ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.276
Committed: Sat Sep 12 19:25:31 2015 UTC (8 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.275: +1 -1 lines
Log Message:
whitespace

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.io.Serializable;
11 import java.lang.reflect.ParameterizedType;
12 import java.lang.reflect.Type;
13 import java.util.AbstractMap;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Enumeration;
17 import java.util.HashMap;
18 import java.util.Hashtable;
19 import java.util.Iterator;
20 import java.util.Map;
21 import java.util.NoSuchElementException;
22 import java.util.Set;
23 import java.util.Spliterator;
24 import java.util.concurrent.atomic.AtomicReference;
25 import java.util.concurrent.locks.LockSupport;
26 import java.util.concurrent.locks.ReentrantLock;
27 import java.util.function.BiConsumer;
28 import java.util.function.BiFunction;
29 import java.util.function.Consumer;
30 import java.util.function.DoubleBinaryOperator;
31 import java.util.function.Function;
32 import java.util.function.IntBinaryOperator;
33 import java.util.function.LongBinaryOperator;
34 import java.util.function.Predicate;
35 import java.util.function.ToDoubleBiFunction;
36 import java.util.function.ToDoubleFunction;
37 import java.util.function.ToIntBiFunction;
38 import java.util.function.ToIntFunction;
39 import java.util.function.ToLongBiFunction;
40 import java.util.function.ToLongFunction;
41 import java.util.stream.Stream;
42
43 /**
44 * A hash table supporting full concurrency of retrievals and
45 * high expected concurrency for updates. This class obeys the
46 * same functional specification as {@link java.util.Hashtable}, and
47 * includes versions of methods corresponding to each method of
48 * {@code Hashtable}. However, even though all operations are
49 * thread-safe, retrieval operations do <em>not</em> entail locking,
50 * and there is <em>not</em> any support for locking the entire table
51 * in a way that prevents all access. This class is fully
52 * interoperable with {@code Hashtable} in programs that rely on its
53 * thread safety but not on its synchronization details.
54 *
55 * <p>Retrieval operations (including {@code get}) generally do not
56 * block, so may overlap with update operations (including {@code put}
57 * and {@code remove}). Retrievals reflect the results of the most
58 * recently <em>completed</em> update operations holding upon their
59 * onset. (More formally, an update operation for a given key bears a
60 * <em>happens-before</em> relation with any (non-null) retrieval for
61 * that key reporting the updated value.) For aggregate operations
62 * such as {@code putAll} and {@code clear}, concurrent retrievals may
63 * reflect insertion or removal of only some entries. Similarly,
64 * Iterators, Spliterators and Enumerations return elements reflecting the
65 * state of the hash table at some point at or since the creation of the
66 * iterator/enumeration. They do <em>not</em> throw {@link
67 * java.util.ConcurrentModificationException ConcurrentModificationException}.
68 * However, iterators are designed to be used by only one thread at a time.
69 * Bear in mind that the results of aggregate status methods including
70 * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
71 * useful only when a map is not undergoing concurrent updates in other threads.
72 * Otherwise the results of these methods reflect transient states
73 * that may be adequate for monitoring or estimation purposes, but not
74 * for program control.
75 *
76 * <p>The table is dynamically expanded when there are too many
77 * collisions (i.e., keys that have distinct hash codes but fall into
78 * the same slot modulo the table size), with the expected average
79 * effect of maintaining roughly two bins per mapping (corresponding
80 * to a 0.75 load factor threshold for resizing). There may be much
81 * variance around this average as mappings are added and removed, but
82 * overall, this maintains a commonly accepted time/space tradeoff for
83 * hash tables. However, resizing this or any other kind of hash
84 * table may be a relatively slow operation. When possible, it is a
85 * good idea to provide a size estimate as an optional {@code
86 * initialCapacity} constructor argument. An additional optional
87 * {@code loadFactor} constructor argument provides a further means of
88 * customizing initial table capacity by specifying the table density
89 * to be used in calculating the amount of space to allocate for the
90 * given number of elements. Also, for compatibility with previous
91 * versions of this class, constructors may optionally specify an
92 * expected {@code concurrencyLevel} as an additional hint for
93 * internal sizing. Note that using many keys with exactly the same
94 * {@code hashCode()} is a sure way to slow down performance of any
95 * hash table. To ameliorate impact, when keys are {@link Comparable},
96 * this class may use comparison order among keys to help break ties.
97 *
98 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
99 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
100 * (using {@link #keySet(Object)} when only keys are of interest, and the
101 * mapped values are (perhaps transiently) not used or all take the
102 * same mapping value.
103 *
104 * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
105 * form of histogram or multiset) by using {@link
106 * java.util.concurrent.atomic.LongAdder} values and initializing via
107 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
108 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
109 * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
110 *
111 * <p>This class and its views and iterators implement all of the
112 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
113 * interfaces.
114 *
115 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
116 * does <em>not</em> allow {@code null} to be used as a key or value.
117 *
118 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
119 * operations that, unlike most {@link Stream} methods, are designed
120 * to be safely, and often sensibly, applied even with maps that are
121 * being concurrently updated by other threads; for example, when
122 * computing a snapshot summary of the values in a shared registry.
123 * There are three kinds of operation, each with four forms, accepting
124 * functions with Keys, Values, Entries, and (Key, Value) arguments
125 * and/or return values. Because the elements of a ConcurrentHashMap
126 * are not ordered in any particular way, and may be processed in
127 * different orders in different parallel executions, the correctness
128 * of supplied functions should not depend on any ordering, or on any
129 * other objects or values that may transiently change while
130 * computation is in progress; and except for forEach actions, should
131 * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
132 * objects do not support method {@code setValue}.
133 *
134 * <ul>
135 * <li> forEach: Perform a given action on each element.
136 * A variant form applies a given transformation on each element
137 * before performing the action.</li>
138 *
139 * <li> search: Return the first available non-null result of
140 * applying a given function on each element; skipping further
141 * search when a result is found.</li>
142 *
143 * <li> reduce: Accumulate each element. The supplied reduction
144 * function cannot rely on ordering (more formally, it should be
145 * both associative and commutative). There are five variants:
146 *
147 * <ul>
148 *
149 * <li> Plain reductions. (There is not a form of this method for
150 * (key, value) function arguments since there is no corresponding
151 * return type.)</li>
152 *
153 * <li> Mapped reductions that accumulate the results of a given
154 * function applied to each element.</li>
155 *
156 * <li> Reductions to scalar doubles, longs, and ints, using a
157 * given basis value.</li>
158 *
159 * </ul>
160 * </li>
161 * </ul>
162 *
163 * <p>These bulk operations accept a {@code parallelismThreshold}
164 * argument. Methods proceed sequentially if the current map size is
165 * estimated to be less than the given threshold. Using a value of
166 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
167 * of {@code 1} results in maximal parallelism by partitioning into
168 * enough subtasks to fully utilize the {@link
169 * ForkJoinPool#commonPool()} that is used for all parallel
170 * computations. Normally, you would initially choose one of these
171 * extreme values, and then measure performance of using in-between
172 * values that trade off overhead versus throughput.
173 *
174 * <p>The concurrency properties of bulk operations follow
175 * from those of ConcurrentHashMap: Any non-null result returned
176 * from {@code get(key)} and related access methods bears a
177 * happens-before relation with the associated insertion or
178 * update. The result of any bulk operation reflects the
179 * composition of these per-element relations (but is not
180 * necessarily atomic with respect to the map as a whole unless it
181 * is somehow known to be quiescent). Conversely, because keys
182 * and values in the map are never null, null serves as a reliable
183 * atomic indicator of the current lack of any result. To
184 * maintain this property, null serves as an implicit basis for
185 * all non-scalar reduction operations. For the double, long, and
186 * int versions, the basis should be one that, when combined with
187 * any other value, returns that other value (more formally, it
188 * should be the identity element for the reduction). Most common
189 * reductions have these properties; for example, computing a sum
190 * with basis 0 or a minimum with basis MAX_VALUE.
191 *
192 * <p>Search and transformation functions provided as arguments
193 * should similarly return null to indicate the lack of any result
194 * (in which case it is not used). In the case of mapped
195 * reductions, this also enables transformations to serve as
196 * filters, returning null (or, in the case of primitive
197 * specializations, the identity basis) if the element should not
198 * be combined. You can create compound transformations and
199 * filterings by composing them yourself under this "null means
200 * there is nothing there now" rule before using them in search or
201 * reduce operations.
202 *
203 * <p>Methods accepting and/or returning Entry arguments maintain
204 * key-value associations. They may be useful for example when
205 * finding the key for the greatest value. Note that "plain" Entry
206 * arguments can be supplied using {@code new
207 * AbstractMap.SimpleEntry(k,v)}.
208 *
209 * <p>Bulk operations may complete abruptly, throwing an
210 * exception encountered in the application of a supplied
211 * function. Bear in mind when handling such exceptions that other
212 * concurrently executing functions could also have thrown
213 * exceptions, or would have done so if the first exception had
214 * not occurred.
215 *
216 * <p>Speedups for parallel compared to sequential forms are common
217 * but not guaranteed. Parallel operations involving brief functions
218 * on small maps may execute more slowly than sequential forms if the
219 * underlying work to parallelize the computation is more expensive
220 * than the computation itself. Similarly, parallelization may not
221 * lead to much actual parallelism if all processors are busy
222 * performing unrelated tasks.
223 *
224 * <p>All arguments to all task methods must be non-null.
225 *
226 * <p>This class is a member of the
227 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
228 * Java Collections Framework</a>.
229 *
230 * @since 1.5
231 * @author Doug Lea
232 * @param <K> the type of keys maintained by this map
233 * @param <V> the type of mapped values
234 */
235 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
236 implements ConcurrentMap<K,V>, Serializable {
237 private static final long serialVersionUID = 7249069246763182397L;
238
239 /*
240 * Overview:
241 *
242 * The primary design goal of this hash table is to maintain
243 * concurrent readability (typically method get(), but also
244 * iterators and related methods) while minimizing update
245 * contention. Secondary goals are to keep space consumption about
246 * the same or better than java.util.HashMap, and to support high
247 * initial insertion rates on an empty table by many threads.
248 *
249 * This map usually acts as a binned (bucketed) hash table. Each
250 * key-value mapping is held in a Node. Most nodes are instances
251 * of the basic Node class with hash, key, value, and next
252 * fields. However, various subclasses exist: TreeNodes are
253 * arranged in balanced trees, not lists. TreeBins hold the roots
254 * of sets of TreeNodes. ForwardingNodes are placed at the heads
255 * of bins during resizing. ReservationNodes are used as
256 * placeholders while establishing values in computeIfAbsent and
257 * related methods. The types TreeBin, ForwardingNode, and
258 * ReservationNode do not hold normal user keys, values, or
259 * hashes, and are readily distinguishable during search etc
260 * because they have negative hash fields and null key and value
261 * fields. (These special nodes are either uncommon or transient,
262 * so the impact of carrying around some unused fields is
263 * insignificant.)
264 *
265 * The table is lazily initialized to a power-of-two size upon the
266 * first insertion. Each bin in the table normally contains a
267 * list of Nodes (most often, the list has only zero or one Node).
268 * Table accesses require volatile/atomic reads, writes, and
269 * CASes. Because there is no other way to arrange this without
270 * adding further indirections, we use intrinsics
271 * (sun.misc.Unsafe) operations.
272 *
273 * We use the top (sign) bit of Node hash fields for control
274 * purposes -- it is available anyway because of addressing
275 * constraints. Nodes with negative hash fields are specially
276 * handled or ignored in map methods.
277 *
278 * Insertion (via put or its variants) of the first node in an
279 * empty bin is performed by just CASing it to the bin. This is
280 * by far the most common case for put operations under most
281 * key/hash distributions. Other update operations (insert,
282 * delete, and replace) require locks. We do not want to waste
283 * the space required to associate a distinct lock object with
284 * each bin, so instead use the first node of a bin list itself as
285 * a lock. Locking support for these locks relies on builtin
286 * "synchronized" monitors.
287 *
288 * Using the first node of a list as a lock does not by itself
289 * suffice though: When a node is locked, any update must first
290 * validate that it is still the first node after locking it, and
291 * retry if not. Because new nodes are always appended to lists,
292 * once a node is first in a bin, it remains first until deleted
293 * or the bin becomes invalidated (upon resizing).
294 *
295 * The main disadvantage of per-bin locks is that other update
296 * operations on other nodes in a bin list protected by the same
297 * lock can stall, for example when user equals() or mapping
298 * functions take a long time. However, statistically, under
299 * random hash codes, this is not a common problem. Ideally, the
300 * frequency of nodes in bins follows a Poisson distribution
301 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
302 * parameter of about 0.5 on average, given the resizing threshold
303 * of 0.75, although with a large variance because of resizing
304 * granularity. Ignoring variance, the expected occurrences of
305 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
306 * first values are:
307 *
308 * 0: 0.60653066
309 * 1: 0.30326533
310 * 2: 0.07581633
311 * 3: 0.01263606
312 * 4: 0.00157952
313 * 5: 0.00015795
314 * 6: 0.00001316
315 * 7: 0.00000094
316 * 8: 0.00000006
317 * more: less than 1 in ten million
318 *
319 * Lock contention probability for two threads accessing distinct
320 * elements is roughly 1 / (8 * #elements) under random hashes.
321 *
322 * Actual hash code distributions encountered in practice
323 * sometimes deviate significantly from uniform randomness. This
324 * includes the case when N > (1<<30), so some keys MUST collide.
325 * Similarly for dumb or hostile usages in which multiple keys are
326 * designed to have identical hash codes or ones that differs only
327 * in masked-out high bits. So we use a secondary strategy that
328 * applies when the number of nodes in a bin exceeds a
329 * threshold. These TreeBins use a balanced tree to hold nodes (a
330 * specialized form of red-black trees), bounding search time to
331 * O(log N). Each search step in a TreeBin is at least twice as
332 * slow as in a regular list, but given that N cannot exceed
333 * (1<<64) (before running out of addresses) this bounds search
334 * steps, lock hold times, etc, to reasonable constants (roughly
335 * 100 nodes inspected per operation worst case) so long as keys
336 * are Comparable (which is very common -- String, Long, etc).
337 * TreeBin nodes (TreeNodes) also maintain the same "next"
338 * traversal pointers as regular nodes, so can be traversed in
339 * iterators in the same way.
340 *
341 * The table is resized when occupancy exceeds a percentage
342 * threshold (nominally, 0.75, but see below). Any thread
343 * noticing an overfull bin may assist in resizing after the
344 * initiating thread allocates and sets up the replacement array.
345 * However, rather than stalling, these other threads may proceed
346 * with insertions etc. The use of TreeBins shields us from the
347 * worst case effects of overfilling while resizes are in
348 * progress. Resizing proceeds by transferring bins, one by one,
349 * from the table to the next table. However, threads claim small
350 * blocks of indices to transfer (via field transferIndex) before
351 * doing so, reducing contention. A generation stamp in field
352 * sizeCtl ensures that resizings do not overlap. Because we are
353 * using power-of-two expansion, the elements from each bin must
354 * either stay at same index, or move with a power of two
355 * offset. We eliminate unnecessary node creation by catching
356 * cases where old nodes can be reused because their next fields
357 * won't change. On average, only about one-sixth of them need
358 * cloning when a table doubles. The nodes they replace will be
359 * garbage collectable as soon as they are no longer referenced by
360 * any reader thread that may be in the midst of concurrently
361 * traversing table. Upon transfer, the old table bin contains
362 * only a special forwarding node (with hash field "MOVED") that
363 * contains the next table as its key. On encountering a
364 * forwarding node, access and update operations restart, using
365 * the new table.
366 *
367 * Each bin transfer requires its bin lock, which can stall
368 * waiting for locks while resizing. However, because other
369 * threads can join in and help resize rather than contend for
370 * locks, average aggregate waits become shorter as resizing
371 * progresses. The transfer operation must also ensure that all
372 * accessible bins in both the old and new table are usable by any
373 * traversal. This is arranged in part by proceeding from the
374 * last bin (table.length - 1) up towards the first. Upon seeing
375 * a forwarding node, traversals (see class Traverser) arrange to
376 * move to the new table without revisiting nodes. To ensure that
377 * no intervening nodes are skipped even when moved out of order,
378 * a stack (see class TableStack) is created on first encounter of
379 * a forwarding node during a traversal, to maintain its place if
380 * later processing the current table. The need for these
381 * save/restore mechanics is relatively rare, but when one
382 * forwarding node is encountered, typically many more will be.
383 * So Traversers use a simple caching scheme to avoid creating so
384 * many new TableStack nodes. (Thanks to Peter Levart for
385 * suggesting use of a stack here.)
386 *
387 * The traversal scheme also applies to partial traversals of
388 * ranges of bins (via an alternate Traverser constructor)
389 * to support partitioned aggregate operations. Also, read-only
390 * operations give up if ever forwarded to a null table, which
391 * provides support for shutdown-style clearing, which is also not
392 * currently implemented.
393 *
394 * Lazy table initialization minimizes footprint until first use,
395 * and also avoids resizings when the first operation is from a
396 * putAll, constructor with map argument, or deserialization.
397 * These cases attempt to override the initial capacity settings,
398 * but harmlessly fail to take effect in cases of races.
399 *
400 * The element count is maintained using a specialization of
401 * LongAdder. We need to incorporate a specialization rather than
402 * just use a LongAdder in order to access implicit
403 * contention-sensing that leads to creation of multiple
404 * CounterCells. The counter mechanics avoid contention on
405 * updates but can encounter cache thrashing if read too
406 * frequently during concurrent access. To avoid reading so often,
407 * resizing under contention is attempted only upon adding to a
408 * bin already holding two or more nodes. Under uniform hash
409 * distributions, the probability of this occurring at threshold
410 * is around 13%, meaning that only about 1 in 8 puts check
411 * threshold (and after resizing, many fewer do so).
412 *
413 * TreeBins use a special form of comparison for search and
414 * related operations (which is the main reason we cannot use
415 * existing collections such as TreeMaps). TreeBins contain
416 * Comparable elements, but may contain others, as well as
417 * elements that are Comparable but not necessarily Comparable for
418 * the same T, so we cannot invoke compareTo among them. To handle
419 * this, the tree is ordered primarily by hash value, then by
420 * Comparable.compareTo order if applicable. On lookup at a node,
421 * if elements are not comparable or compare as 0 then both left
422 * and right children may need to be searched in the case of tied
423 * hash values. (This corresponds to the full list search that
424 * would be necessary if all elements were non-Comparable and had
425 * tied hashes.) On insertion, to keep a total ordering (or as
426 * close as is required here) across rebalancings, we compare
427 * classes and identityHashCodes as tie-breakers. The red-black
428 * balancing code is updated from pre-jdk-collections
429 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
430 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
431 * Algorithms" (CLR).
432 *
433 * TreeBins also require an additional locking mechanism. While
434 * list traversal is always possible by readers even during
435 * updates, tree traversal is not, mainly because of tree-rotations
436 * that may change the root node and/or its linkages. TreeBins
437 * include a simple read-write lock mechanism parasitic on the
438 * main bin-synchronization strategy: Structural adjustments
439 * associated with an insertion or removal are already bin-locked
440 * (and so cannot conflict with other writers) but must wait for
441 * ongoing readers to finish. Since there can be only one such
442 * waiter, we use a simple scheme using a single "waiter" field to
443 * block writers. However, readers need never block. If the root
444 * lock is held, they proceed along the slow traversal path (via
445 * next-pointers) until the lock becomes available or the list is
446 * exhausted, whichever comes first. These cases are not fast, but
447 * maximize aggregate expected throughput.
448 *
449 * Maintaining API and serialization compatibility with previous
450 * versions of this class introduces several oddities. Mainly: We
451 * leave untouched but unused constructor arguments referring to
452 * concurrencyLevel. We accept a loadFactor constructor argument,
453 * but apply it only to initial table capacity (which is the only
454 * time that we can guarantee to honor it.) We also declare an
455 * unused "Segment" class that is instantiated in minimal form
456 * only when serializing.
457 *
458 * Also, solely for compatibility with previous versions of this
459 * class, it extends AbstractMap, even though all of its methods
460 * are overridden, so it is just useless baggage.
461 *
462 * This file is organized to make things a little easier to follow
463 * while reading than they might otherwise: First the main static
464 * declarations and utilities, then fields, then main public
465 * methods (with a few factorings of multiple public methods into
466 * internal ones), then sizing methods, trees, traversers, and
467 * bulk operations.
468 */
469
470 /* ---------------- Constants -------------- */
471
472 /**
473 * The largest possible table capacity. This value must be
474 * exactly 1<<30 to stay within Java array allocation and indexing
475 * bounds for power of two table sizes, and is further required
476 * because the top two bits of 32bit hash fields are used for
477 * control purposes.
478 */
479 private static final int MAXIMUM_CAPACITY = 1 << 30;
480
481 /**
482 * The default initial table capacity. Must be a power of 2
483 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
484 */
485 private static final int DEFAULT_CAPACITY = 16;
486
487 /**
488 * The largest possible (non-power of two) array size.
489 * Needed by toArray and related methods.
490 */
491 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
492
493 /**
494 * The default concurrency level for this table. Unused but
495 * defined for compatibility with previous versions of this class.
496 */
497 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
498
499 /**
500 * The load factor for this table. Overrides of this value in
501 * constructors affect only the initial table capacity. The
502 * actual floating point value isn't normally used -- it is
503 * simpler to use expressions such as {@code n - (n >>> 2)} for
504 * the associated resizing threshold.
505 */
506 private static final float LOAD_FACTOR = 0.75f;
507
508 /**
509 * The bin count threshold for using a tree rather than list for a
510 * bin. Bins are converted to trees when adding an element to a
511 * bin with at least this many nodes. The value must be greater
512 * than 2, and should be at least 8 to mesh with assumptions in
513 * tree removal about conversion back to plain bins upon
514 * shrinkage.
515 */
516 static final int TREEIFY_THRESHOLD = 8;
517
518 /**
519 * The bin count threshold for untreeifying a (split) bin during a
520 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
521 * most 6 to mesh with shrinkage detection under removal.
522 */
523 static final int UNTREEIFY_THRESHOLD = 6;
524
525 /**
526 * The smallest table capacity for which bins may be treeified.
527 * (Otherwise the table is resized if too many nodes in a bin.)
528 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
529 * conflicts between resizing and treeification thresholds.
530 */
531 static final int MIN_TREEIFY_CAPACITY = 64;
532
533 /**
534 * Minimum number of rebinnings per transfer step. Ranges are
535 * subdivided to allow multiple resizer threads. This value
536 * serves as a lower bound to avoid resizers encountering
537 * excessive memory contention. The value should be at least
538 * DEFAULT_CAPACITY.
539 */
540 private static final int MIN_TRANSFER_STRIDE = 16;
541
542 /**
543 * The number of bits used for generation stamp in sizeCtl.
544 * Must be at least 6 for 32bit arrays.
545 */
546 private static int RESIZE_STAMP_BITS = 16;
547
548 /**
549 * The maximum number of threads that can help resize.
550 * Must fit in 32 - RESIZE_STAMP_BITS bits.
551 */
552 private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
553
554 /**
555 * The bit shift for recording size stamp in sizeCtl.
556 */
557 private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
558
559 /*
560 * Encodings for Node hash fields. See above for explanation.
561 */
562 static final int MOVED = -1; // hash for forwarding nodes
563 static final int TREEBIN = -2; // hash for roots of trees
564 static final int RESERVED = -3; // hash for transient reservations
565 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
566
567 /** Number of CPUS, to place bounds on some sizings */
568 static final int NCPU = Runtime.getRuntime().availableProcessors();
569
570 /** For serialization compatibility. */
571 private static final ObjectStreamField[] serialPersistentFields = {
572 new ObjectStreamField("segments", Segment[].class),
573 new ObjectStreamField("segmentMask", Integer.TYPE),
574 new ObjectStreamField("segmentShift", Integer.TYPE)
575 };
576
577 /* ---------------- Nodes -------------- */
578
579 /**
580 * Key-value entry. This class is never exported out as a
581 * user-mutable Map.Entry (i.e., one supporting setValue; see
582 * MapEntry below), but can be used for read-only traversals used
583 * in bulk tasks. Subclasses of Node with a negative hash field
584 * are special, and contain null keys and values (but are never
585 * exported). Otherwise, keys and vals are never null.
586 */
587 static class Node<K,V> implements Map.Entry<K,V> {
588 final int hash;
589 final K key;
590 volatile V val;
591 volatile Node<K,V> next;
592
593 Node(int hash, K key, V val, Node<K,V> next) {
594 this.hash = hash;
595 this.key = key;
596 this.val = val;
597 this.next = next;
598 }
599
600 public final K getKey() { return key; }
601 public final V getValue() { return val; }
602 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
603 public final String toString() {
604 return Helpers.mapEntryToString(key, val);
605 }
606 public final V setValue(V value) {
607 throw new UnsupportedOperationException();
608 }
609
610 public final boolean equals(Object o) {
611 Object k, v, u; Map.Entry<?,?> e;
612 return ((o instanceof Map.Entry) &&
613 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
614 (v = e.getValue()) != null &&
615 (k == key || k.equals(key)) &&
616 (v == (u = val) || v.equals(u)));
617 }
618
619 /**
620 * Virtualized support for map.get(); overridden in subclasses.
621 */
622 Node<K,V> find(int h, Object k) {
623 Node<K,V> e = this;
624 if (k != null) {
625 do {
626 K ek;
627 if (e.hash == h &&
628 ((ek = e.key) == k || (ek != null && k.equals(ek))))
629 return e;
630 } while ((e = e.next) != null);
631 }
632 return null;
633 }
634 }
635
636 /* ---------------- Static utilities -------------- */
637
638 /**
639 * Spreads (XORs) higher bits of hash to lower and also forces top
640 * bit to 0. Because the table uses power-of-two masking, sets of
641 * hashes that vary only in bits above the current mask will
642 * always collide. (Among known examples are sets of Float keys
643 * holding consecutive whole numbers in small tables.) So we
644 * apply a transform that spreads the impact of higher bits
645 * downward. There is a tradeoff between speed, utility, and
646 * quality of bit-spreading. Because many common sets of hashes
647 * are already reasonably distributed (so don't benefit from
648 * spreading), and because we use trees to handle large sets of
649 * collisions in bins, we just XOR some shifted bits in the
650 * cheapest possible way to reduce systematic lossage, as well as
651 * to incorporate impact of the highest bits that would otherwise
652 * never be used in index calculations because of table bounds.
653 */
654 static final int spread(int h) {
655 return (h ^ (h >>> 16)) & HASH_BITS;
656 }
657
658 /**
659 * Returns a power of two table size for the given desired capacity.
660 * See Hackers Delight, sec 3.2
661 */
662 private static final int tableSizeFor(int c) {
663 int n = c - 1;
664 n |= n >>> 1;
665 n |= n >>> 2;
666 n |= n >>> 4;
667 n |= n >>> 8;
668 n |= n >>> 16;
669 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
670 }
671
672 /**
673 * Returns x's Class if it is of the form "class C implements
674 * Comparable<C>", else null.
675 */
676 static Class<?> comparableClassFor(Object x) {
677 if (x instanceof Comparable) {
678 Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
679 if ((c = x.getClass()) == String.class) // bypass checks
680 return c;
681 if ((ts = c.getGenericInterfaces()) != null) {
682 for (int i = 0; i < ts.length; ++i) {
683 if (((t = ts[i]) instanceof ParameterizedType) &&
684 ((p = (ParameterizedType)t).getRawType() ==
685 Comparable.class) &&
686 (as = p.getActualTypeArguments()) != null &&
687 as.length == 1 && as[0] == c) // type arg is c
688 return c;
689 }
690 }
691 }
692 return null;
693 }
694
695 /**
696 * Returns k.compareTo(x) if x matches kc (k's screened comparable
697 * class), else 0.
698 */
699 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
700 static int compareComparables(Class<?> kc, Object k, Object x) {
701 return (x == null || x.getClass() != kc ? 0 :
702 ((Comparable)k).compareTo(x));
703 }
704
705 /* ---------------- Table element access -------------- */
706
707 /*
708 * Volatile access methods are used for table elements as well as
709 * elements of in-progress next table while resizing. All uses of
710 * the tab arguments must be null checked by callers. All callers
711 * also paranoically precheck that tab's length is not zero (or an
712 * equivalent check), thus ensuring that any index argument taking
713 * the form of a hash value anded with (length - 1) is a valid
714 * index. Note that, to be correct wrt arbitrary concurrency
715 * errors by users, these checks must operate on local variables,
716 * which accounts for some odd-looking inline assignments below.
717 * Note that calls to setTabAt always occur within locked regions,
718 * and so in principle require only release ordering, not
719 * full volatile semantics, but are currently coded as volatile
720 * writes to be conservative.
721 */
722
723 @SuppressWarnings("unchecked")
724 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
725 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
726 }
727
728 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
729 Node<K,V> c, Node<K,V> v) {
730 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
731 }
732
733 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
734 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
735 }
736
737 /* ---------------- Fields -------------- */
738
739 /**
740 * The array of bins. Lazily initialized upon first insertion.
741 * Size is always a power of two. Accessed directly by iterators.
742 */
743 transient volatile Node<K,V>[] table;
744
745 /**
746 * The next table to use; non-null only while resizing.
747 */
748 private transient volatile Node<K,V>[] nextTable;
749
750 /**
751 * Base counter value, used mainly when there is no contention,
752 * but also as a fallback during table initialization
753 * races. Updated via CAS.
754 */
755 private transient volatile long baseCount;
756
757 /**
758 * Table initialization and resizing control. When negative, the
759 * table is being initialized or resized: -1 for initialization,
760 * else -(1 + the number of active resizing threads). Otherwise,
761 * when table is null, holds the initial table size to use upon
762 * creation, or 0 for default. After initialization, holds the
763 * next element count value upon which to resize the table.
764 */
765 private transient volatile int sizeCtl;
766
767 /**
768 * The next table index (plus one) to split while resizing.
769 */
770 private transient volatile int transferIndex;
771
772 /**
773 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
774 */
775 private transient volatile int cellsBusy;
776
777 /**
778 * Table of counter cells. When non-null, size is a power of 2.
779 */
780 private transient volatile CounterCell[] counterCells;
781
782 // views
783 private transient KeySetView<K,V> keySet;
784 private transient ValuesView<K,V> values;
785 private transient EntrySetView<K,V> entrySet;
786
787
788 /* ---------------- Public operations -------------- */
789
790 /**
791 * Creates a new, empty map with the default initial table size (16).
792 */
793 public ConcurrentHashMap() {
794 }
795
796 /**
797 * Creates a new, empty map with an initial table size
798 * accommodating the specified number of elements without the need
799 * to dynamically resize.
800 *
801 * @param initialCapacity The implementation performs internal
802 * sizing to accommodate this many elements.
803 * @throws IllegalArgumentException if the initial capacity of
804 * elements is negative
805 */
806 public ConcurrentHashMap(int initialCapacity) {
807 if (initialCapacity < 0)
808 throw new IllegalArgumentException();
809 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
810 MAXIMUM_CAPACITY :
811 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
812 this.sizeCtl = cap;
813 }
814
815 /**
816 * Creates a new map with the same mappings as the given map.
817 *
818 * @param m the map
819 */
820 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
821 this.sizeCtl = DEFAULT_CAPACITY;
822 putAll(m);
823 }
824
825 /**
826 * Creates a new, empty map with an initial table size based on
827 * the given number of elements ({@code initialCapacity}) and
828 * initial table density ({@code loadFactor}).
829 *
830 * @param initialCapacity the initial capacity. The implementation
831 * performs internal sizing to accommodate this many elements,
832 * given the specified load factor.
833 * @param loadFactor the load factor (table density) for
834 * establishing the initial table size
835 * @throws IllegalArgumentException if the initial capacity of
836 * elements is negative or the load factor is nonpositive
837 *
838 * @since 1.6
839 */
840 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
841 this(initialCapacity, loadFactor, 1);
842 }
843
844 /**
845 * Creates a new, empty map with an initial table size based on
846 * the given number of elements ({@code initialCapacity}), table
847 * density ({@code loadFactor}), and number of concurrently
848 * updating threads ({@code concurrencyLevel}).
849 *
850 * @param initialCapacity the initial capacity. The implementation
851 * performs internal sizing to accommodate this many elements,
852 * given the specified load factor.
853 * @param loadFactor the load factor (table density) for
854 * establishing the initial table size
855 * @param concurrencyLevel the estimated number of concurrently
856 * updating threads. The implementation may use this value as
857 * a sizing hint.
858 * @throws IllegalArgumentException if the initial capacity is
859 * negative or the load factor or concurrencyLevel are
860 * nonpositive
861 */
862 public ConcurrentHashMap(int initialCapacity,
863 float loadFactor, int concurrencyLevel) {
864 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
865 throw new IllegalArgumentException();
866 if (initialCapacity < concurrencyLevel) // Use at least as many bins
867 initialCapacity = concurrencyLevel; // as estimated threads
868 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
869 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
870 MAXIMUM_CAPACITY : tableSizeFor((int)size);
871 this.sizeCtl = cap;
872 }
873
874 // Original (since JDK1.2) Map methods
875
876 /**
877 * {@inheritDoc}
878 */
879 public int size() {
880 long n = sumCount();
881 return ((n < 0L) ? 0 :
882 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
883 (int)n);
884 }
885
886 /**
887 * {@inheritDoc}
888 */
889 public boolean isEmpty() {
890 return sumCount() <= 0L; // ignore transient negative values
891 }
892
893 /**
894 * Returns the value to which the specified key is mapped,
895 * or {@code null} if this map contains no mapping for the key.
896 *
897 * <p>More formally, if this map contains a mapping from a key
898 * {@code k} to a value {@code v} such that {@code key.equals(k)},
899 * then this method returns {@code v}; otherwise it returns
900 * {@code null}. (There can be at most one such mapping.)
901 *
902 * @throws NullPointerException if the specified key is null
903 */
904 public V get(Object key) {
905 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
906 int h = spread(key.hashCode());
907 if ((tab = table) != null && (n = tab.length) > 0 &&
908 (e = tabAt(tab, (n - 1) & h)) != null) {
909 if ((eh = e.hash) == h) {
910 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
911 return e.val;
912 }
913 else if (eh < 0)
914 return (p = e.find(h, key)) != null ? p.val : null;
915 while ((e = e.next) != null) {
916 if (e.hash == h &&
917 ((ek = e.key) == key || (ek != null && key.equals(ek))))
918 return e.val;
919 }
920 }
921 return null;
922 }
923
924 /**
925 * Tests if the specified object is a key in this table.
926 *
927 * @param key possible key
928 * @return {@code true} if and only if the specified object
929 * is a key in this table, as determined by the
930 * {@code equals} method; {@code false} otherwise
931 * @throws NullPointerException if the specified key is null
932 */
933 public boolean containsKey(Object key) {
934 return get(key) != null;
935 }
936
937 /**
938 * Returns {@code true} if this map maps one or more keys to the
939 * specified value. Note: This method may require a full traversal
940 * of the map, and is much slower than method {@code containsKey}.
941 *
942 * @param value value whose presence in this map is to be tested
943 * @return {@code true} if this map maps one or more keys to the
944 * specified value
945 * @throws NullPointerException if the specified value is null
946 */
947 public boolean containsValue(Object value) {
948 if (value == null)
949 throw new NullPointerException();
950 Node<K,V>[] t;
951 if ((t = table) != null) {
952 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
953 for (Node<K,V> p; (p = it.advance()) != null; ) {
954 V v;
955 if ((v = p.val) == value || (v != null && value.equals(v)))
956 return true;
957 }
958 }
959 return false;
960 }
961
962 /**
963 * Maps the specified key to the specified value in this table.
964 * Neither the key nor the value can be null.
965 *
966 * <p>The value can be retrieved by calling the {@code get} method
967 * with a key that is equal to the original key.
968 *
969 * @param key key with which the specified value is to be associated
970 * @param value value to be associated with the specified key
971 * @return the previous value associated with {@code key}, or
972 * {@code null} if there was no mapping for {@code key}
973 * @throws NullPointerException if the specified key or value is null
974 */
975 public V put(K key, V value) {
976 return putVal(key, value, false);
977 }
978
979 /** Implementation for put and putIfAbsent */
980 final V putVal(K key, V value, boolean onlyIfAbsent) {
981 if (key == null || value == null) throw new NullPointerException();
982 int hash = spread(key.hashCode());
983 int binCount = 0;
984 for (Node<K,V>[] tab = table;;) {
985 Node<K,V> f; int n, i, fh;
986 if (tab == null || (n = tab.length) == 0)
987 tab = initTable();
988 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
989 if (casTabAt(tab, i, null,
990 new Node<K,V>(hash, key, value, null)))
991 break; // no lock when adding to empty bin
992 }
993 else if ((fh = f.hash) == MOVED)
994 tab = helpTransfer(tab, f);
995 else {
996 V oldVal = null;
997 synchronized (f) {
998 if (tabAt(tab, i) == f) {
999 if (fh >= 0) {
1000 binCount = 1;
1001 for (Node<K,V> e = f;; ++binCount) {
1002 K ek;
1003 if (e.hash == hash &&
1004 ((ek = e.key) == key ||
1005 (ek != null && key.equals(ek)))) {
1006 oldVal = e.val;
1007 if (!onlyIfAbsent)
1008 e.val = value;
1009 break;
1010 }
1011 Node<K,V> pred = e;
1012 if ((e = e.next) == null) {
1013 pred.next = new Node<K,V>(hash, key,
1014 value, null);
1015 break;
1016 }
1017 }
1018 }
1019 else if (f instanceof TreeBin) {
1020 Node<K,V> p;
1021 binCount = 2;
1022 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1023 value)) != null) {
1024 oldVal = p.val;
1025 if (!onlyIfAbsent)
1026 p.val = value;
1027 }
1028 }
1029 else if (f instanceof ReservationNode)
1030 throw new IllegalStateException("Recursive update");
1031 }
1032 }
1033 if (binCount != 0) {
1034 if (binCount >= TREEIFY_THRESHOLD)
1035 treeifyBin(tab, i);
1036 if (oldVal != null)
1037 return oldVal;
1038 break;
1039 }
1040 }
1041 }
1042 addCount(1L, binCount);
1043 return null;
1044 }
1045
1046 /**
1047 * Copies all of the mappings from the specified map to this one.
1048 * These mappings replace any mappings that this map had for any of the
1049 * keys currently in the specified map.
1050 *
1051 * @param m mappings to be stored in this map
1052 */
1053 public void putAll(Map<? extends K, ? extends V> m) {
1054 tryPresize(m.size());
1055 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1056 putVal(e.getKey(), e.getValue(), false);
1057 }
1058
1059 /**
1060 * Removes the key (and its corresponding value) from this map.
1061 * This method does nothing if the key is not in the map.
1062 *
1063 * @param key the key that needs to be removed
1064 * @return the previous value associated with {@code key}, or
1065 * {@code null} if there was no mapping for {@code key}
1066 * @throws NullPointerException if the specified key is null
1067 */
1068 public V remove(Object key) {
1069 return replaceNode(key, null, null);
1070 }
1071
1072 /**
1073 * Implementation for the four public remove/replace methods:
1074 * Replaces node value with v, conditional upon match of cv if
1075 * non-null. If resulting value is null, delete.
1076 */
1077 final V replaceNode(Object key, V value, Object cv) {
1078 int hash = spread(key.hashCode());
1079 for (Node<K,V>[] tab = table;;) {
1080 Node<K,V> f; int n, i, fh;
1081 if (tab == null || (n = tab.length) == 0 ||
1082 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1083 break;
1084 else if ((fh = f.hash) == MOVED)
1085 tab = helpTransfer(tab, f);
1086 else {
1087 V oldVal = null;
1088 boolean validated = false;
1089 synchronized (f) {
1090 if (tabAt(tab, i) == f) {
1091 if (fh >= 0) {
1092 validated = true;
1093 for (Node<K,V> e = f, pred = null;;) {
1094 K ek;
1095 if (e.hash == hash &&
1096 ((ek = e.key) == key ||
1097 (ek != null && key.equals(ek)))) {
1098 V ev = e.val;
1099 if (cv == null || cv == ev ||
1100 (ev != null && cv.equals(ev))) {
1101 oldVal = ev;
1102 if (value != null)
1103 e.val = value;
1104 else if (pred != null)
1105 pred.next = e.next;
1106 else
1107 setTabAt(tab, i, e.next);
1108 }
1109 break;
1110 }
1111 pred = e;
1112 if ((e = e.next) == null)
1113 break;
1114 }
1115 }
1116 else if (f instanceof TreeBin) {
1117 validated = true;
1118 TreeBin<K,V> t = (TreeBin<K,V>)f;
1119 TreeNode<K,V> r, p;
1120 if ((r = t.root) != null &&
1121 (p = r.findTreeNode(hash, key, null)) != null) {
1122 V pv = p.val;
1123 if (cv == null || cv == pv ||
1124 (pv != null && cv.equals(pv))) {
1125 oldVal = pv;
1126 if (value != null)
1127 p.val = value;
1128 else if (t.removeTreeNode(p))
1129 setTabAt(tab, i, untreeify(t.first));
1130 }
1131 }
1132 }
1133 else if (f instanceof ReservationNode)
1134 throw new IllegalStateException("Recursive update");
1135 }
1136 }
1137 if (validated) {
1138 if (oldVal != null) {
1139 if (value == null)
1140 addCount(-1L, -1);
1141 return oldVal;
1142 }
1143 break;
1144 }
1145 }
1146 }
1147 return null;
1148 }
1149
1150 /**
1151 * Removes all of the mappings from this map.
1152 */
1153 public void clear() {
1154 long delta = 0L; // negative number of deletions
1155 int i = 0;
1156 Node<K,V>[] tab = table;
1157 while (tab != null && i < tab.length) {
1158 int fh;
1159 Node<K,V> f = tabAt(tab, i);
1160 if (f == null)
1161 ++i;
1162 else if ((fh = f.hash) == MOVED) {
1163 tab = helpTransfer(tab, f);
1164 i = 0; // restart
1165 }
1166 else {
1167 synchronized (f) {
1168 if (tabAt(tab, i) == f) {
1169 Node<K,V> p = (fh >= 0 ? f :
1170 (f instanceof TreeBin) ?
1171 ((TreeBin<K,V>)f).first : null);
1172 while (p != null) {
1173 --delta;
1174 p = p.next;
1175 }
1176 setTabAt(tab, i++, null);
1177 }
1178 }
1179 }
1180 }
1181 if (delta != 0L)
1182 addCount(delta, -1);
1183 }
1184
1185 /**
1186 * Returns a {@link Set} view of the keys contained in this map.
1187 * The set is backed by the map, so changes to the map are
1188 * reflected in the set, and vice-versa. The set supports element
1189 * removal, which removes the corresponding mapping from this map,
1190 * via the {@code Iterator.remove}, {@code Set.remove},
1191 * {@code removeAll}, {@code retainAll}, and {@code clear}
1192 * operations. It does not support the {@code add} or
1193 * {@code addAll} operations.
1194 *
1195 * <p>The view's iterators and spliterators are
1196 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1197 *
1198 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1199 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1200 *
1201 * @return the set view
1202 */
1203 public KeySetView<K,V> keySet() {
1204 KeySetView<K,V> ks;
1205 return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1206 }
1207
1208 /**
1209 * Returns a {@link Collection} view of the values contained in this map.
1210 * The collection is backed by the map, so changes to the map are
1211 * reflected in the collection, and vice-versa. The collection
1212 * supports element removal, which removes the corresponding
1213 * mapping from this map, via the {@code Iterator.remove},
1214 * {@code Collection.remove}, {@code removeAll},
1215 * {@code retainAll}, and {@code clear} operations. It does not
1216 * support the {@code add} or {@code addAll} operations.
1217 *
1218 * <p>The view's iterators and spliterators are
1219 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1220 *
1221 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1222 * and {@link Spliterator#NONNULL}.
1223 *
1224 * @return the collection view
1225 */
1226 public Collection<V> values() {
1227 ValuesView<K,V> vs;
1228 return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1229 }
1230
1231 /**
1232 * Returns a {@link Set} view of the mappings contained in this map.
1233 * The set is backed by the map, so changes to the map are
1234 * reflected in the set, and vice-versa. The set supports element
1235 * removal, which removes the corresponding mapping from the map,
1236 * via the {@code Iterator.remove}, {@code Set.remove},
1237 * {@code removeAll}, {@code retainAll}, and {@code clear}
1238 * operations.
1239 *
1240 * <p>The view's iterators and spliterators are
1241 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1242 *
1243 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1244 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1245 *
1246 * @return the set view
1247 */
1248 public Set<Map.Entry<K,V>> entrySet() {
1249 EntrySetView<K,V> es;
1250 return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1251 }
1252
1253 /**
1254 * Returns the hash code value for this {@link Map}, i.e.,
1255 * the sum of, for each key-value pair in the map,
1256 * {@code key.hashCode() ^ value.hashCode()}.
1257 *
1258 * @return the hash code value for this map
1259 */
1260 public int hashCode() {
1261 int h = 0;
1262 Node<K,V>[] t;
1263 if ((t = table) != null) {
1264 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1265 for (Node<K,V> p; (p = it.advance()) != null; )
1266 h += p.key.hashCode() ^ p.val.hashCode();
1267 }
1268 return h;
1269 }
1270
1271 /**
1272 * Returns a string representation of this map. The string
1273 * representation consists of a list of key-value mappings (in no
1274 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1275 * mappings are separated by the characters {@code ", "} (comma
1276 * and space). Each key-value mapping is rendered as the key
1277 * followed by an equals sign ("{@code =}") followed by the
1278 * associated value.
1279 *
1280 * @return a string representation of this map
1281 */
1282 public String toString() {
1283 Node<K,V>[] t;
1284 int f = (t = table) == null ? 0 : t.length;
1285 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1286 StringBuilder sb = new StringBuilder();
1287 sb.append('{');
1288 Node<K,V> p;
1289 if ((p = it.advance()) != null) {
1290 for (;;) {
1291 K k = p.key;
1292 V v = p.val;
1293 sb.append(k == this ? "(this Map)" : k);
1294 sb.append('=');
1295 sb.append(v == this ? "(this Map)" : v);
1296 if ((p = it.advance()) == null)
1297 break;
1298 sb.append(',').append(' ');
1299 }
1300 }
1301 return sb.append('}').toString();
1302 }
1303
1304 /**
1305 * Compares the specified object with this map for equality.
1306 * Returns {@code true} if the given object is a map with the same
1307 * mappings as this map. This operation may return misleading
1308 * results if either map is concurrently modified during execution
1309 * of this method.
1310 *
1311 * @param o object to be compared for equality with this map
1312 * @return {@code true} if the specified object is equal to this map
1313 */
1314 public boolean equals(Object o) {
1315 if (o != this) {
1316 if (!(o instanceof Map))
1317 return false;
1318 Map<?,?> m = (Map<?,?>) o;
1319 Node<K,V>[] t;
1320 int f = (t = table) == null ? 0 : t.length;
1321 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1322 for (Node<K,V> p; (p = it.advance()) != null; ) {
1323 V val = p.val;
1324 Object v = m.get(p.key);
1325 if (v == null || (v != val && !v.equals(val)))
1326 return false;
1327 }
1328 for (Map.Entry<?,?> e : m.entrySet()) {
1329 Object mk, mv, v;
1330 if ((mk = e.getKey()) == null ||
1331 (mv = e.getValue()) == null ||
1332 (v = get(mk)) == null ||
1333 (mv != v && !mv.equals(v)))
1334 return false;
1335 }
1336 }
1337 return true;
1338 }
1339
1340 /**
1341 * Stripped-down version of helper class used in previous version,
1342 * declared for the sake of serialization compatibility
1343 */
1344 static class Segment<K,V> extends ReentrantLock implements Serializable {
1345 private static final long serialVersionUID = 2249069246763182397L;
1346 final float loadFactor;
1347 Segment(float lf) { this.loadFactor = lf; }
1348 }
1349
1350 /**
1351 * Saves the state of the {@code ConcurrentHashMap} instance to a
1352 * stream (i.e., serializes it).
1353 * @param s the stream
1354 * @throws java.io.IOException if an I/O error occurs
1355 * @serialData
1356 * the key (Object) and value (Object)
1357 * for each key-value mapping, followed by a null pair.
1358 * The key-value mappings are emitted in no particular order.
1359 */
1360 private void writeObject(java.io.ObjectOutputStream s)
1361 throws java.io.IOException {
1362 // For serialization compatibility
1363 // Emulate segment calculation from previous version of this class
1364 int sshift = 0;
1365 int ssize = 1;
1366 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1367 ++sshift;
1368 ssize <<= 1;
1369 }
1370 int segmentShift = 32 - sshift;
1371 int segmentMask = ssize - 1;
1372 @SuppressWarnings("unchecked")
1373 Segment<K,V>[] segments = (Segment<K,V>[])
1374 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1375 for (int i = 0; i < segments.length; ++i)
1376 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1377 java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1378 streamFields.put("segments", segments);
1379 streamFields.put("segmentShift", segmentShift);
1380 streamFields.put("segmentMask", segmentMask);
1381 s.writeFields();
1382
1383 Node<K,V>[] t;
1384 if ((t = table) != null) {
1385 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1386 for (Node<K,V> p; (p = it.advance()) != null; ) {
1387 s.writeObject(p.key);
1388 s.writeObject(p.val);
1389 }
1390 }
1391 s.writeObject(null);
1392 s.writeObject(null);
1393 segments = null; // throw away
1394 }
1395
1396 /**
1397 * Reconstitutes the instance from a stream (that is, deserializes it).
1398 * @param s the stream
1399 * @throws ClassNotFoundException if the class of a serialized object
1400 * could not be found
1401 * @throws java.io.IOException if an I/O error occurs
1402 */
1403 private void readObject(java.io.ObjectInputStream s)
1404 throws java.io.IOException, ClassNotFoundException {
1405 /*
1406 * To improve performance in typical cases, we create nodes
1407 * while reading, then place in table once size is known.
1408 * However, we must also validate uniqueness and deal with
1409 * overpopulated bins while doing so, which requires
1410 * specialized versions of putVal mechanics.
1411 */
1412 sizeCtl = -1; // force exclusion for table construction
1413 s.defaultReadObject();
1414 long size = 0L;
1415 Node<K,V> p = null;
1416 for (;;) {
1417 @SuppressWarnings("unchecked")
1418 K k = (K) s.readObject();
1419 @SuppressWarnings("unchecked")
1420 V v = (V) s.readObject();
1421 if (k != null && v != null) {
1422 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1423 ++size;
1424 }
1425 else
1426 break;
1427 }
1428 if (size == 0L)
1429 sizeCtl = 0;
1430 else {
1431 int n;
1432 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1433 n = MAXIMUM_CAPACITY;
1434 else {
1435 int sz = (int)size;
1436 n = tableSizeFor(sz + (sz >>> 1) + 1);
1437 }
1438 @SuppressWarnings("unchecked")
1439 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1440 int mask = n - 1;
1441 long added = 0L;
1442 while (p != null) {
1443 boolean insertAtFront;
1444 Node<K,V> next = p.next, first;
1445 int h = p.hash, j = h & mask;
1446 if ((first = tabAt(tab, j)) == null)
1447 insertAtFront = true;
1448 else {
1449 K k = p.key;
1450 if (first.hash < 0) {
1451 TreeBin<K,V> t = (TreeBin<K,V>)first;
1452 if (t.putTreeVal(h, k, p.val) == null)
1453 ++added;
1454 insertAtFront = false;
1455 }
1456 else {
1457 int binCount = 0;
1458 insertAtFront = true;
1459 Node<K,V> q; K qk;
1460 for (q = first; q != null; q = q.next) {
1461 if (q.hash == h &&
1462 ((qk = q.key) == k ||
1463 (qk != null && k.equals(qk)))) {
1464 insertAtFront = false;
1465 break;
1466 }
1467 ++binCount;
1468 }
1469 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1470 insertAtFront = false;
1471 ++added;
1472 p.next = first;
1473 TreeNode<K,V> hd = null, tl = null;
1474 for (q = p; q != null; q = q.next) {
1475 TreeNode<K,V> t = new TreeNode<K,V>
1476 (q.hash, q.key, q.val, null, null);
1477 if ((t.prev = tl) == null)
1478 hd = t;
1479 else
1480 tl.next = t;
1481 tl = t;
1482 }
1483 setTabAt(tab, j, new TreeBin<K,V>(hd));
1484 }
1485 }
1486 }
1487 if (insertAtFront) {
1488 ++added;
1489 p.next = first;
1490 setTabAt(tab, j, p);
1491 }
1492 p = next;
1493 }
1494 table = tab;
1495 sizeCtl = n - (n >>> 2);
1496 baseCount = added;
1497 }
1498 }
1499
1500 // ConcurrentMap methods
1501
1502 /**
1503 * {@inheritDoc}
1504 *
1505 * @return the previous value associated with the specified key,
1506 * or {@code null} if there was no mapping for the key
1507 * @throws NullPointerException if the specified key or value is null
1508 */
1509 public V putIfAbsent(K key, V value) {
1510 return putVal(key, value, true);
1511 }
1512
1513 /**
1514 * {@inheritDoc}
1515 *
1516 * @throws NullPointerException if the specified key is null
1517 */
1518 public boolean remove(Object key, Object value) {
1519 if (key == null)
1520 throw new NullPointerException();
1521 return value != null && replaceNode(key, null, value) != null;
1522 }
1523
1524 /**
1525 * {@inheritDoc}
1526 *
1527 * @throws NullPointerException if any of the arguments are null
1528 */
1529 public boolean replace(K key, V oldValue, V newValue) {
1530 if (key == null || oldValue == null || newValue == null)
1531 throw new NullPointerException();
1532 return replaceNode(key, newValue, oldValue) != null;
1533 }
1534
1535 /**
1536 * {@inheritDoc}
1537 *
1538 * @return the previous value associated with the specified key,
1539 * or {@code null} if there was no mapping for the key
1540 * @throws NullPointerException if the specified key or value is null
1541 */
1542 public V replace(K key, V value) {
1543 if (key == null || value == null)
1544 throw new NullPointerException();
1545 return replaceNode(key, value, null);
1546 }
1547
1548 // Overrides of JDK8+ Map extension method defaults
1549
1550 /**
1551 * Returns the value to which the specified key is mapped, or the
1552 * given default value if this map contains no mapping for the
1553 * key.
1554 *
1555 * @param key the key whose associated value is to be returned
1556 * @param defaultValue the value to return if this map contains
1557 * no mapping for the given key
1558 * @return the mapping for the key, if present; else the default value
1559 * @throws NullPointerException if the specified key is null
1560 */
1561 public V getOrDefault(Object key, V defaultValue) {
1562 V v;
1563 return (v = get(key)) == null ? defaultValue : v;
1564 }
1565
1566 public void forEach(BiConsumer<? super K, ? super V> action) {
1567 if (action == null) throw new NullPointerException();
1568 Node<K,V>[] t;
1569 if ((t = table) != null) {
1570 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1571 for (Node<K,V> p; (p = it.advance()) != null; ) {
1572 action.accept(p.key, p.val);
1573 }
1574 }
1575 }
1576
1577 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1578 if (function == null) throw new NullPointerException();
1579 Node<K,V>[] t;
1580 if ((t = table) != null) {
1581 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1582 for (Node<K,V> p; (p = it.advance()) != null; ) {
1583 V oldValue = p.val;
1584 for (K key = p.key;;) {
1585 V newValue = function.apply(key, oldValue);
1586 if (newValue == null)
1587 throw new NullPointerException();
1588 if (replaceNode(key, newValue, oldValue) != null ||
1589 (oldValue = get(key)) == null)
1590 break;
1591 }
1592 }
1593 }
1594 }
1595
1596 /**
1597 * Helper method for EntrySet.removeIf
1598 */
1599 boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1600 if (function == null) throw new NullPointerException();
1601 Node<K,V>[] t;
1602 boolean removed = false;
1603 if ((t = table) != null) {
1604 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1605 for (Node<K,V> p; (p = it.advance()) != null; ) {
1606 K k = p.key;
1607 V v = p.val;
1608 Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1609 if (function.test(e) && replaceNode(k, null, v) != null)
1610 removed = true;
1611 }
1612 }
1613 return removed;
1614 }
1615
1616 /**
1617 * Helper method for Values.removeIf
1618 */
1619 boolean removeValueIf(Predicate<? super V> function) {
1620 if (function == null) throw new NullPointerException();
1621 Node<K,V>[] t;
1622 boolean removed = false;
1623 if ((t = table) != null) {
1624 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1625 for (Node<K,V> p; (p = it.advance()) != null; ) {
1626 K k = p.key;
1627 V v = p.val;
1628 if (function.test(v) && replaceNode(k, null, v) != null)
1629 removed = true;
1630 }
1631 }
1632 return removed;
1633 }
1634
1635 /**
1636 * If the specified key is not already associated with a value,
1637 * attempts to compute its value using the given mapping function
1638 * and enters it into this map unless {@code null}. The entire
1639 * method invocation is performed atomically, so the function is
1640 * applied at most once per key. Some attempted update operations
1641 * on this map by other threads may be blocked while computation
1642 * is in progress, so the computation should be short and simple,
1643 * and must not attempt to update any other mappings of this map.
1644 *
1645 * @param key key with which the specified value is to be associated
1646 * @param mappingFunction the function to compute a value
1647 * @return the current (existing or computed) value associated with
1648 * the specified key, or null if the computed value is null
1649 * @throws NullPointerException if the specified key or mappingFunction
1650 * is null
1651 * @throws IllegalStateException if the computation detectably
1652 * attempts a recursive update to this map that would
1653 * otherwise never complete
1654 * @throws RuntimeException or Error if the mappingFunction does so,
1655 * in which case the mapping is left unestablished
1656 */
1657 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1658 if (key == null || mappingFunction == null)
1659 throw new NullPointerException();
1660 int h = spread(key.hashCode());
1661 V val = null;
1662 int binCount = 0;
1663 for (Node<K,V>[] tab = table;;) {
1664 Node<K,V> f; int n, i, fh;
1665 if (tab == null || (n = tab.length) == 0)
1666 tab = initTable();
1667 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1668 Node<K,V> r = new ReservationNode<K,V>();
1669 synchronized (r) {
1670 if (casTabAt(tab, i, null, r)) {
1671 binCount = 1;
1672 Node<K,V> node = null;
1673 try {
1674 if ((val = mappingFunction.apply(key)) != null)
1675 node = new Node<K,V>(h, key, val, null);
1676 } finally {
1677 setTabAt(tab, i, node);
1678 }
1679 }
1680 }
1681 if (binCount != 0)
1682 break;
1683 }
1684 else if ((fh = f.hash) == MOVED)
1685 tab = helpTransfer(tab, f);
1686 else {
1687 boolean added = false;
1688 synchronized (f) {
1689 if (tabAt(tab, i) == f) {
1690 if (fh >= 0) {
1691 binCount = 1;
1692 for (Node<K,V> e = f;; ++binCount) {
1693 K ek;
1694 if (e.hash == h &&
1695 ((ek = e.key) == key ||
1696 (ek != null && key.equals(ek)))) {
1697 val = e.val;
1698 break;
1699 }
1700 Node<K,V> pred = e;
1701 if ((e = e.next) == null) {
1702 if ((val = mappingFunction.apply(key)) != null) {
1703 if (pred.next != null)
1704 throw new IllegalStateException("Recursive update");
1705 added = true;
1706 pred.next = new Node<K,V>(h, key, val, null);
1707 }
1708 break;
1709 }
1710 }
1711 }
1712 else if (f instanceof TreeBin) {
1713 binCount = 2;
1714 TreeBin<K,V> t = (TreeBin<K,V>)f;
1715 TreeNode<K,V> r, p;
1716 if ((r = t.root) != null &&
1717 (p = r.findTreeNode(h, key, null)) != null)
1718 val = p.val;
1719 else if ((val = mappingFunction.apply(key)) != null) {
1720 added = true;
1721 t.putTreeVal(h, key, val);
1722 }
1723 }
1724 else if (f instanceof ReservationNode)
1725 throw new IllegalStateException("Recursive update");
1726 }
1727 }
1728 if (binCount != 0) {
1729 if (binCount >= TREEIFY_THRESHOLD)
1730 treeifyBin(tab, i);
1731 if (!added)
1732 return val;
1733 break;
1734 }
1735 }
1736 }
1737 if (val != null)
1738 addCount(1L, binCount);
1739 return val;
1740 }
1741
1742 /**
1743 * If the value for the specified key is present, attempts to
1744 * compute a new mapping given the key and its current mapped
1745 * value. The entire method invocation is performed atomically.
1746 * Some attempted update operations on this map by other threads
1747 * may be blocked while computation is in progress, so the
1748 * computation should be short and simple, and must not attempt to
1749 * update any other mappings of this map.
1750 *
1751 * @param key key with which a value may be associated
1752 * @param remappingFunction the function to compute a value
1753 * @return the new value associated with the specified key, or null if none
1754 * @throws NullPointerException if the specified key or remappingFunction
1755 * is null
1756 * @throws IllegalStateException if the computation detectably
1757 * attempts a recursive update to this map that would
1758 * otherwise never complete
1759 * @throws RuntimeException or Error if the remappingFunction does so,
1760 * in which case the mapping is unchanged
1761 */
1762 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1763 if (key == null || remappingFunction == null)
1764 throw new NullPointerException();
1765 int h = spread(key.hashCode());
1766 V val = null;
1767 int delta = 0;
1768 int binCount = 0;
1769 for (Node<K,V>[] tab = table;;) {
1770 Node<K,V> f; int n, i, fh;
1771 if (tab == null || (n = tab.length) == 0)
1772 tab = initTable();
1773 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1774 break;
1775 else if ((fh = f.hash) == MOVED)
1776 tab = helpTransfer(tab, f);
1777 else {
1778 synchronized (f) {
1779 if (tabAt(tab, i) == f) {
1780 if (fh >= 0) {
1781 binCount = 1;
1782 for (Node<K,V> e = f, pred = null;; ++binCount) {
1783 K ek;
1784 if (e.hash == h &&
1785 ((ek = e.key) == key ||
1786 (ek != null && key.equals(ek)))) {
1787 val = remappingFunction.apply(key, e.val);
1788 if (val != null)
1789 e.val = val;
1790 else {
1791 delta = -1;
1792 Node<K,V> en = e.next;
1793 if (pred != null)
1794 pred.next = en;
1795 else
1796 setTabAt(tab, i, en);
1797 }
1798 break;
1799 }
1800 pred = e;
1801 if ((e = e.next) == null)
1802 break;
1803 }
1804 }
1805 else if (f instanceof TreeBin) {
1806 binCount = 2;
1807 TreeBin<K,V> t = (TreeBin<K,V>)f;
1808 TreeNode<K,V> r, p;
1809 if ((r = t.root) != null &&
1810 (p = r.findTreeNode(h, key, null)) != null) {
1811 val = remappingFunction.apply(key, p.val);
1812 if (val != null)
1813 p.val = val;
1814 else {
1815 delta = -1;
1816 if (t.removeTreeNode(p))
1817 setTabAt(tab, i, untreeify(t.first));
1818 }
1819 }
1820 }
1821 else if (f instanceof ReservationNode)
1822 throw new IllegalStateException("Recursive update");
1823 }
1824 }
1825 if (binCount != 0)
1826 break;
1827 }
1828 }
1829 if (delta != 0)
1830 addCount((long)delta, binCount);
1831 return val;
1832 }
1833
1834 /**
1835 * Attempts to compute a mapping for the specified key and its
1836 * current mapped value (or {@code null} if there is no current
1837 * mapping). The entire method invocation is performed atomically.
1838 * Some attempted update operations on this map by other threads
1839 * may be blocked while computation is in progress, so the
1840 * computation should be short and simple, and must not attempt to
1841 * update any other mappings of this Map.
1842 *
1843 * @param key key with which the specified value is to be associated
1844 * @param remappingFunction the function to compute a value
1845 * @return the new value associated with the specified key, or null if none
1846 * @throws NullPointerException if the specified key or remappingFunction
1847 * is null
1848 * @throws IllegalStateException if the computation detectably
1849 * attempts a recursive update to this map that would
1850 * otherwise never complete
1851 * @throws RuntimeException or Error if the remappingFunction does so,
1852 * in which case the mapping is unchanged
1853 */
1854 public V compute(K key,
1855 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1856 if (key == null || remappingFunction == null)
1857 throw new NullPointerException();
1858 int h = spread(key.hashCode());
1859 V val = null;
1860 int delta = 0;
1861 int binCount = 0;
1862 for (Node<K,V>[] tab = table;;) {
1863 Node<K,V> f; int n, i, fh;
1864 if (tab == null || (n = tab.length) == 0)
1865 tab = initTable();
1866 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1867 Node<K,V> r = new ReservationNode<K,V>();
1868 synchronized (r) {
1869 if (casTabAt(tab, i, null, r)) {
1870 binCount = 1;
1871 Node<K,V> node = null;
1872 try {
1873 if ((val = remappingFunction.apply(key, null)) != null) {
1874 delta = 1;
1875 node = new Node<K,V>(h, key, val, null);
1876 }
1877 } finally {
1878 setTabAt(tab, i, node);
1879 }
1880 }
1881 }
1882 if (binCount != 0)
1883 break;
1884 }
1885 else if ((fh = f.hash) == MOVED)
1886 tab = helpTransfer(tab, f);
1887 else {
1888 synchronized (f) {
1889 if (tabAt(tab, i) == f) {
1890 if (fh >= 0) {
1891 binCount = 1;
1892 for (Node<K,V> e = f, pred = null;; ++binCount) {
1893 K ek;
1894 if (e.hash == h &&
1895 ((ek = e.key) == key ||
1896 (ek != null && key.equals(ek)))) {
1897 val = remappingFunction.apply(key, e.val);
1898 if (val != null)
1899 e.val = val;
1900 else {
1901 delta = -1;
1902 Node<K,V> en = e.next;
1903 if (pred != null)
1904 pred.next = en;
1905 else
1906 setTabAt(tab, i, en);
1907 }
1908 break;
1909 }
1910 pred = e;
1911 if ((e = e.next) == null) {
1912 val = remappingFunction.apply(key, null);
1913 if (val != null) {
1914 if (pred.next != null)
1915 throw new IllegalStateException("Recursive update");
1916 delta = 1;
1917 pred.next =
1918 new Node<K,V>(h, key, val, null);
1919 }
1920 break;
1921 }
1922 }
1923 }
1924 else if (f instanceof TreeBin) {
1925 binCount = 1;
1926 TreeBin<K,V> t = (TreeBin<K,V>)f;
1927 TreeNode<K,V> r, p;
1928 if ((r = t.root) != null)
1929 p = r.findTreeNode(h, key, null);
1930 else
1931 p = null;
1932 V pv = (p == null) ? null : p.val;
1933 val = remappingFunction.apply(key, pv);
1934 if (val != null) {
1935 if (p != null)
1936 p.val = val;
1937 else {
1938 delta = 1;
1939 t.putTreeVal(h, key, val);
1940 }
1941 }
1942 else if (p != null) {
1943 delta = -1;
1944 if (t.removeTreeNode(p))
1945 setTabAt(tab, i, untreeify(t.first));
1946 }
1947 }
1948 else if (f instanceof ReservationNode)
1949 throw new IllegalStateException("Recursive update");
1950 }
1951 }
1952 if (binCount != 0) {
1953 if (binCount >= TREEIFY_THRESHOLD)
1954 treeifyBin(tab, i);
1955 break;
1956 }
1957 }
1958 }
1959 if (delta != 0)
1960 addCount((long)delta, binCount);
1961 return val;
1962 }
1963
1964 /**
1965 * If the specified key is not already associated with a
1966 * (non-null) value, associates it with the given value.
1967 * Otherwise, replaces the value with the results of the given
1968 * remapping function, or removes if {@code null}. The entire
1969 * method invocation is performed atomically. Some attempted
1970 * update operations on this map by other threads may be blocked
1971 * while computation is in progress, so the computation should be
1972 * short and simple, and must not attempt to update any other
1973 * mappings of this Map.
1974 *
1975 * @param key key with which the specified value is to be associated
1976 * @param value the value to use if absent
1977 * @param remappingFunction the function to recompute a value if present
1978 * @return the new value associated with the specified key, or null if none
1979 * @throws NullPointerException if the specified key or the
1980 * remappingFunction is null
1981 * @throws RuntimeException or Error if the remappingFunction does so,
1982 * in which case the mapping is unchanged
1983 */
1984 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1985 if (key == null || value == null || remappingFunction == null)
1986 throw new NullPointerException();
1987 int h = spread(key.hashCode());
1988 V val = null;
1989 int delta = 0;
1990 int binCount = 0;
1991 for (Node<K,V>[] tab = table;;) {
1992 Node<K,V> f; int n, i, fh;
1993 if (tab == null || (n = tab.length) == 0)
1994 tab = initTable();
1995 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1996 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1997 delta = 1;
1998 val = value;
1999 break;
2000 }
2001 }
2002 else if ((fh = f.hash) == MOVED)
2003 tab = helpTransfer(tab, f);
2004 else {
2005 synchronized (f) {
2006 if (tabAt(tab, i) == f) {
2007 if (fh >= 0) {
2008 binCount = 1;
2009 for (Node<K,V> e = f, pred = null;; ++binCount) {
2010 K ek;
2011 if (e.hash == h &&
2012 ((ek = e.key) == key ||
2013 (ek != null && key.equals(ek)))) {
2014 val = remappingFunction.apply(e.val, value);
2015 if (val != null)
2016 e.val = val;
2017 else {
2018 delta = -1;
2019 Node<K,V> en = e.next;
2020 if (pred != null)
2021 pred.next = en;
2022 else
2023 setTabAt(tab, i, en);
2024 }
2025 break;
2026 }
2027 pred = e;
2028 if ((e = e.next) == null) {
2029 delta = 1;
2030 val = value;
2031 pred.next =
2032 new Node<K,V>(h, key, val, null);
2033 break;
2034 }
2035 }
2036 }
2037 else if (f instanceof TreeBin) {
2038 binCount = 2;
2039 TreeBin<K,V> t = (TreeBin<K,V>)f;
2040 TreeNode<K,V> r = t.root;
2041 TreeNode<K,V> p = (r == null) ? null :
2042 r.findTreeNode(h, key, null);
2043 val = (p == null) ? value :
2044 remappingFunction.apply(p.val, value);
2045 if (val != null) {
2046 if (p != null)
2047 p.val = val;
2048 else {
2049 delta = 1;
2050 t.putTreeVal(h, key, val);
2051 }
2052 }
2053 else if (p != null) {
2054 delta = -1;
2055 if (t.removeTreeNode(p))
2056 setTabAt(tab, i, untreeify(t.first));
2057 }
2058 }
2059 else if (f instanceof ReservationNode)
2060 throw new IllegalStateException("Recursive update");
2061 }
2062 }
2063 if (binCount != 0) {
2064 if (binCount >= TREEIFY_THRESHOLD)
2065 treeifyBin(tab, i);
2066 break;
2067 }
2068 }
2069 }
2070 if (delta != 0)
2071 addCount((long)delta, binCount);
2072 return val;
2073 }
2074
2075 // Hashtable legacy methods
2076
2077 /**
2078 * Tests if some key maps into the specified value in this table.
2079 *
2080 * <p>Note that this method is identical in functionality to
2081 * {@link #containsValue(Object)}, and exists solely to ensure
2082 * full compatibility with class {@link java.util.Hashtable},
2083 * which supported this method prior to introduction of the Java
2084 * Collections Framework.
2085 *
2086 * @param value a value to search for
2087 * @return {@code true} if and only if some key maps to the
2088 * {@code value} argument in this table as
2089 * determined by the {@code equals} method;
2090 * {@code false} otherwise
2091 * @throws NullPointerException if the specified value is null
2092 */
2093 public boolean contains(Object value) {
2094 return containsValue(value);
2095 }
2096
2097 /**
2098 * Returns an enumeration of the keys in this table.
2099 *
2100 * @return an enumeration of the keys in this table
2101 * @see #keySet()
2102 */
2103 public Enumeration<K> keys() {
2104 Node<K,V>[] t;
2105 int f = (t = table) == null ? 0 : t.length;
2106 return new KeyIterator<K,V>(t, f, 0, f, this);
2107 }
2108
2109 /**
2110 * Returns an enumeration of the values in this table.
2111 *
2112 * @return an enumeration of the values in this table
2113 * @see #values()
2114 */
2115 public Enumeration<V> elements() {
2116 Node<K,V>[] t;
2117 int f = (t = table) == null ? 0 : t.length;
2118 return new ValueIterator<K,V>(t, f, 0, f, this);
2119 }
2120
2121 // ConcurrentHashMap-only methods
2122
2123 /**
2124 * Returns the number of mappings. This method should be used
2125 * instead of {@link #size} because a ConcurrentHashMap may
2126 * contain more mappings than can be represented as an int. The
2127 * value returned is an estimate; the actual count may differ if
2128 * there are concurrent insertions or removals.
2129 *
2130 * @return the number of mappings
2131 * @since 1.8
2132 */
2133 public long mappingCount() {
2134 long n = sumCount();
2135 return (n < 0L) ? 0L : n; // ignore transient negative values
2136 }
2137
2138 /**
2139 * Creates a new {@link Set} backed by a ConcurrentHashMap
2140 * from the given type to {@code Boolean.TRUE}.
2141 *
2142 * @param <K> the element type of the returned set
2143 * @return the new set
2144 * @since 1.8
2145 */
2146 public static <K> KeySetView<K,Boolean> newKeySet() {
2147 return new KeySetView<K,Boolean>
2148 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2149 }
2150
2151 /**
2152 * Creates a new {@link Set} backed by a ConcurrentHashMap
2153 * from the given type to {@code Boolean.TRUE}.
2154 *
2155 * @param initialCapacity The implementation performs internal
2156 * sizing to accommodate this many elements.
2157 * @param <K> the element type of the returned set
2158 * @return the new set
2159 * @throws IllegalArgumentException if the initial capacity of
2160 * elements is negative
2161 * @since 1.8
2162 */
2163 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2164 return new KeySetView<K,Boolean>
2165 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2166 }
2167
2168 /**
2169 * Returns a {@link Set} view of the keys in this map, using the
2170 * given common mapped value for any additions (i.e., {@link
2171 * Collection#add} and {@link Collection#addAll(Collection)}).
2172 * This is of course only appropriate if it is acceptable to use
2173 * the same value for all additions from this view.
2174 *
2175 * @param mappedValue the mapped value to use for any additions
2176 * @return the set view
2177 * @throws NullPointerException if the mappedValue is null
2178 */
2179 public KeySetView<K,V> keySet(V mappedValue) {
2180 if (mappedValue == null)
2181 throw new NullPointerException();
2182 return new KeySetView<K,V>(this, mappedValue);
2183 }
2184
2185 /* ---------------- Special Nodes -------------- */
2186
2187 /**
2188 * A node inserted at head of bins during transfer operations.
2189 */
2190 static final class ForwardingNode<K,V> extends Node<K,V> {
2191 final Node<K,V>[] nextTable;
2192 ForwardingNode(Node<K,V>[] tab) {
2193 super(MOVED, null, null, null);
2194 this.nextTable = tab;
2195 }
2196
2197 Node<K,V> find(int h, Object k) {
2198 // loop to avoid arbitrarily deep recursion on forwarding nodes
2199 outer: for (Node<K,V>[] tab = nextTable;;) {
2200 Node<K,V> e; int n;
2201 if (k == null || tab == null || (n = tab.length) == 0 ||
2202 (e = tabAt(tab, (n - 1) & h)) == null)
2203 return null;
2204 for (;;) {
2205 int eh; K ek;
2206 if ((eh = e.hash) == h &&
2207 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2208 return e;
2209 if (eh < 0) {
2210 if (e instanceof ForwardingNode) {
2211 tab = ((ForwardingNode<K,V>)e).nextTable;
2212 continue outer;
2213 }
2214 else
2215 return e.find(h, k);
2216 }
2217 if ((e = e.next) == null)
2218 return null;
2219 }
2220 }
2221 }
2222 }
2223
2224 /**
2225 * A place-holder node used in computeIfAbsent and compute
2226 */
2227 static final class ReservationNode<K,V> extends Node<K,V> {
2228 ReservationNode() {
2229 super(RESERVED, null, null, null);
2230 }
2231
2232 Node<K,V> find(int h, Object k) {
2233 return null;
2234 }
2235 }
2236
2237 /* ---------------- Table Initialization and Resizing -------------- */
2238
2239 /**
2240 * Returns the stamp bits for resizing a table of size n.
2241 * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2242 */
2243 static final int resizeStamp(int n) {
2244 return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2245 }
2246
2247 /**
2248 * Initializes table, using the size recorded in sizeCtl.
2249 */
2250 private final Node<K,V>[] initTable() {
2251 Node<K,V>[] tab; int sc;
2252 while ((tab = table) == null || tab.length == 0) {
2253 if ((sc = sizeCtl) < 0)
2254 Thread.yield(); // lost initialization race; just spin
2255 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2256 try {
2257 if ((tab = table) == null || tab.length == 0) {
2258 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2259 @SuppressWarnings("unchecked")
2260 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2261 table = tab = nt;
2262 sc = n - (n >>> 2);
2263 }
2264 } finally {
2265 sizeCtl = sc;
2266 }
2267 break;
2268 }
2269 }
2270 return tab;
2271 }
2272
2273 /**
2274 * Adds to count, and if table is too small and not already
2275 * resizing, initiates transfer. If already resizing, helps
2276 * perform transfer if work is available. Rechecks occupancy
2277 * after a transfer to see if another resize is already needed
2278 * because resizings are lagging additions.
2279 *
2280 * @param x the count to add
2281 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2282 */
2283 private final void addCount(long x, int check) {
2284 CounterCell[] as; long b, s;
2285 if ((as = counterCells) != null ||
2286 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2287 CounterCell a; long v; int m;
2288 boolean uncontended = true;
2289 if (as == null || (m = as.length - 1) < 0 ||
2290 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2291 !(uncontended =
2292 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2293 fullAddCount(x, uncontended);
2294 return;
2295 }
2296 if (check <= 1)
2297 return;
2298 s = sumCount();
2299 }
2300 if (check >= 0) {
2301 Node<K,V>[] tab, nt; int n, sc;
2302 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2303 (n = tab.length) < MAXIMUM_CAPACITY) {
2304 int rs = resizeStamp(n);
2305 if (sc < 0) {
2306 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2307 sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2308 transferIndex <= 0)
2309 break;
2310 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2311 transfer(tab, nt);
2312 }
2313 else if (U.compareAndSwapInt(this, SIZECTL, sc,
2314 (rs << RESIZE_STAMP_SHIFT) + 2))
2315 transfer(tab, null);
2316 s = sumCount();
2317 }
2318 }
2319 }
2320
2321 /**
2322 * Helps transfer if a resize is in progress.
2323 */
2324 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2325 Node<K,V>[] nextTab; int sc;
2326 if (tab != null && (f instanceof ForwardingNode) &&
2327 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2328 int rs = resizeStamp(tab.length);
2329 while (nextTab == nextTable && table == tab &&
2330 (sc = sizeCtl) < 0) {
2331 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2332 sc == rs + MAX_RESIZERS || transferIndex <= 0)
2333 break;
2334 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2335 transfer(tab, nextTab);
2336 break;
2337 }
2338 }
2339 return nextTab;
2340 }
2341 return table;
2342 }
2343
2344 /**
2345 * Tries to presize table to accommodate the given number of elements.
2346 *
2347 * @param size number of elements (doesn't need to be perfectly accurate)
2348 */
2349 private final void tryPresize(int size) {
2350 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2351 tableSizeFor(size + (size >>> 1) + 1);
2352 int sc;
2353 while ((sc = sizeCtl) >= 0) {
2354 Node<K,V>[] tab = table; int n;
2355 if (tab == null || (n = tab.length) == 0) {
2356 n = (sc > c) ? sc : c;
2357 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2358 try {
2359 if (table == tab) {
2360 @SuppressWarnings("unchecked")
2361 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2362 table = nt;
2363 sc = n - (n >>> 2);
2364 }
2365 } finally {
2366 sizeCtl = sc;
2367 }
2368 }
2369 }
2370 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2371 break;
2372 else if (tab == table) {
2373 int rs = resizeStamp(n);
2374 if (U.compareAndSwapInt(this, SIZECTL, sc,
2375 (rs << RESIZE_STAMP_SHIFT) + 2))
2376 transfer(tab, null);
2377 }
2378 }
2379 }
2380
2381 /**
2382 * Moves and/or copies the nodes in each bin to new table. See
2383 * above for explanation.
2384 */
2385 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2386 int n = tab.length, stride;
2387 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2388 stride = MIN_TRANSFER_STRIDE; // subdivide range
2389 if (nextTab == null) { // initiating
2390 try {
2391 @SuppressWarnings("unchecked")
2392 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2393 nextTab = nt;
2394 } catch (Throwable ex) { // try to cope with OOME
2395 sizeCtl = Integer.MAX_VALUE;
2396 return;
2397 }
2398 nextTable = nextTab;
2399 transferIndex = n;
2400 }
2401 int nextn = nextTab.length;
2402 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2403 boolean advance = true;
2404 boolean finishing = false; // to ensure sweep before committing nextTab
2405 for (int i = 0, bound = 0;;) {
2406 Node<K,V> f; int fh;
2407 while (advance) {
2408 int nextIndex, nextBound;
2409 if (--i >= bound || finishing)
2410 advance = false;
2411 else if ((nextIndex = transferIndex) <= 0) {
2412 i = -1;
2413 advance = false;
2414 }
2415 else if (U.compareAndSwapInt
2416 (this, TRANSFERINDEX, nextIndex,
2417 nextBound = (nextIndex > stride ?
2418 nextIndex - stride : 0))) {
2419 bound = nextBound;
2420 i = nextIndex - 1;
2421 advance = false;
2422 }
2423 }
2424 if (i < 0 || i >= n || i + n >= nextn) {
2425 int sc;
2426 if (finishing) {
2427 nextTable = null;
2428 table = nextTab;
2429 sizeCtl = (n << 1) - (n >>> 1);
2430 return;
2431 }
2432 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2433 if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2434 return;
2435 finishing = advance = true;
2436 i = n; // recheck before commit
2437 }
2438 }
2439 else if ((f = tabAt(tab, i)) == null)
2440 advance = casTabAt(tab, i, null, fwd);
2441 else if ((fh = f.hash) == MOVED)
2442 advance = true; // already processed
2443 else {
2444 synchronized (f) {
2445 if (tabAt(tab, i) == f) {
2446 Node<K,V> ln, hn;
2447 if (fh >= 0) {
2448 int runBit = fh & n;
2449 Node<K,V> lastRun = f;
2450 for (Node<K,V> p = f.next; p != null; p = p.next) {
2451 int b = p.hash & n;
2452 if (b != runBit) {
2453 runBit = b;
2454 lastRun = p;
2455 }
2456 }
2457 if (runBit == 0) {
2458 ln = lastRun;
2459 hn = null;
2460 }
2461 else {
2462 hn = lastRun;
2463 ln = null;
2464 }
2465 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2466 int ph = p.hash; K pk = p.key; V pv = p.val;
2467 if ((ph & n) == 0)
2468 ln = new Node<K,V>(ph, pk, pv, ln);
2469 else
2470 hn = new Node<K,V>(ph, pk, pv, hn);
2471 }
2472 setTabAt(nextTab, i, ln);
2473 setTabAt(nextTab, i + n, hn);
2474 setTabAt(tab, i, fwd);
2475 advance = true;
2476 }
2477 else if (f instanceof TreeBin) {
2478 TreeBin<K,V> t = (TreeBin<K,V>)f;
2479 TreeNode<K,V> lo = null, loTail = null;
2480 TreeNode<K,V> hi = null, hiTail = null;
2481 int lc = 0, hc = 0;
2482 for (Node<K,V> e = t.first; e != null; e = e.next) {
2483 int h = e.hash;
2484 TreeNode<K,V> p = new TreeNode<K,V>
2485 (h, e.key, e.val, null, null);
2486 if ((h & n) == 0) {
2487 if ((p.prev = loTail) == null)
2488 lo = p;
2489 else
2490 loTail.next = p;
2491 loTail = p;
2492 ++lc;
2493 }
2494 else {
2495 if ((p.prev = hiTail) == null)
2496 hi = p;
2497 else
2498 hiTail.next = p;
2499 hiTail = p;
2500 ++hc;
2501 }
2502 }
2503 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2504 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2505 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2506 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2507 setTabAt(nextTab, i, ln);
2508 setTabAt(nextTab, i + n, hn);
2509 setTabAt(tab, i, fwd);
2510 advance = true;
2511 }
2512 }
2513 }
2514 }
2515 }
2516 }
2517
2518 /* ---------------- Counter support -------------- */
2519
2520 /**
2521 * A padded cell for distributing counts. Adapted from LongAdder
2522 * and Striped64. See their internal docs for explanation.
2523 */
2524 @sun.misc.Contended static final class CounterCell {
2525 volatile long value;
2526 CounterCell(long x) { value = x; }
2527 }
2528
2529 final long sumCount() {
2530 CounterCell[] as = counterCells; CounterCell a;
2531 long sum = baseCount;
2532 if (as != null) {
2533 for (int i = 0; i < as.length; ++i) {
2534 if ((a = as[i]) != null)
2535 sum += a.value;
2536 }
2537 }
2538 return sum;
2539 }
2540
2541 // See LongAdder version for explanation
2542 private final void fullAddCount(long x, boolean wasUncontended) {
2543 int h;
2544 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2545 ThreadLocalRandom.localInit(); // force initialization
2546 h = ThreadLocalRandom.getProbe();
2547 wasUncontended = true;
2548 }
2549 boolean collide = false; // True if last slot nonempty
2550 for (;;) {
2551 CounterCell[] as; CounterCell a; int n; long v;
2552 if ((as = counterCells) != null && (n = as.length) > 0) {
2553 if ((a = as[(n - 1) & h]) == null) {
2554 if (cellsBusy == 0) { // Try to attach new Cell
2555 CounterCell r = new CounterCell(x); // Optimistic create
2556 if (cellsBusy == 0 &&
2557 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2558 boolean created = false;
2559 try { // Recheck under lock
2560 CounterCell[] rs; int m, j;
2561 if ((rs = counterCells) != null &&
2562 (m = rs.length) > 0 &&
2563 rs[j = (m - 1) & h] == null) {
2564 rs[j] = r;
2565 created = true;
2566 }
2567 } finally {
2568 cellsBusy = 0;
2569 }
2570 if (created)
2571 break;
2572 continue; // Slot is now non-empty
2573 }
2574 }
2575 collide = false;
2576 }
2577 else if (!wasUncontended) // CAS already known to fail
2578 wasUncontended = true; // Continue after rehash
2579 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2580 break;
2581 else if (counterCells != as || n >= NCPU)
2582 collide = false; // At max size or stale
2583 else if (!collide)
2584 collide = true;
2585 else if (cellsBusy == 0 &&
2586 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2587 try {
2588 if (counterCells == as) {// Expand table unless stale
2589 CounterCell[] rs = new CounterCell[n << 1];
2590 for (int i = 0; i < n; ++i)
2591 rs[i] = as[i];
2592 counterCells = rs;
2593 }
2594 } finally {
2595 cellsBusy = 0;
2596 }
2597 collide = false;
2598 continue; // Retry with expanded table
2599 }
2600 h = ThreadLocalRandom.advanceProbe(h);
2601 }
2602 else if (cellsBusy == 0 && counterCells == as &&
2603 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2604 boolean init = false;
2605 try { // Initialize table
2606 if (counterCells == as) {
2607 CounterCell[] rs = new CounterCell[2];
2608 rs[h & 1] = new CounterCell(x);
2609 counterCells = rs;
2610 init = true;
2611 }
2612 } finally {
2613 cellsBusy = 0;
2614 }
2615 if (init)
2616 break;
2617 }
2618 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2619 break; // Fall back on using base
2620 }
2621 }
2622
2623 /* ---------------- Conversion from/to TreeBins -------------- */
2624
2625 /**
2626 * Replaces all linked nodes in bin at given index unless table is
2627 * too small, in which case resizes instead.
2628 */
2629 private final void treeifyBin(Node<K,V>[] tab, int index) {
2630 Node<K,V> b; int n;
2631 if (tab != null) {
2632 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2633 tryPresize(n << 1);
2634 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2635 synchronized (b) {
2636 if (tabAt(tab, index) == b) {
2637 TreeNode<K,V> hd = null, tl = null;
2638 for (Node<K,V> e = b; e != null; e = e.next) {
2639 TreeNode<K,V> p =
2640 new TreeNode<K,V>(e.hash, e.key, e.val,
2641 null, null);
2642 if ((p.prev = tl) == null)
2643 hd = p;
2644 else
2645 tl.next = p;
2646 tl = p;
2647 }
2648 setTabAt(tab, index, new TreeBin<K,V>(hd));
2649 }
2650 }
2651 }
2652 }
2653 }
2654
2655 /**
2656 * Returns a list on non-TreeNodes replacing those in given list.
2657 */
2658 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2659 Node<K,V> hd = null, tl = null;
2660 for (Node<K,V> q = b; q != null; q = q.next) {
2661 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2662 if (tl == null)
2663 hd = p;
2664 else
2665 tl.next = p;
2666 tl = p;
2667 }
2668 return hd;
2669 }
2670
2671 /* ---------------- TreeNodes -------------- */
2672
2673 /**
2674 * Nodes for use in TreeBins
2675 */
2676 static final class TreeNode<K,V> extends Node<K,V> {
2677 TreeNode<K,V> parent; // red-black tree links
2678 TreeNode<K,V> left;
2679 TreeNode<K,V> right;
2680 TreeNode<K,V> prev; // needed to unlink next upon deletion
2681 boolean red;
2682
2683 TreeNode(int hash, K key, V val, Node<K,V> next,
2684 TreeNode<K,V> parent) {
2685 super(hash, key, val, next);
2686 this.parent = parent;
2687 }
2688
2689 Node<K,V> find(int h, Object k) {
2690 return findTreeNode(h, k, null);
2691 }
2692
2693 /**
2694 * Returns the TreeNode (or null if not found) for the given key
2695 * starting at given root.
2696 */
2697 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2698 if (k != null) {
2699 TreeNode<K,V> p = this;
2700 do {
2701 int ph, dir; K pk; TreeNode<K,V> q;
2702 TreeNode<K,V> pl = p.left, pr = p.right;
2703 if ((ph = p.hash) > h)
2704 p = pl;
2705 else if (ph < h)
2706 p = pr;
2707 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2708 return p;
2709 else if (pl == null)
2710 p = pr;
2711 else if (pr == null)
2712 p = pl;
2713 else if ((kc != null ||
2714 (kc = comparableClassFor(k)) != null) &&
2715 (dir = compareComparables(kc, k, pk)) != 0)
2716 p = (dir < 0) ? pl : pr;
2717 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2718 return q;
2719 else
2720 p = pl;
2721 } while (p != null);
2722 }
2723 return null;
2724 }
2725 }
2726
2727 /* ---------------- TreeBins -------------- */
2728
2729 /**
2730 * TreeNodes used at the heads of bins. TreeBins do not hold user
2731 * keys or values, but instead point to list of TreeNodes and
2732 * their root. They also maintain a parasitic read-write lock
2733 * forcing writers (who hold bin lock) to wait for readers (who do
2734 * not) to complete before tree restructuring operations.
2735 */
2736 static final class TreeBin<K,V> extends Node<K,V> {
2737 TreeNode<K,V> root;
2738 volatile TreeNode<K,V> first;
2739 volatile Thread waiter;
2740 volatile int lockState;
2741 // values for lockState
2742 static final int WRITER = 1; // set while holding write lock
2743 static final int WAITER = 2; // set when waiting for write lock
2744 static final int READER = 4; // increment value for setting read lock
2745
2746 /**
2747 * Tie-breaking utility for ordering insertions when equal
2748 * hashCodes and non-comparable. We don't require a total
2749 * order, just a consistent insertion rule to maintain
2750 * equivalence across rebalancings. Tie-breaking further than
2751 * necessary simplifies testing a bit.
2752 */
2753 static int tieBreakOrder(Object a, Object b) {
2754 int d;
2755 if (a == null || b == null ||
2756 (d = a.getClass().getName().
2757 compareTo(b.getClass().getName())) == 0)
2758 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2759 -1 : 1);
2760 return d;
2761 }
2762
2763 /**
2764 * Creates bin with initial set of nodes headed by b.
2765 */
2766 TreeBin(TreeNode<K,V> b) {
2767 super(TREEBIN, null, null, null);
2768 this.first = b;
2769 TreeNode<K,V> r = null;
2770 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2771 next = (TreeNode<K,V>)x.next;
2772 x.left = x.right = null;
2773 if (r == null) {
2774 x.parent = null;
2775 x.red = false;
2776 r = x;
2777 }
2778 else {
2779 K k = x.key;
2780 int h = x.hash;
2781 Class<?> kc = null;
2782 for (TreeNode<K,V> p = r;;) {
2783 int dir, ph;
2784 K pk = p.key;
2785 if ((ph = p.hash) > h)
2786 dir = -1;
2787 else if (ph < h)
2788 dir = 1;
2789 else if ((kc == null &&
2790 (kc = comparableClassFor(k)) == null) ||
2791 (dir = compareComparables(kc, k, pk)) == 0)
2792 dir = tieBreakOrder(k, pk);
2793 TreeNode<K,V> xp = p;
2794 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2795 x.parent = xp;
2796 if (dir <= 0)
2797 xp.left = x;
2798 else
2799 xp.right = x;
2800 r = balanceInsertion(r, x);
2801 break;
2802 }
2803 }
2804 }
2805 }
2806 this.root = r;
2807 assert checkInvariants(root);
2808 }
2809
2810 /**
2811 * Acquires write lock for tree restructuring.
2812 */
2813 private final void lockRoot() {
2814 if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2815 contendedLock(); // offload to separate method
2816 }
2817
2818 /**
2819 * Releases write lock for tree restructuring.
2820 */
2821 private final void unlockRoot() {
2822 lockState = 0;
2823 }
2824
2825 /**
2826 * Possibly blocks awaiting root lock.
2827 */
2828 private final void contendedLock() {
2829 boolean waiting = false;
2830 for (int s;;) {
2831 if (((s = lockState) & ~WAITER) == 0) {
2832 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2833 if (waiting)
2834 waiter = null;
2835 return;
2836 }
2837 }
2838 else if ((s & WAITER) == 0) {
2839 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2840 waiting = true;
2841 waiter = Thread.currentThread();
2842 }
2843 }
2844 else if (waiting)
2845 LockSupport.park(this);
2846 }
2847 }
2848
2849 /**
2850 * Returns matching node or null if none. Tries to search
2851 * using tree comparisons from root, but continues linear
2852 * search when lock not available.
2853 */
2854 final Node<K,V> find(int h, Object k) {
2855 if (k != null) {
2856 for (Node<K,V> e = first; e != null; ) {
2857 int s; K ek;
2858 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2859 if (e.hash == h &&
2860 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2861 return e;
2862 e = e.next;
2863 }
2864 else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2865 s + READER)) {
2866 TreeNode<K,V> r, p;
2867 try {
2868 p = ((r = root) == null ? null :
2869 r.findTreeNode(h, k, null));
2870 } finally {
2871 Thread w;
2872 if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2873 (READER|WAITER) && (w = waiter) != null)
2874 LockSupport.unpark(w);
2875 }
2876 return p;
2877 }
2878 }
2879 }
2880 return null;
2881 }
2882
2883 /**
2884 * Finds or adds a node.
2885 * @return null if added
2886 */
2887 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2888 Class<?> kc = null;
2889 boolean searched = false;
2890 for (TreeNode<K,V> p = root;;) {
2891 int dir, ph; K pk;
2892 if (p == null) {
2893 first = root = new TreeNode<K,V>(h, k, v, null, null);
2894 break;
2895 }
2896 else if ((ph = p.hash) > h)
2897 dir = -1;
2898 else if (ph < h)
2899 dir = 1;
2900 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2901 return p;
2902 else if ((kc == null &&
2903 (kc = comparableClassFor(k)) == null) ||
2904 (dir = compareComparables(kc, k, pk)) == 0) {
2905 if (!searched) {
2906 TreeNode<K,V> q, ch;
2907 searched = true;
2908 if (((ch = p.left) != null &&
2909 (q = ch.findTreeNode(h, k, kc)) != null) ||
2910 ((ch = p.right) != null &&
2911 (q = ch.findTreeNode(h, k, kc)) != null))
2912 return q;
2913 }
2914 dir = tieBreakOrder(k, pk);
2915 }
2916
2917 TreeNode<K,V> xp = p;
2918 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2919 TreeNode<K,V> x, f = first;
2920 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2921 if (f != null)
2922 f.prev = x;
2923 if (dir <= 0)
2924 xp.left = x;
2925 else
2926 xp.right = x;
2927 if (!xp.red)
2928 x.red = true;
2929 else {
2930 lockRoot();
2931 try {
2932 root = balanceInsertion(root, x);
2933 } finally {
2934 unlockRoot();
2935 }
2936 }
2937 break;
2938 }
2939 }
2940 assert checkInvariants(root);
2941 return null;
2942 }
2943
2944 /**
2945 * Removes the given node, that must be present before this
2946 * call. This is messier than typical red-black deletion code
2947 * because we cannot swap the contents of an interior node
2948 * with a leaf successor that is pinned by "next" pointers
2949 * that are accessible independently of lock. So instead we
2950 * swap the tree linkages.
2951 *
2952 * @return true if now too small, so should be untreeified
2953 */
2954 final boolean removeTreeNode(TreeNode<K,V> p) {
2955 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2956 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2957 TreeNode<K,V> r, rl;
2958 if (pred == null)
2959 first = next;
2960 else
2961 pred.next = next;
2962 if (next != null)
2963 next.prev = pred;
2964 if (first == null) {
2965 root = null;
2966 return true;
2967 }
2968 if ((r = root) == null || r.right == null || // too small
2969 (rl = r.left) == null || rl.left == null)
2970 return true;
2971 lockRoot();
2972 try {
2973 TreeNode<K,V> replacement;
2974 TreeNode<K,V> pl = p.left;
2975 TreeNode<K,V> pr = p.right;
2976 if (pl != null && pr != null) {
2977 TreeNode<K,V> s = pr, sl;
2978 while ((sl = s.left) != null) // find successor
2979 s = sl;
2980 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2981 TreeNode<K,V> sr = s.right;
2982 TreeNode<K,V> pp = p.parent;
2983 if (s == pr) { // p was s's direct parent
2984 p.parent = s;
2985 s.right = p;
2986 }
2987 else {
2988 TreeNode<K,V> sp = s.parent;
2989 if ((p.parent = sp) != null) {
2990 if (s == sp.left)
2991 sp.left = p;
2992 else
2993 sp.right = p;
2994 }
2995 if ((s.right = pr) != null)
2996 pr.parent = s;
2997 }
2998 p.left = null;
2999 if ((p.right = sr) != null)
3000 sr.parent = p;
3001 if ((s.left = pl) != null)
3002 pl.parent = s;
3003 if ((s.parent = pp) == null)
3004 r = s;
3005 else if (p == pp.left)
3006 pp.left = s;
3007 else
3008 pp.right = s;
3009 if (sr != null)
3010 replacement = sr;
3011 else
3012 replacement = p;
3013 }
3014 else if (pl != null)
3015 replacement = pl;
3016 else if (pr != null)
3017 replacement = pr;
3018 else
3019 replacement = p;
3020 if (replacement != p) {
3021 TreeNode<K,V> pp = replacement.parent = p.parent;
3022 if (pp == null)
3023 r = replacement;
3024 else if (p == pp.left)
3025 pp.left = replacement;
3026 else
3027 pp.right = replacement;
3028 p.left = p.right = p.parent = null;
3029 }
3030
3031 root = (p.red) ? r : balanceDeletion(r, replacement);
3032
3033 if (p == replacement) { // detach pointers
3034 TreeNode<K,V> pp;
3035 if ((pp = p.parent) != null) {
3036 if (p == pp.left)
3037 pp.left = null;
3038 else if (p == pp.right)
3039 pp.right = null;
3040 p.parent = null;
3041 }
3042 }
3043 } finally {
3044 unlockRoot();
3045 }
3046 assert checkInvariants(root);
3047 return false;
3048 }
3049
3050 /* ------------------------------------------------------------ */
3051 // Red-black tree methods, all adapted from CLR
3052
3053 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3054 TreeNode<K,V> p) {
3055 TreeNode<K,V> r, pp, rl;
3056 if (p != null && (r = p.right) != null) {
3057 if ((rl = p.right = r.left) != null)
3058 rl.parent = p;
3059 if ((pp = r.parent = p.parent) == null)
3060 (root = r).red = false;
3061 else if (pp.left == p)
3062 pp.left = r;
3063 else
3064 pp.right = r;
3065 r.left = p;
3066 p.parent = r;
3067 }
3068 return root;
3069 }
3070
3071 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3072 TreeNode<K,V> p) {
3073 TreeNode<K,V> l, pp, lr;
3074 if (p != null && (l = p.left) != null) {
3075 if ((lr = p.left = l.right) != null)
3076 lr.parent = p;
3077 if ((pp = l.parent = p.parent) == null)
3078 (root = l).red = false;
3079 else if (pp.right == p)
3080 pp.right = l;
3081 else
3082 pp.left = l;
3083 l.right = p;
3084 p.parent = l;
3085 }
3086 return root;
3087 }
3088
3089 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3090 TreeNode<K,V> x) {
3091 x.red = true;
3092 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3093 if ((xp = x.parent) == null) {
3094 x.red = false;
3095 return x;
3096 }
3097 else if (!xp.red || (xpp = xp.parent) == null)
3098 return root;
3099 if (xp == (xppl = xpp.left)) {
3100 if ((xppr = xpp.right) != null && xppr.red) {
3101 xppr.red = false;
3102 xp.red = false;
3103 xpp.red = true;
3104 x = xpp;
3105 }
3106 else {
3107 if (x == xp.right) {
3108 root = rotateLeft(root, x = xp);
3109 xpp = (xp = x.parent) == null ? null : xp.parent;
3110 }
3111 if (xp != null) {
3112 xp.red = false;
3113 if (xpp != null) {
3114 xpp.red = true;
3115 root = rotateRight(root, xpp);
3116 }
3117 }
3118 }
3119 }
3120 else {
3121 if (xppl != null && xppl.red) {
3122 xppl.red = false;
3123 xp.red = false;
3124 xpp.red = true;
3125 x = xpp;
3126 }
3127 else {
3128 if (x == xp.left) {
3129 root = rotateRight(root, x = xp);
3130 xpp = (xp = x.parent) == null ? null : xp.parent;
3131 }
3132 if (xp != null) {
3133 xp.red = false;
3134 if (xpp != null) {
3135 xpp.red = true;
3136 root = rotateLeft(root, xpp);
3137 }
3138 }
3139 }
3140 }
3141 }
3142 }
3143
3144 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3145 TreeNode<K,V> x) {
3146 for (TreeNode<K,V> xp, xpl, xpr;;) {
3147 if (x == null || x == root)
3148 return root;
3149 else if ((xp = x.parent) == null) {
3150 x.red = false;
3151 return x;
3152 }
3153 else if (x.red) {
3154 x.red = false;
3155 return root;
3156 }
3157 else if ((xpl = xp.left) == x) {
3158 if ((xpr = xp.right) != null && xpr.red) {
3159 xpr.red = false;
3160 xp.red = true;
3161 root = rotateLeft(root, xp);
3162 xpr = (xp = x.parent) == null ? null : xp.right;
3163 }
3164 if (xpr == null)
3165 x = xp;
3166 else {
3167 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3168 if ((sr == null || !sr.red) &&
3169 (sl == null || !sl.red)) {
3170 xpr.red = true;
3171 x = xp;
3172 }
3173 else {
3174 if (sr == null || !sr.red) {
3175 if (sl != null)
3176 sl.red = false;
3177 xpr.red = true;
3178 root = rotateRight(root, xpr);
3179 xpr = (xp = x.parent) == null ?
3180 null : xp.right;
3181 }
3182 if (xpr != null) {
3183 xpr.red = (xp == null) ? false : xp.red;
3184 if ((sr = xpr.right) != null)
3185 sr.red = false;
3186 }
3187 if (xp != null) {
3188 xp.red = false;
3189 root = rotateLeft(root, xp);
3190 }
3191 x = root;
3192 }
3193 }
3194 }
3195 else { // symmetric
3196 if (xpl != null && xpl.red) {
3197 xpl.red = false;
3198 xp.red = true;
3199 root = rotateRight(root, xp);
3200 xpl = (xp = x.parent) == null ? null : xp.left;
3201 }
3202 if (xpl == null)
3203 x = xp;
3204 else {
3205 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3206 if ((sl == null || !sl.red) &&
3207 (sr == null || !sr.red)) {
3208 xpl.red = true;
3209 x = xp;
3210 }
3211 else {
3212 if (sl == null || !sl.red) {
3213 if (sr != null)
3214 sr.red = false;
3215 xpl.red = true;
3216 root = rotateLeft(root, xpl);
3217 xpl = (xp = x.parent) == null ?
3218 null : xp.left;
3219 }
3220 if (xpl != null) {
3221 xpl.red = (xp == null) ? false : xp.red;
3222 if ((sl = xpl.left) != null)
3223 sl.red = false;
3224 }
3225 if (xp != null) {
3226 xp.red = false;
3227 root = rotateRight(root, xp);
3228 }
3229 x = root;
3230 }
3231 }
3232 }
3233 }
3234 }
3235
3236 /**
3237 * Recursive invariant check
3238 */
3239 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3240 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3241 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3242 if (tb != null && tb.next != t)
3243 return false;
3244 if (tn != null && tn.prev != t)
3245 return false;
3246 if (tp != null && t != tp.left && t != tp.right)
3247 return false;
3248 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3249 return false;
3250 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3251 return false;
3252 if (t.red && tl != null && tl.red && tr != null && tr.red)
3253 return false;
3254 if (tl != null && !checkInvariants(tl))
3255 return false;
3256 if (tr != null && !checkInvariants(tr))
3257 return false;
3258 return true;
3259 }
3260
3261 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3262 private static final long LOCKSTATE;
3263 static {
3264 try {
3265 LOCKSTATE = U.objectFieldOffset
3266 (TreeBin.class.getDeclaredField("lockState"));
3267 } catch (ReflectiveOperationException e) {
3268 throw new Error(e);
3269 }
3270 }
3271 }
3272
3273 /* ----------------Table Traversal -------------- */
3274
3275 /**
3276 * Records the table, its length, and current traversal index for a
3277 * traverser that must process a region of a forwarded table before
3278 * proceeding with current table.
3279 */
3280 static final class TableStack<K,V> {
3281 int length;
3282 int index;
3283 Node<K,V>[] tab;
3284 TableStack<K,V> next;
3285 }
3286
3287 /**
3288 * Encapsulates traversal for methods such as containsValue; also
3289 * serves as a base class for other iterators and spliterators.
3290 *
3291 * Method advance visits once each still-valid node that was
3292 * reachable upon iterator construction. It might miss some that
3293 * were added to a bin after the bin was visited, which is OK wrt
3294 * consistency guarantees. Maintaining this property in the face
3295 * of possible ongoing resizes requires a fair amount of
3296 * bookkeeping state that is difficult to optimize away amidst
3297 * volatile accesses. Even so, traversal maintains reasonable
3298 * throughput.
3299 *
3300 * Normally, iteration proceeds bin-by-bin traversing lists.
3301 * However, if the table has been resized, then all future steps
3302 * must traverse both the bin at the current index as well as at
3303 * (index + baseSize); and so on for further resizings. To
3304 * paranoically cope with potential sharing by users of iterators
3305 * across threads, iteration terminates if a bounds checks fails
3306 * for a table read.
3307 */
3308 static class Traverser<K,V> {
3309 Node<K,V>[] tab; // current table; updated if resized
3310 Node<K,V> next; // the next entry to use
3311 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3312 int index; // index of bin to use next
3313 int baseIndex; // current index of initial table
3314 int baseLimit; // index bound for initial table
3315 final int baseSize; // initial table size
3316
3317 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3318 this.tab = tab;
3319 this.baseSize = size;
3320 this.baseIndex = this.index = index;
3321 this.baseLimit = limit;
3322 this.next = null;
3323 }
3324
3325 /**
3326 * Advances if possible, returning next valid node, or null if none.
3327 */
3328 final Node<K,V> advance() {
3329 Node<K,V> e;
3330 if ((e = next) != null)
3331 e = e.next;
3332 for (;;) {
3333 Node<K,V>[] t; int i, n; // must use locals in checks
3334 if (e != null)
3335 return next = e;
3336 if (baseIndex >= baseLimit || (t = tab) == null ||
3337 (n = t.length) <= (i = index) || i < 0)
3338 return next = null;
3339 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3340 if (e instanceof ForwardingNode) {
3341 tab = ((ForwardingNode<K,V>)e).nextTable;
3342 e = null;
3343 pushState(t, i, n);
3344 continue;
3345 }
3346 else if (e instanceof TreeBin)
3347 e = ((TreeBin<K,V>)e).first;
3348 else
3349 e = null;
3350 }
3351 if (stack != null)
3352 recoverState(n);
3353 else if ((index = i + baseSize) >= n)
3354 index = ++baseIndex; // visit upper slots if present
3355 }
3356 }
3357
3358 /**
3359 * Saves traversal state upon encountering a forwarding node.
3360 */
3361 private void pushState(Node<K,V>[] t, int i, int n) {
3362 TableStack<K,V> s = spare; // reuse if possible
3363 if (s != null)
3364 spare = s.next;
3365 else
3366 s = new TableStack<K,V>();
3367 s.tab = t;
3368 s.length = n;
3369 s.index = i;
3370 s.next = stack;
3371 stack = s;
3372 }
3373
3374 /**
3375 * Possibly pops traversal state.
3376 *
3377 * @param n length of current table
3378 */
3379 private void recoverState(int n) {
3380 TableStack<K,V> s; int len;
3381 while ((s = stack) != null && (index += (len = s.length)) >= n) {
3382 n = len;
3383 index = s.index;
3384 tab = s.tab;
3385 s.tab = null;
3386 TableStack<K,V> next = s.next;
3387 s.next = spare; // save for reuse
3388 stack = next;
3389 spare = s;
3390 }
3391 if (s == null && (index += baseSize) >= n)
3392 index = ++baseIndex;
3393 }
3394 }
3395
3396 /**
3397 * Base of key, value, and entry Iterators. Adds fields to
3398 * Traverser to support iterator.remove.
3399 */
3400 static class BaseIterator<K,V> extends Traverser<K,V> {
3401 final ConcurrentHashMap<K,V> map;
3402 Node<K,V> lastReturned;
3403 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3404 ConcurrentHashMap<K,V> map) {
3405 super(tab, size, index, limit);
3406 this.map = map;
3407 advance();
3408 }
3409
3410 public final boolean hasNext() { return next != null; }
3411 public final boolean hasMoreElements() { return next != null; }
3412
3413 public final void remove() {
3414 Node<K,V> p;
3415 if ((p = lastReturned) == null)
3416 throw new IllegalStateException();
3417 lastReturned = null;
3418 map.replaceNode(p.key, null, null);
3419 }
3420 }
3421
3422 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3423 implements Iterator<K>, Enumeration<K> {
3424 KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3425 ConcurrentHashMap<K,V> map) {
3426 super(tab, index, size, limit, map);
3427 }
3428
3429 public final K next() {
3430 Node<K,V> p;
3431 if ((p = next) == null)
3432 throw new NoSuchElementException();
3433 K k = p.key;
3434 lastReturned = p;
3435 advance();
3436 return k;
3437 }
3438
3439 public final K nextElement() { return next(); }
3440 }
3441
3442 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3443 implements Iterator<V>, Enumeration<V> {
3444 ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3445 ConcurrentHashMap<K,V> map) {
3446 super(tab, index, size, limit, map);
3447 }
3448
3449 public final V next() {
3450 Node<K,V> p;
3451 if ((p = next) == null)
3452 throw new NoSuchElementException();
3453 V v = p.val;
3454 lastReturned = p;
3455 advance();
3456 return v;
3457 }
3458
3459 public final V nextElement() { return next(); }
3460 }
3461
3462 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3463 implements Iterator<Map.Entry<K,V>> {
3464 EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3465 ConcurrentHashMap<K,V> map) {
3466 super(tab, index, size, limit, map);
3467 }
3468
3469 public final Map.Entry<K,V> next() {
3470 Node<K,V> p;
3471 if ((p = next) == null)
3472 throw new NoSuchElementException();
3473 K k = p.key;
3474 V v = p.val;
3475 lastReturned = p;
3476 advance();
3477 return new MapEntry<K,V>(k, v, map);
3478 }
3479 }
3480
3481 /**
3482 * Exported Entry for EntryIterator
3483 */
3484 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3485 final K key; // non-null
3486 V val; // non-null
3487 final ConcurrentHashMap<K,V> map;
3488 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3489 this.key = key;
3490 this.val = val;
3491 this.map = map;
3492 }
3493 public K getKey() { return key; }
3494 public V getValue() { return val; }
3495 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3496 public String toString() {
3497 return Helpers.mapEntryToString(key, val);
3498 }
3499
3500 public boolean equals(Object o) {
3501 Object k, v; Map.Entry<?,?> e;
3502 return ((o instanceof Map.Entry) &&
3503 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3504 (v = e.getValue()) != null &&
3505 (k == key || k.equals(key)) &&
3506 (v == val || v.equals(val)));
3507 }
3508
3509 /**
3510 * Sets our entry's value and writes through to the map. The
3511 * value to return is somewhat arbitrary here. Since we do not
3512 * necessarily track asynchronous changes, the most recent
3513 * "previous" value could be different from what we return (or
3514 * could even have been removed, in which case the put will
3515 * re-establish). We do not and cannot guarantee more.
3516 */
3517 public V setValue(V value) {
3518 if (value == null) throw new NullPointerException();
3519 V v = val;
3520 val = value;
3521 map.put(key, value);
3522 return v;
3523 }
3524 }
3525
3526 static final class KeySpliterator<K,V> extends Traverser<K,V>
3527 implements Spliterator<K> {
3528 long est; // size estimate
3529 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3530 long est) {
3531 super(tab, size, index, limit);
3532 this.est = est;
3533 }
3534
3535 public Spliterator<K> trySplit() {
3536 int i, f, h;
3537 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3538 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3539 f, est >>>= 1);
3540 }
3541
3542 public void forEachRemaining(Consumer<? super K> action) {
3543 if (action == null) throw new NullPointerException();
3544 for (Node<K,V> p; (p = advance()) != null;)
3545 action.accept(p.key);
3546 }
3547
3548 public boolean tryAdvance(Consumer<? super K> action) {
3549 if (action == null) throw new NullPointerException();
3550 Node<K,V> p;
3551 if ((p = advance()) == null)
3552 return false;
3553 action.accept(p.key);
3554 return true;
3555 }
3556
3557 public long estimateSize() { return est; }
3558
3559 public int characteristics() {
3560 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3561 Spliterator.NONNULL;
3562 }
3563 }
3564
3565 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3566 implements Spliterator<V> {
3567 long est; // size estimate
3568 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3569 long est) {
3570 super(tab, size, index, limit);
3571 this.est = est;
3572 }
3573
3574 public Spliterator<V> trySplit() {
3575 int i, f, h;
3576 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3577 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3578 f, est >>>= 1);
3579 }
3580
3581 public void forEachRemaining(Consumer<? super V> action) {
3582 if (action == null) throw new NullPointerException();
3583 for (Node<K,V> p; (p = advance()) != null;)
3584 action.accept(p.val);
3585 }
3586
3587 public boolean tryAdvance(Consumer<? super V> action) {
3588 if (action == null) throw new NullPointerException();
3589 Node<K,V> p;
3590 if ((p = advance()) == null)
3591 return false;
3592 action.accept(p.val);
3593 return true;
3594 }
3595
3596 public long estimateSize() { return est; }
3597
3598 public int characteristics() {
3599 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3600 }
3601 }
3602
3603 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3604 implements Spliterator<Map.Entry<K,V>> {
3605 final ConcurrentHashMap<K,V> map; // To export MapEntry
3606 long est; // size estimate
3607 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3608 long est, ConcurrentHashMap<K,V> map) {
3609 super(tab, size, index, limit);
3610 this.map = map;
3611 this.est = est;
3612 }
3613
3614 public Spliterator<Map.Entry<K,V>> trySplit() {
3615 int i, f, h;
3616 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3617 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3618 f, est >>>= 1, map);
3619 }
3620
3621 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3622 if (action == null) throw new NullPointerException();
3623 for (Node<K,V> p; (p = advance()) != null; )
3624 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3625 }
3626
3627 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3628 if (action == null) throw new NullPointerException();
3629 Node<K,V> p;
3630 if ((p = advance()) == null)
3631 return false;
3632 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3633 return true;
3634 }
3635
3636 public long estimateSize() { return est; }
3637
3638 public int characteristics() {
3639 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3640 Spliterator.NONNULL;
3641 }
3642 }
3643
3644 // Parallel bulk operations
3645
3646 /**
3647 * Computes initial batch value for bulk tasks. The returned value
3648 * is approximately exp2 of the number of times (minus one) to
3649 * split task by two before executing leaf action. This value is
3650 * faster to compute and more convenient to use as a guide to
3651 * splitting than is the depth, since it is used while dividing by
3652 * two anyway.
3653 */
3654 final int batchFor(long b) {
3655 long n;
3656 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3657 return 0;
3658 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3659 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3660 }
3661
3662 /**
3663 * Performs the given action for each (key, value).
3664 *
3665 * @param parallelismThreshold the (estimated) number of elements
3666 * needed for this operation to be executed in parallel
3667 * @param action the action
3668 * @since 1.8
3669 */
3670 public void forEach(long parallelismThreshold,
3671 BiConsumer<? super K,? super V> action) {
3672 if (action == null) throw new NullPointerException();
3673 new ForEachMappingTask<K,V>
3674 (null, batchFor(parallelismThreshold), 0, 0, table,
3675 action).invoke();
3676 }
3677
3678 /**
3679 * Performs the given action for each non-null transformation
3680 * of each (key, value).
3681 *
3682 * @param parallelismThreshold the (estimated) number of elements
3683 * needed for this operation to be executed in parallel
3684 * @param transformer a function returning the transformation
3685 * for an element, or null if there is no transformation (in
3686 * which case the action is not applied)
3687 * @param action the action
3688 * @param <U> the return type of the transformer
3689 * @since 1.8
3690 */
3691 public <U> void forEach(long parallelismThreshold,
3692 BiFunction<? super K, ? super V, ? extends U> transformer,
3693 Consumer<? super U> action) {
3694 if (transformer == null || action == null)
3695 throw new NullPointerException();
3696 new ForEachTransformedMappingTask<K,V,U>
3697 (null, batchFor(parallelismThreshold), 0, 0, table,
3698 transformer, action).invoke();
3699 }
3700
3701 /**
3702 * Returns a non-null result from applying the given search
3703 * function on each (key, value), or null if none. Upon
3704 * success, further element processing is suppressed and the
3705 * results of any other parallel invocations of the search
3706 * function are ignored.
3707 *
3708 * @param parallelismThreshold the (estimated) number of elements
3709 * needed for this operation to be executed in parallel
3710 * @param searchFunction a function returning a non-null
3711 * result on success, else null
3712 * @param <U> the return type of the search function
3713 * @return a non-null result from applying the given search
3714 * function on each (key, value), or null if none
3715 * @since 1.8
3716 */
3717 public <U> U search(long parallelismThreshold,
3718 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3719 if (searchFunction == null) throw new NullPointerException();
3720 return new SearchMappingsTask<K,V,U>
3721 (null, batchFor(parallelismThreshold), 0, 0, table,
3722 searchFunction, new AtomicReference<U>()).invoke();
3723 }
3724
3725 /**
3726 * Returns the result of accumulating the given transformation
3727 * of all (key, value) pairs using the given reducer to
3728 * combine values, or null if none.
3729 *
3730 * @param parallelismThreshold the (estimated) number of elements
3731 * needed for this operation to be executed in parallel
3732 * @param transformer a function returning the transformation
3733 * for an element, or null if there is no transformation (in
3734 * which case it is not combined)
3735 * @param reducer a commutative associative combining function
3736 * @param <U> the return type of the transformer
3737 * @return the result of accumulating the given transformation
3738 * of all (key, value) pairs
3739 * @since 1.8
3740 */
3741 public <U> U reduce(long parallelismThreshold,
3742 BiFunction<? super K, ? super V, ? extends U> transformer,
3743 BiFunction<? super U, ? super U, ? extends U> reducer) {
3744 if (transformer == null || reducer == null)
3745 throw new NullPointerException();
3746 return new MapReduceMappingsTask<K,V,U>
3747 (null, batchFor(parallelismThreshold), 0, 0, table,
3748 null, transformer, reducer).invoke();
3749 }
3750
3751 /**
3752 * Returns the result of accumulating the given transformation
3753 * of all (key, value) pairs using the given reducer to
3754 * combine values, and the given basis as an identity value.
3755 *
3756 * @param parallelismThreshold the (estimated) number of elements
3757 * needed for this operation to be executed in parallel
3758 * @param transformer a function returning the transformation
3759 * for an element
3760 * @param basis the identity (initial default value) for the reduction
3761 * @param reducer a commutative associative combining function
3762 * @return the result of accumulating the given transformation
3763 * of all (key, value) pairs
3764 * @since 1.8
3765 */
3766 public double reduceToDouble(long parallelismThreshold,
3767 ToDoubleBiFunction<? super K, ? super V> transformer,
3768 double basis,
3769 DoubleBinaryOperator reducer) {
3770 if (transformer == null || reducer == null)
3771 throw new NullPointerException();
3772 return new MapReduceMappingsToDoubleTask<K,V>
3773 (null, batchFor(parallelismThreshold), 0, 0, table,
3774 null, transformer, basis, reducer).invoke();
3775 }
3776
3777 /**
3778 * Returns the result of accumulating the given transformation
3779 * of all (key, value) pairs using the given reducer to
3780 * combine values, and the given basis as an identity value.
3781 *
3782 * @param parallelismThreshold the (estimated) number of elements
3783 * needed for this operation to be executed in parallel
3784 * @param transformer a function returning the transformation
3785 * for an element
3786 * @param basis the identity (initial default value) for the reduction
3787 * @param reducer a commutative associative combining function
3788 * @return the result of accumulating the given transformation
3789 * of all (key, value) pairs
3790 * @since 1.8
3791 */
3792 public long reduceToLong(long parallelismThreshold,
3793 ToLongBiFunction<? super K, ? super V> transformer,
3794 long basis,
3795 LongBinaryOperator reducer) {
3796 if (transformer == null || reducer == null)
3797 throw new NullPointerException();
3798 return new MapReduceMappingsToLongTask<K,V>
3799 (null, batchFor(parallelismThreshold), 0, 0, table,
3800 null, transformer, basis, reducer).invoke();
3801 }
3802
3803 /**
3804 * Returns the result of accumulating the given transformation
3805 * of all (key, value) pairs using the given reducer to
3806 * combine values, and the given basis as an identity value.
3807 *
3808 * @param parallelismThreshold the (estimated) number of elements
3809 * needed for this operation to be executed in parallel
3810 * @param transformer a function returning the transformation
3811 * for an element
3812 * @param basis the identity (initial default value) for the reduction
3813 * @param reducer a commutative associative combining function
3814 * @return the result of accumulating the given transformation
3815 * of all (key, value) pairs
3816 * @since 1.8
3817 */
3818 public int reduceToInt(long parallelismThreshold,
3819 ToIntBiFunction<? super K, ? super V> transformer,
3820 int basis,
3821 IntBinaryOperator reducer) {
3822 if (transformer == null || reducer == null)
3823 throw new NullPointerException();
3824 return new MapReduceMappingsToIntTask<K,V>
3825 (null, batchFor(parallelismThreshold), 0, 0, table,
3826 null, transformer, basis, reducer).invoke();
3827 }
3828
3829 /**
3830 * Performs the given action for each key.
3831 *
3832 * @param parallelismThreshold the (estimated) number of elements
3833 * needed for this operation to be executed in parallel
3834 * @param action the action
3835 * @since 1.8
3836 */
3837 public void forEachKey(long parallelismThreshold,
3838 Consumer<? super K> action) {
3839 if (action == null) throw new NullPointerException();
3840 new ForEachKeyTask<K,V>
3841 (null, batchFor(parallelismThreshold), 0, 0, table,
3842 action).invoke();
3843 }
3844
3845 /**
3846 * Performs the given action for each non-null transformation
3847 * of each key.
3848 *
3849 * @param parallelismThreshold the (estimated) number of elements
3850 * needed for this operation to be executed in parallel
3851 * @param transformer a function returning the transformation
3852 * for an element, or null if there is no transformation (in
3853 * which case the action is not applied)
3854 * @param action the action
3855 * @param <U> the return type of the transformer
3856 * @since 1.8
3857 */
3858 public <U> void forEachKey(long parallelismThreshold,
3859 Function<? super K, ? extends U> transformer,
3860 Consumer<? super U> action) {
3861 if (transformer == null || action == null)
3862 throw new NullPointerException();
3863 new ForEachTransformedKeyTask<K,V,U>
3864 (null, batchFor(parallelismThreshold), 0, 0, table,
3865 transformer, action).invoke();
3866 }
3867
3868 /**
3869 * Returns a non-null result from applying the given search
3870 * function on each key, or null if none. Upon success,
3871 * further element processing is suppressed and the results of
3872 * any other parallel invocations of the search function are
3873 * ignored.
3874 *
3875 * @param parallelismThreshold the (estimated) number of elements
3876 * needed for this operation to be executed in parallel
3877 * @param searchFunction a function returning a non-null
3878 * result on success, else null
3879 * @param <U> the return type of the search function
3880 * @return a non-null result from applying the given search
3881 * function on each key, or null if none
3882 * @since 1.8
3883 */
3884 public <U> U searchKeys(long parallelismThreshold,
3885 Function<? super K, ? extends U> searchFunction) {
3886 if (searchFunction == null) throw new NullPointerException();
3887 return new SearchKeysTask<K,V,U>
3888 (null, batchFor(parallelismThreshold), 0, 0, table,
3889 searchFunction, new AtomicReference<U>()).invoke();
3890 }
3891
3892 /**
3893 * Returns the result of accumulating all keys using the given
3894 * reducer to combine values, or null if none.
3895 *
3896 * @param parallelismThreshold the (estimated) number of elements
3897 * needed for this operation to be executed in parallel
3898 * @param reducer a commutative associative combining function
3899 * @return the result of accumulating all keys using the given
3900 * reducer to combine values, or null if none
3901 * @since 1.8
3902 */
3903 public K reduceKeys(long parallelismThreshold,
3904 BiFunction<? super K, ? super K, ? extends K> reducer) {
3905 if (reducer == null) throw new NullPointerException();
3906 return new ReduceKeysTask<K,V>
3907 (null, batchFor(parallelismThreshold), 0, 0, table,
3908 null, reducer).invoke();
3909 }
3910
3911 /**
3912 * Returns the result of accumulating the given transformation
3913 * of all keys using the given reducer to combine values, or
3914 * null if none.
3915 *
3916 * @param parallelismThreshold the (estimated) number of elements
3917 * needed for this operation to be executed in parallel
3918 * @param transformer a function returning the transformation
3919 * for an element, or null if there is no transformation (in
3920 * which case it is not combined)
3921 * @param reducer a commutative associative combining function
3922 * @param <U> the return type of the transformer
3923 * @return the result of accumulating the given transformation
3924 * of all keys
3925 * @since 1.8
3926 */
3927 public <U> U reduceKeys(long parallelismThreshold,
3928 Function<? super K, ? extends U> transformer,
3929 BiFunction<? super U, ? super U, ? extends U> reducer) {
3930 if (transformer == null || reducer == null)
3931 throw new NullPointerException();
3932 return new MapReduceKeysTask<K,V,U>
3933 (null, batchFor(parallelismThreshold), 0, 0, table,
3934 null, transformer, reducer).invoke();
3935 }
3936
3937 /**
3938 * Returns the result of accumulating the given transformation
3939 * of all keys using the given reducer to combine values, and
3940 * the given basis as an identity value.
3941 *
3942 * @param parallelismThreshold the (estimated) number of elements
3943 * needed for this operation to be executed in parallel
3944 * @param transformer a function returning the transformation
3945 * for an element
3946 * @param basis the identity (initial default value) for the reduction
3947 * @param reducer a commutative associative combining function
3948 * @return the result of accumulating the given transformation
3949 * of all keys
3950 * @since 1.8
3951 */
3952 public double reduceKeysToDouble(long parallelismThreshold,
3953 ToDoubleFunction<? super K> transformer,
3954 double basis,
3955 DoubleBinaryOperator reducer) {
3956 if (transformer == null || reducer == null)
3957 throw new NullPointerException();
3958 return new MapReduceKeysToDoubleTask<K,V>
3959 (null, batchFor(parallelismThreshold), 0, 0, table,
3960 null, transformer, basis, reducer).invoke();
3961 }
3962
3963 /**
3964 * Returns the result of accumulating the given transformation
3965 * of all keys using the given reducer to combine values, and
3966 * the given basis as an identity value.
3967 *
3968 * @param parallelismThreshold the (estimated) number of elements
3969 * needed for this operation to be executed in parallel
3970 * @param transformer a function returning the transformation
3971 * for an element
3972 * @param basis the identity (initial default value) for the reduction
3973 * @param reducer a commutative associative combining function
3974 * @return the result of accumulating the given transformation
3975 * of all keys
3976 * @since 1.8
3977 */
3978 public long reduceKeysToLong(long parallelismThreshold,
3979 ToLongFunction<? super K> transformer,
3980 long basis,
3981 LongBinaryOperator reducer) {
3982 if (transformer == null || reducer == null)
3983 throw new NullPointerException();
3984 return new MapReduceKeysToLongTask<K,V>
3985 (null, batchFor(parallelismThreshold), 0, 0, table,
3986 null, transformer, basis, reducer).invoke();
3987 }
3988
3989 /**
3990 * Returns the result of accumulating the given transformation
3991 * of all keys using the given reducer to combine values, and
3992 * the given basis as an identity value.
3993 *
3994 * @param parallelismThreshold the (estimated) number of elements
3995 * needed for this operation to be executed in parallel
3996 * @param transformer a function returning the transformation
3997 * for an element
3998 * @param basis the identity (initial default value) for the reduction
3999 * @param reducer a commutative associative combining function
4000 * @return the result of accumulating the given transformation
4001 * of all keys
4002 * @since 1.8
4003 */
4004 public int reduceKeysToInt(long parallelismThreshold,
4005 ToIntFunction<? super K> transformer,
4006 int basis,
4007 IntBinaryOperator reducer) {
4008 if (transformer == null || reducer == null)
4009 throw new NullPointerException();
4010 return new MapReduceKeysToIntTask<K,V>
4011 (null, batchFor(parallelismThreshold), 0, 0, table,
4012 null, transformer, basis, reducer).invoke();
4013 }
4014
4015 /**
4016 * Performs the given action for each value.
4017 *
4018 * @param parallelismThreshold the (estimated) number of elements
4019 * needed for this operation to be executed in parallel
4020 * @param action the action
4021 * @since 1.8
4022 */
4023 public void forEachValue(long parallelismThreshold,
4024 Consumer<? super V> action) {
4025 if (action == null)
4026 throw new NullPointerException();
4027 new ForEachValueTask<K,V>
4028 (null, batchFor(parallelismThreshold), 0, 0, table,
4029 action).invoke();
4030 }
4031
4032 /**
4033 * Performs the given action for each non-null transformation
4034 * of each value.
4035 *
4036 * @param parallelismThreshold the (estimated) number of elements
4037 * needed for this operation to be executed in parallel
4038 * @param transformer a function returning the transformation
4039 * for an element, or null if there is no transformation (in
4040 * which case the action is not applied)
4041 * @param action the action
4042 * @param <U> the return type of the transformer
4043 * @since 1.8
4044 */
4045 public <U> void forEachValue(long parallelismThreshold,
4046 Function<? super V, ? extends U> transformer,
4047 Consumer<? super U> action) {
4048 if (transformer == null || action == null)
4049 throw new NullPointerException();
4050 new ForEachTransformedValueTask<K,V,U>
4051 (null, batchFor(parallelismThreshold), 0, 0, table,
4052 transformer, action).invoke();
4053 }
4054
4055 /**
4056 * Returns a non-null result from applying the given search
4057 * function on each value, or null if none. Upon success,
4058 * further element processing is suppressed and the results of
4059 * any other parallel invocations of the search function are
4060 * ignored.
4061 *
4062 * @param parallelismThreshold the (estimated) number of elements
4063 * needed for this operation to be executed in parallel
4064 * @param searchFunction a function returning a non-null
4065 * result on success, else null
4066 * @param <U> the return type of the search function
4067 * @return a non-null result from applying the given search
4068 * function on each value, or null if none
4069 * @since 1.8
4070 */
4071 public <U> U searchValues(long parallelismThreshold,
4072 Function<? super V, ? extends U> searchFunction) {
4073 if (searchFunction == null) throw new NullPointerException();
4074 return new SearchValuesTask<K,V,U>
4075 (null, batchFor(parallelismThreshold), 0, 0, table,
4076 searchFunction, new AtomicReference<U>()).invoke();
4077 }
4078
4079 /**
4080 * Returns the result of accumulating all values using the
4081 * given reducer to combine values, or null if none.
4082 *
4083 * @param parallelismThreshold the (estimated) number of elements
4084 * needed for this operation to be executed in parallel
4085 * @param reducer a commutative associative combining function
4086 * @return the result of accumulating all values
4087 * @since 1.8
4088 */
4089 public V reduceValues(long parallelismThreshold,
4090 BiFunction<? super V, ? super V, ? extends V> reducer) {
4091 if (reducer == null) throw new NullPointerException();
4092 return new ReduceValuesTask<K,V>
4093 (null, batchFor(parallelismThreshold), 0, 0, table,
4094 null, reducer).invoke();
4095 }
4096
4097 /**
4098 * Returns the result of accumulating the given transformation
4099 * of all values using the given reducer to combine values, or
4100 * null if none.
4101 *
4102 * @param parallelismThreshold the (estimated) number of elements
4103 * needed for this operation to be executed in parallel
4104 * @param transformer a function returning the transformation
4105 * for an element, or null if there is no transformation (in
4106 * which case it is not combined)
4107 * @param reducer a commutative associative combining function
4108 * @param <U> the return type of the transformer
4109 * @return the result of accumulating the given transformation
4110 * of all values
4111 * @since 1.8
4112 */
4113 public <U> U reduceValues(long parallelismThreshold,
4114 Function<? super V, ? extends U> transformer,
4115 BiFunction<? super U, ? super U, ? extends U> reducer) {
4116 if (transformer == null || reducer == null)
4117 throw new NullPointerException();
4118 return new MapReduceValuesTask<K,V,U>
4119 (null, batchFor(parallelismThreshold), 0, 0, table,
4120 null, transformer, reducer).invoke();
4121 }
4122
4123 /**
4124 * Returns the result of accumulating the given transformation
4125 * of all values using the given reducer to combine values,
4126 * and the given basis as an identity value.
4127 *
4128 * @param parallelismThreshold the (estimated) number of elements
4129 * needed for this operation to be executed in parallel
4130 * @param transformer a function returning the transformation
4131 * for an element
4132 * @param basis the identity (initial default value) for the reduction
4133 * @param reducer a commutative associative combining function
4134 * @return the result of accumulating the given transformation
4135 * of all values
4136 * @since 1.8
4137 */
4138 public double reduceValuesToDouble(long parallelismThreshold,
4139 ToDoubleFunction<? super V> transformer,
4140 double basis,
4141 DoubleBinaryOperator reducer) {
4142 if (transformer == null || reducer == null)
4143 throw new NullPointerException();
4144 return new MapReduceValuesToDoubleTask<K,V>
4145 (null, batchFor(parallelismThreshold), 0, 0, table,
4146 null, transformer, basis, reducer).invoke();
4147 }
4148
4149 /**
4150 * Returns the result of accumulating the given transformation
4151 * of all values using the given reducer to combine values,
4152 * and the given basis as an identity value.
4153 *
4154 * @param parallelismThreshold the (estimated) number of elements
4155 * needed for this operation to be executed in parallel
4156 * @param transformer a function returning the transformation
4157 * for an element
4158 * @param basis the identity (initial default value) for the reduction
4159 * @param reducer a commutative associative combining function
4160 * @return the result of accumulating the given transformation
4161 * of all values
4162 * @since 1.8
4163 */
4164 public long reduceValuesToLong(long parallelismThreshold,
4165 ToLongFunction<? super V> transformer,
4166 long basis,
4167 LongBinaryOperator reducer) {
4168 if (transformer == null || reducer == null)
4169 throw new NullPointerException();
4170 return new MapReduceValuesToLongTask<K,V>
4171 (null, batchFor(parallelismThreshold), 0, 0, table,
4172 null, transformer, basis, reducer).invoke();
4173 }
4174
4175 /**
4176 * Returns the result of accumulating the given transformation
4177 * of all values using the given reducer to combine values,
4178 * and the given basis as an identity value.
4179 *
4180 * @param parallelismThreshold the (estimated) number of elements
4181 * needed for this operation to be executed in parallel
4182 * @param transformer a function returning the transformation
4183 * for an element
4184 * @param basis the identity (initial default value) for the reduction
4185 * @param reducer a commutative associative combining function
4186 * @return the result of accumulating the given transformation
4187 * of all values
4188 * @since 1.8
4189 */
4190 public int reduceValuesToInt(long parallelismThreshold,
4191 ToIntFunction<? super V> transformer,
4192 int basis,
4193 IntBinaryOperator reducer) {
4194 if (transformer == null || reducer == null)
4195 throw new NullPointerException();
4196 return new MapReduceValuesToIntTask<K,V>
4197 (null, batchFor(parallelismThreshold), 0, 0, table,
4198 null, transformer, basis, reducer).invoke();
4199 }
4200
4201 /**
4202 * Performs the given action for each entry.
4203 *
4204 * @param parallelismThreshold the (estimated) number of elements
4205 * needed for this operation to be executed in parallel
4206 * @param action the action
4207 * @since 1.8
4208 */
4209 public void forEachEntry(long parallelismThreshold,
4210 Consumer<? super Map.Entry<K,V>> action) {
4211 if (action == null) throw new NullPointerException();
4212 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4213 action).invoke();
4214 }
4215
4216 /**
4217 * Performs the given action for each non-null transformation
4218 * of each entry.
4219 *
4220 * @param parallelismThreshold the (estimated) number of elements
4221 * needed for this operation to be executed in parallel
4222 * @param transformer a function returning the transformation
4223 * for an element, or null if there is no transformation (in
4224 * which case the action is not applied)
4225 * @param action the action
4226 * @param <U> the return type of the transformer
4227 * @since 1.8
4228 */
4229 public <U> void forEachEntry(long parallelismThreshold,
4230 Function<Map.Entry<K,V>, ? extends U> transformer,
4231 Consumer<? super U> action) {
4232 if (transformer == null || action == null)
4233 throw new NullPointerException();
4234 new ForEachTransformedEntryTask<K,V,U>
4235 (null, batchFor(parallelismThreshold), 0, 0, table,
4236 transformer, action).invoke();
4237 }
4238
4239 /**
4240 * Returns a non-null result from applying the given search
4241 * function on each entry, or null if none. Upon success,
4242 * further element processing is suppressed and the results of
4243 * any other parallel invocations of the search function are
4244 * ignored.
4245 *
4246 * @param parallelismThreshold the (estimated) number of elements
4247 * needed for this operation to be executed in parallel
4248 * @param searchFunction a function returning a non-null
4249 * result on success, else null
4250 * @param <U> the return type of the search function
4251 * @return a non-null result from applying the given search
4252 * function on each entry, or null if none
4253 * @since 1.8
4254 */
4255 public <U> U searchEntries(long parallelismThreshold,
4256 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4257 if (searchFunction == null) throw new NullPointerException();
4258 return new SearchEntriesTask<K,V,U>
4259 (null, batchFor(parallelismThreshold), 0, 0, table,
4260 searchFunction, new AtomicReference<U>()).invoke();
4261 }
4262
4263 /**
4264 * Returns the result of accumulating all entries using the
4265 * given reducer to combine values, or null if none.
4266 *
4267 * @param parallelismThreshold the (estimated) number of elements
4268 * needed for this operation to be executed in parallel
4269 * @param reducer a commutative associative combining function
4270 * @return the result of accumulating all entries
4271 * @since 1.8
4272 */
4273 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4274 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4275 if (reducer == null) throw new NullPointerException();
4276 return new ReduceEntriesTask<K,V>
4277 (null, batchFor(parallelismThreshold), 0, 0, table,
4278 null, reducer).invoke();
4279 }
4280
4281 /**
4282 * Returns the result of accumulating the given transformation
4283 * of all entries using the given reducer to combine values,
4284 * or null if none.
4285 *
4286 * @param parallelismThreshold the (estimated) number of elements
4287 * needed for this operation to be executed in parallel
4288 * @param transformer a function returning the transformation
4289 * for an element, or null if there is no transformation (in
4290 * which case it is not combined)
4291 * @param reducer a commutative associative combining function
4292 * @param <U> the return type of the transformer
4293 * @return the result of accumulating the given transformation
4294 * of all entries
4295 * @since 1.8
4296 */
4297 public <U> U reduceEntries(long parallelismThreshold,
4298 Function<Map.Entry<K,V>, ? extends U> transformer,
4299 BiFunction<? super U, ? super U, ? extends U> reducer) {
4300 if (transformer == null || reducer == null)
4301 throw new NullPointerException();
4302 return new MapReduceEntriesTask<K,V,U>
4303 (null, batchFor(parallelismThreshold), 0, 0, table,
4304 null, transformer, reducer).invoke();
4305 }
4306
4307 /**
4308 * Returns the result of accumulating the given transformation
4309 * of all entries using the given reducer to combine values,
4310 * and the given basis as an identity value.
4311 *
4312 * @param parallelismThreshold the (estimated) number of elements
4313 * needed for this operation to be executed in parallel
4314 * @param transformer a function returning the transformation
4315 * for an element
4316 * @param basis the identity (initial default value) for the reduction
4317 * @param reducer a commutative associative combining function
4318 * @return the result of accumulating the given transformation
4319 * of all entries
4320 * @since 1.8
4321 */
4322 public double reduceEntriesToDouble(long parallelismThreshold,
4323 ToDoubleFunction<Map.Entry<K,V>> transformer,
4324 double basis,
4325 DoubleBinaryOperator reducer) {
4326 if (transformer == null || reducer == null)
4327 throw new NullPointerException();
4328 return new MapReduceEntriesToDoubleTask<K,V>
4329 (null, batchFor(parallelismThreshold), 0, 0, table,
4330 null, transformer, basis, reducer).invoke();
4331 }
4332
4333 /**
4334 * Returns the result of accumulating the given transformation
4335 * of all entries using the given reducer to combine values,
4336 * and the given basis as an identity value.
4337 *
4338 * @param parallelismThreshold the (estimated) number of elements
4339 * needed for this operation to be executed in parallel
4340 * @param transformer a function returning the transformation
4341 * for an element
4342 * @param basis the identity (initial default value) for the reduction
4343 * @param reducer a commutative associative combining function
4344 * @return the result of accumulating the given transformation
4345 * of all entries
4346 * @since 1.8
4347 */
4348 public long reduceEntriesToLong(long parallelismThreshold,
4349 ToLongFunction<Map.Entry<K,V>> transformer,
4350 long basis,
4351 LongBinaryOperator reducer) {
4352 if (transformer == null || reducer == null)
4353 throw new NullPointerException();
4354 return new MapReduceEntriesToLongTask<K,V>
4355 (null, batchFor(parallelismThreshold), 0, 0, table,
4356 null, transformer, basis, reducer).invoke();
4357 }
4358
4359 /**
4360 * Returns the result of accumulating the given transformation
4361 * of all entries using the given reducer to combine values,
4362 * and the given basis as an identity value.
4363 *
4364 * @param parallelismThreshold the (estimated) number of elements
4365 * needed for this operation to be executed in parallel
4366 * @param transformer a function returning the transformation
4367 * for an element
4368 * @param basis the identity (initial default value) for the reduction
4369 * @param reducer a commutative associative combining function
4370 * @return the result of accumulating the given transformation
4371 * of all entries
4372 * @since 1.8
4373 */
4374 public int reduceEntriesToInt(long parallelismThreshold,
4375 ToIntFunction<Map.Entry<K,V>> transformer,
4376 int basis,
4377 IntBinaryOperator reducer) {
4378 if (transformer == null || reducer == null)
4379 throw new NullPointerException();
4380 return new MapReduceEntriesToIntTask<K,V>
4381 (null, batchFor(parallelismThreshold), 0, 0, table,
4382 null, transformer, basis, reducer).invoke();
4383 }
4384
4385
4386 /* ----------------Views -------------- */
4387
4388 /**
4389 * Base class for views.
4390 */
4391 abstract static class CollectionView<K,V,E>
4392 implements Collection<E>, java.io.Serializable {
4393 private static final long serialVersionUID = 7249069246763182397L;
4394 final ConcurrentHashMap<K,V> map;
4395 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4396
4397 /**
4398 * Returns the map backing this view.
4399 *
4400 * @return the map backing this view
4401 */
4402 public ConcurrentHashMap<K,V> getMap() { return map; }
4403
4404 /**
4405 * Removes all of the elements from this view, by removing all
4406 * the mappings from the map backing this view.
4407 */
4408 public final void clear() { map.clear(); }
4409 public final int size() { return map.size(); }
4410 public final boolean isEmpty() { return map.isEmpty(); }
4411
4412 // implementations below rely on concrete classes supplying these
4413 // abstract methods
4414 /**
4415 * Returns an iterator over the elements in this collection.
4416 *
4417 * <p>The returned iterator is
4418 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4419 *
4420 * @return an iterator over the elements in this collection
4421 */
4422 public abstract Iterator<E> iterator();
4423 public abstract boolean contains(Object o);
4424 public abstract boolean remove(Object o);
4425
4426 private static final String oomeMsg = "Required array size too large";
4427
4428 public final Object[] toArray() {
4429 long sz = map.mappingCount();
4430 if (sz > MAX_ARRAY_SIZE)
4431 throw new OutOfMemoryError(oomeMsg);
4432 int n = (int)sz;
4433 Object[] r = new Object[n];
4434 int i = 0;
4435 for (E e : this) {
4436 if (i == n) {
4437 if (n >= MAX_ARRAY_SIZE)
4438 throw new OutOfMemoryError(oomeMsg);
4439 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4440 n = MAX_ARRAY_SIZE;
4441 else
4442 n += (n >>> 1) + 1;
4443 r = Arrays.copyOf(r, n);
4444 }
4445 r[i++] = e;
4446 }
4447 return (i == n) ? r : Arrays.copyOf(r, i);
4448 }
4449
4450 @SuppressWarnings("unchecked")
4451 public final <T> T[] toArray(T[] a) {
4452 long sz = map.mappingCount();
4453 if (sz > MAX_ARRAY_SIZE)
4454 throw new OutOfMemoryError(oomeMsg);
4455 int m = (int)sz;
4456 T[] r = (a.length >= m) ? a :
4457 (T[])java.lang.reflect.Array
4458 .newInstance(a.getClass().getComponentType(), m);
4459 int n = r.length;
4460 int i = 0;
4461 for (E e : this) {
4462 if (i == n) {
4463 if (n >= MAX_ARRAY_SIZE)
4464 throw new OutOfMemoryError(oomeMsg);
4465 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4466 n = MAX_ARRAY_SIZE;
4467 else
4468 n += (n >>> 1) + 1;
4469 r = Arrays.copyOf(r, n);
4470 }
4471 r[i++] = (T)e;
4472 }
4473 if (a == r && i < n) {
4474 r[i] = null; // null-terminate
4475 return r;
4476 }
4477 return (i == n) ? r : Arrays.copyOf(r, i);
4478 }
4479
4480 /**
4481 * Returns a string representation of this collection.
4482 * The string representation consists of the string representations
4483 * of the collection's elements in the order they are returned by
4484 * its iterator, enclosed in square brackets ({@code "[]"}).
4485 * Adjacent elements are separated by the characters {@code ", "}
4486 * (comma and space). Elements are converted to strings as by
4487 * {@link String#valueOf(Object)}.
4488 *
4489 * @return a string representation of this collection
4490 */
4491 public final String toString() {
4492 StringBuilder sb = new StringBuilder();
4493 sb.append('[');
4494 Iterator<E> it = iterator();
4495 if (it.hasNext()) {
4496 for (;;) {
4497 Object e = it.next();
4498 sb.append(e == this ? "(this Collection)" : e);
4499 if (!it.hasNext())
4500 break;
4501 sb.append(',').append(' ');
4502 }
4503 }
4504 return sb.append(']').toString();
4505 }
4506
4507 public final boolean containsAll(Collection<?> c) {
4508 if (c != this) {
4509 for (Object e : c) {
4510 if (e == null || !contains(e))
4511 return false;
4512 }
4513 }
4514 return true;
4515 }
4516
4517 public final boolean removeAll(Collection<?> c) {
4518 if (c == null) throw new NullPointerException();
4519 boolean modified = false;
4520 for (Iterator<E> it = iterator(); it.hasNext();) {
4521 if (c.contains(it.next())) {
4522 it.remove();
4523 modified = true;
4524 }
4525 }
4526 return modified;
4527 }
4528
4529 public final boolean retainAll(Collection<?> c) {
4530 if (c == null) throw new NullPointerException();
4531 boolean modified = false;
4532 for (Iterator<E> it = iterator(); it.hasNext();) {
4533 if (!c.contains(it.next())) {
4534 it.remove();
4535 modified = true;
4536 }
4537 }
4538 return modified;
4539 }
4540
4541 }
4542
4543 /**
4544 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4545 * which additions may optionally be enabled by mapping to a
4546 * common value. This class cannot be directly instantiated.
4547 * See {@link #keySet() keySet()},
4548 * {@link #keySet(Object) keySet(V)},
4549 * {@link #newKeySet() newKeySet()},
4550 * {@link #newKeySet(int) newKeySet(int)}.
4551 *
4552 * @since 1.8
4553 */
4554 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4555 implements Set<K>, java.io.Serializable {
4556 private static final long serialVersionUID = 7249069246763182397L;
4557 private final V value;
4558 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4559 super(map);
4560 this.value = value;
4561 }
4562
4563 /**
4564 * Returns the default mapped value for additions,
4565 * or {@code null} if additions are not supported.
4566 *
4567 * @return the default mapped value for additions, or {@code null}
4568 * if not supported
4569 */
4570 public V getMappedValue() { return value; }
4571
4572 /**
4573 * {@inheritDoc}
4574 * @throws NullPointerException if the specified key is null
4575 */
4576 public boolean contains(Object o) { return map.containsKey(o); }
4577
4578 /**
4579 * Removes the key from this map view, by removing the key (and its
4580 * corresponding value) from the backing map. This method does
4581 * nothing if the key is not in the map.
4582 *
4583 * @param o the key to be removed from the backing map
4584 * @return {@code true} if the backing map contained the specified key
4585 * @throws NullPointerException if the specified key is null
4586 */
4587 public boolean remove(Object o) { return map.remove(o) != null; }
4588
4589 /**
4590 * @return an iterator over the keys of the backing map
4591 */
4592 public Iterator<K> iterator() {
4593 Node<K,V>[] t;
4594 ConcurrentHashMap<K,V> m = map;
4595 int f = (t = m.table) == null ? 0 : t.length;
4596 return new KeyIterator<K,V>(t, f, 0, f, m);
4597 }
4598
4599 /**
4600 * Adds the specified key to this set view by mapping the key to
4601 * the default mapped value in the backing map, if defined.
4602 *
4603 * @param e key to be added
4604 * @return {@code true} if this set changed as a result of the call
4605 * @throws NullPointerException if the specified key is null
4606 * @throws UnsupportedOperationException if no default mapped value
4607 * for additions was provided
4608 */
4609 public boolean add(K e) {
4610 V v;
4611 if ((v = value) == null)
4612 throw new UnsupportedOperationException();
4613 return map.putVal(e, v, true) == null;
4614 }
4615
4616 /**
4617 * Adds all of the elements in the specified collection to this set,
4618 * as if by calling {@link #add} on each one.
4619 *
4620 * @param c the elements to be inserted into this set
4621 * @return {@code true} if this set changed as a result of the call
4622 * @throws NullPointerException if the collection or any of its
4623 * elements are {@code null}
4624 * @throws UnsupportedOperationException if no default mapped value
4625 * for additions was provided
4626 */
4627 public boolean addAll(Collection<? extends K> c) {
4628 boolean added = false;
4629 V v;
4630 if ((v = value) == null)
4631 throw new UnsupportedOperationException();
4632 for (K e : c) {
4633 if (map.putVal(e, v, true) == null)
4634 added = true;
4635 }
4636 return added;
4637 }
4638
4639 public int hashCode() {
4640 int h = 0;
4641 for (K e : this)
4642 h += e.hashCode();
4643 return h;
4644 }
4645
4646 public boolean equals(Object o) {
4647 Set<?> c;
4648 return ((o instanceof Set) &&
4649 ((c = (Set<?>)o) == this ||
4650 (containsAll(c) && c.containsAll(this))));
4651 }
4652
4653 public Spliterator<K> spliterator() {
4654 Node<K,V>[] t;
4655 ConcurrentHashMap<K,V> m = map;
4656 long n = m.sumCount();
4657 int f = (t = m.table) == null ? 0 : t.length;
4658 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4659 }
4660
4661 public void forEach(Consumer<? super K> action) {
4662 if (action == null) throw new NullPointerException();
4663 Node<K,V>[] t;
4664 if ((t = map.table) != null) {
4665 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4666 for (Node<K,V> p; (p = it.advance()) != null; )
4667 action.accept(p.key);
4668 }
4669 }
4670 }
4671
4672 /**
4673 * A view of a ConcurrentHashMap as a {@link Collection} of
4674 * values, in which additions are disabled. This class cannot be
4675 * directly instantiated. See {@link #values()}.
4676 */
4677 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4678 implements Collection<V>, java.io.Serializable {
4679 private static final long serialVersionUID = 2249069246763182397L;
4680 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4681 public final boolean contains(Object o) {
4682 return map.containsValue(o);
4683 }
4684
4685 public final boolean remove(Object o) {
4686 if (o != null) {
4687 for (Iterator<V> it = iterator(); it.hasNext();) {
4688 if (o.equals(it.next())) {
4689 it.remove();
4690 return true;
4691 }
4692 }
4693 }
4694 return false;
4695 }
4696
4697 public final Iterator<V> iterator() {
4698 ConcurrentHashMap<K,V> m = map;
4699 Node<K,V>[] t;
4700 int f = (t = m.table) == null ? 0 : t.length;
4701 return new ValueIterator<K,V>(t, f, 0, f, m);
4702 }
4703
4704 public final boolean add(V e) {
4705 throw new UnsupportedOperationException();
4706 }
4707 public final boolean addAll(Collection<? extends V> c) {
4708 throw new UnsupportedOperationException();
4709 }
4710
4711 public boolean removeIf(Predicate<? super V> filter) {
4712 return map.removeValueIf(filter);
4713 }
4714
4715 public Spliterator<V> spliterator() {
4716 Node<K,V>[] t;
4717 ConcurrentHashMap<K,V> m = map;
4718 long n = m.sumCount();
4719 int f = (t = m.table) == null ? 0 : t.length;
4720 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4721 }
4722
4723 public void forEach(Consumer<? super V> action) {
4724 if (action == null) throw new NullPointerException();
4725 Node<K,V>[] t;
4726 if ((t = map.table) != null) {
4727 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4728 for (Node<K,V> p; (p = it.advance()) != null; )
4729 action.accept(p.val);
4730 }
4731 }
4732 }
4733
4734 /**
4735 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4736 * entries. This class cannot be directly instantiated. See
4737 * {@link #entrySet()}.
4738 */
4739 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4740 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4741 private static final long serialVersionUID = 2249069246763182397L;
4742 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4743
4744 public boolean contains(Object o) {
4745 Object k, v, r; Map.Entry<?,?> e;
4746 return ((o instanceof Map.Entry) &&
4747 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4748 (r = map.get(k)) != null &&
4749 (v = e.getValue()) != null &&
4750 (v == r || v.equals(r)));
4751 }
4752
4753 public boolean remove(Object o) {
4754 Object k, v; Map.Entry<?,?> e;
4755 return ((o instanceof Map.Entry) &&
4756 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4757 (v = e.getValue()) != null &&
4758 map.remove(k, v));
4759 }
4760
4761 /**
4762 * @return an iterator over the entries of the backing map
4763 */
4764 public Iterator<Map.Entry<K,V>> iterator() {
4765 ConcurrentHashMap<K,V> m = map;
4766 Node<K,V>[] t;
4767 int f = (t = m.table) == null ? 0 : t.length;
4768 return new EntryIterator<K,V>(t, f, 0, f, m);
4769 }
4770
4771 public boolean add(Entry<K,V> e) {
4772 return map.putVal(e.getKey(), e.getValue(), false) == null;
4773 }
4774
4775 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4776 boolean added = false;
4777 for (Entry<K,V> e : c) {
4778 if (add(e))
4779 added = true;
4780 }
4781 return added;
4782 }
4783
4784 public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4785 return map.removeEntryIf(filter);
4786 }
4787
4788 public final int hashCode() {
4789 int h = 0;
4790 Node<K,V>[] t;
4791 if ((t = map.table) != null) {
4792 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4793 for (Node<K,V> p; (p = it.advance()) != null; ) {
4794 h += p.hashCode();
4795 }
4796 }
4797 return h;
4798 }
4799
4800 public final boolean equals(Object o) {
4801 Set<?> c;
4802 return ((o instanceof Set) &&
4803 ((c = (Set<?>)o) == this ||
4804 (containsAll(c) && c.containsAll(this))));
4805 }
4806
4807 public Spliterator<Map.Entry<K,V>> spliterator() {
4808 Node<K,V>[] t;
4809 ConcurrentHashMap<K,V> m = map;
4810 long n = m.sumCount();
4811 int f = (t = m.table) == null ? 0 : t.length;
4812 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4813 }
4814
4815 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4816 if (action == null) throw new NullPointerException();
4817 Node<K,V>[] t;
4818 if ((t = map.table) != null) {
4819 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4820 for (Node<K,V> p; (p = it.advance()) != null; )
4821 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4822 }
4823 }
4824
4825 }
4826
4827 // -------------------------------------------------------
4828
4829 /**
4830 * Base class for bulk tasks. Repeats some fields and code from
4831 * class Traverser, because we need to subclass CountedCompleter.
4832 */
4833 @SuppressWarnings("serial")
4834 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4835 Node<K,V>[] tab; // same as Traverser
4836 Node<K,V> next;
4837 TableStack<K,V> stack, spare;
4838 int index;
4839 int baseIndex;
4840 int baseLimit;
4841 final int baseSize;
4842 int batch; // split control
4843
4844 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4845 super(par);
4846 this.batch = b;
4847 this.index = this.baseIndex = i;
4848 if ((this.tab = t) == null)
4849 this.baseSize = this.baseLimit = 0;
4850 else if (par == null)
4851 this.baseSize = this.baseLimit = t.length;
4852 else {
4853 this.baseLimit = f;
4854 this.baseSize = par.baseSize;
4855 }
4856 }
4857
4858 /**
4859 * Same as Traverser version
4860 */
4861 final Node<K,V> advance() {
4862 Node<K,V> e;
4863 if ((e = next) != null)
4864 e = e.next;
4865 for (;;) {
4866 Node<K,V>[] t; int i, n;
4867 if (e != null)
4868 return next = e;
4869 if (baseIndex >= baseLimit || (t = tab) == null ||
4870 (n = t.length) <= (i = index) || i < 0)
4871 return next = null;
4872 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4873 if (e instanceof ForwardingNode) {
4874 tab = ((ForwardingNode<K,V>)e).nextTable;
4875 e = null;
4876 pushState(t, i, n);
4877 continue;
4878 }
4879 else if (e instanceof TreeBin)
4880 e = ((TreeBin<K,V>)e).first;
4881 else
4882 e = null;
4883 }
4884 if (stack != null)
4885 recoverState(n);
4886 else if ((index = i + baseSize) >= n)
4887 index = ++baseIndex;
4888 }
4889 }
4890
4891 private void pushState(Node<K,V>[] t, int i, int n) {
4892 TableStack<K,V> s = spare;
4893 if (s != null)
4894 spare = s.next;
4895 else
4896 s = new TableStack<K,V>();
4897 s.tab = t;
4898 s.length = n;
4899 s.index = i;
4900 s.next = stack;
4901 stack = s;
4902 }
4903
4904 private void recoverState(int n) {
4905 TableStack<K,V> s; int len;
4906 while ((s = stack) != null && (index += (len = s.length)) >= n) {
4907 n = len;
4908 index = s.index;
4909 tab = s.tab;
4910 s.tab = null;
4911 TableStack<K,V> next = s.next;
4912 s.next = spare; // save for reuse
4913 stack = next;
4914 spare = s;
4915 }
4916 if (s == null && (index += baseSize) >= n)
4917 index = ++baseIndex;
4918 }
4919 }
4920
4921 /*
4922 * Task classes. Coded in a regular but ugly format/style to
4923 * simplify checks that each variant differs in the right way from
4924 * others. The null screenings exist because compilers cannot tell
4925 * that we've already null-checked task arguments, so we force
4926 * simplest hoisted bypass to help avoid convoluted traps.
4927 */
4928 @SuppressWarnings("serial")
4929 static final class ForEachKeyTask<K,V>
4930 extends BulkTask<K,V,Void> {
4931 final Consumer<? super K> action;
4932 ForEachKeyTask
4933 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4934 Consumer<? super K> action) {
4935 super(p, b, i, f, t);
4936 this.action = action;
4937 }
4938 public final void compute() {
4939 final Consumer<? super K> action;
4940 if ((action = this.action) != null) {
4941 for (int i = baseIndex, f, h; batch > 0 &&
4942 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4943 addToPendingCount(1);
4944 new ForEachKeyTask<K,V>
4945 (this, batch >>>= 1, baseLimit = h, f, tab,
4946 action).fork();
4947 }
4948 for (Node<K,V> p; (p = advance()) != null;)
4949 action.accept(p.key);
4950 propagateCompletion();
4951 }
4952 }
4953 }
4954
4955 @SuppressWarnings("serial")
4956 static final class ForEachValueTask<K,V>
4957 extends BulkTask<K,V,Void> {
4958 final Consumer<? super V> action;
4959 ForEachValueTask
4960 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4961 Consumer<? super V> action) {
4962 super(p, b, i, f, t);
4963 this.action = action;
4964 }
4965 public final void compute() {
4966 final Consumer<? super V> action;
4967 if ((action = this.action) != null) {
4968 for (int i = baseIndex, f, h; batch > 0 &&
4969 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4970 addToPendingCount(1);
4971 new ForEachValueTask<K,V>
4972 (this, batch >>>= 1, baseLimit = h, f, tab,
4973 action).fork();
4974 }
4975 for (Node<K,V> p; (p = advance()) != null;)
4976 action.accept(p.val);
4977 propagateCompletion();
4978 }
4979 }
4980 }
4981
4982 @SuppressWarnings("serial")
4983 static final class ForEachEntryTask<K,V>
4984 extends BulkTask<K,V,Void> {
4985 final Consumer<? super Entry<K,V>> action;
4986 ForEachEntryTask
4987 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4988 Consumer<? super Entry<K,V>> action) {
4989 super(p, b, i, f, t);
4990 this.action = action;
4991 }
4992 public final void compute() {
4993 final Consumer<? super Entry<K,V>> action;
4994 if ((action = this.action) != null) {
4995 for (int i = baseIndex, f, h; batch > 0 &&
4996 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4997 addToPendingCount(1);
4998 new ForEachEntryTask<K,V>
4999 (this, batch >>>= 1, baseLimit = h, f, tab,
5000 action).fork();
5001 }
5002 for (Node<K,V> p; (p = advance()) != null; )
5003 action.accept(p);
5004 propagateCompletion();
5005 }
5006 }
5007 }
5008
5009 @SuppressWarnings("serial")
5010 static final class ForEachMappingTask<K,V>
5011 extends BulkTask<K,V,Void> {
5012 final BiConsumer<? super K, ? super V> action;
5013 ForEachMappingTask
5014 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5015 BiConsumer<? super K,? super V> action) {
5016 super(p, b, i, f, t);
5017 this.action = action;
5018 }
5019 public final void compute() {
5020 final BiConsumer<? super K, ? super V> action;
5021 if ((action = this.action) != null) {
5022 for (int i = baseIndex, f, h; batch > 0 &&
5023 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5024 addToPendingCount(1);
5025 new ForEachMappingTask<K,V>
5026 (this, batch >>>= 1, baseLimit = h, f, tab,
5027 action).fork();
5028 }
5029 for (Node<K,V> p; (p = advance()) != null; )
5030 action.accept(p.key, p.val);
5031 propagateCompletion();
5032 }
5033 }
5034 }
5035
5036 @SuppressWarnings("serial")
5037 static final class ForEachTransformedKeyTask<K,V,U>
5038 extends BulkTask<K,V,Void> {
5039 final Function<? super K, ? extends U> transformer;
5040 final Consumer<? super U> action;
5041 ForEachTransformedKeyTask
5042 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5043 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5044 super(p, b, i, f, t);
5045 this.transformer = transformer; this.action = action;
5046 }
5047 public final void compute() {
5048 final Function<? super K, ? extends U> transformer;
5049 final Consumer<? super U> action;
5050 if ((transformer = this.transformer) != null &&
5051 (action = this.action) != null) {
5052 for (int i = baseIndex, f, h; batch > 0 &&
5053 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5054 addToPendingCount(1);
5055 new ForEachTransformedKeyTask<K,V,U>
5056 (this, batch >>>= 1, baseLimit = h, f, tab,
5057 transformer, action).fork();
5058 }
5059 for (Node<K,V> p; (p = advance()) != null; ) {
5060 U u;
5061 if ((u = transformer.apply(p.key)) != null)
5062 action.accept(u);
5063 }
5064 propagateCompletion();
5065 }
5066 }
5067 }
5068
5069 @SuppressWarnings("serial")
5070 static final class ForEachTransformedValueTask<K,V,U>
5071 extends BulkTask<K,V,Void> {
5072 final Function<? super V, ? extends U> transformer;
5073 final Consumer<? super U> action;
5074 ForEachTransformedValueTask
5075 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5076 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5077 super(p, b, i, f, t);
5078 this.transformer = transformer; this.action = action;
5079 }
5080 public final void compute() {
5081 final Function<? super V, ? extends U> transformer;
5082 final Consumer<? super U> action;
5083 if ((transformer = this.transformer) != null &&
5084 (action = this.action) != null) {
5085 for (int i = baseIndex, f, h; batch > 0 &&
5086 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5087 addToPendingCount(1);
5088 new ForEachTransformedValueTask<K,V,U>
5089 (this, batch >>>= 1, baseLimit = h, f, tab,
5090 transformer, action).fork();
5091 }
5092 for (Node<K,V> p; (p = advance()) != null; ) {
5093 U u;
5094 if ((u = transformer.apply(p.val)) != null)
5095 action.accept(u);
5096 }
5097 propagateCompletion();
5098 }
5099 }
5100 }
5101
5102 @SuppressWarnings("serial")
5103 static final class ForEachTransformedEntryTask<K,V,U>
5104 extends BulkTask<K,V,Void> {
5105 final Function<Map.Entry<K,V>, ? extends U> transformer;
5106 final Consumer<? super U> action;
5107 ForEachTransformedEntryTask
5108 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5109 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5110 super(p, b, i, f, t);
5111 this.transformer = transformer; this.action = action;
5112 }
5113 public final void compute() {
5114 final Function<Map.Entry<K,V>, ? extends U> transformer;
5115 final Consumer<? super U> action;
5116 if ((transformer = this.transformer) != null &&
5117 (action = this.action) != null) {
5118 for (int i = baseIndex, f, h; batch > 0 &&
5119 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5120 addToPendingCount(1);
5121 new ForEachTransformedEntryTask<K,V,U>
5122 (this, batch >>>= 1, baseLimit = h, f, tab,
5123 transformer, action).fork();
5124 }
5125 for (Node<K,V> p; (p = advance()) != null; ) {
5126 U u;
5127 if ((u = transformer.apply(p)) != null)
5128 action.accept(u);
5129 }
5130 propagateCompletion();
5131 }
5132 }
5133 }
5134
5135 @SuppressWarnings("serial")
5136 static final class ForEachTransformedMappingTask<K,V,U>
5137 extends BulkTask<K,V,Void> {
5138 final BiFunction<? super K, ? super V, ? extends U> transformer;
5139 final Consumer<? super U> action;
5140 ForEachTransformedMappingTask
5141 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5142 BiFunction<? super K, ? super V, ? extends U> transformer,
5143 Consumer<? super U> action) {
5144 super(p, b, i, f, t);
5145 this.transformer = transformer; this.action = action;
5146 }
5147 public final void compute() {
5148 final BiFunction<? super K, ? super V, ? extends U> transformer;
5149 final Consumer<? super U> action;
5150 if ((transformer = this.transformer) != null &&
5151 (action = this.action) != null) {
5152 for (int i = baseIndex, f, h; batch > 0 &&
5153 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5154 addToPendingCount(1);
5155 new ForEachTransformedMappingTask<K,V,U>
5156 (this, batch >>>= 1, baseLimit = h, f, tab,
5157 transformer, action).fork();
5158 }
5159 for (Node<K,V> p; (p = advance()) != null; ) {
5160 U u;
5161 if ((u = transformer.apply(p.key, p.val)) != null)
5162 action.accept(u);
5163 }
5164 propagateCompletion();
5165 }
5166 }
5167 }
5168
5169 @SuppressWarnings("serial")
5170 static final class SearchKeysTask<K,V,U>
5171 extends BulkTask<K,V,U> {
5172 final Function<? super K, ? extends U> searchFunction;
5173 final AtomicReference<U> result;
5174 SearchKeysTask
5175 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5176 Function<? super K, ? extends U> searchFunction,
5177 AtomicReference<U> result) {
5178 super(p, b, i, f, t);
5179 this.searchFunction = searchFunction; this.result = result;
5180 }
5181 public final U getRawResult() { return result.get(); }
5182 public final void compute() {
5183 final Function<? super K, ? extends U> searchFunction;
5184 final AtomicReference<U> result;
5185 if ((searchFunction = this.searchFunction) != null &&
5186 (result = this.result) != null) {
5187 for (int i = baseIndex, f, h; batch > 0 &&
5188 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5189 if (result.get() != null)
5190 return;
5191 addToPendingCount(1);
5192 new SearchKeysTask<K,V,U>
5193 (this, batch >>>= 1, baseLimit = h, f, tab,
5194 searchFunction, result).fork();
5195 }
5196 while (result.get() == null) {
5197 U u;
5198 Node<K,V> p;
5199 if ((p = advance()) == null) {
5200 propagateCompletion();
5201 break;
5202 }
5203 if ((u = searchFunction.apply(p.key)) != null) {
5204 if (result.compareAndSet(null, u))
5205 quietlyCompleteRoot();
5206 break;
5207 }
5208 }
5209 }
5210 }
5211 }
5212
5213 @SuppressWarnings("serial")
5214 static final class SearchValuesTask<K,V,U>
5215 extends BulkTask<K,V,U> {
5216 final Function<? super V, ? extends U> searchFunction;
5217 final AtomicReference<U> result;
5218 SearchValuesTask
5219 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5220 Function<? super V, ? extends U> searchFunction,
5221 AtomicReference<U> result) {
5222 super(p, b, i, f, t);
5223 this.searchFunction = searchFunction; this.result = result;
5224 }
5225 public final U getRawResult() { return result.get(); }
5226 public final void compute() {
5227 final Function<? super V, ? extends U> searchFunction;
5228 final AtomicReference<U> result;
5229 if ((searchFunction = this.searchFunction) != null &&
5230 (result = this.result) != null) {
5231 for (int i = baseIndex, f, h; batch > 0 &&
5232 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5233 if (result.get() != null)
5234 return;
5235 addToPendingCount(1);
5236 new SearchValuesTask<K,V,U>
5237 (this, batch >>>= 1, baseLimit = h, f, tab,
5238 searchFunction, result).fork();
5239 }
5240 while (result.get() == null) {
5241 U u;
5242 Node<K,V> p;
5243 if ((p = advance()) == null) {
5244 propagateCompletion();
5245 break;
5246 }
5247 if ((u = searchFunction.apply(p.val)) != null) {
5248 if (result.compareAndSet(null, u))
5249 quietlyCompleteRoot();
5250 break;
5251 }
5252 }
5253 }
5254 }
5255 }
5256
5257 @SuppressWarnings("serial")
5258 static final class SearchEntriesTask<K,V,U>
5259 extends BulkTask<K,V,U> {
5260 final Function<Entry<K,V>, ? extends U> searchFunction;
5261 final AtomicReference<U> result;
5262 SearchEntriesTask
5263 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5264 Function<Entry<K,V>, ? extends U> searchFunction,
5265 AtomicReference<U> result) {
5266 super(p, b, i, f, t);
5267 this.searchFunction = searchFunction; this.result = result;
5268 }
5269 public final U getRawResult() { return result.get(); }
5270 public final void compute() {
5271 final Function<Entry<K,V>, ? extends U> searchFunction;
5272 final AtomicReference<U> result;
5273 if ((searchFunction = this.searchFunction) != null &&
5274 (result = this.result) != null) {
5275 for (int i = baseIndex, f, h; batch > 0 &&
5276 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5277 if (result.get() != null)
5278 return;
5279 addToPendingCount(1);
5280 new SearchEntriesTask<K,V,U>
5281 (this, batch >>>= 1, baseLimit = h, f, tab,
5282 searchFunction, result).fork();
5283 }
5284 while (result.get() == null) {
5285 U u;
5286 Node<K,V> p;
5287 if ((p = advance()) == null) {
5288 propagateCompletion();
5289 break;
5290 }
5291 if ((u = searchFunction.apply(p)) != null) {
5292 if (result.compareAndSet(null, u))
5293 quietlyCompleteRoot();
5294 return;
5295 }
5296 }
5297 }
5298 }
5299 }
5300
5301 @SuppressWarnings("serial")
5302 static final class SearchMappingsTask<K,V,U>
5303 extends BulkTask<K,V,U> {
5304 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5305 final AtomicReference<U> result;
5306 SearchMappingsTask
5307 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5308 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5309 AtomicReference<U> result) {
5310 super(p, b, i, f, t);
5311 this.searchFunction = searchFunction; this.result = result;
5312 }
5313 public final U getRawResult() { return result.get(); }
5314 public final void compute() {
5315 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5316 final AtomicReference<U> result;
5317 if ((searchFunction = this.searchFunction) != null &&
5318 (result = this.result) != null) {
5319 for (int i = baseIndex, f, h; batch > 0 &&
5320 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5321 if (result.get() != null)
5322 return;
5323 addToPendingCount(1);
5324 new SearchMappingsTask<K,V,U>
5325 (this, batch >>>= 1, baseLimit = h, f, tab,
5326 searchFunction, result).fork();
5327 }
5328 while (result.get() == null) {
5329 U u;
5330 Node<K,V> p;
5331 if ((p = advance()) == null) {
5332 propagateCompletion();
5333 break;
5334 }
5335 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5336 if (result.compareAndSet(null, u))
5337 quietlyCompleteRoot();
5338 break;
5339 }
5340 }
5341 }
5342 }
5343 }
5344
5345 @SuppressWarnings("serial")
5346 static final class ReduceKeysTask<K,V>
5347 extends BulkTask<K,V,K> {
5348 final BiFunction<? super K, ? super K, ? extends K> reducer;
5349 K result;
5350 ReduceKeysTask<K,V> rights, nextRight;
5351 ReduceKeysTask
5352 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5353 ReduceKeysTask<K,V> nextRight,
5354 BiFunction<? super K, ? super K, ? extends K> reducer) {
5355 super(p, b, i, f, t); this.nextRight = nextRight;
5356 this.reducer = reducer;
5357 }
5358 public final K getRawResult() { return result; }
5359 public final void compute() {
5360 final BiFunction<? super K, ? super K, ? extends K> reducer;
5361 if ((reducer = this.reducer) != null) {
5362 for (int i = baseIndex, f, h; batch > 0 &&
5363 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5364 addToPendingCount(1);
5365 (rights = new ReduceKeysTask<K,V>
5366 (this, batch >>>= 1, baseLimit = h, f, tab,
5367 rights, reducer)).fork();
5368 }
5369 K r = null;
5370 for (Node<K,V> p; (p = advance()) != null; ) {
5371 K u = p.key;
5372 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5373 }
5374 result = r;
5375 CountedCompleter<?> c;
5376 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5377 @SuppressWarnings("unchecked")
5378 ReduceKeysTask<K,V>
5379 t = (ReduceKeysTask<K,V>)c,
5380 s = t.rights;
5381 while (s != null) {
5382 K tr, sr;
5383 if ((sr = s.result) != null)
5384 t.result = (((tr = t.result) == null) ? sr :
5385 reducer.apply(tr, sr));
5386 s = t.rights = s.nextRight;
5387 }
5388 }
5389 }
5390 }
5391 }
5392
5393 @SuppressWarnings("serial")
5394 static final class ReduceValuesTask<K,V>
5395 extends BulkTask<K,V,V> {
5396 final BiFunction<? super V, ? super V, ? extends V> reducer;
5397 V result;
5398 ReduceValuesTask<K,V> rights, nextRight;
5399 ReduceValuesTask
5400 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5401 ReduceValuesTask<K,V> nextRight,
5402 BiFunction<? super V, ? super V, ? extends V> reducer) {
5403 super(p, b, i, f, t); this.nextRight = nextRight;
5404 this.reducer = reducer;
5405 }
5406 public final V getRawResult() { return result; }
5407 public final void compute() {
5408 final BiFunction<? super V, ? super V, ? extends V> reducer;
5409 if ((reducer = this.reducer) != null) {
5410 for (int i = baseIndex, f, h; batch > 0 &&
5411 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5412 addToPendingCount(1);
5413 (rights = new ReduceValuesTask<K,V>
5414 (this, batch >>>= 1, baseLimit = h, f, tab,
5415 rights, reducer)).fork();
5416 }
5417 V r = null;
5418 for (Node<K,V> p; (p = advance()) != null; ) {
5419 V v = p.val;
5420 r = (r == null) ? v : reducer.apply(r, v);
5421 }
5422 result = r;
5423 CountedCompleter<?> c;
5424 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5425 @SuppressWarnings("unchecked")
5426 ReduceValuesTask<K,V>
5427 t = (ReduceValuesTask<K,V>)c,
5428 s = t.rights;
5429 while (s != null) {
5430 V tr, sr;
5431 if ((sr = s.result) != null)
5432 t.result = (((tr = t.result) == null) ? sr :
5433 reducer.apply(tr, sr));
5434 s = t.rights = s.nextRight;
5435 }
5436 }
5437 }
5438 }
5439 }
5440
5441 @SuppressWarnings("serial")
5442 static final class ReduceEntriesTask<K,V>
5443 extends BulkTask<K,V,Map.Entry<K,V>> {
5444 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5445 Map.Entry<K,V> result;
5446 ReduceEntriesTask<K,V> rights, nextRight;
5447 ReduceEntriesTask
5448 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5449 ReduceEntriesTask<K,V> nextRight,
5450 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5451 super(p, b, i, f, t); this.nextRight = nextRight;
5452 this.reducer = reducer;
5453 }
5454 public final Map.Entry<K,V> getRawResult() { return result; }
5455 public final void compute() {
5456 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5457 if ((reducer = this.reducer) != null) {
5458 for (int i = baseIndex, f, h; batch > 0 &&
5459 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5460 addToPendingCount(1);
5461 (rights = new ReduceEntriesTask<K,V>
5462 (this, batch >>>= 1, baseLimit = h, f, tab,
5463 rights, reducer)).fork();
5464 }
5465 Map.Entry<K,V> r = null;
5466 for (Node<K,V> p; (p = advance()) != null; )
5467 r = (r == null) ? p : reducer.apply(r, p);
5468 result = r;
5469 CountedCompleter<?> c;
5470 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5471 @SuppressWarnings("unchecked")
5472 ReduceEntriesTask<K,V>
5473 t = (ReduceEntriesTask<K,V>)c,
5474 s = t.rights;
5475 while (s != null) {
5476 Map.Entry<K,V> tr, sr;
5477 if ((sr = s.result) != null)
5478 t.result = (((tr = t.result) == null) ? sr :
5479 reducer.apply(tr, sr));
5480 s = t.rights = s.nextRight;
5481 }
5482 }
5483 }
5484 }
5485 }
5486
5487 @SuppressWarnings("serial")
5488 static final class MapReduceKeysTask<K,V,U>
5489 extends BulkTask<K,V,U> {
5490 final Function<? super K, ? extends U> transformer;
5491 final BiFunction<? super U, ? super U, ? extends U> reducer;
5492 U result;
5493 MapReduceKeysTask<K,V,U> rights, nextRight;
5494 MapReduceKeysTask
5495 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5496 MapReduceKeysTask<K,V,U> nextRight,
5497 Function<? super K, ? extends U> transformer,
5498 BiFunction<? super U, ? super U, ? extends U> reducer) {
5499 super(p, b, i, f, t); this.nextRight = nextRight;
5500 this.transformer = transformer;
5501 this.reducer = reducer;
5502 }
5503 public final U getRawResult() { return result; }
5504 public final void compute() {
5505 final Function<? super K, ? extends U> transformer;
5506 final BiFunction<? super U, ? super U, ? extends U> reducer;
5507 if ((transformer = this.transformer) != null &&
5508 (reducer = this.reducer) != null) {
5509 for (int i = baseIndex, f, h; batch > 0 &&
5510 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5511 addToPendingCount(1);
5512 (rights = new MapReduceKeysTask<K,V,U>
5513 (this, batch >>>= 1, baseLimit = h, f, tab,
5514 rights, transformer, reducer)).fork();
5515 }
5516 U r = null;
5517 for (Node<K,V> p; (p = advance()) != null; ) {
5518 U u;
5519 if ((u = transformer.apply(p.key)) != null)
5520 r = (r == null) ? u : reducer.apply(r, u);
5521 }
5522 result = r;
5523 CountedCompleter<?> c;
5524 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5525 @SuppressWarnings("unchecked")
5526 MapReduceKeysTask<K,V,U>
5527 t = (MapReduceKeysTask<K,V,U>)c,
5528 s = t.rights;
5529 while (s != null) {
5530 U tr, sr;
5531 if ((sr = s.result) != null)
5532 t.result = (((tr = t.result) == null) ? sr :
5533 reducer.apply(tr, sr));
5534 s = t.rights = s.nextRight;
5535 }
5536 }
5537 }
5538 }
5539 }
5540
5541 @SuppressWarnings("serial")
5542 static final class MapReduceValuesTask<K,V,U>
5543 extends BulkTask<K,V,U> {
5544 final Function<? super V, ? extends U> transformer;
5545 final BiFunction<? super U, ? super U, ? extends U> reducer;
5546 U result;
5547 MapReduceValuesTask<K,V,U> rights, nextRight;
5548 MapReduceValuesTask
5549 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5550 MapReduceValuesTask<K,V,U> nextRight,
5551 Function<? super V, ? extends U> transformer,
5552 BiFunction<? super U, ? super U, ? extends U> reducer) {
5553 super(p, b, i, f, t); this.nextRight = nextRight;
5554 this.transformer = transformer;
5555 this.reducer = reducer;
5556 }
5557 public final U getRawResult() { return result; }
5558 public final void compute() {
5559 final Function<? super V, ? extends U> transformer;
5560 final BiFunction<? super U, ? super U, ? extends U> reducer;
5561 if ((transformer = this.transformer) != null &&
5562 (reducer = this.reducer) != null) {
5563 for (int i = baseIndex, f, h; batch > 0 &&
5564 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5565 addToPendingCount(1);
5566 (rights = new MapReduceValuesTask<K,V,U>
5567 (this, batch >>>= 1, baseLimit = h, f, tab,
5568 rights, transformer, reducer)).fork();
5569 }
5570 U r = null;
5571 for (Node<K,V> p; (p = advance()) != null; ) {
5572 U u;
5573 if ((u = transformer.apply(p.val)) != null)
5574 r = (r == null) ? u : reducer.apply(r, u);
5575 }
5576 result = r;
5577 CountedCompleter<?> c;
5578 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5579 @SuppressWarnings("unchecked")
5580 MapReduceValuesTask<K,V,U>
5581 t = (MapReduceValuesTask<K,V,U>)c,
5582 s = t.rights;
5583 while (s != null) {
5584 U tr, sr;
5585 if ((sr = s.result) != null)
5586 t.result = (((tr = t.result) == null) ? sr :
5587 reducer.apply(tr, sr));
5588 s = t.rights = s.nextRight;
5589 }
5590 }
5591 }
5592 }
5593 }
5594
5595 @SuppressWarnings("serial")
5596 static final class MapReduceEntriesTask<K,V,U>
5597 extends BulkTask<K,V,U> {
5598 final Function<Map.Entry<K,V>, ? extends U> transformer;
5599 final BiFunction<? super U, ? super U, ? extends U> reducer;
5600 U result;
5601 MapReduceEntriesTask<K,V,U> rights, nextRight;
5602 MapReduceEntriesTask
5603 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5604 MapReduceEntriesTask<K,V,U> nextRight,
5605 Function<Map.Entry<K,V>, ? extends U> transformer,
5606 BiFunction<? super U, ? super U, ? extends U> reducer) {
5607 super(p, b, i, f, t); this.nextRight = nextRight;
5608 this.transformer = transformer;
5609 this.reducer = reducer;
5610 }
5611 public final U getRawResult() { return result; }
5612 public final void compute() {
5613 final Function<Map.Entry<K,V>, ? extends U> transformer;
5614 final BiFunction<? super U, ? super U, ? extends U> reducer;
5615 if ((transformer = this.transformer) != null &&
5616 (reducer = this.reducer) != null) {
5617 for (int i = baseIndex, f, h; batch > 0 &&
5618 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5619 addToPendingCount(1);
5620 (rights = new MapReduceEntriesTask<K,V,U>
5621 (this, batch >>>= 1, baseLimit = h, f, tab,
5622 rights, transformer, reducer)).fork();
5623 }
5624 U r = null;
5625 for (Node<K,V> p; (p = advance()) != null; ) {
5626 U u;
5627 if ((u = transformer.apply(p)) != null)
5628 r = (r == null) ? u : reducer.apply(r, u);
5629 }
5630 result = r;
5631 CountedCompleter<?> c;
5632 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5633 @SuppressWarnings("unchecked")
5634 MapReduceEntriesTask<K,V,U>
5635 t = (MapReduceEntriesTask<K,V,U>)c,
5636 s = t.rights;
5637 while (s != null) {
5638 U tr, sr;
5639 if ((sr = s.result) != null)
5640 t.result = (((tr = t.result) == null) ? sr :
5641 reducer.apply(tr, sr));
5642 s = t.rights = s.nextRight;
5643 }
5644 }
5645 }
5646 }
5647 }
5648
5649 @SuppressWarnings("serial")
5650 static final class MapReduceMappingsTask<K,V,U>
5651 extends BulkTask<K,V,U> {
5652 final BiFunction<? super K, ? super V, ? extends U> transformer;
5653 final BiFunction<? super U, ? super U, ? extends U> reducer;
5654 U result;
5655 MapReduceMappingsTask<K,V,U> rights, nextRight;
5656 MapReduceMappingsTask
5657 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5658 MapReduceMappingsTask<K,V,U> nextRight,
5659 BiFunction<? super K, ? super V, ? extends U> transformer,
5660 BiFunction<? super U, ? super U, ? extends U> reducer) {
5661 super(p, b, i, f, t); this.nextRight = nextRight;
5662 this.transformer = transformer;
5663 this.reducer = reducer;
5664 }
5665 public final U getRawResult() { return result; }
5666 public final void compute() {
5667 final BiFunction<? super K, ? super V, ? extends U> transformer;
5668 final BiFunction<? super U, ? super U, ? extends U> reducer;
5669 if ((transformer = this.transformer) != null &&
5670 (reducer = this.reducer) != null) {
5671 for (int i = baseIndex, f, h; batch > 0 &&
5672 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5673 addToPendingCount(1);
5674 (rights = new MapReduceMappingsTask<K,V,U>
5675 (this, batch >>>= 1, baseLimit = h, f, tab,
5676 rights, transformer, reducer)).fork();
5677 }
5678 U r = null;
5679 for (Node<K,V> p; (p = advance()) != null; ) {
5680 U u;
5681 if ((u = transformer.apply(p.key, p.val)) != null)
5682 r = (r == null) ? u : reducer.apply(r, u);
5683 }
5684 result = r;
5685 CountedCompleter<?> c;
5686 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5687 @SuppressWarnings("unchecked")
5688 MapReduceMappingsTask<K,V,U>
5689 t = (MapReduceMappingsTask<K,V,U>)c,
5690 s = t.rights;
5691 while (s != null) {
5692 U tr, sr;
5693 if ((sr = s.result) != null)
5694 t.result = (((tr = t.result) == null) ? sr :
5695 reducer.apply(tr, sr));
5696 s = t.rights = s.nextRight;
5697 }
5698 }
5699 }
5700 }
5701 }
5702
5703 @SuppressWarnings("serial")
5704 static final class MapReduceKeysToDoubleTask<K,V>
5705 extends BulkTask<K,V,Double> {
5706 final ToDoubleFunction<? super K> transformer;
5707 final DoubleBinaryOperator reducer;
5708 final double basis;
5709 double result;
5710 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5711 MapReduceKeysToDoubleTask
5712 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5713 MapReduceKeysToDoubleTask<K,V> nextRight,
5714 ToDoubleFunction<? super K> transformer,
5715 double basis,
5716 DoubleBinaryOperator reducer) {
5717 super(p, b, i, f, t); this.nextRight = nextRight;
5718 this.transformer = transformer;
5719 this.basis = basis; this.reducer = reducer;
5720 }
5721 public final Double getRawResult() { return result; }
5722 public final void compute() {
5723 final ToDoubleFunction<? super K> transformer;
5724 final DoubleBinaryOperator reducer;
5725 if ((transformer = this.transformer) != null &&
5726 (reducer = this.reducer) != null) {
5727 double r = this.basis;
5728 for (int i = baseIndex, f, h; batch > 0 &&
5729 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5730 addToPendingCount(1);
5731 (rights = new MapReduceKeysToDoubleTask<K,V>
5732 (this, batch >>>= 1, baseLimit = h, f, tab,
5733 rights, transformer, r, reducer)).fork();
5734 }
5735 for (Node<K,V> p; (p = advance()) != null; )
5736 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5737 result = r;
5738 CountedCompleter<?> c;
5739 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5740 @SuppressWarnings("unchecked")
5741 MapReduceKeysToDoubleTask<K,V>
5742 t = (MapReduceKeysToDoubleTask<K,V>)c,
5743 s = t.rights;
5744 while (s != null) {
5745 t.result = reducer.applyAsDouble(t.result, s.result);
5746 s = t.rights = s.nextRight;
5747 }
5748 }
5749 }
5750 }
5751 }
5752
5753 @SuppressWarnings("serial")
5754 static final class MapReduceValuesToDoubleTask<K,V>
5755 extends BulkTask<K,V,Double> {
5756 final ToDoubleFunction<? super V> transformer;
5757 final DoubleBinaryOperator reducer;
5758 final double basis;
5759 double result;
5760 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5761 MapReduceValuesToDoubleTask
5762 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5763 MapReduceValuesToDoubleTask<K,V> nextRight,
5764 ToDoubleFunction<? super V> transformer,
5765 double basis,
5766 DoubleBinaryOperator reducer) {
5767 super(p, b, i, f, t); this.nextRight = nextRight;
5768 this.transformer = transformer;
5769 this.basis = basis; this.reducer = reducer;
5770 }
5771 public final Double getRawResult() { return result; }
5772 public final void compute() {
5773 final ToDoubleFunction<? super V> transformer;
5774 final DoubleBinaryOperator reducer;
5775 if ((transformer = this.transformer) != null &&
5776 (reducer = this.reducer) != null) {
5777 double r = this.basis;
5778 for (int i = baseIndex, f, h; batch > 0 &&
5779 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5780 addToPendingCount(1);
5781 (rights = new MapReduceValuesToDoubleTask<K,V>
5782 (this, batch >>>= 1, baseLimit = h, f, tab,
5783 rights, transformer, r, reducer)).fork();
5784 }
5785 for (Node<K,V> p; (p = advance()) != null; )
5786 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5787 result = r;
5788 CountedCompleter<?> c;
5789 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5790 @SuppressWarnings("unchecked")
5791 MapReduceValuesToDoubleTask<K,V>
5792 t = (MapReduceValuesToDoubleTask<K,V>)c,
5793 s = t.rights;
5794 while (s != null) {
5795 t.result = reducer.applyAsDouble(t.result, s.result);
5796 s = t.rights = s.nextRight;
5797 }
5798 }
5799 }
5800 }
5801 }
5802
5803 @SuppressWarnings("serial")
5804 static final class MapReduceEntriesToDoubleTask<K,V>
5805 extends BulkTask<K,V,Double> {
5806 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5807 final DoubleBinaryOperator reducer;
5808 final double basis;
5809 double result;
5810 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5811 MapReduceEntriesToDoubleTask
5812 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5813 MapReduceEntriesToDoubleTask<K,V> nextRight,
5814 ToDoubleFunction<Map.Entry<K,V>> transformer,
5815 double basis,
5816 DoubleBinaryOperator reducer) {
5817 super(p, b, i, f, t); this.nextRight = nextRight;
5818 this.transformer = transformer;
5819 this.basis = basis; this.reducer = reducer;
5820 }
5821 public final Double getRawResult() { return result; }
5822 public final void compute() {
5823 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5824 final DoubleBinaryOperator reducer;
5825 if ((transformer = this.transformer) != null &&
5826 (reducer = this.reducer) != null) {
5827 double r = this.basis;
5828 for (int i = baseIndex, f, h; batch > 0 &&
5829 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5830 addToPendingCount(1);
5831 (rights = new MapReduceEntriesToDoubleTask<K,V>
5832 (this, batch >>>= 1, baseLimit = h, f, tab,
5833 rights, transformer, r, reducer)).fork();
5834 }
5835 for (Node<K,V> p; (p = advance()) != null; )
5836 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5837 result = r;
5838 CountedCompleter<?> c;
5839 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5840 @SuppressWarnings("unchecked")
5841 MapReduceEntriesToDoubleTask<K,V>
5842 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5843 s = t.rights;
5844 while (s != null) {
5845 t.result = reducer.applyAsDouble(t.result, s.result);
5846 s = t.rights = s.nextRight;
5847 }
5848 }
5849 }
5850 }
5851 }
5852
5853 @SuppressWarnings("serial")
5854 static final class MapReduceMappingsToDoubleTask<K,V>
5855 extends BulkTask<K,V,Double> {
5856 final ToDoubleBiFunction<? super K, ? super V> transformer;
5857 final DoubleBinaryOperator reducer;
5858 final double basis;
5859 double result;
5860 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5861 MapReduceMappingsToDoubleTask
5862 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5863 MapReduceMappingsToDoubleTask<K,V> nextRight,
5864 ToDoubleBiFunction<? super K, ? super V> transformer,
5865 double basis,
5866 DoubleBinaryOperator reducer) {
5867 super(p, b, i, f, t); this.nextRight = nextRight;
5868 this.transformer = transformer;
5869 this.basis = basis; this.reducer = reducer;
5870 }
5871 public final Double getRawResult() { return result; }
5872 public final void compute() {
5873 final ToDoubleBiFunction<? super K, ? super V> transformer;
5874 final DoubleBinaryOperator reducer;
5875 if ((transformer = this.transformer) != null &&
5876 (reducer = this.reducer) != null) {
5877 double r = this.basis;
5878 for (int i = baseIndex, f, h; batch > 0 &&
5879 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5880 addToPendingCount(1);
5881 (rights = new MapReduceMappingsToDoubleTask<K,V>
5882 (this, batch >>>= 1, baseLimit = h, f, tab,
5883 rights, transformer, r, reducer)).fork();
5884 }
5885 for (Node<K,V> p; (p = advance()) != null; )
5886 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5887 result = r;
5888 CountedCompleter<?> c;
5889 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5890 @SuppressWarnings("unchecked")
5891 MapReduceMappingsToDoubleTask<K,V>
5892 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5893 s = t.rights;
5894 while (s != null) {
5895 t.result = reducer.applyAsDouble(t.result, s.result);
5896 s = t.rights = s.nextRight;
5897 }
5898 }
5899 }
5900 }
5901 }
5902
5903 @SuppressWarnings("serial")
5904 static final class MapReduceKeysToLongTask<K,V>
5905 extends BulkTask<K,V,Long> {
5906 final ToLongFunction<? super K> transformer;
5907 final LongBinaryOperator reducer;
5908 final long basis;
5909 long result;
5910 MapReduceKeysToLongTask<K,V> rights, nextRight;
5911 MapReduceKeysToLongTask
5912 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5913 MapReduceKeysToLongTask<K,V> nextRight,
5914 ToLongFunction<? super K> transformer,
5915 long basis,
5916 LongBinaryOperator reducer) {
5917 super(p, b, i, f, t); this.nextRight = nextRight;
5918 this.transformer = transformer;
5919 this.basis = basis; this.reducer = reducer;
5920 }
5921 public final Long getRawResult() { return result; }
5922 public final void compute() {
5923 final ToLongFunction<? super K> transformer;
5924 final LongBinaryOperator reducer;
5925 if ((transformer = this.transformer) != null &&
5926 (reducer = this.reducer) != null) {
5927 long r = this.basis;
5928 for (int i = baseIndex, f, h; batch > 0 &&
5929 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5930 addToPendingCount(1);
5931 (rights = new MapReduceKeysToLongTask<K,V>
5932 (this, batch >>>= 1, baseLimit = h, f, tab,
5933 rights, transformer, r, reducer)).fork();
5934 }
5935 for (Node<K,V> p; (p = advance()) != null; )
5936 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5937 result = r;
5938 CountedCompleter<?> c;
5939 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5940 @SuppressWarnings("unchecked")
5941 MapReduceKeysToLongTask<K,V>
5942 t = (MapReduceKeysToLongTask<K,V>)c,
5943 s = t.rights;
5944 while (s != null) {
5945 t.result = reducer.applyAsLong(t.result, s.result);
5946 s = t.rights = s.nextRight;
5947 }
5948 }
5949 }
5950 }
5951 }
5952
5953 @SuppressWarnings("serial")
5954 static final class MapReduceValuesToLongTask<K,V>
5955 extends BulkTask<K,V,Long> {
5956 final ToLongFunction<? super V> transformer;
5957 final LongBinaryOperator reducer;
5958 final long basis;
5959 long result;
5960 MapReduceValuesToLongTask<K,V> rights, nextRight;
5961 MapReduceValuesToLongTask
5962 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5963 MapReduceValuesToLongTask<K,V> nextRight,
5964 ToLongFunction<? super V> transformer,
5965 long basis,
5966 LongBinaryOperator reducer) {
5967 super(p, b, i, f, t); this.nextRight = nextRight;
5968 this.transformer = transformer;
5969 this.basis = basis; this.reducer = reducer;
5970 }
5971 public final Long getRawResult() { return result; }
5972 public final void compute() {
5973 final ToLongFunction<? super V> transformer;
5974 final LongBinaryOperator reducer;
5975 if ((transformer = this.transformer) != null &&
5976 (reducer = this.reducer) != null) {
5977 long r = this.basis;
5978 for (int i = baseIndex, f, h; batch > 0 &&
5979 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5980 addToPendingCount(1);
5981 (rights = new MapReduceValuesToLongTask<K,V>
5982 (this, batch >>>= 1, baseLimit = h, f, tab,
5983 rights, transformer, r, reducer)).fork();
5984 }
5985 for (Node<K,V> p; (p = advance()) != null; )
5986 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
5987 result = r;
5988 CountedCompleter<?> c;
5989 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5990 @SuppressWarnings("unchecked")
5991 MapReduceValuesToLongTask<K,V>
5992 t = (MapReduceValuesToLongTask<K,V>)c,
5993 s = t.rights;
5994 while (s != null) {
5995 t.result = reducer.applyAsLong(t.result, s.result);
5996 s = t.rights = s.nextRight;
5997 }
5998 }
5999 }
6000 }
6001 }
6002
6003 @SuppressWarnings("serial")
6004 static final class MapReduceEntriesToLongTask<K,V>
6005 extends BulkTask<K,V,Long> {
6006 final ToLongFunction<Map.Entry<K,V>> transformer;
6007 final LongBinaryOperator reducer;
6008 final long basis;
6009 long result;
6010 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6011 MapReduceEntriesToLongTask
6012 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6013 MapReduceEntriesToLongTask<K,V> nextRight,
6014 ToLongFunction<Map.Entry<K,V>> transformer,
6015 long basis,
6016 LongBinaryOperator reducer) {
6017 super(p, b, i, f, t); this.nextRight = nextRight;
6018 this.transformer = transformer;
6019 this.basis = basis; this.reducer = reducer;
6020 }
6021 public final Long getRawResult() { return result; }
6022 public final void compute() {
6023 final ToLongFunction<Map.Entry<K,V>> transformer;
6024 final LongBinaryOperator reducer;
6025 if ((transformer = this.transformer) != null &&
6026 (reducer = this.reducer) != null) {
6027 long r = this.basis;
6028 for (int i = baseIndex, f, h; batch > 0 &&
6029 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6030 addToPendingCount(1);
6031 (rights = new MapReduceEntriesToLongTask<K,V>
6032 (this, batch >>>= 1, baseLimit = h, f, tab,
6033 rights, transformer, r, reducer)).fork();
6034 }
6035 for (Node<K,V> p; (p = advance()) != null; )
6036 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6037 result = r;
6038 CountedCompleter<?> c;
6039 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6040 @SuppressWarnings("unchecked")
6041 MapReduceEntriesToLongTask<K,V>
6042 t = (MapReduceEntriesToLongTask<K,V>)c,
6043 s = t.rights;
6044 while (s != null) {
6045 t.result = reducer.applyAsLong(t.result, s.result);
6046 s = t.rights = s.nextRight;
6047 }
6048 }
6049 }
6050 }
6051 }
6052
6053 @SuppressWarnings("serial")
6054 static final class MapReduceMappingsToLongTask<K,V>
6055 extends BulkTask<K,V,Long> {
6056 final ToLongBiFunction<? super K, ? super V> transformer;
6057 final LongBinaryOperator reducer;
6058 final long basis;
6059 long result;
6060 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6061 MapReduceMappingsToLongTask
6062 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6063 MapReduceMappingsToLongTask<K,V> nextRight,
6064 ToLongBiFunction<? super K, ? super V> transformer,
6065 long basis,
6066 LongBinaryOperator reducer) {
6067 super(p, b, i, f, t); this.nextRight = nextRight;
6068 this.transformer = transformer;
6069 this.basis = basis; this.reducer = reducer;
6070 }
6071 public final Long getRawResult() { return result; }
6072 public final void compute() {
6073 final ToLongBiFunction<? super K, ? super V> transformer;
6074 final LongBinaryOperator reducer;
6075 if ((transformer = this.transformer) != null &&
6076 (reducer = this.reducer) != null) {
6077 long r = this.basis;
6078 for (int i = baseIndex, f, h; batch > 0 &&
6079 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6080 addToPendingCount(1);
6081 (rights = new MapReduceMappingsToLongTask<K,V>
6082 (this, batch >>>= 1, baseLimit = h, f, tab,
6083 rights, transformer, r, reducer)).fork();
6084 }
6085 for (Node<K,V> p; (p = advance()) != null; )
6086 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6087 result = r;
6088 CountedCompleter<?> c;
6089 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6090 @SuppressWarnings("unchecked")
6091 MapReduceMappingsToLongTask<K,V>
6092 t = (MapReduceMappingsToLongTask<K,V>)c,
6093 s = t.rights;
6094 while (s != null) {
6095 t.result = reducer.applyAsLong(t.result, s.result);
6096 s = t.rights = s.nextRight;
6097 }
6098 }
6099 }
6100 }
6101 }
6102
6103 @SuppressWarnings("serial")
6104 static final class MapReduceKeysToIntTask<K,V>
6105 extends BulkTask<K,V,Integer> {
6106 final ToIntFunction<? super K> transformer;
6107 final IntBinaryOperator reducer;
6108 final int basis;
6109 int result;
6110 MapReduceKeysToIntTask<K,V> rights, nextRight;
6111 MapReduceKeysToIntTask
6112 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6113 MapReduceKeysToIntTask<K,V> nextRight,
6114 ToIntFunction<? super K> transformer,
6115 int basis,
6116 IntBinaryOperator reducer) {
6117 super(p, b, i, f, t); this.nextRight = nextRight;
6118 this.transformer = transformer;
6119 this.basis = basis; this.reducer = reducer;
6120 }
6121 public final Integer getRawResult() { return result; }
6122 public final void compute() {
6123 final ToIntFunction<? super K> transformer;
6124 final IntBinaryOperator reducer;
6125 if ((transformer = this.transformer) != null &&
6126 (reducer = this.reducer) != null) {
6127 int r = this.basis;
6128 for (int i = baseIndex, f, h; batch > 0 &&
6129 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6130 addToPendingCount(1);
6131 (rights = new MapReduceKeysToIntTask<K,V>
6132 (this, batch >>>= 1, baseLimit = h, f, tab,
6133 rights, transformer, r, reducer)).fork();
6134 }
6135 for (Node<K,V> p; (p = advance()) != null; )
6136 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6137 result = r;
6138 CountedCompleter<?> c;
6139 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6140 @SuppressWarnings("unchecked")
6141 MapReduceKeysToIntTask<K,V>
6142 t = (MapReduceKeysToIntTask<K,V>)c,
6143 s = t.rights;
6144 while (s != null) {
6145 t.result = reducer.applyAsInt(t.result, s.result);
6146 s = t.rights = s.nextRight;
6147 }
6148 }
6149 }
6150 }
6151 }
6152
6153 @SuppressWarnings("serial")
6154 static final class MapReduceValuesToIntTask<K,V>
6155 extends BulkTask<K,V,Integer> {
6156 final ToIntFunction<? super V> transformer;
6157 final IntBinaryOperator reducer;
6158 final int basis;
6159 int result;
6160 MapReduceValuesToIntTask<K,V> rights, nextRight;
6161 MapReduceValuesToIntTask
6162 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6163 MapReduceValuesToIntTask<K,V> nextRight,
6164 ToIntFunction<? super V> transformer,
6165 int basis,
6166 IntBinaryOperator reducer) {
6167 super(p, b, i, f, t); this.nextRight = nextRight;
6168 this.transformer = transformer;
6169 this.basis = basis; this.reducer = reducer;
6170 }
6171 public final Integer getRawResult() { return result; }
6172 public final void compute() {
6173 final ToIntFunction<? super V> transformer;
6174 final IntBinaryOperator reducer;
6175 if ((transformer = this.transformer) != null &&
6176 (reducer = this.reducer) != null) {
6177 int r = this.basis;
6178 for (int i = baseIndex, f, h; batch > 0 &&
6179 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6180 addToPendingCount(1);
6181 (rights = new MapReduceValuesToIntTask<K,V>
6182 (this, batch >>>= 1, baseLimit = h, f, tab,
6183 rights, transformer, r, reducer)).fork();
6184 }
6185 for (Node<K,V> p; (p = advance()) != null; )
6186 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6187 result = r;
6188 CountedCompleter<?> c;
6189 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6190 @SuppressWarnings("unchecked")
6191 MapReduceValuesToIntTask<K,V>
6192 t = (MapReduceValuesToIntTask<K,V>)c,
6193 s = t.rights;
6194 while (s != null) {
6195 t.result = reducer.applyAsInt(t.result, s.result);
6196 s = t.rights = s.nextRight;
6197 }
6198 }
6199 }
6200 }
6201 }
6202
6203 @SuppressWarnings("serial")
6204 static final class MapReduceEntriesToIntTask<K,V>
6205 extends BulkTask<K,V,Integer> {
6206 final ToIntFunction<Map.Entry<K,V>> transformer;
6207 final IntBinaryOperator reducer;
6208 final int basis;
6209 int result;
6210 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6211 MapReduceEntriesToIntTask
6212 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6213 MapReduceEntriesToIntTask<K,V> nextRight,
6214 ToIntFunction<Map.Entry<K,V>> transformer,
6215 int basis,
6216 IntBinaryOperator reducer) {
6217 super(p, b, i, f, t); this.nextRight = nextRight;
6218 this.transformer = transformer;
6219 this.basis = basis; this.reducer = reducer;
6220 }
6221 public final Integer getRawResult() { return result; }
6222 public final void compute() {
6223 final ToIntFunction<Map.Entry<K,V>> transformer;
6224 final IntBinaryOperator reducer;
6225 if ((transformer = this.transformer) != null &&
6226 (reducer = this.reducer) != null) {
6227 int r = this.basis;
6228 for (int i = baseIndex, f, h; batch > 0 &&
6229 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6230 addToPendingCount(1);
6231 (rights = new MapReduceEntriesToIntTask<K,V>
6232 (this, batch >>>= 1, baseLimit = h, f, tab,
6233 rights, transformer, r, reducer)).fork();
6234 }
6235 for (Node<K,V> p; (p = advance()) != null; )
6236 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6237 result = r;
6238 CountedCompleter<?> c;
6239 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6240 @SuppressWarnings("unchecked")
6241 MapReduceEntriesToIntTask<K,V>
6242 t = (MapReduceEntriesToIntTask<K,V>)c,
6243 s = t.rights;
6244 while (s != null) {
6245 t.result = reducer.applyAsInt(t.result, s.result);
6246 s = t.rights = s.nextRight;
6247 }
6248 }
6249 }
6250 }
6251 }
6252
6253 @SuppressWarnings("serial")
6254 static final class MapReduceMappingsToIntTask<K,V>
6255 extends BulkTask<K,V,Integer> {
6256 final ToIntBiFunction<? super K, ? super V> transformer;
6257 final IntBinaryOperator reducer;
6258 final int basis;
6259 int result;
6260 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6261 MapReduceMappingsToIntTask
6262 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6263 MapReduceMappingsToIntTask<K,V> nextRight,
6264 ToIntBiFunction<? super K, ? super V> transformer,
6265 int basis,
6266 IntBinaryOperator reducer) {
6267 super(p, b, i, f, t); this.nextRight = nextRight;
6268 this.transformer = transformer;
6269 this.basis = basis; this.reducer = reducer;
6270 }
6271 public final Integer getRawResult() { return result; }
6272 public final void compute() {
6273 final ToIntBiFunction<? super K, ? super V> transformer;
6274 final IntBinaryOperator reducer;
6275 if ((transformer = this.transformer) != null &&
6276 (reducer = this.reducer) != null) {
6277 int r = this.basis;
6278 for (int i = baseIndex, f, h; batch > 0 &&
6279 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6280 addToPendingCount(1);
6281 (rights = new MapReduceMappingsToIntTask<K,V>
6282 (this, batch >>>= 1, baseLimit = h, f, tab,
6283 rights, transformer, r, reducer)).fork();
6284 }
6285 for (Node<K,V> p; (p = advance()) != null; )
6286 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6287 result = r;
6288 CountedCompleter<?> c;
6289 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6290 @SuppressWarnings("unchecked")
6291 MapReduceMappingsToIntTask<K,V>
6292 t = (MapReduceMappingsToIntTask<K,V>)c,
6293 s = t.rights;
6294 while (s != null) {
6295 t.result = reducer.applyAsInt(t.result, s.result);
6296 s = t.rights = s.nextRight;
6297 }
6298 }
6299 }
6300 }
6301 }
6302
6303 // Unsafe mechanics
6304 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
6305 private static final long SIZECTL;
6306 private static final long TRANSFERINDEX;
6307 private static final long BASECOUNT;
6308 private static final long CELLSBUSY;
6309 private static final long CELLVALUE;
6310 private static final int ABASE;
6311 private static final int ASHIFT;
6312
6313 static {
6314 try {
6315 SIZECTL = U.objectFieldOffset
6316 (ConcurrentHashMap.class.getDeclaredField("sizeCtl"));
6317 TRANSFERINDEX = U.objectFieldOffset
6318 (ConcurrentHashMap.class.getDeclaredField("transferIndex"));
6319 BASECOUNT = U.objectFieldOffset
6320 (ConcurrentHashMap.class.getDeclaredField("baseCount"));
6321 CELLSBUSY = U.objectFieldOffset
6322 (ConcurrentHashMap.class.getDeclaredField("cellsBusy"));
6323
6324 CELLVALUE = U.objectFieldOffset
6325 (CounterCell.class.getDeclaredField("value"));
6326
6327 ABASE = U.arrayBaseOffset(Node[].class);
6328 int scale = U.arrayIndexScale(Node[].class);
6329 if ((scale & (scale - 1)) != 0)
6330 throw new Error("array index scale not a power of two");
6331 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6332 } catch (ReflectiveOperationException e) {
6333 throw new Error(e);
6334 }
6335
6336 // Reduce the risk of rare disastrous classloading in first call to
6337 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6338 Class<?> ensureLoaded = LockSupport.class;
6339 }
6340 }