ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.273
Committed: Wed Apr 29 18:01:41 2015 UTC (9 years, 1 month ago) by jsr166
Branch: MAIN
Changes since 1.272: +2 -2 lines
Log Message:
jsr166 coding style

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.io.Serializable;
11 import java.lang.reflect.ParameterizedType;
12 import java.lang.reflect.Type;
13 import java.util.AbstractMap;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Enumeration;
17 import java.util.HashMap;
18 import java.util.Hashtable;
19 import java.util.Iterator;
20 import java.util.Map;
21 import java.util.NoSuchElementException;
22 import java.util.Set;
23 import java.util.Spliterator;
24 import java.util.concurrent.atomic.AtomicReference;
25 import java.util.concurrent.locks.LockSupport;
26 import java.util.concurrent.locks.ReentrantLock;
27 import java.util.function.BiConsumer;
28 import java.util.function.BiFunction;
29 import java.util.function.Consumer;
30 import java.util.function.DoubleBinaryOperator;
31 import java.util.function.Function;
32 import java.util.function.IntBinaryOperator;
33 import java.util.function.LongBinaryOperator;
34 import java.util.function.Predicate;
35 import java.util.function.ToDoubleBiFunction;
36 import java.util.function.ToDoubleFunction;
37 import java.util.function.ToIntBiFunction;
38 import java.util.function.ToIntFunction;
39 import java.util.function.ToLongBiFunction;
40 import java.util.function.ToLongFunction;
41 import java.util.stream.Stream;
42
43 /**
44 * A hash table supporting full concurrency of retrievals and
45 * high expected concurrency for updates. This class obeys the
46 * same functional specification as {@link java.util.Hashtable}, and
47 * includes versions of methods corresponding to each method of
48 * {@code Hashtable}. However, even though all operations are
49 * thread-safe, retrieval operations do <em>not</em> entail locking,
50 * and there is <em>not</em> any support for locking the entire table
51 * in a way that prevents all access. This class is fully
52 * interoperable with {@code Hashtable} in programs that rely on its
53 * thread safety but not on its synchronization details.
54 *
55 * <p>Retrieval operations (including {@code get}) generally do not
56 * block, so may overlap with update operations (including {@code put}
57 * and {@code remove}). Retrievals reflect the results of the most
58 * recently <em>completed</em> update operations holding upon their
59 * onset. (More formally, an update operation for a given key bears a
60 * <em>happens-before</em> relation with any (non-null) retrieval for
61 * that key reporting the updated value.) For aggregate operations
62 * such as {@code putAll} and {@code clear}, concurrent retrievals may
63 * reflect insertion or removal of only some entries. Similarly,
64 * Iterators, Spliterators and Enumerations return elements reflecting the
65 * state of the hash table at some point at or since the creation of the
66 * iterator/enumeration. They do <em>not</em> throw {@link
67 * java.util.ConcurrentModificationException ConcurrentModificationException}.
68 * However, iterators are designed to be used by only one thread at a time.
69 * Bear in mind that the results of aggregate status methods including
70 * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
71 * useful only when a map is not undergoing concurrent updates in other threads.
72 * Otherwise the results of these methods reflect transient states
73 * that may be adequate for monitoring or estimation purposes, but not
74 * for program control.
75 *
76 * <p>The table is dynamically expanded when there are too many
77 * collisions (i.e., keys that have distinct hash codes but fall into
78 * the same slot modulo the table size), with the expected average
79 * effect of maintaining roughly two bins per mapping (corresponding
80 * to a 0.75 load factor threshold for resizing). There may be much
81 * variance around this average as mappings are added and removed, but
82 * overall, this maintains a commonly accepted time/space tradeoff for
83 * hash tables. However, resizing this or any other kind of hash
84 * table may be a relatively slow operation. When possible, it is a
85 * good idea to provide a size estimate as an optional {@code
86 * initialCapacity} constructor argument. An additional optional
87 * {@code loadFactor} constructor argument provides a further means of
88 * customizing initial table capacity by specifying the table density
89 * to be used in calculating the amount of space to allocate for the
90 * given number of elements. Also, for compatibility with previous
91 * versions of this class, constructors may optionally specify an
92 * expected {@code concurrencyLevel} as an additional hint for
93 * internal sizing. Note that using many keys with exactly the same
94 * {@code hashCode()} is a sure way to slow down performance of any
95 * hash table. To ameliorate impact, when keys are {@link Comparable},
96 * this class may use comparison order among keys to help break ties.
97 *
98 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
99 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
100 * (using {@link #keySet(Object)} when only keys are of interest, and the
101 * mapped values are (perhaps transiently) not used or all take the
102 * same mapping value.
103 *
104 * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
105 * form of histogram or multiset) by using {@link
106 * java.util.concurrent.atomic.LongAdder} values and initializing via
107 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
108 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
109 * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
110 *
111 * <p>This class and its views and iterators implement all of the
112 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
113 * interfaces.
114 *
115 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
116 * does <em>not</em> allow {@code null} to be used as a key or value.
117 *
118 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
119 * operations that, unlike most {@link Stream} methods, are designed
120 * to be safely, and often sensibly, applied even with maps that are
121 * being concurrently updated by other threads; for example, when
122 * computing a snapshot summary of the values in a shared registry.
123 * There are three kinds of operation, each with four forms, accepting
124 * functions with Keys, Values, Entries, and (Key, Value) arguments
125 * and/or return values. Because the elements of a ConcurrentHashMap
126 * are not ordered in any particular way, and may be processed in
127 * different orders in different parallel executions, the correctness
128 * of supplied functions should not depend on any ordering, or on any
129 * other objects or values that may transiently change while
130 * computation is in progress; and except for forEach actions, should
131 * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
132 * objects do not support method {@code setValue}.
133 *
134 * <ul>
135 * <li> forEach: Perform a given action on each element.
136 * A variant form applies a given transformation on each element
137 * before performing the action.</li>
138 *
139 * <li> search: Return the first available non-null result of
140 * applying a given function on each element; skipping further
141 * search when a result is found.</li>
142 *
143 * <li> reduce: Accumulate each element. The supplied reduction
144 * function cannot rely on ordering (more formally, it should be
145 * both associative and commutative). There are five variants:
146 *
147 * <ul>
148 *
149 * <li> Plain reductions. (There is not a form of this method for
150 * (key, value) function arguments since there is no corresponding
151 * return type.)</li>
152 *
153 * <li> Mapped reductions that accumulate the results of a given
154 * function applied to each element.</li>
155 *
156 * <li> Reductions to scalar doubles, longs, and ints, using a
157 * given basis value.</li>
158 *
159 * </ul>
160 * </li>
161 * </ul>
162 *
163 * <p>These bulk operations accept a {@code parallelismThreshold}
164 * argument. Methods proceed sequentially if the current map size is
165 * estimated to be less than the given threshold. Using a value of
166 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
167 * of {@code 1} results in maximal parallelism by partitioning into
168 * enough subtasks to fully utilize the {@link
169 * ForkJoinPool#commonPool()} that is used for all parallel
170 * computations. Normally, you would initially choose one of these
171 * extreme values, and then measure performance of using in-between
172 * values that trade off overhead versus throughput.
173 *
174 * <p>The concurrency properties of bulk operations follow
175 * from those of ConcurrentHashMap: Any non-null result returned
176 * from {@code get(key)} and related access methods bears a
177 * happens-before relation with the associated insertion or
178 * update. The result of any bulk operation reflects the
179 * composition of these per-element relations (but is not
180 * necessarily atomic with respect to the map as a whole unless it
181 * is somehow known to be quiescent). Conversely, because keys
182 * and values in the map are never null, null serves as a reliable
183 * atomic indicator of the current lack of any result. To
184 * maintain this property, null serves as an implicit basis for
185 * all non-scalar reduction operations. For the double, long, and
186 * int versions, the basis should be one that, when combined with
187 * any other value, returns that other value (more formally, it
188 * should be the identity element for the reduction). Most common
189 * reductions have these properties; for example, computing a sum
190 * with basis 0 or a minimum with basis MAX_VALUE.
191 *
192 * <p>Search and transformation functions provided as arguments
193 * should similarly return null to indicate the lack of any result
194 * (in which case it is not used). In the case of mapped
195 * reductions, this also enables transformations to serve as
196 * filters, returning null (or, in the case of primitive
197 * specializations, the identity basis) if the element should not
198 * be combined. You can create compound transformations and
199 * filterings by composing them yourself under this "null means
200 * there is nothing there now" rule before using them in search or
201 * reduce operations.
202 *
203 * <p>Methods accepting and/or returning Entry arguments maintain
204 * key-value associations. They may be useful for example when
205 * finding the key for the greatest value. Note that "plain" Entry
206 * arguments can be supplied using {@code new
207 * AbstractMap.SimpleEntry(k,v)}.
208 *
209 * <p>Bulk operations may complete abruptly, throwing an
210 * exception encountered in the application of a supplied
211 * function. Bear in mind when handling such exceptions that other
212 * concurrently executing functions could also have thrown
213 * exceptions, or would have done so if the first exception had
214 * not occurred.
215 *
216 * <p>Speedups for parallel compared to sequential forms are common
217 * but not guaranteed. Parallel operations involving brief functions
218 * on small maps may execute more slowly than sequential forms if the
219 * underlying work to parallelize the computation is more expensive
220 * than the computation itself. Similarly, parallelization may not
221 * lead to much actual parallelism if all processors are busy
222 * performing unrelated tasks.
223 *
224 * <p>All arguments to all task methods must be non-null.
225 *
226 * <p>This class is a member of the
227 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
228 * Java Collections Framework</a>.
229 *
230 * @since 1.5
231 * @author Doug Lea
232 * @param <K> the type of keys maintained by this map
233 * @param <V> the type of mapped values
234 */
235 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
236 implements ConcurrentMap<K,V>, Serializable {
237 private static final long serialVersionUID = 7249069246763182397L;
238
239 /*
240 * Overview:
241 *
242 * The primary design goal of this hash table is to maintain
243 * concurrent readability (typically method get(), but also
244 * iterators and related methods) while minimizing update
245 * contention. Secondary goals are to keep space consumption about
246 * the same or better than java.util.HashMap, and to support high
247 * initial insertion rates on an empty table by many threads.
248 *
249 * This map usually acts as a binned (bucketed) hash table. Each
250 * key-value mapping is held in a Node. Most nodes are instances
251 * of the basic Node class with hash, key, value, and next
252 * fields. However, various subclasses exist: TreeNodes are
253 * arranged in balanced trees, not lists. TreeBins hold the roots
254 * of sets of TreeNodes. ForwardingNodes are placed at the heads
255 * of bins during resizing. ReservationNodes are used as
256 * placeholders while establishing values in computeIfAbsent and
257 * related methods. The types TreeBin, ForwardingNode, and
258 * ReservationNode do not hold normal user keys, values, or
259 * hashes, and are readily distinguishable during search etc
260 * because they have negative hash fields and null key and value
261 * fields. (These special nodes are either uncommon or transient,
262 * so the impact of carrying around some unused fields is
263 * insignificant.)
264 *
265 * The table is lazily initialized to a power-of-two size upon the
266 * first insertion. Each bin in the table normally contains a
267 * list of Nodes (most often, the list has only zero or one Node).
268 * Table accesses require volatile/atomic reads, writes, and
269 * CASes. Because there is no other way to arrange this without
270 * adding further indirections, we use intrinsics
271 * (sun.misc.Unsafe) operations.
272 *
273 * We use the top (sign) bit of Node hash fields for control
274 * purposes -- it is available anyway because of addressing
275 * constraints. Nodes with negative hash fields are specially
276 * handled or ignored in map methods.
277 *
278 * Insertion (via put or its variants) of the first node in an
279 * empty bin is performed by just CASing it to the bin. This is
280 * by far the most common case for put operations under most
281 * key/hash distributions. Other update operations (insert,
282 * delete, and replace) require locks. We do not want to waste
283 * the space required to associate a distinct lock object with
284 * each bin, so instead use the first node of a bin list itself as
285 * a lock. Locking support for these locks relies on builtin
286 * "synchronized" monitors.
287 *
288 * Using the first node of a list as a lock does not by itself
289 * suffice though: When a node is locked, any update must first
290 * validate that it is still the first node after locking it, and
291 * retry if not. Because new nodes are always appended to lists,
292 * once a node is first in a bin, it remains first until deleted
293 * or the bin becomes invalidated (upon resizing).
294 *
295 * The main disadvantage of per-bin locks is that other update
296 * operations on other nodes in a bin list protected by the same
297 * lock can stall, for example when user equals() or mapping
298 * functions take a long time. However, statistically, under
299 * random hash codes, this is not a common problem. Ideally, the
300 * frequency of nodes in bins follows a Poisson distribution
301 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
302 * parameter of about 0.5 on average, given the resizing threshold
303 * of 0.75, although with a large variance because of resizing
304 * granularity. Ignoring variance, the expected occurrences of
305 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
306 * first values are:
307 *
308 * 0: 0.60653066
309 * 1: 0.30326533
310 * 2: 0.07581633
311 * 3: 0.01263606
312 * 4: 0.00157952
313 * 5: 0.00015795
314 * 6: 0.00001316
315 * 7: 0.00000094
316 * 8: 0.00000006
317 * more: less than 1 in ten million
318 *
319 * Lock contention probability for two threads accessing distinct
320 * elements is roughly 1 / (8 * #elements) under random hashes.
321 *
322 * Actual hash code distributions encountered in practice
323 * sometimes deviate significantly from uniform randomness. This
324 * includes the case when N > (1<<30), so some keys MUST collide.
325 * Similarly for dumb or hostile usages in which multiple keys are
326 * designed to have identical hash codes or ones that differs only
327 * in masked-out high bits. So we use a secondary strategy that
328 * applies when the number of nodes in a bin exceeds a
329 * threshold. These TreeBins use a balanced tree to hold nodes (a
330 * specialized form of red-black trees), bounding search time to
331 * O(log N). Each search step in a TreeBin is at least twice as
332 * slow as in a regular list, but given that N cannot exceed
333 * (1<<64) (before running out of addresses) this bounds search
334 * steps, lock hold times, etc, to reasonable constants (roughly
335 * 100 nodes inspected per operation worst case) so long as keys
336 * are Comparable (which is very common -- String, Long, etc).
337 * TreeBin nodes (TreeNodes) also maintain the same "next"
338 * traversal pointers as regular nodes, so can be traversed in
339 * iterators in the same way.
340 *
341 * The table is resized when occupancy exceeds a percentage
342 * threshold (nominally, 0.75, but see below). Any thread
343 * noticing an overfull bin may assist in resizing after the
344 * initiating thread allocates and sets up the replacement array.
345 * However, rather than stalling, these other threads may proceed
346 * with insertions etc. The use of TreeBins shields us from the
347 * worst case effects of overfilling while resizes are in
348 * progress. Resizing proceeds by transferring bins, one by one,
349 * from the table to the next table. However, threads claim small
350 * blocks of indices to transfer (via field transferIndex) before
351 * doing so, reducing contention. A generation stamp in field
352 * sizeCtl ensures that resizings do not overlap. Because we are
353 * using power-of-two expansion, the elements from each bin must
354 * either stay at same index, or move with a power of two
355 * offset. We eliminate unnecessary node creation by catching
356 * cases where old nodes can be reused because their next fields
357 * won't change. On average, only about one-sixth of them need
358 * cloning when a table doubles. The nodes they replace will be
359 * garbage collectable as soon as they are no longer referenced by
360 * any reader thread that may be in the midst of concurrently
361 * traversing table. Upon transfer, the old table bin contains
362 * only a special forwarding node (with hash field "MOVED") that
363 * contains the next table as its key. On encountering a
364 * forwarding node, access and update operations restart, using
365 * the new table.
366 *
367 * Each bin transfer requires its bin lock, which can stall
368 * waiting for locks while resizing. However, because other
369 * threads can join in and help resize rather than contend for
370 * locks, average aggregate waits become shorter as resizing
371 * progresses. The transfer operation must also ensure that all
372 * accessible bins in both the old and new table are usable by any
373 * traversal. This is arranged in part by proceeding from the
374 * last bin (table.length - 1) up towards the first. Upon seeing
375 * a forwarding node, traversals (see class Traverser) arrange to
376 * move to the new table without revisiting nodes. To ensure that
377 * no intervening nodes are skipped even when moved out of order,
378 * a stack (see class TableStack) is created on first encounter of
379 * a forwarding node during a traversal, to maintain its place if
380 * later processing the current table. The need for these
381 * save/restore mechanics is relatively rare, but when one
382 * forwarding node is encountered, typically many more will be.
383 * So Traversers use a simple caching scheme to avoid creating so
384 * many new TableStack nodes. (Thanks to Peter Levart for
385 * suggesting use of a stack here.)
386 *
387 * The traversal scheme also applies to partial traversals of
388 * ranges of bins (via an alternate Traverser constructor)
389 * to support partitioned aggregate operations. Also, read-only
390 * operations give up if ever forwarded to a null table, which
391 * provides support for shutdown-style clearing, which is also not
392 * currently implemented.
393 *
394 * Lazy table initialization minimizes footprint until first use,
395 * and also avoids resizings when the first operation is from a
396 * putAll, constructor with map argument, or deserialization.
397 * These cases attempt to override the initial capacity settings,
398 * but harmlessly fail to take effect in cases of races.
399 *
400 * The element count is maintained using a specialization of
401 * LongAdder. We need to incorporate a specialization rather than
402 * just use a LongAdder in order to access implicit
403 * contention-sensing that leads to creation of multiple
404 * CounterCells. The counter mechanics avoid contention on
405 * updates but can encounter cache thrashing if read too
406 * frequently during concurrent access. To avoid reading so often,
407 * resizing under contention is attempted only upon adding to a
408 * bin already holding two or more nodes. Under uniform hash
409 * distributions, the probability of this occurring at threshold
410 * is around 13%, meaning that only about 1 in 8 puts check
411 * threshold (and after resizing, many fewer do so).
412 *
413 * TreeBins use a special form of comparison for search and
414 * related operations (which is the main reason we cannot use
415 * existing collections such as TreeMaps). TreeBins contain
416 * Comparable elements, but may contain others, as well as
417 * elements that are Comparable but not necessarily Comparable for
418 * the same T, so we cannot invoke compareTo among them. To handle
419 * this, the tree is ordered primarily by hash value, then by
420 * Comparable.compareTo order if applicable. On lookup at a node,
421 * if elements are not comparable or compare as 0 then both left
422 * and right children may need to be searched in the case of tied
423 * hash values. (This corresponds to the full list search that
424 * would be necessary if all elements were non-Comparable and had
425 * tied hashes.) On insertion, to keep a total ordering (or as
426 * close as is required here) across rebalancings, we compare
427 * classes and identityHashCodes as tie-breakers. The red-black
428 * balancing code is updated from pre-jdk-collections
429 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
430 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
431 * Algorithms" (CLR).
432 *
433 * TreeBins also require an additional locking mechanism. While
434 * list traversal is always possible by readers even during
435 * updates, tree traversal is not, mainly because of tree-rotations
436 * that may change the root node and/or its linkages. TreeBins
437 * include a simple read-write lock mechanism parasitic on the
438 * main bin-synchronization strategy: Structural adjustments
439 * associated with an insertion or removal are already bin-locked
440 * (and so cannot conflict with other writers) but must wait for
441 * ongoing readers to finish. Since there can be only one such
442 * waiter, we use a simple scheme using a single "waiter" field to
443 * block writers. However, readers need never block. If the root
444 * lock is held, they proceed along the slow traversal path (via
445 * next-pointers) until the lock becomes available or the list is
446 * exhausted, whichever comes first. These cases are not fast, but
447 * maximize aggregate expected throughput.
448 *
449 * Maintaining API and serialization compatibility with previous
450 * versions of this class introduces several oddities. Mainly: We
451 * leave untouched but unused constructor arguments refering to
452 * concurrencyLevel. We accept a loadFactor constructor argument,
453 * but apply it only to initial table capacity (which is the only
454 * time that we can guarantee to honor it.) We also declare an
455 * unused "Segment" class that is instantiated in minimal form
456 * only when serializing.
457 *
458 * Also, solely for compatibility with previous versions of this
459 * class, it extends AbstractMap, even though all of its methods
460 * are overridden, so it is just useless baggage.
461 *
462 * This file is organized to make things a little easier to follow
463 * while reading than they might otherwise: First the main static
464 * declarations and utilities, then fields, then main public
465 * methods (with a few factorings of multiple public methods into
466 * internal ones), then sizing methods, trees, traversers, and
467 * bulk operations.
468 */
469
470 /* ---------------- Constants -------------- */
471
472 /**
473 * The largest possible table capacity. This value must be
474 * exactly 1<<30 to stay within Java array allocation and indexing
475 * bounds for power of two table sizes, and is further required
476 * because the top two bits of 32bit hash fields are used for
477 * control purposes.
478 */
479 private static final int MAXIMUM_CAPACITY = 1 << 30;
480
481 /**
482 * The default initial table capacity. Must be a power of 2
483 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
484 */
485 private static final int DEFAULT_CAPACITY = 16;
486
487 /**
488 * The largest possible (non-power of two) array size.
489 * Needed by toArray and related methods.
490 */
491 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
492
493 /**
494 * The default concurrency level for this table. Unused but
495 * defined for compatibility with previous versions of this class.
496 */
497 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
498
499 /**
500 * The load factor for this table. Overrides of this value in
501 * constructors affect only the initial table capacity. The
502 * actual floating point value isn't normally used -- it is
503 * simpler to use expressions such as {@code n - (n >>> 2)} for
504 * the associated resizing threshold.
505 */
506 private static final float LOAD_FACTOR = 0.75f;
507
508 /**
509 * The bin count threshold for using a tree rather than list for a
510 * bin. Bins are converted to trees when adding an element to a
511 * bin with at least this many nodes. The value must be greater
512 * than 2, and should be at least 8 to mesh with assumptions in
513 * tree removal about conversion back to plain bins upon
514 * shrinkage.
515 */
516 static final int TREEIFY_THRESHOLD = 8;
517
518 /**
519 * The bin count threshold for untreeifying a (split) bin during a
520 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
521 * most 6 to mesh with shrinkage detection under removal.
522 */
523 static final int UNTREEIFY_THRESHOLD = 6;
524
525 /**
526 * The smallest table capacity for which bins may be treeified.
527 * (Otherwise the table is resized if too many nodes in a bin.)
528 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
529 * conflicts between resizing and treeification thresholds.
530 */
531 static final int MIN_TREEIFY_CAPACITY = 64;
532
533 /**
534 * Minimum number of rebinnings per transfer step. Ranges are
535 * subdivided to allow multiple resizer threads. This value
536 * serves as a lower bound to avoid resizers encountering
537 * excessive memory contention. The value should be at least
538 * DEFAULT_CAPACITY.
539 */
540 private static final int MIN_TRANSFER_STRIDE = 16;
541
542 /**
543 * The number of bits used for generation stamp in sizeCtl.
544 * Must be at least 6 for 32bit arrays.
545 */
546 private static int RESIZE_STAMP_BITS = 16;
547
548 /**
549 * The maximum number of threads that can help resize.
550 * Must fit in 32 - RESIZE_STAMP_BITS bits.
551 */
552 private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
553
554 /**
555 * The bit shift for recording size stamp in sizeCtl.
556 */
557 private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
558
559 /*
560 * Encodings for Node hash fields. See above for explanation.
561 */
562 static final int MOVED = -1; // hash for forwarding nodes
563 static final int TREEBIN = -2; // hash for roots of trees
564 static final int RESERVED = -3; // hash for transient reservations
565 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
566
567 /** Number of CPUS, to place bounds on some sizings */
568 static final int NCPU = Runtime.getRuntime().availableProcessors();
569
570 /** For serialization compatibility. */
571 private static final ObjectStreamField[] serialPersistentFields = {
572 new ObjectStreamField("segments", Segment[].class),
573 new ObjectStreamField("segmentMask", Integer.TYPE),
574 new ObjectStreamField("segmentShift", Integer.TYPE)
575 };
576
577 /* ---------------- Nodes -------------- */
578
579 /**
580 * Key-value entry. This class is never exported out as a
581 * user-mutable Map.Entry (i.e., one supporting setValue; see
582 * MapEntry below), but can be used for read-only traversals used
583 * in bulk tasks. Subclasses of Node with a negative hash field
584 * are special, and contain null keys and values (but are never
585 * exported). Otherwise, keys and vals are never null.
586 */
587 static class Node<K,V> implements Map.Entry<K,V> {
588 final int hash;
589 final K key;
590 volatile V val;
591 volatile Node<K,V> next;
592
593 Node(int hash, K key, V val, Node<K,V> next) {
594 this.hash = hash;
595 this.key = key;
596 this.val = val;
597 this.next = next;
598 }
599
600 public final K getKey() { return key; }
601 public final V getValue() { return val; }
602 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
603 public final String toString() {
604 return Helpers.mapEntryToString(key, val);
605 }
606 public final V setValue(V value) {
607 throw new UnsupportedOperationException();
608 }
609
610 public final boolean equals(Object o) {
611 Object k, v, u; Map.Entry<?,?> e;
612 return ((o instanceof Map.Entry) &&
613 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
614 (v = e.getValue()) != null &&
615 (k == key || k.equals(key)) &&
616 (v == (u = val) || v.equals(u)));
617 }
618
619 /**
620 * Virtualized support for map.get(); overridden in subclasses.
621 */
622 Node<K,V> find(int h, Object k) {
623 Node<K,V> e = this;
624 if (k != null) {
625 do {
626 K ek;
627 if (e.hash == h &&
628 ((ek = e.key) == k || (ek != null && k.equals(ek))))
629 return e;
630 } while ((e = e.next) != null);
631 }
632 return null;
633 }
634 }
635
636 /* ---------------- Static utilities -------------- */
637
638 /**
639 * Spreads (XORs) higher bits of hash to lower and also forces top
640 * bit to 0. Because the table uses power-of-two masking, sets of
641 * hashes that vary only in bits above the current mask will
642 * always collide. (Among known examples are sets of Float keys
643 * holding consecutive whole numbers in small tables.) So we
644 * apply a transform that spreads the impact of higher bits
645 * downward. There is a tradeoff between speed, utility, and
646 * quality of bit-spreading. Because many common sets of hashes
647 * are already reasonably distributed (so don't benefit from
648 * spreading), and because we use trees to handle large sets of
649 * collisions in bins, we just XOR some shifted bits in the
650 * cheapest possible way to reduce systematic lossage, as well as
651 * to incorporate impact of the highest bits that would otherwise
652 * never be used in index calculations because of table bounds.
653 */
654 static final int spread(int h) {
655 return (h ^ (h >>> 16)) & HASH_BITS;
656 }
657
658 /**
659 * Returns a power of two table size for the given desired capacity.
660 * See Hackers Delight, sec 3.2
661 */
662 private static final int tableSizeFor(int c) {
663 int n = c - 1;
664 n |= n >>> 1;
665 n |= n >>> 2;
666 n |= n >>> 4;
667 n |= n >>> 8;
668 n |= n >>> 16;
669 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
670 }
671
672 /**
673 * Returns x's Class if it is of the form "class C implements
674 * Comparable<C>", else null.
675 */
676 static Class<?> comparableClassFor(Object x) {
677 if (x instanceof Comparable) {
678 Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
679 if ((c = x.getClass()) == String.class) // bypass checks
680 return c;
681 if ((ts = c.getGenericInterfaces()) != null) {
682 for (int i = 0; i < ts.length; ++i) {
683 if (((t = ts[i]) instanceof ParameterizedType) &&
684 ((p = (ParameterizedType)t).getRawType() ==
685 Comparable.class) &&
686 (as = p.getActualTypeArguments()) != null &&
687 as.length == 1 && as[0] == c) // type arg is c
688 return c;
689 }
690 }
691 }
692 return null;
693 }
694
695 /**
696 * Returns k.compareTo(x) if x matches kc (k's screened comparable
697 * class), else 0.
698 */
699 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
700 static int compareComparables(Class<?> kc, Object k, Object x) {
701 return (x == null || x.getClass() != kc ? 0 :
702 ((Comparable)k).compareTo(x));
703 }
704
705 /* ---------------- Table element access -------------- */
706
707 /*
708 * Volatile access methods are used for table elements as well as
709 * elements of in-progress next table while resizing. All uses of
710 * the tab arguments must be null checked by callers. All callers
711 * also paranoically precheck that tab's length is not zero (or an
712 * equivalent check), thus ensuring that any index argument taking
713 * the form of a hash value anded with (length - 1) is a valid
714 * index. Note that, to be correct wrt arbitrary concurrency
715 * errors by users, these checks must operate on local variables,
716 * which accounts for some odd-looking inline assignments below.
717 * Note that calls to setTabAt always occur within locked regions,
718 * and so in principle require only release ordering, not
719 * full volatile semantics, but are currently coded as volatile
720 * writes to be conservative.
721 */
722
723 @SuppressWarnings("unchecked")
724 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
725 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
726 }
727
728 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
729 Node<K,V> c, Node<K,V> v) {
730 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
731 }
732
733 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
734 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
735 }
736
737 /* ---------------- Fields -------------- */
738
739 /**
740 * The array of bins. Lazily initialized upon first insertion.
741 * Size is always a power of two. Accessed directly by iterators.
742 */
743 transient volatile Node<K,V>[] table;
744
745 /**
746 * The next table to use; non-null only while resizing.
747 */
748 private transient volatile Node<K,V>[] nextTable;
749
750 /**
751 * Base counter value, used mainly when there is no contention,
752 * but also as a fallback during table initialization
753 * races. Updated via CAS.
754 */
755 private transient volatile long baseCount;
756
757 /**
758 * Table initialization and resizing control. When negative, the
759 * table is being initialized or resized: -1 for initialization,
760 * else -(1 + the number of active resizing threads). Otherwise,
761 * when table is null, holds the initial table size to use upon
762 * creation, or 0 for default. After initialization, holds the
763 * next element count value upon which to resize the table.
764 */
765 private transient volatile int sizeCtl;
766
767 /**
768 * The next table index (plus one) to split while resizing.
769 */
770 private transient volatile int transferIndex;
771
772 /**
773 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
774 */
775 private transient volatile int cellsBusy;
776
777 /**
778 * Table of counter cells. When non-null, size is a power of 2.
779 */
780 private transient volatile CounterCell[] counterCells;
781
782 // views
783 private transient KeySetView<K,V> keySet;
784 private transient ValuesView<K,V> values;
785 private transient EntrySetView<K,V> entrySet;
786
787
788 /* ---------------- Public operations -------------- */
789
790 /**
791 * Creates a new, empty map with the default initial table size (16).
792 */
793 public ConcurrentHashMap() {
794 }
795
796 /**
797 * Creates a new, empty map with an initial table size
798 * accommodating the specified number of elements without the need
799 * to dynamically resize.
800 *
801 * @param initialCapacity The implementation performs internal
802 * sizing to accommodate this many elements.
803 * @throws IllegalArgumentException if the initial capacity of
804 * elements is negative
805 */
806 public ConcurrentHashMap(int initialCapacity) {
807 if (initialCapacity < 0)
808 throw new IllegalArgumentException();
809 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
810 MAXIMUM_CAPACITY :
811 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
812 this.sizeCtl = cap;
813 }
814
815 /**
816 * Creates a new map with the same mappings as the given map.
817 *
818 * @param m the map
819 */
820 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
821 this.sizeCtl = DEFAULT_CAPACITY;
822 putAll(m);
823 }
824
825 /**
826 * Creates a new, empty map with an initial table size based on
827 * the given number of elements ({@code initialCapacity}) and
828 * initial table density ({@code loadFactor}).
829 *
830 * @param initialCapacity the initial capacity. The implementation
831 * performs internal sizing to accommodate this many elements,
832 * given the specified load factor.
833 * @param loadFactor the load factor (table density) for
834 * establishing the initial table size
835 * @throws IllegalArgumentException if the initial capacity of
836 * elements is negative or the load factor is nonpositive
837 *
838 * @since 1.6
839 */
840 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
841 this(initialCapacity, loadFactor, 1);
842 }
843
844 /**
845 * Creates a new, empty map with an initial table size based on
846 * the given number of elements ({@code initialCapacity}), table
847 * density ({@code loadFactor}), and number of concurrently
848 * updating threads ({@code concurrencyLevel}).
849 *
850 * @param initialCapacity the initial capacity. The implementation
851 * performs internal sizing to accommodate this many elements,
852 * given the specified load factor.
853 * @param loadFactor the load factor (table density) for
854 * establishing the initial table size
855 * @param concurrencyLevel the estimated number of concurrently
856 * updating threads. The implementation may use this value as
857 * a sizing hint.
858 * @throws IllegalArgumentException if the initial capacity is
859 * negative or the load factor or concurrencyLevel are
860 * nonpositive
861 */
862 public ConcurrentHashMap(int initialCapacity,
863 float loadFactor, int concurrencyLevel) {
864 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
865 throw new IllegalArgumentException();
866 if (initialCapacity < concurrencyLevel) // Use at least as many bins
867 initialCapacity = concurrencyLevel; // as estimated threads
868 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
869 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
870 MAXIMUM_CAPACITY : tableSizeFor((int)size);
871 this.sizeCtl = cap;
872 }
873
874 // Original (since JDK1.2) Map methods
875
876 /**
877 * {@inheritDoc}
878 */
879 public int size() {
880 long n = sumCount();
881 return ((n < 0L) ? 0 :
882 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
883 (int)n);
884 }
885
886 /**
887 * {@inheritDoc}
888 */
889 public boolean isEmpty() {
890 return sumCount() <= 0L; // ignore transient negative values
891 }
892
893 /**
894 * Returns the value to which the specified key is mapped,
895 * or {@code null} if this map contains no mapping for the key.
896 *
897 * <p>More formally, if this map contains a mapping from a key
898 * {@code k} to a value {@code v} such that {@code key.equals(k)},
899 * then this method returns {@code v}; otherwise it returns
900 * {@code null}. (There can be at most one such mapping.)
901 *
902 * @throws NullPointerException if the specified key is null
903 */
904 public V get(Object key) {
905 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
906 int h = spread(key.hashCode());
907 if ((tab = table) != null && (n = tab.length) > 0 &&
908 (e = tabAt(tab, (n - 1) & h)) != null) {
909 if ((eh = e.hash) == h) {
910 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
911 return e.val;
912 }
913 else if (eh < 0)
914 return (p = e.find(h, key)) != null ? p.val : null;
915 while ((e = e.next) != null) {
916 if (e.hash == h &&
917 ((ek = e.key) == key || (ek != null && key.equals(ek))))
918 return e.val;
919 }
920 }
921 return null;
922 }
923
924 /**
925 * Tests if the specified object is a key in this table.
926 *
927 * @param key possible key
928 * @return {@code true} if and only if the specified object
929 * is a key in this table, as determined by the
930 * {@code equals} method; {@code false} otherwise
931 * @throws NullPointerException if the specified key is null
932 */
933 public boolean containsKey(Object key) {
934 return get(key) != null;
935 }
936
937 /**
938 * Returns {@code true} if this map maps one or more keys to the
939 * specified value. Note: This method may require a full traversal
940 * of the map, and is much slower than method {@code containsKey}.
941 *
942 * @param value value whose presence in this map is to be tested
943 * @return {@code true} if this map maps one or more keys to the
944 * specified value
945 * @throws NullPointerException if the specified value is null
946 */
947 public boolean containsValue(Object value) {
948 if (value == null)
949 throw new NullPointerException();
950 Node<K,V>[] t;
951 if ((t = table) != null) {
952 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
953 for (Node<K,V> p; (p = it.advance()) != null; ) {
954 V v;
955 if ((v = p.val) == value || (v != null && value.equals(v)))
956 return true;
957 }
958 }
959 return false;
960 }
961
962 /**
963 * Maps the specified key to the specified value in this table.
964 * Neither the key nor the value can be null.
965 *
966 * <p>The value can be retrieved by calling the {@code get} method
967 * with a key that is equal to the original key.
968 *
969 * @param key key with which the specified value is to be associated
970 * @param value value to be associated with the specified key
971 * @return the previous value associated with {@code key}, or
972 * {@code null} if there was no mapping for {@code key}
973 * @throws NullPointerException if the specified key or value is null
974 */
975 public V put(K key, V value) {
976 return putVal(key, value, false);
977 }
978
979 /** Implementation for put and putIfAbsent */
980 final V putVal(K key, V value, boolean onlyIfAbsent) {
981 if (key == null || value == null) throw new NullPointerException();
982 int hash = spread(key.hashCode());
983 int binCount = 0;
984 for (Node<K,V>[] tab = table;;) {
985 Node<K,V> f; int n, i, fh;
986 if (tab == null || (n = tab.length) == 0)
987 tab = initTable();
988 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
989 if (casTabAt(tab, i, null,
990 new Node<K,V>(hash, key, value, null)))
991 break; // no lock when adding to empty bin
992 }
993 else if ((fh = f.hash) == MOVED)
994 tab = helpTransfer(tab, f);
995 else {
996 V oldVal = null;
997 synchronized (f) {
998 if (tabAt(tab, i) == f) {
999 if (fh >= 0) {
1000 binCount = 1;
1001 for (Node<K,V> e = f;; ++binCount) {
1002 K ek;
1003 if (e.hash == hash &&
1004 ((ek = e.key) == key ||
1005 (ek != null && key.equals(ek)))) {
1006 oldVal = e.val;
1007 if (!onlyIfAbsent)
1008 e.val = value;
1009 break;
1010 }
1011 Node<K,V> pred = e;
1012 if ((e = e.next) == null) {
1013 pred.next = new Node<K,V>(hash, key,
1014 value, null);
1015 break;
1016 }
1017 }
1018 }
1019 else if (f instanceof TreeBin) {
1020 Node<K,V> p;
1021 binCount = 2;
1022 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1023 value)) != null) {
1024 oldVal = p.val;
1025 if (!onlyIfAbsent)
1026 p.val = value;
1027 }
1028 }
1029 else if (f instanceof ReservationNode)
1030 throw new IllegalStateException("Recursive update");
1031 }
1032 }
1033 if (binCount != 0) {
1034 if (binCount >= TREEIFY_THRESHOLD)
1035 treeifyBin(tab, i);
1036 if (oldVal != null)
1037 return oldVal;
1038 break;
1039 }
1040 }
1041 }
1042 addCount(1L, binCount);
1043 return null;
1044 }
1045
1046 /**
1047 * Copies all of the mappings from the specified map to this one.
1048 * These mappings replace any mappings that this map had for any of the
1049 * keys currently in the specified map.
1050 *
1051 * @param m mappings to be stored in this map
1052 */
1053 public void putAll(Map<? extends K, ? extends V> m) {
1054 tryPresize(m.size());
1055 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1056 putVal(e.getKey(), e.getValue(), false);
1057 }
1058
1059 /**
1060 * Removes the key (and its corresponding value) from this map.
1061 * This method does nothing if the key is not in the map.
1062 *
1063 * @param key the key that needs to be removed
1064 * @return the previous value associated with {@code key}, or
1065 * {@code null} if there was no mapping for {@code key}
1066 * @throws NullPointerException if the specified key is null
1067 */
1068 public V remove(Object key) {
1069 return replaceNode(key, null, null);
1070 }
1071
1072 /**
1073 * Implementation for the four public remove/replace methods:
1074 * Replaces node value with v, conditional upon match of cv if
1075 * non-null. If resulting value is null, delete.
1076 */
1077 final V replaceNode(Object key, V value, Object cv) {
1078 int hash = spread(key.hashCode());
1079 for (Node<K,V>[] tab = table;;) {
1080 Node<K,V> f; int n, i, fh;
1081 if (tab == null || (n = tab.length) == 0 ||
1082 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1083 break;
1084 else if ((fh = f.hash) == MOVED)
1085 tab = helpTransfer(tab, f);
1086 else {
1087 V oldVal = null;
1088 boolean validated = false;
1089 synchronized (f) {
1090 if (tabAt(tab, i) == f) {
1091 if (fh >= 0) {
1092 validated = true;
1093 for (Node<K,V> e = f, pred = null;;) {
1094 K ek;
1095 if (e.hash == hash &&
1096 ((ek = e.key) == key ||
1097 (ek != null && key.equals(ek)))) {
1098 V ev = e.val;
1099 if (cv == null || cv == ev ||
1100 (ev != null && cv.equals(ev))) {
1101 oldVal = ev;
1102 if (value != null)
1103 e.val = value;
1104 else if (pred != null)
1105 pred.next = e.next;
1106 else
1107 setTabAt(tab, i, e.next);
1108 }
1109 break;
1110 }
1111 pred = e;
1112 if ((e = e.next) == null)
1113 break;
1114 }
1115 }
1116 else if (f instanceof TreeBin) {
1117 validated = true;
1118 TreeBin<K,V> t = (TreeBin<K,V>)f;
1119 TreeNode<K,V> r, p;
1120 if ((r = t.root) != null &&
1121 (p = r.findTreeNode(hash, key, null)) != null) {
1122 V pv = p.val;
1123 if (cv == null || cv == pv ||
1124 (pv != null && cv.equals(pv))) {
1125 oldVal = pv;
1126 if (value != null)
1127 p.val = value;
1128 else if (t.removeTreeNode(p))
1129 setTabAt(tab, i, untreeify(t.first));
1130 }
1131 }
1132 }
1133 else if (f instanceof ReservationNode)
1134 throw new IllegalStateException("Recursive update");
1135 }
1136 }
1137 if (validated) {
1138 if (oldVal != null) {
1139 if (value == null)
1140 addCount(-1L, -1);
1141 return oldVal;
1142 }
1143 break;
1144 }
1145 }
1146 }
1147 return null;
1148 }
1149
1150 /**
1151 * Removes all of the mappings from this map.
1152 */
1153 public void clear() {
1154 long delta = 0L; // negative number of deletions
1155 int i = 0;
1156 Node<K,V>[] tab = table;
1157 while (tab != null && i < tab.length) {
1158 int fh;
1159 Node<K,V> f = tabAt(tab, i);
1160 if (f == null)
1161 ++i;
1162 else if ((fh = f.hash) == MOVED) {
1163 tab = helpTransfer(tab, f);
1164 i = 0; // restart
1165 }
1166 else {
1167 synchronized (f) {
1168 if (tabAt(tab, i) == f) {
1169 Node<K,V> p = (fh >= 0 ? f :
1170 (f instanceof TreeBin) ?
1171 ((TreeBin<K,V>)f).first : null);
1172 while (p != null) {
1173 --delta;
1174 p = p.next;
1175 }
1176 setTabAt(tab, i++, null);
1177 }
1178 }
1179 }
1180 }
1181 if (delta != 0L)
1182 addCount(delta, -1);
1183 }
1184
1185 /**
1186 * Returns a {@link Set} view of the keys contained in this map.
1187 * The set is backed by the map, so changes to the map are
1188 * reflected in the set, and vice-versa. The set supports element
1189 * removal, which removes the corresponding mapping from this map,
1190 * via the {@code Iterator.remove}, {@code Set.remove},
1191 * {@code removeAll}, {@code retainAll}, and {@code clear}
1192 * operations. It does not support the {@code add} or
1193 * {@code addAll} operations.
1194 *
1195 * <p>The view's iterators and spliterators are
1196 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1197 *
1198 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1199 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1200 *
1201 * @return the set view
1202 */
1203 public KeySetView<K,V> keySet() {
1204 KeySetView<K,V> ks;
1205 return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1206 }
1207
1208 /**
1209 * Returns a {@link Collection} view of the values contained in this map.
1210 * The collection is backed by the map, so changes to the map are
1211 * reflected in the collection, and vice-versa. The collection
1212 * supports element removal, which removes the corresponding
1213 * mapping from this map, via the {@code Iterator.remove},
1214 * {@code Collection.remove}, {@code removeAll},
1215 * {@code retainAll}, and {@code clear} operations. It does not
1216 * support the {@code add} or {@code addAll} operations.
1217 *
1218 * <p>The view's iterators and spliterators are
1219 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1220 *
1221 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1222 * and {@link Spliterator#NONNULL}.
1223 *
1224 * @return the collection view
1225 */
1226 public Collection<V> values() {
1227 ValuesView<K,V> vs;
1228 return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1229 }
1230
1231 /**
1232 * Returns a {@link Set} view of the mappings contained in this map.
1233 * The set is backed by the map, so changes to the map are
1234 * reflected in the set, and vice-versa. The set supports element
1235 * removal, which removes the corresponding mapping from the map,
1236 * via the {@code Iterator.remove}, {@code Set.remove},
1237 * {@code removeAll}, {@code retainAll}, and {@code clear}
1238 * operations.
1239 *
1240 * <p>The view's iterators and spliterators are
1241 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1242 *
1243 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1244 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1245 *
1246 * @return the set view
1247 */
1248 public Set<Map.Entry<K,V>> entrySet() {
1249 EntrySetView<K,V> es;
1250 return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1251 }
1252
1253 /**
1254 * Returns the hash code value for this {@link Map}, i.e.,
1255 * the sum of, for each key-value pair in the map,
1256 * {@code key.hashCode() ^ value.hashCode()}.
1257 *
1258 * @return the hash code value for this map
1259 */
1260 public int hashCode() {
1261 int h = 0;
1262 Node<K,V>[] t;
1263 if ((t = table) != null) {
1264 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1265 for (Node<K,V> p; (p = it.advance()) != null; )
1266 h += p.key.hashCode() ^ p.val.hashCode();
1267 }
1268 return h;
1269 }
1270
1271 /**
1272 * Returns a string representation of this map. The string
1273 * representation consists of a list of key-value mappings (in no
1274 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1275 * mappings are separated by the characters {@code ", "} (comma
1276 * and space). Each key-value mapping is rendered as the key
1277 * followed by an equals sign ("{@code =}") followed by the
1278 * associated value.
1279 *
1280 * @return a string representation of this map
1281 */
1282 public String toString() {
1283 Node<K,V>[] t;
1284 int f = (t = table) == null ? 0 : t.length;
1285 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1286 StringBuilder sb = new StringBuilder();
1287 sb.append('{');
1288 Node<K,V> p;
1289 if ((p = it.advance()) != null) {
1290 for (;;) {
1291 K k = p.key;
1292 V v = p.val;
1293 sb.append(k == this ? "(this Map)" : k);
1294 sb.append('=');
1295 sb.append(v == this ? "(this Map)" : v);
1296 if ((p = it.advance()) == null)
1297 break;
1298 sb.append(',').append(' ');
1299 }
1300 }
1301 return sb.append('}').toString();
1302 }
1303
1304 /**
1305 * Compares the specified object with this map for equality.
1306 * Returns {@code true} if the given object is a map with the same
1307 * mappings as this map. This operation may return misleading
1308 * results if either map is concurrently modified during execution
1309 * of this method.
1310 *
1311 * @param o object to be compared for equality with this map
1312 * @return {@code true} if the specified object is equal to this map
1313 */
1314 public boolean equals(Object o) {
1315 if (o != this) {
1316 if (!(o instanceof Map))
1317 return false;
1318 Map<?,?> m = (Map<?,?>) o;
1319 Node<K,V>[] t;
1320 int f = (t = table) == null ? 0 : t.length;
1321 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1322 for (Node<K,V> p; (p = it.advance()) != null; ) {
1323 V val = p.val;
1324 Object v = m.get(p.key);
1325 if (v == null || (v != val && !v.equals(val)))
1326 return false;
1327 }
1328 for (Map.Entry<?,?> e : m.entrySet()) {
1329 Object mk, mv, v;
1330 if ((mk = e.getKey()) == null ||
1331 (mv = e.getValue()) == null ||
1332 (v = get(mk)) == null ||
1333 (mv != v && !mv.equals(v)))
1334 return false;
1335 }
1336 }
1337 return true;
1338 }
1339
1340 /**
1341 * Stripped-down version of helper class used in previous version,
1342 * declared for the sake of serialization compatibility
1343 */
1344 static class Segment<K,V> extends ReentrantLock implements Serializable {
1345 private static final long serialVersionUID = 2249069246763182397L;
1346 final float loadFactor;
1347 Segment(float lf) { this.loadFactor = lf; }
1348 }
1349
1350 /**
1351 * Saves the state of the {@code ConcurrentHashMap} instance to a
1352 * stream (i.e., serializes it).
1353 * @param s the stream
1354 * @throws java.io.IOException if an I/O error occurs
1355 * @serialData
1356 * the key (Object) and value (Object)
1357 * for each key-value mapping, followed by a null pair.
1358 * The key-value mappings are emitted in no particular order.
1359 */
1360 private void writeObject(java.io.ObjectOutputStream s)
1361 throws java.io.IOException {
1362 // For serialization compatibility
1363 // Emulate segment calculation from previous version of this class
1364 int sshift = 0;
1365 int ssize = 1;
1366 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1367 ++sshift;
1368 ssize <<= 1;
1369 }
1370 int segmentShift = 32 - sshift;
1371 int segmentMask = ssize - 1;
1372 @SuppressWarnings("unchecked")
1373 Segment<K,V>[] segments = (Segment<K,V>[])
1374 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1375 for (int i = 0; i < segments.length; ++i)
1376 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1377 java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1378 streamFields.put("segments", segments);
1379 streamFields.put("segmentShift", segmentShift);
1380 streamFields.put("segmentMask", segmentMask);
1381 s.writeFields();
1382
1383 Node<K,V>[] t;
1384 if ((t = table) != null) {
1385 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1386 for (Node<K,V> p; (p = it.advance()) != null; ) {
1387 s.writeObject(p.key);
1388 s.writeObject(p.val);
1389 }
1390 }
1391 s.writeObject(null);
1392 s.writeObject(null);
1393 segments = null; // throw away
1394 }
1395
1396 /**
1397 * Reconstitutes the instance from a stream (that is, deserializes it).
1398 * @param s the stream
1399 * @throws ClassNotFoundException if the class of a serialized object
1400 * could not be found
1401 * @throws java.io.IOException if an I/O error occurs
1402 */
1403 private void readObject(java.io.ObjectInputStream s)
1404 throws java.io.IOException, ClassNotFoundException {
1405 /*
1406 * To improve performance in typical cases, we create nodes
1407 * while reading, then place in table once size is known.
1408 * However, we must also validate uniqueness and deal with
1409 * overpopulated bins while doing so, which requires
1410 * specialized versions of putVal mechanics.
1411 */
1412 sizeCtl = -1; // force exclusion for table construction
1413 s.defaultReadObject();
1414 long size = 0L;
1415 Node<K,V> p = null;
1416 for (;;) {
1417 @SuppressWarnings("unchecked")
1418 K k = (K) s.readObject();
1419 @SuppressWarnings("unchecked")
1420 V v = (V) s.readObject();
1421 if (k != null && v != null) {
1422 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1423 ++size;
1424 }
1425 else
1426 break;
1427 }
1428 if (size == 0L)
1429 sizeCtl = 0;
1430 else {
1431 int n;
1432 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1433 n = MAXIMUM_CAPACITY;
1434 else {
1435 int sz = (int)size;
1436 n = tableSizeFor(sz + (sz >>> 1) + 1);
1437 }
1438 @SuppressWarnings("unchecked")
1439 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1440 int mask = n - 1;
1441 long added = 0L;
1442 while (p != null) {
1443 boolean insertAtFront;
1444 Node<K,V> next = p.next, first;
1445 int h = p.hash, j = h & mask;
1446 if ((first = tabAt(tab, j)) == null)
1447 insertAtFront = true;
1448 else {
1449 K k = p.key;
1450 if (first.hash < 0) {
1451 TreeBin<K,V> t = (TreeBin<K,V>)first;
1452 if (t.putTreeVal(h, k, p.val) == null)
1453 ++added;
1454 insertAtFront = false;
1455 }
1456 else {
1457 int binCount = 0;
1458 insertAtFront = true;
1459 Node<K,V> q; K qk;
1460 for (q = first; q != null; q = q.next) {
1461 if (q.hash == h &&
1462 ((qk = q.key) == k ||
1463 (qk != null && k.equals(qk)))) {
1464 insertAtFront = false;
1465 break;
1466 }
1467 ++binCount;
1468 }
1469 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1470 insertAtFront = false;
1471 ++added;
1472 p.next = first;
1473 TreeNode<K,V> hd = null, tl = null;
1474 for (q = p; q != null; q = q.next) {
1475 TreeNode<K,V> t = new TreeNode<K,V>
1476 (q.hash, q.key, q.val, null, null);
1477 if ((t.prev = tl) == null)
1478 hd = t;
1479 else
1480 tl.next = t;
1481 tl = t;
1482 }
1483 setTabAt(tab, j, new TreeBin<K,V>(hd));
1484 }
1485 }
1486 }
1487 if (insertAtFront) {
1488 ++added;
1489 p.next = first;
1490 setTabAt(tab, j, p);
1491 }
1492 p = next;
1493 }
1494 table = tab;
1495 sizeCtl = n - (n >>> 2);
1496 baseCount = added;
1497 }
1498 }
1499
1500 // ConcurrentMap methods
1501
1502 /**
1503 * {@inheritDoc}
1504 *
1505 * @return the previous value associated with the specified key,
1506 * or {@code null} if there was no mapping for the key
1507 * @throws NullPointerException if the specified key or value is null
1508 */
1509 public V putIfAbsent(K key, V value) {
1510 return putVal(key, value, true);
1511 }
1512
1513 /**
1514 * {@inheritDoc}
1515 *
1516 * @throws NullPointerException if the specified key is null
1517 */
1518 public boolean remove(Object key, Object value) {
1519 if (key == null)
1520 throw new NullPointerException();
1521 return value != null && replaceNode(key, null, value) != null;
1522 }
1523
1524 /**
1525 * {@inheritDoc}
1526 *
1527 * @throws NullPointerException if any of the arguments are null
1528 */
1529 public boolean replace(K key, V oldValue, V newValue) {
1530 if (key == null || oldValue == null || newValue == null)
1531 throw new NullPointerException();
1532 return replaceNode(key, newValue, oldValue) != null;
1533 }
1534
1535 /**
1536 * {@inheritDoc}
1537 *
1538 * @return the previous value associated with the specified key,
1539 * or {@code null} if there was no mapping for the key
1540 * @throws NullPointerException if the specified key or value is null
1541 */
1542 public V replace(K key, V value) {
1543 if (key == null || value == null)
1544 throw new NullPointerException();
1545 return replaceNode(key, value, null);
1546 }
1547
1548 // Overrides of JDK8+ Map extension method defaults
1549
1550 /**
1551 * Returns the value to which the specified key is mapped, or the
1552 * given default value if this map contains no mapping for the
1553 * key.
1554 *
1555 * @param key the key whose associated value is to be returned
1556 * @param defaultValue the value to return if this map contains
1557 * no mapping for the given key
1558 * @return the mapping for the key, if present; else the default value
1559 * @throws NullPointerException if the specified key is null
1560 */
1561 public V getOrDefault(Object key, V defaultValue) {
1562 V v;
1563 return (v = get(key)) == null ? defaultValue : v;
1564 }
1565
1566 public void forEach(BiConsumer<? super K, ? super V> action) {
1567 if (action == null) throw new NullPointerException();
1568 Node<K,V>[] t;
1569 if ((t = table) != null) {
1570 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1571 for (Node<K,V> p; (p = it.advance()) != null; ) {
1572 action.accept(p.key, p.val);
1573 }
1574 }
1575 }
1576
1577 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1578 if (function == null) throw new NullPointerException();
1579 Node<K,V>[] t;
1580 if ((t = table) != null) {
1581 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1582 for (Node<K,V> p; (p = it.advance()) != null; ) {
1583 V oldValue = p.val;
1584 for (K key = p.key;;) {
1585 V newValue = function.apply(key, oldValue);
1586 if (newValue == null)
1587 throw new NullPointerException();
1588 if (replaceNode(key, newValue, oldValue) != null ||
1589 (oldValue = get(key)) == null)
1590 break;
1591 }
1592 }
1593 }
1594 }
1595
1596 /**
1597 * Helper method for EntrySet.removeIf
1598 */
1599 boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1600 if (function == null) throw new NullPointerException();
1601 Node<K,V>[] t;
1602 boolean removed = false;
1603 if ((t = table) != null) {
1604 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1605 for (Node<K,V> p; (p = it.advance()) != null; ) {
1606 K k = p.key;
1607 V v = p.val;
1608 Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1609 if (function.test(e) && replaceNode(k, null, v) != null)
1610 removed = true;
1611 }
1612 }
1613 return removed;
1614 }
1615
1616 /**
1617 * Helper method for Values.removeIf
1618 */
1619 boolean removeValueIf(Predicate<? super V> function) {
1620 if (function == null) throw new NullPointerException();
1621 Node<K,V>[] t;
1622 boolean removed = false;
1623 if ((t = table) != null) {
1624 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1625 for (Node<K,V> p; (p = it.advance()) != null; ) {
1626 K k = p.key;
1627 V v = p.val;
1628 if (function.test(v) && replaceNode(k, null, v) != null)
1629 removed = true;
1630 }
1631 }
1632 return removed;
1633 }
1634
1635 /**
1636 * If the specified key is not already associated with a value,
1637 * attempts to compute its value using the given mapping function
1638 * and enters it into this map unless {@code null}. The entire
1639 * method invocation is performed atomically, so the function is
1640 * applied at most once per key. Some attempted update operations
1641 * on this map by other threads may be blocked while computation
1642 * is in progress, so the computation should be short and simple,
1643 * and must not attempt to update any other mappings of this map.
1644 *
1645 * @param key key with which the specified value is to be associated
1646 * @param mappingFunction the function to compute a value
1647 * @return the current (existing or computed) value associated with
1648 * the specified key, or null if the computed value is null
1649 * @throws NullPointerException if the specified key or mappingFunction
1650 * is null
1651 * @throws IllegalStateException if the computation detectably
1652 * attempts a recursive update to this map that would
1653 * otherwise never complete
1654 * @throws RuntimeException or Error if the mappingFunction does so,
1655 * in which case the mapping is left unestablished
1656 */
1657 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1658 if (key == null || mappingFunction == null)
1659 throw new NullPointerException();
1660 int h = spread(key.hashCode());
1661 V val = null;
1662 int binCount = 0;
1663 for (Node<K,V>[] tab = table;;) {
1664 Node<K,V> f; int n, i, fh;
1665 if (tab == null || (n = tab.length) == 0)
1666 tab = initTable();
1667 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1668 Node<K,V> r = new ReservationNode<K,V>();
1669 synchronized (r) {
1670 if (casTabAt(tab, i, null, r)) {
1671 binCount = 1;
1672 Node<K,V> node = null;
1673 try {
1674 if ((val = mappingFunction.apply(key)) != null)
1675 node = new Node<K,V>(h, key, val, null);
1676 } finally {
1677 setTabAt(tab, i, node);
1678 }
1679 }
1680 }
1681 if (binCount != 0)
1682 break;
1683 }
1684 else if ((fh = f.hash) == MOVED)
1685 tab = helpTransfer(tab, f);
1686 else {
1687 boolean added = false;
1688 synchronized (f) {
1689 if (tabAt(tab, i) == f) {
1690 if (fh >= 0) {
1691 binCount = 1;
1692 for (Node<K,V> e = f;; ++binCount) {
1693 K ek;
1694 if (e.hash == h &&
1695 ((ek = e.key) == key ||
1696 (ek != null && key.equals(ek)))) {
1697 val = e.val;
1698 break;
1699 }
1700 Node<K,V> pred = e;
1701 if ((e = e.next) == null) {
1702 if ((val = mappingFunction.apply(key)) != null) {
1703 if (pred.next != null)
1704 throw new IllegalStateException("Recursive update");
1705 added = true;
1706 pred.next = new Node<K,V>(h, key, val, null);
1707 }
1708 break;
1709 }
1710 }
1711 }
1712 else if (f instanceof TreeBin) {
1713 binCount = 2;
1714 TreeBin<K,V> t = (TreeBin<K,V>)f;
1715 TreeNode<K,V> r, p;
1716 if ((r = t.root) != null &&
1717 (p = r.findTreeNode(h, key, null)) != null)
1718 val = p.val;
1719 else if ((val = mappingFunction.apply(key)) != null) {
1720 added = true;
1721 t.putTreeVal(h, key, val);
1722 }
1723 }
1724 else if (f instanceof ReservationNode)
1725 throw new IllegalStateException("Recursive update");
1726 }
1727 }
1728 if (binCount != 0) {
1729 if (binCount >= TREEIFY_THRESHOLD)
1730 treeifyBin(tab, i);
1731 if (!added)
1732 return val;
1733 break;
1734 }
1735 }
1736 }
1737 if (val != null)
1738 addCount(1L, binCount);
1739 return val;
1740 }
1741
1742 /**
1743 * If the value for the specified key is present, attempts to
1744 * compute a new mapping given the key and its current mapped
1745 * value. The entire method invocation is performed atomically.
1746 * Some attempted update operations on this map by other threads
1747 * may be blocked while computation is in progress, so the
1748 * computation should be short and simple, and must not attempt to
1749 * update any other mappings of this map.
1750 *
1751 * @param key key with which a value may be associated
1752 * @param remappingFunction the function to compute a value
1753 * @return the new value associated with the specified key, or null if none
1754 * @throws NullPointerException if the specified key or remappingFunction
1755 * is null
1756 * @throws IllegalStateException if the computation detectably
1757 * attempts a recursive update to this map that would
1758 * otherwise never complete
1759 * @throws RuntimeException or Error if the remappingFunction does so,
1760 * in which case the mapping is unchanged
1761 */
1762 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1763 if (key == null || remappingFunction == null)
1764 throw new NullPointerException();
1765 int h = spread(key.hashCode());
1766 V val = null;
1767 int delta = 0;
1768 int binCount = 0;
1769 for (Node<K,V>[] tab = table;;) {
1770 Node<K,V> f; int n, i, fh;
1771 if (tab == null || (n = tab.length) == 0)
1772 tab = initTable();
1773 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1774 break;
1775 else if ((fh = f.hash) == MOVED)
1776 tab = helpTransfer(tab, f);
1777 else {
1778 synchronized (f) {
1779 if (tabAt(tab, i) == f) {
1780 if (fh >= 0) {
1781 binCount = 1;
1782 for (Node<K,V> e = f, pred = null;; ++binCount) {
1783 K ek;
1784 if (e.hash == h &&
1785 ((ek = e.key) == key ||
1786 (ek != null && key.equals(ek)))) {
1787 val = remappingFunction.apply(key, e.val);
1788 if (val != null)
1789 e.val = val;
1790 else {
1791 delta = -1;
1792 Node<K,V> en = e.next;
1793 if (pred != null)
1794 pred.next = en;
1795 else
1796 setTabAt(tab, i, en);
1797 }
1798 break;
1799 }
1800 pred = e;
1801 if ((e = e.next) == null)
1802 break;
1803 }
1804 }
1805 else if (f instanceof TreeBin) {
1806 binCount = 2;
1807 TreeBin<K,V> t = (TreeBin<K,V>)f;
1808 TreeNode<K,V> r, p;
1809 if ((r = t.root) != null &&
1810 (p = r.findTreeNode(h, key, null)) != null) {
1811 val = remappingFunction.apply(key, p.val);
1812 if (val != null)
1813 p.val = val;
1814 else {
1815 delta = -1;
1816 if (t.removeTreeNode(p))
1817 setTabAt(tab, i, untreeify(t.first));
1818 }
1819 }
1820 }
1821 else if (f instanceof ReservationNode)
1822 throw new IllegalStateException("Recursive update");
1823 }
1824 }
1825 if (binCount != 0)
1826 break;
1827 }
1828 }
1829 if (delta != 0)
1830 addCount((long)delta, binCount);
1831 return val;
1832 }
1833
1834 /**
1835 * Attempts to compute a mapping for the specified key and its
1836 * current mapped value (or {@code null} if there is no current
1837 * mapping). The entire method invocation is performed atomically.
1838 * Some attempted update operations on this map by other threads
1839 * may be blocked while computation is in progress, so the
1840 * computation should be short and simple, and must not attempt to
1841 * update any other mappings of this Map.
1842 *
1843 * @param key key with which the specified value is to be associated
1844 * @param remappingFunction the function to compute a value
1845 * @return the new value associated with the specified key, or null if none
1846 * @throws NullPointerException if the specified key or remappingFunction
1847 * is null
1848 * @throws IllegalStateException if the computation detectably
1849 * attempts a recursive update to this map that would
1850 * otherwise never complete
1851 * @throws RuntimeException or Error if the remappingFunction does so,
1852 * in which case the mapping is unchanged
1853 */
1854 public V compute(K key,
1855 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1856 if (key == null || remappingFunction == null)
1857 throw new NullPointerException();
1858 int h = spread(key.hashCode());
1859 V val = null;
1860 int delta = 0;
1861 int binCount = 0;
1862 for (Node<K,V>[] tab = table;;) {
1863 Node<K,V> f; int n, i, fh;
1864 if (tab == null || (n = tab.length) == 0)
1865 tab = initTable();
1866 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1867 Node<K,V> r = new ReservationNode<K,V>();
1868 synchronized (r) {
1869 if (casTabAt(tab, i, null, r)) {
1870 binCount = 1;
1871 Node<K,V> node = null;
1872 try {
1873 if ((val = remappingFunction.apply(key, null)) != null) {
1874 delta = 1;
1875 node = new Node<K,V>(h, key, val, null);
1876 }
1877 } finally {
1878 setTabAt(tab, i, node);
1879 }
1880 }
1881 }
1882 if (binCount != 0)
1883 break;
1884 }
1885 else if ((fh = f.hash) == MOVED)
1886 tab = helpTransfer(tab, f);
1887 else {
1888 synchronized (f) {
1889 if (tabAt(tab, i) == f) {
1890 if (fh >= 0) {
1891 binCount = 1;
1892 for (Node<K,V> e = f, pred = null;; ++binCount) {
1893 K ek;
1894 if (e.hash == h &&
1895 ((ek = e.key) == key ||
1896 (ek != null && key.equals(ek)))) {
1897 val = remappingFunction.apply(key, e.val);
1898 if (val != null)
1899 e.val = val;
1900 else {
1901 delta = -1;
1902 Node<K,V> en = e.next;
1903 if (pred != null)
1904 pred.next = en;
1905 else
1906 setTabAt(tab, i, en);
1907 }
1908 break;
1909 }
1910 pred = e;
1911 if ((e = e.next) == null) {
1912 val = remappingFunction.apply(key, null);
1913 if (val != null) {
1914 if (pred.next != null)
1915 throw new IllegalStateException("Recursive update");
1916 delta = 1;
1917 pred.next =
1918 new Node<K,V>(h, key, val, null);
1919 }
1920 break;
1921 }
1922 }
1923 }
1924 else if (f instanceof TreeBin) {
1925 binCount = 1;
1926 TreeBin<K,V> t = (TreeBin<K,V>)f;
1927 TreeNode<K,V> r, p;
1928 if ((r = t.root) != null)
1929 p = r.findTreeNode(h, key, null);
1930 else
1931 p = null;
1932 V pv = (p == null) ? null : p.val;
1933 val = remappingFunction.apply(key, pv);
1934 if (val != null) {
1935 if (p != null)
1936 p.val = val;
1937 else {
1938 delta = 1;
1939 t.putTreeVal(h, key, val);
1940 }
1941 }
1942 else if (p != null) {
1943 delta = -1;
1944 if (t.removeTreeNode(p))
1945 setTabAt(tab, i, untreeify(t.first));
1946 }
1947 }
1948 else if (f instanceof ReservationNode)
1949 throw new IllegalStateException("Recursive update");
1950 }
1951 }
1952 if (binCount != 0) {
1953 if (binCount >= TREEIFY_THRESHOLD)
1954 treeifyBin(tab, i);
1955 break;
1956 }
1957 }
1958 }
1959 if (delta != 0)
1960 addCount((long)delta, binCount);
1961 return val;
1962 }
1963
1964 /**
1965 * If the specified key is not already associated with a
1966 * (non-null) value, associates it with the given value.
1967 * Otherwise, replaces the value with the results of the given
1968 * remapping function, or removes if {@code null}. The entire
1969 * method invocation is performed atomically. Some attempted
1970 * update operations on this map by other threads may be blocked
1971 * while computation is in progress, so the computation should be
1972 * short and simple, and must not attempt to update any other
1973 * mappings of this Map.
1974 *
1975 * @param key key with which the specified value is to be associated
1976 * @param value the value to use if absent
1977 * @param remappingFunction the function to recompute a value if present
1978 * @return the new value associated with the specified key, or null if none
1979 * @throws NullPointerException if the specified key or the
1980 * remappingFunction is null
1981 * @throws RuntimeException or Error if the remappingFunction does so,
1982 * in which case the mapping is unchanged
1983 */
1984 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1985 if (key == null || value == null || remappingFunction == null)
1986 throw new NullPointerException();
1987 int h = spread(key.hashCode());
1988 V val = null;
1989 int delta = 0;
1990 int binCount = 0;
1991 for (Node<K,V>[] tab = table;;) {
1992 Node<K,V> f; int n, i, fh;
1993 if (tab == null || (n = tab.length) == 0)
1994 tab = initTable();
1995 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1996 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1997 delta = 1;
1998 val = value;
1999 break;
2000 }
2001 }
2002 else if ((fh = f.hash) == MOVED)
2003 tab = helpTransfer(tab, f);
2004 else {
2005 synchronized (f) {
2006 if (tabAt(tab, i) == f) {
2007 if (fh >= 0) {
2008 binCount = 1;
2009 for (Node<K,V> e = f, pred = null;; ++binCount) {
2010 K ek;
2011 if (e.hash == h &&
2012 ((ek = e.key) == key ||
2013 (ek != null && key.equals(ek)))) {
2014 val = remappingFunction.apply(e.val, value);
2015 if (val != null)
2016 e.val = val;
2017 else {
2018 delta = -1;
2019 Node<K,V> en = e.next;
2020 if (pred != null)
2021 pred.next = en;
2022 else
2023 setTabAt(tab, i, en);
2024 }
2025 break;
2026 }
2027 pred = e;
2028 if ((e = e.next) == null) {
2029 delta = 1;
2030 val = value;
2031 pred.next =
2032 new Node<K,V>(h, key, val, null);
2033 break;
2034 }
2035 }
2036 }
2037 else if (f instanceof TreeBin) {
2038 binCount = 2;
2039 TreeBin<K,V> t = (TreeBin<K,V>)f;
2040 TreeNode<K,V> r = t.root;
2041 TreeNode<K,V> p = (r == null) ? null :
2042 r.findTreeNode(h, key, null);
2043 val = (p == null) ? value :
2044 remappingFunction.apply(p.val, value);
2045 if (val != null) {
2046 if (p != null)
2047 p.val = val;
2048 else {
2049 delta = 1;
2050 t.putTreeVal(h, key, val);
2051 }
2052 }
2053 else if (p != null) {
2054 delta = -1;
2055 if (t.removeTreeNode(p))
2056 setTabAt(tab, i, untreeify(t.first));
2057 }
2058 }
2059 else if (f instanceof ReservationNode)
2060 throw new IllegalStateException("Recursive update");
2061 }
2062 }
2063 if (binCount != 0) {
2064 if (binCount >= TREEIFY_THRESHOLD)
2065 treeifyBin(tab, i);
2066 break;
2067 }
2068 }
2069 }
2070 if (delta != 0)
2071 addCount((long)delta, binCount);
2072 return val;
2073 }
2074
2075 // Hashtable legacy methods
2076
2077 /**
2078 * Legacy method testing if some key maps into the specified value
2079 * in this table.
2080 *
2081 * @deprecated This method is identical in functionality to
2082 * {@link #containsValue(Object)}, and exists solely to ensure
2083 * full compatibility with class {@link java.util.Hashtable},
2084 * which supported this method prior to introduction of the
2085 * Java Collections framework.
2086 *
2087 * @param value a value to search for
2088 * @return {@code true} if and only if some key maps to the
2089 * {@code value} argument in this table as
2090 * determined by the {@code equals} method;
2091 * {@code false} otherwise
2092 * @throws NullPointerException if the specified value is null
2093 */
2094 @Deprecated
2095 public boolean contains(Object value) {
2096 return containsValue(value);
2097 }
2098
2099 /**
2100 * Returns an enumeration of the keys in this table.
2101 *
2102 * @return an enumeration of the keys in this table
2103 * @see #keySet()
2104 */
2105 public Enumeration<K> keys() {
2106 Node<K,V>[] t;
2107 int f = (t = table) == null ? 0 : t.length;
2108 return new KeyIterator<K,V>(t, f, 0, f, this);
2109 }
2110
2111 /**
2112 * Returns an enumeration of the values in this table.
2113 *
2114 * @return an enumeration of the values in this table
2115 * @see #values()
2116 */
2117 public Enumeration<V> elements() {
2118 Node<K,V>[] t;
2119 int f = (t = table) == null ? 0 : t.length;
2120 return new ValueIterator<K,V>(t, f, 0, f, this);
2121 }
2122
2123 // ConcurrentHashMap-only methods
2124
2125 /**
2126 * Returns the number of mappings. This method should be used
2127 * instead of {@link #size} because a ConcurrentHashMap may
2128 * contain more mappings than can be represented as an int. The
2129 * value returned is an estimate; the actual count may differ if
2130 * there are concurrent insertions or removals.
2131 *
2132 * @return the number of mappings
2133 * @since 1.8
2134 */
2135 public long mappingCount() {
2136 long n = sumCount();
2137 return (n < 0L) ? 0L : n; // ignore transient negative values
2138 }
2139
2140 /**
2141 * Creates a new {@link Set} backed by a ConcurrentHashMap
2142 * from the given type to {@code Boolean.TRUE}.
2143 *
2144 * @param <K> the element type of the returned set
2145 * @return the new set
2146 * @since 1.8
2147 */
2148 public static <K> KeySetView<K,Boolean> newKeySet() {
2149 return new KeySetView<K,Boolean>
2150 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2151 }
2152
2153 /**
2154 * Creates a new {@link Set} backed by a ConcurrentHashMap
2155 * from the given type to {@code Boolean.TRUE}.
2156 *
2157 * @param initialCapacity The implementation performs internal
2158 * sizing to accommodate this many elements.
2159 * @param <K> the element type of the returned set
2160 * @return the new set
2161 * @throws IllegalArgumentException if the initial capacity of
2162 * elements is negative
2163 * @since 1.8
2164 */
2165 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2166 return new KeySetView<K,Boolean>
2167 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2168 }
2169
2170 /**
2171 * Returns a {@link Set} view of the keys in this map, using the
2172 * given common mapped value for any additions (i.e., {@link
2173 * Collection#add} and {@link Collection#addAll(Collection)}).
2174 * This is of course only appropriate if it is acceptable to use
2175 * the same value for all additions from this view.
2176 *
2177 * @param mappedValue the mapped value to use for any additions
2178 * @return the set view
2179 * @throws NullPointerException if the mappedValue is null
2180 */
2181 public KeySetView<K,V> keySet(V mappedValue) {
2182 if (mappedValue == null)
2183 throw new NullPointerException();
2184 return new KeySetView<K,V>(this, mappedValue);
2185 }
2186
2187 /* ---------------- Special Nodes -------------- */
2188
2189 /**
2190 * A node inserted at head of bins during transfer operations.
2191 */
2192 static final class ForwardingNode<K,V> extends Node<K,V> {
2193 final Node<K,V>[] nextTable;
2194 ForwardingNode(Node<K,V>[] tab) {
2195 super(MOVED, null, null, null);
2196 this.nextTable = tab;
2197 }
2198
2199 Node<K,V> find(int h, Object k) {
2200 // loop to avoid arbitrarily deep recursion on forwarding nodes
2201 outer: for (Node<K,V>[] tab = nextTable;;) {
2202 Node<K,V> e; int n;
2203 if (k == null || tab == null || (n = tab.length) == 0 ||
2204 (e = tabAt(tab, (n - 1) & h)) == null)
2205 return null;
2206 for (;;) {
2207 int eh; K ek;
2208 if ((eh = e.hash) == h &&
2209 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2210 return e;
2211 if (eh < 0) {
2212 if (e instanceof ForwardingNode) {
2213 tab = ((ForwardingNode<K,V>)e).nextTable;
2214 continue outer;
2215 }
2216 else
2217 return e.find(h, k);
2218 }
2219 if ((e = e.next) == null)
2220 return null;
2221 }
2222 }
2223 }
2224 }
2225
2226 /**
2227 * A place-holder node used in computeIfAbsent and compute
2228 */
2229 static final class ReservationNode<K,V> extends Node<K,V> {
2230 ReservationNode() {
2231 super(RESERVED, null, null, null);
2232 }
2233
2234 Node<K,V> find(int h, Object k) {
2235 return null;
2236 }
2237 }
2238
2239 /* ---------------- Table Initialization and Resizing -------------- */
2240
2241 /**
2242 * Returns the stamp bits for resizing a table of size n.
2243 * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2244 */
2245 static final int resizeStamp(int n) {
2246 return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2247 }
2248
2249 /**
2250 * Initializes table, using the size recorded in sizeCtl.
2251 */
2252 private final Node<K,V>[] initTable() {
2253 Node<K,V>[] tab; int sc;
2254 while ((tab = table) == null || tab.length == 0) {
2255 if ((sc = sizeCtl) < 0)
2256 Thread.yield(); // lost initialization race; just spin
2257 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2258 try {
2259 if ((tab = table) == null || tab.length == 0) {
2260 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2261 @SuppressWarnings("unchecked")
2262 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2263 table = tab = nt;
2264 sc = n - (n >>> 2);
2265 }
2266 } finally {
2267 sizeCtl = sc;
2268 }
2269 break;
2270 }
2271 }
2272 return tab;
2273 }
2274
2275 /**
2276 * Adds to count, and if table is too small and not already
2277 * resizing, initiates transfer. If already resizing, helps
2278 * perform transfer if work is available. Rechecks occupancy
2279 * after a transfer to see if another resize is already needed
2280 * because resizings are lagging additions.
2281 *
2282 * @param x the count to add
2283 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2284 */
2285 private final void addCount(long x, int check) {
2286 CounterCell[] as; long b, s;
2287 if ((as = counterCells) != null ||
2288 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2289 CounterCell a; long v; int m;
2290 boolean uncontended = true;
2291 if (as == null || (m = as.length - 1) < 0 ||
2292 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2293 !(uncontended =
2294 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2295 fullAddCount(x, uncontended);
2296 return;
2297 }
2298 if (check <= 1)
2299 return;
2300 s = sumCount();
2301 }
2302 if (check >= 0) {
2303 Node<K,V>[] tab, nt; int n, sc;
2304 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2305 (n = tab.length) < MAXIMUM_CAPACITY) {
2306 int rs = resizeStamp(n);
2307 if (sc < 0) {
2308 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2309 sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2310 transferIndex <= 0)
2311 break;
2312 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2313 transfer(tab, nt);
2314 }
2315 else if (U.compareAndSwapInt(this, SIZECTL, sc,
2316 (rs << RESIZE_STAMP_SHIFT) + 2))
2317 transfer(tab, null);
2318 s = sumCount();
2319 }
2320 }
2321 }
2322
2323 /**
2324 * Helps transfer if a resize is in progress.
2325 */
2326 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2327 Node<K,V>[] nextTab; int sc;
2328 if (tab != null && (f instanceof ForwardingNode) &&
2329 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2330 int rs = resizeStamp(tab.length);
2331 while (nextTab == nextTable && table == tab &&
2332 (sc = sizeCtl) < 0) {
2333 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2334 sc == rs + MAX_RESIZERS || transferIndex <= 0)
2335 break;
2336 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2337 transfer(tab, nextTab);
2338 break;
2339 }
2340 }
2341 return nextTab;
2342 }
2343 return table;
2344 }
2345
2346 /**
2347 * Tries to presize table to accommodate the given number of elements.
2348 *
2349 * @param size number of elements (doesn't need to be perfectly accurate)
2350 */
2351 private final void tryPresize(int size) {
2352 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2353 tableSizeFor(size + (size >>> 1) + 1);
2354 int sc;
2355 while ((sc = sizeCtl) >= 0) {
2356 Node<K,V>[] tab = table; int n;
2357 if (tab == null || (n = tab.length) == 0) {
2358 n = (sc > c) ? sc : c;
2359 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2360 try {
2361 if (table == tab) {
2362 @SuppressWarnings("unchecked")
2363 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2364 table = nt;
2365 sc = n - (n >>> 2);
2366 }
2367 } finally {
2368 sizeCtl = sc;
2369 }
2370 }
2371 }
2372 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2373 break;
2374 else if (tab == table) {
2375 int rs = resizeStamp(n);
2376 if (U.compareAndSwapInt(this, SIZECTL, sc,
2377 (rs << RESIZE_STAMP_SHIFT) + 2))
2378 transfer(tab, null);
2379 }
2380 }
2381 }
2382
2383 /**
2384 * Moves and/or copies the nodes in each bin to new table. See
2385 * above for explanation.
2386 */
2387 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2388 int n = tab.length, stride;
2389 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2390 stride = MIN_TRANSFER_STRIDE; // subdivide range
2391 if (nextTab == null) { // initiating
2392 try {
2393 @SuppressWarnings("unchecked")
2394 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2395 nextTab = nt;
2396 } catch (Throwable ex) { // try to cope with OOME
2397 sizeCtl = Integer.MAX_VALUE;
2398 return;
2399 }
2400 nextTable = nextTab;
2401 transferIndex = n;
2402 }
2403 int nextn = nextTab.length;
2404 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2405 boolean advance = true;
2406 boolean finishing = false; // to ensure sweep before committing nextTab
2407 for (int i = 0, bound = 0;;) {
2408 Node<K,V> f; int fh;
2409 while (advance) {
2410 int nextIndex, nextBound;
2411 if (--i >= bound || finishing)
2412 advance = false;
2413 else if ((nextIndex = transferIndex) <= 0) {
2414 i = -1;
2415 advance = false;
2416 }
2417 else if (U.compareAndSwapInt
2418 (this, TRANSFERINDEX, nextIndex,
2419 nextBound = (nextIndex > stride ?
2420 nextIndex - stride : 0))) {
2421 bound = nextBound;
2422 i = nextIndex - 1;
2423 advance = false;
2424 }
2425 }
2426 if (i < 0 || i >= n || i + n >= nextn) {
2427 int sc;
2428 if (finishing) {
2429 nextTable = null;
2430 table = nextTab;
2431 sizeCtl = (n << 1) - (n >>> 1);
2432 return;
2433 }
2434 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2435 if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2436 return;
2437 finishing = advance = true;
2438 i = n; // recheck before commit
2439 }
2440 }
2441 else if ((f = tabAt(tab, i)) == null)
2442 advance = casTabAt(tab, i, null, fwd);
2443 else if ((fh = f.hash) == MOVED)
2444 advance = true; // already processed
2445 else {
2446 synchronized (f) {
2447 if (tabAt(tab, i) == f) {
2448 Node<K,V> ln, hn;
2449 if (fh >= 0) {
2450 int runBit = fh & n;
2451 Node<K,V> lastRun = f;
2452 for (Node<K,V> p = f.next; p != null; p = p.next) {
2453 int b = p.hash & n;
2454 if (b != runBit) {
2455 runBit = b;
2456 lastRun = p;
2457 }
2458 }
2459 if (runBit == 0) {
2460 ln = lastRun;
2461 hn = null;
2462 }
2463 else {
2464 hn = lastRun;
2465 ln = null;
2466 }
2467 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2468 int ph = p.hash; K pk = p.key; V pv = p.val;
2469 if ((ph & n) == 0)
2470 ln = new Node<K,V>(ph, pk, pv, ln);
2471 else
2472 hn = new Node<K,V>(ph, pk, pv, hn);
2473 }
2474 setTabAt(nextTab, i, ln);
2475 setTabAt(nextTab, i + n, hn);
2476 setTabAt(tab, i, fwd);
2477 advance = true;
2478 }
2479 else if (f instanceof TreeBin) {
2480 TreeBin<K,V> t = (TreeBin<K,V>)f;
2481 TreeNode<K,V> lo = null, loTail = null;
2482 TreeNode<K,V> hi = null, hiTail = null;
2483 int lc = 0, hc = 0;
2484 for (Node<K,V> e = t.first; e != null; e = e.next) {
2485 int h = e.hash;
2486 TreeNode<K,V> p = new TreeNode<K,V>
2487 (h, e.key, e.val, null, null);
2488 if ((h & n) == 0) {
2489 if ((p.prev = loTail) == null)
2490 lo = p;
2491 else
2492 loTail.next = p;
2493 loTail = p;
2494 ++lc;
2495 }
2496 else {
2497 if ((p.prev = hiTail) == null)
2498 hi = p;
2499 else
2500 hiTail.next = p;
2501 hiTail = p;
2502 ++hc;
2503 }
2504 }
2505 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2506 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2507 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2508 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2509 setTabAt(nextTab, i, ln);
2510 setTabAt(nextTab, i + n, hn);
2511 setTabAt(tab, i, fwd);
2512 advance = true;
2513 }
2514 }
2515 }
2516 }
2517 }
2518 }
2519
2520 /* ---------------- Counter support -------------- */
2521
2522 /**
2523 * A padded cell for distributing counts. Adapted from LongAdder
2524 * and Striped64. See their internal docs for explanation.
2525 */
2526 @sun.misc.Contended static final class CounterCell {
2527 volatile long value;
2528 CounterCell(long x) { value = x; }
2529 }
2530
2531 final long sumCount() {
2532 CounterCell[] as = counterCells; CounterCell a;
2533 long sum = baseCount;
2534 if (as != null) {
2535 for (int i = 0; i < as.length; ++i) {
2536 if ((a = as[i]) != null)
2537 sum += a.value;
2538 }
2539 }
2540 return sum;
2541 }
2542
2543 // See LongAdder version for explanation
2544 private final void fullAddCount(long x, boolean wasUncontended) {
2545 int h;
2546 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2547 ThreadLocalRandom.localInit(); // force initialization
2548 h = ThreadLocalRandom.getProbe();
2549 wasUncontended = true;
2550 }
2551 boolean collide = false; // True if last slot nonempty
2552 for (;;) {
2553 CounterCell[] as; CounterCell a; int n; long v;
2554 if ((as = counterCells) != null && (n = as.length) > 0) {
2555 if ((a = as[(n - 1) & h]) == null) {
2556 if (cellsBusy == 0) { // Try to attach new Cell
2557 CounterCell r = new CounterCell(x); // Optimistic create
2558 if (cellsBusy == 0 &&
2559 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2560 boolean created = false;
2561 try { // Recheck under lock
2562 CounterCell[] rs; int m, j;
2563 if ((rs = counterCells) != null &&
2564 (m = rs.length) > 0 &&
2565 rs[j = (m - 1) & h] == null) {
2566 rs[j] = r;
2567 created = true;
2568 }
2569 } finally {
2570 cellsBusy = 0;
2571 }
2572 if (created)
2573 break;
2574 continue; // Slot is now non-empty
2575 }
2576 }
2577 collide = false;
2578 }
2579 else if (!wasUncontended) // CAS already known to fail
2580 wasUncontended = true; // Continue after rehash
2581 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2582 break;
2583 else if (counterCells != as || n >= NCPU)
2584 collide = false; // At max size or stale
2585 else if (!collide)
2586 collide = true;
2587 else if (cellsBusy == 0 &&
2588 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2589 try {
2590 if (counterCells == as) {// Expand table unless stale
2591 CounterCell[] rs = new CounterCell[n << 1];
2592 for (int i = 0; i < n; ++i)
2593 rs[i] = as[i];
2594 counterCells = rs;
2595 }
2596 } finally {
2597 cellsBusy = 0;
2598 }
2599 collide = false;
2600 continue; // Retry with expanded table
2601 }
2602 h = ThreadLocalRandom.advanceProbe(h);
2603 }
2604 else if (cellsBusy == 0 && counterCells == as &&
2605 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2606 boolean init = false;
2607 try { // Initialize table
2608 if (counterCells == as) {
2609 CounterCell[] rs = new CounterCell[2];
2610 rs[h & 1] = new CounterCell(x);
2611 counterCells = rs;
2612 init = true;
2613 }
2614 } finally {
2615 cellsBusy = 0;
2616 }
2617 if (init)
2618 break;
2619 }
2620 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2621 break; // Fall back on using base
2622 }
2623 }
2624
2625 /* ---------------- Conversion from/to TreeBins -------------- */
2626
2627 /**
2628 * Replaces all linked nodes in bin at given index unless table is
2629 * too small, in which case resizes instead.
2630 */
2631 private final void treeifyBin(Node<K,V>[] tab, int index) {
2632 Node<K,V> b; int n;
2633 if (tab != null) {
2634 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2635 tryPresize(n << 1);
2636 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2637 synchronized (b) {
2638 if (tabAt(tab, index) == b) {
2639 TreeNode<K,V> hd = null, tl = null;
2640 for (Node<K,V> e = b; e != null; e = e.next) {
2641 TreeNode<K,V> p =
2642 new TreeNode<K,V>(e.hash, e.key, e.val,
2643 null, null);
2644 if ((p.prev = tl) == null)
2645 hd = p;
2646 else
2647 tl.next = p;
2648 tl = p;
2649 }
2650 setTabAt(tab, index, new TreeBin<K,V>(hd));
2651 }
2652 }
2653 }
2654 }
2655 }
2656
2657 /**
2658 * Returns a list on non-TreeNodes replacing those in given list.
2659 */
2660 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2661 Node<K,V> hd = null, tl = null;
2662 for (Node<K,V> q = b; q != null; q = q.next) {
2663 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2664 if (tl == null)
2665 hd = p;
2666 else
2667 tl.next = p;
2668 tl = p;
2669 }
2670 return hd;
2671 }
2672
2673 /* ---------------- TreeNodes -------------- */
2674
2675 /**
2676 * Nodes for use in TreeBins
2677 */
2678 static final class TreeNode<K,V> extends Node<K,V> {
2679 TreeNode<K,V> parent; // red-black tree links
2680 TreeNode<K,V> left;
2681 TreeNode<K,V> right;
2682 TreeNode<K,V> prev; // needed to unlink next upon deletion
2683 boolean red;
2684
2685 TreeNode(int hash, K key, V val, Node<K,V> next,
2686 TreeNode<K,V> parent) {
2687 super(hash, key, val, next);
2688 this.parent = parent;
2689 }
2690
2691 Node<K,V> find(int h, Object k) {
2692 return findTreeNode(h, k, null);
2693 }
2694
2695 /**
2696 * Returns the TreeNode (or null if not found) for the given key
2697 * starting at given root.
2698 */
2699 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2700 if (k != null) {
2701 TreeNode<K,V> p = this;
2702 do {
2703 int ph, dir; K pk; TreeNode<K,V> q;
2704 TreeNode<K,V> pl = p.left, pr = p.right;
2705 if ((ph = p.hash) > h)
2706 p = pl;
2707 else if (ph < h)
2708 p = pr;
2709 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2710 return p;
2711 else if (pl == null)
2712 p = pr;
2713 else if (pr == null)
2714 p = pl;
2715 else if ((kc != null ||
2716 (kc = comparableClassFor(k)) != null) &&
2717 (dir = compareComparables(kc, k, pk)) != 0)
2718 p = (dir < 0) ? pl : pr;
2719 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2720 return q;
2721 else
2722 p = pl;
2723 } while (p != null);
2724 }
2725 return null;
2726 }
2727 }
2728
2729 /* ---------------- TreeBins -------------- */
2730
2731 /**
2732 * TreeNodes used at the heads of bins. TreeBins do not hold user
2733 * keys or values, but instead point to list of TreeNodes and
2734 * their root. They also maintain a parasitic read-write lock
2735 * forcing writers (who hold bin lock) to wait for readers (who do
2736 * not) to complete before tree restructuring operations.
2737 */
2738 static final class TreeBin<K,V> extends Node<K,V> {
2739 TreeNode<K,V> root;
2740 volatile TreeNode<K,V> first;
2741 volatile Thread waiter;
2742 volatile int lockState;
2743 // values for lockState
2744 static final int WRITER = 1; // set while holding write lock
2745 static final int WAITER = 2; // set when waiting for write lock
2746 static final int READER = 4; // increment value for setting read lock
2747
2748 /**
2749 * Tie-breaking utility for ordering insertions when equal
2750 * hashCodes and non-comparable. We don't require a total
2751 * order, just a consistent insertion rule to maintain
2752 * equivalence across rebalancings. Tie-breaking further than
2753 * necessary simplifies testing a bit.
2754 */
2755 static int tieBreakOrder(Object a, Object b) {
2756 int d;
2757 if (a == null || b == null ||
2758 (d = a.getClass().getName().
2759 compareTo(b.getClass().getName())) == 0)
2760 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2761 -1 : 1);
2762 return d;
2763 }
2764
2765 /**
2766 * Creates bin with initial set of nodes headed by b.
2767 */
2768 TreeBin(TreeNode<K,V> b) {
2769 super(TREEBIN, null, null, null);
2770 this.first = b;
2771 TreeNode<K,V> r = null;
2772 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2773 next = (TreeNode<K,V>)x.next;
2774 x.left = x.right = null;
2775 if (r == null) {
2776 x.parent = null;
2777 x.red = false;
2778 r = x;
2779 }
2780 else {
2781 K k = x.key;
2782 int h = x.hash;
2783 Class<?> kc = null;
2784 for (TreeNode<K,V> p = r;;) {
2785 int dir, ph;
2786 K pk = p.key;
2787 if ((ph = p.hash) > h)
2788 dir = -1;
2789 else if (ph < h)
2790 dir = 1;
2791 else if ((kc == null &&
2792 (kc = comparableClassFor(k)) == null) ||
2793 (dir = compareComparables(kc, k, pk)) == 0)
2794 dir = tieBreakOrder(k, pk);
2795 TreeNode<K,V> xp = p;
2796 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2797 x.parent = xp;
2798 if (dir <= 0)
2799 xp.left = x;
2800 else
2801 xp.right = x;
2802 r = balanceInsertion(r, x);
2803 break;
2804 }
2805 }
2806 }
2807 }
2808 this.root = r;
2809 assert checkInvariants(root);
2810 }
2811
2812 /**
2813 * Acquires write lock for tree restructuring.
2814 */
2815 private final void lockRoot() {
2816 if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2817 contendedLock(); // offload to separate method
2818 }
2819
2820 /**
2821 * Releases write lock for tree restructuring.
2822 */
2823 private final void unlockRoot() {
2824 lockState = 0;
2825 }
2826
2827 /**
2828 * Possibly blocks awaiting root lock.
2829 */
2830 private final void contendedLock() {
2831 boolean waiting = false;
2832 for (int s;;) {
2833 if (((s = lockState) & ~WAITER) == 0) {
2834 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2835 if (waiting)
2836 waiter = null;
2837 return;
2838 }
2839 }
2840 else if ((s & WAITER) == 0) {
2841 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2842 waiting = true;
2843 waiter = Thread.currentThread();
2844 }
2845 }
2846 else if (waiting)
2847 LockSupport.park(this);
2848 }
2849 }
2850
2851 /**
2852 * Returns matching node or null if none. Tries to search
2853 * using tree comparisons from root, but continues linear
2854 * search when lock not available.
2855 */
2856 final Node<K,V> find(int h, Object k) {
2857 if (k != null) {
2858 for (Node<K,V> e = first; e != null; ) {
2859 int s; K ek;
2860 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2861 if (e.hash == h &&
2862 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2863 return e;
2864 e = e.next;
2865 }
2866 else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2867 s + READER)) {
2868 TreeNode<K,V> r, p;
2869 try {
2870 p = ((r = root) == null ? null :
2871 r.findTreeNode(h, k, null));
2872 } finally {
2873 Thread w;
2874 if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2875 (READER|WAITER) && (w = waiter) != null)
2876 LockSupport.unpark(w);
2877 }
2878 return p;
2879 }
2880 }
2881 }
2882 return null;
2883 }
2884
2885 /**
2886 * Finds or adds a node.
2887 * @return null if added
2888 */
2889 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2890 Class<?> kc = null;
2891 boolean searched = false;
2892 for (TreeNode<K,V> p = root;;) {
2893 int dir, ph; K pk;
2894 if (p == null) {
2895 first = root = new TreeNode<K,V>(h, k, v, null, null);
2896 break;
2897 }
2898 else if ((ph = p.hash) > h)
2899 dir = -1;
2900 else if (ph < h)
2901 dir = 1;
2902 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2903 return p;
2904 else if ((kc == null &&
2905 (kc = comparableClassFor(k)) == null) ||
2906 (dir = compareComparables(kc, k, pk)) == 0) {
2907 if (!searched) {
2908 TreeNode<K,V> q, ch;
2909 searched = true;
2910 if (((ch = p.left) != null &&
2911 (q = ch.findTreeNode(h, k, kc)) != null) ||
2912 ((ch = p.right) != null &&
2913 (q = ch.findTreeNode(h, k, kc)) != null))
2914 return q;
2915 }
2916 dir = tieBreakOrder(k, pk);
2917 }
2918
2919 TreeNode<K,V> xp = p;
2920 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2921 TreeNode<K,V> x, f = first;
2922 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2923 if (f != null)
2924 f.prev = x;
2925 if (dir <= 0)
2926 xp.left = x;
2927 else
2928 xp.right = x;
2929 if (!xp.red)
2930 x.red = true;
2931 else {
2932 lockRoot();
2933 try {
2934 root = balanceInsertion(root, x);
2935 } finally {
2936 unlockRoot();
2937 }
2938 }
2939 break;
2940 }
2941 }
2942 assert checkInvariants(root);
2943 return null;
2944 }
2945
2946 /**
2947 * Removes the given node, that must be present before this
2948 * call. This is messier than typical red-black deletion code
2949 * because we cannot swap the contents of an interior node
2950 * with a leaf successor that is pinned by "next" pointers
2951 * that are accessible independently of lock. So instead we
2952 * swap the tree linkages.
2953 *
2954 * @return true if now too small, so should be untreeified
2955 */
2956 final boolean removeTreeNode(TreeNode<K,V> p) {
2957 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2958 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2959 TreeNode<K,V> r, rl;
2960 if (pred == null)
2961 first = next;
2962 else
2963 pred.next = next;
2964 if (next != null)
2965 next.prev = pred;
2966 if (first == null) {
2967 root = null;
2968 return true;
2969 }
2970 if ((r = root) == null || r.right == null || // too small
2971 (rl = r.left) == null || rl.left == null)
2972 return true;
2973 lockRoot();
2974 try {
2975 TreeNode<K,V> replacement;
2976 TreeNode<K,V> pl = p.left;
2977 TreeNode<K,V> pr = p.right;
2978 if (pl != null && pr != null) {
2979 TreeNode<K,V> s = pr, sl;
2980 while ((sl = s.left) != null) // find successor
2981 s = sl;
2982 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2983 TreeNode<K,V> sr = s.right;
2984 TreeNode<K,V> pp = p.parent;
2985 if (s == pr) { // p was s's direct parent
2986 p.parent = s;
2987 s.right = p;
2988 }
2989 else {
2990 TreeNode<K,V> sp = s.parent;
2991 if ((p.parent = sp) != null) {
2992 if (s == sp.left)
2993 sp.left = p;
2994 else
2995 sp.right = p;
2996 }
2997 if ((s.right = pr) != null)
2998 pr.parent = s;
2999 }
3000 p.left = null;
3001 if ((p.right = sr) != null)
3002 sr.parent = p;
3003 if ((s.left = pl) != null)
3004 pl.parent = s;
3005 if ((s.parent = pp) == null)
3006 r = s;
3007 else if (p == pp.left)
3008 pp.left = s;
3009 else
3010 pp.right = s;
3011 if (sr != null)
3012 replacement = sr;
3013 else
3014 replacement = p;
3015 }
3016 else if (pl != null)
3017 replacement = pl;
3018 else if (pr != null)
3019 replacement = pr;
3020 else
3021 replacement = p;
3022 if (replacement != p) {
3023 TreeNode<K,V> pp = replacement.parent = p.parent;
3024 if (pp == null)
3025 r = replacement;
3026 else if (p == pp.left)
3027 pp.left = replacement;
3028 else
3029 pp.right = replacement;
3030 p.left = p.right = p.parent = null;
3031 }
3032
3033 root = (p.red) ? r : balanceDeletion(r, replacement);
3034
3035 if (p == replacement) { // detach pointers
3036 TreeNode<K,V> pp;
3037 if ((pp = p.parent) != null) {
3038 if (p == pp.left)
3039 pp.left = null;
3040 else if (p == pp.right)
3041 pp.right = null;
3042 p.parent = null;
3043 }
3044 }
3045 } finally {
3046 unlockRoot();
3047 }
3048 assert checkInvariants(root);
3049 return false;
3050 }
3051
3052 /* ------------------------------------------------------------ */
3053 // Red-black tree methods, all adapted from CLR
3054
3055 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3056 TreeNode<K,V> p) {
3057 TreeNode<K,V> r, pp, rl;
3058 if (p != null && (r = p.right) != null) {
3059 if ((rl = p.right = r.left) != null)
3060 rl.parent = p;
3061 if ((pp = r.parent = p.parent) == null)
3062 (root = r).red = false;
3063 else if (pp.left == p)
3064 pp.left = r;
3065 else
3066 pp.right = r;
3067 r.left = p;
3068 p.parent = r;
3069 }
3070 return root;
3071 }
3072
3073 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3074 TreeNode<K,V> p) {
3075 TreeNode<K,V> l, pp, lr;
3076 if (p != null && (l = p.left) != null) {
3077 if ((lr = p.left = l.right) != null)
3078 lr.parent = p;
3079 if ((pp = l.parent = p.parent) == null)
3080 (root = l).red = false;
3081 else if (pp.right == p)
3082 pp.right = l;
3083 else
3084 pp.left = l;
3085 l.right = p;
3086 p.parent = l;
3087 }
3088 return root;
3089 }
3090
3091 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3092 TreeNode<K,V> x) {
3093 x.red = true;
3094 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3095 if ((xp = x.parent) == null) {
3096 x.red = false;
3097 return x;
3098 }
3099 else if (!xp.red || (xpp = xp.parent) == null)
3100 return root;
3101 if (xp == (xppl = xpp.left)) {
3102 if ((xppr = xpp.right) != null && xppr.red) {
3103 xppr.red = false;
3104 xp.red = false;
3105 xpp.red = true;
3106 x = xpp;
3107 }
3108 else {
3109 if (x == xp.right) {
3110 root = rotateLeft(root, x = xp);
3111 xpp = (xp = x.parent) == null ? null : xp.parent;
3112 }
3113 if (xp != null) {
3114 xp.red = false;
3115 if (xpp != null) {
3116 xpp.red = true;
3117 root = rotateRight(root, xpp);
3118 }
3119 }
3120 }
3121 }
3122 else {
3123 if (xppl != null && xppl.red) {
3124 xppl.red = false;
3125 xp.red = false;
3126 xpp.red = true;
3127 x = xpp;
3128 }
3129 else {
3130 if (x == xp.left) {
3131 root = rotateRight(root, x = xp);
3132 xpp = (xp = x.parent) == null ? null : xp.parent;
3133 }
3134 if (xp != null) {
3135 xp.red = false;
3136 if (xpp != null) {
3137 xpp.red = true;
3138 root = rotateLeft(root, xpp);
3139 }
3140 }
3141 }
3142 }
3143 }
3144 }
3145
3146 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3147 TreeNode<K,V> x) {
3148 for (TreeNode<K,V> xp, xpl, xpr;;) {
3149 if (x == null || x == root)
3150 return root;
3151 else if ((xp = x.parent) == null) {
3152 x.red = false;
3153 return x;
3154 }
3155 else if (x.red) {
3156 x.red = false;
3157 return root;
3158 }
3159 else if ((xpl = xp.left) == x) {
3160 if ((xpr = xp.right) != null && xpr.red) {
3161 xpr.red = false;
3162 xp.red = true;
3163 root = rotateLeft(root, xp);
3164 xpr = (xp = x.parent) == null ? null : xp.right;
3165 }
3166 if (xpr == null)
3167 x = xp;
3168 else {
3169 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3170 if ((sr == null || !sr.red) &&
3171 (sl == null || !sl.red)) {
3172 xpr.red = true;
3173 x = xp;
3174 }
3175 else {
3176 if (sr == null || !sr.red) {
3177 if (sl != null)
3178 sl.red = false;
3179 xpr.red = true;
3180 root = rotateRight(root, xpr);
3181 xpr = (xp = x.parent) == null ?
3182 null : xp.right;
3183 }
3184 if (xpr != null) {
3185 xpr.red = (xp == null) ? false : xp.red;
3186 if ((sr = xpr.right) != null)
3187 sr.red = false;
3188 }
3189 if (xp != null) {
3190 xp.red = false;
3191 root = rotateLeft(root, xp);
3192 }
3193 x = root;
3194 }
3195 }
3196 }
3197 else { // symmetric
3198 if (xpl != null && xpl.red) {
3199 xpl.red = false;
3200 xp.red = true;
3201 root = rotateRight(root, xp);
3202 xpl = (xp = x.parent) == null ? null : xp.left;
3203 }
3204 if (xpl == null)
3205 x = xp;
3206 else {
3207 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3208 if ((sl == null || !sl.red) &&
3209 (sr == null || !sr.red)) {
3210 xpl.red = true;
3211 x = xp;
3212 }
3213 else {
3214 if (sl == null || !sl.red) {
3215 if (sr != null)
3216 sr.red = false;
3217 xpl.red = true;
3218 root = rotateLeft(root, xpl);
3219 xpl = (xp = x.parent) == null ?
3220 null : xp.left;
3221 }
3222 if (xpl != null) {
3223 xpl.red = (xp == null) ? false : xp.red;
3224 if ((sl = xpl.left) != null)
3225 sl.red = false;
3226 }
3227 if (xp != null) {
3228 xp.red = false;
3229 root = rotateRight(root, xp);
3230 }
3231 x = root;
3232 }
3233 }
3234 }
3235 }
3236 }
3237
3238 /**
3239 * Recursive invariant check
3240 */
3241 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3242 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3243 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3244 if (tb != null && tb.next != t)
3245 return false;
3246 if (tn != null && tn.prev != t)
3247 return false;
3248 if (tp != null && t != tp.left && t != tp.right)
3249 return false;
3250 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3251 return false;
3252 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3253 return false;
3254 if (t.red && tl != null && tl.red && tr != null && tr.red)
3255 return false;
3256 if (tl != null && !checkInvariants(tl))
3257 return false;
3258 if (tr != null && !checkInvariants(tr))
3259 return false;
3260 return true;
3261 }
3262
3263 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3264 private static final long LOCKSTATE;
3265 static {
3266 try {
3267 LOCKSTATE = U.objectFieldOffset
3268 (TreeBin.class.getDeclaredField("lockState"));
3269 } catch (ReflectiveOperationException e) {
3270 throw new Error(e);
3271 }
3272 }
3273 }
3274
3275 /* ----------------Table Traversal -------------- */
3276
3277 /**
3278 * Records the table, its length, and current traversal index for a
3279 * traverser that must process a region of a forwarded table before
3280 * proceeding with current table.
3281 */
3282 static final class TableStack<K,V> {
3283 int length;
3284 int index;
3285 Node<K,V>[] tab;
3286 TableStack<K,V> next;
3287 }
3288
3289 /**
3290 * Encapsulates traversal for methods such as containsValue; also
3291 * serves as a base class for other iterators and spliterators.
3292 *
3293 * Method advance visits once each still-valid node that was
3294 * reachable upon iterator construction. It might miss some that
3295 * were added to a bin after the bin was visited, which is OK wrt
3296 * consistency guarantees. Maintaining this property in the face
3297 * of possible ongoing resizes requires a fair amount of
3298 * bookkeeping state that is difficult to optimize away amidst
3299 * volatile accesses. Even so, traversal maintains reasonable
3300 * throughput.
3301 *
3302 * Normally, iteration proceeds bin-by-bin traversing lists.
3303 * However, if the table has been resized, then all future steps
3304 * must traverse both the bin at the current index as well as at
3305 * (index + baseSize); and so on for further resizings. To
3306 * paranoically cope with potential sharing by users of iterators
3307 * across threads, iteration terminates if a bounds checks fails
3308 * for a table read.
3309 */
3310 static class Traverser<K,V> {
3311 Node<K,V>[] tab; // current table; updated if resized
3312 Node<K,V> next; // the next entry to use
3313 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3314 int index; // index of bin to use next
3315 int baseIndex; // current index of initial table
3316 int baseLimit; // index bound for initial table
3317 final int baseSize; // initial table size
3318
3319 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3320 this.tab = tab;
3321 this.baseSize = size;
3322 this.baseIndex = this.index = index;
3323 this.baseLimit = limit;
3324 this.next = null;
3325 }
3326
3327 /**
3328 * Advances if possible, returning next valid node, or null if none.
3329 */
3330 final Node<K,V> advance() {
3331 Node<K,V> e;
3332 if ((e = next) != null)
3333 e = e.next;
3334 for (;;) {
3335 Node<K,V>[] t; int i, n; // must use locals in checks
3336 if (e != null)
3337 return next = e;
3338 if (baseIndex >= baseLimit || (t = tab) == null ||
3339 (n = t.length) <= (i = index) || i < 0)
3340 return next = null;
3341 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3342 if (e instanceof ForwardingNode) {
3343 tab = ((ForwardingNode<K,V>)e).nextTable;
3344 e = null;
3345 pushState(t, i, n);
3346 continue;
3347 }
3348 else if (e instanceof TreeBin)
3349 e = ((TreeBin<K,V>)e).first;
3350 else
3351 e = null;
3352 }
3353 if (stack != null)
3354 recoverState(n);
3355 else if ((index = i + baseSize) >= n)
3356 index = ++baseIndex; // visit upper slots if present
3357 }
3358 }
3359
3360 /**
3361 * Saves traversal state upon encountering a forwarding node.
3362 */
3363 private void pushState(Node<K,V>[] t, int i, int n) {
3364 TableStack<K,V> s = spare; // reuse if possible
3365 if (s != null)
3366 spare = s.next;
3367 else
3368 s = new TableStack<K,V>();
3369 s.tab = t;
3370 s.length = n;
3371 s.index = i;
3372 s.next = stack;
3373 stack = s;
3374 }
3375
3376 /**
3377 * Possibly pops traversal state.
3378 *
3379 * @param n length of current table
3380 */
3381 private void recoverState(int n) {
3382 TableStack<K,V> s; int len;
3383 while ((s = stack) != null && (index += (len = s.length)) >= n) {
3384 n = len;
3385 index = s.index;
3386 tab = s.tab;
3387 s.tab = null;
3388 TableStack<K,V> next = s.next;
3389 s.next = spare; // save for reuse
3390 stack = next;
3391 spare = s;
3392 }
3393 if (s == null && (index += baseSize) >= n)
3394 index = ++baseIndex;
3395 }
3396 }
3397
3398 /**
3399 * Base of key, value, and entry Iterators. Adds fields to
3400 * Traverser to support iterator.remove.
3401 */
3402 static class BaseIterator<K,V> extends Traverser<K,V> {
3403 final ConcurrentHashMap<K,V> map;
3404 Node<K,V> lastReturned;
3405 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3406 ConcurrentHashMap<K,V> map) {
3407 super(tab, size, index, limit);
3408 this.map = map;
3409 advance();
3410 }
3411
3412 public final boolean hasNext() { return next != null; }
3413 public final boolean hasMoreElements() { return next != null; }
3414
3415 public final void remove() {
3416 Node<K,V> p;
3417 if ((p = lastReturned) == null)
3418 throw new IllegalStateException();
3419 lastReturned = null;
3420 map.replaceNode(p.key, null, null);
3421 }
3422 }
3423
3424 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3425 implements Iterator<K>, Enumeration<K> {
3426 KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3427 ConcurrentHashMap<K,V> map) {
3428 super(tab, index, size, limit, map);
3429 }
3430
3431 public final K next() {
3432 Node<K,V> p;
3433 if ((p = next) == null)
3434 throw new NoSuchElementException();
3435 K k = p.key;
3436 lastReturned = p;
3437 advance();
3438 return k;
3439 }
3440
3441 public final K nextElement() { return next(); }
3442 }
3443
3444 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3445 implements Iterator<V>, Enumeration<V> {
3446 ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3447 ConcurrentHashMap<K,V> map) {
3448 super(tab, index, size, limit, map);
3449 }
3450
3451 public final V next() {
3452 Node<K,V> p;
3453 if ((p = next) == null)
3454 throw new NoSuchElementException();
3455 V v = p.val;
3456 lastReturned = p;
3457 advance();
3458 return v;
3459 }
3460
3461 public final V nextElement() { return next(); }
3462 }
3463
3464 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3465 implements Iterator<Map.Entry<K,V>> {
3466 EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3467 ConcurrentHashMap<K,V> map) {
3468 super(tab, index, size, limit, map);
3469 }
3470
3471 public final Map.Entry<K,V> next() {
3472 Node<K,V> p;
3473 if ((p = next) == null)
3474 throw new NoSuchElementException();
3475 K k = p.key;
3476 V v = p.val;
3477 lastReturned = p;
3478 advance();
3479 return new MapEntry<K,V>(k, v, map);
3480 }
3481 }
3482
3483 /**
3484 * Exported Entry for EntryIterator
3485 */
3486 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3487 final K key; // non-null
3488 V val; // non-null
3489 final ConcurrentHashMap<K,V> map;
3490 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3491 this.key = key;
3492 this.val = val;
3493 this.map = map;
3494 }
3495 public K getKey() { return key; }
3496 public V getValue() { return val; }
3497 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3498 public String toString() {
3499 return Helpers.mapEntryToString(key, val);
3500 }
3501
3502 public boolean equals(Object o) {
3503 Object k, v; Map.Entry<?,?> e;
3504 return ((o instanceof Map.Entry) &&
3505 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3506 (v = e.getValue()) != null &&
3507 (k == key || k.equals(key)) &&
3508 (v == val || v.equals(val)));
3509 }
3510
3511 /**
3512 * Sets our entry's value and writes through to the map. The
3513 * value to return is somewhat arbitrary here. Since we do not
3514 * necessarily track asynchronous changes, the most recent
3515 * "previous" value could be different from what we return (or
3516 * could even have been removed, in which case the put will
3517 * re-establish). We do not and cannot guarantee more.
3518 */
3519 public V setValue(V value) {
3520 if (value == null) throw new NullPointerException();
3521 V v = val;
3522 val = value;
3523 map.put(key, value);
3524 return v;
3525 }
3526 }
3527
3528 static final class KeySpliterator<K,V> extends Traverser<K,V>
3529 implements Spliterator<K> {
3530 long est; // size estimate
3531 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3532 long est) {
3533 super(tab, size, index, limit);
3534 this.est = est;
3535 }
3536
3537 public Spliterator<K> trySplit() {
3538 int i, f, h;
3539 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3540 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3541 f, est >>>= 1);
3542 }
3543
3544 public void forEachRemaining(Consumer<? super K> action) {
3545 if (action == null) throw new NullPointerException();
3546 for (Node<K,V> p; (p = advance()) != null;)
3547 action.accept(p.key);
3548 }
3549
3550 public boolean tryAdvance(Consumer<? super K> action) {
3551 if (action == null) throw new NullPointerException();
3552 Node<K,V> p;
3553 if ((p = advance()) == null)
3554 return false;
3555 action.accept(p.key);
3556 return true;
3557 }
3558
3559 public long estimateSize() { return est; }
3560
3561 public int characteristics() {
3562 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3563 Spliterator.NONNULL;
3564 }
3565 }
3566
3567 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3568 implements Spliterator<V> {
3569 long est; // size estimate
3570 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3571 long est) {
3572 super(tab, size, index, limit);
3573 this.est = est;
3574 }
3575
3576 public Spliterator<V> trySplit() {
3577 int i, f, h;
3578 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3579 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3580 f, est >>>= 1);
3581 }
3582
3583 public void forEachRemaining(Consumer<? super V> action) {
3584 if (action == null) throw new NullPointerException();
3585 for (Node<K,V> p; (p = advance()) != null;)
3586 action.accept(p.val);
3587 }
3588
3589 public boolean tryAdvance(Consumer<? super V> action) {
3590 if (action == null) throw new NullPointerException();
3591 Node<K,V> p;
3592 if ((p = advance()) == null)
3593 return false;
3594 action.accept(p.val);
3595 return true;
3596 }
3597
3598 public long estimateSize() { return est; }
3599
3600 public int characteristics() {
3601 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3602 }
3603 }
3604
3605 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3606 implements Spliterator<Map.Entry<K,V>> {
3607 final ConcurrentHashMap<K,V> map; // To export MapEntry
3608 long est; // size estimate
3609 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3610 long est, ConcurrentHashMap<K,V> map) {
3611 super(tab, size, index, limit);
3612 this.map = map;
3613 this.est = est;
3614 }
3615
3616 public Spliterator<Map.Entry<K,V>> trySplit() {
3617 int i, f, h;
3618 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3619 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3620 f, est >>>= 1, map);
3621 }
3622
3623 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3624 if (action == null) throw new NullPointerException();
3625 for (Node<K,V> p; (p = advance()) != null; )
3626 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3627 }
3628
3629 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3630 if (action == null) throw new NullPointerException();
3631 Node<K,V> p;
3632 if ((p = advance()) == null)
3633 return false;
3634 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3635 return true;
3636 }
3637
3638 public long estimateSize() { return est; }
3639
3640 public int characteristics() {
3641 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3642 Spliterator.NONNULL;
3643 }
3644 }
3645
3646 // Parallel bulk operations
3647
3648 /**
3649 * Computes initial batch value for bulk tasks. The returned value
3650 * is approximately exp2 of the number of times (minus one) to
3651 * split task by two before executing leaf action. This value is
3652 * faster to compute and more convenient to use as a guide to
3653 * splitting than is the depth, since it is used while dividing by
3654 * two anyway.
3655 */
3656 final int batchFor(long b) {
3657 long n;
3658 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3659 return 0;
3660 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3661 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3662 }
3663
3664 /**
3665 * Performs the given action for each (key, value).
3666 *
3667 * @param parallelismThreshold the (estimated) number of elements
3668 * needed for this operation to be executed in parallel
3669 * @param action the action
3670 * @since 1.8
3671 */
3672 public void forEach(long parallelismThreshold,
3673 BiConsumer<? super K,? super V> action) {
3674 if (action == null) throw new NullPointerException();
3675 new ForEachMappingTask<K,V>
3676 (null, batchFor(parallelismThreshold), 0, 0, table,
3677 action).invoke();
3678 }
3679
3680 /**
3681 * Performs the given action for each non-null transformation
3682 * of each (key, value).
3683 *
3684 * @param parallelismThreshold the (estimated) number of elements
3685 * needed for this operation to be executed in parallel
3686 * @param transformer a function returning the transformation
3687 * for an element, or null if there is no transformation (in
3688 * which case the action is not applied)
3689 * @param action the action
3690 * @param <U> the return type of the transformer
3691 * @since 1.8
3692 */
3693 public <U> void forEach(long parallelismThreshold,
3694 BiFunction<? super K, ? super V, ? extends U> transformer,
3695 Consumer<? super U> action) {
3696 if (transformer == null || action == null)
3697 throw new NullPointerException();
3698 new ForEachTransformedMappingTask<K,V,U>
3699 (null, batchFor(parallelismThreshold), 0, 0, table,
3700 transformer, action).invoke();
3701 }
3702
3703 /**
3704 * Returns a non-null result from applying the given search
3705 * function on each (key, value), or null if none. Upon
3706 * success, further element processing is suppressed and the
3707 * results of any other parallel invocations of the search
3708 * function are ignored.
3709 *
3710 * @param parallelismThreshold the (estimated) number of elements
3711 * needed for this operation to be executed in parallel
3712 * @param searchFunction a function returning a non-null
3713 * result on success, else null
3714 * @param <U> the return type of the search function
3715 * @return a non-null result from applying the given search
3716 * function on each (key, value), or null if none
3717 * @since 1.8
3718 */
3719 public <U> U search(long parallelismThreshold,
3720 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3721 if (searchFunction == null) throw new NullPointerException();
3722 return new SearchMappingsTask<K,V,U>
3723 (null, batchFor(parallelismThreshold), 0, 0, table,
3724 searchFunction, new AtomicReference<U>()).invoke();
3725 }
3726
3727 /**
3728 * Returns the result of accumulating the given transformation
3729 * of all (key, value) pairs using the given reducer to
3730 * combine values, or null if none.
3731 *
3732 * @param parallelismThreshold the (estimated) number of elements
3733 * needed for this operation to be executed in parallel
3734 * @param transformer a function returning the transformation
3735 * for an element, or null if there is no transformation (in
3736 * which case it is not combined)
3737 * @param reducer a commutative associative combining function
3738 * @param <U> the return type of the transformer
3739 * @return the result of accumulating the given transformation
3740 * of all (key, value) pairs
3741 * @since 1.8
3742 */
3743 public <U> U reduce(long parallelismThreshold,
3744 BiFunction<? super K, ? super V, ? extends U> transformer,
3745 BiFunction<? super U, ? super U, ? extends U> reducer) {
3746 if (transformer == null || reducer == null)
3747 throw new NullPointerException();
3748 return new MapReduceMappingsTask<K,V,U>
3749 (null, batchFor(parallelismThreshold), 0, 0, table,
3750 null, transformer, reducer).invoke();
3751 }
3752
3753 /**
3754 * Returns the result of accumulating the given transformation
3755 * of all (key, value) pairs using the given reducer to
3756 * combine values, and the given basis as an identity value.
3757 *
3758 * @param parallelismThreshold the (estimated) number of elements
3759 * needed for this operation to be executed in parallel
3760 * @param transformer a function returning the transformation
3761 * for an element
3762 * @param basis the identity (initial default value) for the reduction
3763 * @param reducer a commutative associative combining function
3764 * @return the result of accumulating the given transformation
3765 * of all (key, value) pairs
3766 * @since 1.8
3767 */
3768 public double reduceToDouble(long parallelismThreshold,
3769 ToDoubleBiFunction<? super K, ? super V> transformer,
3770 double basis,
3771 DoubleBinaryOperator reducer) {
3772 if (transformer == null || reducer == null)
3773 throw new NullPointerException();
3774 return new MapReduceMappingsToDoubleTask<K,V>
3775 (null, batchFor(parallelismThreshold), 0, 0, table,
3776 null, transformer, basis, reducer).invoke();
3777 }
3778
3779 /**
3780 * Returns the result of accumulating the given transformation
3781 * of all (key, value) pairs using the given reducer to
3782 * combine values, and the given basis as an identity value.
3783 *
3784 * @param parallelismThreshold the (estimated) number of elements
3785 * needed for this operation to be executed in parallel
3786 * @param transformer a function returning the transformation
3787 * for an element
3788 * @param basis the identity (initial default value) for the reduction
3789 * @param reducer a commutative associative combining function
3790 * @return the result of accumulating the given transformation
3791 * of all (key, value) pairs
3792 * @since 1.8
3793 */
3794 public long reduceToLong(long parallelismThreshold,
3795 ToLongBiFunction<? super K, ? super V> transformer,
3796 long basis,
3797 LongBinaryOperator reducer) {
3798 if (transformer == null || reducer == null)
3799 throw new NullPointerException();
3800 return new MapReduceMappingsToLongTask<K,V>
3801 (null, batchFor(parallelismThreshold), 0, 0, table,
3802 null, transformer, basis, reducer).invoke();
3803 }
3804
3805 /**
3806 * Returns the result of accumulating the given transformation
3807 * of all (key, value) pairs using the given reducer to
3808 * combine values, and the given basis as an identity value.
3809 *
3810 * @param parallelismThreshold the (estimated) number of elements
3811 * needed for this operation to be executed in parallel
3812 * @param transformer a function returning the transformation
3813 * for an element
3814 * @param basis the identity (initial default value) for the reduction
3815 * @param reducer a commutative associative combining function
3816 * @return the result of accumulating the given transformation
3817 * of all (key, value) pairs
3818 * @since 1.8
3819 */
3820 public int reduceToInt(long parallelismThreshold,
3821 ToIntBiFunction<? super K, ? super V> transformer,
3822 int basis,
3823 IntBinaryOperator reducer) {
3824 if (transformer == null || reducer == null)
3825 throw new NullPointerException();
3826 return new MapReduceMappingsToIntTask<K,V>
3827 (null, batchFor(parallelismThreshold), 0, 0, table,
3828 null, transformer, basis, reducer).invoke();
3829 }
3830
3831 /**
3832 * Performs the given action for each key.
3833 *
3834 * @param parallelismThreshold the (estimated) number of elements
3835 * needed for this operation to be executed in parallel
3836 * @param action the action
3837 * @since 1.8
3838 */
3839 public void forEachKey(long parallelismThreshold,
3840 Consumer<? super K> action) {
3841 if (action == null) throw new NullPointerException();
3842 new ForEachKeyTask<K,V>
3843 (null, batchFor(parallelismThreshold), 0, 0, table,
3844 action).invoke();
3845 }
3846
3847 /**
3848 * Performs the given action for each non-null transformation
3849 * of each key.
3850 *
3851 * @param parallelismThreshold the (estimated) number of elements
3852 * needed for this operation to be executed in parallel
3853 * @param transformer a function returning the transformation
3854 * for an element, or null if there is no transformation (in
3855 * which case the action is not applied)
3856 * @param action the action
3857 * @param <U> the return type of the transformer
3858 * @since 1.8
3859 */
3860 public <U> void forEachKey(long parallelismThreshold,
3861 Function<? super K, ? extends U> transformer,
3862 Consumer<? super U> action) {
3863 if (transformer == null || action == null)
3864 throw new NullPointerException();
3865 new ForEachTransformedKeyTask<K,V,U>
3866 (null, batchFor(parallelismThreshold), 0, 0, table,
3867 transformer, action).invoke();
3868 }
3869
3870 /**
3871 * Returns a non-null result from applying the given search
3872 * function on each key, or null if none. Upon success,
3873 * further element processing is suppressed and the results of
3874 * any other parallel invocations of the search function are
3875 * ignored.
3876 *
3877 * @param parallelismThreshold the (estimated) number of elements
3878 * needed for this operation to be executed in parallel
3879 * @param searchFunction a function returning a non-null
3880 * result on success, else null
3881 * @param <U> the return type of the search function
3882 * @return a non-null result from applying the given search
3883 * function on each key, or null if none
3884 * @since 1.8
3885 */
3886 public <U> U searchKeys(long parallelismThreshold,
3887 Function<? super K, ? extends U> searchFunction) {
3888 if (searchFunction == null) throw new NullPointerException();
3889 return new SearchKeysTask<K,V,U>
3890 (null, batchFor(parallelismThreshold), 0, 0, table,
3891 searchFunction, new AtomicReference<U>()).invoke();
3892 }
3893
3894 /**
3895 * Returns the result of accumulating all keys using the given
3896 * reducer to combine values, or null if none.
3897 *
3898 * @param parallelismThreshold the (estimated) number of elements
3899 * needed for this operation to be executed in parallel
3900 * @param reducer a commutative associative combining function
3901 * @return the result of accumulating all keys using the given
3902 * reducer to combine values, or null if none
3903 * @since 1.8
3904 */
3905 public K reduceKeys(long parallelismThreshold,
3906 BiFunction<? super K, ? super K, ? extends K> reducer) {
3907 if (reducer == null) throw new NullPointerException();
3908 return new ReduceKeysTask<K,V>
3909 (null, batchFor(parallelismThreshold), 0, 0, table,
3910 null, reducer).invoke();
3911 }
3912
3913 /**
3914 * Returns the result of accumulating the given transformation
3915 * of all keys using the given reducer to combine values, or
3916 * null if none.
3917 *
3918 * @param parallelismThreshold the (estimated) number of elements
3919 * needed for this operation to be executed in parallel
3920 * @param transformer a function returning the transformation
3921 * for an element, or null if there is no transformation (in
3922 * which case it is not combined)
3923 * @param reducer a commutative associative combining function
3924 * @param <U> the return type of the transformer
3925 * @return the result of accumulating the given transformation
3926 * of all keys
3927 * @since 1.8
3928 */
3929 public <U> U reduceKeys(long parallelismThreshold,
3930 Function<? super K, ? extends U> transformer,
3931 BiFunction<? super U, ? super U, ? extends U> reducer) {
3932 if (transformer == null || reducer == null)
3933 throw new NullPointerException();
3934 return new MapReduceKeysTask<K,V,U>
3935 (null, batchFor(parallelismThreshold), 0, 0, table,
3936 null, transformer, reducer).invoke();
3937 }
3938
3939 /**
3940 * Returns the result of accumulating the given transformation
3941 * of all keys using the given reducer to combine values, and
3942 * the given basis as an identity value.
3943 *
3944 * @param parallelismThreshold the (estimated) number of elements
3945 * needed for this operation to be executed in parallel
3946 * @param transformer a function returning the transformation
3947 * for an element
3948 * @param basis the identity (initial default value) for the reduction
3949 * @param reducer a commutative associative combining function
3950 * @return the result of accumulating the given transformation
3951 * of all keys
3952 * @since 1.8
3953 */
3954 public double reduceKeysToDouble(long parallelismThreshold,
3955 ToDoubleFunction<? super K> transformer,
3956 double basis,
3957 DoubleBinaryOperator reducer) {
3958 if (transformer == null || reducer == null)
3959 throw new NullPointerException();
3960 return new MapReduceKeysToDoubleTask<K,V>
3961 (null, batchFor(parallelismThreshold), 0, 0, table,
3962 null, transformer, basis, reducer).invoke();
3963 }
3964
3965 /**
3966 * Returns the result of accumulating the given transformation
3967 * of all keys using the given reducer to combine values, and
3968 * the given basis as an identity value.
3969 *
3970 * @param parallelismThreshold the (estimated) number of elements
3971 * needed for this operation to be executed in parallel
3972 * @param transformer a function returning the transformation
3973 * for an element
3974 * @param basis the identity (initial default value) for the reduction
3975 * @param reducer a commutative associative combining function
3976 * @return the result of accumulating the given transformation
3977 * of all keys
3978 * @since 1.8
3979 */
3980 public long reduceKeysToLong(long parallelismThreshold,
3981 ToLongFunction<? super K> transformer,
3982 long basis,
3983 LongBinaryOperator reducer) {
3984 if (transformer == null || reducer == null)
3985 throw new NullPointerException();
3986 return new MapReduceKeysToLongTask<K,V>
3987 (null, batchFor(parallelismThreshold), 0, 0, table,
3988 null, transformer, basis, reducer).invoke();
3989 }
3990
3991 /**
3992 * Returns the result of accumulating the given transformation
3993 * of all keys using the given reducer to combine values, and
3994 * the given basis as an identity value.
3995 *
3996 * @param parallelismThreshold the (estimated) number of elements
3997 * needed for this operation to be executed in parallel
3998 * @param transformer a function returning the transformation
3999 * for an element
4000 * @param basis the identity (initial default value) for the reduction
4001 * @param reducer a commutative associative combining function
4002 * @return the result of accumulating the given transformation
4003 * of all keys
4004 * @since 1.8
4005 */
4006 public int reduceKeysToInt(long parallelismThreshold,
4007 ToIntFunction<? super K> transformer,
4008 int basis,
4009 IntBinaryOperator reducer) {
4010 if (transformer == null || reducer == null)
4011 throw new NullPointerException();
4012 return new MapReduceKeysToIntTask<K,V>
4013 (null, batchFor(parallelismThreshold), 0, 0, table,
4014 null, transformer, basis, reducer).invoke();
4015 }
4016
4017 /**
4018 * Performs the given action for each value.
4019 *
4020 * @param parallelismThreshold the (estimated) number of elements
4021 * needed for this operation to be executed in parallel
4022 * @param action the action
4023 * @since 1.8
4024 */
4025 public void forEachValue(long parallelismThreshold,
4026 Consumer<? super V> action) {
4027 if (action == null)
4028 throw new NullPointerException();
4029 new ForEachValueTask<K,V>
4030 (null, batchFor(parallelismThreshold), 0, 0, table,
4031 action).invoke();
4032 }
4033
4034 /**
4035 * Performs the given action for each non-null transformation
4036 * of each value.
4037 *
4038 * @param parallelismThreshold the (estimated) number of elements
4039 * needed for this operation to be executed in parallel
4040 * @param transformer a function returning the transformation
4041 * for an element, or null if there is no transformation (in
4042 * which case the action is not applied)
4043 * @param action the action
4044 * @param <U> the return type of the transformer
4045 * @since 1.8
4046 */
4047 public <U> void forEachValue(long parallelismThreshold,
4048 Function<? super V, ? extends U> transformer,
4049 Consumer<? super U> action) {
4050 if (transformer == null || action == null)
4051 throw new NullPointerException();
4052 new ForEachTransformedValueTask<K,V,U>
4053 (null, batchFor(parallelismThreshold), 0, 0, table,
4054 transformer, action).invoke();
4055 }
4056
4057 /**
4058 * Returns a non-null result from applying the given search
4059 * function on each value, or null if none. Upon success,
4060 * further element processing is suppressed and the results of
4061 * any other parallel invocations of the search function are
4062 * ignored.
4063 *
4064 * @param parallelismThreshold the (estimated) number of elements
4065 * needed for this operation to be executed in parallel
4066 * @param searchFunction a function returning a non-null
4067 * result on success, else null
4068 * @param <U> the return type of the search function
4069 * @return a non-null result from applying the given search
4070 * function on each value, or null if none
4071 * @since 1.8
4072 */
4073 public <U> U searchValues(long parallelismThreshold,
4074 Function<? super V, ? extends U> searchFunction) {
4075 if (searchFunction == null) throw new NullPointerException();
4076 return new SearchValuesTask<K,V,U>
4077 (null, batchFor(parallelismThreshold), 0, 0, table,
4078 searchFunction, new AtomicReference<U>()).invoke();
4079 }
4080
4081 /**
4082 * Returns the result of accumulating all values using the
4083 * given reducer to combine values, or null if none.
4084 *
4085 * @param parallelismThreshold the (estimated) number of elements
4086 * needed for this operation to be executed in parallel
4087 * @param reducer a commutative associative combining function
4088 * @return the result of accumulating all values
4089 * @since 1.8
4090 */
4091 public V reduceValues(long parallelismThreshold,
4092 BiFunction<? super V, ? super V, ? extends V> reducer) {
4093 if (reducer == null) throw new NullPointerException();
4094 return new ReduceValuesTask<K,V>
4095 (null, batchFor(parallelismThreshold), 0, 0, table,
4096 null, reducer).invoke();
4097 }
4098
4099 /**
4100 * Returns the result of accumulating the given transformation
4101 * of all values using the given reducer to combine values, or
4102 * null if none.
4103 *
4104 * @param parallelismThreshold the (estimated) number of elements
4105 * needed for this operation to be executed in parallel
4106 * @param transformer a function returning the transformation
4107 * for an element, or null if there is no transformation (in
4108 * which case it is not combined)
4109 * @param reducer a commutative associative combining function
4110 * @param <U> the return type of the transformer
4111 * @return the result of accumulating the given transformation
4112 * of all values
4113 * @since 1.8
4114 */
4115 public <U> U reduceValues(long parallelismThreshold,
4116 Function<? super V, ? extends U> transformer,
4117 BiFunction<? super U, ? super U, ? extends U> reducer) {
4118 if (transformer == null || reducer == null)
4119 throw new NullPointerException();
4120 return new MapReduceValuesTask<K,V,U>
4121 (null, batchFor(parallelismThreshold), 0, 0, table,
4122 null, transformer, reducer).invoke();
4123 }
4124
4125 /**
4126 * Returns the result of accumulating the given transformation
4127 * of all values using the given reducer to combine values,
4128 * and the given basis as an identity value.
4129 *
4130 * @param parallelismThreshold the (estimated) number of elements
4131 * needed for this operation to be executed in parallel
4132 * @param transformer a function returning the transformation
4133 * for an element
4134 * @param basis the identity (initial default value) for the reduction
4135 * @param reducer a commutative associative combining function
4136 * @return the result of accumulating the given transformation
4137 * of all values
4138 * @since 1.8
4139 */
4140 public double reduceValuesToDouble(long parallelismThreshold,
4141 ToDoubleFunction<? super V> transformer,
4142 double basis,
4143 DoubleBinaryOperator reducer) {
4144 if (transformer == null || reducer == null)
4145 throw new NullPointerException();
4146 return new MapReduceValuesToDoubleTask<K,V>
4147 (null, batchFor(parallelismThreshold), 0, 0, table,
4148 null, transformer, basis, reducer).invoke();
4149 }
4150
4151 /**
4152 * Returns the result of accumulating the given transformation
4153 * of all values using the given reducer to combine values,
4154 * and the given basis as an identity value.
4155 *
4156 * @param parallelismThreshold the (estimated) number of elements
4157 * needed for this operation to be executed in parallel
4158 * @param transformer a function returning the transformation
4159 * for an element
4160 * @param basis the identity (initial default value) for the reduction
4161 * @param reducer a commutative associative combining function
4162 * @return the result of accumulating the given transformation
4163 * of all values
4164 * @since 1.8
4165 */
4166 public long reduceValuesToLong(long parallelismThreshold,
4167 ToLongFunction<? super V> transformer,
4168 long basis,
4169 LongBinaryOperator reducer) {
4170 if (transformer == null || reducer == null)
4171 throw new NullPointerException();
4172 return new MapReduceValuesToLongTask<K,V>
4173 (null, batchFor(parallelismThreshold), 0, 0, table,
4174 null, transformer, basis, reducer).invoke();
4175 }
4176
4177 /**
4178 * Returns the result of accumulating the given transformation
4179 * of all values using the given reducer to combine values,
4180 * and the given basis as an identity value.
4181 *
4182 * @param parallelismThreshold the (estimated) number of elements
4183 * needed for this operation to be executed in parallel
4184 * @param transformer a function returning the transformation
4185 * for an element
4186 * @param basis the identity (initial default value) for the reduction
4187 * @param reducer a commutative associative combining function
4188 * @return the result of accumulating the given transformation
4189 * of all values
4190 * @since 1.8
4191 */
4192 public int reduceValuesToInt(long parallelismThreshold,
4193 ToIntFunction<? super V> transformer,
4194 int basis,
4195 IntBinaryOperator reducer) {
4196 if (transformer == null || reducer == null)
4197 throw new NullPointerException();
4198 return new MapReduceValuesToIntTask<K,V>
4199 (null, batchFor(parallelismThreshold), 0, 0, table,
4200 null, transformer, basis, reducer).invoke();
4201 }
4202
4203 /**
4204 * Performs the given action for each entry.
4205 *
4206 * @param parallelismThreshold the (estimated) number of elements
4207 * needed for this operation to be executed in parallel
4208 * @param action the action
4209 * @since 1.8
4210 */
4211 public void forEachEntry(long parallelismThreshold,
4212 Consumer<? super Map.Entry<K,V>> action) {
4213 if (action == null) throw new NullPointerException();
4214 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4215 action).invoke();
4216 }
4217
4218 /**
4219 * Performs the given action for each non-null transformation
4220 * of each entry.
4221 *
4222 * @param parallelismThreshold the (estimated) number of elements
4223 * needed for this operation to be executed in parallel
4224 * @param transformer a function returning the transformation
4225 * for an element, or null if there is no transformation (in
4226 * which case the action is not applied)
4227 * @param action the action
4228 * @param <U> the return type of the transformer
4229 * @since 1.8
4230 */
4231 public <U> void forEachEntry(long parallelismThreshold,
4232 Function<Map.Entry<K,V>, ? extends U> transformer,
4233 Consumer<? super U> action) {
4234 if (transformer == null || action == null)
4235 throw new NullPointerException();
4236 new ForEachTransformedEntryTask<K,V,U>
4237 (null, batchFor(parallelismThreshold), 0, 0, table,
4238 transformer, action).invoke();
4239 }
4240
4241 /**
4242 * Returns a non-null result from applying the given search
4243 * function on each entry, or null if none. Upon success,
4244 * further element processing is suppressed and the results of
4245 * any other parallel invocations of the search function are
4246 * ignored.
4247 *
4248 * @param parallelismThreshold the (estimated) number of elements
4249 * needed for this operation to be executed in parallel
4250 * @param searchFunction a function returning a non-null
4251 * result on success, else null
4252 * @param <U> the return type of the search function
4253 * @return a non-null result from applying the given search
4254 * function on each entry, or null if none
4255 * @since 1.8
4256 */
4257 public <U> U searchEntries(long parallelismThreshold,
4258 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4259 if (searchFunction == null) throw new NullPointerException();
4260 return new SearchEntriesTask<K,V,U>
4261 (null, batchFor(parallelismThreshold), 0, 0, table,
4262 searchFunction, new AtomicReference<U>()).invoke();
4263 }
4264
4265 /**
4266 * Returns the result of accumulating all entries using the
4267 * given reducer to combine values, or null if none.
4268 *
4269 * @param parallelismThreshold the (estimated) number of elements
4270 * needed for this operation to be executed in parallel
4271 * @param reducer a commutative associative combining function
4272 * @return the result of accumulating all entries
4273 * @since 1.8
4274 */
4275 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4276 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4277 if (reducer == null) throw new NullPointerException();
4278 return new ReduceEntriesTask<K,V>
4279 (null, batchFor(parallelismThreshold), 0, 0, table,
4280 null, reducer).invoke();
4281 }
4282
4283 /**
4284 * Returns the result of accumulating the given transformation
4285 * of all entries using the given reducer to combine values,
4286 * or null if none.
4287 *
4288 * @param parallelismThreshold the (estimated) number of elements
4289 * needed for this operation to be executed in parallel
4290 * @param transformer a function returning the transformation
4291 * for an element, or null if there is no transformation (in
4292 * which case it is not combined)
4293 * @param reducer a commutative associative combining function
4294 * @param <U> the return type of the transformer
4295 * @return the result of accumulating the given transformation
4296 * of all entries
4297 * @since 1.8
4298 */
4299 public <U> U reduceEntries(long parallelismThreshold,
4300 Function<Map.Entry<K,V>, ? extends U> transformer,
4301 BiFunction<? super U, ? super U, ? extends U> reducer) {
4302 if (transformer == null || reducer == null)
4303 throw new NullPointerException();
4304 return new MapReduceEntriesTask<K,V,U>
4305 (null, batchFor(parallelismThreshold), 0, 0, table,
4306 null, transformer, reducer).invoke();
4307 }
4308
4309 /**
4310 * Returns the result of accumulating the given transformation
4311 * of all entries using the given reducer to combine values,
4312 * and the given basis as an identity value.
4313 *
4314 * @param parallelismThreshold the (estimated) number of elements
4315 * needed for this operation to be executed in parallel
4316 * @param transformer a function returning the transformation
4317 * for an element
4318 * @param basis the identity (initial default value) for the reduction
4319 * @param reducer a commutative associative combining function
4320 * @return the result of accumulating the given transformation
4321 * of all entries
4322 * @since 1.8
4323 */
4324 public double reduceEntriesToDouble(long parallelismThreshold,
4325 ToDoubleFunction<Map.Entry<K,V>> transformer,
4326 double basis,
4327 DoubleBinaryOperator reducer) {
4328 if (transformer == null || reducer == null)
4329 throw new NullPointerException();
4330 return new MapReduceEntriesToDoubleTask<K,V>
4331 (null, batchFor(parallelismThreshold), 0, 0, table,
4332 null, transformer, basis, reducer).invoke();
4333 }
4334
4335 /**
4336 * Returns the result of accumulating the given transformation
4337 * of all entries using the given reducer to combine values,
4338 * and the given basis as an identity value.
4339 *
4340 * @param parallelismThreshold the (estimated) number of elements
4341 * needed for this operation to be executed in parallel
4342 * @param transformer a function returning the transformation
4343 * for an element
4344 * @param basis the identity (initial default value) for the reduction
4345 * @param reducer a commutative associative combining function
4346 * @return the result of accumulating the given transformation
4347 * of all entries
4348 * @since 1.8
4349 */
4350 public long reduceEntriesToLong(long parallelismThreshold,
4351 ToLongFunction<Map.Entry<K,V>> transformer,
4352 long basis,
4353 LongBinaryOperator reducer) {
4354 if (transformer == null || reducer == null)
4355 throw new NullPointerException();
4356 return new MapReduceEntriesToLongTask<K,V>
4357 (null, batchFor(parallelismThreshold), 0, 0, table,
4358 null, transformer, basis, reducer).invoke();
4359 }
4360
4361 /**
4362 * Returns the result of accumulating the given transformation
4363 * of all entries using the given reducer to combine values,
4364 * and the given basis as an identity value.
4365 *
4366 * @param parallelismThreshold the (estimated) number of elements
4367 * needed for this operation to be executed in parallel
4368 * @param transformer a function returning the transformation
4369 * for an element
4370 * @param basis the identity (initial default value) for the reduction
4371 * @param reducer a commutative associative combining function
4372 * @return the result of accumulating the given transformation
4373 * of all entries
4374 * @since 1.8
4375 */
4376 public int reduceEntriesToInt(long parallelismThreshold,
4377 ToIntFunction<Map.Entry<K,V>> transformer,
4378 int basis,
4379 IntBinaryOperator reducer) {
4380 if (transformer == null || reducer == null)
4381 throw new NullPointerException();
4382 return new MapReduceEntriesToIntTask<K,V>
4383 (null, batchFor(parallelismThreshold), 0, 0, table,
4384 null, transformer, basis, reducer).invoke();
4385 }
4386
4387
4388 /* ----------------Views -------------- */
4389
4390 /**
4391 * Base class for views.
4392 */
4393 abstract static class CollectionView<K,V,E>
4394 implements Collection<E>, java.io.Serializable {
4395 private static final long serialVersionUID = 7249069246763182397L;
4396 final ConcurrentHashMap<K,V> map;
4397 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4398
4399 /**
4400 * Returns the map backing this view.
4401 *
4402 * @return the map backing this view
4403 */
4404 public ConcurrentHashMap<K,V> getMap() { return map; }
4405
4406 /**
4407 * Removes all of the elements from this view, by removing all
4408 * the mappings from the map backing this view.
4409 */
4410 public final void clear() { map.clear(); }
4411 public final int size() { return map.size(); }
4412 public final boolean isEmpty() { return map.isEmpty(); }
4413
4414 // implementations below rely on concrete classes supplying these
4415 // abstract methods
4416 /**
4417 * Returns an iterator over the elements in this collection.
4418 *
4419 * <p>The returned iterator is
4420 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4421 *
4422 * @return an iterator over the elements in this collection
4423 */
4424 public abstract Iterator<E> iterator();
4425 public abstract boolean contains(Object o);
4426 public abstract boolean remove(Object o);
4427
4428 private static final String oomeMsg = "Required array size too large";
4429
4430 public final Object[] toArray() {
4431 long sz = map.mappingCount();
4432 if (sz > MAX_ARRAY_SIZE)
4433 throw new OutOfMemoryError(oomeMsg);
4434 int n = (int)sz;
4435 Object[] r = new Object[n];
4436 int i = 0;
4437 for (E e : this) {
4438 if (i == n) {
4439 if (n >= MAX_ARRAY_SIZE)
4440 throw new OutOfMemoryError(oomeMsg);
4441 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4442 n = MAX_ARRAY_SIZE;
4443 else
4444 n += (n >>> 1) + 1;
4445 r = Arrays.copyOf(r, n);
4446 }
4447 r[i++] = e;
4448 }
4449 return (i == n) ? r : Arrays.copyOf(r, i);
4450 }
4451
4452 @SuppressWarnings("unchecked")
4453 public final <T> T[] toArray(T[] a) {
4454 long sz = map.mappingCount();
4455 if (sz > MAX_ARRAY_SIZE)
4456 throw new OutOfMemoryError(oomeMsg);
4457 int m = (int)sz;
4458 T[] r = (a.length >= m) ? a :
4459 (T[])java.lang.reflect.Array
4460 .newInstance(a.getClass().getComponentType(), m);
4461 int n = r.length;
4462 int i = 0;
4463 for (E e : this) {
4464 if (i == n) {
4465 if (n >= MAX_ARRAY_SIZE)
4466 throw new OutOfMemoryError(oomeMsg);
4467 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4468 n = MAX_ARRAY_SIZE;
4469 else
4470 n += (n >>> 1) + 1;
4471 r = Arrays.copyOf(r, n);
4472 }
4473 r[i++] = (T)e;
4474 }
4475 if (a == r && i < n) {
4476 r[i] = null; // null-terminate
4477 return r;
4478 }
4479 return (i == n) ? r : Arrays.copyOf(r, i);
4480 }
4481
4482 /**
4483 * Returns a string representation of this collection.
4484 * The string representation consists of the string representations
4485 * of the collection's elements in the order they are returned by
4486 * its iterator, enclosed in square brackets ({@code "[]"}).
4487 * Adjacent elements are separated by the characters {@code ", "}
4488 * (comma and space). Elements are converted to strings as by
4489 * {@link String#valueOf(Object)}.
4490 *
4491 * @return a string representation of this collection
4492 */
4493 public final String toString() {
4494 StringBuilder sb = new StringBuilder();
4495 sb.append('[');
4496 Iterator<E> it = iterator();
4497 if (it.hasNext()) {
4498 for (;;) {
4499 Object e = it.next();
4500 sb.append(e == this ? "(this Collection)" : e);
4501 if (!it.hasNext())
4502 break;
4503 sb.append(',').append(' ');
4504 }
4505 }
4506 return sb.append(']').toString();
4507 }
4508
4509 public final boolean containsAll(Collection<?> c) {
4510 if (c != this) {
4511 for (Object e : c) {
4512 if (e == null || !contains(e))
4513 return false;
4514 }
4515 }
4516 return true;
4517 }
4518
4519 public final boolean removeAll(Collection<?> c) {
4520 if (c == null) throw new NullPointerException();
4521 boolean modified = false;
4522 for (Iterator<E> it = iterator(); it.hasNext();) {
4523 if (c.contains(it.next())) {
4524 it.remove();
4525 modified = true;
4526 }
4527 }
4528 return modified;
4529 }
4530
4531 public final boolean retainAll(Collection<?> c) {
4532 if (c == null) throw new NullPointerException();
4533 boolean modified = false;
4534 for (Iterator<E> it = iterator(); it.hasNext();) {
4535 if (!c.contains(it.next())) {
4536 it.remove();
4537 modified = true;
4538 }
4539 }
4540 return modified;
4541 }
4542
4543 }
4544
4545 /**
4546 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4547 * which additions may optionally be enabled by mapping to a
4548 * common value. This class cannot be directly instantiated.
4549 * See {@link #keySet() keySet()},
4550 * {@link #keySet(Object) keySet(V)},
4551 * {@link #newKeySet() newKeySet()},
4552 * {@link #newKeySet(int) newKeySet(int)}.
4553 *
4554 * @since 1.8
4555 */
4556 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4557 implements Set<K>, java.io.Serializable {
4558 private static final long serialVersionUID = 7249069246763182397L;
4559 private final V value;
4560 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4561 super(map);
4562 this.value = value;
4563 }
4564
4565 /**
4566 * Returns the default mapped value for additions,
4567 * or {@code null} if additions are not supported.
4568 *
4569 * @return the default mapped value for additions, or {@code null}
4570 * if not supported
4571 */
4572 public V getMappedValue() { return value; }
4573
4574 /**
4575 * {@inheritDoc}
4576 * @throws NullPointerException if the specified key is null
4577 */
4578 public boolean contains(Object o) { return map.containsKey(o); }
4579
4580 /**
4581 * Removes the key from this map view, by removing the key (and its
4582 * corresponding value) from the backing map. This method does
4583 * nothing if the key is not in the map.
4584 *
4585 * @param o the key to be removed from the backing map
4586 * @return {@code true} if the backing map contained the specified key
4587 * @throws NullPointerException if the specified key is null
4588 */
4589 public boolean remove(Object o) { return map.remove(o) != null; }
4590
4591 /**
4592 * @return an iterator over the keys of the backing map
4593 */
4594 public Iterator<K> iterator() {
4595 Node<K,V>[] t;
4596 ConcurrentHashMap<K,V> m = map;
4597 int f = (t = m.table) == null ? 0 : t.length;
4598 return new KeyIterator<K,V>(t, f, 0, f, m);
4599 }
4600
4601 /**
4602 * Adds the specified key to this set view by mapping the key to
4603 * the default mapped value in the backing map, if defined.
4604 *
4605 * @param e key to be added
4606 * @return {@code true} if this set changed as a result of the call
4607 * @throws NullPointerException if the specified key is null
4608 * @throws UnsupportedOperationException if no default mapped value
4609 * for additions was provided
4610 */
4611 public boolean add(K e) {
4612 V v;
4613 if ((v = value) == null)
4614 throw new UnsupportedOperationException();
4615 return map.putVal(e, v, true) == null;
4616 }
4617
4618 /**
4619 * Adds all of the elements in the specified collection to this set,
4620 * as if by calling {@link #add} on each one.
4621 *
4622 * @param c the elements to be inserted into this set
4623 * @return {@code true} if this set changed as a result of the call
4624 * @throws NullPointerException if the collection or any of its
4625 * elements are {@code null}
4626 * @throws UnsupportedOperationException if no default mapped value
4627 * for additions was provided
4628 */
4629 public boolean addAll(Collection<? extends K> c) {
4630 boolean added = false;
4631 V v;
4632 if ((v = value) == null)
4633 throw new UnsupportedOperationException();
4634 for (K e : c) {
4635 if (map.putVal(e, v, true) == null)
4636 added = true;
4637 }
4638 return added;
4639 }
4640
4641 public int hashCode() {
4642 int h = 0;
4643 for (K e : this)
4644 h += e.hashCode();
4645 return h;
4646 }
4647
4648 public boolean equals(Object o) {
4649 Set<?> c;
4650 return ((o instanceof Set) &&
4651 ((c = (Set<?>)o) == this ||
4652 (containsAll(c) && c.containsAll(this))));
4653 }
4654
4655 public Spliterator<K> spliterator() {
4656 Node<K,V>[] t;
4657 ConcurrentHashMap<K,V> m = map;
4658 long n = m.sumCount();
4659 int f = (t = m.table) == null ? 0 : t.length;
4660 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4661 }
4662
4663 public void forEach(Consumer<? super K> action) {
4664 if (action == null) throw new NullPointerException();
4665 Node<K,V>[] t;
4666 if ((t = map.table) != null) {
4667 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4668 for (Node<K,V> p; (p = it.advance()) != null; )
4669 action.accept(p.key);
4670 }
4671 }
4672 }
4673
4674 /**
4675 * A view of a ConcurrentHashMap as a {@link Collection} of
4676 * values, in which additions are disabled. This class cannot be
4677 * directly instantiated. See {@link #values()}.
4678 */
4679 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4680 implements Collection<V>, java.io.Serializable {
4681 private static final long serialVersionUID = 2249069246763182397L;
4682 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4683 public final boolean contains(Object o) {
4684 return map.containsValue(o);
4685 }
4686
4687 public final boolean remove(Object o) {
4688 if (o != null) {
4689 for (Iterator<V> it = iterator(); it.hasNext();) {
4690 if (o.equals(it.next())) {
4691 it.remove();
4692 return true;
4693 }
4694 }
4695 }
4696 return false;
4697 }
4698
4699 public final Iterator<V> iterator() {
4700 ConcurrentHashMap<K,V> m = map;
4701 Node<K,V>[] t;
4702 int f = (t = m.table) == null ? 0 : t.length;
4703 return new ValueIterator<K,V>(t, f, 0, f, m);
4704 }
4705
4706 public final boolean add(V e) {
4707 throw new UnsupportedOperationException();
4708 }
4709 public final boolean addAll(Collection<? extends V> c) {
4710 throw new UnsupportedOperationException();
4711 }
4712
4713 public boolean removeIf(Predicate<? super V> filter) {
4714 return map.removeValueIf(filter);
4715 }
4716
4717 public Spliterator<V> spliterator() {
4718 Node<K,V>[] t;
4719 ConcurrentHashMap<K,V> m = map;
4720 long n = m.sumCount();
4721 int f = (t = m.table) == null ? 0 : t.length;
4722 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4723 }
4724
4725 public void forEach(Consumer<? super V> action) {
4726 if (action == null) throw new NullPointerException();
4727 Node<K,V>[] t;
4728 if ((t = map.table) != null) {
4729 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4730 for (Node<K,V> p; (p = it.advance()) != null; )
4731 action.accept(p.val);
4732 }
4733 }
4734 }
4735
4736 /**
4737 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4738 * entries. This class cannot be directly instantiated. See
4739 * {@link #entrySet()}.
4740 */
4741 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4742 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4743 private static final long serialVersionUID = 2249069246763182397L;
4744 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4745
4746 public boolean contains(Object o) {
4747 Object k, v, r; Map.Entry<?,?> e;
4748 return ((o instanceof Map.Entry) &&
4749 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4750 (r = map.get(k)) != null &&
4751 (v = e.getValue()) != null &&
4752 (v == r || v.equals(r)));
4753 }
4754
4755 public boolean remove(Object o) {
4756 Object k, v; Map.Entry<?,?> e;
4757 return ((o instanceof Map.Entry) &&
4758 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4759 (v = e.getValue()) != null &&
4760 map.remove(k, v));
4761 }
4762
4763 /**
4764 * @return an iterator over the entries of the backing map
4765 */
4766 public Iterator<Map.Entry<K,V>> iterator() {
4767 ConcurrentHashMap<K,V> m = map;
4768 Node<K,V>[] t;
4769 int f = (t = m.table) == null ? 0 : t.length;
4770 return new EntryIterator<K,V>(t, f, 0, f, m);
4771 }
4772
4773 public boolean add(Entry<K,V> e) {
4774 return map.putVal(e.getKey(), e.getValue(), false) == null;
4775 }
4776
4777 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4778 boolean added = false;
4779 for (Entry<K,V> e : c) {
4780 if (add(e))
4781 added = true;
4782 }
4783 return added;
4784 }
4785
4786 public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4787 return map.removeEntryIf(filter);
4788 }
4789
4790 public final int hashCode() {
4791 int h = 0;
4792 Node<K,V>[] t;
4793 if ((t = map.table) != null) {
4794 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4795 for (Node<K,V> p; (p = it.advance()) != null; ) {
4796 h += p.hashCode();
4797 }
4798 }
4799 return h;
4800 }
4801
4802 public final boolean equals(Object o) {
4803 Set<?> c;
4804 return ((o instanceof Set) &&
4805 ((c = (Set<?>)o) == this ||
4806 (containsAll(c) && c.containsAll(this))));
4807 }
4808
4809 public Spliterator<Map.Entry<K,V>> spliterator() {
4810 Node<K,V>[] t;
4811 ConcurrentHashMap<K,V> m = map;
4812 long n = m.sumCount();
4813 int f = (t = m.table) == null ? 0 : t.length;
4814 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4815 }
4816
4817 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4818 if (action == null) throw new NullPointerException();
4819 Node<K,V>[] t;
4820 if ((t = map.table) != null) {
4821 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4822 for (Node<K,V> p; (p = it.advance()) != null; )
4823 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4824 }
4825 }
4826
4827 }
4828
4829 // -------------------------------------------------------
4830
4831 /**
4832 * Base class for bulk tasks. Repeats some fields and code from
4833 * class Traverser, because we need to subclass CountedCompleter.
4834 */
4835 @SuppressWarnings("serial")
4836 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4837 Node<K,V>[] tab; // same as Traverser
4838 Node<K,V> next;
4839 TableStack<K,V> stack, spare;
4840 int index;
4841 int baseIndex;
4842 int baseLimit;
4843 final int baseSize;
4844 int batch; // split control
4845
4846 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4847 super(par);
4848 this.batch = b;
4849 this.index = this.baseIndex = i;
4850 if ((this.tab = t) == null)
4851 this.baseSize = this.baseLimit = 0;
4852 else if (par == null)
4853 this.baseSize = this.baseLimit = t.length;
4854 else {
4855 this.baseLimit = f;
4856 this.baseSize = par.baseSize;
4857 }
4858 }
4859
4860 /**
4861 * Same as Traverser version
4862 */
4863 final Node<K,V> advance() {
4864 Node<K,V> e;
4865 if ((e = next) != null)
4866 e = e.next;
4867 for (;;) {
4868 Node<K,V>[] t; int i, n;
4869 if (e != null)
4870 return next = e;
4871 if (baseIndex >= baseLimit || (t = tab) == null ||
4872 (n = t.length) <= (i = index) || i < 0)
4873 return next = null;
4874 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4875 if (e instanceof ForwardingNode) {
4876 tab = ((ForwardingNode<K,V>)e).nextTable;
4877 e = null;
4878 pushState(t, i, n);
4879 continue;
4880 }
4881 else if (e instanceof TreeBin)
4882 e = ((TreeBin<K,V>)e).first;
4883 else
4884 e = null;
4885 }
4886 if (stack != null)
4887 recoverState(n);
4888 else if ((index = i + baseSize) >= n)
4889 index = ++baseIndex;
4890 }
4891 }
4892
4893 private void pushState(Node<K,V>[] t, int i, int n) {
4894 TableStack<K,V> s = spare;
4895 if (s != null)
4896 spare = s.next;
4897 else
4898 s = new TableStack<K,V>();
4899 s.tab = t;
4900 s.length = n;
4901 s.index = i;
4902 s.next = stack;
4903 stack = s;
4904 }
4905
4906 private void recoverState(int n) {
4907 TableStack<K,V> s; int len;
4908 while ((s = stack) != null && (index += (len = s.length)) >= n) {
4909 n = len;
4910 index = s.index;
4911 tab = s.tab;
4912 s.tab = null;
4913 TableStack<K,V> next = s.next;
4914 s.next = spare; // save for reuse
4915 stack = next;
4916 spare = s;
4917 }
4918 if (s == null && (index += baseSize) >= n)
4919 index = ++baseIndex;
4920 }
4921 }
4922
4923 /*
4924 * Task classes. Coded in a regular but ugly format/style to
4925 * simplify checks that each variant differs in the right way from
4926 * others. The null screenings exist because compilers cannot tell
4927 * that we've already null-checked task arguments, so we force
4928 * simplest hoisted bypass to help avoid convoluted traps.
4929 */
4930 @SuppressWarnings("serial")
4931 static final class ForEachKeyTask<K,V>
4932 extends BulkTask<K,V,Void> {
4933 final Consumer<? super K> action;
4934 ForEachKeyTask
4935 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4936 Consumer<? super K> action) {
4937 super(p, b, i, f, t);
4938 this.action = action;
4939 }
4940 public final void compute() {
4941 final Consumer<? super K> action;
4942 if ((action = this.action) != null) {
4943 for (int i = baseIndex, f, h; batch > 0 &&
4944 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4945 addToPendingCount(1);
4946 new ForEachKeyTask<K,V>
4947 (this, batch >>>= 1, baseLimit = h, f, tab,
4948 action).fork();
4949 }
4950 for (Node<K,V> p; (p = advance()) != null;)
4951 action.accept(p.key);
4952 propagateCompletion();
4953 }
4954 }
4955 }
4956
4957 @SuppressWarnings("serial")
4958 static final class ForEachValueTask<K,V>
4959 extends BulkTask<K,V,Void> {
4960 final Consumer<? super V> action;
4961 ForEachValueTask
4962 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4963 Consumer<? super V> action) {
4964 super(p, b, i, f, t);
4965 this.action = action;
4966 }
4967 public final void compute() {
4968 final Consumer<? super V> action;
4969 if ((action = this.action) != null) {
4970 for (int i = baseIndex, f, h; batch > 0 &&
4971 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4972 addToPendingCount(1);
4973 new ForEachValueTask<K,V>
4974 (this, batch >>>= 1, baseLimit = h, f, tab,
4975 action).fork();
4976 }
4977 for (Node<K,V> p; (p = advance()) != null;)
4978 action.accept(p.val);
4979 propagateCompletion();
4980 }
4981 }
4982 }
4983
4984 @SuppressWarnings("serial")
4985 static final class ForEachEntryTask<K,V>
4986 extends BulkTask<K,V,Void> {
4987 final Consumer<? super Entry<K,V>> action;
4988 ForEachEntryTask
4989 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4990 Consumer<? super Entry<K,V>> action) {
4991 super(p, b, i, f, t);
4992 this.action = action;
4993 }
4994 public final void compute() {
4995 final Consumer<? super Entry<K,V>> action;
4996 if ((action = this.action) != null) {
4997 for (int i = baseIndex, f, h; batch > 0 &&
4998 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4999 addToPendingCount(1);
5000 new ForEachEntryTask<K,V>
5001 (this, batch >>>= 1, baseLimit = h, f, tab,
5002 action).fork();
5003 }
5004 for (Node<K,V> p; (p = advance()) != null; )
5005 action.accept(p);
5006 propagateCompletion();
5007 }
5008 }
5009 }
5010
5011 @SuppressWarnings("serial")
5012 static final class ForEachMappingTask<K,V>
5013 extends BulkTask<K,V,Void> {
5014 final BiConsumer<? super K, ? super V> action;
5015 ForEachMappingTask
5016 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5017 BiConsumer<? super K,? super V> action) {
5018 super(p, b, i, f, t);
5019 this.action = action;
5020 }
5021 public final void compute() {
5022 final BiConsumer<? super K, ? super V> action;
5023 if ((action = this.action) != null) {
5024 for (int i = baseIndex, f, h; batch > 0 &&
5025 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5026 addToPendingCount(1);
5027 new ForEachMappingTask<K,V>
5028 (this, batch >>>= 1, baseLimit = h, f, tab,
5029 action).fork();
5030 }
5031 for (Node<K,V> p; (p = advance()) != null; )
5032 action.accept(p.key, p.val);
5033 propagateCompletion();
5034 }
5035 }
5036 }
5037
5038 @SuppressWarnings("serial")
5039 static final class ForEachTransformedKeyTask<K,V,U>
5040 extends BulkTask<K,V,Void> {
5041 final Function<? super K, ? extends U> transformer;
5042 final Consumer<? super U> action;
5043 ForEachTransformedKeyTask
5044 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5045 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5046 super(p, b, i, f, t);
5047 this.transformer = transformer; this.action = action;
5048 }
5049 public final void compute() {
5050 final Function<? super K, ? extends U> transformer;
5051 final Consumer<? super U> action;
5052 if ((transformer = this.transformer) != null &&
5053 (action = this.action) != null) {
5054 for (int i = baseIndex, f, h; batch > 0 &&
5055 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5056 addToPendingCount(1);
5057 new ForEachTransformedKeyTask<K,V,U>
5058 (this, batch >>>= 1, baseLimit = h, f, tab,
5059 transformer, action).fork();
5060 }
5061 for (Node<K,V> p; (p = advance()) != null; ) {
5062 U u;
5063 if ((u = transformer.apply(p.key)) != null)
5064 action.accept(u);
5065 }
5066 propagateCompletion();
5067 }
5068 }
5069 }
5070
5071 @SuppressWarnings("serial")
5072 static final class ForEachTransformedValueTask<K,V,U>
5073 extends BulkTask<K,V,Void> {
5074 final Function<? super V, ? extends U> transformer;
5075 final Consumer<? super U> action;
5076 ForEachTransformedValueTask
5077 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5078 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5079 super(p, b, i, f, t);
5080 this.transformer = transformer; this.action = action;
5081 }
5082 public final void compute() {
5083 final Function<? super V, ? extends U> transformer;
5084 final Consumer<? super U> action;
5085 if ((transformer = this.transformer) != null &&
5086 (action = this.action) != null) {
5087 for (int i = baseIndex, f, h; batch > 0 &&
5088 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5089 addToPendingCount(1);
5090 new ForEachTransformedValueTask<K,V,U>
5091 (this, batch >>>= 1, baseLimit = h, f, tab,
5092 transformer, action).fork();
5093 }
5094 for (Node<K,V> p; (p = advance()) != null; ) {
5095 U u;
5096 if ((u = transformer.apply(p.val)) != null)
5097 action.accept(u);
5098 }
5099 propagateCompletion();
5100 }
5101 }
5102 }
5103
5104 @SuppressWarnings("serial")
5105 static final class ForEachTransformedEntryTask<K,V,U>
5106 extends BulkTask<K,V,Void> {
5107 final Function<Map.Entry<K,V>, ? extends U> transformer;
5108 final Consumer<? super U> action;
5109 ForEachTransformedEntryTask
5110 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5111 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5112 super(p, b, i, f, t);
5113 this.transformer = transformer; this.action = action;
5114 }
5115 public final void compute() {
5116 final Function<Map.Entry<K,V>, ? extends U> transformer;
5117 final Consumer<? super U> action;
5118 if ((transformer = this.transformer) != null &&
5119 (action = this.action) != null) {
5120 for (int i = baseIndex, f, h; batch > 0 &&
5121 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5122 addToPendingCount(1);
5123 new ForEachTransformedEntryTask<K,V,U>
5124 (this, batch >>>= 1, baseLimit = h, f, tab,
5125 transformer, action).fork();
5126 }
5127 for (Node<K,V> p; (p = advance()) != null; ) {
5128 U u;
5129 if ((u = transformer.apply(p)) != null)
5130 action.accept(u);
5131 }
5132 propagateCompletion();
5133 }
5134 }
5135 }
5136
5137 @SuppressWarnings("serial")
5138 static final class ForEachTransformedMappingTask<K,V,U>
5139 extends BulkTask<K,V,Void> {
5140 final BiFunction<? super K, ? super V, ? extends U> transformer;
5141 final Consumer<? super U> action;
5142 ForEachTransformedMappingTask
5143 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5144 BiFunction<? super K, ? super V, ? extends U> transformer,
5145 Consumer<? super U> action) {
5146 super(p, b, i, f, t);
5147 this.transformer = transformer; this.action = action;
5148 }
5149 public final void compute() {
5150 final BiFunction<? super K, ? super V, ? extends U> transformer;
5151 final Consumer<? super U> action;
5152 if ((transformer = this.transformer) != null &&
5153 (action = this.action) != null) {
5154 for (int i = baseIndex, f, h; batch > 0 &&
5155 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5156 addToPendingCount(1);
5157 new ForEachTransformedMappingTask<K,V,U>
5158 (this, batch >>>= 1, baseLimit = h, f, tab,
5159 transformer, action).fork();
5160 }
5161 for (Node<K,V> p; (p = advance()) != null; ) {
5162 U u;
5163 if ((u = transformer.apply(p.key, p.val)) != null)
5164 action.accept(u);
5165 }
5166 propagateCompletion();
5167 }
5168 }
5169 }
5170
5171 @SuppressWarnings("serial")
5172 static final class SearchKeysTask<K,V,U>
5173 extends BulkTask<K,V,U> {
5174 final Function<? super K, ? extends U> searchFunction;
5175 final AtomicReference<U> result;
5176 SearchKeysTask
5177 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5178 Function<? super K, ? extends U> searchFunction,
5179 AtomicReference<U> result) {
5180 super(p, b, i, f, t);
5181 this.searchFunction = searchFunction; this.result = result;
5182 }
5183 public final U getRawResult() { return result.get(); }
5184 public final void compute() {
5185 final Function<? super K, ? extends U> searchFunction;
5186 final AtomicReference<U> result;
5187 if ((searchFunction = this.searchFunction) != null &&
5188 (result = this.result) != null) {
5189 for (int i = baseIndex, f, h; batch > 0 &&
5190 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5191 if (result.get() != null)
5192 return;
5193 addToPendingCount(1);
5194 new SearchKeysTask<K,V,U>
5195 (this, batch >>>= 1, baseLimit = h, f, tab,
5196 searchFunction, result).fork();
5197 }
5198 while (result.get() == null) {
5199 U u;
5200 Node<K,V> p;
5201 if ((p = advance()) == null) {
5202 propagateCompletion();
5203 break;
5204 }
5205 if ((u = searchFunction.apply(p.key)) != null) {
5206 if (result.compareAndSet(null, u))
5207 quietlyCompleteRoot();
5208 break;
5209 }
5210 }
5211 }
5212 }
5213 }
5214
5215 @SuppressWarnings("serial")
5216 static final class SearchValuesTask<K,V,U>
5217 extends BulkTask<K,V,U> {
5218 final Function<? super V, ? extends U> searchFunction;
5219 final AtomicReference<U> result;
5220 SearchValuesTask
5221 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5222 Function<? super V, ? extends U> searchFunction,
5223 AtomicReference<U> result) {
5224 super(p, b, i, f, t);
5225 this.searchFunction = searchFunction; this.result = result;
5226 }
5227 public final U getRawResult() { return result.get(); }
5228 public final void compute() {
5229 final Function<? super V, ? extends U> searchFunction;
5230 final AtomicReference<U> result;
5231 if ((searchFunction = this.searchFunction) != null &&
5232 (result = this.result) != null) {
5233 for (int i = baseIndex, f, h; batch > 0 &&
5234 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5235 if (result.get() != null)
5236 return;
5237 addToPendingCount(1);
5238 new SearchValuesTask<K,V,U>
5239 (this, batch >>>= 1, baseLimit = h, f, tab,
5240 searchFunction, result).fork();
5241 }
5242 while (result.get() == null) {
5243 U u;
5244 Node<K,V> p;
5245 if ((p = advance()) == null) {
5246 propagateCompletion();
5247 break;
5248 }
5249 if ((u = searchFunction.apply(p.val)) != null) {
5250 if (result.compareAndSet(null, u))
5251 quietlyCompleteRoot();
5252 break;
5253 }
5254 }
5255 }
5256 }
5257 }
5258
5259 @SuppressWarnings("serial")
5260 static final class SearchEntriesTask<K,V,U>
5261 extends BulkTask<K,V,U> {
5262 final Function<Entry<K,V>, ? extends U> searchFunction;
5263 final AtomicReference<U> result;
5264 SearchEntriesTask
5265 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5266 Function<Entry<K,V>, ? extends U> searchFunction,
5267 AtomicReference<U> result) {
5268 super(p, b, i, f, t);
5269 this.searchFunction = searchFunction; this.result = result;
5270 }
5271 public final U getRawResult() { return result.get(); }
5272 public final void compute() {
5273 final Function<Entry<K,V>, ? extends U> searchFunction;
5274 final AtomicReference<U> result;
5275 if ((searchFunction = this.searchFunction) != null &&
5276 (result = this.result) != null) {
5277 for (int i = baseIndex, f, h; batch > 0 &&
5278 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5279 if (result.get() != null)
5280 return;
5281 addToPendingCount(1);
5282 new SearchEntriesTask<K,V,U>
5283 (this, batch >>>= 1, baseLimit = h, f, tab,
5284 searchFunction, result).fork();
5285 }
5286 while (result.get() == null) {
5287 U u;
5288 Node<K,V> p;
5289 if ((p = advance()) == null) {
5290 propagateCompletion();
5291 break;
5292 }
5293 if ((u = searchFunction.apply(p)) != null) {
5294 if (result.compareAndSet(null, u))
5295 quietlyCompleteRoot();
5296 return;
5297 }
5298 }
5299 }
5300 }
5301 }
5302
5303 @SuppressWarnings("serial")
5304 static final class SearchMappingsTask<K,V,U>
5305 extends BulkTask<K,V,U> {
5306 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5307 final AtomicReference<U> result;
5308 SearchMappingsTask
5309 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5310 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5311 AtomicReference<U> result) {
5312 super(p, b, i, f, t);
5313 this.searchFunction = searchFunction; this.result = result;
5314 }
5315 public final U getRawResult() { return result.get(); }
5316 public final void compute() {
5317 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5318 final AtomicReference<U> result;
5319 if ((searchFunction = this.searchFunction) != null &&
5320 (result = this.result) != null) {
5321 for (int i = baseIndex, f, h; batch > 0 &&
5322 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5323 if (result.get() != null)
5324 return;
5325 addToPendingCount(1);
5326 new SearchMappingsTask<K,V,U>
5327 (this, batch >>>= 1, baseLimit = h, f, tab,
5328 searchFunction, result).fork();
5329 }
5330 while (result.get() == null) {
5331 U u;
5332 Node<K,V> p;
5333 if ((p = advance()) == null) {
5334 propagateCompletion();
5335 break;
5336 }
5337 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5338 if (result.compareAndSet(null, u))
5339 quietlyCompleteRoot();
5340 break;
5341 }
5342 }
5343 }
5344 }
5345 }
5346
5347 @SuppressWarnings("serial")
5348 static final class ReduceKeysTask<K,V>
5349 extends BulkTask<K,V,K> {
5350 final BiFunction<? super K, ? super K, ? extends K> reducer;
5351 K result;
5352 ReduceKeysTask<K,V> rights, nextRight;
5353 ReduceKeysTask
5354 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5355 ReduceKeysTask<K,V> nextRight,
5356 BiFunction<? super K, ? super K, ? extends K> reducer) {
5357 super(p, b, i, f, t); this.nextRight = nextRight;
5358 this.reducer = reducer;
5359 }
5360 public final K getRawResult() { return result; }
5361 public final void compute() {
5362 final BiFunction<? super K, ? super K, ? extends K> reducer;
5363 if ((reducer = this.reducer) != null) {
5364 for (int i = baseIndex, f, h; batch > 0 &&
5365 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5366 addToPendingCount(1);
5367 (rights = new ReduceKeysTask<K,V>
5368 (this, batch >>>= 1, baseLimit = h, f, tab,
5369 rights, reducer)).fork();
5370 }
5371 K r = null;
5372 for (Node<K,V> p; (p = advance()) != null; ) {
5373 K u = p.key;
5374 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5375 }
5376 result = r;
5377 CountedCompleter<?> c;
5378 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5379 @SuppressWarnings("unchecked")
5380 ReduceKeysTask<K,V>
5381 t = (ReduceKeysTask<K,V>)c,
5382 s = t.rights;
5383 while (s != null) {
5384 K tr, sr;
5385 if ((sr = s.result) != null)
5386 t.result = (((tr = t.result) == null) ? sr :
5387 reducer.apply(tr, sr));
5388 s = t.rights = s.nextRight;
5389 }
5390 }
5391 }
5392 }
5393 }
5394
5395 @SuppressWarnings("serial")
5396 static final class ReduceValuesTask<K,V>
5397 extends BulkTask<K,V,V> {
5398 final BiFunction<? super V, ? super V, ? extends V> reducer;
5399 V result;
5400 ReduceValuesTask<K,V> rights, nextRight;
5401 ReduceValuesTask
5402 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5403 ReduceValuesTask<K,V> nextRight,
5404 BiFunction<? super V, ? super V, ? extends V> reducer) {
5405 super(p, b, i, f, t); this.nextRight = nextRight;
5406 this.reducer = reducer;
5407 }
5408 public final V getRawResult() { return result; }
5409 public final void compute() {
5410 final BiFunction<? super V, ? super V, ? extends V> reducer;
5411 if ((reducer = this.reducer) != null) {
5412 for (int i = baseIndex, f, h; batch > 0 &&
5413 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5414 addToPendingCount(1);
5415 (rights = new ReduceValuesTask<K,V>
5416 (this, batch >>>= 1, baseLimit = h, f, tab,
5417 rights, reducer)).fork();
5418 }
5419 V r = null;
5420 for (Node<K,V> p; (p = advance()) != null; ) {
5421 V v = p.val;
5422 r = (r == null) ? v : reducer.apply(r, v);
5423 }
5424 result = r;
5425 CountedCompleter<?> c;
5426 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5427 @SuppressWarnings("unchecked")
5428 ReduceValuesTask<K,V>
5429 t = (ReduceValuesTask<K,V>)c,
5430 s = t.rights;
5431 while (s != null) {
5432 V tr, sr;
5433 if ((sr = s.result) != null)
5434 t.result = (((tr = t.result) == null) ? sr :
5435 reducer.apply(tr, sr));
5436 s = t.rights = s.nextRight;
5437 }
5438 }
5439 }
5440 }
5441 }
5442
5443 @SuppressWarnings("serial")
5444 static final class ReduceEntriesTask<K,V>
5445 extends BulkTask<K,V,Map.Entry<K,V>> {
5446 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5447 Map.Entry<K,V> result;
5448 ReduceEntriesTask<K,V> rights, nextRight;
5449 ReduceEntriesTask
5450 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5451 ReduceEntriesTask<K,V> nextRight,
5452 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5453 super(p, b, i, f, t); this.nextRight = nextRight;
5454 this.reducer = reducer;
5455 }
5456 public final Map.Entry<K,V> getRawResult() { return result; }
5457 public final void compute() {
5458 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5459 if ((reducer = this.reducer) != null) {
5460 for (int i = baseIndex, f, h; batch > 0 &&
5461 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5462 addToPendingCount(1);
5463 (rights = new ReduceEntriesTask<K,V>
5464 (this, batch >>>= 1, baseLimit = h, f, tab,
5465 rights, reducer)).fork();
5466 }
5467 Map.Entry<K,V> r = null;
5468 for (Node<K,V> p; (p = advance()) != null; )
5469 r = (r == null) ? p : reducer.apply(r, p);
5470 result = r;
5471 CountedCompleter<?> c;
5472 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5473 @SuppressWarnings("unchecked")
5474 ReduceEntriesTask<K,V>
5475 t = (ReduceEntriesTask<K,V>)c,
5476 s = t.rights;
5477 while (s != null) {
5478 Map.Entry<K,V> tr, sr;
5479 if ((sr = s.result) != null)
5480 t.result = (((tr = t.result) == null) ? sr :
5481 reducer.apply(tr, sr));
5482 s = t.rights = s.nextRight;
5483 }
5484 }
5485 }
5486 }
5487 }
5488
5489 @SuppressWarnings("serial")
5490 static final class MapReduceKeysTask<K,V,U>
5491 extends BulkTask<K,V,U> {
5492 final Function<? super K, ? extends U> transformer;
5493 final BiFunction<? super U, ? super U, ? extends U> reducer;
5494 U result;
5495 MapReduceKeysTask<K,V,U> rights, nextRight;
5496 MapReduceKeysTask
5497 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5498 MapReduceKeysTask<K,V,U> nextRight,
5499 Function<? super K, ? extends U> transformer,
5500 BiFunction<? super U, ? super U, ? extends U> reducer) {
5501 super(p, b, i, f, t); this.nextRight = nextRight;
5502 this.transformer = transformer;
5503 this.reducer = reducer;
5504 }
5505 public final U getRawResult() { return result; }
5506 public final void compute() {
5507 final Function<? super K, ? extends U> transformer;
5508 final BiFunction<? super U, ? super U, ? extends U> reducer;
5509 if ((transformer = this.transformer) != null &&
5510 (reducer = this.reducer) != null) {
5511 for (int i = baseIndex, f, h; batch > 0 &&
5512 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5513 addToPendingCount(1);
5514 (rights = new MapReduceKeysTask<K,V,U>
5515 (this, batch >>>= 1, baseLimit = h, f, tab,
5516 rights, transformer, reducer)).fork();
5517 }
5518 U r = null;
5519 for (Node<K,V> p; (p = advance()) != null; ) {
5520 U u;
5521 if ((u = transformer.apply(p.key)) != null)
5522 r = (r == null) ? u : reducer.apply(r, u);
5523 }
5524 result = r;
5525 CountedCompleter<?> c;
5526 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5527 @SuppressWarnings("unchecked")
5528 MapReduceKeysTask<K,V,U>
5529 t = (MapReduceKeysTask<K,V,U>)c,
5530 s = t.rights;
5531 while (s != null) {
5532 U tr, sr;
5533 if ((sr = s.result) != null)
5534 t.result = (((tr = t.result) == null) ? sr :
5535 reducer.apply(tr, sr));
5536 s = t.rights = s.nextRight;
5537 }
5538 }
5539 }
5540 }
5541 }
5542
5543 @SuppressWarnings("serial")
5544 static final class MapReduceValuesTask<K,V,U>
5545 extends BulkTask<K,V,U> {
5546 final Function<? super V, ? extends U> transformer;
5547 final BiFunction<? super U, ? super U, ? extends U> reducer;
5548 U result;
5549 MapReduceValuesTask<K,V,U> rights, nextRight;
5550 MapReduceValuesTask
5551 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5552 MapReduceValuesTask<K,V,U> nextRight,
5553 Function<? super V, ? extends U> transformer,
5554 BiFunction<? super U, ? super U, ? extends U> reducer) {
5555 super(p, b, i, f, t); this.nextRight = nextRight;
5556 this.transformer = transformer;
5557 this.reducer = reducer;
5558 }
5559 public final U getRawResult() { return result; }
5560 public final void compute() {
5561 final Function<? super V, ? extends U> transformer;
5562 final BiFunction<? super U, ? super U, ? extends U> reducer;
5563 if ((transformer = this.transformer) != null &&
5564 (reducer = this.reducer) != null) {
5565 for (int i = baseIndex, f, h; batch > 0 &&
5566 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5567 addToPendingCount(1);
5568 (rights = new MapReduceValuesTask<K,V,U>
5569 (this, batch >>>= 1, baseLimit = h, f, tab,
5570 rights, transformer, reducer)).fork();
5571 }
5572 U r = null;
5573 for (Node<K,V> p; (p = advance()) != null; ) {
5574 U u;
5575 if ((u = transformer.apply(p.val)) != null)
5576 r = (r == null) ? u : reducer.apply(r, u);
5577 }
5578 result = r;
5579 CountedCompleter<?> c;
5580 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5581 @SuppressWarnings("unchecked")
5582 MapReduceValuesTask<K,V,U>
5583 t = (MapReduceValuesTask<K,V,U>)c,
5584 s = t.rights;
5585 while (s != null) {
5586 U tr, sr;
5587 if ((sr = s.result) != null)
5588 t.result = (((tr = t.result) == null) ? sr :
5589 reducer.apply(tr, sr));
5590 s = t.rights = s.nextRight;
5591 }
5592 }
5593 }
5594 }
5595 }
5596
5597 @SuppressWarnings("serial")
5598 static final class MapReduceEntriesTask<K,V,U>
5599 extends BulkTask<K,V,U> {
5600 final Function<Map.Entry<K,V>, ? extends U> transformer;
5601 final BiFunction<? super U, ? super U, ? extends U> reducer;
5602 U result;
5603 MapReduceEntriesTask<K,V,U> rights, nextRight;
5604 MapReduceEntriesTask
5605 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5606 MapReduceEntriesTask<K,V,U> nextRight,
5607 Function<Map.Entry<K,V>, ? extends U> transformer,
5608 BiFunction<? super U, ? super U, ? extends U> reducer) {
5609 super(p, b, i, f, t); this.nextRight = nextRight;
5610 this.transformer = transformer;
5611 this.reducer = reducer;
5612 }
5613 public final U getRawResult() { return result; }
5614 public final void compute() {
5615 final Function<Map.Entry<K,V>, ? extends U> transformer;
5616 final BiFunction<? super U, ? super U, ? extends U> reducer;
5617 if ((transformer = this.transformer) != null &&
5618 (reducer = this.reducer) != null) {
5619 for (int i = baseIndex, f, h; batch > 0 &&
5620 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5621 addToPendingCount(1);
5622 (rights = new MapReduceEntriesTask<K,V,U>
5623 (this, batch >>>= 1, baseLimit = h, f, tab,
5624 rights, transformer, reducer)).fork();
5625 }
5626 U r = null;
5627 for (Node<K,V> p; (p = advance()) != null; ) {
5628 U u;
5629 if ((u = transformer.apply(p)) != null)
5630 r = (r == null) ? u : reducer.apply(r, u);
5631 }
5632 result = r;
5633 CountedCompleter<?> c;
5634 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5635 @SuppressWarnings("unchecked")
5636 MapReduceEntriesTask<K,V,U>
5637 t = (MapReduceEntriesTask<K,V,U>)c,
5638 s = t.rights;
5639 while (s != null) {
5640 U tr, sr;
5641 if ((sr = s.result) != null)
5642 t.result = (((tr = t.result) == null) ? sr :
5643 reducer.apply(tr, sr));
5644 s = t.rights = s.nextRight;
5645 }
5646 }
5647 }
5648 }
5649 }
5650
5651 @SuppressWarnings("serial")
5652 static final class MapReduceMappingsTask<K,V,U>
5653 extends BulkTask<K,V,U> {
5654 final BiFunction<? super K, ? super V, ? extends U> transformer;
5655 final BiFunction<? super U, ? super U, ? extends U> reducer;
5656 U result;
5657 MapReduceMappingsTask<K,V,U> rights, nextRight;
5658 MapReduceMappingsTask
5659 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5660 MapReduceMappingsTask<K,V,U> nextRight,
5661 BiFunction<? super K, ? super V, ? extends U> transformer,
5662 BiFunction<? super U, ? super U, ? extends U> reducer) {
5663 super(p, b, i, f, t); this.nextRight = nextRight;
5664 this.transformer = transformer;
5665 this.reducer = reducer;
5666 }
5667 public final U getRawResult() { return result; }
5668 public final void compute() {
5669 final BiFunction<? super K, ? super V, ? extends U> transformer;
5670 final BiFunction<? super U, ? super U, ? extends U> reducer;
5671 if ((transformer = this.transformer) != null &&
5672 (reducer = this.reducer) != null) {
5673 for (int i = baseIndex, f, h; batch > 0 &&
5674 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5675 addToPendingCount(1);
5676 (rights = new MapReduceMappingsTask<K,V,U>
5677 (this, batch >>>= 1, baseLimit = h, f, tab,
5678 rights, transformer, reducer)).fork();
5679 }
5680 U r = null;
5681 for (Node<K,V> p; (p = advance()) != null; ) {
5682 U u;
5683 if ((u = transformer.apply(p.key, p.val)) != null)
5684 r = (r == null) ? u : reducer.apply(r, u);
5685 }
5686 result = r;
5687 CountedCompleter<?> c;
5688 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5689 @SuppressWarnings("unchecked")
5690 MapReduceMappingsTask<K,V,U>
5691 t = (MapReduceMappingsTask<K,V,U>)c,
5692 s = t.rights;
5693 while (s != null) {
5694 U tr, sr;
5695 if ((sr = s.result) != null)
5696 t.result = (((tr = t.result) == null) ? sr :
5697 reducer.apply(tr, sr));
5698 s = t.rights = s.nextRight;
5699 }
5700 }
5701 }
5702 }
5703 }
5704
5705 @SuppressWarnings("serial")
5706 static final class MapReduceKeysToDoubleTask<K,V>
5707 extends BulkTask<K,V,Double> {
5708 final ToDoubleFunction<? super K> transformer;
5709 final DoubleBinaryOperator reducer;
5710 final double basis;
5711 double result;
5712 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5713 MapReduceKeysToDoubleTask
5714 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5715 MapReduceKeysToDoubleTask<K,V> nextRight,
5716 ToDoubleFunction<? super K> transformer,
5717 double basis,
5718 DoubleBinaryOperator reducer) {
5719 super(p, b, i, f, t); this.nextRight = nextRight;
5720 this.transformer = transformer;
5721 this.basis = basis; this.reducer = reducer;
5722 }
5723 public final Double getRawResult() { return result; }
5724 public final void compute() {
5725 final ToDoubleFunction<? super K> transformer;
5726 final DoubleBinaryOperator reducer;
5727 if ((transformer = this.transformer) != null &&
5728 (reducer = this.reducer) != null) {
5729 double r = this.basis;
5730 for (int i = baseIndex, f, h; batch > 0 &&
5731 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5732 addToPendingCount(1);
5733 (rights = new MapReduceKeysToDoubleTask<K,V>
5734 (this, batch >>>= 1, baseLimit = h, f, tab,
5735 rights, transformer, r, reducer)).fork();
5736 }
5737 for (Node<K,V> p; (p = advance()) != null; )
5738 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5739 result = r;
5740 CountedCompleter<?> c;
5741 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5742 @SuppressWarnings("unchecked")
5743 MapReduceKeysToDoubleTask<K,V>
5744 t = (MapReduceKeysToDoubleTask<K,V>)c,
5745 s = t.rights;
5746 while (s != null) {
5747 t.result = reducer.applyAsDouble(t.result, s.result);
5748 s = t.rights = s.nextRight;
5749 }
5750 }
5751 }
5752 }
5753 }
5754
5755 @SuppressWarnings("serial")
5756 static final class MapReduceValuesToDoubleTask<K,V>
5757 extends BulkTask<K,V,Double> {
5758 final ToDoubleFunction<? super V> transformer;
5759 final DoubleBinaryOperator reducer;
5760 final double basis;
5761 double result;
5762 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5763 MapReduceValuesToDoubleTask
5764 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5765 MapReduceValuesToDoubleTask<K,V> nextRight,
5766 ToDoubleFunction<? super V> transformer,
5767 double basis,
5768 DoubleBinaryOperator reducer) {
5769 super(p, b, i, f, t); this.nextRight = nextRight;
5770 this.transformer = transformer;
5771 this.basis = basis; this.reducer = reducer;
5772 }
5773 public final Double getRawResult() { return result; }
5774 public final void compute() {
5775 final ToDoubleFunction<? super V> transformer;
5776 final DoubleBinaryOperator reducer;
5777 if ((transformer = this.transformer) != null &&
5778 (reducer = this.reducer) != null) {
5779 double r = this.basis;
5780 for (int i = baseIndex, f, h; batch > 0 &&
5781 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5782 addToPendingCount(1);
5783 (rights = new MapReduceValuesToDoubleTask<K,V>
5784 (this, batch >>>= 1, baseLimit = h, f, tab,
5785 rights, transformer, r, reducer)).fork();
5786 }
5787 for (Node<K,V> p; (p = advance()) != null; )
5788 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5789 result = r;
5790 CountedCompleter<?> c;
5791 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5792 @SuppressWarnings("unchecked")
5793 MapReduceValuesToDoubleTask<K,V>
5794 t = (MapReduceValuesToDoubleTask<K,V>)c,
5795 s = t.rights;
5796 while (s != null) {
5797 t.result = reducer.applyAsDouble(t.result, s.result);
5798 s = t.rights = s.nextRight;
5799 }
5800 }
5801 }
5802 }
5803 }
5804
5805 @SuppressWarnings("serial")
5806 static final class MapReduceEntriesToDoubleTask<K,V>
5807 extends BulkTask<K,V,Double> {
5808 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5809 final DoubleBinaryOperator reducer;
5810 final double basis;
5811 double result;
5812 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5813 MapReduceEntriesToDoubleTask
5814 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5815 MapReduceEntriesToDoubleTask<K,V> nextRight,
5816 ToDoubleFunction<Map.Entry<K,V>> transformer,
5817 double basis,
5818 DoubleBinaryOperator reducer) {
5819 super(p, b, i, f, t); this.nextRight = nextRight;
5820 this.transformer = transformer;
5821 this.basis = basis; this.reducer = reducer;
5822 }
5823 public final Double getRawResult() { return result; }
5824 public final void compute() {
5825 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5826 final DoubleBinaryOperator reducer;
5827 if ((transformer = this.transformer) != null &&
5828 (reducer = this.reducer) != null) {
5829 double r = this.basis;
5830 for (int i = baseIndex, f, h; batch > 0 &&
5831 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5832 addToPendingCount(1);
5833 (rights = new MapReduceEntriesToDoubleTask<K,V>
5834 (this, batch >>>= 1, baseLimit = h, f, tab,
5835 rights, transformer, r, reducer)).fork();
5836 }
5837 for (Node<K,V> p; (p = advance()) != null; )
5838 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5839 result = r;
5840 CountedCompleter<?> c;
5841 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5842 @SuppressWarnings("unchecked")
5843 MapReduceEntriesToDoubleTask<K,V>
5844 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5845 s = t.rights;
5846 while (s != null) {
5847 t.result = reducer.applyAsDouble(t.result, s.result);
5848 s = t.rights = s.nextRight;
5849 }
5850 }
5851 }
5852 }
5853 }
5854
5855 @SuppressWarnings("serial")
5856 static final class MapReduceMappingsToDoubleTask<K,V>
5857 extends BulkTask<K,V,Double> {
5858 final ToDoubleBiFunction<? super K, ? super V> transformer;
5859 final DoubleBinaryOperator reducer;
5860 final double basis;
5861 double result;
5862 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5863 MapReduceMappingsToDoubleTask
5864 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5865 MapReduceMappingsToDoubleTask<K,V> nextRight,
5866 ToDoubleBiFunction<? super K, ? super V> transformer,
5867 double basis,
5868 DoubleBinaryOperator reducer) {
5869 super(p, b, i, f, t); this.nextRight = nextRight;
5870 this.transformer = transformer;
5871 this.basis = basis; this.reducer = reducer;
5872 }
5873 public final Double getRawResult() { return result; }
5874 public final void compute() {
5875 final ToDoubleBiFunction<? super K, ? super V> transformer;
5876 final DoubleBinaryOperator reducer;
5877 if ((transformer = this.transformer) != null &&
5878 (reducer = this.reducer) != null) {
5879 double r = this.basis;
5880 for (int i = baseIndex, f, h; batch > 0 &&
5881 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5882 addToPendingCount(1);
5883 (rights = new MapReduceMappingsToDoubleTask<K,V>
5884 (this, batch >>>= 1, baseLimit = h, f, tab,
5885 rights, transformer, r, reducer)).fork();
5886 }
5887 for (Node<K,V> p; (p = advance()) != null; )
5888 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5889 result = r;
5890 CountedCompleter<?> c;
5891 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5892 @SuppressWarnings("unchecked")
5893 MapReduceMappingsToDoubleTask<K,V>
5894 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5895 s = t.rights;
5896 while (s != null) {
5897 t.result = reducer.applyAsDouble(t.result, s.result);
5898 s = t.rights = s.nextRight;
5899 }
5900 }
5901 }
5902 }
5903 }
5904
5905 @SuppressWarnings("serial")
5906 static final class MapReduceKeysToLongTask<K,V>
5907 extends BulkTask<K,V,Long> {
5908 final ToLongFunction<? super K> transformer;
5909 final LongBinaryOperator reducer;
5910 final long basis;
5911 long result;
5912 MapReduceKeysToLongTask<K,V> rights, nextRight;
5913 MapReduceKeysToLongTask
5914 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5915 MapReduceKeysToLongTask<K,V> nextRight,
5916 ToLongFunction<? super K> transformer,
5917 long basis,
5918 LongBinaryOperator reducer) {
5919 super(p, b, i, f, t); this.nextRight = nextRight;
5920 this.transformer = transformer;
5921 this.basis = basis; this.reducer = reducer;
5922 }
5923 public final Long getRawResult() { return result; }
5924 public final void compute() {
5925 final ToLongFunction<? super K> transformer;
5926 final LongBinaryOperator reducer;
5927 if ((transformer = this.transformer) != null &&
5928 (reducer = this.reducer) != null) {
5929 long r = this.basis;
5930 for (int i = baseIndex, f, h; batch > 0 &&
5931 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5932 addToPendingCount(1);
5933 (rights = new MapReduceKeysToLongTask<K,V>
5934 (this, batch >>>= 1, baseLimit = h, f, tab,
5935 rights, transformer, r, reducer)).fork();
5936 }
5937 for (Node<K,V> p; (p = advance()) != null; )
5938 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5939 result = r;
5940 CountedCompleter<?> c;
5941 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5942 @SuppressWarnings("unchecked")
5943 MapReduceKeysToLongTask<K,V>
5944 t = (MapReduceKeysToLongTask<K,V>)c,
5945 s = t.rights;
5946 while (s != null) {
5947 t.result = reducer.applyAsLong(t.result, s.result);
5948 s = t.rights = s.nextRight;
5949 }
5950 }
5951 }
5952 }
5953 }
5954
5955 @SuppressWarnings("serial")
5956 static final class MapReduceValuesToLongTask<K,V>
5957 extends BulkTask<K,V,Long> {
5958 final ToLongFunction<? super V> transformer;
5959 final LongBinaryOperator reducer;
5960 final long basis;
5961 long result;
5962 MapReduceValuesToLongTask<K,V> rights, nextRight;
5963 MapReduceValuesToLongTask
5964 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5965 MapReduceValuesToLongTask<K,V> nextRight,
5966 ToLongFunction<? super V> transformer,
5967 long basis,
5968 LongBinaryOperator reducer) {
5969 super(p, b, i, f, t); this.nextRight = nextRight;
5970 this.transformer = transformer;
5971 this.basis = basis; this.reducer = reducer;
5972 }
5973 public final Long getRawResult() { return result; }
5974 public final void compute() {
5975 final ToLongFunction<? super V> transformer;
5976 final LongBinaryOperator reducer;
5977 if ((transformer = this.transformer) != null &&
5978 (reducer = this.reducer) != null) {
5979 long r = this.basis;
5980 for (int i = baseIndex, f, h; batch > 0 &&
5981 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5982 addToPendingCount(1);
5983 (rights = new MapReduceValuesToLongTask<K,V>
5984 (this, batch >>>= 1, baseLimit = h, f, tab,
5985 rights, transformer, r, reducer)).fork();
5986 }
5987 for (Node<K,V> p; (p = advance()) != null; )
5988 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5989 result = r;
5990 CountedCompleter<?> c;
5991 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5992 @SuppressWarnings("unchecked")
5993 MapReduceValuesToLongTask<K,V>
5994 t = (MapReduceValuesToLongTask<K,V>)c,
5995 s = t.rights;
5996 while (s != null) {
5997 t.result = reducer.applyAsLong(t.result, s.result);
5998 s = t.rights = s.nextRight;
5999 }
6000 }
6001 }
6002 }
6003 }
6004
6005 @SuppressWarnings("serial")
6006 static final class MapReduceEntriesToLongTask<K,V>
6007 extends BulkTask<K,V,Long> {
6008 final ToLongFunction<Map.Entry<K,V>> transformer;
6009 final LongBinaryOperator reducer;
6010 final long basis;
6011 long result;
6012 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6013 MapReduceEntriesToLongTask
6014 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6015 MapReduceEntriesToLongTask<K,V> nextRight,
6016 ToLongFunction<Map.Entry<K,V>> transformer,
6017 long basis,
6018 LongBinaryOperator reducer) {
6019 super(p, b, i, f, t); this.nextRight = nextRight;
6020 this.transformer = transformer;
6021 this.basis = basis; this.reducer = reducer;
6022 }
6023 public final Long getRawResult() { return result; }
6024 public final void compute() {
6025 final ToLongFunction<Map.Entry<K,V>> transformer;
6026 final LongBinaryOperator reducer;
6027 if ((transformer = this.transformer) != null &&
6028 (reducer = this.reducer) != null) {
6029 long r = this.basis;
6030 for (int i = baseIndex, f, h; batch > 0 &&
6031 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6032 addToPendingCount(1);
6033 (rights = new MapReduceEntriesToLongTask<K,V>
6034 (this, batch >>>= 1, baseLimit = h, f, tab,
6035 rights, transformer, r, reducer)).fork();
6036 }
6037 for (Node<K,V> p; (p = advance()) != null; )
6038 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6039 result = r;
6040 CountedCompleter<?> c;
6041 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6042 @SuppressWarnings("unchecked")
6043 MapReduceEntriesToLongTask<K,V>
6044 t = (MapReduceEntriesToLongTask<K,V>)c,
6045 s = t.rights;
6046 while (s != null) {
6047 t.result = reducer.applyAsLong(t.result, s.result);
6048 s = t.rights = s.nextRight;
6049 }
6050 }
6051 }
6052 }
6053 }
6054
6055 @SuppressWarnings("serial")
6056 static final class MapReduceMappingsToLongTask<K,V>
6057 extends BulkTask<K,V,Long> {
6058 final ToLongBiFunction<? super K, ? super V> transformer;
6059 final LongBinaryOperator reducer;
6060 final long basis;
6061 long result;
6062 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6063 MapReduceMappingsToLongTask
6064 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6065 MapReduceMappingsToLongTask<K,V> nextRight,
6066 ToLongBiFunction<? super K, ? super V> transformer,
6067 long basis,
6068 LongBinaryOperator reducer) {
6069 super(p, b, i, f, t); this.nextRight = nextRight;
6070 this.transformer = transformer;
6071 this.basis = basis; this.reducer = reducer;
6072 }
6073 public final Long getRawResult() { return result; }
6074 public final void compute() {
6075 final ToLongBiFunction<? super K, ? super V> transformer;
6076 final LongBinaryOperator reducer;
6077 if ((transformer = this.transformer) != null &&
6078 (reducer = this.reducer) != null) {
6079 long r = this.basis;
6080 for (int i = baseIndex, f, h; batch > 0 &&
6081 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6082 addToPendingCount(1);
6083 (rights = new MapReduceMappingsToLongTask<K,V>
6084 (this, batch >>>= 1, baseLimit = h, f, tab,
6085 rights, transformer, r, reducer)).fork();
6086 }
6087 for (Node<K,V> p; (p = advance()) != null; )
6088 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6089 result = r;
6090 CountedCompleter<?> c;
6091 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6092 @SuppressWarnings("unchecked")
6093 MapReduceMappingsToLongTask<K,V>
6094 t = (MapReduceMappingsToLongTask<K,V>)c,
6095 s = t.rights;
6096 while (s != null) {
6097 t.result = reducer.applyAsLong(t.result, s.result);
6098 s = t.rights = s.nextRight;
6099 }
6100 }
6101 }
6102 }
6103 }
6104
6105 @SuppressWarnings("serial")
6106 static final class MapReduceKeysToIntTask<K,V>
6107 extends BulkTask<K,V,Integer> {
6108 final ToIntFunction<? super K> transformer;
6109 final IntBinaryOperator reducer;
6110 final int basis;
6111 int result;
6112 MapReduceKeysToIntTask<K,V> rights, nextRight;
6113 MapReduceKeysToIntTask
6114 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6115 MapReduceKeysToIntTask<K,V> nextRight,
6116 ToIntFunction<? super K> transformer,
6117 int basis,
6118 IntBinaryOperator reducer) {
6119 super(p, b, i, f, t); this.nextRight = nextRight;
6120 this.transformer = transformer;
6121 this.basis = basis; this.reducer = reducer;
6122 }
6123 public final Integer getRawResult() { return result; }
6124 public final void compute() {
6125 final ToIntFunction<? super K> transformer;
6126 final IntBinaryOperator reducer;
6127 if ((transformer = this.transformer) != null &&
6128 (reducer = this.reducer) != null) {
6129 int r = this.basis;
6130 for (int i = baseIndex, f, h; batch > 0 &&
6131 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6132 addToPendingCount(1);
6133 (rights = new MapReduceKeysToIntTask<K,V>
6134 (this, batch >>>= 1, baseLimit = h, f, tab,
6135 rights, transformer, r, reducer)).fork();
6136 }
6137 for (Node<K,V> p; (p = advance()) != null; )
6138 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6139 result = r;
6140 CountedCompleter<?> c;
6141 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6142 @SuppressWarnings("unchecked")
6143 MapReduceKeysToIntTask<K,V>
6144 t = (MapReduceKeysToIntTask<K,V>)c,
6145 s = t.rights;
6146 while (s != null) {
6147 t.result = reducer.applyAsInt(t.result, s.result);
6148 s = t.rights = s.nextRight;
6149 }
6150 }
6151 }
6152 }
6153 }
6154
6155 @SuppressWarnings("serial")
6156 static final class MapReduceValuesToIntTask<K,V>
6157 extends BulkTask<K,V,Integer> {
6158 final ToIntFunction<? super V> transformer;
6159 final IntBinaryOperator reducer;
6160 final int basis;
6161 int result;
6162 MapReduceValuesToIntTask<K,V> rights, nextRight;
6163 MapReduceValuesToIntTask
6164 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6165 MapReduceValuesToIntTask<K,V> nextRight,
6166 ToIntFunction<? super V> transformer,
6167 int basis,
6168 IntBinaryOperator reducer) {
6169 super(p, b, i, f, t); this.nextRight = nextRight;
6170 this.transformer = transformer;
6171 this.basis = basis; this.reducer = reducer;
6172 }
6173 public final Integer getRawResult() { return result; }
6174 public final void compute() {
6175 final ToIntFunction<? super V> transformer;
6176 final IntBinaryOperator reducer;
6177 if ((transformer = this.transformer) != null &&
6178 (reducer = this.reducer) != null) {
6179 int r = this.basis;
6180 for (int i = baseIndex, f, h; batch > 0 &&
6181 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6182 addToPendingCount(1);
6183 (rights = new MapReduceValuesToIntTask<K,V>
6184 (this, batch >>>= 1, baseLimit = h, f, tab,
6185 rights, transformer, r, reducer)).fork();
6186 }
6187 for (Node<K,V> p; (p = advance()) != null; )
6188 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6189 result = r;
6190 CountedCompleter<?> c;
6191 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6192 @SuppressWarnings("unchecked")
6193 MapReduceValuesToIntTask<K,V>
6194 t = (MapReduceValuesToIntTask<K,V>)c,
6195 s = t.rights;
6196 while (s != null) {
6197 t.result = reducer.applyAsInt(t.result, s.result);
6198 s = t.rights = s.nextRight;
6199 }
6200 }
6201 }
6202 }
6203 }
6204
6205 @SuppressWarnings("serial")
6206 static final class MapReduceEntriesToIntTask<K,V>
6207 extends BulkTask<K,V,Integer> {
6208 final ToIntFunction<Map.Entry<K,V>> transformer;
6209 final IntBinaryOperator reducer;
6210 final int basis;
6211 int result;
6212 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6213 MapReduceEntriesToIntTask
6214 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6215 MapReduceEntriesToIntTask<K,V> nextRight,
6216 ToIntFunction<Map.Entry<K,V>> transformer,
6217 int basis,
6218 IntBinaryOperator reducer) {
6219 super(p, b, i, f, t); this.nextRight = nextRight;
6220 this.transformer = transformer;
6221 this.basis = basis; this.reducer = reducer;
6222 }
6223 public final Integer getRawResult() { return result; }
6224 public final void compute() {
6225 final ToIntFunction<Map.Entry<K,V>> transformer;
6226 final IntBinaryOperator reducer;
6227 if ((transformer = this.transformer) != null &&
6228 (reducer = this.reducer) != null) {
6229 int r = this.basis;
6230 for (int i = baseIndex, f, h; batch > 0 &&
6231 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6232 addToPendingCount(1);
6233 (rights = new MapReduceEntriesToIntTask<K,V>
6234 (this, batch >>>= 1, baseLimit = h, f, tab,
6235 rights, transformer, r, reducer)).fork();
6236 }
6237 for (Node<K,V> p; (p = advance()) != null; )
6238 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6239 result = r;
6240 CountedCompleter<?> c;
6241 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6242 @SuppressWarnings("unchecked")
6243 MapReduceEntriesToIntTask<K,V>
6244 t = (MapReduceEntriesToIntTask<K,V>)c,
6245 s = t.rights;
6246 while (s != null) {
6247 t.result = reducer.applyAsInt(t.result, s.result);
6248 s = t.rights = s.nextRight;
6249 }
6250 }
6251 }
6252 }
6253 }
6254
6255 @SuppressWarnings("serial")
6256 static final class MapReduceMappingsToIntTask<K,V>
6257 extends BulkTask<K,V,Integer> {
6258 final ToIntBiFunction<? super K, ? super V> transformer;
6259 final IntBinaryOperator reducer;
6260 final int basis;
6261 int result;
6262 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6263 MapReduceMappingsToIntTask
6264 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6265 MapReduceMappingsToIntTask<K,V> nextRight,
6266 ToIntBiFunction<? super K, ? super V> transformer,
6267 int basis,
6268 IntBinaryOperator reducer) {
6269 super(p, b, i, f, t); this.nextRight = nextRight;
6270 this.transformer = transformer;
6271 this.basis = basis; this.reducer = reducer;
6272 }
6273 public final Integer getRawResult() { return result; }
6274 public final void compute() {
6275 final ToIntBiFunction<? super K, ? super V> transformer;
6276 final IntBinaryOperator reducer;
6277 if ((transformer = this.transformer) != null &&
6278 (reducer = this.reducer) != null) {
6279 int r = this.basis;
6280 for (int i = baseIndex, f, h; batch > 0 &&
6281 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6282 addToPendingCount(1);
6283 (rights = new MapReduceMappingsToIntTask<K,V>
6284 (this, batch >>>= 1, baseLimit = h, f, tab,
6285 rights, transformer, r, reducer)).fork();
6286 }
6287 for (Node<K,V> p; (p = advance()) != null; )
6288 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6289 result = r;
6290 CountedCompleter<?> c;
6291 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6292 @SuppressWarnings("unchecked")
6293 MapReduceMappingsToIntTask<K,V>
6294 t = (MapReduceMappingsToIntTask<K,V>)c,
6295 s = t.rights;
6296 while (s != null) {
6297 t.result = reducer.applyAsInt(t.result, s.result);
6298 s = t.rights = s.nextRight;
6299 }
6300 }
6301 }
6302 }
6303 }
6304
6305 // Unsafe mechanics
6306 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
6307 private static final long SIZECTL;
6308 private static final long TRANSFERINDEX;
6309 private static final long BASECOUNT;
6310 private static final long CELLSBUSY;
6311 private static final long CELLVALUE;
6312 private static final int ABASE;
6313 private static final int ASHIFT;
6314
6315 static {
6316 try {
6317 SIZECTL = U.objectFieldOffset
6318 (ConcurrentHashMap.class.getDeclaredField("sizeCtl"));
6319 TRANSFERINDEX = U.objectFieldOffset
6320 (ConcurrentHashMap.class.getDeclaredField("transferIndex"));
6321 BASECOUNT = U.objectFieldOffset
6322 (ConcurrentHashMap.class.getDeclaredField("baseCount"));
6323 CELLSBUSY = U.objectFieldOffset
6324 (ConcurrentHashMap.class.getDeclaredField("cellsBusy"));
6325
6326 CELLVALUE = U.objectFieldOffset
6327 (CounterCell.class.getDeclaredField("value"));
6328
6329 ABASE = U.arrayBaseOffset(Node[].class);
6330 int scale = U.arrayIndexScale(Node[].class);
6331 if ((scale & (scale - 1)) != 0)
6332 throw new Error("array index scale not a power of two");
6333 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6334 } catch (ReflectiveOperationException e) {
6335 throw new Error(e);
6336 }
6337
6338 // Reduce the risk of rare disastrous classloading in first call to
6339 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6340 Class<?> ensureLoaded = LockSupport.class;
6341 }
6342 }