ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.29
Committed: Wed Nov 12 01:04:24 2003 UTC (20 years, 6 months ago) by dl
Branch: MAIN
Changes since 1.28: +4 -4 lines
Log Message:
fixed typos; avoided some casts

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain. Use, modify, and
4 * redistribute this code in any way without acknowledgement.
5 */
6
7 package java.util.concurrent;
8 import java.util.concurrent.locks.*;
9 import java.util.*;
10 import java.io.Serializable;
11 import java.io.IOException;
12 import java.io.ObjectInputStream;
13 import java.io.ObjectOutputStream;
14
15 /**
16 * A hash table supporting full concurrency of retrievals and
17 * adjustable expected concurrency for updates. This class obeys the
18 * same functional specification as {@link java.util.Hashtable}, and
19 * includes versions of methods corresponding to each method of
20 * <tt>Hashtable</tt>. However, even though all operations are
21 * thread-safe, retrieval operations do <em>not</em> entail locking,
22 * and there is <em>not</em> any support for locking the entire table
23 * in a way that prevents all access. This class is fully
24 * interoperable with <tt>Hashtable</tt> in programs that rely on its
25 * thread safety but not on its synchronization details.
26 *
27 * <p> Retrieval operations (including <tt>get</tt>) generally do not
28 * block, so may overlap with update operations (including
29 * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
30 * of the most recently <em>completed</em> update operations holding
31 * upon their onset. For aggregate operations such as <tt>putAll</tt>
32 * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
33 * removal of only some entries. Similarly, Iterators and
34 * Enumerations return elements reflecting the state of the hash table
35 * at some point at or since the creation of the iterator/enumeration.
36 * They do <em>not</em> throw
37 * {@link ConcurrentModificationException}. However, iterators are
38 * designed to be used by only one thread at a time.
39 *
40 * <p> The allowed concurrency among update operations is guided by
41 * the optional <tt>concurrencyLevel</tt> constructor argument
42 * (default 16), which is used as a hint for internal sizing. The
43 * table is internally partitioned to try to permit the indicated
44 * number of concurrent updates without contention. Because placement
45 * in hash tables is essentially random, the actual concurrency will
46 * vary. Ideally, you should choose a value to accommodate as many
47 * threads as will ever concurrently modify the table. Using a
48 * significantly higher value than you need can waste space and time,
49 * and a significantly lower value can lead to thread contention. But
50 * overestimates and underestimates within an order of magnitude do
51 * not usually have much noticeable impact. A value of one is
52 * appropriate when it is known that only one thread will modify
53 * and all others will only read.
54 *
55 * <p>This class implements all of the <em>optional</em> methods
56 * of the {@link Map} and {@link Iterator} interfaces.
57 *
58 * <p> Like {@link java.util.Hashtable} but unlike {@link
59 * java.util.HashMap}, this class does NOT allow <tt>null</tt> to be
60 * used as a key or value.
61 *
62 * @since 1.5
63 * @author Doug Lea
64 * @param <K> the type of keys maintained by this map
65 * @param <V> the type of mapped values
66 */
67 public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
68 implements ConcurrentMap<K, V>, Cloneable, Serializable {
69 private static final long serialVersionUID = 7249069246763182397L;
70
71 /*
72 * The basic strategy is to subdivide the table among Segments,
73 * each of which itself is a concurrently readable hash table.
74 */
75
76 /* ---------------- Constants -------------- */
77
78 /**
79 * The default initial number of table slots for this table.
80 * Used when not otherwise specified in constructor.
81 */
82 private static int DEFAULT_INITIAL_CAPACITY = 16;
83
84 /**
85 * The maximum capacity, used if a higher value is implicitly
86 * specified by either of the constructors with arguments. MUST
87 * be a power of two <= 1<<30 to ensure that entries are indexible
88 * using ints.
89 */
90 static final int MAXIMUM_CAPACITY = 1 << 30;
91
92 /**
93 * The default load factor for this table. Used when not
94 * otherwise specified in constructor.
95 */
96 static final float DEFAULT_LOAD_FACTOR = 0.75f;
97
98 /**
99 * The default number of concurrency control segments.
100 **/
101 private static final int DEFAULT_SEGMENTS = 16;
102
103 /**
104 * The maximum number of segments to allow; used to bound ctor arguments.
105 */
106 private static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
107
108 /* ---------------- Fields -------------- */
109
110 /**
111 * Mask value for indexing into segments. The upper bits of a
112 * key's hash code are used to choose the segment.
113 **/
114 private final int segmentMask;
115
116 /**
117 * Shift value for indexing within segments.
118 **/
119 private final int segmentShift;
120
121 /**
122 * The segments, each of which is a specialized hash table
123 */
124 private final Segment[] segments;
125
126 private transient Set<K> keySet;
127 private transient Set<Map.Entry<K,V>> entrySet;
128 private transient Collection<V> values;
129
130 /* ---------------- Small Utilities -------------- */
131
132 /**
133 * Return a hash code for non-null Object x.
134 * Uses the same hash code spreader as most other j.u hash tables.
135 * @param x the object serving as a key
136 * @return the hash code
137 */
138 private static int hash(Object x) {
139 int h = x.hashCode();
140 h += ~(h << 9);
141 h ^= (h >>> 14);
142 h += (h << 4);
143 h ^= (h >>> 10);
144 return h;
145 }
146
147 /**
148 * Return the segment that should be used for key with given hash
149 */
150 private Segment<K,V> segmentFor(int hash) {
151 return (Segment<K,V>) segments[(hash >>> segmentShift) & segmentMask];
152 }
153
154 /* ---------------- Inner Classes -------------- */
155
156 /**
157 * Segments are specialized versions of hash tables. This
158 * subclasses from ReentrantLock opportunistically, just to
159 * simplify some locking and avoid separate construction.
160 **/
161 private static final class Segment<K,V> extends ReentrantLock implements Serializable {
162 /*
163 * Segments maintain a table of entry lists that are ALWAYS
164 * kept in a consistent state, so can be read without locking.
165 * Next fields of nodes are immutable (final). All list
166 * additions are performed at the front of each bin. This
167 * makes it easy to check changes, and also fast to traverse.
168 * When nodes would otherwise be changed, new nodes are
169 * created to replace them. This works well for hash tables
170 * since the bin lists tend to be short. (The average length
171 * is less than two for the default load factor threshold.)
172 *
173 * Read operations can thus proceed without locking, but rely
174 * on a memory barrier to ensure that completed write
175 * operations performed by other threads are
176 * noticed. Conveniently, the "count" field, tracking the
177 * number of elements, can also serve as the volatile variable
178 * providing proper read/write barriers. This is convenient
179 * because this field needs to be read in many read operations
180 * anyway.
181 *
182 * Implementors note. The basic rules for all this are:
183 *
184 * - All unsynchronized read operations must first read the
185 * "count" field, and should not look at table entries if
186 * it is 0.
187 *
188 * - All synchronized write operations should write to
189 * the "count" field after updating. The operations must not
190 * take any action that could even momentarily cause
191 * a concurrent read operation to see inconsistent
192 * data. This is made easier by the nature of the read
193 * operations in Map. For example, no operation
194 * can reveal that the table has grown but the threshold
195 * has not yet been updated, so there are no atomicity
196 * requirements for this with respect to reads.
197 *
198 * As a guide, all critical volatile reads and writes are marked
199 * in code comments.
200 */
201
202 private static final long serialVersionUID = 2249069246763182397L;
203
204 /**
205 * The number of elements in this segment's region.
206 **/
207 transient volatile int count;
208
209 /**
210 * Number of updates; used for checking lack of modifications
211 * in bulk-read methods.
212 */
213 transient int modCount;
214
215 /**
216 * The table is rehashed when its size exceeds this threshold.
217 * (The value of this field is always (int)(capacity *
218 * loadFactor).)
219 */
220 private transient int threshold;
221
222 /**
223 * The per-segment table
224 */
225 transient HashEntry[] table;
226
227 /**
228 * The load factor for the hash table. Even though this value
229 * is same for all segments, it is replicated to avoid needing
230 * links to outer object.
231 * @serial
232 */
233 private final float loadFactor;
234
235 Segment(int initialCapacity, float lf) {
236 loadFactor = lf;
237 setTable(new HashEntry[initialCapacity]);
238 }
239
240 /**
241 * Set table to new HashEntry array.
242 * Call only while holding lock or in constructor.
243 **/
244 private void setTable(HashEntry[] newTable) {
245 table = newTable;
246 threshold = (int)(newTable.length * loadFactor);
247 count = count; // write-volatile
248 }
249
250 /* Specialized implementations of map methods */
251
252 V get(Object key, int hash) {
253 if (count != 0) { // read-volatile
254 HashEntry[] tab = table;
255 int index = hash & (tab.length - 1);
256 HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
257 while (e != null) {
258 if (e.hash == hash && key.equals(e.key))
259 return e.value;
260 e = e.next;
261 }
262 }
263 return null;
264 }
265
266 boolean containsKey(Object key, int hash) {
267 if (count != 0) { // read-volatile
268 HashEntry[] tab = table;
269 int index = hash & (tab.length - 1);
270 HashEntry<K,V> e = (HashEntry<K,V>) tab[index];
271 while (e != null) {
272 if (e.hash == hash && key.equals(e.key))
273 return true;
274 e = e.next;
275 }
276 }
277 return false;
278 }
279
280 boolean containsValue(Object value) {
281 if (count != 0) { // read-volatile
282 HashEntry[] tab = table;
283 int len = tab.length;
284 for (int i = 0 ; i < len; i++)
285 for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i] ; e != null ; e = e.next)
286 if (value.equals(e.value))
287 return true;
288 }
289 return false;
290 }
291
292 V put(K key, int hash, V value, boolean onlyIfAbsent) {
293 lock();
294 try {
295 int c = count;
296 HashEntry[] tab = table;
297 int index = hash & (tab.length - 1);
298 HashEntry<K,V> first = (HashEntry<K,V>) tab[index];
299
300 for (HashEntry<K,V> e = first; e != null; e = (HashEntry<K,V>) e.next) {
301 if (e.hash == hash && key.equals(e.key)) {
302 V oldValue = e.value;
303 if (!onlyIfAbsent)
304 e.value = value;
305 ++modCount;
306 count = c; // write-volatile
307 return oldValue;
308 }
309 }
310
311 tab[index] = new HashEntry<K,V>(hash, key, value, first);
312 ++modCount;
313 ++c;
314 count = c; // write-volatile
315 if (c > threshold)
316 setTable(rehash(tab));
317 return null;
318 } finally {
319 unlock();
320 }
321 }
322
323 private HashEntry[] rehash(HashEntry[] oldTable) {
324 int oldCapacity = oldTable.length;
325 if (oldCapacity >= MAXIMUM_CAPACITY)
326 return oldTable;
327
328 /*
329 * Reclassify nodes in each list to new Map. Because we are
330 * using power-of-two expansion, the elements from each bin
331 * must either stay at same index, or move with a power of two
332 * offset. We eliminate unnecessary node creation by catching
333 * cases where old nodes can be reused because their next
334 * fields won't change. Statistically, at the default
335 * threshold, only about one-sixth of them need cloning when
336 * a table doubles. The nodes they replace will be garbage
337 * collectable as soon as they are no longer referenced by any
338 * reader thread that may be in the midst of traversing table
339 * right now.
340 */
341
342 HashEntry[] newTable = new HashEntry[oldCapacity << 1];
343 int sizeMask = newTable.length - 1;
344 for (int i = 0; i < oldCapacity ; i++) {
345 // We need to guarantee that any existing reads of old Map can
346 // proceed. So we cannot yet null out each bin.
347 HashEntry<K,V> e = (HashEntry<K,V>)oldTable[i];
348
349 if (e != null) {
350 HashEntry<K,V> next = e.next;
351 int idx = e.hash & sizeMask;
352
353 // Single node on list
354 if (next == null)
355 newTable[idx] = e;
356
357 else {
358 // Reuse trailing consecutive sequence at same slot
359 HashEntry<K,V> lastRun = e;
360 int lastIdx = idx;
361 for (HashEntry<K,V> last = next;
362 last != null;
363 last = last.next) {
364 int k = last.hash & sizeMask;
365 if (k != lastIdx) {
366 lastIdx = k;
367 lastRun = last;
368 }
369 }
370 newTable[lastIdx] = lastRun;
371
372 // Clone all remaining nodes
373 for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
374 int k = p.hash & sizeMask;
375 newTable[k] = new HashEntry<K,V>(p.hash,
376 p.key,
377 p.value,
378 (HashEntry<K,V>) newTable[k]);
379 }
380 }
381 }
382 }
383 return newTable;
384 }
385
386 /**
387 * Remove; match on key only if value null, else match both.
388 */
389 V remove(Object key, int hash, Object value) {
390 lock();
391 try {
392 int c = count;
393 HashEntry[] tab = table;
394 int index = hash & (tab.length - 1);
395 HashEntry<K,V> first = (HashEntry<K,V>)tab[index];
396
397 HashEntry<K,V> e = first;
398 for (;;) {
399 if (e == null)
400 return null;
401 if (e.hash == hash && key.equals(e.key))
402 break;
403 e = e.next;
404 }
405
406 V oldValue = e.value;
407 if (value != null && !value.equals(oldValue))
408 return null;
409
410 // All entries following removed node can stay in list, but
411 // all preceding ones need to be cloned.
412 HashEntry<K,V> newFirst = e.next;
413 for (HashEntry<K,V> p = first; p != e; p = p.next)
414 newFirst = new HashEntry<K,V>(p.hash, p.key,
415 p.value, newFirst);
416 tab[index] = newFirst;
417 ++modCount;
418 count = c-1; // write-volatile
419 return oldValue;
420 } finally {
421 unlock();
422 }
423 }
424
425 void clear() {
426 lock();
427 try {
428 HashEntry[] tab = table;
429 for (int i = 0; i < tab.length ; i++)
430 tab[i] = null;
431 ++modCount;
432 count = 0; // write-volatile
433 } finally {
434 unlock();
435 }
436 }
437 }
438
439 /**
440 * ConcurrentHashMap list entry.
441 */
442 private static class HashEntry<K,V> implements Entry<K,V> {
443 private final K key;
444 private V value;
445 private final int hash;
446 private final HashEntry<K,V> next;
447
448 HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
449 this.value = value;
450 this.hash = hash;
451 this.key = key;
452 this.next = next;
453 }
454
455 public K getKey() {
456 return key;
457 }
458
459 public V getValue() {
460 return value;
461 }
462
463 public V setValue(V newValue) {
464 // We aren't required to, and don't provide any
465 // visibility barriers for setting value.
466 if (newValue == null)
467 throw new NullPointerException();
468 V oldValue = this.value;
469 this.value = newValue;
470 return oldValue;
471 }
472
473 public boolean equals(Object o) {
474 if (!(o instanceof Entry))
475 return false;
476 Entry<K,V> e = (Entry<K,V>)o;
477 return (key.equals(e.getKey()) && value.equals(e.getValue()));
478 }
479
480 public int hashCode() {
481 return key.hashCode() ^ value.hashCode();
482 }
483
484 public String toString() {
485 return key + "=" + value;
486 }
487 }
488
489
490 /* ---------------- Public operations -------------- */
491
492 /**
493 * Constructs a new, empty map with the specified initial
494 * capacity and the specified load factor.
495 *
496 * @param initialCapacity the initial capacity. The implementation
497 * performs internal sizing to accommodate this many elements.
498 * @param loadFactor the load factor threshold, used to control resizing.
499 * @param concurrencyLevel the estimated number of concurrently
500 * updating threads. The implementation performs internal sizing
501 * to try to accommodate this many threads.
502 * @throws IllegalArgumentException if the initial capacity is
503 * negative or the load factor or concurrencyLevel are
504 * nonpositive.
505 */
506 public ConcurrentHashMap(int initialCapacity,
507 float loadFactor, int concurrencyLevel) {
508 if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
509 throw new IllegalArgumentException();
510
511 if (concurrencyLevel > MAX_SEGMENTS)
512 concurrencyLevel = MAX_SEGMENTS;
513
514 // Find power-of-two sizes best matching arguments
515 int sshift = 0;
516 int ssize = 1;
517 while (ssize < concurrencyLevel) {
518 ++sshift;
519 ssize <<= 1;
520 }
521 segmentShift = 32 - sshift;
522 segmentMask = ssize - 1;
523 this.segments = new Segment[ssize];
524
525 if (initialCapacity > MAXIMUM_CAPACITY)
526 initialCapacity = MAXIMUM_CAPACITY;
527 int c = initialCapacity / ssize;
528 if (c * ssize < initialCapacity)
529 ++c;
530 int cap = 1;
531 while (cap < c)
532 cap <<= 1;
533
534 for (int i = 0; i < this.segments.length; ++i)
535 this.segments[i] = new Segment<K,V>(cap, loadFactor);
536 }
537
538 /**
539 * Constructs a new, empty map with the specified initial
540 * capacity, and with default load factor and concurrencyLevel.
541 *
542 * @param initialCapacity The implementation performs internal
543 * sizing to accommodate this many elements.
544 * @throws IllegalArgumentException if the initial capacity of
545 * elements is negative.
546 */
547 public ConcurrentHashMap(int initialCapacity) {
548 this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
549 }
550
551 /**
552 * Constructs a new, empty map with a default initial capacity,
553 * load factor, and concurrencyLevel.
554 */
555 public ConcurrentHashMap() {
556 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
557 }
558
559 /**
560 * Constructs a new map with the same mappings as the given map. The
561 * map is created with a capacity of twice the number of mappings in
562 * the given map or 11 (whichever is greater), and a default load factor.
563 */
564 public <A extends K, B extends V> ConcurrentHashMap(Map<A,B> t) {
565 this(Math.max((int) (t.size() / DEFAULT_LOAD_FACTOR) + 1,
566 11),
567 DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
568 putAll(t);
569 }
570
571 // inherit Map javadoc
572 public boolean isEmpty() {
573 /*
574 * We need to keep track of per-segment modCounts to avoid ABA
575 * problems in which an element in one segment was added and
576 * in another removed during traversal, in which case the
577 * table was never actually empty at any point. Note the
578 * similar use of modCounts in the size() and containsValue()
579 * methods, which are the only other methods also susceptible
580 * to ABA problems.
581 */
582 int[] mc = new int[segments.length];
583 int mcsum = 0;
584 for (int i = 0; i < segments.length; ++i) {
585 if (segments[i].count != 0)
586 return false;
587 else
588 mcsum += mc[i] = segments[i].modCount;
589 }
590 // If mcsum happens to be zero, then we know we got a snapshot
591 // before any modifications at all were made. This is
592 // probably common enough to bother tracking.
593 if (mcsum != 0) {
594 for (int i = 0; i < segments.length; ++i) {
595 if (segments[i].count != 0 ||
596 mc[i] != segments[i].modCount)
597 return false;
598 }
599 }
600 return true;
601 }
602
603 // inherit Map javadoc
604 public int size() {
605 int[] mc = new int[segments.length];
606 for (;;) {
607 long sum = 0;
608 int mcsum = 0;
609 for (int i = 0; i < segments.length; ++i) {
610 sum += segments[i].count;
611 mcsum += mc[i] = segments[i].modCount;
612 }
613 int check = 0;
614 if (mcsum != 0) {
615 for (int i = 0; i < segments.length; ++i) {
616 check += segments[i].count;
617 if (mc[i] != segments[i].modCount) {
618 check = -1; // force retry
619 break;
620 }
621 }
622 }
623 if (check == sum) {
624 if (sum > Integer.MAX_VALUE)
625 return Integer.MAX_VALUE;
626 else
627 return (int)sum;
628 }
629 }
630 }
631
632
633 /**
634 * Returns the value to which the specified key is mapped in this table.
635 *
636 * @param key a key in the table.
637 * @return the value to which the key is mapped in this table;
638 * <tt>null</tt> if the key is not mapped to any value in
639 * this table.
640 * @throws NullPointerException if the key is
641 * <tt>null</tt>.
642 */
643 public V get(Object key) {
644 int hash = hash(key); // throws NullPointerException if key null
645 return segmentFor(hash).get(key, hash);
646 }
647
648 /**
649 * Tests if the specified object is a key in this table.
650 *
651 * @param key possible key.
652 * @return <tt>true</tt> if and only if the specified object
653 * is a key in this table, as determined by the
654 * <tt>equals</tt> method; <tt>false</tt> otherwise.
655 * @throws NullPointerException if the key is
656 * <tt>null</tt>.
657 */
658 public boolean containsKey(Object key) {
659 int hash = hash(key); // throws NullPointerException if key null
660 return segmentFor(hash).containsKey(key, hash);
661 }
662
663 /**
664 * Returns <tt>true</tt> if this map maps one or more keys to the
665 * specified value. Note: This method requires a full internal
666 * traversal of the hash table, and so is much slower than
667 * method <tt>containsKey</tt>.
668 *
669 * @param value value whose presence in this map is to be tested.
670 * @return <tt>true</tt> if this map maps one or more keys to the
671 * specified value.
672 * @throws NullPointerException if the value is <tt>null</tt>.
673 */
674 public boolean containsValue(Object value) {
675 if (value == null)
676 throw new NullPointerException();
677
678 int[] mc = new int[segments.length];
679 for (;;) {
680 int sum = 0;
681 int mcsum = 0;
682 for (int i = 0; i < segments.length; ++i) {
683 int c = segments[i].count;
684 mcsum += mc[i] = segments[i].modCount;
685 if (segments[i].containsValue(value))
686 return true;
687 }
688 boolean cleanSweep = true;
689 if (mcsum != 0) {
690 for (int i = 0; i < segments.length; ++i) {
691 int c = segments[i].count;
692 if (mc[i] != segments[i].modCount) {
693 cleanSweep = false;
694 break;
695 }
696 }
697 }
698 if (cleanSweep)
699 return false;
700 }
701 }
702
703 /**
704 * Legacy method testing if some key maps into the specified value
705 * in this table. This method is identical in functionality to
706 * {@link #containsValue}, and exists solely to ensure
707 * full compatibility with class {@link java.util.Hashtable},
708 * which supported this method prior to introduction of the
709 * Java Collections framework.
710
711 * @param value a value to search for.
712 * @return <tt>true</tt> if and only if some key maps to the
713 * <tt>value</tt> argument in this table as
714 * determined by the <tt>equals</tt> method;
715 * <tt>false</tt> otherwise.
716 * @throws NullPointerException if the value is <tt>null</tt>.
717 */
718 public boolean contains(Object value) {
719 return containsValue(value);
720 }
721
722 /**
723 * Maps the specified <tt>key</tt> to the specified
724 * <tt>value</tt> in this table. Neither the key nor the
725 * value can be <tt>null</tt>. <p>
726 *
727 * The value can be retrieved by calling the <tt>get</tt> method
728 * with a key that is equal to the original key.
729 *
730 * @param key the table key.
731 * @param value the value.
732 * @return the previous value of the specified key in this table,
733 * or <tt>null</tt> if it did not have one.
734 * @throws NullPointerException if the key or value is
735 * <tt>null</tt>.
736 */
737 public V put(K key, V value) {
738 if (value == null)
739 throw new NullPointerException();
740 int hash = hash(key);
741 return segmentFor(hash).put(key, hash, value, false);
742 }
743
744 /**
745 * If the specified key is not already associated
746 * with a value, associate it with the given value.
747 * This is equivalent to
748 * <pre>
749 * if (!map.containsKey(key))
750 * return map.put(key, value);
751 * else
752 * return map.get(key);
753 * </pre>
754 * Except that the action is performed atomically.
755 * @param key key with which the specified value is to be associated.
756 * @param value value to be associated with the specified key.
757 * @return previous value associated with specified key, or <tt>null</tt>
758 * if there was no mapping for key. A <tt>null</tt> return can
759 * also indicate that the map previously associated <tt>null</tt>
760 * with the specified key, if the implementation supports
761 * <tt>null</tt> values.
762 *
763 * @throws UnsupportedOperationException if the <tt>put</tt> operation is
764 * not supported by this map.
765 * @throws ClassCastException if the class of the specified key or value
766 * prevents it from being stored in this map.
767 * @throws NullPointerException if the specified key or value is
768 * <tt>null</tt>.
769 *
770 **/
771 public V putIfAbsent(K key, V value) {
772 if (value == null)
773 throw new NullPointerException();
774 int hash = hash(key);
775 return segmentFor(hash).put(key, hash, value, true);
776 }
777
778
779 /**
780 * Copies all of the mappings from the specified map to this one.
781 *
782 * These mappings replace any mappings that this map had for any of the
783 * keys currently in the specified Map.
784 *
785 * @param t Mappings to be stored in this map.
786 */
787 public void putAll(Map<? extends K, ? extends V> t) {
788 for (Iterator<Map.Entry<? extends K, ? extends V>> it = (Iterator<Map.Entry<? extends K, ? extends V>>) t.entrySet().iterator(); it.hasNext(); ) {
789 Entry<? extends K, ? extends V> e = it.next();
790 put(e.getKey(), e.getValue());
791 }
792 }
793
794 /**
795 * Removes the key (and its corresponding value) from this
796 * table. This method does nothing if the key is not in the table.
797 *
798 * @param key the key that needs to be removed.
799 * @return the value to which the key had been mapped in this table,
800 * or <tt>null</tt> if the key did not have a mapping.
801 * @throws NullPointerException if the key is
802 * <tt>null</tt>.
803 */
804 public V remove(Object key) {
805 int hash = hash(key);
806 return segmentFor(hash).remove(key, hash, null);
807 }
808
809 /**
810 * Remove entry for key only if currently mapped to given value.
811 * Acts as
812 * <pre>
813 * if (map.get(key).equals(value)) {
814 * map.remove(key);
815 * return true;
816 * } else return false;
817 * </pre>
818 * except that the action is performed atomically.
819 * @param key key with which the specified value is associated.
820 * @param value value associated with the specified key.
821 * @return true if the value was removed
822 * @throws NullPointerException if the specified key is
823 * <tt>null</tt>.
824 */
825 public boolean remove(Object key, Object value) {
826 int hash = hash(key);
827 return segmentFor(hash).remove(key, hash, value) != null;
828 }
829
830 /**
831 * Removes all mappings from this map.
832 */
833 public void clear() {
834 for (int i = 0; i < segments.length; ++i)
835 segments[i].clear();
836 }
837
838
839 /**
840 * Returns a shallow copy of this
841 * <tt>ConcurrentHashMap</tt> instance: the keys and
842 * values themselves are not cloned.
843 *
844 * @return a shallow copy of this map.
845 */
846 public Object clone() {
847 // We cannot call super.clone, since it would share final
848 // segments array, and there's no way to reassign finals.
849
850 float lf = segments[0].loadFactor;
851 int segs = segments.length;
852 int cap = (int)(size() / lf);
853 if (cap < segs) cap = segs;
854 ConcurrentHashMap<K,V> t = new ConcurrentHashMap<K,V>(cap, lf, segs);
855 t.putAll(this);
856 return t;
857 }
858
859 /**
860 * Returns a set view of the keys contained in this map. The set is
861 * backed by the map, so changes to the map are reflected in the set, and
862 * vice-versa. The set supports element removal, which removes the
863 * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
864 * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
865 * <tt>clear</tt> operations. It does not support the <tt>add</tt> or
866 * <tt>addAll</tt> operations.
867 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
868 * will never throw {@link java.util.ConcurrentModificationException},
869 * and guarantees to traverse elements as they existed upon
870 * construction of the iterator, and may (but is not guaranteed to)
871 * reflect any modifications subsequent to construction.
872 *
873 * @return a set view of the keys contained in this map.
874 */
875 public Set<K> keySet() {
876 Set<K> ks = keySet;
877 return (ks != null) ? ks : (keySet = new KeySet());
878 }
879
880
881 /**
882 * Returns a collection view of the values contained in this map. The
883 * collection is backed by the map, so changes to the map are reflected in
884 * the collection, and vice-versa. The collection supports element
885 * removal, which removes the corresponding mapping from this map, via the
886 * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
887 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
888 * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
889 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
890 * will never throw {@link java.util.ConcurrentModificationException},
891 * and guarantees to traverse elements as they existed upon
892 * construction of the iterator, and may (but is not guaranteed to)
893 * reflect any modifications subsequent to construction.
894 *
895 * @return a collection view of the values contained in this map.
896 */
897 public Collection<V> values() {
898 Collection<V> vs = values;
899 return (vs != null) ? vs : (values = new Values());
900 }
901
902
903 /**
904 * Returns a collection view of the mappings contained in this map. Each
905 * element in the returned collection is a <tt>Map.Entry</tt>. The
906 * collection is backed by the map, so changes to the map are reflected in
907 * the collection, and vice-versa. The collection supports element
908 * removal, which removes the corresponding mapping from the map, via the
909 * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
910 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> operations.
911 * It does not support the <tt>add</tt> or <tt>addAll</tt> operations.
912 * The returned <tt>iterator</tt> is a "weakly consistent" iterator that
913 * will never throw {@link java.util.ConcurrentModificationException},
914 * and guarantees to traverse elements as they existed upon
915 * construction of the iterator, and may (but is not guaranteed to)
916 * reflect any modifications subsequent to construction.
917 *
918 * @return a collection view of the mappings contained in this map.
919 */
920 public Set<Map.Entry<K,V>> entrySet() {
921 Set<Map.Entry<K,V>> es = entrySet;
922 return (es != null) ? es : (entrySet = (Set<Map.Entry<K,V>>) (Set) new EntrySet());
923 }
924
925
926 /**
927 * Returns an enumeration of the keys in this table.
928 *
929 * @return an enumeration of the keys in this table.
930 * @see #keySet
931 */
932 public Enumeration<K> keys() {
933 return new KeyIterator();
934 }
935
936 /**
937 * Returns an enumeration of the values in this table.
938 * Use the Enumeration methods on the returned object to fetch the elements
939 * sequentially.
940 *
941 * @return an enumeration of the values in this table.
942 * @see #values
943 */
944 public Enumeration<V> elements() {
945 return new ValueIterator();
946 }
947
948 /* ---------------- Iterator Support -------------- */
949
950 private abstract class HashIterator {
951 private int nextSegmentIndex;
952 private int nextTableIndex;
953 private HashEntry[] currentTable;
954 private HashEntry<K, V> nextEntry;
955 private HashEntry<K, V> lastReturned;
956
957 private HashIterator() {
958 nextSegmentIndex = segments.length - 1;
959 nextTableIndex = -1;
960 advance();
961 }
962
963 public boolean hasMoreElements() { return hasNext(); }
964
965 private void advance() {
966 if (nextEntry != null && (nextEntry = nextEntry.next) != null)
967 return;
968
969 while (nextTableIndex >= 0) {
970 if ( (nextEntry = (HashEntry<K,V>)currentTable[nextTableIndex--]) != null)
971 return;
972 }
973
974 while (nextSegmentIndex >= 0) {
975 Segment<K,V> seg = (Segment<K,V>)segments[nextSegmentIndex--];
976 if (seg.count != 0) {
977 currentTable = seg.table;
978 for (int j = currentTable.length - 1; j >= 0; --j) {
979 if ( (nextEntry = (HashEntry<K,V>)currentTable[j]) != null) {
980 nextTableIndex = j - 1;
981 return;
982 }
983 }
984 }
985 }
986 }
987
988 public boolean hasNext() { return nextEntry != null; }
989
990 HashEntry<K,V> nextEntry() {
991 if (nextEntry == null)
992 throw new NoSuchElementException();
993 lastReturned = nextEntry;
994 advance();
995 return lastReturned;
996 }
997
998 public void remove() {
999 if (lastReturned == null)
1000 throw new IllegalStateException();
1001 ConcurrentHashMap.this.remove(lastReturned.key);
1002 lastReturned = null;
1003 }
1004 }
1005
1006 private class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
1007 public K next() { return super.nextEntry().key; }
1008 public K nextElement() { return super.nextEntry().key; }
1009 }
1010
1011 private class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
1012 public V next() { return super.nextEntry().value; }
1013 public V nextElement() { return super.nextEntry().value; }
1014 }
1015
1016 private class EntryIterator extends HashIterator implements Iterator<Entry<K,V>> {
1017 public Map.Entry<K,V> next() { return super.nextEntry(); }
1018 }
1019
1020 private class KeySet extends AbstractSet<K> {
1021 public Iterator<K> iterator() {
1022 return new KeyIterator();
1023 }
1024 public int size() {
1025 return ConcurrentHashMap.this.size();
1026 }
1027 public boolean contains(Object o) {
1028 return ConcurrentHashMap.this.containsKey(o);
1029 }
1030 public boolean remove(Object o) {
1031 return ConcurrentHashMap.this.remove(o) != null;
1032 }
1033 public void clear() {
1034 ConcurrentHashMap.this.clear();
1035 }
1036 }
1037
1038 private class Values extends AbstractCollection<V> {
1039 public Iterator<V> iterator() {
1040 return new ValueIterator();
1041 }
1042 public int size() {
1043 return ConcurrentHashMap.this.size();
1044 }
1045 public boolean contains(Object o) {
1046 return ConcurrentHashMap.this.containsValue(o);
1047 }
1048 public void clear() {
1049 ConcurrentHashMap.this.clear();
1050 }
1051 }
1052
1053 private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1054 public Iterator<Map.Entry<K,V>> iterator() {
1055 return new EntryIterator();
1056 }
1057 public boolean contains(Object o) {
1058 if (!(o instanceof Map.Entry))
1059 return false;
1060 Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1061 V v = ConcurrentHashMap.this.get(e.getKey());
1062 return v != null && v.equals(e.getValue());
1063 }
1064 public boolean remove(Object o) {
1065 if (!(o instanceof Map.Entry))
1066 return false;
1067 Map.Entry<K,V> e = (Map.Entry<K,V>)o;
1068 return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
1069 }
1070 public int size() {
1071 return ConcurrentHashMap.this.size();
1072 }
1073 public void clear() {
1074 ConcurrentHashMap.this.clear();
1075 }
1076 }
1077
1078 /* ---------------- Serialization Support -------------- */
1079
1080 /**
1081 * Save the state of the <tt>ConcurrentHashMap</tt>
1082 * instance to a stream (i.e.,
1083 * serialize it).
1084 * @param s the stream
1085 * @serialData
1086 * the key (Object) and value (Object)
1087 * for each key-value mapping, followed by a null pair.
1088 * The key-value mappings are emitted in no particular order.
1089 */
1090 private void writeObject(java.io.ObjectOutputStream s) throws IOException {
1091 s.defaultWriteObject();
1092
1093 for (int k = 0; k < segments.length; ++k) {
1094 Segment<K,V> seg = (Segment<K,V>)segments[k];
1095 seg.lock();
1096 try {
1097 HashEntry[] tab = seg.table;
1098 for (int i = 0; i < tab.length; ++i) {
1099 for (HashEntry<K,V> e = (HashEntry<K,V>)tab[i]; e != null; e = e.next) {
1100 s.writeObject(e.key);
1101 s.writeObject(e.value);
1102 }
1103 }
1104 } finally {
1105 seg.unlock();
1106 }
1107 }
1108 s.writeObject(null);
1109 s.writeObject(null);
1110 }
1111
1112 /**
1113 * Reconstitute the <tt>ConcurrentHashMap</tt>
1114 * instance from a stream (i.e.,
1115 * deserialize it).
1116 * @param s the stream
1117 */
1118 private void readObject(java.io.ObjectInputStream s)
1119 throws IOException, ClassNotFoundException {
1120 s.defaultReadObject();
1121
1122 // Initialize each segment to be minimally sized, and let grow.
1123 for (int i = 0; i < segments.length; ++i) {
1124 segments[i].setTable(new HashEntry[1]);
1125 }
1126
1127 // Read the keys and values, and put the mappings in the table
1128 for (;;) {
1129 K key = (K) s.readObject();
1130 V value = (V) s.readObject();
1131 if (key == null)
1132 break;
1133 put(key, value);
1134 }
1135 }
1136 }
1137