ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.270
Committed: Tue Mar 24 22:30:53 2015 UTC (9 years, 2 months ago) by jsr166
Branch: MAIN
Changes since 1.269: +4 -3 lines
Log Message:
refactor calls to putFields

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.io.Serializable;
11 import java.lang.reflect.ParameterizedType;
12 import java.lang.reflect.Type;
13 import java.util.AbstractMap;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Enumeration;
17 import java.util.HashMap;
18 import java.util.Hashtable;
19 import java.util.Iterator;
20 import java.util.Map;
21 import java.util.NoSuchElementException;
22 import java.util.Set;
23 import java.util.Spliterator;
24 import java.util.concurrent.atomic.AtomicReference;
25 import java.util.concurrent.locks.LockSupport;
26 import java.util.concurrent.locks.ReentrantLock;
27 import java.util.function.BiConsumer;
28 import java.util.function.BiFunction;
29 import java.util.function.Consumer;
30 import java.util.function.DoubleBinaryOperator;
31 import java.util.function.Function;
32 import java.util.function.IntBinaryOperator;
33 import java.util.function.LongBinaryOperator;
34 import java.util.function.ToDoubleBiFunction;
35 import java.util.function.ToDoubleFunction;
36 import java.util.function.ToIntBiFunction;
37 import java.util.function.ToIntFunction;
38 import java.util.function.ToLongBiFunction;
39 import java.util.function.ToLongFunction;
40 import java.util.stream.Stream;
41
42 /**
43 * A hash table supporting full concurrency of retrievals and
44 * high expected concurrency for updates. This class obeys the
45 * same functional specification as {@link java.util.Hashtable}, and
46 * includes versions of methods corresponding to each method of
47 * {@code Hashtable}. However, even though all operations are
48 * thread-safe, retrieval operations do <em>not</em> entail locking,
49 * and there is <em>not</em> any support for locking the entire table
50 * in a way that prevents all access. This class is fully
51 * interoperable with {@code Hashtable} in programs that rely on its
52 * thread safety but not on its synchronization details.
53 *
54 * <p>Retrieval operations (including {@code get}) generally do not
55 * block, so may overlap with update operations (including {@code put}
56 * and {@code remove}). Retrievals reflect the results of the most
57 * recently <em>completed</em> update operations holding upon their
58 * onset. (More formally, an update operation for a given key bears a
59 * <em>happens-before</em> relation with any (non-null) retrieval for
60 * that key reporting the updated value.) For aggregate operations
61 * such as {@code putAll} and {@code clear}, concurrent retrievals may
62 * reflect insertion or removal of only some entries. Similarly,
63 * Iterators, Spliterators and Enumerations return elements reflecting the
64 * state of the hash table at some point at or since the creation of the
65 * iterator/enumeration. They do <em>not</em> throw {@link
66 * java.util.ConcurrentModificationException ConcurrentModificationException}.
67 * However, iterators are designed to be used by only one thread at a time.
68 * Bear in mind that the results of aggregate status methods including
69 * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
70 * useful only when a map is not undergoing concurrent updates in other threads.
71 * Otherwise the results of these methods reflect transient states
72 * that may be adequate for monitoring or estimation purposes, but not
73 * for program control.
74 *
75 * <p>The table is dynamically expanded when there are too many
76 * collisions (i.e., keys that have distinct hash codes but fall into
77 * the same slot modulo the table size), with the expected average
78 * effect of maintaining roughly two bins per mapping (corresponding
79 * to a 0.75 load factor threshold for resizing). There may be much
80 * variance around this average as mappings are added and removed, but
81 * overall, this maintains a commonly accepted time/space tradeoff for
82 * hash tables. However, resizing this or any other kind of hash
83 * table may be a relatively slow operation. When possible, it is a
84 * good idea to provide a size estimate as an optional {@code
85 * initialCapacity} constructor argument. An additional optional
86 * {@code loadFactor} constructor argument provides a further means of
87 * customizing initial table capacity by specifying the table density
88 * to be used in calculating the amount of space to allocate for the
89 * given number of elements. Also, for compatibility with previous
90 * versions of this class, constructors may optionally specify an
91 * expected {@code concurrencyLevel} as an additional hint for
92 * internal sizing. Note that using many keys with exactly the same
93 * {@code hashCode()} is a sure way to slow down performance of any
94 * hash table. To ameliorate impact, when keys are {@link Comparable},
95 * this class may use comparison order among keys to help break ties.
96 *
97 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
98 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
99 * (using {@link #keySet(Object)} when only keys are of interest, and the
100 * mapped values are (perhaps transiently) not used or all take the
101 * same mapping value.
102 *
103 * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
104 * form of histogram or multiset) by using {@link
105 * java.util.concurrent.atomic.LongAdder} values and initializing via
106 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
107 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
108 * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
109 *
110 * <p>This class and its views and iterators implement all of the
111 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
112 * interfaces.
113 *
114 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
115 * does <em>not</em> allow {@code null} to be used as a key or value.
116 *
117 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
118 * operations that, unlike most {@link Stream} methods, are designed
119 * to be safely, and often sensibly, applied even with maps that are
120 * being concurrently updated by other threads; for example, when
121 * computing a snapshot summary of the values in a shared registry.
122 * There are three kinds of operation, each with four forms, accepting
123 * functions with Keys, Values, Entries, and (Key, Value) arguments
124 * and/or return values. Because the elements of a ConcurrentHashMap
125 * are not ordered in any particular way, and may be processed in
126 * different orders in different parallel executions, the correctness
127 * of supplied functions should not depend on any ordering, or on any
128 * other objects or values that may transiently change while
129 * computation is in progress; and except for forEach actions, should
130 * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
131 * objects do not support method {@code setValue}.
132 *
133 * <ul>
134 * <li> forEach: Perform a given action on each element.
135 * A variant form applies a given transformation on each element
136 * before performing the action.</li>
137 *
138 * <li> search: Return the first available non-null result of
139 * applying a given function on each element; skipping further
140 * search when a result is found.</li>
141 *
142 * <li> reduce: Accumulate each element. The supplied reduction
143 * function cannot rely on ordering (more formally, it should be
144 * both associative and commutative). There are five variants:
145 *
146 * <ul>
147 *
148 * <li> Plain reductions. (There is not a form of this method for
149 * (key, value) function arguments since there is no corresponding
150 * return type.)</li>
151 *
152 * <li> Mapped reductions that accumulate the results of a given
153 * function applied to each element.</li>
154 *
155 * <li> Reductions to scalar doubles, longs, and ints, using a
156 * given basis value.</li>
157 *
158 * </ul>
159 * </li>
160 * </ul>
161 *
162 * <p>These bulk operations accept a {@code parallelismThreshold}
163 * argument. Methods proceed sequentially if the current map size is
164 * estimated to be less than the given threshold. Using a value of
165 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
166 * of {@code 1} results in maximal parallelism by partitioning into
167 * enough subtasks to fully utilize the {@link
168 * ForkJoinPool#commonPool()} that is used for all parallel
169 * computations. Normally, you would initially choose one of these
170 * extreme values, and then measure performance of using in-between
171 * values that trade off overhead versus throughput.
172 *
173 * <p>The concurrency properties of bulk operations follow
174 * from those of ConcurrentHashMap: Any non-null result returned
175 * from {@code get(key)} and related access methods bears a
176 * happens-before relation with the associated insertion or
177 * update. The result of any bulk operation reflects the
178 * composition of these per-element relations (but is not
179 * necessarily atomic with respect to the map as a whole unless it
180 * is somehow known to be quiescent). Conversely, because keys
181 * and values in the map are never null, null serves as a reliable
182 * atomic indicator of the current lack of any result. To
183 * maintain this property, null serves as an implicit basis for
184 * all non-scalar reduction operations. For the double, long, and
185 * int versions, the basis should be one that, when combined with
186 * any other value, returns that other value (more formally, it
187 * should be the identity element for the reduction). Most common
188 * reductions have these properties; for example, computing a sum
189 * with basis 0 or a minimum with basis MAX_VALUE.
190 *
191 * <p>Search and transformation functions provided as arguments
192 * should similarly return null to indicate the lack of any result
193 * (in which case it is not used). In the case of mapped
194 * reductions, this also enables transformations to serve as
195 * filters, returning null (or, in the case of primitive
196 * specializations, the identity basis) if the element should not
197 * be combined. You can create compound transformations and
198 * filterings by composing them yourself under this "null means
199 * there is nothing there now" rule before using them in search or
200 * reduce operations.
201 *
202 * <p>Methods accepting and/or returning Entry arguments maintain
203 * key-value associations. They may be useful for example when
204 * finding the key for the greatest value. Note that "plain" Entry
205 * arguments can be supplied using {@code new
206 * AbstractMap.SimpleEntry(k,v)}.
207 *
208 * <p>Bulk operations may complete abruptly, throwing an
209 * exception encountered in the application of a supplied
210 * function. Bear in mind when handling such exceptions that other
211 * concurrently executing functions could also have thrown
212 * exceptions, or would have done so if the first exception had
213 * not occurred.
214 *
215 * <p>Speedups for parallel compared to sequential forms are common
216 * but not guaranteed. Parallel operations involving brief functions
217 * on small maps may execute more slowly than sequential forms if the
218 * underlying work to parallelize the computation is more expensive
219 * than the computation itself. Similarly, parallelization may not
220 * lead to much actual parallelism if all processors are busy
221 * performing unrelated tasks.
222 *
223 * <p>All arguments to all task methods must be non-null.
224 *
225 * <p>This class is a member of the
226 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
227 * Java Collections Framework</a>.
228 *
229 * @since 1.5
230 * @author Doug Lea
231 * @param <K> the type of keys maintained by this map
232 * @param <V> the type of mapped values
233 */
234 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
235 implements ConcurrentMap<K,V>, Serializable {
236 private static final long serialVersionUID = 7249069246763182397L;
237
238 /*
239 * Overview:
240 *
241 * The primary design goal of this hash table is to maintain
242 * concurrent readability (typically method get(), but also
243 * iterators and related methods) while minimizing update
244 * contention. Secondary goals are to keep space consumption about
245 * the same or better than java.util.HashMap, and to support high
246 * initial insertion rates on an empty table by many threads.
247 *
248 * This map usually acts as a binned (bucketed) hash table. Each
249 * key-value mapping is held in a Node. Most nodes are instances
250 * of the basic Node class with hash, key, value, and next
251 * fields. However, various subclasses exist: TreeNodes are
252 * arranged in balanced trees, not lists. TreeBins hold the roots
253 * of sets of TreeNodes. ForwardingNodes are placed at the heads
254 * of bins during resizing. ReservationNodes are used as
255 * placeholders while establishing values in computeIfAbsent and
256 * related methods. The types TreeBin, ForwardingNode, and
257 * ReservationNode do not hold normal user keys, values, or
258 * hashes, and are readily distinguishable during search etc
259 * because they have negative hash fields and null key and value
260 * fields. (These special nodes are either uncommon or transient,
261 * so the impact of carrying around some unused fields is
262 * insignificant.)
263 *
264 * The table is lazily initialized to a power-of-two size upon the
265 * first insertion. Each bin in the table normally contains a
266 * list of Nodes (most often, the list has only zero or one Node).
267 * Table accesses require volatile/atomic reads, writes, and
268 * CASes. Because there is no other way to arrange this without
269 * adding further indirections, we use intrinsics
270 * (sun.misc.Unsafe) operations.
271 *
272 * We use the top (sign) bit of Node hash fields for control
273 * purposes -- it is available anyway because of addressing
274 * constraints. Nodes with negative hash fields are specially
275 * handled or ignored in map methods.
276 *
277 * Insertion (via put or its variants) of the first node in an
278 * empty bin is performed by just CASing it to the bin. This is
279 * by far the most common case for put operations under most
280 * key/hash distributions. Other update operations (insert,
281 * delete, and replace) require locks. We do not want to waste
282 * the space required to associate a distinct lock object with
283 * each bin, so instead use the first node of a bin list itself as
284 * a lock. Locking support for these locks relies on builtin
285 * "synchronized" monitors.
286 *
287 * Using the first node of a list as a lock does not by itself
288 * suffice though: When a node is locked, any update must first
289 * validate that it is still the first node after locking it, and
290 * retry if not. Because new nodes are always appended to lists,
291 * once a node is first in a bin, it remains first until deleted
292 * or the bin becomes invalidated (upon resizing).
293 *
294 * The main disadvantage of per-bin locks is that other update
295 * operations on other nodes in a bin list protected by the same
296 * lock can stall, for example when user equals() or mapping
297 * functions take a long time. However, statistically, under
298 * random hash codes, this is not a common problem. Ideally, the
299 * frequency of nodes in bins follows a Poisson distribution
300 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
301 * parameter of about 0.5 on average, given the resizing threshold
302 * of 0.75, although with a large variance because of resizing
303 * granularity. Ignoring variance, the expected occurrences of
304 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
305 * first values are:
306 *
307 * 0: 0.60653066
308 * 1: 0.30326533
309 * 2: 0.07581633
310 * 3: 0.01263606
311 * 4: 0.00157952
312 * 5: 0.00015795
313 * 6: 0.00001316
314 * 7: 0.00000094
315 * 8: 0.00000006
316 * more: less than 1 in ten million
317 *
318 * Lock contention probability for two threads accessing distinct
319 * elements is roughly 1 / (8 * #elements) under random hashes.
320 *
321 * Actual hash code distributions encountered in practice
322 * sometimes deviate significantly from uniform randomness. This
323 * includes the case when N > (1<<30), so some keys MUST collide.
324 * Similarly for dumb or hostile usages in which multiple keys are
325 * designed to have identical hash codes or ones that differs only
326 * in masked-out high bits. So we use a secondary strategy that
327 * applies when the number of nodes in a bin exceeds a
328 * threshold. These TreeBins use a balanced tree to hold nodes (a
329 * specialized form of red-black trees), bounding search time to
330 * O(log N). Each search step in a TreeBin is at least twice as
331 * slow as in a regular list, but given that N cannot exceed
332 * (1<<64) (before running out of addresses) this bounds search
333 * steps, lock hold times, etc, to reasonable constants (roughly
334 * 100 nodes inspected per operation worst case) so long as keys
335 * are Comparable (which is very common -- String, Long, etc).
336 * TreeBin nodes (TreeNodes) also maintain the same "next"
337 * traversal pointers as regular nodes, so can be traversed in
338 * iterators in the same way.
339 *
340 * The table is resized when occupancy exceeds a percentage
341 * threshold (nominally, 0.75, but see below). Any thread
342 * noticing an overfull bin may assist in resizing after the
343 * initiating thread allocates and sets up the replacement array.
344 * However, rather than stalling, these other threads may proceed
345 * with insertions etc. The use of TreeBins shields us from the
346 * worst case effects of overfilling while resizes are in
347 * progress. Resizing proceeds by transferring bins, one by one,
348 * from the table to the next table. However, threads claim small
349 * blocks of indices to transfer (via field transferIndex) before
350 * doing so, reducing contention. A generation stamp in field
351 * sizeCtl ensures that resizings do not overlap. Because we are
352 * using power-of-two expansion, the elements from each bin must
353 * either stay at same index, or move with a power of two
354 * offset. We eliminate unnecessary node creation by catching
355 * cases where old nodes can be reused because their next fields
356 * won't change. On average, only about one-sixth of them need
357 * cloning when a table doubles. The nodes they replace will be
358 * garbage collectable as soon as they are no longer referenced by
359 * any reader thread that may be in the midst of concurrently
360 * traversing table. Upon transfer, the old table bin contains
361 * only a special forwarding node (with hash field "MOVED") that
362 * contains the next table as its key. On encountering a
363 * forwarding node, access and update operations restart, using
364 * the new table.
365 *
366 * Each bin transfer requires its bin lock, which can stall
367 * waiting for locks while resizing. However, because other
368 * threads can join in and help resize rather than contend for
369 * locks, average aggregate waits become shorter as resizing
370 * progresses. The transfer operation must also ensure that all
371 * accessible bins in both the old and new table are usable by any
372 * traversal. This is arranged in part by proceeding from the
373 * last bin (table.length - 1) up towards the first. Upon seeing
374 * a forwarding node, traversals (see class Traverser) arrange to
375 * move to the new table without revisiting nodes. To ensure that
376 * no intervening nodes are skipped even when moved out of order,
377 * a stack (see class TableStack) is created on first encounter of
378 * a forwarding node during a traversal, to maintain its place if
379 * later processing the current table. The need for these
380 * save/restore mechanics is relatively rare, but when one
381 * forwarding node is encountered, typically many more will be.
382 * So Traversers use a simple caching scheme to avoid creating so
383 * many new TableStack nodes. (Thanks to Peter Levart for
384 * suggesting use of a stack here.)
385 *
386 * The traversal scheme also applies to partial traversals of
387 * ranges of bins (via an alternate Traverser constructor)
388 * to support partitioned aggregate operations. Also, read-only
389 * operations give up if ever forwarded to a null table, which
390 * provides support for shutdown-style clearing, which is also not
391 * currently implemented.
392 *
393 * Lazy table initialization minimizes footprint until first use,
394 * and also avoids resizings when the first operation is from a
395 * putAll, constructor with map argument, or deserialization.
396 * These cases attempt to override the initial capacity settings,
397 * but harmlessly fail to take effect in cases of races.
398 *
399 * The element count is maintained using a specialization of
400 * LongAdder. We need to incorporate a specialization rather than
401 * just use a LongAdder in order to access implicit
402 * contention-sensing that leads to creation of multiple
403 * CounterCells. The counter mechanics avoid contention on
404 * updates but can encounter cache thrashing if read too
405 * frequently during concurrent access. To avoid reading so often,
406 * resizing under contention is attempted only upon adding to a
407 * bin already holding two or more nodes. Under uniform hash
408 * distributions, the probability of this occurring at threshold
409 * is around 13%, meaning that only about 1 in 8 puts check
410 * threshold (and after resizing, many fewer do so).
411 *
412 * TreeBins use a special form of comparison for search and
413 * related operations (which is the main reason we cannot use
414 * existing collections such as TreeMaps). TreeBins contain
415 * Comparable elements, but may contain others, as well as
416 * elements that are Comparable but not necessarily Comparable for
417 * the same T, so we cannot invoke compareTo among them. To handle
418 * this, the tree is ordered primarily by hash value, then by
419 * Comparable.compareTo order if applicable. On lookup at a node,
420 * if elements are not comparable or compare as 0 then both left
421 * and right children may need to be searched in the case of tied
422 * hash values. (This corresponds to the full list search that
423 * would be necessary if all elements were non-Comparable and had
424 * tied hashes.) On insertion, to keep a total ordering (or as
425 * close as is required here) across rebalancings, we compare
426 * classes and identityHashCodes as tie-breakers. The red-black
427 * balancing code is updated from pre-jdk-collections
428 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
429 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
430 * Algorithms" (CLR).
431 *
432 * TreeBins also require an additional locking mechanism. While
433 * list traversal is always possible by readers even during
434 * updates, tree traversal is not, mainly because of tree-rotations
435 * that may change the root node and/or its linkages. TreeBins
436 * include a simple read-write lock mechanism parasitic on the
437 * main bin-synchronization strategy: Structural adjustments
438 * associated with an insertion or removal are already bin-locked
439 * (and so cannot conflict with other writers) but must wait for
440 * ongoing readers to finish. Since there can be only one such
441 * waiter, we use a simple scheme using a single "waiter" field to
442 * block writers. However, readers need never block. If the root
443 * lock is held, they proceed along the slow traversal path (via
444 * next-pointers) until the lock becomes available or the list is
445 * exhausted, whichever comes first. These cases are not fast, but
446 * maximize aggregate expected throughput.
447 *
448 * Maintaining API and serialization compatibility with previous
449 * versions of this class introduces several oddities. Mainly: We
450 * leave untouched but unused constructor arguments refering to
451 * concurrencyLevel. We accept a loadFactor constructor argument,
452 * but apply it only to initial table capacity (which is the only
453 * time that we can guarantee to honor it.) We also declare an
454 * unused "Segment" class that is instantiated in minimal form
455 * only when serializing.
456 *
457 * Also, solely for compatibility with previous versions of this
458 * class, it extends AbstractMap, even though all of its methods
459 * are overridden, so it is just useless baggage.
460 *
461 * This file is organized to make things a little easier to follow
462 * while reading than they might otherwise: First the main static
463 * declarations and utilities, then fields, then main public
464 * methods (with a few factorings of multiple public methods into
465 * internal ones), then sizing methods, trees, traversers, and
466 * bulk operations.
467 */
468
469 /* ---------------- Constants -------------- */
470
471 /**
472 * The largest possible table capacity. This value must be
473 * exactly 1<<30 to stay within Java array allocation and indexing
474 * bounds for power of two table sizes, and is further required
475 * because the top two bits of 32bit hash fields are used for
476 * control purposes.
477 */
478 private static final int MAXIMUM_CAPACITY = 1 << 30;
479
480 /**
481 * The default initial table capacity. Must be a power of 2
482 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
483 */
484 private static final int DEFAULT_CAPACITY = 16;
485
486 /**
487 * The largest possible (non-power of two) array size.
488 * Needed by toArray and related methods.
489 */
490 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
491
492 /**
493 * The default concurrency level for this table. Unused but
494 * defined for compatibility with previous versions of this class.
495 */
496 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
497
498 /**
499 * The load factor for this table. Overrides of this value in
500 * constructors affect only the initial table capacity. The
501 * actual floating point value isn't normally used -- it is
502 * simpler to use expressions such as {@code n - (n >>> 2)} for
503 * the associated resizing threshold.
504 */
505 private static final float LOAD_FACTOR = 0.75f;
506
507 /**
508 * The bin count threshold for using a tree rather than list for a
509 * bin. Bins are converted to trees when adding an element to a
510 * bin with at least this many nodes. The value must be greater
511 * than 2, and should be at least 8 to mesh with assumptions in
512 * tree removal about conversion back to plain bins upon
513 * shrinkage.
514 */
515 static final int TREEIFY_THRESHOLD = 8;
516
517 /**
518 * The bin count threshold for untreeifying a (split) bin during a
519 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
520 * most 6 to mesh with shrinkage detection under removal.
521 */
522 static final int UNTREEIFY_THRESHOLD = 6;
523
524 /**
525 * The smallest table capacity for which bins may be treeified.
526 * (Otherwise the table is resized if too many nodes in a bin.)
527 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
528 * conflicts between resizing and treeification thresholds.
529 */
530 static final int MIN_TREEIFY_CAPACITY = 64;
531
532 /**
533 * Minimum number of rebinnings per transfer step. Ranges are
534 * subdivided to allow multiple resizer threads. This value
535 * serves as a lower bound to avoid resizers encountering
536 * excessive memory contention. The value should be at least
537 * DEFAULT_CAPACITY.
538 */
539 private static final int MIN_TRANSFER_STRIDE = 16;
540
541 /**
542 * The number of bits used for generation stamp in sizeCtl.
543 * Must be at least 6 for 32bit arrays.
544 */
545 private static int RESIZE_STAMP_BITS = 16;
546
547 /**
548 * The maximum number of threads that can help resize.
549 * Must fit in 32 - RESIZE_STAMP_BITS bits.
550 */
551 private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
552
553 /**
554 * The bit shift for recording size stamp in sizeCtl.
555 */
556 private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
557
558 /*
559 * Encodings for Node hash fields. See above for explanation.
560 */
561 static final int MOVED = -1; // hash for forwarding nodes
562 static final int TREEBIN = -2; // hash for roots of trees
563 static final int RESERVED = -3; // hash for transient reservations
564 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
565
566 /** Number of CPUS, to place bounds on some sizings */
567 static final int NCPU = Runtime.getRuntime().availableProcessors();
568
569 /** For serialization compatibility. */
570 private static final ObjectStreamField[] serialPersistentFields = {
571 new ObjectStreamField("segments", Segment[].class),
572 new ObjectStreamField("segmentMask", Integer.TYPE),
573 new ObjectStreamField("segmentShift", Integer.TYPE)
574 };
575
576 /* ---------------- Nodes -------------- */
577
578 /**
579 * Key-value entry. This class is never exported out as a
580 * user-mutable Map.Entry (i.e., one supporting setValue; see
581 * MapEntry below), but can be used for read-only traversals used
582 * in bulk tasks. Subclasses of Node with a negative hash field
583 * are special, and contain null keys and values (but are never
584 * exported). Otherwise, keys and vals are never null.
585 */
586 static class Node<K,V> implements Map.Entry<K,V> {
587 final int hash;
588 final K key;
589 volatile V val;
590 volatile Node<K,V> next;
591
592 Node(int hash, K key, V val, Node<K,V> next) {
593 this.hash = hash;
594 this.key = key;
595 this.val = val;
596 this.next = next;
597 }
598
599 public final K getKey() { return key; }
600 public final V getValue() { return val; }
601 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
602 public final String toString() {
603 return Helpers.mapEntryToString(key, val);
604 }
605 public final V setValue(V value) {
606 throw new UnsupportedOperationException();
607 }
608
609 public final boolean equals(Object o) {
610 Object k, v, u; Map.Entry<?,?> e;
611 return ((o instanceof Map.Entry) &&
612 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
613 (v = e.getValue()) != null &&
614 (k == key || k.equals(key)) &&
615 (v == (u = val) || v.equals(u)));
616 }
617
618 /**
619 * Virtualized support for map.get(); overridden in subclasses.
620 */
621 Node<K,V> find(int h, Object k) {
622 Node<K,V> e = this;
623 if (k != null) {
624 do {
625 K ek;
626 if (e.hash == h &&
627 ((ek = e.key) == k || (ek != null && k.equals(ek))))
628 return e;
629 } while ((e = e.next) != null);
630 }
631 return null;
632 }
633 }
634
635 /* ---------------- Static utilities -------------- */
636
637 /**
638 * Spreads (XORs) higher bits of hash to lower and also forces top
639 * bit to 0. Because the table uses power-of-two masking, sets of
640 * hashes that vary only in bits above the current mask will
641 * always collide. (Among known examples are sets of Float keys
642 * holding consecutive whole numbers in small tables.) So we
643 * apply a transform that spreads the impact of higher bits
644 * downward. There is a tradeoff between speed, utility, and
645 * quality of bit-spreading. Because many common sets of hashes
646 * are already reasonably distributed (so don't benefit from
647 * spreading), and because we use trees to handle large sets of
648 * collisions in bins, we just XOR some shifted bits in the
649 * cheapest possible way to reduce systematic lossage, as well as
650 * to incorporate impact of the highest bits that would otherwise
651 * never be used in index calculations because of table bounds.
652 */
653 static final int spread(int h) {
654 return (h ^ (h >>> 16)) & HASH_BITS;
655 }
656
657 /**
658 * Returns a power of two table size for the given desired capacity.
659 * See Hackers Delight, sec 3.2
660 */
661 private static final int tableSizeFor(int c) {
662 int n = c - 1;
663 n |= n >>> 1;
664 n |= n >>> 2;
665 n |= n >>> 4;
666 n |= n >>> 8;
667 n |= n >>> 16;
668 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
669 }
670
671 /**
672 * Returns x's Class if it is of the form "class C implements
673 * Comparable<C>", else null.
674 */
675 static Class<?> comparableClassFor(Object x) {
676 if (x instanceof Comparable) {
677 Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
678 if ((c = x.getClass()) == String.class) // bypass checks
679 return c;
680 if ((ts = c.getGenericInterfaces()) != null) {
681 for (int i = 0; i < ts.length; ++i) {
682 if (((t = ts[i]) instanceof ParameterizedType) &&
683 ((p = (ParameterizedType)t).getRawType() ==
684 Comparable.class) &&
685 (as = p.getActualTypeArguments()) != null &&
686 as.length == 1 && as[0] == c) // type arg is c
687 return c;
688 }
689 }
690 }
691 return null;
692 }
693
694 /**
695 * Returns k.compareTo(x) if x matches kc (k's screened comparable
696 * class), else 0.
697 */
698 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
699 static int compareComparables(Class<?> kc, Object k, Object x) {
700 return (x == null || x.getClass() != kc ? 0 :
701 ((Comparable)k).compareTo(x));
702 }
703
704 /* ---------------- Table element access -------------- */
705
706 /*
707 * Volatile access methods are used for table elements as well as
708 * elements of in-progress next table while resizing. All uses of
709 * the tab arguments must be null checked by callers. All callers
710 * also paranoically precheck that tab's length is not zero (or an
711 * equivalent check), thus ensuring that any index argument taking
712 * the form of a hash value anded with (length - 1) is a valid
713 * index. Note that, to be correct wrt arbitrary concurrency
714 * errors by users, these checks must operate on local variables,
715 * which accounts for some odd-looking inline assignments below.
716 * Note that calls to setTabAt always occur within locked regions,
717 * and so in principle require only release ordering, not
718 * full volatile semantics, but are currently coded as volatile
719 * writes to be conservative.
720 */
721
722 @SuppressWarnings("unchecked")
723 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
724 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
725 }
726
727 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
728 Node<K,V> c, Node<K,V> v) {
729 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
730 }
731
732 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
733 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
734 }
735
736 /* ---------------- Fields -------------- */
737
738 /**
739 * The array of bins. Lazily initialized upon first insertion.
740 * Size is always a power of two. Accessed directly by iterators.
741 */
742 transient volatile Node<K,V>[] table;
743
744 /**
745 * The next table to use; non-null only while resizing.
746 */
747 private transient volatile Node<K,V>[] nextTable;
748
749 /**
750 * Base counter value, used mainly when there is no contention,
751 * but also as a fallback during table initialization
752 * races. Updated via CAS.
753 */
754 private transient volatile long baseCount;
755
756 /**
757 * Table initialization and resizing control. When negative, the
758 * table is being initialized or resized: -1 for initialization,
759 * else -(1 + the number of active resizing threads). Otherwise,
760 * when table is null, holds the initial table size to use upon
761 * creation, or 0 for default. After initialization, holds the
762 * next element count value upon which to resize the table.
763 */
764 private transient volatile int sizeCtl;
765
766 /**
767 * The next table index (plus one) to split while resizing.
768 */
769 private transient volatile int transferIndex;
770
771 /**
772 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
773 */
774 private transient volatile int cellsBusy;
775
776 /**
777 * Table of counter cells. When non-null, size is a power of 2.
778 */
779 private transient volatile CounterCell[] counterCells;
780
781 // views
782 private transient KeySetView<K,V> keySet;
783 private transient ValuesView<K,V> values;
784 private transient EntrySetView<K,V> entrySet;
785
786
787 /* ---------------- Public operations -------------- */
788
789 /**
790 * Creates a new, empty map with the default initial table size (16).
791 */
792 public ConcurrentHashMap() {
793 }
794
795 /**
796 * Creates a new, empty map with an initial table size
797 * accommodating the specified number of elements without the need
798 * to dynamically resize.
799 *
800 * @param initialCapacity The implementation performs internal
801 * sizing to accommodate this many elements.
802 * @throws IllegalArgumentException if the initial capacity of
803 * elements is negative
804 */
805 public ConcurrentHashMap(int initialCapacity) {
806 if (initialCapacity < 0)
807 throw new IllegalArgumentException();
808 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
809 MAXIMUM_CAPACITY :
810 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
811 this.sizeCtl = cap;
812 }
813
814 /**
815 * Creates a new map with the same mappings as the given map.
816 *
817 * @param m the map
818 */
819 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
820 this.sizeCtl = DEFAULT_CAPACITY;
821 putAll(m);
822 }
823
824 /**
825 * Creates a new, empty map with an initial table size based on
826 * the given number of elements ({@code initialCapacity}) and
827 * initial table density ({@code loadFactor}).
828 *
829 * @param initialCapacity the initial capacity. The implementation
830 * performs internal sizing to accommodate this many elements,
831 * given the specified load factor.
832 * @param loadFactor the load factor (table density) for
833 * establishing the initial table size
834 * @throws IllegalArgumentException if the initial capacity of
835 * elements is negative or the load factor is nonpositive
836 *
837 * @since 1.6
838 */
839 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
840 this(initialCapacity, loadFactor, 1);
841 }
842
843 /**
844 * Creates a new, empty map with an initial table size based on
845 * the given number of elements ({@code initialCapacity}), table
846 * density ({@code loadFactor}), and number of concurrently
847 * updating threads ({@code concurrencyLevel}).
848 *
849 * @param initialCapacity the initial capacity. The implementation
850 * performs internal sizing to accommodate this many elements,
851 * given the specified load factor.
852 * @param loadFactor the load factor (table density) for
853 * establishing the initial table size
854 * @param concurrencyLevel the estimated number of concurrently
855 * updating threads. The implementation may use this value as
856 * a sizing hint.
857 * @throws IllegalArgumentException if the initial capacity is
858 * negative or the load factor or concurrencyLevel are
859 * nonpositive
860 */
861 public ConcurrentHashMap(int initialCapacity,
862 float loadFactor, int concurrencyLevel) {
863 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
864 throw new IllegalArgumentException();
865 if (initialCapacity < concurrencyLevel) // Use at least as many bins
866 initialCapacity = concurrencyLevel; // as estimated threads
867 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
868 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
869 MAXIMUM_CAPACITY : tableSizeFor((int)size);
870 this.sizeCtl = cap;
871 }
872
873 // Original (since JDK1.2) Map methods
874
875 /**
876 * {@inheritDoc}
877 */
878 public int size() {
879 long n = sumCount();
880 return ((n < 0L) ? 0 :
881 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
882 (int)n);
883 }
884
885 /**
886 * {@inheritDoc}
887 */
888 public boolean isEmpty() {
889 return sumCount() <= 0L; // ignore transient negative values
890 }
891
892 /**
893 * Returns the value to which the specified key is mapped,
894 * or {@code null} if this map contains no mapping for the key.
895 *
896 * <p>More formally, if this map contains a mapping from a key
897 * {@code k} to a value {@code v} such that {@code key.equals(k)},
898 * then this method returns {@code v}; otherwise it returns
899 * {@code null}. (There can be at most one such mapping.)
900 *
901 * @throws NullPointerException if the specified key is null
902 */
903 public V get(Object key) {
904 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
905 int h = spread(key.hashCode());
906 if ((tab = table) != null && (n = tab.length) > 0 &&
907 (e = tabAt(tab, (n - 1) & h)) != null) {
908 if ((eh = e.hash) == h) {
909 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
910 return e.val;
911 }
912 else if (eh < 0)
913 return (p = e.find(h, key)) != null ? p.val : null;
914 while ((e = e.next) != null) {
915 if (e.hash == h &&
916 ((ek = e.key) == key || (ek != null && key.equals(ek))))
917 return e.val;
918 }
919 }
920 return null;
921 }
922
923 /**
924 * Tests if the specified object is a key in this table.
925 *
926 * @param key possible key
927 * @return {@code true} if and only if the specified object
928 * is a key in this table, as determined by the
929 * {@code equals} method; {@code false} otherwise
930 * @throws NullPointerException if the specified key is null
931 */
932 public boolean containsKey(Object key) {
933 return get(key) != null;
934 }
935
936 /**
937 * Returns {@code true} if this map maps one or more keys to the
938 * specified value. Note: This method may require a full traversal
939 * of the map, and is much slower than method {@code containsKey}.
940 *
941 * @param value value whose presence in this map is to be tested
942 * @return {@code true} if this map maps one or more keys to the
943 * specified value
944 * @throws NullPointerException if the specified value is null
945 */
946 public boolean containsValue(Object value) {
947 if (value == null)
948 throw new NullPointerException();
949 Node<K,V>[] t;
950 if ((t = table) != null) {
951 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
952 for (Node<K,V> p; (p = it.advance()) != null; ) {
953 V v;
954 if ((v = p.val) == value || (v != null && value.equals(v)))
955 return true;
956 }
957 }
958 return false;
959 }
960
961 /**
962 * Maps the specified key to the specified value in this table.
963 * Neither the key nor the value can be null.
964 *
965 * <p>The value can be retrieved by calling the {@code get} method
966 * with a key that is equal to the original key.
967 *
968 * @param key key with which the specified value is to be associated
969 * @param value value to be associated with the specified key
970 * @return the previous value associated with {@code key}, or
971 * {@code null} if there was no mapping for {@code key}
972 * @throws NullPointerException if the specified key or value is null
973 */
974 public V put(K key, V value) {
975 return putVal(key, value, false);
976 }
977
978 /** Implementation for put and putIfAbsent */
979 final V putVal(K key, V value, boolean onlyIfAbsent) {
980 if (key == null || value == null) throw new NullPointerException();
981 int hash = spread(key.hashCode());
982 int binCount = 0;
983 for (Node<K,V>[] tab = table;;) {
984 Node<K,V> f; int n, i, fh;
985 if (tab == null || (n = tab.length) == 0)
986 tab = initTable();
987 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
988 if (casTabAt(tab, i, null,
989 new Node<K,V>(hash, key, value, null)))
990 break; // no lock when adding to empty bin
991 }
992 else if ((fh = f.hash) == MOVED)
993 tab = helpTransfer(tab, f);
994 else {
995 V oldVal = null;
996 synchronized (f) {
997 if (tabAt(tab, i) == f) {
998 if (fh >= 0) {
999 binCount = 1;
1000 for (Node<K,V> e = f;; ++binCount) {
1001 K ek;
1002 if (e.hash == hash &&
1003 ((ek = e.key) == key ||
1004 (ek != null && key.equals(ek)))) {
1005 oldVal = e.val;
1006 if (!onlyIfAbsent)
1007 e.val = value;
1008 break;
1009 }
1010 Node<K,V> pred = e;
1011 if ((e = e.next) == null) {
1012 pred.next = new Node<K,V>(hash, key,
1013 value, null);
1014 break;
1015 }
1016 }
1017 }
1018 else if (f instanceof TreeBin) {
1019 Node<K,V> p;
1020 binCount = 2;
1021 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1022 value)) != null) {
1023 oldVal = p.val;
1024 if (!onlyIfAbsent)
1025 p.val = value;
1026 }
1027 }
1028 else if (f instanceof ReservationNode)
1029 throw new IllegalStateException("Recursive update");
1030 }
1031 }
1032 if (binCount != 0) {
1033 if (binCount >= TREEIFY_THRESHOLD)
1034 treeifyBin(tab, i);
1035 if (oldVal != null)
1036 return oldVal;
1037 break;
1038 }
1039 }
1040 }
1041 addCount(1L, binCount);
1042 return null;
1043 }
1044
1045 /**
1046 * Copies all of the mappings from the specified map to this one.
1047 * These mappings replace any mappings that this map had for any of the
1048 * keys currently in the specified map.
1049 *
1050 * @param m mappings to be stored in this map
1051 */
1052 public void putAll(Map<? extends K, ? extends V> m) {
1053 tryPresize(m.size());
1054 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1055 putVal(e.getKey(), e.getValue(), false);
1056 }
1057
1058 /**
1059 * Removes the key (and its corresponding value) from this map.
1060 * This method does nothing if the key is not in the map.
1061 *
1062 * @param key the key that needs to be removed
1063 * @return the previous value associated with {@code key}, or
1064 * {@code null} if there was no mapping for {@code key}
1065 * @throws NullPointerException if the specified key is null
1066 */
1067 public V remove(Object key) {
1068 return replaceNode(key, null, null);
1069 }
1070
1071 /**
1072 * Implementation for the four public remove/replace methods:
1073 * Replaces node value with v, conditional upon match of cv if
1074 * non-null. If resulting value is null, delete.
1075 */
1076 final V replaceNode(Object key, V value, Object cv) {
1077 int hash = spread(key.hashCode());
1078 for (Node<K,V>[] tab = table;;) {
1079 Node<K,V> f; int n, i, fh;
1080 if (tab == null || (n = tab.length) == 0 ||
1081 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1082 break;
1083 else if ((fh = f.hash) == MOVED)
1084 tab = helpTransfer(tab, f);
1085 else {
1086 V oldVal = null;
1087 boolean validated = false;
1088 synchronized (f) {
1089 if (tabAt(tab, i) == f) {
1090 if (fh >= 0) {
1091 validated = true;
1092 for (Node<K,V> e = f, pred = null;;) {
1093 K ek;
1094 if (e.hash == hash &&
1095 ((ek = e.key) == key ||
1096 (ek != null && key.equals(ek)))) {
1097 V ev = e.val;
1098 if (cv == null || cv == ev ||
1099 (ev != null && cv.equals(ev))) {
1100 oldVal = ev;
1101 if (value != null)
1102 e.val = value;
1103 else if (pred != null)
1104 pred.next = e.next;
1105 else
1106 setTabAt(tab, i, e.next);
1107 }
1108 break;
1109 }
1110 pred = e;
1111 if ((e = e.next) == null)
1112 break;
1113 }
1114 }
1115 else if (f instanceof TreeBin) {
1116 validated = true;
1117 TreeBin<K,V> t = (TreeBin<K,V>)f;
1118 TreeNode<K,V> r, p;
1119 if ((r = t.root) != null &&
1120 (p = r.findTreeNode(hash, key, null)) != null) {
1121 V pv = p.val;
1122 if (cv == null || cv == pv ||
1123 (pv != null && cv.equals(pv))) {
1124 oldVal = pv;
1125 if (value != null)
1126 p.val = value;
1127 else if (t.removeTreeNode(p))
1128 setTabAt(tab, i, untreeify(t.first));
1129 }
1130 }
1131 }
1132 else if (f instanceof ReservationNode)
1133 throw new IllegalStateException("Recursive update");
1134 }
1135 }
1136 if (validated) {
1137 if (oldVal != null) {
1138 if (value == null)
1139 addCount(-1L, -1);
1140 return oldVal;
1141 }
1142 break;
1143 }
1144 }
1145 }
1146 return null;
1147 }
1148
1149 /**
1150 * Removes all of the mappings from this map.
1151 */
1152 public void clear() {
1153 long delta = 0L; // negative number of deletions
1154 int i = 0;
1155 Node<K,V>[] tab = table;
1156 while (tab != null && i < tab.length) {
1157 int fh;
1158 Node<K,V> f = tabAt(tab, i);
1159 if (f == null)
1160 ++i;
1161 else if ((fh = f.hash) == MOVED) {
1162 tab = helpTransfer(tab, f);
1163 i = 0; // restart
1164 }
1165 else {
1166 synchronized (f) {
1167 if (tabAt(tab, i) == f) {
1168 Node<K,V> p = (fh >= 0 ? f :
1169 (f instanceof TreeBin) ?
1170 ((TreeBin<K,V>)f).first : null);
1171 while (p != null) {
1172 --delta;
1173 p = p.next;
1174 }
1175 setTabAt(tab, i++, null);
1176 }
1177 }
1178 }
1179 }
1180 if (delta != 0L)
1181 addCount(delta, -1);
1182 }
1183
1184 /**
1185 * Returns a {@link Set} view of the keys contained in this map.
1186 * The set is backed by the map, so changes to the map are
1187 * reflected in the set, and vice-versa. The set supports element
1188 * removal, which removes the corresponding mapping from this map,
1189 * via the {@code Iterator.remove}, {@code Set.remove},
1190 * {@code removeAll}, {@code retainAll}, and {@code clear}
1191 * operations. It does not support the {@code add} or
1192 * {@code addAll} operations.
1193 *
1194 * <p>The view's iterators and spliterators are
1195 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1196 *
1197 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1198 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1199 *
1200 * @return the set view
1201 */
1202 public KeySetView<K,V> keySet() {
1203 KeySetView<K,V> ks;
1204 return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1205 }
1206
1207 /**
1208 * Returns a {@link Collection} view of the values contained in this map.
1209 * The collection is backed by the map, so changes to the map are
1210 * reflected in the collection, and vice-versa. The collection
1211 * supports element removal, which removes the corresponding
1212 * mapping from this map, via the {@code Iterator.remove},
1213 * {@code Collection.remove}, {@code removeAll},
1214 * {@code retainAll}, and {@code clear} operations. It does not
1215 * support the {@code add} or {@code addAll} operations.
1216 *
1217 * <p>The view's iterators and spliterators are
1218 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1219 *
1220 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1221 * and {@link Spliterator#NONNULL}.
1222 *
1223 * @return the collection view
1224 */
1225 public Collection<V> values() {
1226 ValuesView<K,V> vs;
1227 return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1228 }
1229
1230 /**
1231 * Returns a {@link Set} view of the mappings contained in this map.
1232 * The set is backed by the map, so changes to the map are
1233 * reflected in the set, and vice-versa. The set supports element
1234 * removal, which removes the corresponding mapping from the map,
1235 * via the {@code Iterator.remove}, {@code Set.remove},
1236 * {@code removeAll}, {@code retainAll}, and {@code clear}
1237 * operations.
1238 *
1239 * <p>The view's iterators and spliterators are
1240 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1241 *
1242 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1243 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1244 *
1245 * @return the set view
1246 */
1247 public Set<Map.Entry<K,V>> entrySet() {
1248 EntrySetView<K,V> es;
1249 return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1250 }
1251
1252 /**
1253 * Returns the hash code value for this {@link Map}, i.e.,
1254 * the sum of, for each key-value pair in the map,
1255 * {@code key.hashCode() ^ value.hashCode()}.
1256 *
1257 * @return the hash code value for this map
1258 */
1259 public int hashCode() {
1260 int h = 0;
1261 Node<K,V>[] t;
1262 if ((t = table) != null) {
1263 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1264 for (Node<K,V> p; (p = it.advance()) != null; )
1265 h += p.key.hashCode() ^ p.val.hashCode();
1266 }
1267 return h;
1268 }
1269
1270 /**
1271 * Returns a string representation of this map. The string
1272 * representation consists of a list of key-value mappings (in no
1273 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1274 * mappings are separated by the characters {@code ", "} (comma
1275 * and space). Each key-value mapping is rendered as the key
1276 * followed by an equals sign ("{@code =}") followed by the
1277 * associated value.
1278 *
1279 * @return a string representation of this map
1280 */
1281 public String toString() {
1282 Node<K,V>[] t;
1283 int f = (t = table) == null ? 0 : t.length;
1284 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1285 StringBuilder sb = new StringBuilder();
1286 sb.append('{');
1287 Node<K,V> p;
1288 if ((p = it.advance()) != null) {
1289 for (;;) {
1290 K k = p.key;
1291 V v = p.val;
1292 sb.append(k == this ? "(this Map)" : k);
1293 sb.append('=');
1294 sb.append(v == this ? "(this Map)" : v);
1295 if ((p = it.advance()) == null)
1296 break;
1297 sb.append(',').append(' ');
1298 }
1299 }
1300 return sb.append('}').toString();
1301 }
1302
1303 /**
1304 * Compares the specified object with this map for equality.
1305 * Returns {@code true} if the given object is a map with the same
1306 * mappings as this map. This operation may return misleading
1307 * results if either map is concurrently modified during execution
1308 * of this method.
1309 *
1310 * @param o object to be compared for equality with this map
1311 * @return {@code true} if the specified object is equal to this map
1312 */
1313 public boolean equals(Object o) {
1314 if (o != this) {
1315 if (!(o instanceof Map))
1316 return false;
1317 Map<?,?> m = (Map<?,?>) o;
1318 Node<K,V>[] t;
1319 int f = (t = table) == null ? 0 : t.length;
1320 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1321 for (Node<K,V> p; (p = it.advance()) != null; ) {
1322 V val = p.val;
1323 Object v = m.get(p.key);
1324 if (v == null || (v != val && !v.equals(val)))
1325 return false;
1326 }
1327 for (Map.Entry<?,?> e : m.entrySet()) {
1328 Object mk, mv, v;
1329 if ((mk = e.getKey()) == null ||
1330 (mv = e.getValue()) == null ||
1331 (v = get(mk)) == null ||
1332 (mv != v && !mv.equals(v)))
1333 return false;
1334 }
1335 }
1336 return true;
1337 }
1338
1339 /**
1340 * Stripped-down version of helper class used in previous version,
1341 * declared for the sake of serialization compatibility
1342 */
1343 static class Segment<K,V> extends ReentrantLock implements Serializable {
1344 private static final long serialVersionUID = 2249069246763182397L;
1345 final float loadFactor;
1346 Segment(float lf) { this.loadFactor = lf; }
1347 }
1348
1349 /**
1350 * Saves the state of the {@code ConcurrentHashMap} instance to a
1351 * stream (i.e., serializes it).
1352 * @param s the stream
1353 * @throws java.io.IOException if an I/O error occurs
1354 * @serialData
1355 * the key (Object) and value (Object)
1356 * for each key-value mapping, followed by a null pair.
1357 * The key-value mappings are emitted in no particular order.
1358 */
1359 private void writeObject(java.io.ObjectOutputStream s)
1360 throws java.io.IOException {
1361 // For serialization compatibility
1362 // Emulate segment calculation from previous version of this class
1363 int sshift = 0;
1364 int ssize = 1;
1365 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1366 ++sshift;
1367 ssize <<= 1;
1368 }
1369 int segmentShift = 32 - sshift;
1370 int segmentMask = ssize - 1;
1371 @SuppressWarnings("unchecked")
1372 Segment<K,V>[] segments = (Segment<K,V>[])
1373 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1374 for (int i = 0; i < segments.length; ++i)
1375 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1376 java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1377 streamFields.put("segments", segments);
1378 streamFields.put("segmentShift", segmentShift);
1379 streamFields.put("segmentMask", segmentMask);
1380 s.writeFields();
1381
1382 Node<K,V>[] t;
1383 if ((t = table) != null) {
1384 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1385 for (Node<K,V> p; (p = it.advance()) != null; ) {
1386 s.writeObject(p.key);
1387 s.writeObject(p.val);
1388 }
1389 }
1390 s.writeObject(null);
1391 s.writeObject(null);
1392 segments = null; // throw away
1393 }
1394
1395 /**
1396 * Reconstitutes the instance from a stream (that is, deserializes it).
1397 * @param s the stream
1398 * @throws ClassNotFoundException if the class of a serialized object
1399 * could not be found
1400 * @throws java.io.IOException if an I/O error occurs
1401 */
1402 private void readObject(java.io.ObjectInputStream s)
1403 throws java.io.IOException, ClassNotFoundException {
1404 /*
1405 * To improve performance in typical cases, we create nodes
1406 * while reading, then place in table once size is known.
1407 * However, we must also validate uniqueness and deal with
1408 * overpopulated bins while doing so, which requires
1409 * specialized versions of putVal mechanics.
1410 */
1411 sizeCtl = -1; // force exclusion for table construction
1412 s.defaultReadObject();
1413 long size = 0L;
1414 Node<K,V> p = null;
1415 for (;;) {
1416 @SuppressWarnings("unchecked")
1417 K k = (K) s.readObject();
1418 @SuppressWarnings("unchecked")
1419 V v = (V) s.readObject();
1420 if (k != null && v != null) {
1421 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1422 ++size;
1423 }
1424 else
1425 break;
1426 }
1427 if (size == 0L)
1428 sizeCtl = 0;
1429 else {
1430 int n;
1431 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1432 n = MAXIMUM_CAPACITY;
1433 else {
1434 int sz = (int)size;
1435 n = tableSizeFor(sz + (sz >>> 1) + 1);
1436 }
1437 @SuppressWarnings("unchecked")
1438 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1439 int mask = n - 1;
1440 long added = 0L;
1441 while (p != null) {
1442 boolean insertAtFront;
1443 Node<K,V> next = p.next, first;
1444 int h = p.hash, j = h & mask;
1445 if ((first = tabAt(tab, j)) == null)
1446 insertAtFront = true;
1447 else {
1448 K k = p.key;
1449 if (first.hash < 0) {
1450 TreeBin<K,V> t = (TreeBin<K,V>)first;
1451 if (t.putTreeVal(h, k, p.val) == null)
1452 ++added;
1453 insertAtFront = false;
1454 }
1455 else {
1456 int binCount = 0;
1457 insertAtFront = true;
1458 Node<K,V> q; K qk;
1459 for (q = first; q != null; q = q.next) {
1460 if (q.hash == h &&
1461 ((qk = q.key) == k ||
1462 (qk != null && k.equals(qk)))) {
1463 insertAtFront = false;
1464 break;
1465 }
1466 ++binCount;
1467 }
1468 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1469 insertAtFront = false;
1470 ++added;
1471 p.next = first;
1472 TreeNode<K,V> hd = null, tl = null;
1473 for (q = p; q != null; q = q.next) {
1474 TreeNode<K,V> t = new TreeNode<K,V>
1475 (q.hash, q.key, q.val, null, null);
1476 if ((t.prev = tl) == null)
1477 hd = t;
1478 else
1479 tl.next = t;
1480 tl = t;
1481 }
1482 setTabAt(tab, j, new TreeBin<K,V>(hd));
1483 }
1484 }
1485 }
1486 if (insertAtFront) {
1487 ++added;
1488 p.next = first;
1489 setTabAt(tab, j, p);
1490 }
1491 p = next;
1492 }
1493 table = tab;
1494 sizeCtl = n - (n >>> 2);
1495 baseCount = added;
1496 }
1497 }
1498
1499 // ConcurrentMap methods
1500
1501 /**
1502 * {@inheritDoc}
1503 *
1504 * @return the previous value associated with the specified key,
1505 * or {@code null} if there was no mapping for the key
1506 * @throws NullPointerException if the specified key or value is null
1507 */
1508 public V putIfAbsent(K key, V value) {
1509 return putVal(key, value, true);
1510 }
1511
1512 /**
1513 * {@inheritDoc}
1514 *
1515 * @throws NullPointerException if the specified key is null
1516 */
1517 public boolean remove(Object key, Object value) {
1518 if (key == null)
1519 throw new NullPointerException();
1520 return value != null && replaceNode(key, null, value) != null;
1521 }
1522
1523 /**
1524 * {@inheritDoc}
1525 *
1526 * @throws NullPointerException if any of the arguments are null
1527 */
1528 public boolean replace(K key, V oldValue, V newValue) {
1529 if (key == null || oldValue == null || newValue == null)
1530 throw new NullPointerException();
1531 return replaceNode(key, newValue, oldValue) != null;
1532 }
1533
1534 /**
1535 * {@inheritDoc}
1536 *
1537 * @return the previous value associated with the specified key,
1538 * or {@code null} if there was no mapping for the key
1539 * @throws NullPointerException if the specified key or value is null
1540 */
1541 public V replace(K key, V value) {
1542 if (key == null || value == null)
1543 throw new NullPointerException();
1544 return replaceNode(key, value, null);
1545 }
1546
1547 // Overrides of JDK8+ Map extension method defaults
1548
1549 /**
1550 * Returns the value to which the specified key is mapped, or the
1551 * given default value if this map contains no mapping for the
1552 * key.
1553 *
1554 * @param key the key whose associated value is to be returned
1555 * @param defaultValue the value to return if this map contains
1556 * no mapping for the given key
1557 * @return the mapping for the key, if present; else the default value
1558 * @throws NullPointerException if the specified key is null
1559 */
1560 public V getOrDefault(Object key, V defaultValue) {
1561 V v;
1562 return (v = get(key)) == null ? defaultValue : v;
1563 }
1564
1565 public void forEach(BiConsumer<? super K, ? super V> action) {
1566 if (action == null) throw new NullPointerException();
1567 Node<K,V>[] t;
1568 if ((t = table) != null) {
1569 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1570 for (Node<K,V> p; (p = it.advance()) != null; ) {
1571 action.accept(p.key, p.val);
1572 }
1573 }
1574 }
1575
1576 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1577 if (function == null) throw new NullPointerException();
1578 Node<K,V>[] t;
1579 if ((t = table) != null) {
1580 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1581 for (Node<K,V> p; (p = it.advance()) != null; ) {
1582 V oldValue = p.val;
1583 for (K key = p.key;;) {
1584 V newValue = function.apply(key, oldValue);
1585 if (newValue == null)
1586 throw new NullPointerException();
1587 if (replaceNode(key, newValue, oldValue) != null ||
1588 (oldValue = get(key)) == null)
1589 break;
1590 }
1591 }
1592 }
1593 }
1594
1595 /**
1596 * If the specified key is not already associated with a value,
1597 * attempts to compute its value using the given mapping function
1598 * and enters it into this map unless {@code null}. The entire
1599 * method invocation is performed atomically, so the function is
1600 * applied at most once per key. Some attempted update operations
1601 * on this map by other threads may be blocked while computation
1602 * is in progress, so the computation should be short and simple,
1603 * and must not attempt to update any other mappings of this map.
1604 *
1605 * @param key key with which the specified value is to be associated
1606 * @param mappingFunction the function to compute a value
1607 * @return the current (existing or computed) value associated with
1608 * the specified key, or null if the computed value is null
1609 * @throws NullPointerException if the specified key or mappingFunction
1610 * is null
1611 * @throws IllegalStateException if the computation detectably
1612 * attempts a recursive update to this map that would
1613 * otherwise never complete
1614 * @throws RuntimeException or Error if the mappingFunction does so,
1615 * in which case the mapping is left unestablished
1616 */
1617 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1618 if (key == null || mappingFunction == null)
1619 throw new NullPointerException();
1620 int h = spread(key.hashCode());
1621 V val = null;
1622 int binCount = 0;
1623 for (Node<K,V>[] tab = table;;) {
1624 Node<K,V> f; int n, i, fh;
1625 if (tab == null || (n = tab.length) == 0)
1626 tab = initTable();
1627 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1628 Node<K,V> r = new ReservationNode<K,V>();
1629 synchronized (r) {
1630 if (casTabAt(tab, i, null, r)) {
1631 binCount = 1;
1632 Node<K,V> node = null;
1633 try {
1634 if ((val = mappingFunction.apply(key)) != null)
1635 node = new Node<K,V>(h, key, val, null);
1636 } finally {
1637 setTabAt(tab, i, node);
1638 }
1639 }
1640 }
1641 if (binCount != 0)
1642 break;
1643 }
1644 else if ((fh = f.hash) == MOVED)
1645 tab = helpTransfer(tab, f);
1646 else {
1647 boolean added = false;
1648 synchronized (f) {
1649 if (tabAt(tab, i) == f) {
1650 if (fh >= 0) {
1651 binCount = 1;
1652 for (Node<K,V> e = f;; ++binCount) {
1653 K ek;
1654 if (e.hash == h &&
1655 ((ek = e.key) == key ||
1656 (ek != null && key.equals(ek)))) {
1657 val = e.val;
1658 break;
1659 }
1660 Node<K,V> pred = e;
1661 if ((e = e.next) == null) {
1662 if ((val = mappingFunction.apply(key)) != null) {
1663 if (pred.next != null)
1664 throw new IllegalStateException("Recursive update");
1665 added = true;
1666 pred.next = new Node<K,V>(h, key, val, null);
1667 }
1668 break;
1669 }
1670 }
1671 }
1672 else if (f instanceof TreeBin) {
1673 binCount = 2;
1674 TreeBin<K,V> t = (TreeBin<K,V>)f;
1675 TreeNode<K,V> r, p;
1676 if ((r = t.root) != null &&
1677 (p = r.findTreeNode(h, key, null)) != null)
1678 val = p.val;
1679 else if ((val = mappingFunction.apply(key)) != null) {
1680 added = true;
1681 t.putTreeVal(h, key, val);
1682 }
1683 }
1684 else if (f instanceof ReservationNode)
1685 throw new IllegalStateException("Recursive update");
1686 }
1687 }
1688 if (binCount != 0) {
1689 if (binCount >= TREEIFY_THRESHOLD)
1690 treeifyBin(tab, i);
1691 if (!added)
1692 return val;
1693 break;
1694 }
1695 }
1696 }
1697 if (val != null)
1698 addCount(1L, binCount);
1699 return val;
1700 }
1701
1702 /**
1703 * If the value for the specified key is present, attempts to
1704 * compute a new mapping given the key and its current mapped
1705 * value. The entire method invocation is performed atomically.
1706 * Some attempted update operations on this map by other threads
1707 * may be blocked while computation is in progress, so the
1708 * computation should be short and simple, and must not attempt to
1709 * update any other mappings of this map.
1710 *
1711 * @param key key with which a value may be associated
1712 * @param remappingFunction the function to compute a value
1713 * @return the new value associated with the specified key, or null if none
1714 * @throws NullPointerException if the specified key or remappingFunction
1715 * is null
1716 * @throws IllegalStateException if the computation detectably
1717 * attempts a recursive update to this map that would
1718 * otherwise never complete
1719 * @throws RuntimeException or Error if the remappingFunction does so,
1720 * in which case the mapping is unchanged
1721 */
1722 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1723 if (key == null || remappingFunction == null)
1724 throw new NullPointerException();
1725 int h = spread(key.hashCode());
1726 V val = null;
1727 int delta = 0;
1728 int binCount = 0;
1729 for (Node<K,V>[] tab = table;;) {
1730 Node<K,V> f; int n, i, fh;
1731 if (tab == null || (n = tab.length) == 0)
1732 tab = initTable();
1733 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1734 break;
1735 else if ((fh = f.hash) == MOVED)
1736 tab = helpTransfer(tab, f);
1737 else {
1738 synchronized (f) {
1739 if (tabAt(tab, i) == f) {
1740 if (fh >= 0) {
1741 binCount = 1;
1742 for (Node<K,V> e = f, pred = null;; ++binCount) {
1743 K ek;
1744 if (e.hash == h &&
1745 ((ek = e.key) == key ||
1746 (ek != null && key.equals(ek)))) {
1747 val = remappingFunction.apply(key, e.val);
1748 if (val != null)
1749 e.val = val;
1750 else {
1751 delta = -1;
1752 Node<K,V> en = e.next;
1753 if (pred != null)
1754 pred.next = en;
1755 else
1756 setTabAt(tab, i, en);
1757 }
1758 break;
1759 }
1760 pred = e;
1761 if ((e = e.next) == null)
1762 break;
1763 }
1764 }
1765 else if (f instanceof TreeBin) {
1766 binCount = 2;
1767 TreeBin<K,V> t = (TreeBin<K,V>)f;
1768 TreeNode<K,V> r, p;
1769 if ((r = t.root) != null &&
1770 (p = r.findTreeNode(h, key, null)) != null) {
1771 val = remappingFunction.apply(key, p.val);
1772 if (val != null)
1773 p.val = val;
1774 else {
1775 delta = -1;
1776 if (t.removeTreeNode(p))
1777 setTabAt(tab, i, untreeify(t.first));
1778 }
1779 }
1780 }
1781 else if (f instanceof ReservationNode)
1782 throw new IllegalStateException("Recursive update");
1783 }
1784 }
1785 if (binCount != 0)
1786 break;
1787 }
1788 }
1789 if (delta != 0)
1790 addCount((long)delta, binCount);
1791 return val;
1792 }
1793
1794 /**
1795 * Attempts to compute a mapping for the specified key and its
1796 * current mapped value (or {@code null} if there is no current
1797 * mapping). The entire method invocation is performed atomically.
1798 * Some attempted update operations on this map by other threads
1799 * may be blocked while computation is in progress, so the
1800 * computation should be short and simple, and must not attempt to
1801 * update any other mappings of this Map.
1802 *
1803 * @param key key with which the specified value is to be associated
1804 * @param remappingFunction the function to compute a value
1805 * @return the new value associated with the specified key, or null if none
1806 * @throws NullPointerException if the specified key or remappingFunction
1807 * is null
1808 * @throws IllegalStateException if the computation detectably
1809 * attempts a recursive update to this map that would
1810 * otherwise never complete
1811 * @throws RuntimeException or Error if the remappingFunction does so,
1812 * in which case the mapping is unchanged
1813 */
1814 public V compute(K key,
1815 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1816 if (key == null || remappingFunction == null)
1817 throw new NullPointerException();
1818 int h = spread(key.hashCode());
1819 V val = null;
1820 int delta = 0;
1821 int binCount = 0;
1822 for (Node<K,V>[] tab = table;;) {
1823 Node<K,V> f; int n, i, fh;
1824 if (tab == null || (n = tab.length) == 0)
1825 tab = initTable();
1826 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1827 Node<K,V> r = new ReservationNode<K,V>();
1828 synchronized (r) {
1829 if (casTabAt(tab, i, null, r)) {
1830 binCount = 1;
1831 Node<K,V> node = null;
1832 try {
1833 if ((val = remappingFunction.apply(key, null)) != null) {
1834 delta = 1;
1835 node = new Node<K,V>(h, key, val, null);
1836 }
1837 } finally {
1838 setTabAt(tab, i, node);
1839 }
1840 }
1841 }
1842 if (binCount != 0)
1843 break;
1844 }
1845 else if ((fh = f.hash) == MOVED)
1846 tab = helpTransfer(tab, f);
1847 else {
1848 synchronized (f) {
1849 if (tabAt(tab, i) == f) {
1850 if (fh >= 0) {
1851 binCount = 1;
1852 for (Node<K,V> e = f, pred = null;; ++binCount) {
1853 K ek;
1854 if (e.hash == h &&
1855 ((ek = e.key) == key ||
1856 (ek != null && key.equals(ek)))) {
1857 val = remappingFunction.apply(key, e.val);
1858 if (val != null)
1859 e.val = val;
1860 else {
1861 delta = -1;
1862 Node<K,V> en = e.next;
1863 if (pred != null)
1864 pred.next = en;
1865 else
1866 setTabAt(tab, i, en);
1867 }
1868 break;
1869 }
1870 pred = e;
1871 if ((e = e.next) == null) {
1872 val = remappingFunction.apply(key, null);
1873 if (val != null) {
1874 if (pred.next != null)
1875 throw new IllegalStateException("Recursive update");
1876 delta = 1;
1877 pred.next =
1878 new Node<K,V>(h, key, val, null);
1879 }
1880 break;
1881 }
1882 }
1883 }
1884 else if (f instanceof TreeBin) {
1885 binCount = 1;
1886 TreeBin<K,V> t = (TreeBin<K,V>)f;
1887 TreeNode<K,V> r, p;
1888 if ((r = t.root) != null)
1889 p = r.findTreeNode(h, key, null);
1890 else
1891 p = null;
1892 V pv = (p == null) ? null : p.val;
1893 val = remappingFunction.apply(key, pv);
1894 if (val != null) {
1895 if (p != null)
1896 p.val = val;
1897 else {
1898 delta = 1;
1899 t.putTreeVal(h, key, val);
1900 }
1901 }
1902 else if (p != null) {
1903 delta = -1;
1904 if (t.removeTreeNode(p))
1905 setTabAt(tab, i, untreeify(t.first));
1906 }
1907 }
1908 else if (f instanceof ReservationNode)
1909 throw new IllegalStateException("Recursive update");
1910 }
1911 }
1912 if (binCount != 0) {
1913 if (binCount >= TREEIFY_THRESHOLD)
1914 treeifyBin(tab, i);
1915 break;
1916 }
1917 }
1918 }
1919 if (delta != 0)
1920 addCount((long)delta, binCount);
1921 return val;
1922 }
1923
1924 /**
1925 * If the specified key is not already associated with a
1926 * (non-null) value, associates it with the given value.
1927 * Otherwise, replaces the value with the results of the given
1928 * remapping function, or removes if {@code null}. The entire
1929 * method invocation is performed atomically. Some attempted
1930 * update operations on this map by other threads may be blocked
1931 * while computation is in progress, so the computation should be
1932 * short and simple, and must not attempt to update any other
1933 * mappings of this Map.
1934 *
1935 * @param key key with which the specified value is to be associated
1936 * @param value the value to use if absent
1937 * @param remappingFunction the function to recompute a value if present
1938 * @return the new value associated with the specified key, or null if none
1939 * @throws NullPointerException if the specified key or the
1940 * remappingFunction is null
1941 * @throws RuntimeException or Error if the remappingFunction does so,
1942 * in which case the mapping is unchanged
1943 */
1944 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1945 if (key == null || value == null || remappingFunction == null)
1946 throw new NullPointerException();
1947 int h = spread(key.hashCode());
1948 V val = null;
1949 int delta = 0;
1950 int binCount = 0;
1951 for (Node<K,V>[] tab = table;;) {
1952 Node<K,V> f; int n, i, fh;
1953 if (tab == null || (n = tab.length) == 0)
1954 tab = initTable();
1955 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1956 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1957 delta = 1;
1958 val = value;
1959 break;
1960 }
1961 }
1962 else if ((fh = f.hash) == MOVED)
1963 tab = helpTransfer(tab, f);
1964 else {
1965 synchronized (f) {
1966 if (tabAt(tab, i) == f) {
1967 if (fh >= 0) {
1968 binCount = 1;
1969 for (Node<K,V> e = f, pred = null;; ++binCount) {
1970 K ek;
1971 if (e.hash == h &&
1972 ((ek = e.key) == key ||
1973 (ek != null && key.equals(ek)))) {
1974 val = remappingFunction.apply(e.val, value);
1975 if (val != null)
1976 e.val = val;
1977 else {
1978 delta = -1;
1979 Node<K,V> en = e.next;
1980 if (pred != null)
1981 pred.next = en;
1982 else
1983 setTabAt(tab, i, en);
1984 }
1985 break;
1986 }
1987 pred = e;
1988 if ((e = e.next) == null) {
1989 delta = 1;
1990 val = value;
1991 pred.next =
1992 new Node<K,V>(h, key, val, null);
1993 break;
1994 }
1995 }
1996 }
1997 else if (f instanceof TreeBin) {
1998 binCount = 2;
1999 TreeBin<K,V> t = (TreeBin<K,V>)f;
2000 TreeNode<K,V> r = t.root;
2001 TreeNode<K,V> p = (r == null) ? null :
2002 r.findTreeNode(h, key, null);
2003 val = (p == null) ? value :
2004 remappingFunction.apply(p.val, value);
2005 if (val != null) {
2006 if (p != null)
2007 p.val = val;
2008 else {
2009 delta = 1;
2010 t.putTreeVal(h, key, val);
2011 }
2012 }
2013 else if (p != null) {
2014 delta = -1;
2015 if (t.removeTreeNode(p))
2016 setTabAt(tab, i, untreeify(t.first));
2017 }
2018 }
2019 else if (f instanceof ReservationNode)
2020 throw new IllegalStateException("Recursive update");
2021 }
2022 }
2023 if (binCount != 0) {
2024 if (binCount >= TREEIFY_THRESHOLD)
2025 treeifyBin(tab, i);
2026 break;
2027 }
2028 }
2029 }
2030 if (delta != 0)
2031 addCount((long)delta, binCount);
2032 return val;
2033 }
2034
2035 // Hashtable legacy methods
2036
2037 /**
2038 * Legacy method testing if some key maps into the specified value
2039 * in this table.
2040 *
2041 * @deprecated This method is identical in functionality to
2042 * {@link #containsValue(Object)}, and exists solely to ensure
2043 * full compatibility with class {@link java.util.Hashtable},
2044 * which supported this method prior to introduction of the
2045 * Java Collections framework.
2046 *
2047 * @param value a value to search for
2048 * @return {@code true} if and only if some key maps to the
2049 * {@code value} argument in this table as
2050 * determined by the {@code equals} method;
2051 * {@code false} otherwise
2052 * @throws NullPointerException if the specified value is null
2053 */
2054 @Deprecated
2055 public boolean contains(Object value) {
2056 return containsValue(value);
2057 }
2058
2059 /**
2060 * Returns an enumeration of the keys in this table.
2061 *
2062 * @return an enumeration of the keys in this table
2063 * @see #keySet()
2064 */
2065 public Enumeration<K> keys() {
2066 Node<K,V>[] t;
2067 int f = (t = table) == null ? 0 : t.length;
2068 return new KeyIterator<K,V>(t, f, 0, f, this);
2069 }
2070
2071 /**
2072 * Returns an enumeration of the values in this table.
2073 *
2074 * @return an enumeration of the values in this table
2075 * @see #values()
2076 */
2077 public Enumeration<V> elements() {
2078 Node<K,V>[] t;
2079 int f = (t = table) == null ? 0 : t.length;
2080 return new ValueIterator<K,V>(t, f, 0, f, this);
2081 }
2082
2083 // ConcurrentHashMap-only methods
2084
2085 /**
2086 * Returns the number of mappings. This method should be used
2087 * instead of {@link #size} because a ConcurrentHashMap may
2088 * contain more mappings than can be represented as an int. The
2089 * value returned is an estimate; the actual count may differ if
2090 * there are concurrent insertions or removals.
2091 *
2092 * @return the number of mappings
2093 * @since 1.8
2094 */
2095 public long mappingCount() {
2096 long n = sumCount();
2097 return (n < 0L) ? 0L : n; // ignore transient negative values
2098 }
2099
2100 /**
2101 * Creates a new {@link Set} backed by a ConcurrentHashMap
2102 * from the given type to {@code Boolean.TRUE}.
2103 *
2104 * @param <K> the element type of the returned set
2105 * @return the new set
2106 * @since 1.8
2107 */
2108 public static <K> KeySetView<K,Boolean> newKeySet() {
2109 return new KeySetView<K,Boolean>
2110 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2111 }
2112
2113 /**
2114 * Creates a new {@link Set} backed by a ConcurrentHashMap
2115 * from the given type to {@code Boolean.TRUE}.
2116 *
2117 * @param initialCapacity The implementation performs internal
2118 * sizing to accommodate this many elements.
2119 * @param <K> the element type of the returned set
2120 * @return the new set
2121 * @throws IllegalArgumentException if the initial capacity of
2122 * elements is negative
2123 * @since 1.8
2124 */
2125 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2126 return new KeySetView<K,Boolean>
2127 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2128 }
2129
2130 /**
2131 * Returns a {@link Set} view of the keys in this map, using the
2132 * given common mapped value for any additions (i.e., {@link
2133 * Collection#add} and {@link Collection#addAll(Collection)}).
2134 * This is of course only appropriate if it is acceptable to use
2135 * the same value for all additions from this view.
2136 *
2137 * @param mappedValue the mapped value to use for any additions
2138 * @return the set view
2139 * @throws NullPointerException if the mappedValue is null
2140 */
2141 public KeySetView<K,V> keySet(V mappedValue) {
2142 if (mappedValue == null)
2143 throw new NullPointerException();
2144 return new KeySetView<K,V>(this, mappedValue);
2145 }
2146
2147 /* ---------------- Special Nodes -------------- */
2148
2149 /**
2150 * A node inserted at head of bins during transfer operations.
2151 */
2152 static final class ForwardingNode<K,V> extends Node<K,V> {
2153 final Node<K,V>[] nextTable;
2154 ForwardingNode(Node<K,V>[] tab) {
2155 super(MOVED, null, null, null);
2156 this.nextTable = tab;
2157 }
2158
2159 Node<K,V> find(int h, Object k) {
2160 // loop to avoid arbitrarily deep recursion on forwarding nodes
2161 outer: for (Node<K,V>[] tab = nextTable;;) {
2162 Node<K,V> e; int n;
2163 if (k == null || tab == null || (n = tab.length) == 0 ||
2164 (e = tabAt(tab, (n - 1) & h)) == null)
2165 return null;
2166 for (;;) {
2167 int eh; K ek;
2168 if ((eh = e.hash) == h &&
2169 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2170 return e;
2171 if (eh < 0) {
2172 if (e instanceof ForwardingNode) {
2173 tab = ((ForwardingNode<K,V>)e).nextTable;
2174 continue outer;
2175 }
2176 else
2177 return e.find(h, k);
2178 }
2179 if ((e = e.next) == null)
2180 return null;
2181 }
2182 }
2183 }
2184 }
2185
2186 /**
2187 * A place-holder node used in computeIfAbsent and compute
2188 */
2189 static final class ReservationNode<K,V> extends Node<K,V> {
2190 ReservationNode() {
2191 super(RESERVED, null, null, null);
2192 }
2193
2194 Node<K,V> find(int h, Object k) {
2195 return null;
2196 }
2197 }
2198
2199 /* ---------------- Table Initialization and Resizing -------------- */
2200
2201 /**
2202 * Returns the stamp bits for resizing a table of size n.
2203 * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2204 */
2205 static final int resizeStamp(int n) {
2206 return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2207 }
2208
2209 /**
2210 * Initializes table, using the size recorded in sizeCtl.
2211 */
2212 private final Node<K,V>[] initTable() {
2213 Node<K,V>[] tab; int sc;
2214 while ((tab = table) == null || tab.length == 0) {
2215 if ((sc = sizeCtl) < 0)
2216 Thread.yield(); // lost initialization race; just spin
2217 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2218 try {
2219 if ((tab = table) == null || tab.length == 0) {
2220 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2221 @SuppressWarnings("unchecked")
2222 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2223 table = tab = nt;
2224 sc = n - (n >>> 2);
2225 }
2226 } finally {
2227 sizeCtl = sc;
2228 }
2229 break;
2230 }
2231 }
2232 return tab;
2233 }
2234
2235 /**
2236 * Adds to count, and if table is too small and not already
2237 * resizing, initiates transfer. If already resizing, helps
2238 * perform transfer if work is available. Rechecks occupancy
2239 * after a transfer to see if another resize is already needed
2240 * because resizings are lagging additions.
2241 *
2242 * @param x the count to add
2243 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2244 */
2245 private final void addCount(long x, int check) {
2246 CounterCell[] as; long b, s;
2247 if ((as = counterCells) != null ||
2248 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2249 CounterCell a; long v; int m;
2250 boolean uncontended = true;
2251 if (as == null || (m = as.length - 1) < 0 ||
2252 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2253 !(uncontended =
2254 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2255 fullAddCount(x, uncontended);
2256 return;
2257 }
2258 if (check <= 1)
2259 return;
2260 s = sumCount();
2261 }
2262 if (check >= 0) {
2263 Node<K,V>[] tab, nt; int n, sc;
2264 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2265 (n = tab.length) < MAXIMUM_CAPACITY) {
2266 int rs = resizeStamp(n);
2267 if (sc < 0) {
2268 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2269 sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2270 transferIndex <= 0)
2271 break;
2272 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2273 transfer(tab, nt);
2274 }
2275 else if (U.compareAndSwapInt(this, SIZECTL, sc,
2276 (rs << RESIZE_STAMP_SHIFT) + 2))
2277 transfer(tab, null);
2278 s = sumCount();
2279 }
2280 }
2281 }
2282
2283 /**
2284 * Helps transfer if a resize is in progress.
2285 */
2286 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2287 Node<K,V>[] nextTab; int sc;
2288 if (tab != null && (f instanceof ForwardingNode) &&
2289 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2290 int rs = resizeStamp(tab.length);
2291 while (nextTab == nextTable && table == tab &&
2292 (sc = sizeCtl) < 0) {
2293 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2294 sc == rs + MAX_RESIZERS || transferIndex <= 0)
2295 break;
2296 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2297 transfer(tab, nextTab);
2298 break;
2299 }
2300 }
2301 return nextTab;
2302 }
2303 return table;
2304 }
2305
2306 /**
2307 * Tries to presize table to accommodate the given number of elements.
2308 *
2309 * @param size number of elements (doesn't need to be perfectly accurate)
2310 */
2311 private final void tryPresize(int size) {
2312 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2313 tableSizeFor(size + (size >>> 1) + 1);
2314 int sc;
2315 while ((sc = sizeCtl) >= 0) {
2316 Node<K,V>[] tab = table; int n;
2317 if (tab == null || (n = tab.length) == 0) {
2318 n = (sc > c) ? sc : c;
2319 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2320 try {
2321 if (table == tab) {
2322 @SuppressWarnings("unchecked")
2323 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2324 table = nt;
2325 sc = n - (n >>> 2);
2326 }
2327 } finally {
2328 sizeCtl = sc;
2329 }
2330 }
2331 }
2332 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2333 break;
2334 else if (tab == table) {
2335 int rs = resizeStamp(n);
2336 if (U.compareAndSwapInt(this, SIZECTL, sc,
2337 (rs << RESIZE_STAMP_SHIFT) + 2))
2338 transfer(tab, null);
2339 }
2340 }
2341 }
2342
2343 /**
2344 * Moves and/or copies the nodes in each bin to new table. See
2345 * above for explanation.
2346 */
2347 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2348 int n = tab.length, stride;
2349 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2350 stride = MIN_TRANSFER_STRIDE; // subdivide range
2351 if (nextTab == null) { // initiating
2352 try {
2353 @SuppressWarnings("unchecked")
2354 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2355 nextTab = nt;
2356 } catch (Throwable ex) { // try to cope with OOME
2357 sizeCtl = Integer.MAX_VALUE;
2358 return;
2359 }
2360 nextTable = nextTab;
2361 transferIndex = n;
2362 }
2363 int nextn = nextTab.length;
2364 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2365 boolean advance = true;
2366 boolean finishing = false; // to ensure sweep before committing nextTab
2367 for (int i = 0, bound = 0;;) {
2368 Node<K,V> f; int fh;
2369 while (advance) {
2370 int nextIndex, nextBound;
2371 if (--i >= bound || finishing)
2372 advance = false;
2373 else if ((nextIndex = transferIndex) <= 0) {
2374 i = -1;
2375 advance = false;
2376 }
2377 else if (U.compareAndSwapInt
2378 (this, TRANSFERINDEX, nextIndex,
2379 nextBound = (nextIndex > stride ?
2380 nextIndex - stride : 0))) {
2381 bound = nextBound;
2382 i = nextIndex - 1;
2383 advance = false;
2384 }
2385 }
2386 if (i < 0 || i >= n || i + n >= nextn) {
2387 int sc;
2388 if (finishing) {
2389 nextTable = null;
2390 table = nextTab;
2391 sizeCtl = (n << 1) - (n >>> 1);
2392 return;
2393 }
2394 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2395 if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2396 return;
2397 finishing = advance = true;
2398 i = n; // recheck before commit
2399 }
2400 }
2401 else if ((f = tabAt(tab, i)) == null)
2402 advance = casTabAt(tab, i, null, fwd);
2403 else if ((fh = f.hash) == MOVED)
2404 advance = true; // already processed
2405 else {
2406 synchronized (f) {
2407 if (tabAt(tab, i) == f) {
2408 Node<K,V> ln, hn;
2409 if (fh >= 0) {
2410 int runBit = fh & n;
2411 Node<K,V> lastRun = f;
2412 for (Node<K,V> p = f.next; p != null; p = p.next) {
2413 int b = p.hash & n;
2414 if (b != runBit) {
2415 runBit = b;
2416 lastRun = p;
2417 }
2418 }
2419 if (runBit == 0) {
2420 ln = lastRun;
2421 hn = null;
2422 }
2423 else {
2424 hn = lastRun;
2425 ln = null;
2426 }
2427 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2428 int ph = p.hash; K pk = p.key; V pv = p.val;
2429 if ((ph & n) == 0)
2430 ln = new Node<K,V>(ph, pk, pv, ln);
2431 else
2432 hn = new Node<K,V>(ph, pk, pv, hn);
2433 }
2434 setTabAt(nextTab, i, ln);
2435 setTabAt(nextTab, i + n, hn);
2436 setTabAt(tab, i, fwd);
2437 advance = true;
2438 }
2439 else if (f instanceof TreeBin) {
2440 TreeBin<K,V> t = (TreeBin<K,V>)f;
2441 TreeNode<K,V> lo = null, loTail = null;
2442 TreeNode<K,V> hi = null, hiTail = null;
2443 int lc = 0, hc = 0;
2444 for (Node<K,V> e = t.first; e != null; e = e.next) {
2445 int h = e.hash;
2446 TreeNode<K,V> p = new TreeNode<K,V>
2447 (h, e.key, e.val, null, null);
2448 if ((h & n) == 0) {
2449 if ((p.prev = loTail) == null)
2450 lo = p;
2451 else
2452 loTail.next = p;
2453 loTail = p;
2454 ++lc;
2455 }
2456 else {
2457 if ((p.prev = hiTail) == null)
2458 hi = p;
2459 else
2460 hiTail.next = p;
2461 hiTail = p;
2462 ++hc;
2463 }
2464 }
2465 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2466 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2467 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2468 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2469 setTabAt(nextTab, i, ln);
2470 setTabAt(nextTab, i + n, hn);
2471 setTabAt(tab, i, fwd);
2472 advance = true;
2473 }
2474 }
2475 }
2476 }
2477 }
2478 }
2479
2480 /* ---------------- Counter support -------------- */
2481
2482 /**
2483 * A padded cell for distributing counts. Adapted from LongAdder
2484 * and Striped64. See their internal docs for explanation.
2485 */
2486 @sun.misc.Contended static final class CounterCell {
2487 volatile long value;
2488 CounterCell(long x) { value = x; }
2489 }
2490
2491 final long sumCount() {
2492 CounterCell[] as = counterCells; CounterCell a;
2493 long sum = baseCount;
2494 if (as != null) {
2495 for (int i = 0; i < as.length; ++i) {
2496 if ((a = as[i]) != null)
2497 sum += a.value;
2498 }
2499 }
2500 return sum;
2501 }
2502
2503 // See LongAdder version for explanation
2504 private final void fullAddCount(long x, boolean wasUncontended) {
2505 int h;
2506 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2507 ThreadLocalRandom.localInit(); // force initialization
2508 h = ThreadLocalRandom.getProbe();
2509 wasUncontended = true;
2510 }
2511 boolean collide = false; // True if last slot nonempty
2512 for (;;) {
2513 CounterCell[] as; CounterCell a; int n; long v;
2514 if ((as = counterCells) != null && (n = as.length) > 0) {
2515 if ((a = as[(n - 1) & h]) == null) {
2516 if (cellsBusy == 0) { // Try to attach new Cell
2517 CounterCell r = new CounterCell(x); // Optimistic create
2518 if (cellsBusy == 0 &&
2519 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2520 boolean created = false;
2521 try { // Recheck under lock
2522 CounterCell[] rs; int m, j;
2523 if ((rs = counterCells) != null &&
2524 (m = rs.length) > 0 &&
2525 rs[j = (m - 1) & h] == null) {
2526 rs[j] = r;
2527 created = true;
2528 }
2529 } finally {
2530 cellsBusy = 0;
2531 }
2532 if (created)
2533 break;
2534 continue; // Slot is now non-empty
2535 }
2536 }
2537 collide = false;
2538 }
2539 else if (!wasUncontended) // CAS already known to fail
2540 wasUncontended = true; // Continue after rehash
2541 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2542 break;
2543 else if (counterCells != as || n >= NCPU)
2544 collide = false; // At max size or stale
2545 else if (!collide)
2546 collide = true;
2547 else if (cellsBusy == 0 &&
2548 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2549 try {
2550 if (counterCells == as) {// Expand table unless stale
2551 CounterCell[] rs = new CounterCell[n << 1];
2552 for (int i = 0; i < n; ++i)
2553 rs[i] = as[i];
2554 counterCells = rs;
2555 }
2556 } finally {
2557 cellsBusy = 0;
2558 }
2559 collide = false;
2560 continue; // Retry with expanded table
2561 }
2562 h = ThreadLocalRandom.advanceProbe(h);
2563 }
2564 else if (cellsBusy == 0 && counterCells == as &&
2565 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2566 boolean init = false;
2567 try { // Initialize table
2568 if (counterCells == as) {
2569 CounterCell[] rs = new CounterCell[2];
2570 rs[h & 1] = new CounterCell(x);
2571 counterCells = rs;
2572 init = true;
2573 }
2574 } finally {
2575 cellsBusy = 0;
2576 }
2577 if (init)
2578 break;
2579 }
2580 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2581 break; // Fall back on using base
2582 }
2583 }
2584
2585 /* ---------------- Conversion from/to TreeBins -------------- */
2586
2587 /**
2588 * Replaces all linked nodes in bin at given index unless table is
2589 * too small, in which case resizes instead.
2590 */
2591 private final void treeifyBin(Node<K,V>[] tab, int index) {
2592 Node<K,V> b; int n;
2593 if (tab != null) {
2594 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2595 tryPresize(n << 1);
2596 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2597 synchronized (b) {
2598 if (tabAt(tab, index) == b) {
2599 TreeNode<K,V> hd = null, tl = null;
2600 for (Node<K,V> e = b; e != null; e = e.next) {
2601 TreeNode<K,V> p =
2602 new TreeNode<K,V>(e.hash, e.key, e.val,
2603 null, null);
2604 if ((p.prev = tl) == null)
2605 hd = p;
2606 else
2607 tl.next = p;
2608 tl = p;
2609 }
2610 setTabAt(tab, index, new TreeBin<K,V>(hd));
2611 }
2612 }
2613 }
2614 }
2615 }
2616
2617 /**
2618 * Returns a list on non-TreeNodes replacing those in given list.
2619 */
2620 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2621 Node<K,V> hd = null, tl = null;
2622 for (Node<K,V> q = b; q != null; q = q.next) {
2623 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2624 if (tl == null)
2625 hd = p;
2626 else
2627 tl.next = p;
2628 tl = p;
2629 }
2630 return hd;
2631 }
2632
2633 /* ---------------- TreeNodes -------------- */
2634
2635 /**
2636 * Nodes for use in TreeBins
2637 */
2638 static final class TreeNode<K,V> extends Node<K,V> {
2639 TreeNode<K,V> parent; // red-black tree links
2640 TreeNode<K,V> left;
2641 TreeNode<K,V> right;
2642 TreeNode<K,V> prev; // needed to unlink next upon deletion
2643 boolean red;
2644
2645 TreeNode(int hash, K key, V val, Node<K,V> next,
2646 TreeNode<K,V> parent) {
2647 super(hash, key, val, next);
2648 this.parent = parent;
2649 }
2650
2651 Node<K,V> find(int h, Object k) {
2652 return findTreeNode(h, k, null);
2653 }
2654
2655 /**
2656 * Returns the TreeNode (or null if not found) for the given key
2657 * starting at given root.
2658 */
2659 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2660 if (k != null) {
2661 TreeNode<K,V> p = this;
2662 do {
2663 int ph, dir; K pk; TreeNode<K,V> q;
2664 TreeNode<K,V> pl = p.left, pr = p.right;
2665 if ((ph = p.hash) > h)
2666 p = pl;
2667 else if (ph < h)
2668 p = pr;
2669 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2670 return p;
2671 else if (pl == null)
2672 p = pr;
2673 else if (pr == null)
2674 p = pl;
2675 else if ((kc != null ||
2676 (kc = comparableClassFor(k)) != null) &&
2677 (dir = compareComparables(kc, k, pk)) != 0)
2678 p = (dir < 0) ? pl : pr;
2679 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2680 return q;
2681 else
2682 p = pl;
2683 } while (p != null);
2684 }
2685 return null;
2686 }
2687 }
2688
2689 /* ---------------- TreeBins -------------- */
2690
2691 /**
2692 * TreeNodes used at the heads of bins. TreeBins do not hold user
2693 * keys or values, but instead point to list of TreeNodes and
2694 * their root. They also maintain a parasitic read-write lock
2695 * forcing writers (who hold bin lock) to wait for readers (who do
2696 * not) to complete before tree restructuring operations.
2697 */
2698 static final class TreeBin<K,V> extends Node<K,V> {
2699 TreeNode<K,V> root;
2700 volatile TreeNode<K,V> first;
2701 volatile Thread waiter;
2702 volatile int lockState;
2703 // values for lockState
2704 static final int WRITER = 1; // set while holding write lock
2705 static final int WAITER = 2; // set when waiting for write lock
2706 static final int READER = 4; // increment value for setting read lock
2707
2708 /**
2709 * Tie-breaking utility for ordering insertions when equal
2710 * hashCodes and non-comparable. We don't require a total
2711 * order, just a consistent insertion rule to maintain
2712 * equivalence across rebalancings. Tie-breaking further than
2713 * necessary simplifies testing a bit.
2714 */
2715 static int tieBreakOrder(Object a, Object b) {
2716 int d;
2717 if (a == null || b == null ||
2718 (d = a.getClass().getName().
2719 compareTo(b.getClass().getName())) == 0)
2720 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2721 -1 : 1);
2722 return d;
2723 }
2724
2725 /**
2726 * Creates bin with initial set of nodes headed by b.
2727 */
2728 TreeBin(TreeNode<K,V> b) {
2729 super(TREEBIN, null, null, null);
2730 this.first = b;
2731 TreeNode<K,V> r = null;
2732 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2733 next = (TreeNode<K,V>)x.next;
2734 x.left = x.right = null;
2735 if (r == null) {
2736 x.parent = null;
2737 x.red = false;
2738 r = x;
2739 }
2740 else {
2741 K k = x.key;
2742 int h = x.hash;
2743 Class<?> kc = null;
2744 for (TreeNode<K,V> p = r;;) {
2745 int dir, ph;
2746 K pk = p.key;
2747 if ((ph = p.hash) > h)
2748 dir = -1;
2749 else if (ph < h)
2750 dir = 1;
2751 else if ((kc == null &&
2752 (kc = comparableClassFor(k)) == null) ||
2753 (dir = compareComparables(kc, k, pk)) == 0)
2754 dir = tieBreakOrder(k, pk);
2755 TreeNode<K,V> xp = p;
2756 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2757 x.parent = xp;
2758 if (dir <= 0)
2759 xp.left = x;
2760 else
2761 xp.right = x;
2762 r = balanceInsertion(r, x);
2763 break;
2764 }
2765 }
2766 }
2767 }
2768 this.root = r;
2769 assert checkInvariants(root);
2770 }
2771
2772 /**
2773 * Acquires write lock for tree restructuring.
2774 */
2775 private final void lockRoot() {
2776 if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2777 contendedLock(); // offload to separate method
2778 }
2779
2780 /**
2781 * Releases write lock for tree restructuring.
2782 */
2783 private final void unlockRoot() {
2784 lockState = 0;
2785 }
2786
2787 /**
2788 * Possibly blocks awaiting root lock.
2789 */
2790 private final void contendedLock() {
2791 boolean waiting = false;
2792 for (int s;;) {
2793 if (((s = lockState) & ~WAITER) == 0) {
2794 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2795 if (waiting)
2796 waiter = null;
2797 return;
2798 }
2799 }
2800 else if ((s & WAITER) == 0) {
2801 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2802 waiting = true;
2803 waiter = Thread.currentThread();
2804 }
2805 }
2806 else if (waiting)
2807 LockSupport.park(this);
2808 }
2809 }
2810
2811 /**
2812 * Returns matching node or null if none. Tries to search
2813 * using tree comparisons from root, but continues linear
2814 * search when lock not available.
2815 */
2816 final Node<K,V> find(int h, Object k) {
2817 if (k != null) {
2818 for (Node<K,V> e = first; e != null; ) {
2819 int s; K ek;
2820 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2821 if (e.hash == h &&
2822 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2823 return e;
2824 e = e.next;
2825 }
2826 else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2827 s + READER)) {
2828 TreeNode<K,V> r, p;
2829 try {
2830 p = ((r = root) == null ? null :
2831 r.findTreeNode(h, k, null));
2832 } finally {
2833 Thread w;
2834 if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2835 (READER|WAITER) && (w = waiter) != null)
2836 LockSupport.unpark(w);
2837 }
2838 return p;
2839 }
2840 }
2841 }
2842 return null;
2843 }
2844
2845 /**
2846 * Finds or adds a node.
2847 * @return null if added
2848 */
2849 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2850 Class<?> kc = null;
2851 boolean searched = false;
2852 for (TreeNode<K,V> p = root;;) {
2853 int dir, ph; K pk;
2854 if (p == null) {
2855 first = root = new TreeNode<K,V>(h, k, v, null, null);
2856 break;
2857 }
2858 else if ((ph = p.hash) > h)
2859 dir = -1;
2860 else if (ph < h)
2861 dir = 1;
2862 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2863 return p;
2864 else if ((kc == null &&
2865 (kc = comparableClassFor(k)) == null) ||
2866 (dir = compareComparables(kc, k, pk)) == 0) {
2867 if (!searched) {
2868 TreeNode<K,V> q, ch;
2869 searched = true;
2870 if (((ch = p.left) != null &&
2871 (q = ch.findTreeNode(h, k, kc)) != null) ||
2872 ((ch = p.right) != null &&
2873 (q = ch.findTreeNode(h, k, kc)) != null))
2874 return q;
2875 }
2876 dir = tieBreakOrder(k, pk);
2877 }
2878
2879 TreeNode<K,V> xp = p;
2880 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2881 TreeNode<K,V> x, f = first;
2882 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2883 if (f != null)
2884 f.prev = x;
2885 if (dir <= 0)
2886 xp.left = x;
2887 else
2888 xp.right = x;
2889 if (!xp.red)
2890 x.red = true;
2891 else {
2892 lockRoot();
2893 try {
2894 root = balanceInsertion(root, x);
2895 } finally {
2896 unlockRoot();
2897 }
2898 }
2899 break;
2900 }
2901 }
2902 assert checkInvariants(root);
2903 return null;
2904 }
2905
2906 /**
2907 * Removes the given node, that must be present before this
2908 * call. This is messier than typical red-black deletion code
2909 * because we cannot swap the contents of an interior node
2910 * with a leaf successor that is pinned by "next" pointers
2911 * that are accessible independently of lock. So instead we
2912 * swap the tree linkages.
2913 *
2914 * @return true if now too small, so should be untreeified
2915 */
2916 final boolean removeTreeNode(TreeNode<K,V> p) {
2917 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2918 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2919 TreeNode<K,V> r, rl;
2920 if (pred == null)
2921 first = next;
2922 else
2923 pred.next = next;
2924 if (next != null)
2925 next.prev = pred;
2926 if (first == null) {
2927 root = null;
2928 return true;
2929 }
2930 if ((r = root) == null || r.right == null || // too small
2931 (rl = r.left) == null || rl.left == null)
2932 return true;
2933 lockRoot();
2934 try {
2935 TreeNode<K,V> replacement;
2936 TreeNode<K,V> pl = p.left;
2937 TreeNode<K,V> pr = p.right;
2938 if (pl != null && pr != null) {
2939 TreeNode<K,V> s = pr, sl;
2940 while ((sl = s.left) != null) // find successor
2941 s = sl;
2942 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2943 TreeNode<K,V> sr = s.right;
2944 TreeNode<K,V> pp = p.parent;
2945 if (s == pr) { // p was s's direct parent
2946 p.parent = s;
2947 s.right = p;
2948 }
2949 else {
2950 TreeNode<K,V> sp = s.parent;
2951 if ((p.parent = sp) != null) {
2952 if (s == sp.left)
2953 sp.left = p;
2954 else
2955 sp.right = p;
2956 }
2957 if ((s.right = pr) != null)
2958 pr.parent = s;
2959 }
2960 p.left = null;
2961 if ((p.right = sr) != null)
2962 sr.parent = p;
2963 if ((s.left = pl) != null)
2964 pl.parent = s;
2965 if ((s.parent = pp) == null)
2966 r = s;
2967 else if (p == pp.left)
2968 pp.left = s;
2969 else
2970 pp.right = s;
2971 if (sr != null)
2972 replacement = sr;
2973 else
2974 replacement = p;
2975 }
2976 else if (pl != null)
2977 replacement = pl;
2978 else if (pr != null)
2979 replacement = pr;
2980 else
2981 replacement = p;
2982 if (replacement != p) {
2983 TreeNode<K,V> pp = replacement.parent = p.parent;
2984 if (pp == null)
2985 r = replacement;
2986 else if (p == pp.left)
2987 pp.left = replacement;
2988 else
2989 pp.right = replacement;
2990 p.left = p.right = p.parent = null;
2991 }
2992
2993 root = (p.red) ? r : balanceDeletion(r, replacement);
2994
2995 if (p == replacement) { // detach pointers
2996 TreeNode<K,V> pp;
2997 if ((pp = p.parent) != null) {
2998 if (p == pp.left)
2999 pp.left = null;
3000 else if (p == pp.right)
3001 pp.right = null;
3002 p.parent = null;
3003 }
3004 }
3005 } finally {
3006 unlockRoot();
3007 }
3008 assert checkInvariants(root);
3009 return false;
3010 }
3011
3012 /* ------------------------------------------------------------ */
3013 // Red-black tree methods, all adapted from CLR
3014
3015 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3016 TreeNode<K,V> p) {
3017 TreeNode<K,V> r, pp, rl;
3018 if (p != null && (r = p.right) != null) {
3019 if ((rl = p.right = r.left) != null)
3020 rl.parent = p;
3021 if ((pp = r.parent = p.parent) == null)
3022 (root = r).red = false;
3023 else if (pp.left == p)
3024 pp.left = r;
3025 else
3026 pp.right = r;
3027 r.left = p;
3028 p.parent = r;
3029 }
3030 return root;
3031 }
3032
3033 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3034 TreeNode<K,V> p) {
3035 TreeNode<K,V> l, pp, lr;
3036 if (p != null && (l = p.left) != null) {
3037 if ((lr = p.left = l.right) != null)
3038 lr.parent = p;
3039 if ((pp = l.parent = p.parent) == null)
3040 (root = l).red = false;
3041 else if (pp.right == p)
3042 pp.right = l;
3043 else
3044 pp.left = l;
3045 l.right = p;
3046 p.parent = l;
3047 }
3048 return root;
3049 }
3050
3051 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3052 TreeNode<K,V> x) {
3053 x.red = true;
3054 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3055 if ((xp = x.parent) == null) {
3056 x.red = false;
3057 return x;
3058 }
3059 else if (!xp.red || (xpp = xp.parent) == null)
3060 return root;
3061 if (xp == (xppl = xpp.left)) {
3062 if ((xppr = xpp.right) != null && xppr.red) {
3063 xppr.red = false;
3064 xp.red = false;
3065 xpp.red = true;
3066 x = xpp;
3067 }
3068 else {
3069 if (x == xp.right) {
3070 root = rotateLeft(root, x = xp);
3071 xpp = (xp = x.parent) == null ? null : xp.parent;
3072 }
3073 if (xp != null) {
3074 xp.red = false;
3075 if (xpp != null) {
3076 xpp.red = true;
3077 root = rotateRight(root, xpp);
3078 }
3079 }
3080 }
3081 }
3082 else {
3083 if (xppl != null && xppl.red) {
3084 xppl.red = false;
3085 xp.red = false;
3086 xpp.red = true;
3087 x = xpp;
3088 }
3089 else {
3090 if (x == xp.left) {
3091 root = rotateRight(root, x = xp);
3092 xpp = (xp = x.parent) == null ? null : xp.parent;
3093 }
3094 if (xp != null) {
3095 xp.red = false;
3096 if (xpp != null) {
3097 xpp.red = true;
3098 root = rotateLeft(root, xpp);
3099 }
3100 }
3101 }
3102 }
3103 }
3104 }
3105
3106 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3107 TreeNode<K,V> x) {
3108 for (TreeNode<K,V> xp, xpl, xpr;;) {
3109 if (x == null || x == root)
3110 return root;
3111 else if ((xp = x.parent) == null) {
3112 x.red = false;
3113 return x;
3114 }
3115 else if (x.red) {
3116 x.red = false;
3117 return root;
3118 }
3119 else if ((xpl = xp.left) == x) {
3120 if ((xpr = xp.right) != null && xpr.red) {
3121 xpr.red = false;
3122 xp.red = true;
3123 root = rotateLeft(root, xp);
3124 xpr = (xp = x.parent) == null ? null : xp.right;
3125 }
3126 if (xpr == null)
3127 x = xp;
3128 else {
3129 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3130 if ((sr == null || !sr.red) &&
3131 (sl == null || !sl.red)) {
3132 xpr.red = true;
3133 x = xp;
3134 }
3135 else {
3136 if (sr == null || !sr.red) {
3137 if (sl != null)
3138 sl.red = false;
3139 xpr.red = true;
3140 root = rotateRight(root, xpr);
3141 xpr = (xp = x.parent) == null ?
3142 null : xp.right;
3143 }
3144 if (xpr != null) {
3145 xpr.red = (xp == null) ? false : xp.red;
3146 if ((sr = xpr.right) != null)
3147 sr.red = false;
3148 }
3149 if (xp != null) {
3150 xp.red = false;
3151 root = rotateLeft(root, xp);
3152 }
3153 x = root;
3154 }
3155 }
3156 }
3157 else { // symmetric
3158 if (xpl != null && xpl.red) {
3159 xpl.red = false;
3160 xp.red = true;
3161 root = rotateRight(root, xp);
3162 xpl = (xp = x.parent) == null ? null : xp.left;
3163 }
3164 if (xpl == null)
3165 x = xp;
3166 else {
3167 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3168 if ((sl == null || !sl.red) &&
3169 (sr == null || !sr.red)) {
3170 xpl.red = true;
3171 x = xp;
3172 }
3173 else {
3174 if (sl == null || !sl.red) {
3175 if (sr != null)
3176 sr.red = false;
3177 xpl.red = true;
3178 root = rotateLeft(root, xpl);
3179 xpl = (xp = x.parent) == null ?
3180 null : xp.left;
3181 }
3182 if (xpl != null) {
3183 xpl.red = (xp == null) ? false : xp.red;
3184 if ((sl = xpl.left) != null)
3185 sl.red = false;
3186 }
3187 if (xp != null) {
3188 xp.red = false;
3189 root = rotateRight(root, xp);
3190 }
3191 x = root;
3192 }
3193 }
3194 }
3195 }
3196 }
3197
3198 /**
3199 * Recursive invariant check
3200 */
3201 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3202 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3203 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3204 if (tb != null && tb.next != t)
3205 return false;
3206 if (tn != null && tn.prev != t)
3207 return false;
3208 if (tp != null && t != tp.left && t != tp.right)
3209 return false;
3210 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3211 return false;
3212 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3213 return false;
3214 if (t.red && tl != null && tl.red && tr != null && tr.red)
3215 return false;
3216 if (tl != null && !checkInvariants(tl))
3217 return false;
3218 if (tr != null && !checkInvariants(tr))
3219 return false;
3220 return true;
3221 }
3222
3223 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3224 private static final long LOCKSTATE;
3225 static {
3226 try {
3227 LOCKSTATE = U.objectFieldOffset
3228 (TreeBin.class.getDeclaredField("lockState"));
3229 } catch (ReflectiveOperationException e) {
3230 throw new Error(e);
3231 }
3232 }
3233 }
3234
3235 /* ----------------Table Traversal -------------- */
3236
3237 /**
3238 * Records the table, its length, and current traversal index for a
3239 * traverser that must process a region of a forwarded table before
3240 * proceeding with current table.
3241 */
3242 static final class TableStack<K,V> {
3243 int length;
3244 int index;
3245 Node<K,V>[] tab;
3246 TableStack<K,V> next;
3247 }
3248
3249 /**
3250 * Encapsulates traversal for methods such as containsValue; also
3251 * serves as a base class for other iterators and spliterators.
3252 *
3253 * Method advance visits once each still-valid node that was
3254 * reachable upon iterator construction. It might miss some that
3255 * were added to a bin after the bin was visited, which is OK wrt
3256 * consistency guarantees. Maintaining this property in the face
3257 * of possible ongoing resizes requires a fair amount of
3258 * bookkeeping state that is difficult to optimize away amidst
3259 * volatile accesses. Even so, traversal maintains reasonable
3260 * throughput.
3261 *
3262 * Normally, iteration proceeds bin-by-bin traversing lists.
3263 * However, if the table has been resized, then all future steps
3264 * must traverse both the bin at the current index as well as at
3265 * (index + baseSize); and so on for further resizings. To
3266 * paranoically cope with potential sharing by users of iterators
3267 * across threads, iteration terminates if a bounds checks fails
3268 * for a table read.
3269 */
3270 static class Traverser<K,V> {
3271 Node<K,V>[] tab; // current table; updated if resized
3272 Node<K,V> next; // the next entry to use
3273 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3274 int index; // index of bin to use next
3275 int baseIndex; // current index of initial table
3276 int baseLimit; // index bound for initial table
3277 final int baseSize; // initial table size
3278
3279 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3280 this.tab = tab;
3281 this.baseSize = size;
3282 this.baseIndex = this.index = index;
3283 this.baseLimit = limit;
3284 this.next = null;
3285 }
3286
3287 /**
3288 * Advances if possible, returning next valid node, or null if none.
3289 */
3290 final Node<K,V> advance() {
3291 Node<K,V> e;
3292 if ((e = next) != null)
3293 e = e.next;
3294 for (;;) {
3295 Node<K,V>[] t; int i, n; // must use locals in checks
3296 if (e != null)
3297 return next = e;
3298 if (baseIndex >= baseLimit || (t = tab) == null ||
3299 (n = t.length) <= (i = index) || i < 0)
3300 return next = null;
3301 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3302 if (e instanceof ForwardingNode) {
3303 tab = ((ForwardingNode<K,V>)e).nextTable;
3304 e = null;
3305 pushState(t, i, n);
3306 continue;
3307 }
3308 else if (e instanceof TreeBin)
3309 e = ((TreeBin<K,V>)e).first;
3310 else
3311 e = null;
3312 }
3313 if (stack != null)
3314 recoverState(n);
3315 else if ((index = i + baseSize) >= n)
3316 index = ++baseIndex; // visit upper slots if present
3317 }
3318 }
3319
3320 /**
3321 * Saves traversal state upon encountering a forwarding node.
3322 */
3323 private void pushState(Node<K,V>[] t, int i, int n) {
3324 TableStack<K,V> s = spare; // reuse if possible
3325 if (s != null)
3326 spare = s.next;
3327 else
3328 s = new TableStack<K,V>();
3329 s.tab = t;
3330 s.length = n;
3331 s.index = i;
3332 s.next = stack;
3333 stack = s;
3334 }
3335
3336 /**
3337 * Possibly pops traversal state.
3338 *
3339 * @param n length of current table
3340 */
3341 private void recoverState(int n) {
3342 TableStack<K,V> s; int len;
3343 while ((s = stack) != null && (index += (len = s.length)) >= n) {
3344 n = len;
3345 index = s.index;
3346 tab = s.tab;
3347 s.tab = null;
3348 TableStack<K,V> next = s.next;
3349 s.next = spare; // save for reuse
3350 stack = next;
3351 spare = s;
3352 }
3353 if (s == null && (index += baseSize) >= n)
3354 index = ++baseIndex;
3355 }
3356 }
3357
3358 /**
3359 * Base of key, value, and entry Iterators. Adds fields to
3360 * Traverser to support iterator.remove.
3361 */
3362 static class BaseIterator<K,V> extends Traverser<K,V> {
3363 final ConcurrentHashMap<K,V> map;
3364 Node<K,V> lastReturned;
3365 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3366 ConcurrentHashMap<K,V> map) {
3367 super(tab, size, index, limit);
3368 this.map = map;
3369 advance();
3370 }
3371
3372 public final boolean hasNext() { return next != null; }
3373 public final boolean hasMoreElements() { return next != null; }
3374
3375 public final void remove() {
3376 Node<K,V> p;
3377 if ((p = lastReturned) == null)
3378 throw new IllegalStateException();
3379 lastReturned = null;
3380 map.replaceNode(p.key, null, null);
3381 }
3382 }
3383
3384 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3385 implements Iterator<K>, Enumeration<K> {
3386 KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3387 ConcurrentHashMap<K,V> map) {
3388 super(tab, index, size, limit, map);
3389 }
3390
3391 public final K next() {
3392 Node<K,V> p;
3393 if ((p = next) == null)
3394 throw new NoSuchElementException();
3395 K k = p.key;
3396 lastReturned = p;
3397 advance();
3398 return k;
3399 }
3400
3401 public final K nextElement() { return next(); }
3402 }
3403
3404 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3405 implements Iterator<V>, Enumeration<V> {
3406 ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3407 ConcurrentHashMap<K,V> map) {
3408 super(tab, index, size, limit, map);
3409 }
3410
3411 public final V next() {
3412 Node<K,V> p;
3413 if ((p = next) == null)
3414 throw new NoSuchElementException();
3415 V v = p.val;
3416 lastReturned = p;
3417 advance();
3418 return v;
3419 }
3420
3421 public final V nextElement() { return next(); }
3422 }
3423
3424 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3425 implements Iterator<Map.Entry<K,V>> {
3426 EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3427 ConcurrentHashMap<K,V> map) {
3428 super(tab, index, size, limit, map);
3429 }
3430
3431 public final Map.Entry<K,V> next() {
3432 Node<K,V> p;
3433 if ((p = next) == null)
3434 throw new NoSuchElementException();
3435 K k = p.key;
3436 V v = p.val;
3437 lastReturned = p;
3438 advance();
3439 return new MapEntry<K,V>(k, v, map);
3440 }
3441 }
3442
3443 /**
3444 * Exported Entry for EntryIterator
3445 */
3446 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3447 final K key; // non-null
3448 V val; // non-null
3449 final ConcurrentHashMap<K,V> map;
3450 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3451 this.key = key;
3452 this.val = val;
3453 this.map = map;
3454 }
3455 public K getKey() { return key; }
3456 public V getValue() { return val; }
3457 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3458 public String toString() {
3459 return Helpers.mapEntryToString(key, val);
3460 }
3461
3462 public boolean equals(Object o) {
3463 Object k, v; Map.Entry<?,?> e;
3464 return ((o instanceof Map.Entry) &&
3465 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3466 (v = e.getValue()) != null &&
3467 (k == key || k.equals(key)) &&
3468 (v == val || v.equals(val)));
3469 }
3470
3471 /**
3472 * Sets our entry's value and writes through to the map. The
3473 * value to return is somewhat arbitrary here. Since we do not
3474 * necessarily track asynchronous changes, the most recent
3475 * "previous" value could be different from what we return (or
3476 * could even have been removed, in which case the put will
3477 * re-establish). We do not and cannot guarantee more.
3478 */
3479 public V setValue(V value) {
3480 if (value == null) throw new NullPointerException();
3481 V v = val;
3482 val = value;
3483 map.put(key, value);
3484 return v;
3485 }
3486 }
3487
3488 static final class KeySpliterator<K,V> extends Traverser<K,V>
3489 implements Spliterator<K> {
3490 long est; // size estimate
3491 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3492 long est) {
3493 super(tab, size, index, limit);
3494 this.est = est;
3495 }
3496
3497 public Spliterator<K> trySplit() {
3498 int i, f, h;
3499 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3500 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3501 f, est >>>= 1);
3502 }
3503
3504 public void forEachRemaining(Consumer<? super K> action) {
3505 if (action == null) throw new NullPointerException();
3506 for (Node<K,V> p; (p = advance()) != null;)
3507 action.accept(p.key);
3508 }
3509
3510 public boolean tryAdvance(Consumer<? super K> action) {
3511 if (action == null) throw new NullPointerException();
3512 Node<K,V> p;
3513 if ((p = advance()) == null)
3514 return false;
3515 action.accept(p.key);
3516 return true;
3517 }
3518
3519 public long estimateSize() { return est; }
3520
3521 public int characteristics() {
3522 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3523 Spliterator.NONNULL;
3524 }
3525 }
3526
3527 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3528 implements Spliterator<V> {
3529 long est; // size estimate
3530 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3531 long est) {
3532 super(tab, size, index, limit);
3533 this.est = est;
3534 }
3535
3536 public Spliterator<V> trySplit() {
3537 int i, f, h;
3538 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3539 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3540 f, est >>>= 1);
3541 }
3542
3543 public void forEachRemaining(Consumer<? super V> action) {
3544 if (action == null) throw new NullPointerException();
3545 for (Node<K,V> p; (p = advance()) != null;)
3546 action.accept(p.val);
3547 }
3548
3549 public boolean tryAdvance(Consumer<? super V> action) {
3550 if (action == null) throw new NullPointerException();
3551 Node<K,V> p;
3552 if ((p = advance()) == null)
3553 return false;
3554 action.accept(p.val);
3555 return true;
3556 }
3557
3558 public long estimateSize() { return est; }
3559
3560 public int characteristics() {
3561 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3562 }
3563 }
3564
3565 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3566 implements Spliterator<Map.Entry<K,V>> {
3567 final ConcurrentHashMap<K,V> map; // To export MapEntry
3568 long est; // size estimate
3569 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3570 long est, ConcurrentHashMap<K,V> map) {
3571 super(tab, size, index, limit);
3572 this.map = map;
3573 this.est = est;
3574 }
3575
3576 public Spliterator<Map.Entry<K,V>> trySplit() {
3577 int i, f, h;
3578 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3579 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3580 f, est >>>= 1, map);
3581 }
3582
3583 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3584 if (action == null) throw new NullPointerException();
3585 for (Node<K,V> p; (p = advance()) != null; )
3586 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3587 }
3588
3589 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3590 if (action == null) throw new NullPointerException();
3591 Node<K,V> p;
3592 if ((p = advance()) == null)
3593 return false;
3594 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3595 return true;
3596 }
3597
3598 public long estimateSize() { return est; }
3599
3600 public int characteristics() {
3601 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3602 Spliterator.NONNULL;
3603 }
3604 }
3605
3606 // Parallel bulk operations
3607
3608 /**
3609 * Computes initial batch value for bulk tasks. The returned value
3610 * is approximately exp2 of the number of times (minus one) to
3611 * split task by two before executing leaf action. This value is
3612 * faster to compute and more convenient to use as a guide to
3613 * splitting than is the depth, since it is used while dividing by
3614 * two anyway.
3615 */
3616 final int batchFor(long b) {
3617 long n;
3618 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3619 return 0;
3620 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3621 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3622 }
3623
3624 /**
3625 * Performs the given action for each (key, value).
3626 *
3627 * @param parallelismThreshold the (estimated) number of elements
3628 * needed for this operation to be executed in parallel
3629 * @param action the action
3630 * @since 1.8
3631 */
3632 public void forEach(long parallelismThreshold,
3633 BiConsumer<? super K,? super V> action) {
3634 if (action == null) throw new NullPointerException();
3635 new ForEachMappingTask<K,V>
3636 (null, batchFor(parallelismThreshold), 0, 0, table,
3637 action).invoke();
3638 }
3639
3640 /**
3641 * Performs the given action for each non-null transformation
3642 * of each (key, value).
3643 *
3644 * @param parallelismThreshold the (estimated) number of elements
3645 * needed for this operation to be executed in parallel
3646 * @param transformer a function returning the transformation
3647 * for an element, or null if there is no transformation (in
3648 * which case the action is not applied)
3649 * @param action the action
3650 * @param <U> the return type of the transformer
3651 * @since 1.8
3652 */
3653 public <U> void forEach(long parallelismThreshold,
3654 BiFunction<? super K, ? super V, ? extends U> transformer,
3655 Consumer<? super U> action) {
3656 if (transformer == null || action == null)
3657 throw new NullPointerException();
3658 new ForEachTransformedMappingTask<K,V,U>
3659 (null, batchFor(parallelismThreshold), 0, 0, table,
3660 transformer, action).invoke();
3661 }
3662
3663 /**
3664 * Returns a non-null result from applying the given search
3665 * function on each (key, value), or null if none. Upon
3666 * success, further element processing is suppressed and the
3667 * results of any other parallel invocations of the search
3668 * function are ignored.
3669 *
3670 * @param parallelismThreshold the (estimated) number of elements
3671 * needed for this operation to be executed in parallel
3672 * @param searchFunction a function returning a non-null
3673 * result on success, else null
3674 * @param <U> the return type of the search function
3675 * @return a non-null result from applying the given search
3676 * function on each (key, value), or null if none
3677 * @since 1.8
3678 */
3679 public <U> U search(long parallelismThreshold,
3680 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3681 if (searchFunction == null) throw new NullPointerException();
3682 return new SearchMappingsTask<K,V,U>
3683 (null, batchFor(parallelismThreshold), 0, 0, table,
3684 searchFunction, new AtomicReference<U>()).invoke();
3685 }
3686
3687 /**
3688 * Returns the result of accumulating the given transformation
3689 * of all (key, value) pairs using the given reducer to
3690 * combine values, or null if none.
3691 *
3692 * @param parallelismThreshold the (estimated) number of elements
3693 * needed for this operation to be executed in parallel
3694 * @param transformer a function returning the transformation
3695 * for an element, or null if there is no transformation (in
3696 * which case it is not combined)
3697 * @param reducer a commutative associative combining function
3698 * @param <U> the return type of the transformer
3699 * @return the result of accumulating the given transformation
3700 * of all (key, value) pairs
3701 * @since 1.8
3702 */
3703 public <U> U reduce(long parallelismThreshold,
3704 BiFunction<? super K, ? super V, ? extends U> transformer,
3705 BiFunction<? super U, ? super U, ? extends U> reducer) {
3706 if (transformer == null || reducer == null)
3707 throw new NullPointerException();
3708 return new MapReduceMappingsTask<K,V,U>
3709 (null, batchFor(parallelismThreshold), 0, 0, table,
3710 null, transformer, reducer).invoke();
3711 }
3712
3713 /**
3714 * Returns the result of accumulating the given transformation
3715 * of all (key, value) pairs using the given reducer to
3716 * combine values, and the given basis as an identity value.
3717 *
3718 * @param parallelismThreshold the (estimated) number of elements
3719 * needed for this operation to be executed in parallel
3720 * @param transformer a function returning the transformation
3721 * for an element
3722 * @param basis the identity (initial default value) for the reduction
3723 * @param reducer a commutative associative combining function
3724 * @return the result of accumulating the given transformation
3725 * of all (key, value) pairs
3726 * @since 1.8
3727 */
3728 public double reduceToDouble(long parallelismThreshold,
3729 ToDoubleBiFunction<? super K, ? super V> transformer,
3730 double basis,
3731 DoubleBinaryOperator reducer) {
3732 if (transformer == null || reducer == null)
3733 throw new NullPointerException();
3734 return new MapReduceMappingsToDoubleTask<K,V>
3735 (null, batchFor(parallelismThreshold), 0, 0, table,
3736 null, transformer, basis, reducer).invoke();
3737 }
3738
3739 /**
3740 * Returns the result of accumulating the given transformation
3741 * of all (key, value) pairs using the given reducer to
3742 * combine values, and the given basis as an identity value.
3743 *
3744 * @param parallelismThreshold the (estimated) number of elements
3745 * needed for this operation to be executed in parallel
3746 * @param transformer a function returning the transformation
3747 * for an element
3748 * @param basis the identity (initial default value) for the reduction
3749 * @param reducer a commutative associative combining function
3750 * @return the result of accumulating the given transformation
3751 * of all (key, value) pairs
3752 * @since 1.8
3753 */
3754 public long reduceToLong(long parallelismThreshold,
3755 ToLongBiFunction<? super K, ? super V> transformer,
3756 long basis,
3757 LongBinaryOperator reducer) {
3758 if (transformer == null || reducer == null)
3759 throw new NullPointerException();
3760 return new MapReduceMappingsToLongTask<K,V>
3761 (null, batchFor(parallelismThreshold), 0, 0, table,
3762 null, transformer, basis, reducer).invoke();
3763 }
3764
3765 /**
3766 * Returns the result of accumulating the given transformation
3767 * of all (key, value) pairs using the given reducer to
3768 * combine values, and the given basis as an identity value.
3769 *
3770 * @param parallelismThreshold the (estimated) number of elements
3771 * needed for this operation to be executed in parallel
3772 * @param transformer a function returning the transformation
3773 * for an element
3774 * @param basis the identity (initial default value) for the reduction
3775 * @param reducer a commutative associative combining function
3776 * @return the result of accumulating the given transformation
3777 * of all (key, value) pairs
3778 * @since 1.8
3779 */
3780 public int reduceToInt(long parallelismThreshold,
3781 ToIntBiFunction<? super K, ? super V> transformer,
3782 int basis,
3783 IntBinaryOperator reducer) {
3784 if (transformer == null || reducer == null)
3785 throw new NullPointerException();
3786 return new MapReduceMappingsToIntTask<K,V>
3787 (null, batchFor(parallelismThreshold), 0, 0, table,
3788 null, transformer, basis, reducer).invoke();
3789 }
3790
3791 /**
3792 * Performs the given action for each key.
3793 *
3794 * @param parallelismThreshold the (estimated) number of elements
3795 * needed for this operation to be executed in parallel
3796 * @param action the action
3797 * @since 1.8
3798 */
3799 public void forEachKey(long parallelismThreshold,
3800 Consumer<? super K> action) {
3801 if (action == null) throw new NullPointerException();
3802 new ForEachKeyTask<K,V>
3803 (null, batchFor(parallelismThreshold), 0, 0, table,
3804 action).invoke();
3805 }
3806
3807 /**
3808 * Performs the given action for each non-null transformation
3809 * of each key.
3810 *
3811 * @param parallelismThreshold the (estimated) number of elements
3812 * needed for this operation to be executed in parallel
3813 * @param transformer a function returning the transformation
3814 * for an element, or null if there is no transformation (in
3815 * which case the action is not applied)
3816 * @param action the action
3817 * @param <U> the return type of the transformer
3818 * @since 1.8
3819 */
3820 public <U> void forEachKey(long parallelismThreshold,
3821 Function<? super K, ? extends U> transformer,
3822 Consumer<? super U> action) {
3823 if (transformer == null || action == null)
3824 throw new NullPointerException();
3825 new ForEachTransformedKeyTask<K,V,U>
3826 (null, batchFor(parallelismThreshold), 0, 0, table,
3827 transformer, action).invoke();
3828 }
3829
3830 /**
3831 * Returns a non-null result from applying the given search
3832 * function on each key, or null if none. Upon success,
3833 * further element processing is suppressed and the results of
3834 * any other parallel invocations of the search function are
3835 * ignored.
3836 *
3837 * @param parallelismThreshold the (estimated) number of elements
3838 * needed for this operation to be executed in parallel
3839 * @param searchFunction a function returning a non-null
3840 * result on success, else null
3841 * @param <U> the return type of the search function
3842 * @return a non-null result from applying the given search
3843 * function on each key, or null if none
3844 * @since 1.8
3845 */
3846 public <U> U searchKeys(long parallelismThreshold,
3847 Function<? super K, ? extends U> searchFunction) {
3848 if (searchFunction == null) throw new NullPointerException();
3849 return new SearchKeysTask<K,V,U>
3850 (null, batchFor(parallelismThreshold), 0, 0, table,
3851 searchFunction, new AtomicReference<U>()).invoke();
3852 }
3853
3854 /**
3855 * Returns the result of accumulating all keys using the given
3856 * reducer to combine values, or null if none.
3857 *
3858 * @param parallelismThreshold the (estimated) number of elements
3859 * needed for this operation to be executed in parallel
3860 * @param reducer a commutative associative combining function
3861 * @return the result of accumulating all keys using the given
3862 * reducer to combine values, or null if none
3863 * @since 1.8
3864 */
3865 public K reduceKeys(long parallelismThreshold,
3866 BiFunction<? super K, ? super K, ? extends K> reducer) {
3867 if (reducer == null) throw new NullPointerException();
3868 return new ReduceKeysTask<K,V>
3869 (null, batchFor(parallelismThreshold), 0, 0, table,
3870 null, reducer).invoke();
3871 }
3872
3873 /**
3874 * Returns the result of accumulating the given transformation
3875 * of all keys using the given reducer to combine values, or
3876 * null if none.
3877 *
3878 * @param parallelismThreshold the (estimated) number of elements
3879 * needed for this operation to be executed in parallel
3880 * @param transformer a function returning the transformation
3881 * for an element, or null if there is no transformation (in
3882 * which case it is not combined)
3883 * @param reducer a commutative associative combining function
3884 * @param <U> the return type of the transformer
3885 * @return the result of accumulating the given transformation
3886 * of all keys
3887 * @since 1.8
3888 */
3889 public <U> U reduceKeys(long parallelismThreshold,
3890 Function<? super K, ? extends U> transformer,
3891 BiFunction<? super U, ? super U, ? extends U> reducer) {
3892 if (transformer == null || reducer == null)
3893 throw new NullPointerException();
3894 return new MapReduceKeysTask<K,V,U>
3895 (null, batchFor(parallelismThreshold), 0, 0, table,
3896 null, transformer, reducer).invoke();
3897 }
3898
3899 /**
3900 * Returns the result of accumulating the given transformation
3901 * of all keys using the given reducer to combine values, and
3902 * the given basis as an identity value.
3903 *
3904 * @param parallelismThreshold the (estimated) number of elements
3905 * needed for this operation to be executed in parallel
3906 * @param transformer a function returning the transformation
3907 * for an element
3908 * @param basis the identity (initial default value) for the reduction
3909 * @param reducer a commutative associative combining function
3910 * @return the result of accumulating the given transformation
3911 * of all keys
3912 * @since 1.8
3913 */
3914 public double reduceKeysToDouble(long parallelismThreshold,
3915 ToDoubleFunction<? super K> transformer,
3916 double basis,
3917 DoubleBinaryOperator reducer) {
3918 if (transformer == null || reducer == null)
3919 throw new NullPointerException();
3920 return new MapReduceKeysToDoubleTask<K,V>
3921 (null, batchFor(parallelismThreshold), 0, 0, table,
3922 null, transformer, basis, reducer).invoke();
3923 }
3924
3925 /**
3926 * Returns the result of accumulating the given transformation
3927 * of all keys using the given reducer to combine values, and
3928 * the given basis as an identity value.
3929 *
3930 * @param parallelismThreshold the (estimated) number of elements
3931 * needed for this operation to be executed in parallel
3932 * @param transformer a function returning the transformation
3933 * for an element
3934 * @param basis the identity (initial default value) for the reduction
3935 * @param reducer a commutative associative combining function
3936 * @return the result of accumulating the given transformation
3937 * of all keys
3938 * @since 1.8
3939 */
3940 public long reduceKeysToLong(long parallelismThreshold,
3941 ToLongFunction<? super K> transformer,
3942 long basis,
3943 LongBinaryOperator reducer) {
3944 if (transformer == null || reducer == null)
3945 throw new NullPointerException();
3946 return new MapReduceKeysToLongTask<K,V>
3947 (null, batchFor(parallelismThreshold), 0, 0, table,
3948 null, transformer, basis, reducer).invoke();
3949 }
3950
3951 /**
3952 * Returns the result of accumulating the given transformation
3953 * of all keys using the given reducer to combine values, and
3954 * the given basis as an identity value.
3955 *
3956 * @param parallelismThreshold the (estimated) number of elements
3957 * needed for this operation to be executed in parallel
3958 * @param transformer a function returning the transformation
3959 * for an element
3960 * @param basis the identity (initial default value) for the reduction
3961 * @param reducer a commutative associative combining function
3962 * @return the result of accumulating the given transformation
3963 * of all keys
3964 * @since 1.8
3965 */
3966 public int reduceKeysToInt(long parallelismThreshold,
3967 ToIntFunction<? super K> transformer,
3968 int basis,
3969 IntBinaryOperator reducer) {
3970 if (transformer == null || reducer == null)
3971 throw new NullPointerException();
3972 return new MapReduceKeysToIntTask<K,V>
3973 (null, batchFor(parallelismThreshold), 0, 0, table,
3974 null, transformer, basis, reducer).invoke();
3975 }
3976
3977 /**
3978 * Performs the given action for each value.
3979 *
3980 * @param parallelismThreshold the (estimated) number of elements
3981 * needed for this operation to be executed in parallel
3982 * @param action the action
3983 * @since 1.8
3984 */
3985 public void forEachValue(long parallelismThreshold,
3986 Consumer<? super V> action) {
3987 if (action == null)
3988 throw new NullPointerException();
3989 new ForEachValueTask<K,V>
3990 (null, batchFor(parallelismThreshold), 0, 0, table,
3991 action).invoke();
3992 }
3993
3994 /**
3995 * Performs the given action for each non-null transformation
3996 * of each value.
3997 *
3998 * @param parallelismThreshold the (estimated) number of elements
3999 * needed for this operation to be executed in parallel
4000 * @param transformer a function returning the transformation
4001 * for an element, or null if there is no transformation (in
4002 * which case the action is not applied)
4003 * @param action the action
4004 * @param <U> the return type of the transformer
4005 * @since 1.8
4006 */
4007 public <U> void forEachValue(long parallelismThreshold,
4008 Function<? super V, ? extends U> transformer,
4009 Consumer<? super U> action) {
4010 if (transformer == null || action == null)
4011 throw new NullPointerException();
4012 new ForEachTransformedValueTask<K,V,U>
4013 (null, batchFor(parallelismThreshold), 0, 0, table,
4014 transformer, action).invoke();
4015 }
4016
4017 /**
4018 * Returns a non-null result from applying the given search
4019 * function on each value, or null if none. Upon success,
4020 * further element processing is suppressed and the results of
4021 * any other parallel invocations of the search function are
4022 * ignored.
4023 *
4024 * @param parallelismThreshold the (estimated) number of elements
4025 * needed for this operation to be executed in parallel
4026 * @param searchFunction a function returning a non-null
4027 * result on success, else null
4028 * @param <U> the return type of the search function
4029 * @return a non-null result from applying the given search
4030 * function on each value, or null if none
4031 * @since 1.8
4032 */
4033 public <U> U searchValues(long parallelismThreshold,
4034 Function<? super V, ? extends U> searchFunction) {
4035 if (searchFunction == null) throw new NullPointerException();
4036 return new SearchValuesTask<K,V,U>
4037 (null, batchFor(parallelismThreshold), 0, 0, table,
4038 searchFunction, new AtomicReference<U>()).invoke();
4039 }
4040
4041 /**
4042 * Returns the result of accumulating all values using the
4043 * given reducer to combine values, or null if none.
4044 *
4045 * @param parallelismThreshold the (estimated) number of elements
4046 * needed for this operation to be executed in parallel
4047 * @param reducer a commutative associative combining function
4048 * @return the result of accumulating all values
4049 * @since 1.8
4050 */
4051 public V reduceValues(long parallelismThreshold,
4052 BiFunction<? super V, ? super V, ? extends V> reducer) {
4053 if (reducer == null) throw new NullPointerException();
4054 return new ReduceValuesTask<K,V>
4055 (null, batchFor(parallelismThreshold), 0, 0, table,
4056 null, reducer).invoke();
4057 }
4058
4059 /**
4060 * Returns the result of accumulating the given transformation
4061 * of all values using the given reducer to combine values, or
4062 * null if none.
4063 *
4064 * @param parallelismThreshold the (estimated) number of elements
4065 * needed for this operation to be executed in parallel
4066 * @param transformer a function returning the transformation
4067 * for an element, or null if there is no transformation (in
4068 * which case it is not combined)
4069 * @param reducer a commutative associative combining function
4070 * @param <U> the return type of the transformer
4071 * @return the result of accumulating the given transformation
4072 * of all values
4073 * @since 1.8
4074 */
4075 public <U> U reduceValues(long parallelismThreshold,
4076 Function<? super V, ? extends U> transformer,
4077 BiFunction<? super U, ? super U, ? extends U> reducer) {
4078 if (transformer == null || reducer == null)
4079 throw new NullPointerException();
4080 return new MapReduceValuesTask<K,V,U>
4081 (null, batchFor(parallelismThreshold), 0, 0, table,
4082 null, transformer, reducer).invoke();
4083 }
4084
4085 /**
4086 * Returns the result of accumulating the given transformation
4087 * of all values using the given reducer to combine values,
4088 * and the given basis as an identity value.
4089 *
4090 * @param parallelismThreshold the (estimated) number of elements
4091 * needed for this operation to be executed in parallel
4092 * @param transformer a function returning the transformation
4093 * for an element
4094 * @param basis the identity (initial default value) for the reduction
4095 * @param reducer a commutative associative combining function
4096 * @return the result of accumulating the given transformation
4097 * of all values
4098 * @since 1.8
4099 */
4100 public double reduceValuesToDouble(long parallelismThreshold,
4101 ToDoubleFunction<? super V> transformer,
4102 double basis,
4103 DoubleBinaryOperator reducer) {
4104 if (transformer == null || reducer == null)
4105 throw new NullPointerException();
4106 return new MapReduceValuesToDoubleTask<K,V>
4107 (null, batchFor(parallelismThreshold), 0, 0, table,
4108 null, transformer, basis, reducer).invoke();
4109 }
4110
4111 /**
4112 * Returns the result of accumulating the given transformation
4113 * of all values using the given reducer to combine values,
4114 * and the given basis as an identity value.
4115 *
4116 * @param parallelismThreshold the (estimated) number of elements
4117 * needed for this operation to be executed in parallel
4118 * @param transformer a function returning the transformation
4119 * for an element
4120 * @param basis the identity (initial default value) for the reduction
4121 * @param reducer a commutative associative combining function
4122 * @return the result of accumulating the given transformation
4123 * of all values
4124 * @since 1.8
4125 */
4126 public long reduceValuesToLong(long parallelismThreshold,
4127 ToLongFunction<? super V> transformer,
4128 long basis,
4129 LongBinaryOperator reducer) {
4130 if (transformer == null || reducer == null)
4131 throw new NullPointerException();
4132 return new MapReduceValuesToLongTask<K,V>
4133 (null, batchFor(parallelismThreshold), 0, 0, table,
4134 null, transformer, basis, reducer).invoke();
4135 }
4136
4137 /**
4138 * Returns the result of accumulating the given transformation
4139 * of all values using the given reducer to combine values,
4140 * and the given basis as an identity value.
4141 *
4142 * @param parallelismThreshold the (estimated) number of elements
4143 * needed for this operation to be executed in parallel
4144 * @param transformer a function returning the transformation
4145 * for an element
4146 * @param basis the identity (initial default value) for the reduction
4147 * @param reducer a commutative associative combining function
4148 * @return the result of accumulating the given transformation
4149 * of all values
4150 * @since 1.8
4151 */
4152 public int reduceValuesToInt(long parallelismThreshold,
4153 ToIntFunction<? super V> transformer,
4154 int basis,
4155 IntBinaryOperator reducer) {
4156 if (transformer == null || reducer == null)
4157 throw new NullPointerException();
4158 return new MapReduceValuesToIntTask<K,V>
4159 (null, batchFor(parallelismThreshold), 0, 0, table,
4160 null, transformer, basis, reducer).invoke();
4161 }
4162
4163 /**
4164 * Performs the given action for each entry.
4165 *
4166 * @param parallelismThreshold the (estimated) number of elements
4167 * needed for this operation to be executed in parallel
4168 * @param action the action
4169 * @since 1.8
4170 */
4171 public void forEachEntry(long parallelismThreshold,
4172 Consumer<? super Map.Entry<K,V>> action) {
4173 if (action == null) throw new NullPointerException();
4174 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4175 action).invoke();
4176 }
4177
4178 /**
4179 * Performs the given action for each non-null transformation
4180 * of each entry.
4181 *
4182 * @param parallelismThreshold the (estimated) number of elements
4183 * needed for this operation to be executed in parallel
4184 * @param transformer a function returning the transformation
4185 * for an element, or null if there is no transformation (in
4186 * which case the action is not applied)
4187 * @param action the action
4188 * @param <U> the return type of the transformer
4189 * @since 1.8
4190 */
4191 public <U> void forEachEntry(long parallelismThreshold,
4192 Function<Map.Entry<K,V>, ? extends U> transformer,
4193 Consumer<? super U> action) {
4194 if (transformer == null || action == null)
4195 throw new NullPointerException();
4196 new ForEachTransformedEntryTask<K,V,U>
4197 (null, batchFor(parallelismThreshold), 0, 0, table,
4198 transformer, action).invoke();
4199 }
4200
4201 /**
4202 * Returns a non-null result from applying the given search
4203 * function on each entry, or null if none. Upon success,
4204 * further element processing is suppressed and the results of
4205 * any other parallel invocations of the search function are
4206 * ignored.
4207 *
4208 * @param parallelismThreshold the (estimated) number of elements
4209 * needed for this operation to be executed in parallel
4210 * @param searchFunction a function returning a non-null
4211 * result on success, else null
4212 * @param <U> the return type of the search function
4213 * @return a non-null result from applying the given search
4214 * function on each entry, or null if none
4215 * @since 1.8
4216 */
4217 public <U> U searchEntries(long parallelismThreshold,
4218 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4219 if (searchFunction == null) throw new NullPointerException();
4220 return new SearchEntriesTask<K,V,U>
4221 (null, batchFor(parallelismThreshold), 0, 0, table,
4222 searchFunction, new AtomicReference<U>()).invoke();
4223 }
4224
4225 /**
4226 * Returns the result of accumulating all entries using the
4227 * given reducer to combine values, or null if none.
4228 *
4229 * @param parallelismThreshold the (estimated) number of elements
4230 * needed for this operation to be executed in parallel
4231 * @param reducer a commutative associative combining function
4232 * @return the result of accumulating all entries
4233 * @since 1.8
4234 */
4235 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4236 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4237 if (reducer == null) throw new NullPointerException();
4238 return new ReduceEntriesTask<K,V>
4239 (null, batchFor(parallelismThreshold), 0, 0, table,
4240 null, reducer).invoke();
4241 }
4242
4243 /**
4244 * Returns the result of accumulating the given transformation
4245 * of all entries using the given reducer to combine values,
4246 * or null if none.
4247 *
4248 * @param parallelismThreshold the (estimated) number of elements
4249 * needed for this operation to be executed in parallel
4250 * @param transformer a function returning the transformation
4251 * for an element, or null if there is no transformation (in
4252 * which case it is not combined)
4253 * @param reducer a commutative associative combining function
4254 * @param <U> the return type of the transformer
4255 * @return the result of accumulating the given transformation
4256 * of all entries
4257 * @since 1.8
4258 */
4259 public <U> U reduceEntries(long parallelismThreshold,
4260 Function<Map.Entry<K,V>, ? extends U> transformer,
4261 BiFunction<? super U, ? super U, ? extends U> reducer) {
4262 if (transformer == null || reducer == null)
4263 throw new NullPointerException();
4264 return new MapReduceEntriesTask<K,V,U>
4265 (null, batchFor(parallelismThreshold), 0, 0, table,
4266 null, transformer, reducer).invoke();
4267 }
4268
4269 /**
4270 * Returns the result of accumulating the given transformation
4271 * of all entries using the given reducer to combine values,
4272 * and the given basis as an identity value.
4273 *
4274 * @param parallelismThreshold the (estimated) number of elements
4275 * needed for this operation to be executed in parallel
4276 * @param transformer a function returning the transformation
4277 * for an element
4278 * @param basis the identity (initial default value) for the reduction
4279 * @param reducer a commutative associative combining function
4280 * @return the result of accumulating the given transformation
4281 * of all entries
4282 * @since 1.8
4283 */
4284 public double reduceEntriesToDouble(long parallelismThreshold,
4285 ToDoubleFunction<Map.Entry<K,V>> transformer,
4286 double basis,
4287 DoubleBinaryOperator reducer) {
4288 if (transformer == null || reducer == null)
4289 throw new NullPointerException();
4290 return new MapReduceEntriesToDoubleTask<K,V>
4291 (null, batchFor(parallelismThreshold), 0, 0, table,
4292 null, transformer, basis, reducer).invoke();
4293 }
4294
4295 /**
4296 * Returns the result of accumulating the given transformation
4297 * of all entries using the given reducer to combine values,
4298 * and the given basis as an identity value.
4299 *
4300 * @param parallelismThreshold the (estimated) number of elements
4301 * needed for this operation to be executed in parallel
4302 * @param transformer a function returning the transformation
4303 * for an element
4304 * @param basis the identity (initial default value) for the reduction
4305 * @param reducer a commutative associative combining function
4306 * @return the result of accumulating the given transformation
4307 * of all entries
4308 * @since 1.8
4309 */
4310 public long reduceEntriesToLong(long parallelismThreshold,
4311 ToLongFunction<Map.Entry<K,V>> transformer,
4312 long basis,
4313 LongBinaryOperator reducer) {
4314 if (transformer == null || reducer == null)
4315 throw new NullPointerException();
4316 return new MapReduceEntriesToLongTask<K,V>
4317 (null, batchFor(parallelismThreshold), 0, 0, table,
4318 null, transformer, basis, reducer).invoke();
4319 }
4320
4321 /**
4322 * Returns the result of accumulating the given transformation
4323 * of all entries using the given reducer to combine values,
4324 * and the given basis as an identity value.
4325 *
4326 * @param parallelismThreshold the (estimated) number of elements
4327 * needed for this operation to be executed in parallel
4328 * @param transformer a function returning the transformation
4329 * for an element
4330 * @param basis the identity (initial default value) for the reduction
4331 * @param reducer a commutative associative combining function
4332 * @return the result of accumulating the given transformation
4333 * of all entries
4334 * @since 1.8
4335 */
4336 public int reduceEntriesToInt(long parallelismThreshold,
4337 ToIntFunction<Map.Entry<K,V>> transformer,
4338 int basis,
4339 IntBinaryOperator reducer) {
4340 if (transformer == null || reducer == null)
4341 throw new NullPointerException();
4342 return new MapReduceEntriesToIntTask<K,V>
4343 (null, batchFor(parallelismThreshold), 0, 0, table,
4344 null, transformer, basis, reducer).invoke();
4345 }
4346
4347
4348 /* ----------------Views -------------- */
4349
4350 /**
4351 * Base class for views.
4352 */
4353 abstract static class CollectionView<K,V,E>
4354 implements Collection<E>, java.io.Serializable {
4355 private static final long serialVersionUID = 7249069246763182397L;
4356 final ConcurrentHashMap<K,V> map;
4357 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4358
4359 /**
4360 * Returns the map backing this view.
4361 *
4362 * @return the map backing this view
4363 */
4364 public ConcurrentHashMap<K,V> getMap() { return map; }
4365
4366 /**
4367 * Removes all of the elements from this view, by removing all
4368 * the mappings from the map backing this view.
4369 */
4370 public final void clear() { map.clear(); }
4371 public final int size() { return map.size(); }
4372 public final boolean isEmpty() { return map.isEmpty(); }
4373
4374 // implementations below rely on concrete classes supplying these
4375 // abstract methods
4376 /**
4377 * Returns an iterator over the elements in this collection.
4378 *
4379 * <p>The returned iterator is
4380 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4381 *
4382 * @return an iterator over the elements in this collection
4383 */
4384 public abstract Iterator<E> iterator();
4385 public abstract boolean contains(Object o);
4386 public abstract boolean remove(Object o);
4387
4388 private static final String oomeMsg = "Required array size too large";
4389
4390 public final Object[] toArray() {
4391 long sz = map.mappingCount();
4392 if (sz > MAX_ARRAY_SIZE)
4393 throw new OutOfMemoryError(oomeMsg);
4394 int n = (int)sz;
4395 Object[] r = new Object[n];
4396 int i = 0;
4397 for (E e : this) {
4398 if (i == n) {
4399 if (n >= MAX_ARRAY_SIZE)
4400 throw new OutOfMemoryError(oomeMsg);
4401 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4402 n = MAX_ARRAY_SIZE;
4403 else
4404 n += (n >>> 1) + 1;
4405 r = Arrays.copyOf(r, n);
4406 }
4407 r[i++] = e;
4408 }
4409 return (i == n) ? r : Arrays.copyOf(r, i);
4410 }
4411
4412 @SuppressWarnings("unchecked")
4413 public final <T> T[] toArray(T[] a) {
4414 long sz = map.mappingCount();
4415 if (sz > MAX_ARRAY_SIZE)
4416 throw new OutOfMemoryError(oomeMsg);
4417 int m = (int)sz;
4418 T[] r = (a.length >= m) ? a :
4419 (T[])java.lang.reflect.Array
4420 .newInstance(a.getClass().getComponentType(), m);
4421 int n = r.length;
4422 int i = 0;
4423 for (E e : this) {
4424 if (i == n) {
4425 if (n >= MAX_ARRAY_SIZE)
4426 throw new OutOfMemoryError(oomeMsg);
4427 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4428 n = MAX_ARRAY_SIZE;
4429 else
4430 n += (n >>> 1) + 1;
4431 r = Arrays.copyOf(r, n);
4432 }
4433 r[i++] = (T)e;
4434 }
4435 if (a == r && i < n) {
4436 r[i] = null; // null-terminate
4437 return r;
4438 }
4439 return (i == n) ? r : Arrays.copyOf(r, i);
4440 }
4441
4442 /**
4443 * Returns a string representation of this collection.
4444 * The string representation consists of the string representations
4445 * of the collection's elements in the order they are returned by
4446 * its iterator, enclosed in square brackets ({@code "[]"}).
4447 * Adjacent elements are separated by the characters {@code ", "}
4448 * (comma and space). Elements are converted to strings as by
4449 * {@link String#valueOf(Object)}.
4450 *
4451 * @return a string representation of this collection
4452 */
4453 public final String toString() {
4454 StringBuilder sb = new StringBuilder();
4455 sb.append('[');
4456 Iterator<E> it = iterator();
4457 if (it.hasNext()) {
4458 for (;;) {
4459 Object e = it.next();
4460 sb.append(e == this ? "(this Collection)" : e);
4461 if (!it.hasNext())
4462 break;
4463 sb.append(',').append(' ');
4464 }
4465 }
4466 return sb.append(']').toString();
4467 }
4468
4469 public final boolean containsAll(Collection<?> c) {
4470 if (c != this) {
4471 for (Object e : c) {
4472 if (e == null || !contains(e))
4473 return false;
4474 }
4475 }
4476 return true;
4477 }
4478
4479 public final boolean removeAll(Collection<?> c) {
4480 if (c == null) throw new NullPointerException();
4481 boolean modified = false;
4482 for (Iterator<E> it = iterator(); it.hasNext();) {
4483 if (c.contains(it.next())) {
4484 it.remove();
4485 modified = true;
4486 }
4487 }
4488 return modified;
4489 }
4490
4491 public final boolean retainAll(Collection<?> c) {
4492 if (c == null) throw new NullPointerException();
4493 boolean modified = false;
4494 for (Iterator<E> it = iterator(); it.hasNext();) {
4495 if (!c.contains(it.next())) {
4496 it.remove();
4497 modified = true;
4498 }
4499 }
4500 return modified;
4501 }
4502
4503 }
4504
4505 /**
4506 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4507 * which additions may optionally be enabled by mapping to a
4508 * common value. This class cannot be directly instantiated.
4509 * See {@link #keySet() keySet()},
4510 * {@link #keySet(Object) keySet(V)},
4511 * {@link #newKeySet() newKeySet()},
4512 * {@link #newKeySet(int) newKeySet(int)}.
4513 *
4514 * @since 1.8
4515 */
4516 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4517 implements Set<K>, java.io.Serializable {
4518 private static final long serialVersionUID = 7249069246763182397L;
4519 private final V value;
4520 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4521 super(map);
4522 this.value = value;
4523 }
4524
4525 /**
4526 * Returns the default mapped value for additions,
4527 * or {@code null} if additions are not supported.
4528 *
4529 * @return the default mapped value for additions, or {@code null}
4530 * if not supported
4531 */
4532 public V getMappedValue() { return value; }
4533
4534 /**
4535 * {@inheritDoc}
4536 * @throws NullPointerException if the specified key is null
4537 */
4538 public boolean contains(Object o) { return map.containsKey(o); }
4539
4540 /**
4541 * Removes the key from this map view, by removing the key (and its
4542 * corresponding value) from the backing map. This method does
4543 * nothing if the key is not in the map.
4544 *
4545 * @param o the key to be removed from the backing map
4546 * @return {@code true} if the backing map contained the specified key
4547 * @throws NullPointerException if the specified key is null
4548 */
4549 public boolean remove(Object o) { return map.remove(o) != null; }
4550
4551 /**
4552 * @return an iterator over the keys of the backing map
4553 */
4554 public Iterator<K> iterator() {
4555 Node<K,V>[] t;
4556 ConcurrentHashMap<K,V> m = map;
4557 int f = (t = m.table) == null ? 0 : t.length;
4558 return new KeyIterator<K,V>(t, f, 0, f, m);
4559 }
4560
4561 /**
4562 * Adds the specified key to this set view by mapping the key to
4563 * the default mapped value in the backing map, if defined.
4564 *
4565 * @param e key to be added
4566 * @return {@code true} if this set changed as a result of the call
4567 * @throws NullPointerException if the specified key is null
4568 * @throws UnsupportedOperationException if no default mapped value
4569 * for additions was provided
4570 */
4571 public boolean add(K e) {
4572 V v;
4573 if ((v = value) == null)
4574 throw new UnsupportedOperationException();
4575 return map.putVal(e, v, true) == null;
4576 }
4577
4578 /**
4579 * Adds all of the elements in the specified collection to this set,
4580 * as if by calling {@link #add} on each one.
4581 *
4582 * @param c the elements to be inserted into this set
4583 * @return {@code true} if this set changed as a result of the call
4584 * @throws NullPointerException if the collection or any of its
4585 * elements are {@code null}
4586 * @throws UnsupportedOperationException if no default mapped value
4587 * for additions was provided
4588 */
4589 public boolean addAll(Collection<? extends K> c) {
4590 boolean added = false;
4591 V v;
4592 if ((v = value) == null)
4593 throw new UnsupportedOperationException();
4594 for (K e : c) {
4595 if (map.putVal(e, v, true) == null)
4596 added = true;
4597 }
4598 return added;
4599 }
4600
4601 public int hashCode() {
4602 int h = 0;
4603 for (K e : this)
4604 h += e.hashCode();
4605 return h;
4606 }
4607
4608 public boolean equals(Object o) {
4609 Set<?> c;
4610 return ((o instanceof Set) &&
4611 ((c = (Set<?>)o) == this ||
4612 (containsAll(c) && c.containsAll(this))));
4613 }
4614
4615 public Spliterator<K> spliterator() {
4616 Node<K,V>[] t;
4617 ConcurrentHashMap<K,V> m = map;
4618 long n = m.sumCount();
4619 int f = (t = m.table) == null ? 0 : t.length;
4620 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4621 }
4622
4623 public void forEach(Consumer<? super K> action) {
4624 if (action == null) throw new NullPointerException();
4625 Node<K,V>[] t;
4626 if ((t = map.table) != null) {
4627 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4628 for (Node<K,V> p; (p = it.advance()) != null; )
4629 action.accept(p.key);
4630 }
4631 }
4632 }
4633
4634 /**
4635 * A view of a ConcurrentHashMap as a {@link Collection} of
4636 * values, in which additions are disabled. This class cannot be
4637 * directly instantiated. See {@link #values()}.
4638 */
4639 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4640 implements Collection<V>, java.io.Serializable {
4641 private static final long serialVersionUID = 2249069246763182397L;
4642 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4643 public final boolean contains(Object o) {
4644 return map.containsValue(o);
4645 }
4646
4647 public final boolean remove(Object o) {
4648 if (o != null) {
4649 for (Iterator<V> it = iterator(); it.hasNext();) {
4650 if (o.equals(it.next())) {
4651 it.remove();
4652 return true;
4653 }
4654 }
4655 }
4656 return false;
4657 }
4658
4659 public final Iterator<V> iterator() {
4660 ConcurrentHashMap<K,V> m = map;
4661 Node<K,V>[] t;
4662 int f = (t = m.table) == null ? 0 : t.length;
4663 return new ValueIterator<K,V>(t, f, 0, f, m);
4664 }
4665
4666 public final boolean add(V e) {
4667 throw new UnsupportedOperationException();
4668 }
4669 public final boolean addAll(Collection<? extends V> c) {
4670 throw new UnsupportedOperationException();
4671 }
4672
4673 public Spliterator<V> spliterator() {
4674 Node<K,V>[] t;
4675 ConcurrentHashMap<K,V> m = map;
4676 long n = m.sumCount();
4677 int f = (t = m.table) == null ? 0 : t.length;
4678 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4679 }
4680
4681 public void forEach(Consumer<? super V> action) {
4682 if (action == null) throw new NullPointerException();
4683 Node<K,V>[] t;
4684 if ((t = map.table) != null) {
4685 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4686 for (Node<K,V> p; (p = it.advance()) != null; )
4687 action.accept(p.val);
4688 }
4689 }
4690 }
4691
4692 /**
4693 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4694 * entries. This class cannot be directly instantiated. See
4695 * {@link #entrySet()}.
4696 */
4697 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4698 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4699 private static final long serialVersionUID = 2249069246763182397L;
4700 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4701
4702 public boolean contains(Object o) {
4703 Object k, v, r; Map.Entry<?,?> e;
4704 return ((o instanceof Map.Entry) &&
4705 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4706 (r = map.get(k)) != null &&
4707 (v = e.getValue()) != null &&
4708 (v == r || v.equals(r)));
4709 }
4710
4711 public boolean remove(Object o) {
4712 Object k, v; Map.Entry<?,?> e;
4713 return ((o instanceof Map.Entry) &&
4714 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4715 (v = e.getValue()) != null &&
4716 map.remove(k, v));
4717 }
4718
4719 /**
4720 * @return an iterator over the entries of the backing map
4721 */
4722 public Iterator<Map.Entry<K,V>> iterator() {
4723 ConcurrentHashMap<K,V> m = map;
4724 Node<K,V>[] t;
4725 int f = (t = m.table) == null ? 0 : t.length;
4726 return new EntryIterator<K,V>(t, f, 0, f, m);
4727 }
4728
4729 public boolean add(Entry<K,V> e) {
4730 return map.putVal(e.getKey(), e.getValue(), false) == null;
4731 }
4732
4733 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4734 boolean added = false;
4735 for (Entry<K,V> e : c) {
4736 if (add(e))
4737 added = true;
4738 }
4739 return added;
4740 }
4741
4742 public final int hashCode() {
4743 int h = 0;
4744 Node<K,V>[] t;
4745 if ((t = map.table) != null) {
4746 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4747 for (Node<K,V> p; (p = it.advance()) != null; ) {
4748 h += p.hashCode();
4749 }
4750 }
4751 return h;
4752 }
4753
4754 public final boolean equals(Object o) {
4755 Set<?> c;
4756 return ((o instanceof Set) &&
4757 ((c = (Set<?>)o) == this ||
4758 (containsAll(c) && c.containsAll(this))));
4759 }
4760
4761 public Spliterator<Map.Entry<K,V>> spliterator() {
4762 Node<K,V>[] t;
4763 ConcurrentHashMap<K,V> m = map;
4764 long n = m.sumCount();
4765 int f = (t = m.table) == null ? 0 : t.length;
4766 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4767 }
4768
4769 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4770 if (action == null) throw new NullPointerException();
4771 Node<K,V>[] t;
4772 if ((t = map.table) != null) {
4773 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4774 for (Node<K,V> p; (p = it.advance()) != null; )
4775 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4776 }
4777 }
4778
4779 }
4780
4781 // -------------------------------------------------------
4782
4783 /**
4784 * Base class for bulk tasks. Repeats some fields and code from
4785 * class Traverser, because we need to subclass CountedCompleter.
4786 */
4787 @SuppressWarnings("serial")
4788 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4789 Node<K,V>[] tab; // same as Traverser
4790 Node<K,V> next;
4791 TableStack<K,V> stack, spare;
4792 int index;
4793 int baseIndex;
4794 int baseLimit;
4795 final int baseSize;
4796 int batch; // split control
4797
4798 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4799 super(par);
4800 this.batch = b;
4801 this.index = this.baseIndex = i;
4802 if ((this.tab = t) == null)
4803 this.baseSize = this.baseLimit = 0;
4804 else if (par == null)
4805 this.baseSize = this.baseLimit = t.length;
4806 else {
4807 this.baseLimit = f;
4808 this.baseSize = par.baseSize;
4809 }
4810 }
4811
4812 /**
4813 * Same as Traverser version
4814 */
4815 final Node<K,V> advance() {
4816 Node<K,V> e;
4817 if ((e = next) != null)
4818 e = e.next;
4819 for (;;) {
4820 Node<K,V>[] t; int i, n;
4821 if (e != null)
4822 return next = e;
4823 if (baseIndex >= baseLimit || (t = tab) == null ||
4824 (n = t.length) <= (i = index) || i < 0)
4825 return next = null;
4826 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4827 if (e instanceof ForwardingNode) {
4828 tab = ((ForwardingNode<K,V>)e).nextTable;
4829 e = null;
4830 pushState(t, i, n);
4831 continue;
4832 }
4833 else if (e instanceof TreeBin)
4834 e = ((TreeBin<K,V>)e).first;
4835 else
4836 e = null;
4837 }
4838 if (stack != null)
4839 recoverState(n);
4840 else if ((index = i + baseSize) >= n)
4841 index = ++baseIndex;
4842 }
4843 }
4844
4845 private void pushState(Node<K,V>[] t, int i, int n) {
4846 TableStack<K,V> s = spare;
4847 if (s != null)
4848 spare = s.next;
4849 else
4850 s = new TableStack<K,V>();
4851 s.tab = t;
4852 s.length = n;
4853 s.index = i;
4854 s.next = stack;
4855 stack = s;
4856 }
4857
4858 private void recoverState(int n) {
4859 TableStack<K,V> s; int len;
4860 while ((s = stack) != null && (index += (len = s.length)) >= n) {
4861 n = len;
4862 index = s.index;
4863 tab = s.tab;
4864 s.tab = null;
4865 TableStack<K,V> next = s.next;
4866 s.next = spare; // save for reuse
4867 stack = next;
4868 spare = s;
4869 }
4870 if (s == null && (index += baseSize) >= n)
4871 index = ++baseIndex;
4872 }
4873 }
4874
4875 /*
4876 * Task classes. Coded in a regular but ugly format/style to
4877 * simplify checks that each variant differs in the right way from
4878 * others. The null screenings exist because compilers cannot tell
4879 * that we've already null-checked task arguments, so we force
4880 * simplest hoisted bypass to help avoid convoluted traps.
4881 */
4882 @SuppressWarnings("serial")
4883 static final class ForEachKeyTask<K,V>
4884 extends BulkTask<K,V,Void> {
4885 final Consumer<? super K> action;
4886 ForEachKeyTask
4887 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4888 Consumer<? super K> action) {
4889 super(p, b, i, f, t);
4890 this.action = action;
4891 }
4892 public final void compute() {
4893 final Consumer<? super K> action;
4894 if ((action = this.action) != null) {
4895 for (int i = baseIndex, f, h; batch > 0 &&
4896 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4897 addToPendingCount(1);
4898 new ForEachKeyTask<K,V>
4899 (this, batch >>>= 1, baseLimit = h, f, tab,
4900 action).fork();
4901 }
4902 for (Node<K,V> p; (p = advance()) != null;)
4903 action.accept(p.key);
4904 propagateCompletion();
4905 }
4906 }
4907 }
4908
4909 @SuppressWarnings("serial")
4910 static final class ForEachValueTask<K,V>
4911 extends BulkTask<K,V,Void> {
4912 final Consumer<? super V> action;
4913 ForEachValueTask
4914 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4915 Consumer<? super V> action) {
4916 super(p, b, i, f, t);
4917 this.action = action;
4918 }
4919 public final void compute() {
4920 final Consumer<? super V> action;
4921 if ((action = this.action) != null) {
4922 for (int i = baseIndex, f, h; batch > 0 &&
4923 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4924 addToPendingCount(1);
4925 new ForEachValueTask<K,V>
4926 (this, batch >>>= 1, baseLimit = h, f, tab,
4927 action).fork();
4928 }
4929 for (Node<K,V> p; (p = advance()) != null;)
4930 action.accept(p.val);
4931 propagateCompletion();
4932 }
4933 }
4934 }
4935
4936 @SuppressWarnings("serial")
4937 static final class ForEachEntryTask<K,V>
4938 extends BulkTask<K,V,Void> {
4939 final Consumer<? super Entry<K,V>> action;
4940 ForEachEntryTask
4941 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4942 Consumer<? super Entry<K,V>> action) {
4943 super(p, b, i, f, t);
4944 this.action = action;
4945 }
4946 public final void compute() {
4947 final Consumer<? super Entry<K,V>> action;
4948 if ((action = this.action) != null) {
4949 for (int i = baseIndex, f, h; batch > 0 &&
4950 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4951 addToPendingCount(1);
4952 new ForEachEntryTask<K,V>
4953 (this, batch >>>= 1, baseLimit = h, f, tab,
4954 action).fork();
4955 }
4956 for (Node<K,V> p; (p = advance()) != null; )
4957 action.accept(p);
4958 propagateCompletion();
4959 }
4960 }
4961 }
4962
4963 @SuppressWarnings("serial")
4964 static final class ForEachMappingTask<K,V>
4965 extends BulkTask<K,V,Void> {
4966 final BiConsumer<? super K, ? super V> action;
4967 ForEachMappingTask
4968 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4969 BiConsumer<? super K,? super V> action) {
4970 super(p, b, i, f, t);
4971 this.action = action;
4972 }
4973 public final void compute() {
4974 final BiConsumer<? super K, ? super V> action;
4975 if ((action = this.action) != null) {
4976 for (int i = baseIndex, f, h; batch > 0 &&
4977 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4978 addToPendingCount(1);
4979 new ForEachMappingTask<K,V>
4980 (this, batch >>>= 1, baseLimit = h, f, tab,
4981 action).fork();
4982 }
4983 for (Node<K,V> p; (p = advance()) != null; )
4984 action.accept(p.key, p.val);
4985 propagateCompletion();
4986 }
4987 }
4988 }
4989
4990 @SuppressWarnings("serial")
4991 static final class ForEachTransformedKeyTask<K,V,U>
4992 extends BulkTask<K,V,Void> {
4993 final Function<? super K, ? extends U> transformer;
4994 final Consumer<? super U> action;
4995 ForEachTransformedKeyTask
4996 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4997 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
4998 super(p, b, i, f, t);
4999 this.transformer = transformer; this.action = action;
5000 }
5001 public final void compute() {
5002 final Function<? super K, ? extends U> transformer;
5003 final Consumer<? super U> action;
5004 if ((transformer = this.transformer) != null &&
5005 (action = this.action) != null) {
5006 for (int i = baseIndex, f, h; batch > 0 &&
5007 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5008 addToPendingCount(1);
5009 new ForEachTransformedKeyTask<K,V,U>
5010 (this, batch >>>= 1, baseLimit = h, f, tab,
5011 transformer, action).fork();
5012 }
5013 for (Node<K,V> p; (p = advance()) != null; ) {
5014 U u;
5015 if ((u = transformer.apply(p.key)) != null)
5016 action.accept(u);
5017 }
5018 propagateCompletion();
5019 }
5020 }
5021 }
5022
5023 @SuppressWarnings("serial")
5024 static final class ForEachTransformedValueTask<K,V,U>
5025 extends BulkTask<K,V,Void> {
5026 final Function<? super V, ? extends U> transformer;
5027 final Consumer<? super U> action;
5028 ForEachTransformedValueTask
5029 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5030 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5031 super(p, b, i, f, t);
5032 this.transformer = transformer; this.action = action;
5033 }
5034 public final void compute() {
5035 final Function<? super V, ? extends U> transformer;
5036 final Consumer<? super U> action;
5037 if ((transformer = this.transformer) != null &&
5038 (action = this.action) != null) {
5039 for (int i = baseIndex, f, h; batch > 0 &&
5040 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5041 addToPendingCount(1);
5042 new ForEachTransformedValueTask<K,V,U>
5043 (this, batch >>>= 1, baseLimit = h, f, tab,
5044 transformer, action).fork();
5045 }
5046 for (Node<K,V> p; (p = advance()) != null; ) {
5047 U u;
5048 if ((u = transformer.apply(p.val)) != null)
5049 action.accept(u);
5050 }
5051 propagateCompletion();
5052 }
5053 }
5054 }
5055
5056 @SuppressWarnings("serial")
5057 static final class ForEachTransformedEntryTask<K,V,U>
5058 extends BulkTask<K,V,Void> {
5059 final Function<Map.Entry<K,V>, ? extends U> transformer;
5060 final Consumer<? super U> action;
5061 ForEachTransformedEntryTask
5062 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5063 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5064 super(p, b, i, f, t);
5065 this.transformer = transformer; this.action = action;
5066 }
5067 public final void compute() {
5068 final Function<Map.Entry<K,V>, ? extends U> transformer;
5069 final Consumer<? super U> action;
5070 if ((transformer = this.transformer) != null &&
5071 (action = this.action) != null) {
5072 for (int i = baseIndex, f, h; batch > 0 &&
5073 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5074 addToPendingCount(1);
5075 new ForEachTransformedEntryTask<K,V,U>
5076 (this, batch >>>= 1, baseLimit = h, f, tab,
5077 transformer, action).fork();
5078 }
5079 for (Node<K,V> p; (p = advance()) != null; ) {
5080 U u;
5081 if ((u = transformer.apply(p)) != null)
5082 action.accept(u);
5083 }
5084 propagateCompletion();
5085 }
5086 }
5087 }
5088
5089 @SuppressWarnings("serial")
5090 static final class ForEachTransformedMappingTask<K,V,U>
5091 extends BulkTask<K,V,Void> {
5092 final BiFunction<? super K, ? super V, ? extends U> transformer;
5093 final Consumer<? super U> action;
5094 ForEachTransformedMappingTask
5095 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5096 BiFunction<? super K, ? super V, ? extends U> transformer,
5097 Consumer<? super U> action) {
5098 super(p, b, i, f, t);
5099 this.transformer = transformer; this.action = action;
5100 }
5101 public final void compute() {
5102 final BiFunction<? super K, ? super V, ? extends U> transformer;
5103 final Consumer<? super U> action;
5104 if ((transformer = this.transformer) != null &&
5105 (action = this.action) != null) {
5106 for (int i = baseIndex, f, h; batch > 0 &&
5107 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5108 addToPendingCount(1);
5109 new ForEachTransformedMappingTask<K,V,U>
5110 (this, batch >>>= 1, baseLimit = h, f, tab,
5111 transformer, action).fork();
5112 }
5113 for (Node<K,V> p; (p = advance()) != null; ) {
5114 U u;
5115 if ((u = transformer.apply(p.key, p.val)) != null)
5116 action.accept(u);
5117 }
5118 propagateCompletion();
5119 }
5120 }
5121 }
5122
5123 @SuppressWarnings("serial")
5124 static final class SearchKeysTask<K,V,U>
5125 extends BulkTask<K,V,U> {
5126 final Function<? super K, ? extends U> searchFunction;
5127 final AtomicReference<U> result;
5128 SearchKeysTask
5129 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5130 Function<? super K, ? extends U> searchFunction,
5131 AtomicReference<U> result) {
5132 super(p, b, i, f, t);
5133 this.searchFunction = searchFunction; this.result = result;
5134 }
5135 public final U getRawResult() { return result.get(); }
5136 public final void compute() {
5137 final Function<? super K, ? extends U> searchFunction;
5138 final AtomicReference<U> result;
5139 if ((searchFunction = this.searchFunction) != null &&
5140 (result = this.result) != null) {
5141 for (int i = baseIndex, f, h; batch > 0 &&
5142 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5143 if (result.get() != null)
5144 return;
5145 addToPendingCount(1);
5146 new SearchKeysTask<K,V,U>
5147 (this, batch >>>= 1, baseLimit = h, f, tab,
5148 searchFunction, result).fork();
5149 }
5150 while (result.get() == null) {
5151 U u;
5152 Node<K,V> p;
5153 if ((p = advance()) == null) {
5154 propagateCompletion();
5155 break;
5156 }
5157 if ((u = searchFunction.apply(p.key)) != null) {
5158 if (result.compareAndSet(null, u))
5159 quietlyCompleteRoot();
5160 break;
5161 }
5162 }
5163 }
5164 }
5165 }
5166
5167 @SuppressWarnings("serial")
5168 static final class SearchValuesTask<K,V,U>
5169 extends BulkTask<K,V,U> {
5170 final Function<? super V, ? extends U> searchFunction;
5171 final AtomicReference<U> result;
5172 SearchValuesTask
5173 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5174 Function<? super V, ? extends U> searchFunction,
5175 AtomicReference<U> result) {
5176 super(p, b, i, f, t);
5177 this.searchFunction = searchFunction; this.result = result;
5178 }
5179 public final U getRawResult() { return result.get(); }
5180 public final void compute() {
5181 final Function<? super V, ? extends U> searchFunction;
5182 final AtomicReference<U> result;
5183 if ((searchFunction = this.searchFunction) != null &&
5184 (result = this.result) != null) {
5185 for (int i = baseIndex, f, h; batch > 0 &&
5186 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5187 if (result.get() != null)
5188 return;
5189 addToPendingCount(1);
5190 new SearchValuesTask<K,V,U>
5191 (this, batch >>>= 1, baseLimit = h, f, tab,
5192 searchFunction, result).fork();
5193 }
5194 while (result.get() == null) {
5195 U u;
5196 Node<K,V> p;
5197 if ((p = advance()) == null) {
5198 propagateCompletion();
5199 break;
5200 }
5201 if ((u = searchFunction.apply(p.val)) != null) {
5202 if (result.compareAndSet(null, u))
5203 quietlyCompleteRoot();
5204 break;
5205 }
5206 }
5207 }
5208 }
5209 }
5210
5211 @SuppressWarnings("serial")
5212 static final class SearchEntriesTask<K,V,U>
5213 extends BulkTask<K,V,U> {
5214 final Function<Entry<K,V>, ? extends U> searchFunction;
5215 final AtomicReference<U> result;
5216 SearchEntriesTask
5217 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5218 Function<Entry<K,V>, ? extends U> searchFunction,
5219 AtomicReference<U> result) {
5220 super(p, b, i, f, t);
5221 this.searchFunction = searchFunction; this.result = result;
5222 }
5223 public final U getRawResult() { return result.get(); }
5224 public final void compute() {
5225 final Function<Entry<K,V>, ? extends U> searchFunction;
5226 final AtomicReference<U> result;
5227 if ((searchFunction = this.searchFunction) != null &&
5228 (result = this.result) != null) {
5229 for (int i = baseIndex, f, h; batch > 0 &&
5230 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5231 if (result.get() != null)
5232 return;
5233 addToPendingCount(1);
5234 new SearchEntriesTask<K,V,U>
5235 (this, batch >>>= 1, baseLimit = h, f, tab,
5236 searchFunction, result).fork();
5237 }
5238 while (result.get() == null) {
5239 U u;
5240 Node<K,V> p;
5241 if ((p = advance()) == null) {
5242 propagateCompletion();
5243 break;
5244 }
5245 if ((u = searchFunction.apply(p)) != null) {
5246 if (result.compareAndSet(null, u))
5247 quietlyCompleteRoot();
5248 return;
5249 }
5250 }
5251 }
5252 }
5253 }
5254
5255 @SuppressWarnings("serial")
5256 static final class SearchMappingsTask<K,V,U>
5257 extends BulkTask<K,V,U> {
5258 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5259 final AtomicReference<U> result;
5260 SearchMappingsTask
5261 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5262 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5263 AtomicReference<U> result) {
5264 super(p, b, i, f, t);
5265 this.searchFunction = searchFunction; this.result = result;
5266 }
5267 public final U getRawResult() { return result.get(); }
5268 public final void compute() {
5269 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5270 final AtomicReference<U> result;
5271 if ((searchFunction = this.searchFunction) != null &&
5272 (result = this.result) != null) {
5273 for (int i = baseIndex, f, h; batch > 0 &&
5274 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5275 if (result.get() != null)
5276 return;
5277 addToPendingCount(1);
5278 new SearchMappingsTask<K,V,U>
5279 (this, batch >>>= 1, baseLimit = h, f, tab,
5280 searchFunction, result).fork();
5281 }
5282 while (result.get() == null) {
5283 U u;
5284 Node<K,V> p;
5285 if ((p = advance()) == null) {
5286 propagateCompletion();
5287 break;
5288 }
5289 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5290 if (result.compareAndSet(null, u))
5291 quietlyCompleteRoot();
5292 break;
5293 }
5294 }
5295 }
5296 }
5297 }
5298
5299 @SuppressWarnings("serial")
5300 static final class ReduceKeysTask<K,V>
5301 extends BulkTask<K,V,K> {
5302 final BiFunction<? super K, ? super K, ? extends K> reducer;
5303 K result;
5304 ReduceKeysTask<K,V> rights, nextRight;
5305 ReduceKeysTask
5306 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5307 ReduceKeysTask<K,V> nextRight,
5308 BiFunction<? super K, ? super K, ? extends K> reducer) {
5309 super(p, b, i, f, t); this.nextRight = nextRight;
5310 this.reducer = reducer;
5311 }
5312 public final K getRawResult() { return result; }
5313 public final void compute() {
5314 final BiFunction<? super K, ? super K, ? extends K> reducer;
5315 if ((reducer = this.reducer) != null) {
5316 for (int i = baseIndex, f, h; batch > 0 &&
5317 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5318 addToPendingCount(1);
5319 (rights = new ReduceKeysTask<K,V>
5320 (this, batch >>>= 1, baseLimit = h, f, tab,
5321 rights, reducer)).fork();
5322 }
5323 K r = null;
5324 for (Node<K,V> p; (p = advance()) != null; ) {
5325 K u = p.key;
5326 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5327 }
5328 result = r;
5329 CountedCompleter<?> c;
5330 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5331 @SuppressWarnings("unchecked")
5332 ReduceKeysTask<K,V>
5333 t = (ReduceKeysTask<K,V>)c,
5334 s = t.rights;
5335 while (s != null) {
5336 K tr, sr;
5337 if ((sr = s.result) != null)
5338 t.result = (((tr = t.result) == null) ? sr :
5339 reducer.apply(tr, sr));
5340 s = t.rights = s.nextRight;
5341 }
5342 }
5343 }
5344 }
5345 }
5346
5347 @SuppressWarnings("serial")
5348 static final class ReduceValuesTask<K,V>
5349 extends BulkTask<K,V,V> {
5350 final BiFunction<? super V, ? super V, ? extends V> reducer;
5351 V result;
5352 ReduceValuesTask<K,V> rights, nextRight;
5353 ReduceValuesTask
5354 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5355 ReduceValuesTask<K,V> nextRight,
5356 BiFunction<? super V, ? super V, ? extends V> reducer) {
5357 super(p, b, i, f, t); this.nextRight = nextRight;
5358 this.reducer = reducer;
5359 }
5360 public final V getRawResult() { return result; }
5361 public final void compute() {
5362 final BiFunction<? super V, ? super V, ? extends V> reducer;
5363 if ((reducer = this.reducer) != null) {
5364 for (int i = baseIndex, f, h; batch > 0 &&
5365 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5366 addToPendingCount(1);
5367 (rights = new ReduceValuesTask<K,V>
5368 (this, batch >>>= 1, baseLimit = h, f, tab,
5369 rights, reducer)).fork();
5370 }
5371 V r = null;
5372 for (Node<K,V> p; (p = advance()) != null; ) {
5373 V v = p.val;
5374 r = (r == null) ? v : reducer.apply(r, v);
5375 }
5376 result = r;
5377 CountedCompleter<?> c;
5378 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5379 @SuppressWarnings("unchecked")
5380 ReduceValuesTask<K,V>
5381 t = (ReduceValuesTask<K,V>)c,
5382 s = t.rights;
5383 while (s != null) {
5384 V tr, sr;
5385 if ((sr = s.result) != null)
5386 t.result = (((tr = t.result) == null) ? sr :
5387 reducer.apply(tr, sr));
5388 s = t.rights = s.nextRight;
5389 }
5390 }
5391 }
5392 }
5393 }
5394
5395 @SuppressWarnings("serial")
5396 static final class ReduceEntriesTask<K,V>
5397 extends BulkTask<K,V,Map.Entry<K,V>> {
5398 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5399 Map.Entry<K,V> result;
5400 ReduceEntriesTask<K,V> rights, nextRight;
5401 ReduceEntriesTask
5402 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5403 ReduceEntriesTask<K,V> nextRight,
5404 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5405 super(p, b, i, f, t); this.nextRight = nextRight;
5406 this.reducer = reducer;
5407 }
5408 public final Map.Entry<K,V> getRawResult() { return result; }
5409 public final void compute() {
5410 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5411 if ((reducer = this.reducer) != null) {
5412 for (int i = baseIndex, f, h; batch > 0 &&
5413 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5414 addToPendingCount(1);
5415 (rights = new ReduceEntriesTask<K,V>
5416 (this, batch >>>= 1, baseLimit = h, f, tab,
5417 rights, reducer)).fork();
5418 }
5419 Map.Entry<K,V> r = null;
5420 for (Node<K,V> p; (p = advance()) != null; )
5421 r = (r == null) ? p : reducer.apply(r, p);
5422 result = r;
5423 CountedCompleter<?> c;
5424 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5425 @SuppressWarnings("unchecked")
5426 ReduceEntriesTask<K,V>
5427 t = (ReduceEntriesTask<K,V>)c,
5428 s = t.rights;
5429 while (s != null) {
5430 Map.Entry<K,V> tr, sr;
5431 if ((sr = s.result) != null)
5432 t.result = (((tr = t.result) == null) ? sr :
5433 reducer.apply(tr, sr));
5434 s = t.rights = s.nextRight;
5435 }
5436 }
5437 }
5438 }
5439 }
5440
5441 @SuppressWarnings("serial")
5442 static final class MapReduceKeysTask<K,V,U>
5443 extends BulkTask<K,V,U> {
5444 final Function<? super K, ? extends U> transformer;
5445 final BiFunction<? super U, ? super U, ? extends U> reducer;
5446 U result;
5447 MapReduceKeysTask<K,V,U> rights, nextRight;
5448 MapReduceKeysTask
5449 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5450 MapReduceKeysTask<K,V,U> nextRight,
5451 Function<? super K, ? extends U> transformer,
5452 BiFunction<? super U, ? super U, ? extends U> reducer) {
5453 super(p, b, i, f, t); this.nextRight = nextRight;
5454 this.transformer = transformer;
5455 this.reducer = reducer;
5456 }
5457 public final U getRawResult() { return result; }
5458 public final void compute() {
5459 final Function<? super K, ? extends U> transformer;
5460 final BiFunction<? super U, ? super U, ? extends U> reducer;
5461 if ((transformer = this.transformer) != null &&
5462 (reducer = this.reducer) != null) {
5463 for (int i = baseIndex, f, h; batch > 0 &&
5464 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5465 addToPendingCount(1);
5466 (rights = new MapReduceKeysTask<K,V,U>
5467 (this, batch >>>= 1, baseLimit = h, f, tab,
5468 rights, transformer, reducer)).fork();
5469 }
5470 U r = null;
5471 for (Node<K,V> p; (p = advance()) != null; ) {
5472 U u;
5473 if ((u = transformer.apply(p.key)) != null)
5474 r = (r == null) ? u : reducer.apply(r, u);
5475 }
5476 result = r;
5477 CountedCompleter<?> c;
5478 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5479 @SuppressWarnings("unchecked")
5480 MapReduceKeysTask<K,V,U>
5481 t = (MapReduceKeysTask<K,V,U>)c,
5482 s = t.rights;
5483 while (s != null) {
5484 U tr, sr;
5485 if ((sr = s.result) != null)
5486 t.result = (((tr = t.result) == null) ? sr :
5487 reducer.apply(tr, sr));
5488 s = t.rights = s.nextRight;
5489 }
5490 }
5491 }
5492 }
5493 }
5494
5495 @SuppressWarnings("serial")
5496 static final class MapReduceValuesTask<K,V,U>
5497 extends BulkTask<K,V,U> {
5498 final Function<? super V, ? extends U> transformer;
5499 final BiFunction<? super U, ? super U, ? extends U> reducer;
5500 U result;
5501 MapReduceValuesTask<K,V,U> rights, nextRight;
5502 MapReduceValuesTask
5503 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5504 MapReduceValuesTask<K,V,U> nextRight,
5505 Function<? super V, ? extends U> transformer,
5506 BiFunction<? super U, ? super U, ? extends U> reducer) {
5507 super(p, b, i, f, t); this.nextRight = nextRight;
5508 this.transformer = transformer;
5509 this.reducer = reducer;
5510 }
5511 public final U getRawResult() { return result; }
5512 public final void compute() {
5513 final Function<? super V, ? extends U> transformer;
5514 final BiFunction<? super U, ? super U, ? extends U> reducer;
5515 if ((transformer = this.transformer) != null &&
5516 (reducer = this.reducer) != null) {
5517 for (int i = baseIndex, f, h; batch > 0 &&
5518 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5519 addToPendingCount(1);
5520 (rights = new MapReduceValuesTask<K,V,U>
5521 (this, batch >>>= 1, baseLimit = h, f, tab,
5522 rights, transformer, reducer)).fork();
5523 }
5524 U r = null;
5525 for (Node<K,V> p; (p = advance()) != null; ) {
5526 U u;
5527 if ((u = transformer.apply(p.val)) != null)
5528 r = (r == null) ? u : reducer.apply(r, u);
5529 }
5530 result = r;
5531 CountedCompleter<?> c;
5532 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5533 @SuppressWarnings("unchecked")
5534 MapReduceValuesTask<K,V,U>
5535 t = (MapReduceValuesTask<K,V,U>)c,
5536 s = t.rights;
5537 while (s != null) {
5538 U tr, sr;
5539 if ((sr = s.result) != null)
5540 t.result = (((tr = t.result) == null) ? sr :
5541 reducer.apply(tr, sr));
5542 s = t.rights = s.nextRight;
5543 }
5544 }
5545 }
5546 }
5547 }
5548
5549 @SuppressWarnings("serial")
5550 static final class MapReduceEntriesTask<K,V,U>
5551 extends BulkTask<K,V,U> {
5552 final Function<Map.Entry<K,V>, ? extends U> transformer;
5553 final BiFunction<? super U, ? super U, ? extends U> reducer;
5554 U result;
5555 MapReduceEntriesTask<K,V,U> rights, nextRight;
5556 MapReduceEntriesTask
5557 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5558 MapReduceEntriesTask<K,V,U> nextRight,
5559 Function<Map.Entry<K,V>, ? extends U> transformer,
5560 BiFunction<? super U, ? super U, ? extends U> reducer) {
5561 super(p, b, i, f, t); this.nextRight = nextRight;
5562 this.transformer = transformer;
5563 this.reducer = reducer;
5564 }
5565 public final U getRawResult() { return result; }
5566 public final void compute() {
5567 final Function<Map.Entry<K,V>, ? extends U> transformer;
5568 final BiFunction<? super U, ? super U, ? extends U> reducer;
5569 if ((transformer = this.transformer) != null &&
5570 (reducer = this.reducer) != null) {
5571 for (int i = baseIndex, f, h; batch > 0 &&
5572 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5573 addToPendingCount(1);
5574 (rights = new MapReduceEntriesTask<K,V,U>
5575 (this, batch >>>= 1, baseLimit = h, f, tab,
5576 rights, transformer, reducer)).fork();
5577 }
5578 U r = null;
5579 for (Node<K,V> p; (p = advance()) != null; ) {
5580 U u;
5581 if ((u = transformer.apply(p)) != null)
5582 r = (r == null) ? u : reducer.apply(r, u);
5583 }
5584 result = r;
5585 CountedCompleter<?> c;
5586 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5587 @SuppressWarnings("unchecked")
5588 MapReduceEntriesTask<K,V,U>
5589 t = (MapReduceEntriesTask<K,V,U>)c,
5590 s = t.rights;
5591 while (s != null) {
5592 U tr, sr;
5593 if ((sr = s.result) != null)
5594 t.result = (((tr = t.result) == null) ? sr :
5595 reducer.apply(tr, sr));
5596 s = t.rights = s.nextRight;
5597 }
5598 }
5599 }
5600 }
5601 }
5602
5603 @SuppressWarnings("serial")
5604 static final class MapReduceMappingsTask<K,V,U>
5605 extends BulkTask<K,V,U> {
5606 final BiFunction<? super K, ? super V, ? extends U> transformer;
5607 final BiFunction<? super U, ? super U, ? extends U> reducer;
5608 U result;
5609 MapReduceMappingsTask<K,V,U> rights, nextRight;
5610 MapReduceMappingsTask
5611 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5612 MapReduceMappingsTask<K,V,U> nextRight,
5613 BiFunction<? super K, ? super V, ? extends U> transformer,
5614 BiFunction<? super U, ? super U, ? extends U> reducer) {
5615 super(p, b, i, f, t); this.nextRight = nextRight;
5616 this.transformer = transformer;
5617 this.reducer = reducer;
5618 }
5619 public final U getRawResult() { return result; }
5620 public final void compute() {
5621 final BiFunction<? super K, ? super V, ? extends U> transformer;
5622 final BiFunction<? super U, ? super U, ? extends U> reducer;
5623 if ((transformer = this.transformer) != null &&
5624 (reducer = this.reducer) != null) {
5625 for (int i = baseIndex, f, h; batch > 0 &&
5626 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5627 addToPendingCount(1);
5628 (rights = new MapReduceMappingsTask<K,V,U>
5629 (this, batch >>>= 1, baseLimit = h, f, tab,
5630 rights, transformer, reducer)).fork();
5631 }
5632 U r = null;
5633 for (Node<K,V> p; (p = advance()) != null; ) {
5634 U u;
5635 if ((u = transformer.apply(p.key, p.val)) != null)
5636 r = (r == null) ? u : reducer.apply(r, u);
5637 }
5638 result = r;
5639 CountedCompleter<?> c;
5640 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5641 @SuppressWarnings("unchecked")
5642 MapReduceMappingsTask<K,V,U>
5643 t = (MapReduceMappingsTask<K,V,U>)c,
5644 s = t.rights;
5645 while (s != null) {
5646 U tr, sr;
5647 if ((sr = s.result) != null)
5648 t.result = (((tr = t.result) == null) ? sr :
5649 reducer.apply(tr, sr));
5650 s = t.rights = s.nextRight;
5651 }
5652 }
5653 }
5654 }
5655 }
5656
5657 @SuppressWarnings("serial")
5658 static final class MapReduceKeysToDoubleTask<K,V>
5659 extends BulkTask<K,V,Double> {
5660 final ToDoubleFunction<? super K> transformer;
5661 final DoubleBinaryOperator reducer;
5662 final double basis;
5663 double result;
5664 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5665 MapReduceKeysToDoubleTask
5666 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5667 MapReduceKeysToDoubleTask<K,V> nextRight,
5668 ToDoubleFunction<? super K> transformer,
5669 double basis,
5670 DoubleBinaryOperator reducer) {
5671 super(p, b, i, f, t); this.nextRight = nextRight;
5672 this.transformer = transformer;
5673 this.basis = basis; this.reducer = reducer;
5674 }
5675 public final Double getRawResult() { return result; }
5676 public final void compute() {
5677 final ToDoubleFunction<? super K> transformer;
5678 final DoubleBinaryOperator reducer;
5679 if ((transformer = this.transformer) != null &&
5680 (reducer = this.reducer) != null) {
5681 double r = this.basis;
5682 for (int i = baseIndex, f, h; batch > 0 &&
5683 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5684 addToPendingCount(1);
5685 (rights = new MapReduceKeysToDoubleTask<K,V>
5686 (this, batch >>>= 1, baseLimit = h, f, tab,
5687 rights, transformer, r, reducer)).fork();
5688 }
5689 for (Node<K,V> p; (p = advance()) != null; )
5690 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5691 result = r;
5692 CountedCompleter<?> c;
5693 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5694 @SuppressWarnings("unchecked")
5695 MapReduceKeysToDoubleTask<K,V>
5696 t = (MapReduceKeysToDoubleTask<K,V>)c,
5697 s = t.rights;
5698 while (s != null) {
5699 t.result = reducer.applyAsDouble(t.result, s.result);
5700 s = t.rights = s.nextRight;
5701 }
5702 }
5703 }
5704 }
5705 }
5706
5707 @SuppressWarnings("serial")
5708 static final class MapReduceValuesToDoubleTask<K,V>
5709 extends BulkTask<K,V,Double> {
5710 final ToDoubleFunction<? super V> transformer;
5711 final DoubleBinaryOperator reducer;
5712 final double basis;
5713 double result;
5714 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5715 MapReduceValuesToDoubleTask
5716 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5717 MapReduceValuesToDoubleTask<K,V> nextRight,
5718 ToDoubleFunction<? super V> transformer,
5719 double basis,
5720 DoubleBinaryOperator reducer) {
5721 super(p, b, i, f, t); this.nextRight = nextRight;
5722 this.transformer = transformer;
5723 this.basis = basis; this.reducer = reducer;
5724 }
5725 public final Double getRawResult() { return result; }
5726 public final void compute() {
5727 final ToDoubleFunction<? super V> transformer;
5728 final DoubleBinaryOperator reducer;
5729 if ((transformer = this.transformer) != null &&
5730 (reducer = this.reducer) != null) {
5731 double r = this.basis;
5732 for (int i = baseIndex, f, h; batch > 0 &&
5733 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5734 addToPendingCount(1);
5735 (rights = new MapReduceValuesToDoubleTask<K,V>
5736 (this, batch >>>= 1, baseLimit = h, f, tab,
5737 rights, transformer, r, reducer)).fork();
5738 }
5739 for (Node<K,V> p; (p = advance()) != null; )
5740 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5741 result = r;
5742 CountedCompleter<?> c;
5743 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5744 @SuppressWarnings("unchecked")
5745 MapReduceValuesToDoubleTask<K,V>
5746 t = (MapReduceValuesToDoubleTask<K,V>)c,
5747 s = t.rights;
5748 while (s != null) {
5749 t.result = reducer.applyAsDouble(t.result, s.result);
5750 s = t.rights = s.nextRight;
5751 }
5752 }
5753 }
5754 }
5755 }
5756
5757 @SuppressWarnings("serial")
5758 static final class MapReduceEntriesToDoubleTask<K,V>
5759 extends BulkTask<K,V,Double> {
5760 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5761 final DoubleBinaryOperator reducer;
5762 final double basis;
5763 double result;
5764 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5765 MapReduceEntriesToDoubleTask
5766 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5767 MapReduceEntriesToDoubleTask<K,V> nextRight,
5768 ToDoubleFunction<Map.Entry<K,V>> transformer,
5769 double basis,
5770 DoubleBinaryOperator reducer) {
5771 super(p, b, i, f, t); this.nextRight = nextRight;
5772 this.transformer = transformer;
5773 this.basis = basis; this.reducer = reducer;
5774 }
5775 public final Double getRawResult() { return result; }
5776 public final void compute() {
5777 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5778 final DoubleBinaryOperator reducer;
5779 if ((transformer = this.transformer) != null &&
5780 (reducer = this.reducer) != null) {
5781 double r = this.basis;
5782 for (int i = baseIndex, f, h; batch > 0 &&
5783 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5784 addToPendingCount(1);
5785 (rights = new MapReduceEntriesToDoubleTask<K,V>
5786 (this, batch >>>= 1, baseLimit = h, f, tab,
5787 rights, transformer, r, reducer)).fork();
5788 }
5789 for (Node<K,V> p; (p = advance()) != null; )
5790 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5791 result = r;
5792 CountedCompleter<?> c;
5793 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5794 @SuppressWarnings("unchecked")
5795 MapReduceEntriesToDoubleTask<K,V>
5796 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5797 s = t.rights;
5798 while (s != null) {
5799 t.result = reducer.applyAsDouble(t.result, s.result);
5800 s = t.rights = s.nextRight;
5801 }
5802 }
5803 }
5804 }
5805 }
5806
5807 @SuppressWarnings("serial")
5808 static final class MapReduceMappingsToDoubleTask<K,V>
5809 extends BulkTask<K,V,Double> {
5810 final ToDoubleBiFunction<? super K, ? super V> transformer;
5811 final DoubleBinaryOperator reducer;
5812 final double basis;
5813 double result;
5814 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5815 MapReduceMappingsToDoubleTask
5816 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5817 MapReduceMappingsToDoubleTask<K,V> nextRight,
5818 ToDoubleBiFunction<? super K, ? super V> transformer,
5819 double basis,
5820 DoubleBinaryOperator reducer) {
5821 super(p, b, i, f, t); this.nextRight = nextRight;
5822 this.transformer = transformer;
5823 this.basis = basis; this.reducer = reducer;
5824 }
5825 public final Double getRawResult() { return result; }
5826 public final void compute() {
5827 final ToDoubleBiFunction<? super K, ? super V> transformer;
5828 final DoubleBinaryOperator reducer;
5829 if ((transformer = this.transformer) != null &&
5830 (reducer = this.reducer) != null) {
5831 double r = this.basis;
5832 for (int i = baseIndex, f, h; batch > 0 &&
5833 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5834 addToPendingCount(1);
5835 (rights = new MapReduceMappingsToDoubleTask<K,V>
5836 (this, batch >>>= 1, baseLimit = h, f, tab,
5837 rights, transformer, r, reducer)).fork();
5838 }
5839 for (Node<K,V> p; (p = advance()) != null; )
5840 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5841 result = r;
5842 CountedCompleter<?> c;
5843 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5844 @SuppressWarnings("unchecked")
5845 MapReduceMappingsToDoubleTask<K,V>
5846 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5847 s = t.rights;
5848 while (s != null) {
5849 t.result = reducer.applyAsDouble(t.result, s.result);
5850 s = t.rights = s.nextRight;
5851 }
5852 }
5853 }
5854 }
5855 }
5856
5857 @SuppressWarnings("serial")
5858 static final class MapReduceKeysToLongTask<K,V>
5859 extends BulkTask<K,V,Long> {
5860 final ToLongFunction<? super K> transformer;
5861 final LongBinaryOperator reducer;
5862 final long basis;
5863 long result;
5864 MapReduceKeysToLongTask<K,V> rights, nextRight;
5865 MapReduceKeysToLongTask
5866 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5867 MapReduceKeysToLongTask<K,V> nextRight,
5868 ToLongFunction<? super K> transformer,
5869 long basis,
5870 LongBinaryOperator reducer) {
5871 super(p, b, i, f, t); this.nextRight = nextRight;
5872 this.transformer = transformer;
5873 this.basis = basis; this.reducer = reducer;
5874 }
5875 public final Long getRawResult() { return result; }
5876 public final void compute() {
5877 final ToLongFunction<? super K> transformer;
5878 final LongBinaryOperator reducer;
5879 if ((transformer = this.transformer) != null &&
5880 (reducer = this.reducer) != null) {
5881 long r = this.basis;
5882 for (int i = baseIndex, f, h; batch > 0 &&
5883 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5884 addToPendingCount(1);
5885 (rights = new MapReduceKeysToLongTask<K,V>
5886 (this, batch >>>= 1, baseLimit = h, f, tab,
5887 rights, transformer, r, reducer)).fork();
5888 }
5889 for (Node<K,V> p; (p = advance()) != null; )
5890 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5891 result = r;
5892 CountedCompleter<?> c;
5893 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5894 @SuppressWarnings("unchecked")
5895 MapReduceKeysToLongTask<K,V>
5896 t = (MapReduceKeysToLongTask<K,V>)c,
5897 s = t.rights;
5898 while (s != null) {
5899 t.result = reducer.applyAsLong(t.result, s.result);
5900 s = t.rights = s.nextRight;
5901 }
5902 }
5903 }
5904 }
5905 }
5906
5907 @SuppressWarnings("serial")
5908 static final class MapReduceValuesToLongTask<K,V>
5909 extends BulkTask<K,V,Long> {
5910 final ToLongFunction<? super V> transformer;
5911 final LongBinaryOperator reducer;
5912 final long basis;
5913 long result;
5914 MapReduceValuesToLongTask<K,V> rights, nextRight;
5915 MapReduceValuesToLongTask
5916 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5917 MapReduceValuesToLongTask<K,V> nextRight,
5918 ToLongFunction<? super V> transformer,
5919 long basis,
5920 LongBinaryOperator reducer) {
5921 super(p, b, i, f, t); this.nextRight = nextRight;
5922 this.transformer = transformer;
5923 this.basis = basis; this.reducer = reducer;
5924 }
5925 public final Long getRawResult() { return result; }
5926 public final void compute() {
5927 final ToLongFunction<? super V> transformer;
5928 final LongBinaryOperator reducer;
5929 if ((transformer = this.transformer) != null &&
5930 (reducer = this.reducer) != null) {
5931 long r = this.basis;
5932 for (int i = baseIndex, f, h; batch > 0 &&
5933 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5934 addToPendingCount(1);
5935 (rights = new MapReduceValuesToLongTask<K,V>
5936 (this, batch >>>= 1, baseLimit = h, f, tab,
5937 rights, transformer, r, reducer)).fork();
5938 }
5939 for (Node<K,V> p; (p = advance()) != null; )
5940 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5941 result = r;
5942 CountedCompleter<?> c;
5943 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5944 @SuppressWarnings("unchecked")
5945 MapReduceValuesToLongTask<K,V>
5946 t = (MapReduceValuesToLongTask<K,V>)c,
5947 s = t.rights;
5948 while (s != null) {
5949 t.result = reducer.applyAsLong(t.result, s.result);
5950 s = t.rights = s.nextRight;
5951 }
5952 }
5953 }
5954 }
5955 }
5956
5957 @SuppressWarnings("serial")
5958 static final class MapReduceEntriesToLongTask<K,V>
5959 extends BulkTask<K,V,Long> {
5960 final ToLongFunction<Map.Entry<K,V>> transformer;
5961 final LongBinaryOperator reducer;
5962 final long basis;
5963 long result;
5964 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5965 MapReduceEntriesToLongTask
5966 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5967 MapReduceEntriesToLongTask<K,V> nextRight,
5968 ToLongFunction<Map.Entry<K,V>> transformer,
5969 long basis,
5970 LongBinaryOperator reducer) {
5971 super(p, b, i, f, t); this.nextRight = nextRight;
5972 this.transformer = transformer;
5973 this.basis = basis; this.reducer = reducer;
5974 }
5975 public final Long getRawResult() { return result; }
5976 public final void compute() {
5977 final ToLongFunction<Map.Entry<K,V>> transformer;
5978 final LongBinaryOperator reducer;
5979 if ((transformer = this.transformer) != null &&
5980 (reducer = this.reducer) != null) {
5981 long r = this.basis;
5982 for (int i = baseIndex, f, h; batch > 0 &&
5983 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5984 addToPendingCount(1);
5985 (rights = new MapReduceEntriesToLongTask<K,V>
5986 (this, batch >>>= 1, baseLimit = h, f, tab,
5987 rights, transformer, r, reducer)).fork();
5988 }
5989 for (Node<K,V> p; (p = advance()) != null; )
5990 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
5991 result = r;
5992 CountedCompleter<?> c;
5993 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5994 @SuppressWarnings("unchecked")
5995 MapReduceEntriesToLongTask<K,V>
5996 t = (MapReduceEntriesToLongTask<K,V>)c,
5997 s = t.rights;
5998 while (s != null) {
5999 t.result = reducer.applyAsLong(t.result, s.result);
6000 s = t.rights = s.nextRight;
6001 }
6002 }
6003 }
6004 }
6005 }
6006
6007 @SuppressWarnings("serial")
6008 static final class MapReduceMappingsToLongTask<K,V>
6009 extends BulkTask<K,V,Long> {
6010 final ToLongBiFunction<? super K, ? super V> transformer;
6011 final LongBinaryOperator reducer;
6012 final long basis;
6013 long result;
6014 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6015 MapReduceMappingsToLongTask
6016 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6017 MapReduceMappingsToLongTask<K,V> nextRight,
6018 ToLongBiFunction<? super K, ? super V> transformer,
6019 long basis,
6020 LongBinaryOperator reducer) {
6021 super(p, b, i, f, t); this.nextRight = nextRight;
6022 this.transformer = transformer;
6023 this.basis = basis; this.reducer = reducer;
6024 }
6025 public final Long getRawResult() { return result; }
6026 public final void compute() {
6027 final ToLongBiFunction<? super K, ? super V> transformer;
6028 final LongBinaryOperator reducer;
6029 if ((transformer = this.transformer) != null &&
6030 (reducer = this.reducer) != null) {
6031 long r = this.basis;
6032 for (int i = baseIndex, f, h; batch > 0 &&
6033 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6034 addToPendingCount(1);
6035 (rights = new MapReduceMappingsToLongTask<K,V>
6036 (this, batch >>>= 1, baseLimit = h, f, tab,
6037 rights, transformer, r, reducer)).fork();
6038 }
6039 for (Node<K,V> p; (p = advance()) != null; )
6040 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6041 result = r;
6042 CountedCompleter<?> c;
6043 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6044 @SuppressWarnings("unchecked")
6045 MapReduceMappingsToLongTask<K,V>
6046 t = (MapReduceMappingsToLongTask<K,V>)c,
6047 s = t.rights;
6048 while (s != null) {
6049 t.result = reducer.applyAsLong(t.result, s.result);
6050 s = t.rights = s.nextRight;
6051 }
6052 }
6053 }
6054 }
6055 }
6056
6057 @SuppressWarnings("serial")
6058 static final class MapReduceKeysToIntTask<K,V>
6059 extends BulkTask<K,V,Integer> {
6060 final ToIntFunction<? super K> transformer;
6061 final IntBinaryOperator reducer;
6062 final int basis;
6063 int result;
6064 MapReduceKeysToIntTask<K,V> rights, nextRight;
6065 MapReduceKeysToIntTask
6066 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6067 MapReduceKeysToIntTask<K,V> nextRight,
6068 ToIntFunction<? super K> transformer,
6069 int basis,
6070 IntBinaryOperator reducer) {
6071 super(p, b, i, f, t); this.nextRight = nextRight;
6072 this.transformer = transformer;
6073 this.basis = basis; this.reducer = reducer;
6074 }
6075 public final Integer getRawResult() { return result; }
6076 public final void compute() {
6077 final ToIntFunction<? super K> transformer;
6078 final IntBinaryOperator reducer;
6079 if ((transformer = this.transformer) != null &&
6080 (reducer = this.reducer) != null) {
6081 int r = this.basis;
6082 for (int i = baseIndex, f, h; batch > 0 &&
6083 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6084 addToPendingCount(1);
6085 (rights = new MapReduceKeysToIntTask<K,V>
6086 (this, batch >>>= 1, baseLimit = h, f, tab,
6087 rights, transformer, r, reducer)).fork();
6088 }
6089 for (Node<K,V> p; (p = advance()) != null; )
6090 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6091 result = r;
6092 CountedCompleter<?> c;
6093 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6094 @SuppressWarnings("unchecked")
6095 MapReduceKeysToIntTask<K,V>
6096 t = (MapReduceKeysToIntTask<K,V>)c,
6097 s = t.rights;
6098 while (s != null) {
6099 t.result = reducer.applyAsInt(t.result, s.result);
6100 s = t.rights = s.nextRight;
6101 }
6102 }
6103 }
6104 }
6105 }
6106
6107 @SuppressWarnings("serial")
6108 static final class MapReduceValuesToIntTask<K,V>
6109 extends BulkTask<K,V,Integer> {
6110 final ToIntFunction<? super V> transformer;
6111 final IntBinaryOperator reducer;
6112 final int basis;
6113 int result;
6114 MapReduceValuesToIntTask<K,V> rights, nextRight;
6115 MapReduceValuesToIntTask
6116 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6117 MapReduceValuesToIntTask<K,V> nextRight,
6118 ToIntFunction<? super V> transformer,
6119 int basis,
6120 IntBinaryOperator reducer) {
6121 super(p, b, i, f, t); this.nextRight = nextRight;
6122 this.transformer = transformer;
6123 this.basis = basis; this.reducer = reducer;
6124 }
6125 public final Integer getRawResult() { return result; }
6126 public final void compute() {
6127 final ToIntFunction<? super V> transformer;
6128 final IntBinaryOperator reducer;
6129 if ((transformer = this.transformer) != null &&
6130 (reducer = this.reducer) != null) {
6131 int r = this.basis;
6132 for (int i = baseIndex, f, h; batch > 0 &&
6133 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6134 addToPendingCount(1);
6135 (rights = new MapReduceValuesToIntTask<K,V>
6136 (this, batch >>>= 1, baseLimit = h, f, tab,
6137 rights, transformer, r, reducer)).fork();
6138 }
6139 for (Node<K,V> p; (p = advance()) != null; )
6140 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6141 result = r;
6142 CountedCompleter<?> c;
6143 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6144 @SuppressWarnings("unchecked")
6145 MapReduceValuesToIntTask<K,V>
6146 t = (MapReduceValuesToIntTask<K,V>)c,
6147 s = t.rights;
6148 while (s != null) {
6149 t.result = reducer.applyAsInt(t.result, s.result);
6150 s = t.rights = s.nextRight;
6151 }
6152 }
6153 }
6154 }
6155 }
6156
6157 @SuppressWarnings("serial")
6158 static final class MapReduceEntriesToIntTask<K,V>
6159 extends BulkTask<K,V,Integer> {
6160 final ToIntFunction<Map.Entry<K,V>> transformer;
6161 final IntBinaryOperator reducer;
6162 final int basis;
6163 int result;
6164 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6165 MapReduceEntriesToIntTask
6166 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6167 MapReduceEntriesToIntTask<K,V> nextRight,
6168 ToIntFunction<Map.Entry<K,V>> transformer,
6169 int basis,
6170 IntBinaryOperator reducer) {
6171 super(p, b, i, f, t); this.nextRight = nextRight;
6172 this.transformer = transformer;
6173 this.basis = basis; this.reducer = reducer;
6174 }
6175 public final Integer getRawResult() { return result; }
6176 public final void compute() {
6177 final ToIntFunction<Map.Entry<K,V>> transformer;
6178 final IntBinaryOperator reducer;
6179 if ((transformer = this.transformer) != null &&
6180 (reducer = this.reducer) != null) {
6181 int r = this.basis;
6182 for (int i = baseIndex, f, h; batch > 0 &&
6183 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6184 addToPendingCount(1);
6185 (rights = new MapReduceEntriesToIntTask<K,V>
6186 (this, batch >>>= 1, baseLimit = h, f, tab,
6187 rights, transformer, r, reducer)).fork();
6188 }
6189 for (Node<K,V> p; (p = advance()) != null; )
6190 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6191 result = r;
6192 CountedCompleter<?> c;
6193 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6194 @SuppressWarnings("unchecked")
6195 MapReduceEntriesToIntTask<K,V>
6196 t = (MapReduceEntriesToIntTask<K,V>)c,
6197 s = t.rights;
6198 while (s != null) {
6199 t.result = reducer.applyAsInt(t.result, s.result);
6200 s = t.rights = s.nextRight;
6201 }
6202 }
6203 }
6204 }
6205 }
6206
6207 @SuppressWarnings("serial")
6208 static final class MapReduceMappingsToIntTask<K,V>
6209 extends BulkTask<K,V,Integer> {
6210 final ToIntBiFunction<? super K, ? super V> transformer;
6211 final IntBinaryOperator reducer;
6212 final int basis;
6213 int result;
6214 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6215 MapReduceMappingsToIntTask
6216 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6217 MapReduceMappingsToIntTask<K,V> nextRight,
6218 ToIntBiFunction<? super K, ? super V> transformer,
6219 int basis,
6220 IntBinaryOperator reducer) {
6221 super(p, b, i, f, t); this.nextRight = nextRight;
6222 this.transformer = transformer;
6223 this.basis = basis; this.reducer = reducer;
6224 }
6225 public final Integer getRawResult() { return result; }
6226 public final void compute() {
6227 final ToIntBiFunction<? super K, ? super V> transformer;
6228 final IntBinaryOperator reducer;
6229 if ((transformer = this.transformer) != null &&
6230 (reducer = this.reducer) != null) {
6231 int r = this.basis;
6232 for (int i = baseIndex, f, h; batch > 0 &&
6233 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6234 addToPendingCount(1);
6235 (rights = new MapReduceMappingsToIntTask<K,V>
6236 (this, batch >>>= 1, baseLimit = h, f, tab,
6237 rights, transformer, r, reducer)).fork();
6238 }
6239 for (Node<K,V> p; (p = advance()) != null; )
6240 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6241 result = r;
6242 CountedCompleter<?> c;
6243 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6244 @SuppressWarnings("unchecked")
6245 MapReduceMappingsToIntTask<K,V>
6246 t = (MapReduceMappingsToIntTask<K,V>)c,
6247 s = t.rights;
6248 while (s != null) {
6249 t.result = reducer.applyAsInt(t.result, s.result);
6250 s = t.rights = s.nextRight;
6251 }
6252 }
6253 }
6254 }
6255 }
6256
6257 // Unsafe mechanics
6258 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
6259 private static final long SIZECTL;
6260 private static final long TRANSFERINDEX;
6261 private static final long BASECOUNT;
6262 private static final long CELLSBUSY;
6263 private static final long CELLVALUE;
6264 private static final int ABASE;
6265 private static final int ASHIFT;
6266
6267 static {
6268 try {
6269 SIZECTL = U.objectFieldOffset
6270 (ConcurrentHashMap.class.getDeclaredField("sizeCtl"));
6271 TRANSFERINDEX = U.objectFieldOffset
6272 (ConcurrentHashMap.class.getDeclaredField("transferIndex"));
6273 BASECOUNT = U.objectFieldOffset
6274 (ConcurrentHashMap.class.getDeclaredField("baseCount"));
6275 CELLSBUSY = U.objectFieldOffset
6276 (ConcurrentHashMap.class.getDeclaredField("cellsBusy"));
6277
6278 CELLVALUE = U.objectFieldOffset
6279 (CounterCell.class.getDeclaredField("value"));
6280
6281 ABASE = U.arrayBaseOffset(Node[].class);
6282 int scale = U.arrayIndexScale(Node[].class);
6283 if ((scale & (scale - 1)) != 0)
6284 throw new Error("array index scale not a power of two");
6285 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6286 } catch (ReflectiveOperationException e) {
6287 throw new Error(e);
6288 }
6289
6290 // Reduce the risk of rare disastrous classloading in first call to
6291 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6292 Class<?> ensureLoaded = LockSupport.class;
6293 }
6294 }