, ? super V> action;
4962 ForEachMappingTask
4963 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4964 BiConsumer<? super K,? super V> action) {
4965 super(p, b, i, f, t);
4966 this.action = action;
4967 }
4968 public final void compute() {
4969 final BiConsumer<? super K, ? super V> action;
4970 if ((action = this.action) != null) {
4971 for (int i = baseIndex, f, h; batch > 0 &&
4972 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4973 addToPendingCount(1);
4974 new ForEachMappingTask<K,V>
4975 (this, batch >>>= 1, baseLimit = h, f, tab,
4976 action).fork();
4977 }
4978 for (Node<K,V> p; (p = advance()) != null; )
4979 action.accept(p.key, p.val);
4980 propagateCompletion();
4981 }
4982 }
4983 }
4984
4985 @SuppressWarnings("serial")
4986 static final class ForEachTransformedKeyTask<K,V,U>
4987 extends BulkTask<K,V,Void> {
4988 final Function<? super K, ? extends U> transformer;
4989 final Consumer<? super U> action;
4990 ForEachTransformedKeyTask
4991 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4992 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4993 super(p, b, i, f, t);
4994 this.transformer = transformer; this.action = action;
4995 }
4996 public final void compute() {
4997 final Function<? super K, ? extends U> transformer;
4998 final Consumer<? super U> action;
4999 if ((transformer = this.transformer) != null &&
5000 (action = this.action) != null) {
5001 for (int i = baseIndex, f, h; batch > 0 &&
5002 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5003 addToPendingCount(1);
5004 new ForEachTransformedKeyTask<K,V,U>
5005 (this, batch >>>= 1, baseLimit = h, f, tab,
5006 transformer, action).fork();
5007 }
5008 for (Node<K,V> p; (p = advance()) != null; ) {
5009 U u;
5010 if ((u = transformer.apply(p.key)) != null)
5011 action.accept(u);
5012 }
5013 propagateCompletion();
5014 }
5015 }
5016 }
5017
5018 @SuppressWarnings("serial")
5019 static final class ForEachTransformedValueTask<K,V,U>
5020 extends BulkTask<K,V,Void> {
5021 final Function<? super V, ? extends U> transformer;
5022 final Consumer<? super U> action;
5023 ForEachTransformedValueTask
5024 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5025 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5026 super(p, b, i, f, t);
5027 this.transformer = transformer; this.action = action;
5028 }
5029 public final void compute() {
5030 final Function<? super V, ? extends U> transformer;
5031 final Consumer<? super U> action;
5032 if ((transformer = this.transformer) != null &&
5033 (action = this.action) != null) {
5034 for (int i = baseIndex, f, h; batch > 0 &&
5035 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5036 addToPendingCount(1);
5037 new ForEachTransformedValueTask<K,V,U>
5038 (this, batch >>>= 1, baseLimit = h, f, tab,
5039 transformer, action).fork();
5040 }
5041 for (Node<K,V> p; (p = advance()) != null; ) {
5042 U u;
5043 if ((u = transformer.apply(p.val)) != null)
5044 action.accept(u);
5045 }
5046 propagateCompletion();
5047 }
5048 }
5049 }
5050
5051 @SuppressWarnings("serial")
5052 static final class ForEachTransformedEntryTask<K,V,U>
5053 extends BulkTask<K,V,Void> {
5054 final Function<Map.Entry<K,V>, ? extends U> transformer;
5055 final Consumer<? super U> action;
5056 ForEachTransformedEntryTask
5057 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5058 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5059 super(p, b, i, f, t);
5060 this.transformer = transformer; this.action = action;
5061 }
5062 public final void compute() {
5063 final Function<Map.Entry<K,V>, ? extends U> transformer;
5064 final Consumer<? super U> action;
5065 if ((transformer = this.transformer) != null &&
5066 (action = this.action) != null) {
5067 for (int i = baseIndex, f, h; batch > 0 &&
5068 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5069 addToPendingCount(1);
5070 new ForEachTransformedEntryTask<K,V,U>
5071 (this, batch >>>= 1, baseLimit = h, f, tab,
5072 transformer, action).fork();
5073 }
5074 for (Node<K,V> p; (p = advance()) != null; ) {
5075 U u;
5076 if ((u = transformer.apply(p)) != null)
5077 action.accept(u);
5078 }
5079 propagateCompletion();
5080 }
5081 }
5082 }
5083
5084 @SuppressWarnings("serial")
5085 static final class ForEachTransformedMappingTask<K,V,U>
5086 extends BulkTask<K,V,Void> {
5087 final BiFunction<? super K, ? super V, ? extends U> transformer;
5088 final Consumer<? super U> action;
5089 ForEachTransformedMappingTask
5090 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5091 BiFunction<? super K, ? super V, ? extends U> transformer,
5092 Consumer<? super U> action) {
5093 super(p, b, i, f, t);
5094 this.transformer = transformer; this.action = action;
5095 }
5096 public final void compute() {
5097 final BiFunction<? super K, ? super V, ? extends U> transformer;
5098 final Consumer<? super U> action;
5099 if ((transformer = this.transformer) != null &&
5100 (action = this.action) != null) {
5101 for (int i = baseIndex, f, h; batch > 0 &&
5102 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5103 addToPendingCount(1);
5104 new ForEachTransformedMappingTask<K,V,U>
5105 (this, batch >>>= 1, baseLimit = h, f, tab,
5106 transformer, action).fork();
5107 }
5108 for (Node<K,V> p; (p = advance()) != null; ) {
5109 U u;
5110 if ((u = transformer.apply(p.key, p.val)) != null)
5111 action.accept(u);
5112 }
5113 propagateCompletion();
5114 }
5115 }
5116 }
5117
5118 @SuppressWarnings("serial")
5119 static final class SearchKeysTask<K,V,U>
5120 extends BulkTask<K,V,U> {
5121 final Function<? super K, ? extends U> searchFunction;
5122 final AtomicReference<U> result;
5123 SearchKeysTask
5124 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5125 Function<? super K, ? extends U> searchFunction,
5126 AtomicReference<U> result) {
5127 super(p, b, i, f, t);
5128 this.searchFunction = searchFunction; this.result = result;
5129 }
5130 public final U getRawResult() { return result.get(); }
5131 public final void compute() {
5132 final Function<? super K, ? extends U> searchFunction;
5133 final AtomicReference<U> result;
5134 if ((searchFunction = this.searchFunction) != null &&
5135 (result = this.result) != null) {
5136 for (int i = baseIndex, f, h; batch > 0 &&
5137 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5138 if (result.get() != null)
5139 return;
5140 addToPendingCount(1);
5141 new SearchKeysTask<K,V,U>
5142 (this, batch >>>= 1, baseLimit = h, f, tab,
5143 searchFunction, result).fork();
5144 }
5145 while (result.get() == null) {
5146 U u;
5147 Node<K,V> p;
5148 if ((p = advance()) == null) {
5149 propagateCompletion();
5150 break;
5151 }
5152 if ((u = searchFunction.apply(p.key)) != null) {
5153 if (result.compareAndSet(null, u))
5154 quietlyCompleteRoot();
5155 break;
5156 }
5157 }
5158 }
5159 }
5160 }
5161
5162 @SuppressWarnings("serial")
5163 static final class SearchValuesTask<K,V,U>
5164 extends BulkTask<K,V,U> {
5165 final Function<? super V, ? extends U> searchFunction;
5166 final AtomicReference<U> result;
5167 SearchValuesTask
5168 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5169 Function<? super V, ? extends U> searchFunction,
5170 AtomicReference<U> result) {
5171 super(p, b, i, f, t);
5172 this.searchFunction = searchFunction; this.result = result;
5173 }
5174 public final U getRawResult() { return result.get(); }
5175 public final void compute() {
5176 final Function<? super V, ? extends U> searchFunction;
5177 final AtomicReference<U> result;
5178 if ((searchFunction = this.searchFunction) != null &&
5179 (result = this.result) != null) {
5180 for (int i = baseIndex, f, h; batch > 0 &&
5181 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5182 if (result.get() != null)
5183 return;
5184 addToPendingCount(1);
5185 new SearchValuesTask<K,V,U>
5186 (this, batch >>>= 1, baseLimit = h, f, tab,
5187 searchFunction, result).fork();
5188 }
5189 while (result.get() == null) {
5190 U u;
5191 Node<K,V> p;
5192 if ((p = advance()) == null) {
5193 propagateCompletion();
5194 break;
5195 }
5196 if ((u = searchFunction.apply(p.val)) != null) {
5197 if (result.compareAndSet(null, u))
5198 quietlyCompleteRoot();
5199 break;
5200 }
5201 }
5202 }
5203 }
5204 }
5205
5206 @SuppressWarnings("serial")
5207 static final class SearchEntriesTask<K,V,U>
5208 extends BulkTask<K,V,U> {
5209 final Function<Entry<K,V>, ? extends U> searchFunction;
5210 final AtomicReference<U> result;
5211 SearchEntriesTask
5212 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5213 Function<Entry<K,V>, ? extends U> searchFunction,
5214 AtomicReference<U> result) {
5215 super(p, b, i, f, t);
5216 this.searchFunction = searchFunction; this.result = result;
5217 }
5218 public final U getRawResult() { return result.get(); }
5219 public final void compute() {
5220 final Function<Entry<K,V>, ? extends U> searchFunction;
5221 final AtomicReference<U> result;
5222 if ((searchFunction = this.searchFunction) != null &&
5223 (result = this.result) != null) {
5224 for (int i = baseIndex, f, h; batch > 0 &&
5225 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5226 if (result.get() != null)
5227 return;
5228 addToPendingCount(1);
5229 new SearchEntriesTask<K,V,U>
5230 (this, batch >>>= 1, baseLimit = h, f, tab,
5231 searchFunction, result).fork();
5232 }
5233 while (result.get() == null) {
5234 U u;
5235 Node<K,V> p;
5236 if ((p = advance()) == null) {
5237 propagateCompletion();
5238 break;
5239 }
5240 if ((u = searchFunction.apply(p)) != null) {
5241 if (result.compareAndSet(null, u))
5242 quietlyCompleteRoot();
5243 return;
5244 }
5245 }
5246 }
5247 }
5248 }
5249
5250 @SuppressWarnings("serial")
5251 static final class SearchMappingsTask<K,V,U>
5252 extends BulkTask<K,V,U> {
5253 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5254 final AtomicReference<U> result;
5255 SearchMappingsTask
5256 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5257 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5258 AtomicReference<U> result) {
5259 super(p, b, i, f, t);
5260 this.searchFunction = searchFunction; this.result = result;
5261 }
5262 public final U getRawResult() { return result.get(); }
5263 public final void compute() {
5264 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5265 final AtomicReference<U> result;
5266 if ((searchFunction = this.searchFunction) != null &&
5267 (result = this.result) != null) {
5268 for (int i = baseIndex, f, h; batch > 0 &&
5269 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5270 if (result.get() != null)
5271 return;
5272 addToPendingCount(1);
5273 new SearchMappingsTask<K,V,U>
5274 (this, batch >>>= 1, baseLimit = h, f, tab,
5275 searchFunction, result).fork();
5276 }
5277 while (result.get() == null) {
5278 U u;
5279 Node<K,V> p;
5280 if ((p = advance()) == null) {
5281 propagateCompletion();
5282 break;
5283 }
5284 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5285 if (result.compareAndSet(null, u))
5286 quietlyCompleteRoot();
5287 break;
5288 }
5289 }
5290 }
5291 }
5292 }
5293
5294 @SuppressWarnings("serial")
5295 static final class ReduceKeysTask<K,V>
5296 extends BulkTask<K,V,K> {
5297 final BiFunction<? super K, ? super K, ? extends K> reducer;
5298 K result;
5299 ReduceKeysTask<K,V> rights, nextRight;
5300 ReduceKeysTask
5301 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5302 ReduceKeysTask<K,V> nextRight,
5303 BiFunction<? super K, ? super K, ? extends K> reducer) {
5304 super(p, b, i, f, t); this.nextRight = nextRight;
5305 this.reducer = reducer;
5306 }
5307 public final K getRawResult() { return result; }
5308 public final void compute() {
5309 final BiFunction<? super K, ? super K, ? extends K> reducer;
5310 if ((reducer = this.reducer) != null) {
5311 for (int i = baseIndex, f, h; batch > 0 &&
5312 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5313 addToPendingCount(1);
5314 (rights = new ReduceKeysTask<K,V>
5315 (this, batch >>>= 1, baseLimit = h, f, tab,
5316 rights, reducer)).fork();
5317 }
5318 K r = null;
5319 for (Node<K,V> p; (p = advance()) != null; ) {
5320 K u = p.key;
5321 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5322 }
5323 result = r;
5324 CountedCompleter<?> c;
5325 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5326 @SuppressWarnings("unchecked")
5327 ReduceKeysTask<K,V>
5328 t = (ReduceKeysTask<K,V>)c,
5329 s = t.rights;
5330 while (s != null) {
5331 K tr, sr;
5332 if ((sr = s.result) != null)
5333 t.result = (((tr = t.result) == null) ? sr :
5334 reducer.apply(tr, sr));
5335 s = t.rights = s.nextRight;
5336 }
5337 }
5338 }
5339 }
5340 }
5341
5342 @SuppressWarnings("serial")
5343 static final class ReduceValuesTask<K,V>
5344 extends BulkTask<K,V,V> {
5345 final BiFunction<? super V, ? super V, ? extends V> reducer;
5346 V result;
5347 ReduceValuesTask<K,V> rights, nextRight;
5348 ReduceValuesTask
5349 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5350 ReduceValuesTask<K,V> nextRight,
5351 BiFunction<? super V, ? super V, ? extends V> reducer) {
5352 super(p, b, i, f, t); this.nextRight = nextRight;
5353 this.reducer = reducer;
5354 }
5355 public final V getRawResult() { return result; }
5356 public final void compute() {
5357 final BiFunction<? super V, ? super V, ? extends V> reducer;
5358 if ((reducer = this.reducer) != null) {
5359 for (int i = baseIndex, f, h; batch > 0 &&
5360 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5361 addToPendingCount(1);
5362 (rights = new ReduceValuesTask<K,V>
5363 (this, batch >>>= 1, baseLimit = h, f, tab,
5364 rights, reducer)).fork();
5365 }
5366 V r = null;
5367 for (Node<K,V> p; (p = advance()) != null; ) {
5368 V v = p.val;
5369 r = (r == null) ? v : reducer.apply(r, v);
5370 }
5371 result = r;
5372 CountedCompleter<?> c;
5373 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5374 @SuppressWarnings("unchecked")
5375 ReduceValuesTask<K,V>
5376 t = (ReduceValuesTask<K,V>)c,
5377 s = t.rights;
5378 while (s != null) {
5379 V tr, sr;
5380 if ((sr = s.result) != null)
5381 t.result = (((tr = t.result) == null) ? sr :
5382 reducer.apply(tr, sr));
5383 s = t.rights = s.nextRight;
5384 }
5385 }
5386 }
5387 }
5388 }
5389
5390 @SuppressWarnings("serial")
5391 static final class ReduceEntriesTask<K,V>
5392 extends BulkTask<K,V,Map.Entry<K,V>> {
5393 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5394 Map.Entry<K,V> result;
5395 ReduceEntriesTask<K,V> rights, nextRight;
5396 ReduceEntriesTask
5397 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5398 ReduceEntriesTask<K,V> nextRight,
5399 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5400 super(p, b, i, f, t); this.nextRight = nextRight;
5401 this.reducer = reducer;
5402 }
5403 public final Map.Entry<K,V> getRawResult() { return result; }
5404 public final void compute() {
5405 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5406 if ((reducer = this.reducer) != null) {
5407 for (int i = baseIndex, f, h; batch > 0 &&
5408 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5409 addToPendingCount(1);
5410 (rights = new ReduceEntriesTask<K,V>
5411 (this, batch >>>= 1, baseLimit = h, f, tab,
5412 rights, reducer)).fork();
5413 }
5414 Map.Entry<K,V> r = null;
5415 for (Node<K,V> p; (p = advance()) != null; )
5416 r = (r == null) ? p : reducer.apply(r, p);
5417 result = r;
5418 CountedCompleter<?> c;
5419 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5420 @SuppressWarnings("unchecked")
5421 ReduceEntriesTask<K,V>
5422 t = (ReduceEntriesTask<K,V>)c,
5423 s = t.rights;
5424 while (s != null) {
5425 Map.Entry<K,V> tr, sr;
5426 if ((sr = s.result) != null)
5427 t.result = (((tr = t.result) == null) ? sr :
5428 reducer.apply(tr, sr));
5429 s = t.rights = s.nextRight;
5430 }
5431 }
5432 }
5433 }
5434 }
5435
5436 @SuppressWarnings("serial")
5437 static final class MapReduceKeysTask<K,V,U>
5438 extends BulkTask<K,V,U> {
5439 final Function<? super K, ? extends U> transformer;
5440 final BiFunction<? super U, ? super U, ? extends U> reducer;
5441 U result;
5442 MapReduceKeysTask<K,V,U> rights, nextRight;
5443 MapReduceKeysTask
5444 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5445 MapReduceKeysTask<K,V,U> nextRight,
5446 Function<? super K, ? extends U> transformer,
5447 BiFunction<? super U, ? super U, ? extends U> reducer) {
5448 super(p, b, i, f, t); this.nextRight = nextRight;
5449 this.transformer = transformer;
5450 this.reducer = reducer;
5451 }
5452 public final U getRawResult() { return result; }
5453 public final void compute() {
5454 final Function<? super K, ? extends U> transformer;
5455 final BiFunction<? super U, ? super U, ? extends U> reducer;
5456 if ((transformer = this.transformer) != null &&
5457 (reducer = this.reducer) != null) {
5458 for (int i = baseIndex, f, h; batch > 0 &&
5459 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5460 addToPendingCount(1);
5461 (rights = new MapReduceKeysTask<K,V,U>
5462 (this, batch >>>= 1, baseLimit = h, f, tab,
5463 rights, transformer, reducer)).fork();
5464 }
5465 U r = null;
5466 for (Node<K,V> p; (p = advance()) != null; ) {
5467 U u;
5468 if ((u = transformer.apply(p.key)) != null)
5469 r = (r == null) ? u : reducer.apply(r, u);
5470 }
5471 result = r;
5472 CountedCompleter<?> c;
5473 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5474 @SuppressWarnings("unchecked")
5475 MapReduceKeysTask<K,V,U>
5476 t = (MapReduceKeysTask<K,V,U>)c,
5477 s = t.rights;
5478 while (s != null) {
5479 U tr, sr;
5480 if ((sr = s.result) != null)
5481 t.result = (((tr = t.result) == null) ? sr :
5482 reducer.apply(tr, sr));
5483 s = t.rights = s.nextRight;
5484 }
5485 }
5486 }
5487 }
5488 }
5489
5490 @SuppressWarnings("serial")
5491 static final class MapReduceValuesTask<K,V,U>
5492 extends BulkTask<K,V,U> {
5493 final Function<? super V, ? extends U> transformer;
5494 final BiFunction<? super U, ? super U, ? extends U> reducer;
5495 U result;
5496 MapReduceValuesTask<K,V,U> rights, nextRight;
5497 MapReduceValuesTask
5498 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5499 MapReduceValuesTask<K,V,U> nextRight,
5500 Function<? super V, ? extends U> transformer,
5501 BiFunction<? super U, ? super U, ? extends U> reducer) {
5502 super(p, b, i, f, t); this.nextRight = nextRight;
5503 this.transformer = transformer;
5504 this.reducer = reducer;
5505 }
5506 public final U getRawResult() { return result; }
5507 public final void compute() {
5508 final Function<? super V, ? extends U> transformer;
5509 final BiFunction<? super U, ? super U, ? extends U> reducer;
5510 if ((transformer = this.transformer) != null &&
5511 (reducer = this.reducer) != null) {
5512 for (int i = baseIndex, f, h; batch > 0 &&
5513 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5514 addToPendingCount(1);
5515 (rights = new MapReduceValuesTask<K,V,U>
5516 (this, batch >>>= 1, baseLimit = h, f, tab,
5517 rights, transformer, reducer)).fork();
5518 }
5519 U r = null;
5520 for (Node<K,V> p; (p = advance()) != null; ) {
5521 U u;
5522 if ((u = transformer.apply(p.val)) != null)
5523 r = (r == null) ? u : reducer.apply(r, u);
5524 }
5525 result = r;
5526 CountedCompleter<?> c;
5527 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5528 @SuppressWarnings("unchecked")
5529 MapReduceValuesTask<K,V,U>
5530 t = (MapReduceValuesTask<K,V,U>)c,
5531 s = t.rights;
5532 while (s != null) {
5533 U tr, sr;
5534 if ((sr = s.result) != null)
5535 t.result = (((tr = t.result) == null) ? sr :
5536 reducer.apply(tr, sr));
5537 s = t.rights = s.nextRight;
5538 }
5539 }
5540 }
5541 }
5542 }
5543
5544 @SuppressWarnings("serial")
5545 static final class MapReduceEntriesTask<K,V,U>
5546 extends BulkTask<K,V,U> {
5547 final Function<Map.Entry<K,V>, ? extends U> transformer;
5548 final BiFunction<? super U, ? super U, ? extends U> reducer;
5549 U result;
5550 MapReduceEntriesTask<K,V,U> rights, nextRight;
5551 MapReduceEntriesTask
5552 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5553 MapReduceEntriesTask<K,V,U> nextRight,
5554 Function<Map.Entry<K,V>, ? extends U> transformer,
5555 BiFunction<? super U, ? super U, ? extends U> reducer) {
5556 super(p, b, i, f, t); this.nextRight = nextRight;
5557 this.transformer = transformer;
5558 this.reducer = reducer;
5559 }
5560 public final U getRawResult() { return result; }
5561 public final void compute() {
5562 final Function<Map.Entry<K,V>, ? extends U> transformer;
5563 final BiFunction<? super U, ? super U, ? extends U> reducer;
5564 if ((transformer = this.transformer) != null &&
5565 (reducer = this.reducer) != null) {
5566 for (int i = baseIndex, f, h; batch > 0 &&
5567 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5568 addToPendingCount(1);
5569 (rights = new MapReduceEntriesTask<K,V,U>
5570 (this, batch >>>= 1, baseLimit = h, f, tab,
5571 rights, transformer, reducer)).fork();
5572 }
5573 U r = null;
5574 for (Node<K,V> p; (p = advance()) != null; ) {
5575 U u;
5576 if ((u = transformer.apply(p)) != null)
5577 r = (r == null) ? u : reducer.apply(r, u);
5578 }
5579 result = r;
5580 CountedCompleter<?> c;
5581 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5582 @SuppressWarnings("unchecked")
5583 MapReduceEntriesTask<K,V,U>
5584 t = (MapReduceEntriesTask<K,V,U>)c,
5585 s = t.rights;
5586 while (s != null) {
5587 U tr, sr;
5588 if ((sr = s.result) != null)
5589 t.result = (((tr = t.result) == null) ? sr :
5590 reducer.apply(tr, sr));
5591 s = t.rights = s.nextRight;
5592 }
5593 }
5594 }
5595 }
5596 }
5597
5598 @SuppressWarnings("serial")
5599 static final class MapReduceMappingsTask<K,V,U>
5600 extends BulkTask<K,V,U> {
5601 final BiFunction<? super K, ? super V, ? extends U> transformer;
5602 final BiFunction<? super U, ? super U, ? extends U> reducer;
5603 U result;
5604 MapReduceMappingsTask<K,V,U> rights, nextRight;
5605 MapReduceMappingsTask
5606 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5607 MapReduceMappingsTask<K,V,U> nextRight,
5608 BiFunction<? super K, ? super V, ? extends U> transformer,
5609 BiFunction<? super U, ? super U, ? extends U> reducer) {
5610 super(p, b, i, f, t); this.nextRight = nextRight;
5611 this.transformer = transformer;
5612 this.reducer = reducer;
5613 }
5614 public final U getRawResult() { return result; }
5615 public final void compute() {
5616 final BiFunction<? super K, ? super V, ? extends U> transformer;
5617 final BiFunction<? super U, ? super U, ? extends U> reducer;
5618 if ((transformer = this.transformer) != null &&
5619 (reducer = this.reducer) != null) {
5620 for (int i = baseIndex, f, h; batch > 0 &&
5621 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5622 addToPendingCount(1);
5623 (rights = new MapReduceMappingsTask<K,V,U>
5624 (this, batch >>>= 1, baseLimit = h, f, tab,
5625 rights, transformer, reducer)).fork();
5626 }
5627 U r = null;
5628 for (Node<K,V> p; (p = advance()) != null; ) {
5629 U u;
5630 if ((u = transformer.apply(p.key, p.val)) != null)
5631 r = (r == null) ? u : reducer.apply(r, u);
5632 }
5633 result = r;
5634 CountedCompleter<?> c;
5635 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5636 @SuppressWarnings("unchecked")
5637 MapReduceMappingsTask<K,V,U>
5638 t = (MapReduceMappingsTask<K,V,U>)c,
5639 s = t.rights;
5640 while (s != null) {
5641 U tr, sr;
5642 if ((sr = s.result) != null)
5643 t.result = (((tr = t.result) == null) ? sr :
5644 reducer.apply(tr, sr));
5645 s = t.rights = s.nextRight;
5646 }
5647 }
5648 }
5649 }
5650 }
5651
5652 @SuppressWarnings("serial")
5653 static final class MapReduceKeysToDoubleTask<K,V>
5654 extends BulkTask<K,V,Double> {
5655 final ToDoubleFunction<? super K> transformer;
5656 final DoubleBinaryOperator reducer;
5657 final double basis;
5658 double result;
5659 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5660 MapReduceKeysToDoubleTask
5661 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5662 MapReduceKeysToDoubleTask<K,V> nextRight,
5663 ToDoubleFunction<? super K> transformer,
5664 double basis,
5665 DoubleBinaryOperator reducer) {
5666 super(p, b, i, f, t); this.nextRight = nextRight;
5667 this.transformer = transformer;
5668 this.basis = basis; this.reducer = reducer;
5669 }
5670 public final Double getRawResult() { return result; }
5671 public final void compute() {
5672 final ToDoubleFunction<? super K> transformer;
5673 final DoubleBinaryOperator reducer;
5674 if ((transformer = this.transformer) != null &&
5675 (reducer = this.reducer) != null) {
5676 double r = this.basis;
5677 for (int i = baseIndex, f, h; batch > 0 &&
5678 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5679 addToPendingCount(1);
5680 (rights = new MapReduceKeysToDoubleTask<K,V>
5681 (this, batch >>>= 1, baseLimit = h, f, tab,
5682 rights, transformer, r, reducer)).fork();
5683 }
5684 for (Node<K,V> p; (p = advance()) != null; )
5685 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5686 result = r;
5687 CountedCompleter<?> c;
5688 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5689 @SuppressWarnings("unchecked")
5690 MapReduceKeysToDoubleTask<K,V>
5691 t = (MapReduceKeysToDoubleTask<K,V>)c,
5692 s = t.rights;
5693 while (s != null) {
5694 t.result = reducer.applyAsDouble(t.result, s.result);
5695 s = t.rights = s.nextRight;
5696 }
5697 }
5698 }
5699 }
5700 }
5701
5702 @SuppressWarnings("serial")
5703 static final class MapReduceValuesToDoubleTask<K,V>
5704 extends BulkTask<K,V,Double> {
5705 final ToDoubleFunction<? super V> transformer;
5706 final DoubleBinaryOperator reducer;
5707 final double basis;
5708 double result;
5709 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5710 MapReduceValuesToDoubleTask
5711 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5712 MapReduceValuesToDoubleTask<K,V> nextRight,
5713 ToDoubleFunction<? super V> transformer,
5714 double basis,
5715 DoubleBinaryOperator reducer) {
5716 super(p, b, i, f, t); this.nextRight = nextRight;
5717 this.transformer = transformer;
5718 this.basis = basis; this.reducer = reducer;
5719 }
5720 public final Double getRawResult() { return result; }
5721 public final void compute() {
5722 final ToDoubleFunction<? super V> transformer;
5723 final DoubleBinaryOperator reducer;
5724 if ((transformer = this.transformer) != null &&
5725 (reducer = this.reducer) != null) {
5726 double r = this.basis;
5727 for (int i = baseIndex, f, h; batch > 0 &&
5728 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5729 addToPendingCount(1);
5730 (rights = new MapReduceValuesToDoubleTask<K,V>
5731 (this, batch >>>= 1, baseLimit = h, f, tab,
5732 rights, transformer, r, reducer)).fork();
5733 }
5734 for (Node<K,V> p; (p = advance()) != null; )
5735 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5736 result = r;
5737 CountedCompleter<?> c;
5738 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5739 @SuppressWarnings("unchecked")
5740 MapReduceValuesToDoubleTask<K,V>
5741 t = (MapReduceValuesToDoubleTask<K,V>)c,
5742 s = t.rights;
5743 while (s != null) {
5744 t.result = reducer.applyAsDouble(t.result, s.result);
5745 s = t.rights = s.nextRight;
5746 }
5747 }
5748 }
5749 }
5750 }
5751
5752 @SuppressWarnings("serial")
5753 static final class MapReduceEntriesToDoubleTask<K,V>
5754 extends BulkTask<K,V,Double> {
5755 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5756 final DoubleBinaryOperator reducer;
5757 final double basis;
5758 double result;
5759 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5760 MapReduceEntriesToDoubleTask
5761 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5762 MapReduceEntriesToDoubleTask<K,V> nextRight,
5763 ToDoubleFunction<Map.Entry<K,V>> transformer,
5764 double basis,
5765 DoubleBinaryOperator reducer) {
5766 super(p, b, i, f, t); this.nextRight = nextRight;
5767 this.transformer = transformer;
5768 this.basis = basis; this.reducer = reducer;
5769 }
5770 public final Double getRawResult() { return result; }
5771 public final void compute() {
5772 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5773 final DoubleBinaryOperator reducer;
5774 if ((transformer = this.transformer) != null &&
5775 (reducer = this.reducer) != null) {
5776 double r = this.basis;
5777 for (int i = baseIndex, f, h; batch > 0 &&
5778 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5779 addToPendingCount(1);
5780 (rights = new MapReduceEntriesToDoubleTask<K,V>
5781 (this, batch >>>= 1, baseLimit = h, f, tab,
5782 rights, transformer, r, reducer)).fork();
5783 }
5784 for (Node<K,V> p; (p = advance()) != null; )
5785 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5786 result = r;
5787 CountedCompleter<?> c;
5788 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5789 @SuppressWarnings("unchecked")
5790 MapReduceEntriesToDoubleTask<K,V>
5791 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5792 s = t.rights;
5793 while (s != null) {
5794 t.result = reducer.applyAsDouble(t.result, s.result);
5795 s = t.rights = s.nextRight;
5796 }
5797 }
5798 }
5799 }
5800 }
5801
5802 @SuppressWarnings("serial")
5803 static final class MapReduceMappingsToDoubleTask<K,V>
5804 extends BulkTask<K,V,Double> {
5805 final ToDoubleBiFunction<? super K, ? super V> transformer;
5806 final DoubleBinaryOperator reducer;
5807 final double basis;
5808 double result;
5809 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5810 MapReduceMappingsToDoubleTask
5811 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5812 MapReduceMappingsToDoubleTask<K,V> nextRight,
5813 ToDoubleBiFunction<? super K, ? super V> transformer,
5814 double basis,
5815 DoubleBinaryOperator reducer) {
5816 super(p, b, i, f, t); this.nextRight = nextRight;
5817 this.transformer = transformer;
5818 this.basis = basis; this.reducer = reducer;
5819 }
5820 public final Double getRawResult() { return result; }
5821 public final void compute() {
5822 final ToDoubleBiFunction<? super K, ? super V> transformer;
5823 final DoubleBinaryOperator reducer;
5824 if ((transformer = this.transformer) != null &&
5825 (reducer = this.reducer) != null) {
5826 double r = this.basis;
5827 for (int i = baseIndex, f, h; batch > 0 &&
5828 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5829 addToPendingCount(1);
5830 (rights = new MapReduceMappingsToDoubleTask<K,V>
5831 (this, batch >>>= 1, baseLimit = h, f, tab,
5832 rights, transformer, r, reducer)).fork();
5833 }
5834 for (Node<K,V> p; (p = advance()) != null; )
5835 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5836 result = r;
5837 CountedCompleter<?> c;
5838 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5839 @SuppressWarnings("unchecked")
5840 MapReduceMappingsToDoubleTask<K,V>
5841 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5842 s = t.rights;
5843 while (s != null) {
5844 t.result = reducer.applyAsDouble(t.result, s.result);
5845 s = t.rights = s.nextRight;
5846 }
5847 }
5848 }
5849 }
5850 }
5851
5852 @SuppressWarnings("serial")
5853 static final class MapReduceKeysToLongTask<K,V>
5854 extends BulkTask<K,V,Long> {
5855 final ToLongFunction<? super K> transformer;
5856 final LongBinaryOperator reducer;
5857 final long basis;
5858 long result;
5859 MapReduceKeysToLongTask<K,V> rights, nextRight;
5860 MapReduceKeysToLongTask
5861 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5862 MapReduceKeysToLongTask<K,V> nextRight,
5863 ToLongFunction<? super K> transformer,
5864 long basis,
5865 LongBinaryOperator reducer) {
5866 super(p, b, i, f, t); this.nextRight = nextRight;
5867 this.transformer = transformer;
5868 this.basis = basis; this.reducer = reducer;
5869 }
5870 public final Long getRawResult() { return result; }
5871 public final void compute() {
5872 final ToLongFunction<? super K> transformer;
5873 final LongBinaryOperator reducer;
5874 if ((transformer = this.transformer) != null &&
5875 (reducer = this.reducer) != null) {
5876 long r = this.basis;
5877 for (int i = baseIndex, f, h; batch > 0 &&
5878 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5879 addToPendingCount(1);
5880 (rights = new MapReduceKeysToLongTask<K,V>
5881 (this, batch >>>= 1, baseLimit = h, f, tab,
5882 rights, transformer, r, reducer)).fork();
5883 }
5884 for (Node<K,V> p; (p = advance()) != null; )
5885 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5886 result = r;
5887 CountedCompleter<?> c;
5888 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5889 @SuppressWarnings("unchecked")
5890 MapReduceKeysToLongTask<K,V>
5891 t = (MapReduceKeysToLongTask<K,V>)c,
5892 s = t.rights;
5893 while (s != null) {
5894 t.result = reducer.applyAsLong(t.result, s.result);
5895 s = t.rights = s.nextRight;
5896 }
5897 }
5898 }
5899 }
5900 }
5901
5902 @SuppressWarnings("serial")
5903 static final class MapReduceValuesToLongTask<K,V>
5904 extends BulkTask<K,V,Long> {
5905 final ToLongFunction<? super V> transformer;
5906 final LongBinaryOperator reducer;
5907 final long basis;
5908 long result;
5909 MapReduceValuesToLongTask<K,V> rights, nextRight;
5910 MapReduceValuesToLongTask
5911 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5912 MapReduceValuesToLongTask<K,V> nextRight,
5913 ToLongFunction<? super V> transformer,
5914 long basis,
5915 LongBinaryOperator reducer) {
5916 super(p, b, i, f, t); this.nextRight = nextRight;
5917 this.transformer = transformer;
5918 this.basis = basis; this.reducer = reducer;
5919 }
5920 public final Long getRawResult() { return result; }
5921 public final void compute() {
5922 final ToLongFunction<? super V> transformer;
5923 final LongBinaryOperator reducer;
5924 if ((transformer = this.transformer) != null &&
5925 (reducer = this.reducer) != null) {
5926 long r = this.basis;
5927 for (int i = baseIndex, f, h; batch > 0 &&
5928 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5929 addToPendingCount(1);
5930 (rights = new MapReduceValuesToLongTask<K,V>
5931 (this, batch >>>= 1, baseLimit = h, f, tab,
5932 rights, transformer, r, reducer)).fork();
5933 }
5934 for (Node<K,V> p; (p = advance()) != null; )
5935 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5936 result = r;
5937 CountedCompleter<?> c;
5938 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5939 @SuppressWarnings("unchecked")
5940 MapReduceValuesToLongTask<K,V>
5941 t = (MapReduceValuesToLongTask<K,V>)c,
5942 s = t.rights;
5943 while (s != null) {
5944 t.result = reducer.applyAsLong(t.result, s.result);
5945 s = t.rights = s.nextRight;
5946 }
5947 }
5948 }
5949 }
5950 }
5951
5952 @SuppressWarnings("serial")
5953 static final class MapReduceEntriesToLongTask<K,V>
5954 extends BulkTask<K,V,Long> {
5955 final ToLongFunction<Map.Entry<K,V>> transformer;
5956 final LongBinaryOperator reducer;
5957 final long basis;
5958 long result;
5959 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5960 MapReduceEntriesToLongTask
5961 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5962 MapReduceEntriesToLongTask<K,V> nextRight,
5963 ToLongFunction<Map.Entry<K,V>> transformer,
5964 long basis,
5965 LongBinaryOperator reducer) {
5966 super(p, b, i, f, t); this.nextRight = nextRight;
5967 this.transformer = transformer;
5968 this.basis = basis; this.reducer = reducer;
5969 }
5970 public final Long getRawResult() { return result; }
5971 public final void compute() {
5972 final ToLongFunction<Map.Entry<K,V>> transformer;
5973 final LongBinaryOperator reducer;
5974 if ((transformer = this.transformer) != null &&
5975 (reducer = this.reducer) != null) {
5976 long r = this.basis;
5977 for (int i = baseIndex, f, h; batch > 0 &&
5978 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5979 addToPendingCount(1);
5980 (rights = new MapReduceEntriesToLongTask<K,V>
5981 (this, batch >>>= 1, baseLimit = h, f, tab,
5982 rights, transformer, r, reducer)).fork();
5983 }
5984 for (Node<K,V> p; (p = advance()) != null; )
5985 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5986 result = r;
5987 CountedCompleter<?> c;
5988 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5989 @SuppressWarnings("unchecked")
5990 MapReduceEntriesToLongTask<K,V>
5991 t = (MapReduceEntriesToLongTask<K,V>)c,
5992 s = t.rights;
5993 while (s != null) {
5994 t.result = reducer.applyAsLong(t.result, s.result);
5995 s = t.rights = s.nextRight;
5996 }
5997 }
5998 }
5999 }
6000 }
6001
6002 @SuppressWarnings("serial")
6003 static final class MapReduceMappingsToLongTask<K,V>
6004 extends BulkTask<K,V,Long> {
6005 final ToLongBiFunction<? super K, ? super V> transformer;
6006 final LongBinaryOperator reducer;
6007 final long basis;
6008 long result;
6009 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6010 MapReduceMappingsToLongTask
6011 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6012 MapReduceMappingsToLongTask<K,V> nextRight,
6013 ToLongBiFunction<? super K, ? super V> transformer,
6014 long basis,
6015 LongBinaryOperator reducer) {
6016 super(p, b, i, f, t); this.nextRight = nextRight;
6017 this.transformer = transformer;
6018 this.basis = basis; this.reducer = reducer;
6019 }
6020 public final Long getRawResult() { return result; }
6021 public final void compute() {
6022 final ToLongBiFunction<? super K, ? super V> transformer;
6023 final LongBinaryOperator reducer;
6024 if ((transformer = this.transformer) != null &&
6025 (reducer = this.reducer) != null) {
6026 long r = this.basis;
6027 for (int i = baseIndex, f, h; batch > 0 &&
6028 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6029 addToPendingCount(1);
6030 (rights = new MapReduceMappingsToLongTask<K,V>
6031 (this, batch >>>= 1, baseLimit = h, f, tab,
6032 rights, transformer, r, reducer)).fork();
6033 }
6034 for (Node<K,V> p; (p = advance()) != null; )
6035 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6036 result = r;
6037 CountedCompleter<?> c;
6038 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6039 @SuppressWarnings("unchecked")
6040 MapReduceMappingsToLongTask<K,V>
6041 t = (MapReduceMappingsToLongTask<K,V>)c,
6042 s = t.rights;
6043 while (s != null) {
6044 t.result = reducer.applyAsLong(t.result, s.result);
6045 s = t.rights = s.nextRight;
6046 }
6047 }
6048 }
6049 }
6050 }
6051
6052 @SuppressWarnings("serial")
6053 static final class MapReduceKeysToIntTask<K,V>
6054 extends BulkTask<K,V,Integer> {
6055 final ToIntFunction<? super K> transformer;
6056 final IntBinaryOperator reducer;
6057 final int basis;
6058 int result;
6059 MapReduceKeysToIntTask<K,V> rights, nextRight;
6060 MapReduceKeysToIntTask
6061 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6062 MapReduceKeysToIntTask<K,V> nextRight,
6063 ToIntFunction<? super K> transformer,
6064 int basis,
6065 IntBinaryOperator reducer) {
6066 super(p, b, i, f, t); this.nextRight = nextRight;
6067 this.transformer = transformer;
6068 this.basis = basis; this.reducer = reducer;
6069 }
6070 public final Integer getRawResult() { return result; }
6071 public final void compute() {
6072 final ToIntFunction<? super K> transformer;
6073 final IntBinaryOperator reducer;
6074 if ((transformer = this.transformer) != null &&
6075 (reducer = this.reducer) != null) {
6076 int r = this.basis;
6077 for (int i = baseIndex, f, h; batch > 0 &&
6078 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6079 addToPendingCount(1);
6080 (rights = new MapReduceKeysToIntTask<K,V>
6081 (this, batch >>>= 1, baseLimit = h, f, tab,
6082 rights, transformer, r, reducer)).fork();
6083 }
6084 for (Node<K,V> p; (p = advance()) != null; )
6085 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6086 result = r;
6087 CountedCompleter<?> c;
6088 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6089 @SuppressWarnings("unchecked")
6090 MapReduceKeysToIntTask<K,V>
6091 t = (MapReduceKeysToIntTask<K,V>)c,
6092 s = t.rights;
6093 while (s != null) {
6094 t.result = reducer.applyAsInt(t.result, s.result);
6095 s = t.rights = s.nextRight;
6096 }
6097 }
6098 }
6099 }
6100 }
6101
6102 @SuppressWarnings("serial")
6103 static final class MapReduceValuesToIntTask<K,V>
6104 extends BulkTask<K,V,Integer> {
6105 final ToIntFunction<? super V> transformer;
6106 final IntBinaryOperator reducer;
6107 final int basis;
6108 int result;
6109 MapReduceValuesToIntTask<K,V> rights, nextRight;
6110 MapReduceValuesToIntTask
6111 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6112 MapReduceValuesToIntTask<K,V> nextRight,
6113 ToIntFunction<? super V> transformer,
6114 int basis,
6115 IntBinaryOperator reducer) {
6116 super(p, b, i, f, t); this.nextRight = nextRight;
6117 this.transformer = transformer;
6118 this.basis = basis; this.reducer = reducer;
6119 }
6120 public final Integer getRawResult() { return result; }
6121 public final void compute() {
6122 final ToIntFunction<? super V> transformer;
6123 final IntBinaryOperator reducer;
6124 if ((transformer = this.transformer) != null &&
6125 (reducer = this.reducer) != null) {
6126 int r = this.basis;
6127 for (int i = baseIndex, f, h; batch > 0 &&
6128 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6129 addToPendingCount(1);
6130 (rights = new MapReduceValuesToIntTask<K,V>
6131 (this, batch >>>= 1, baseLimit = h, f, tab,
6132 rights, transformer, r, reducer)).fork();
6133 }
6134 for (Node<K,V> p; (p = advance()) != null; )
6135 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6136 result = r;
6137 CountedCompleter<?> c;
6138 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6139 @SuppressWarnings("unchecked")
6140 MapReduceValuesToIntTask<K,V>
6141 t = (MapReduceValuesToIntTask<K,V>)c,
6142 s = t.rights;
6143 while (s != null) {
6144 t.result = reducer.applyAsInt(t.result, s.result);
6145 s = t.rights = s.nextRight;
6146 }
6147 }
6148 }
6149 }
6150 }
6151
6152 @SuppressWarnings("serial")
6153 static final class MapReduceEntriesToIntTask<K,V>
6154 extends BulkTask<K,V,Integer> {
6155 final ToIntFunction<Map.Entry<K,V>> transformer;
6156 final IntBinaryOperator reducer;
6157 final int basis;
6158 int result;
6159 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6160 MapReduceEntriesToIntTask
6161 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6162 MapReduceEntriesToIntTask<K,V> nextRight,
6163 ToIntFunction<Map.Entry<K,V>> transformer,
6164 int basis,
6165 IntBinaryOperator reducer) {
6166 super(p, b, i, f, t); this.nextRight = nextRight;
6167 this.transformer = transformer;
6168 this.basis = basis; this.reducer = reducer;
6169 }
6170 public final Integer getRawResult() { return result; }
6171 public final void compute() {
6172 final ToIntFunction<Map.Entry<K,V>> transformer;
6173 final IntBinaryOperator reducer;
6174 if ((transformer = this.transformer) != null &&
6175 (reducer = this.reducer) != null) {
6176 int r = this.basis;
6177 for (int i = baseIndex, f, h; batch > 0 &&
6178 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6179 addToPendingCount(1);
6180 (rights = new MapReduceEntriesToIntTask<K,V>
6181 (this, batch >>>= 1, baseLimit = h, f, tab,
6182 rights, transformer, r, reducer)).fork();
6183 }
6184 for (Node<K,V> p; (p = advance()) != null; )
6185 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6186 result = r;
6187 CountedCompleter<?> c;
6188 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6189 @SuppressWarnings("unchecked")
6190 MapReduceEntriesToIntTask<K,V>
6191 t = (MapReduceEntriesToIntTask<K,V>)c,
6192 s = t.rights;
6193 while (s != null) {
6194 t.result = reducer.applyAsInt(t.result, s.result);
6195 s = t.rights = s.nextRight;
6196 }
6197 }
6198 }
6199 }
6200 }
6201
6202 @SuppressWarnings("serial")
6203 static final class MapReduceMappingsToIntTask<K,V>
6204 extends BulkTask<K,V,Integer> {
6205 final ToIntBiFunction<? super K, ? super V> transformer;
6206 final IntBinaryOperator reducer;
6207 final int basis;
6208 int result;
6209 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6210 MapReduceMappingsToIntTask
6211 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6212 MapReduceMappingsToIntTask<K,V> nextRight,
6213 ToIntBiFunction<? super K, ? super V> transformer,
6214 int basis,
6215 IntBinaryOperator reducer) {
6216 super(p, b, i, f, t); this.nextRight = nextRight;
6217 this.transformer = transformer;
6218 this.basis = basis; this.reducer = reducer;
6219 }
6220 public final Integer getRawResult() { return result; }
6221 public final void compute() {
6222 final ToIntBiFunction<? super K, ? super V> transformer;
6223 final IntBinaryOperator reducer;
6224 if ((transformer = this.transformer) != null &&
6225 (reducer = this.reducer) != null) {
6226 int r = this.basis;
6227 for (int i = baseIndex, f, h; batch > 0 &&
6228 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6229 addToPendingCount(1);
6230 (rights = new MapReduceMappingsToIntTask<K,V>
6231 (this, batch >>>= 1, baseLimit = h, f, tab,
6232 rights, transformer, r, reducer)).fork();
6233 }
6234 for (Node<K,V> p; (p = advance()) != null; )
6235 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6236 result = r;
6237 CountedCompleter<?> c;
6238 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6239 @SuppressWarnings("unchecked")
6240 MapReduceMappingsToIntTask<K,V>
6241 t = (MapReduceMappingsToIntTask<K,V>)c,
6242 s = t.rights;
6243 while (s != null) {
6244 t.result = reducer.applyAsInt(t.result, s.result);
6245 s = t.rights = s.nextRight;
6246 }
6247 }
6248 }
6249 }
6250 }
6251
6252 // Unsafe mechanics
6253 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
6254 private static final long SIZECTL;
6255 private static final long TRANSFERINDEX;
6256 private static final long BASECOUNT;
6257 private static final long CELLSBUSY;
6258 private static final long CELLVALUE;
6259 private static final int ABASE;
6260 private static final int ASHIFT;
6261
6262 static {
6263 try {
6264 SIZECTL = U.objectFieldOffset
6265 (ConcurrentHashMap.class.getDeclaredField("sizeCtl"));
6266 TRANSFERINDEX = U.objectFieldOffset
6267 (ConcurrentHashMap.class.getDeclaredField("transferIndex"));
6268 BASECOUNT = U.objectFieldOffset
6269 (ConcurrentHashMap.class.getDeclaredField("baseCount"));
6270 CELLSBUSY = U.objectFieldOffset
6271 (ConcurrentHashMap.class.getDeclaredField("cellsBusy"));
6272
6273 CELLVALUE = U.objectFieldOffset
6274 (CounterCell.class.getDeclaredField("value"));
6275
6276 ABASE = U.arrayBaseOffset(Node[].class);
6277 int scale = U.arrayIndexScale(Node[].class);
6278 if ((scale & (scale - 1)) != 0)
6279 throw new Error("array index scale not a power of two");
6280 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6281 } catch (ReflectiveOperationException e) {
6282 throw new Error(e);
6283 }
6284 }
6285 }