ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.296
Committed: Sun Jul 17 12:09:12 2016 UTC (7 years, 10 months ago) by dl
Branch: MAIN
Changes since 1.295: +10 -2 lines
Log Message:
Improve already-present performance in computeIfAbsent, putIfAbsent

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.io.Serializable;
11 import java.lang.reflect.ParameterizedType;
12 import java.lang.reflect.Type;
13 import java.util.AbstractMap;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Enumeration;
17 import java.util.HashMap;
18 import java.util.Hashtable;
19 import java.util.Iterator;
20 import java.util.Map;
21 import java.util.NoSuchElementException;
22 import java.util.Set;
23 import java.util.Spliterator;
24 import java.util.concurrent.atomic.AtomicReference;
25 import java.util.concurrent.locks.LockSupport;
26 import java.util.concurrent.locks.ReentrantLock;
27 import java.util.function.BiConsumer;
28 import java.util.function.BiFunction;
29 import java.util.function.Consumer;
30 import java.util.function.DoubleBinaryOperator;
31 import java.util.function.Function;
32 import java.util.function.IntBinaryOperator;
33 import java.util.function.LongBinaryOperator;
34 import java.util.function.Predicate;
35 import java.util.function.ToDoubleBiFunction;
36 import java.util.function.ToDoubleFunction;
37 import java.util.function.ToIntBiFunction;
38 import java.util.function.ToIntFunction;
39 import java.util.function.ToLongBiFunction;
40 import java.util.function.ToLongFunction;
41 import java.util.stream.Stream;
42 import jdk.internal.misc.Unsafe;
43
44 /**
45 * A hash table supporting full concurrency of retrievals and
46 * high expected concurrency for updates. This class obeys the
47 * same functional specification as {@link java.util.Hashtable}, and
48 * includes versions of methods corresponding to each method of
49 * {@code Hashtable}. However, even though all operations are
50 * thread-safe, retrieval operations do <em>not</em> entail locking,
51 * and there is <em>not</em> any support for locking the entire table
52 * in a way that prevents all access. This class is fully
53 * interoperable with {@code Hashtable} in programs that rely on its
54 * thread safety but not on its synchronization details.
55 *
56 * <p>Retrieval operations (including {@code get}) generally do not
57 * block, so may overlap with update operations (including {@code put}
58 * and {@code remove}). Retrievals reflect the results of the most
59 * recently <em>completed</em> update operations holding upon their
60 * onset. (More formally, an update operation for a given key bears a
61 * <em>happens-before</em> relation with any (non-null) retrieval for
62 * that key reporting the updated value.) For aggregate operations
63 * such as {@code putAll} and {@code clear}, concurrent retrievals may
64 * reflect insertion or removal of only some entries. Similarly,
65 * Iterators, Spliterators and Enumerations return elements reflecting the
66 * state of the hash table at some point at or since the creation of the
67 * iterator/enumeration. They do <em>not</em> throw {@link
68 * java.util.ConcurrentModificationException ConcurrentModificationException}.
69 * However, iterators are designed to be used by only one thread at a time.
70 * Bear in mind that the results of aggregate status methods including
71 * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
72 * useful only when a map is not undergoing concurrent updates in other threads.
73 * Otherwise the results of these methods reflect transient states
74 * that may be adequate for monitoring or estimation purposes, but not
75 * for program control.
76 *
77 * <p>The table is dynamically expanded when there are too many
78 * collisions (i.e., keys that have distinct hash codes but fall into
79 * the same slot modulo the table size), with the expected average
80 * effect of maintaining roughly two bins per mapping (corresponding
81 * to a 0.75 load factor threshold for resizing). There may be much
82 * variance around this average as mappings are added and removed, but
83 * overall, this maintains a commonly accepted time/space tradeoff for
84 * hash tables. However, resizing this or any other kind of hash
85 * table may be a relatively slow operation. When possible, it is a
86 * good idea to provide a size estimate as an optional {@code
87 * initialCapacity} constructor argument. An additional optional
88 * {@code loadFactor} constructor argument provides a further means of
89 * customizing initial table capacity by specifying the table density
90 * to be used in calculating the amount of space to allocate for the
91 * given number of elements. Also, for compatibility with previous
92 * versions of this class, constructors may optionally specify an
93 * expected {@code concurrencyLevel} as an additional hint for
94 * internal sizing. Note that using many keys with exactly the same
95 * {@code hashCode()} is a sure way to slow down performance of any
96 * hash table. To ameliorate impact, when keys are {@link Comparable},
97 * this class may use comparison order among keys to help break ties.
98 *
99 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
100 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
101 * (using {@link #keySet(Object)} when only keys are of interest, and the
102 * mapped values are (perhaps transiently) not used or all take the
103 * same mapping value.
104 *
105 * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
106 * form of histogram or multiset) by using {@link
107 * java.util.concurrent.atomic.LongAdder} values and initializing via
108 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
109 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
110 * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
111 *
112 * <p>This class and its views and iterators implement all of the
113 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
114 * interfaces.
115 *
116 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
117 * does <em>not</em> allow {@code null} to be used as a key or value.
118 *
119 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
120 * operations that, unlike most {@link Stream} methods, are designed
121 * to be safely, and often sensibly, applied even with maps that are
122 * being concurrently updated by other threads; for example, when
123 * computing a snapshot summary of the values in a shared registry.
124 * There are three kinds of operation, each with four forms, accepting
125 * functions with keys, values, entries, and (key, value) pairs as
126 * arguments and/or return values. Because the elements of a
127 * ConcurrentHashMap are not ordered in any particular way, and may be
128 * processed in different orders in different parallel executions, the
129 * correctness of supplied functions should not depend on any
130 * ordering, or on any other objects or values that may transiently
131 * change while computation is in progress; and except for forEach
132 * actions, should ideally be side-effect-free. Bulk operations on
133 * {@link java.util.Map.Entry} objects do not support method {@code
134 * setValue}.
135 *
136 * <ul>
137 * <li>forEach: Performs a given action on each element.
138 * A variant form applies a given transformation on each element
139 * before performing the action.
140 *
141 * <li>search: Returns the first available non-null result of
142 * applying a given function on each element; skipping further
143 * search when a result is found.
144 *
145 * <li>reduce: Accumulates each element. The supplied reduction
146 * function cannot rely on ordering (more formally, it should be
147 * both associative and commutative). There are five variants:
148 *
149 * <ul>
150 *
151 * <li>Plain reductions. (There is not a form of this method for
152 * (key, value) function arguments since there is no corresponding
153 * return type.)
154 *
155 * <li>Mapped reductions that accumulate the results of a given
156 * function applied to each element.
157 *
158 * <li>Reductions to scalar doubles, longs, and ints, using a
159 * given basis value.
160 *
161 * </ul>
162 * </ul>
163 *
164 * <p>These bulk operations accept a {@code parallelismThreshold}
165 * argument. Methods proceed sequentially if the current map size is
166 * estimated to be less than the given threshold. Using a value of
167 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
168 * of {@code 1} results in maximal parallelism by partitioning into
169 * enough subtasks to fully utilize the {@link
170 * ForkJoinPool#commonPool()} that is used for all parallel
171 * computations. Normally, you would initially choose one of these
172 * extreme values, and then measure performance of using in-between
173 * values that trade off overhead versus throughput.
174 *
175 * <p>The concurrency properties of bulk operations follow
176 * from those of ConcurrentHashMap: Any non-null result returned
177 * from {@code get(key)} and related access methods bears a
178 * happens-before relation with the associated insertion or
179 * update. The result of any bulk operation reflects the
180 * composition of these per-element relations (but is not
181 * necessarily atomic with respect to the map as a whole unless it
182 * is somehow known to be quiescent). Conversely, because keys
183 * and values in the map are never null, null serves as a reliable
184 * atomic indicator of the current lack of any result. To
185 * maintain this property, null serves as an implicit basis for
186 * all non-scalar reduction operations. For the double, long, and
187 * int versions, the basis should be one that, when combined with
188 * any other value, returns that other value (more formally, it
189 * should be the identity element for the reduction). Most common
190 * reductions have these properties; for example, computing a sum
191 * with basis 0 or a minimum with basis MAX_VALUE.
192 *
193 * <p>Search and transformation functions provided as arguments
194 * should similarly return null to indicate the lack of any result
195 * (in which case it is not used). In the case of mapped
196 * reductions, this also enables transformations to serve as
197 * filters, returning null (or, in the case of primitive
198 * specializations, the identity basis) if the element should not
199 * be combined. You can create compound transformations and
200 * filterings by composing them yourself under this "null means
201 * there is nothing there now" rule before using them in search or
202 * reduce operations.
203 *
204 * <p>Methods accepting and/or returning Entry arguments maintain
205 * key-value associations. They may be useful for example when
206 * finding the key for the greatest value. Note that "plain" Entry
207 * arguments can be supplied using {@code new
208 * AbstractMap.SimpleEntry(k,v)}.
209 *
210 * <p>Bulk operations may complete abruptly, throwing an
211 * exception encountered in the application of a supplied
212 * function. Bear in mind when handling such exceptions that other
213 * concurrently executing functions could also have thrown
214 * exceptions, or would have done so if the first exception had
215 * not occurred.
216 *
217 * <p>Speedups for parallel compared to sequential forms are common
218 * but not guaranteed. Parallel operations involving brief functions
219 * on small maps may execute more slowly than sequential forms if the
220 * underlying work to parallelize the computation is more expensive
221 * than the computation itself. Similarly, parallelization may not
222 * lead to much actual parallelism if all processors are busy
223 * performing unrelated tasks.
224 *
225 * <p>All arguments to all task methods must be non-null.
226 *
227 * <p>This class is a member of the
228 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
229 * Java Collections Framework</a>.
230 *
231 * @since 1.5
232 * @author Doug Lea
233 * @param <K> the type of keys maintained by this map
234 * @param <V> the type of mapped values
235 */
236 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
237 implements ConcurrentMap<K,V>, Serializable {
238 private static final long serialVersionUID = 7249069246763182397L;
239
240 /*
241 * Overview:
242 *
243 * The primary design goal of this hash table is to maintain
244 * concurrent readability (typically method get(), but also
245 * iterators and related methods) while minimizing update
246 * contention. Secondary goals are to keep space consumption about
247 * the same or better than java.util.HashMap, and to support high
248 * initial insertion rates on an empty table by many threads.
249 *
250 * This map usually acts as a binned (bucketed) hash table. Each
251 * key-value mapping is held in a Node. Most nodes are instances
252 * of the basic Node class with hash, key, value, and next
253 * fields. However, various subclasses exist: TreeNodes are
254 * arranged in balanced trees, not lists. TreeBins hold the roots
255 * of sets of TreeNodes. ForwardingNodes are placed at the heads
256 * of bins during resizing. ReservationNodes are used as
257 * placeholders while establishing values in computeIfAbsent and
258 * related methods. The types TreeBin, ForwardingNode, and
259 * ReservationNode do not hold normal user keys, values, or
260 * hashes, and are readily distinguishable during search etc
261 * because they have negative hash fields and null key and value
262 * fields. (These special nodes are either uncommon or transient,
263 * so the impact of carrying around some unused fields is
264 * insignificant.)
265 *
266 * The table is lazily initialized to a power-of-two size upon the
267 * first insertion. Each bin in the table normally contains a
268 * list of Nodes (most often, the list has only zero or one Node).
269 * Table accesses require volatile/atomic reads, writes, and
270 * CASes. Because there is no other way to arrange this without
271 * adding further indirections, we use intrinsics
272 * (jdk.internal.misc.Unsafe) operations.
273 *
274 * We use the top (sign) bit of Node hash fields for control
275 * purposes -- it is available anyway because of addressing
276 * constraints. Nodes with negative hash fields are specially
277 * handled or ignored in map methods.
278 *
279 * Insertion (via put or its variants) of the first node in an
280 * empty bin is performed by just CASing it to the bin. This is
281 * by far the most common case for put operations under most
282 * key/hash distributions. Other update operations (insert,
283 * delete, and replace) require locks. We do not want to waste
284 * the space required to associate a distinct lock object with
285 * each bin, so instead use the first node of a bin list itself as
286 * a lock. Locking support for these locks relies on builtin
287 * "synchronized" monitors.
288 *
289 * Using the first node of a list as a lock does not by itself
290 * suffice though: When a node is locked, any update must first
291 * validate that it is still the first node after locking it, and
292 * retry if not. Because new nodes are always appended to lists,
293 * once a node is first in a bin, it remains first until deleted
294 * or the bin becomes invalidated (upon resizing).
295 *
296 * The main disadvantage of per-bin locks is that other update
297 * operations on other nodes in a bin list protected by the same
298 * lock can stall, for example when user equals() or mapping
299 * functions take a long time. However, statistically, under
300 * random hash codes, this is not a common problem. Ideally, the
301 * frequency of nodes in bins follows a Poisson distribution
302 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
303 * parameter of about 0.5 on average, given the resizing threshold
304 * of 0.75, although with a large variance because of resizing
305 * granularity. Ignoring variance, the expected occurrences of
306 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
307 * first values are:
308 *
309 * 0: 0.60653066
310 * 1: 0.30326533
311 * 2: 0.07581633
312 * 3: 0.01263606
313 * 4: 0.00157952
314 * 5: 0.00015795
315 * 6: 0.00001316
316 * 7: 0.00000094
317 * 8: 0.00000006
318 * more: less than 1 in ten million
319 *
320 * Lock contention probability for two threads accessing distinct
321 * elements is roughly 1 / (8 * #elements) under random hashes.
322 *
323 * Actual hash code distributions encountered in practice
324 * sometimes deviate significantly from uniform randomness. This
325 * includes the case when N > (1<<30), so some keys MUST collide.
326 * Similarly for dumb or hostile usages in which multiple keys are
327 * designed to have identical hash codes or ones that differs only
328 * in masked-out high bits. So we use a secondary strategy that
329 * applies when the number of nodes in a bin exceeds a
330 * threshold. These TreeBins use a balanced tree to hold nodes (a
331 * specialized form of red-black trees), bounding search time to
332 * O(log N). Each search step in a TreeBin is at least twice as
333 * slow as in a regular list, but given that N cannot exceed
334 * (1<<64) (before running out of addresses) this bounds search
335 * steps, lock hold times, etc, to reasonable constants (roughly
336 * 100 nodes inspected per operation worst case) so long as keys
337 * are Comparable (which is very common -- String, Long, etc).
338 * TreeBin nodes (TreeNodes) also maintain the same "next"
339 * traversal pointers as regular nodes, so can be traversed in
340 * iterators in the same way.
341 *
342 * The table is resized when occupancy exceeds a percentage
343 * threshold (nominally, 0.75, but see below). Any thread
344 * noticing an overfull bin may assist in resizing after the
345 * initiating thread allocates and sets up the replacement array.
346 * However, rather than stalling, these other threads may proceed
347 * with insertions etc. The use of TreeBins shields us from the
348 * worst case effects of overfilling while resizes are in
349 * progress. Resizing proceeds by transferring bins, one by one,
350 * from the table to the next table. However, threads claim small
351 * blocks of indices to transfer (via field transferIndex) before
352 * doing so, reducing contention. A generation stamp in field
353 * sizeCtl ensures that resizings do not overlap. Because we are
354 * using power-of-two expansion, the elements from each bin must
355 * either stay at same index, or move with a power of two
356 * offset. We eliminate unnecessary node creation by catching
357 * cases where old nodes can be reused because their next fields
358 * won't change. On average, only about one-sixth of them need
359 * cloning when a table doubles. The nodes they replace will be
360 * garbage collectable as soon as they are no longer referenced by
361 * any reader thread that may be in the midst of concurrently
362 * traversing table. Upon transfer, the old table bin contains
363 * only a special forwarding node (with hash field "MOVED") that
364 * contains the next table as its key. On encountering a
365 * forwarding node, access and update operations restart, using
366 * the new table.
367 *
368 * Each bin transfer requires its bin lock, which can stall
369 * waiting for locks while resizing. However, because other
370 * threads can join in and help resize rather than contend for
371 * locks, average aggregate waits become shorter as resizing
372 * progresses. The transfer operation must also ensure that all
373 * accessible bins in both the old and new table are usable by any
374 * traversal. This is arranged in part by proceeding from the
375 * last bin (table.length - 1) up towards the first. Upon seeing
376 * a forwarding node, traversals (see class Traverser) arrange to
377 * move to the new table without revisiting nodes. To ensure that
378 * no intervening nodes are skipped even when moved out of order,
379 * a stack (see class TableStack) is created on first encounter of
380 * a forwarding node during a traversal, to maintain its place if
381 * later processing the current table. The need for these
382 * save/restore mechanics is relatively rare, but when one
383 * forwarding node is encountered, typically many more will be.
384 * So Traversers use a simple caching scheme to avoid creating so
385 * many new TableStack nodes. (Thanks to Peter Levart for
386 * suggesting use of a stack here.)
387 *
388 * The traversal scheme also applies to partial traversals of
389 * ranges of bins (via an alternate Traverser constructor)
390 * to support partitioned aggregate operations. Also, read-only
391 * operations give up if ever forwarded to a null table, which
392 * provides support for shutdown-style clearing, which is also not
393 * currently implemented.
394 *
395 * Lazy table initialization minimizes footprint until first use,
396 * and also avoids resizings when the first operation is from a
397 * putAll, constructor with map argument, or deserialization.
398 * These cases attempt to override the initial capacity settings,
399 * but harmlessly fail to take effect in cases of races.
400 *
401 * The element count is maintained using a specialization of
402 * LongAdder. We need to incorporate a specialization rather than
403 * just use a LongAdder in order to access implicit
404 * contention-sensing that leads to creation of multiple
405 * CounterCells. The counter mechanics avoid contention on
406 * updates but can encounter cache thrashing if read too
407 * frequently during concurrent access. To avoid reading so often,
408 * resizing under contention is attempted only upon adding to a
409 * bin already holding two or more nodes. Under uniform hash
410 * distributions, the probability of this occurring at threshold
411 * is around 13%, meaning that only about 1 in 8 puts check
412 * threshold (and after resizing, many fewer do so).
413 *
414 * TreeBins use a special form of comparison for search and
415 * related operations (which is the main reason we cannot use
416 * existing collections such as TreeMaps). TreeBins contain
417 * Comparable elements, but may contain others, as well as
418 * elements that are Comparable but not necessarily Comparable for
419 * the same T, so we cannot invoke compareTo among them. To handle
420 * this, the tree is ordered primarily by hash value, then by
421 * Comparable.compareTo order if applicable. On lookup at a node,
422 * if elements are not comparable or compare as 0 then both left
423 * and right children may need to be searched in the case of tied
424 * hash values. (This corresponds to the full list search that
425 * would be necessary if all elements were non-Comparable and had
426 * tied hashes.) On insertion, to keep a total ordering (or as
427 * close as is required here) across rebalancings, we compare
428 * classes and identityHashCodes as tie-breakers. The red-black
429 * balancing code is updated from pre-jdk-collections
430 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
431 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
432 * Algorithms" (CLR).
433 *
434 * TreeBins also require an additional locking mechanism. While
435 * list traversal is always possible by readers even during
436 * updates, tree traversal is not, mainly because of tree-rotations
437 * that may change the root node and/or its linkages. TreeBins
438 * include a simple read-write lock mechanism parasitic on the
439 * main bin-synchronization strategy: Structural adjustments
440 * associated with an insertion or removal are already bin-locked
441 * (and so cannot conflict with other writers) but must wait for
442 * ongoing readers to finish. Since there can be only one such
443 * waiter, we use a simple scheme using a single "waiter" field to
444 * block writers. However, readers need never block. If the root
445 * lock is held, they proceed along the slow traversal path (via
446 * next-pointers) until the lock becomes available or the list is
447 * exhausted, whichever comes first. These cases are not fast, but
448 * maximize aggregate expected throughput.
449 *
450 * Maintaining API and serialization compatibility with previous
451 * versions of this class introduces several oddities. Mainly: We
452 * leave untouched but unused constructor arguments referring to
453 * concurrencyLevel. We accept a loadFactor constructor argument,
454 * but apply it only to initial table capacity (which is the only
455 * time that we can guarantee to honor it.) We also declare an
456 * unused "Segment" class that is instantiated in minimal form
457 * only when serializing.
458 *
459 * Also, solely for compatibility with previous versions of this
460 * class, it extends AbstractMap, even though all of its methods
461 * are overridden, so it is just useless baggage.
462 *
463 * This file is organized to make things a little easier to follow
464 * while reading than they might otherwise: First the main static
465 * declarations and utilities, then fields, then main public
466 * methods (with a few factorings of multiple public methods into
467 * internal ones), then sizing methods, trees, traversers, and
468 * bulk operations.
469 */
470
471 /* ---------------- Constants -------------- */
472
473 /**
474 * The largest possible table capacity. This value must be
475 * exactly 1<<30 to stay within Java array allocation and indexing
476 * bounds for power of two table sizes, and is further required
477 * because the top two bits of 32bit hash fields are used for
478 * control purposes.
479 */
480 private static final int MAXIMUM_CAPACITY = 1 << 30;
481
482 /**
483 * The default initial table capacity. Must be a power of 2
484 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
485 */
486 private static final int DEFAULT_CAPACITY = 16;
487
488 /**
489 * The largest possible (non-power of two) array size.
490 * Needed by toArray and related methods.
491 */
492 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
493
494 /**
495 * The default concurrency level for this table. Unused but
496 * defined for compatibility with previous versions of this class.
497 */
498 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
499
500 /**
501 * The load factor for this table. Overrides of this value in
502 * constructors affect only the initial table capacity. The
503 * actual floating point value isn't normally used -- it is
504 * simpler to use expressions such as {@code n - (n >>> 2)} for
505 * the associated resizing threshold.
506 */
507 private static final float LOAD_FACTOR = 0.75f;
508
509 /**
510 * The bin count threshold for using a tree rather than list for a
511 * bin. Bins are converted to trees when adding an element to a
512 * bin with at least this many nodes. The value must be greater
513 * than 2, and should be at least 8 to mesh with assumptions in
514 * tree removal about conversion back to plain bins upon
515 * shrinkage.
516 */
517 static final int TREEIFY_THRESHOLD = 8;
518
519 /**
520 * The bin count threshold for untreeifying a (split) bin during a
521 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
522 * most 6 to mesh with shrinkage detection under removal.
523 */
524 static final int UNTREEIFY_THRESHOLD = 6;
525
526 /**
527 * The smallest table capacity for which bins may be treeified.
528 * (Otherwise the table is resized if too many nodes in a bin.)
529 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
530 * conflicts between resizing and treeification thresholds.
531 */
532 static final int MIN_TREEIFY_CAPACITY = 64;
533
534 /**
535 * Minimum number of rebinnings per transfer step. Ranges are
536 * subdivided to allow multiple resizer threads. This value
537 * serves as a lower bound to avoid resizers encountering
538 * excessive memory contention. The value should be at least
539 * DEFAULT_CAPACITY.
540 */
541 private static final int MIN_TRANSFER_STRIDE = 16;
542
543 /**
544 * The number of bits used for generation stamp in sizeCtl.
545 * Must be at least 6 for 32bit arrays.
546 */
547 private static final int RESIZE_STAMP_BITS = 16;
548
549 /**
550 * The maximum number of threads that can help resize.
551 * Must fit in 32 - RESIZE_STAMP_BITS bits.
552 */
553 private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
554
555 /**
556 * The bit shift for recording size stamp in sizeCtl.
557 */
558 private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
559
560 /*
561 * Encodings for Node hash fields. See above for explanation.
562 */
563 static final int MOVED = -1; // hash for forwarding nodes
564 static final int TREEBIN = -2; // hash for roots of trees
565 static final int RESERVED = -3; // hash for transient reservations
566 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
567
568 /** Number of CPUS, to place bounds on some sizings */
569 static final int NCPU = Runtime.getRuntime().availableProcessors();
570
571 /**
572 * Serialized pseudo-fields, provided only for jdk7 compatibility.
573 * @serialField segments Segment[]
574 * The segments, each of which is a specialized hash table.
575 * @serialField segmentMask int
576 * Mask value for indexing into segments. The upper bits of a
577 * key's hash code are used to choose the segment.
578 * @serialField segmentShift int
579 * Shift value for indexing within segments.
580 */
581 private static final ObjectStreamField[] serialPersistentFields = {
582 new ObjectStreamField("segments", Segment[].class),
583 new ObjectStreamField("segmentMask", Integer.TYPE),
584 new ObjectStreamField("segmentShift", Integer.TYPE),
585 };
586
587 /* ---------------- Nodes -------------- */
588
589 /**
590 * Key-value entry. This class is never exported out as a
591 * user-mutable Map.Entry (i.e., one supporting setValue; see
592 * MapEntry below), but can be used for read-only traversals used
593 * in bulk tasks. Subclasses of Node with a negative hash field
594 * are special, and contain null keys and values (but are never
595 * exported). Otherwise, keys and vals are never null.
596 */
597 static class Node<K,V> implements Map.Entry<K,V> {
598 final int hash;
599 final K key;
600 volatile V val;
601 volatile Node<K,V> next;
602
603 Node(int hash, K key, V val) {
604 this.hash = hash;
605 this.key = key;
606 this.val = val;
607 }
608
609 Node(int hash, K key, V val, Node<K,V> next) {
610 this(hash, key, val);
611 this.next = next;
612 }
613
614 public final K getKey() { return key; }
615 public final V getValue() { return val; }
616 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
617 public final String toString() {
618 return Helpers.mapEntryToString(key, val);
619 }
620 public final V setValue(V value) {
621 throw new UnsupportedOperationException();
622 }
623
624 public final boolean equals(Object o) {
625 Object k, v, u; Map.Entry<?,?> e;
626 return ((o instanceof Map.Entry) &&
627 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
628 (v = e.getValue()) != null &&
629 (k == key || k.equals(key)) &&
630 (v == (u = val) || v.equals(u)));
631 }
632
633 /**
634 * Virtualized support for map.get(); overridden in subclasses.
635 */
636 Node<K,V> find(int h, Object k) {
637 Node<K,V> e = this;
638 if (k != null) {
639 do {
640 K ek;
641 if (e.hash == h &&
642 ((ek = e.key) == k || (ek != null && k.equals(ek))))
643 return e;
644 } while ((e = e.next) != null);
645 }
646 return null;
647 }
648 }
649
650 /* ---------------- Static utilities -------------- */
651
652 /**
653 * Spreads (XORs) higher bits of hash to lower and also forces top
654 * bit to 0. Because the table uses power-of-two masking, sets of
655 * hashes that vary only in bits above the current mask will
656 * always collide. (Among known examples are sets of Float keys
657 * holding consecutive whole numbers in small tables.) So we
658 * apply a transform that spreads the impact of higher bits
659 * downward. There is a tradeoff between speed, utility, and
660 * quality of bit-spreading. Because many common sets of hashes
661 * are already reasonably distributed (so don't benefit from
662 * spreading), and because we use trees to handle large sets of
663 * collisions in bins, we just XOR some shifted bits in the
664 * cheapest possible way to reduce systematic lossage, as well as
665 * to incorporate impact of the highest bits that would otherwise
666 * never be used in index calculations because of table bounds.
667 */
668 static final int spread(int h) {
669 return (h ^ (h >>> 16)) & HASH_BITS;
670 }
671
672 /**
673 * Returns a power of two table size for the given desired capacity.
674 * See Hackers Delight, sec 3.2
675 */
676 private static final int tableSizeFor(int c) {
677 int n = c - 1;
678 n |= n >>> 1;
679 n |= n >>> 2;
680 n |= n >>> 4;
681 n |= n >>> 8;
682 n |= n >>> 16;
683 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
684 }
685
686 /**
687 * Returns x's Class if it is of the form "class C implements
688 * Comparable<C>", else null.
689 */
690 static Class<?> comparableClassFor(Object x) {
691 if (x instanceof Comparable) {
692 Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
693 if ((c = x.getClass()) == String.class) // bypass checks
694 return c;
695 if ((ts = c.getGenericInterfaces()) != null) {
696 for (int i = 0; i < ts.length; ++i) {
697 if (((t = ts[i]) instanceof ParameterizedType) &&
698 ((p = (ParameterizedType)t).getRawType() ==
699 Comparable.class) &&
700 (as = p.getActualTypeArguments()) != null &&
701 as.length == 1 && as[0] == c) // type arg is c
702 return c;
703 }
704 }
705 }
706 return null;
707 }
708
709 /**
710 * Returns k.compareTo(x) if x matches kc (k's screened comparable
711 * class), else 0.
712 */
713 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
714 static int compareComparables(Class<?> kc, Object k, Object x) {
715 return (x == null || x.getClass() != kc ? 0 :
716 ((Comparable)k).compareTo(x));
717 }
718
719 /* ---------------- Table element access -------------- */
720
721 /*
722 * Atomic access methods are used for table elements as well as
723 * elements of in-progress next table while resizing. All uses of
724 * the tab arguments must be null checked by callers. All callers
725 * also paranoically precheck that tab's length is not zero (or an
726 * equivalent check), thus ensuring that any index argument taking
727 * the form of a hash value anded with (length - 1) is a valid
728 * index. Note that, to be correct wrt arbitrary concurrency
729 * errors by users, these checks must operate on local variables,
730 * which accounts for some odd-looking inline assignments below.
731 * Note that calls to setTabAt always occur within locked regions,
732 * and so require only release ordering.
733 */
734
735 @SuppressWarnings("unchecked")
736 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
737 return (Node<K,V>)U.getObjectAcquire(tab, ((long)i << ASHIFT) + ABASE);
738 }
739
740 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
741 Node<K,V> c, Node<K,V> v) {
742 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
743 }
744
745 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
746 U.putObjectRelease(tab, ((long)i << ASHIFT) + ABASE, v);
747 }
748
749 /* ---------------- Fields -------------- */
750
751 /**
752 * The array of bins. Lazily initialized upon first insertion.
753 * Size is always a power of two. Accessed directly by iterators.
754 */
755 transient volatile Node<K,V>[] table;
756
757 /**
758 * The next table to use; non-null only while resizing.
759 */
760 private transient volatile Node<K,V>[] nextTable;
761
762 /**
763 * Base counter value, used mainly when there is no contention,
764 * but also as a fallback during table initialization
765 * races. Updated via CAS.
766 */
767 private transient volatile long baseCount;
768
769 /**
770 * Table initialization and resizing control. When negative, the
771 * table is being initialized or resized: -1 for initialization,
772 * else -(1 + the number of active resizing threads). Otherwise,
773 * when table is null, holds the initial table size to use upon
774 * creation, or 0 for default. After initialization, holds the
775 * next element count value upon which to resize the table.
776 */
777 private transient volatile int sizeCtl;
778
779 /**
780 * The next table index (plus one) to split while resizing.
781 */
782 private transient volatile int transferIndex;
783
784 /**
785 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
786 */
787 private transient volatile int cellsBusy;
788
789 /**
790 * Table of counter cells. When non-null, size is a power of 2.
791 */
792 private transient volatile CounterCell[] counterCells;
793
794 // views
795 private transient KeySetView<K,V> keySet;
796 private transient ValuesView<K,V> values;
797 private transient EntrySetView<K,V> entrySet;
798
799
800 /* ---------------- Public operations -------------- */
801
802 /**
803 * Creates a new, empty map with the default initial table size (16).
804 */
805 public ConcurrentHashMap() {
806 }
807
808 /**
809 * Creates a new, empty map with an initial table size
810 * accommodating the specified number of elements without the need
811 * to dynamically resize.
812 *
813 * @param initialCapacity The implementation performs internal
814 * sizing to accommodate this many elements.
815 * @throws IllegalArgumentException if the initial capacity of
816 * elements is negative
817 */
818 public ConcurrentHashMap(int initialCapacity) {
819 if (initialCapacity < 0)
820 throw new IllegalArgumentException();
821 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
822 MAXIMUM_CAPACITY :
823 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
824 this.sizeCtl = cap;
825 }
826
827 /**
828 * Creates a new map with the same mappings as the given map.
829 *
830 * @param m the map
831 */
832 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
833 this.sizeCtl = DEFAULT_CAPACITY;
834 putAll(m);
835 }
836
837 /**
838 * Creates a new, empty map with an initial table size based on
839 * the given number of elements ({@code initialCapacity}) and
840 * initial table density ({@code loadFactor}).
841 *
842 * @param initialCapacity the initial capacity. The implementation
843 * performs internal sizing to accommodate this many elements,
844 * given the specified load factor.
845 * @param loadFactor the load factor (table density) for
846 * establishing the initial table size
847 * @throws IllegalArgumentException if the initial capacity of
848 * elements is negative or the load factor is nonpositive
849 *
850 * @since 1.6
851 */
852 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
853 this(initialCapacity, loadFactor, 1);
854 }
855
856 /**
857 * Creates a new, empty map with an initial table size based on
858 * the given number of elements ({@code initialCapacity}), table
859 * density ({@code loadFactor}), and number of concurrently
860 * updating threads ({@code concurrencyLevel}).
861 *
862 * @param initialCapacity the initial capacity. The implementation
863 * performs internal sizing to accommodate this many elements,
864 * given the specified load factor.
865 * @param loadFactor the load factor (table density) for
866 * establishing the initial table size
867 * @param concurrencyLevel the estimated number of concurrently
868 * updating threads. The implementation may use this value as
869 * a sizing hint.
870 * @throws IllegalArgumentException if the initial capacity is
871 * negative or the load factor or concurrencyLevel are
872 * nonpositive
873 */
874 public ConcurrentHashMap(int initialCapacity,
875 float loadFactor, int concurrencyLevel) {
876 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
877 throw new IllegalArgumentException();
878 if (initialCapacity < concurrencyLevel) // Use at least as many bins
879 initialCapacity = concurrencyLevel; // as estimated threads
880 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
881 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
882 MAXIMUM_CAPACITY : tableSizeFor((int)size);
883 this.sizeCtl = cap;
884 }
885
886 // Original (since JDK1.2) Map methods
887
888 /**
889 * {@inheritDoc}
890 */
891 public int size() {
892 long n = sumCount();
893 return ((n < 0L) ? 0 :
894 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
895 (int)n);
896 }
897
898 /**
899 * {@inheritDoc}
900 */
901 public boolean isEmpty() {
902 return sumCount() <= 0L; // ignore transient negative values
903 }
904
905 /**
906 * Returns the value to which the specified key is mapped,
907 * or {@code null} if this map contains no mapping for the key.
908 *
909 * <p>More formally, if this map contains a mapping from a key
910 * {@code k} to a value {@code v} such that {@code key.equals(k)},
911 * then this method returns {@code v}; otherwise it returns
912 * {@code null}. (There can be at most one such mapping.)
913 *
914 * @throws NullPointerException if the specified key is null
915 */
916 public V get(Object key) {
917 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
918 int h = spread(key.hashCode());
919 if ((tab = table) != null && (n = tab.length) > 0 &&
920 (e = tabAt(tab, (n - 1) & h)) != null) {
921 if ((eh = e.hash) == h) {
922 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
923 return e.val;
924 }
925 else if (eh < 0)
926 return (p = e.find(h, key)) != null ? p.val : null;
927 while ((e = e.next) != null) {
928 if (e.hash == h &&
929 ((ek = e.key) == key || (ek != null && key.equals(ek))))
930 return e.val;
931 }
932 }
933 return null;
934 }
935
936 /**
937 * Tests if the specified object is a key in this table.
938 *
939 * @param key possible key
940 * @return {@code true} if and only if the specified object
941 * is a key in this table, as determined by the
942 * {@code equals} method; {@code false} otherwise
943 * @throws NullPointerException if the specified key is null
944 */
945 public boolean containsKey(Object key) {
946 return get(key) != null;
947 }
948
949 /**
950 * Returns {@code true} if this map maps one or more keys to the
951 * specified value. Note: This method may require a full traversal
952 * of the map, and is much slower than method {@code containsKey}.
953 *
954 * @param value value whose presence in this map is to be tested
955 * @return {@code true} if this map maps one or more keys to the
956 * specified value
957 * @throws NullPointerException if the specified value is null
958 */
959 public boolean containsValue(Object value) {
960 if (value == null)
961 throw new NullPointerException();
962 Node<K,V>[] t;
963 if ((t = table) != null) {
964 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
965 for (Node<K,V> p; (p = it.advance()) != null; ) {
966 V v;
967 if ((v = p.val) == value || (v != null && value.equals(v)))
968 return true;
969 }
970 }
971 return false;
972 }
973
974 /**
975 * Maps the specified key to the specified value in this table.
976 * Neither the key nor the value can be null.
977 *
978 * <p>The value can be retrieved by calling the {@code get} method
979 * with a key that is equal to the original key.
980 *
981 * @param key key with which the specified value is to be associated
982 * @param value value to be associated with the specified key
983 * @return the previous value associated with {@code key}, or
984 * {@code null} if there was no mapping for {@code key}
985 * @throws NullPointerException if the specified key or value is null
986 */
987 public V put(K key, V value) {
988 return putVal(key, value, false);
989 }
990
991 /** Implementation for put and putIfAbsent */
992 final V putVal(K key, V value, boolean onlyIfAbsent) {
993 if (key == null || value == null) throw new NullPointerException();
994 int hash = spread(key.hashCode());
995 int binCount = 0;
996 for (Node<K,V>[] tab = table;;) {
997 Node<K,V> f; int n, i, fh; K fk; V fv;
998 if (tab == null || (n = tab.length) == 0)
999 tab = initTable();
1000 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1001 if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))
1002 break; // no lock when adding to empty bin
1003 }
1004 else if ((fh = f.hash) == MOVED)
1005 tab = helpTransfer(tab, f);
1006 else if (onlyIfAbsent && fh == hash && // check first node
1007 ((fk = f.key) == key || fk != null && key.equals(fk)) &&
1008 (fv = f.val) != null)
1009 return fv;
1010 else {
1011 V oldVal = null;
1012 synchronized (f) {
1013 if (tabAt(tab, i) == f) {
1014 if (fh >= 0) {
1015 binCount = 1;
1016 for (Node<K,V> e = f;; ++binCount) {
1017 K ek;
1018 if (e.hash == hash &&
1019 ((ek = e.key) == key ||
1020 (ek != null && key.equals(ek)))) {
1021 oldVal = e.val;
1022 if (!onlyIfAbsent)
1023 e.val = value;
1024 break;
1025 }
1026 Node<K,V> pred = e;
1027 if ((e = e.next) == null) {
1028 pred.next = new Node<K,V>(hash, key, value);
1029 break;
1030 }
1031 }
1032 }
1033 else if (f instanceof TreeBin) {
1034 Node<K,V> p;
1035 binCount = 2;
1036 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1037 value)) != null) {
1038 oldVal = p.val;
1039 if (!onlyIfAbsent)
1040 p.val = value;
1041 }
1042 }
1043 else if (f instanceof ReservationNode)
1044 throw new IllegalStateException("Recursive update");
1045 }
1046 }
1047 if (binCount != 0) {
1048 if (binCount >= TREEIFY_THRESHOLD)
1049 treeifyBin(tab, i);
1050 if (oldVal != null)
1051 return oldVal;
1052 break;
1053 }
1054 }
1055 }
1056 addCount(1L, binCount);
1057 return null;
1058 }
1059
1060 /**
1061 * Copies all of the mappings from the specified map to this one.
1062 * These mappings replace any mappings that this map had for any of the
1063 * keys currently in the specified map.
1064 *
1065 * @param m mappings to be stored in this map
1066 */
1067 public void putAll(Map<? extends K, ? extends V> m) {
1068 tryPresize(m.size());
1069 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1070 putVal(e.getKey(), e.getValue(), false);
1071 }
1072
1073 /**
1074 * Removes the key (and its corresponding value) from this map.
1075 * This method does nothing if the key is not in the map.
1076 *
1077 * @param key the key that needs to be removed
1078 * @return the previous value associated with {@code key}, or
1079 * {@code null} if there was no mapping for {@code key}
1080 * @throws NullPointerException if the specified key is null
1081 */
1082 public V remove(Object key) {
1083 return replaceNode(key, null, null);
1084 }
1085
1086 /**
1087 * Implementation for the four public remove/replace methods:
1088 * Replaces node value with v, conditional upon match of cv if
1089 * non-null. If resulting value is null, delete.
1090 */
1091 final V replaceNode(Object key, V value, Object cv) {
1092 int hash = spread(key.hashCode());
1093 for (Node<K,V>[] tab = table;;) {
1094 Node<K,V> f; int n, i, fh;
1095 if (tab == null || (n = tab.length) == 0 ||
1096 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1097 break;
1098 else if ((fh = f.hash) == MOVED)
1099 tab = helpTransfer(tab, f);
1100 else {
1101 V oldVal = null;
1102 boolean validated = false;
1103 synchronized (f) {
1104 if (tabAt(tab, i) == f) {
1105 if (fh >= 0) {
1106 validated = true;
1107 for (Node<K,V> e = f, pred = null;;) {
1108 K ek;
1109 if (e.hash == hash &&
1110 ((ek = e.key) == key ||
1111 (ek != null && key.equals(ek)))) {
1112 V ev = e.val;
1113 if (cv == null || cv == ev ||
1114 (ev != null && cv.equals(ev))) {
1115 oldVal = ev;
1116 if (value != null)
1117 e.val = value;
1118 else if (pred != null)
1119 pred.next = e.next;
1120 else
1121 setTabAt(tab, i, e.next);
1122 }
1123 break;
1124 }
1125 pred = e;
1126 if ((e = e.next) == null)
1127 break;
1128 }
1129 }
1130 else if (f instanceof TreeBin) {
1131 validated = true;
1132 TreeBin<K,V> t = (TreeBin<K,V>)f;
1133 TreeNode<K,V> r, p;
1134 if ((r = t.root) != null &&
1135 (p = r.findTreeNode(hash, key, null)) != null) {
1136 V pv = p.val;
1137 if (cv == null || cv == pv ||
1138 (pv != null && cv.equals(pv))) {
1139 oldVal = pv;
1140 if (value != null)
1141 p.val = value;
1142 else if (t.removeTreeNode(p))
1143 setTabAt(tab, i, untreeify(t.first));
1144 }
1145 }
1146 }
1147 else if (f instanceof ReservationNode)
1148 throw new IllegalStateException("Recursive update");
1149 }
1150 }
1151 if (validated) {
1152 if (oldVal != null) {
1153 if (value == null)
1154 addCount(-1L, -1);
1155 return oldVal;
1156 }
1157 break;
1158 }
1159 }
1160 }
1161 return null;
1162 }
1163
1164 /**
1165 * Removes all of the mappings from this map.
1166 */
1167 public void clear() {
1168 long delta = 0L; // negative number of deletions
1169 int i = 0;
1170 Node<K,V>[] tab = table;
1171 while (tab != null && i < tab.length) {
1172 int fh;
1173 Node<K,V> f = tabAt(tab, i);
1174 if (f == null)
1175 ++i;
1176 else if ((fh = f.hash) == MOVED) {
1177 tab = helpTransfer(tab, f);
1178 i = 0; // restart
1179 }
1180 else {
1181 synchronized (f) {
1182 if (tabAt(tab, i) == f) {
1183 Node<K,V> p = (fh >= 0 ? f :
1184 (f instanceof TreeBin) ?
1185 ((TreeBin<K,V>)f).first : null);
1186 while (p != null) {
1187 --delta;
1188 p = p.next;
1189 }
1190 setTabAt(tab, i++, null);
1191 }
1192 }
1193 }
1194 }
1195 if (delta != 0L)
1196 addCount(delta, -1);
1197 }
1198
1199 /**
1200 * Returns a {@link Set} view of the keys contained in this map.
1201 * The set is backed by the map, so changes to the map are
1202 * reflected in the set, and vice-versa. The set supports element
1203 * removal, which removes the corresponding mapping from this map,
1204 * via the {@code Iterator.remove}, {@code Set.remove},
1205 * {@code removeAll}, {@code retainAll}, and {@code clear}
1206 * operations. It does not support the {@code add} or
1207 * {@code addAll} operations.
1208 *
1209 * <p>The view's iterators and spliterators are
1210 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1211 *
1212 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1213 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1214 *
1215 * @return the set view
1216 */
1217 public KeySetView<K,V> keySet() {
1218 KeySetView<K,V> ks;
1219 if ((ks = keySet) != null) return ks;
1220 return keySet = new KeySetView<K,V>(this, null);
1221 }
1222
1223 /**
1224 * Returns a {@link Collection} view of the values contained in this map.
1225 * The collection is backed by the map, so changes to the map are
1226 * reflected in the collection, and vice-versa. The collection
1227 * supports element removal, which removes the corresponding
1228 * mapping from this map, via the {@code Iterator.remove},
1229 * {@code Collection.remove}, {@code removeAll},
1230 * {@code retainAll}, and {@code clear} operations. It does not
1231 * support the {@code add} or {@code addAll} operations.
1232 *
1233 * <p>The view's iterators and spliterators are
1234 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1235 *
1236 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1237 * and {@link Spliterator#NONNULL}.
1238 *
1239 * @return the collection view
1240 */
1241 public Collection<V> values() {
1242 ValuesView<K,V> vs;
1243 if ((vs = values) != null) return vs;
1244 return values = new ValuesView<K,V>(this);
1245 }
1246
1247 /**
1248 * Returns a {@link Set} view of the mappings contained in this map.
1249 * The set is backed by the map, so changes to the map are
1250 * reflected in the set, and vice-versa. The set supports element
1251 * removal, which removes the corresponding mapping from the map,
1252 * via the {@code Iterator.remove}, {@code Set.remove},
1253 * {@code removeAll}, {@code retainAll}, and {@code clear}
1254 * operations.
1255 *
1256 * <p>The view's iterators and spliterators are
1257 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1258 *
1259 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1260 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1261 *
1262 * @return the set view
1263 */
1264 public Set<Map.Entry<K,V>> entrySet() {
1265 EntrySetView<K,V> es;
1266 if ((es = entrySet) != null) return es;
1267 return entrySet = new EntrySetView<K,V>(this);
1268 }
1269
1270 /**
1271 * Returns the hash code value for this {@link Map}, i.e.,
1272 * the sum of, for each key-value pair in the map,
1273 * {@code key.hashCode() ^ value.hashCode()}.
1274 *
1275 * @return the hash code value for this map
1276 */
1277 public int hashCode() {
1278 int h = 0;
1279 Node<K,V>[] t;
1280 if ((t = table) != null) {
1281 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1282 for (Node<K,V> p; (p = it.advance()) != null; )
1283 h += p.key.hashCode() ^ p.val.hashCode();
1284 }
1285 return h;
1286 }
1287
1288 /**
1289 * Returns a string representation of this map. The string
1290 * representation consists of a list of key-value mappings (in no
1291 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1292 * mappings are separated by the characters {@code ", "} (comma
1293 * and space). Each key-value mapping is rendered as the key
1294 * followed by an equals sign ("{@code =}") followed by the
1295 * associated value.
1296 *
1297 * @return a string representation of this map
1298 */
1299 public String toString() {
1300 Node<K,V>[] t;
1301 int f = (t = table) == null ? 0 : t.length;
1302 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1303 StringBuilder sb = new StringBuilder();
1304 sb.append('{');
1305 Node<K,V> p;
1306 if ((p = it.advance()) != null) {
1307 for (;;) {
1308 K k = p.key;
1309 V v = p.val;
1310 sb.append(k == this ? "(this Map)" : k);
1311 sb.append('=');
1312 sb.append(v == this ? "(this Map)" : v);
1313 if ((p = it.advance()) == null)
1314 break;
1315 sb.append(',').append(' ');
1316 }
1317 }
1318 return sb.append('}').toString();
1319 }
1320
1321 /**
1322 * Compares the specified object with this map for equality.
1323 * Returns {@code true} if the given object is a map with the same
1324 * mappings as this map. This operation may return misleading
1325 * results if either map is concurrently modified during execution
1326 * of this method.
1327 *
1328 * @param o object to be compared for equality with this map
1329 * @return {@code true} if the specified object is equal to this map
1330 */
1331 public boolean equals(Object o) {
1332 if (o != this) {
1333 if (!(o instanceof Map))
1334 return false;
1335 Map<?,?> m = (Map<?,?>) o;
1336 Node<K,V>[] t;
1337 int f = (t = table) == null ? 0 : t.length;
1338 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1339 for (Node<K,V> p; (p = it.advance()) != null; ) {
1340 V val = p.val;
1341 Object v = m.get(p.key);
1342 if (v == null || (v != val && !v.equals(val)))
1343 return false;
1344 }
1345 for (Map.Entry<?,?> e : m.entrySet()) {
1346 Object mk, mv, v;
1347 if ((mk = e.getKey()) == null ||
1348 (mv = e.getValue()) == null ||
1349 (v = get(mk)) == null ||
1350 (mv != v && !mv.equals(v)))
1351 return false;
1352 }
1353 }
1354 return true;
1355 }
1356
1357 /**
1358 * Stripped-down version of helper class used in previous version,
1359 * declared for the sake of serialization compatibility.
1360 */
1361 static class Segment<K,V> extends ReentrantLock implements Serializable {
1362 private static final long serialVersionUID = 2249069246763182397L;
1363 final float loadFactor;
1364 Segment(float lf) { this.loadFactor = lf; }
1365 }
1366
1367 /**
1368 * Saves the state of the {@code ConcurrentHashMap} instance to a
1369 * stream (i.e., serializes it).
1370 * @param s the stream
1371 * @throws java.io.IOException if an I/O error occurs
1372 * @serialData
1373 * the serialized fields, followed by the key (Object) and value
1374 * (Object) for each key-value mapping, followed by a null pair.
1375 * The key-value mappings are emitted in no particular order.
1376 */
1377 private void writeObject(java.io.ObjectOutputStream s)
1378 throws java.io.IOException {
1379 // For serialization compatibility
1380 // Emulate segment calculation from previous version of this class
1381 int sshift = 0;
1382 int ssize = 1;
1383 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1384 ++sshift;
1385 ssize <<= 1;
1386 }
1387 int segmentShift = 32 - sshift;
1388 int segmentMask = ssize - 1;
1389 @SuppressWarnings("unchecked")
1390 Segment<K,V>[] segments = (Segment<K,V>[])
1391 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1392 for (int i = 0; i < segments.length; ++i)
1393 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1394 java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1395 streamFields.put("segments", segments);
1396 streamFields.put("segmentShift", segmentShift);
1397 streamFields.put("segmentMask", segmentMask);
1398 s.writeFields();
1399
1400 Node<K,V>[] t;
1401 if ((t = table) != null) {
1402 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1403 for (Node<K,V> p; (p = it.advance()) != null; ) {
1404 s.writeObject(p.key);
1405 s.writeObject(p.val);
1406 }
1407 }
1408 s.writeObject(null);
1409 s.writeObject(null);
1410 }
1411
1412 /**
1413 * Reconstitutes the instance from a stream (that is, deserializes it).
1414 * @param s the stream
1415 * @throws ClassNotFoundException if the class of a serialized object
1416 * could not be found
1417 * @throws java.io.IOException if an I/O error occurs
1418 */
1419 private void readObject(java.io.ObjectInputStream s)
1420 throws java.io.IOException, ClassNotFoundException {
1421 /*
1422 * To improve performance in typical cases, we create nodes
1423 * while reading, then place in table once size is known.
1424 * However, we must also validate uniqueness and deal with
1425 * overpopulated bins while doing so, which requires
1426 * specialized versions of putVal mechanics.
1427 */
1428 sizeCtl = -1; // force exclusion for table construction
1429 s.defaultReadObject();
1430 long size = 0L;
1431 Node<K,V> p = null;
1432 for (;;) {
1433 @SuppressWarnings("unchecked")
1434 K k = (K) s.readObject();
1435 @SuppressWarnings("unchecked")
1436 V v = (V) s.readObject();
1437 if (k != null && v != null) {
1438 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1439 ++size;
1440 }
1441 else
1442 break;
1443 }
1444 if (size == 0L)
1445 sizeCtl = 0;
1446 else {
1447 int n;
1448 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1449 n = MAXIMUM_CAPACITY;
1450 else {
1451 int sz = (int)size;
1452 n = tableSizeFor(sz + (sz >>> 1) + 1);
1453 }
1454 @SuppressWarnings("unchecked")
1455 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1456 int mask = n - 1;
1457 long added = 0L;
1458 while (p != null) {
1459 boolean insertAtFront;
1460 Node<K,V> next = p.next, first;
1461 int h = p.hash, j = h & mask;
1462 if ((first = tabAt(tab, j)) == null)
1463 insertAtFront = true;
1464 else {
1465 K k = p.key;
1466 if (first.hash < 0) {
1467 TreeBin<K,V> t = (TreeBin<K,V>)first;
1468 if (t.putTreeVal(h, k, p.val) == null)
1469 ++added;
1470 insertAtFront = false;
1471 }
1472 else {
1473 int binCount = 0;
1474 insertAtFront = true;
1475 Node<K,V> q; K qk;
1476 for (q = first; q != null; q = q.next) {
1477 if (q.hash == h &&
1478 ((qk = q.key) == k ||
1479 (qk != null && k.equals(qk)))) {
1480 insertAtFront = false;
1481 break;
1482 }
1483 ++binCount;
1484 }
1485 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1486 insertAtFront = false;
1487 ++added;
1488 p.next = first;
1489 TreeNode<K,V> hd = null, tl = null;
1490 for (q = p; q != null; q = q.next) {
1491 TreeNode<K,V> t = new TreeNode<K,V>
1492 (q.hash, q.key, q.val, null, null);
1493 if ((t.prev = tl) == null)
1494 hd = t;
1495 else
1496 tl.next = t;
1497 tl = t;
1498 }
1499 setTabAt(tab, j, new TreeBin<K,V>(hd));
1500 }
1501 }
1502 }
1503 if (insertAtFront) {
1504 ++added;
1505 p.next = first;
1506 setTabAt(tab, j, p);
1507 }
1508 p = next;
1509 }
1510 table = tab;
1511 sizeCtl = n - (n >>> 2);
1512 baseCount = added;
1513 }
1514 }
1515
1516 // ConcurrentMap methods
1517
1518 /**
1519 * {@inheritDoc}
1520 *
1521 * @return the previous value associated with the specified key,
1522 * or {@code null} if there was no mapping for the key
1523 * @throws NullPointerException if the specified key or value is null
1524 */
1525 public V putIfAbsent(K key, V value) {
1526 return putVal(key, value, true);
1527 }
1528
1529 /**
1530 * {@inheritDoc}
1531 *
1532 * @throws NullPointerException if the specified key is null
1533 */
1534 public boolean remove(Object key, Object value) {
1535 if (key == null)
1536 throw new NullPointerException();
1537 return value != null && replaceNode(key, null, value) != null;
1538 }
1539
1540 /**
1541 * {@inheritDoc}
1542 *
1543 * @throws NullPointerException if any of the arguments are null
1544 */
1545 public boolean replace(K key, V oldValue, V newValue) {
1546 if (key == null || oldValue == null || newValue == null)
1547 throw new NullPointerException();
1548 return replaceNode(key, newValue, oldValue) != null;
1549 }
1550
1551 /**
1552 * {@inheritDoc}
1553 *
1554 * @return the previous value associated with the specified key,
1555 * or {@code null} if there was no mapping for the key
1556 * @throws NullPointerException if the specified key or value is null
1557 */
1558 public V replace(K key, V value) {
1559 if (key == null || value == null)
1560 throw new NullPointerException();
1561 return replaceNode(key, value, null);
1562 }
1563
1564 // Overrides of JDK8+ Map extension method defaults
1565
1566 /**
1567 * Returns the value to which the specified key is mapped, or the
1568 * given default value if this map contains no mapping for the
1569 * key.
1570 *
1571 * @param key the key whose associated value is to be returned
1572 * @param defaultValue the value to return if this map contains
1573 * no mapping for the given key
1574 * @return the mapping for the key, if present; else the default value
1575 * @throws NullPointerException if the specified key is null
1576 */
1577 public V getOrDefault(Object key, V defaultValue) {
1578 V v;
1579 return (v = get(key)) == null ? defaultValue : v;
1580 }
1581
1582 public void forEach(BiConsumer<? super K, ? super V> action) {
1583 if (action == null) throw new NullPointerException();
1584 Node<K,V>[] t;
1585 if ((t = table) != null) {
1586 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1587 for (Node<K,V> p; (p = it.advance()) != null; ) {
1588 action.accept(p.key, p.val);
1589 }
1590 }
1591 }
1592
1593 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1594 if (function == null) throw new NullPointerException();
1595 Node<K,V>[] t;
1596 if ((t = table) != null) {
1597 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1598 for (Node<K,V> p; (p = it.advance()) != null; ) {
1599 V oldValue = p.val;
1600 for (K key = p.key;;) {
1601 V newValue = function.apply(key, oldValue);
1602 if (newValue == null)
1603 throw new NullPointerException();
1604 if (replaceNode(key, newValue, oldValue) != null ||
1605 (oldValue = get(key)) == null)
1606 break;
1607 }
1608 }
1609 }
1610 }
1611
1612 /**
1613 * Helper method for EntrySetView.removeIf.
1614 */
1615 boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1616 if (function == null) throw new NullPointerException();
1617 Node<K,V>[] t;
1618 boolean removed = false;
1619 if ((t = table) != null) {
1620 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1621 for (Node<K,V> p; (p = it.advance()) != null; ) {
1622 K k = p.key;
1623 V v = p.val;
1624 Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1625 if (function.test(e) && replaceNode(k, null, v) != null)
1626 removed = true;
1627 }
1628 }
1629 return removed;
1630 }
1631
1632 /**
1633 * Helper method for ValuesView.removeIf.
1634 */
1635 boolean removeValueIf(Predicate<? super V> function) {
1636 if (function == null) throw new NullPointerException();
1637 Node<K,V>[] t;
1638 boolean removed = false;
1639 if ((t = table) != null) {
1640 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1641 for (Node<K,V> p; (p = it.advance()) != null; ) {
1642 K k = p.key;
1643 V v = p.val;
1644 if (function.test(v) && replaceNode(k, null, v) != null)
1645 removed = true;
1646 }
1647 }
1648 return removed;
1649 }
1650
1651 /**
1652 * If the specified key is not already associated with a value,
1653 * attempts to compute its value using the given mapping function
1654 * and enters it into this map unless {@code null}. The entire
1655 * method invocation is performed atomically, so the function is
1656 * applied at most once per key. Some attempted update operations
1657 * on this map by other threads may be blocked while computation
1658 * is in progress, so the computation should be short and simple,
1659 * and must not attempt to update any other mappings of this map.
1660 *
1661 * @param key key with which the specified value is to be associated
1662 * @param mappingFunction the function to compute a value
1663 * @return the current (existing or computed) value associated with
1664 * the specified key, or null if the computed value is null
1665 * @throws NullPointerException if the specified key or mappingFunction
1666 * is null
1667 * @throws IllegalStateException if the computation detectably
1668 * attempts a recursive update to this map that would
1669 * otherwise never complete
1670 * @throws RuntimeException or Error if the mappingFunction does so,
1671 * in which case the mapping is left unestablished
1672 */
1673 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1674 if (key == null || mappingFunction == null)
1675 throw new NullPointerException();
1676 int h = spread(key.hashCode());
1677 V val = null;
1678 int binCount = 0;
1679 for (Node<K,V>[] tab = table;;) {
1680 Node<K,V> f; int n, i, fh; K fk; V fv;
1681 if (tab == null || (n = tab.length) == 0)
1682 tab = initTable();
1683 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1684 Node<K,V> r = new ReservationNode<K,V>();
1685 synchronized (r) {
1686 if (casTabAt(tab, i, null, r)) {
1687 binCount = 1;
1688 Node<K,V> node = null;
1689 try {
1690 if ((val = mappingFunction.apply(key)) != null)
1691 node = new Node<K,V>(h, key, val);
1692 } finally {
1693 setTabAt(tab, i, node);
1694 }
1695 }
1696 }
1697 if (binCount != 0)
1698 break;
1699 }
1700 else if ((fh = f.hash) == MOVED)
1701 tab = helpTransfer(tab, f);
1702 else if (fh == h && // check first node
1703 ((fk = f.key) == key || fk != null && key.equals(fk)) &&
1704 (fv = f.val) != null)
1705 return fv;
1706 else {
1707 boolean added = false;
1708 synchronized (f) {
1709 if (tabAt(tab, i) == f) {
1710 if (fh >= 0) {
1711 binCount = 1;
1712 for (Node<K,V> e = f;; ++binCount) {
1713 K ek;
1714 if (e.hash == h &&
1715 ((ek = e.key) == key ||
1716 (ek != null && key.equals(ek)))) {
1717 val = e.val;
1718 break;
1719 }
1720 Node<K,V> pred = e;
1721 if ((e = e.next) == null) {
1722 if ((val = mappingFunction.apply(key)) != null) {
1723 if (pred.next != null)
1724 throw new IllegalStateException("Recursive update");
1725 added = true;
1726 pred.next = new Node<K,V>(h, key, val);
1727 }
1728 break;
1729 }
1730 }
1731 }
1732 else if (f instanceof TreeBin) {
1733 binCount = 2;
1734 TreeBin<K,V> t = (TreeBin<K,V>)f;
1735 TreeNode<K,V> r, p;
1736 if ((r = t.root) != null &&
1737 (p = r.findTreeNode(h, key, null)) != null)
1738 val = p.val;
1739 else if ((val = mappingFunction.apply(key)) != null) {
1740 added = true;
1741 t.putTreeVal(h, key, val);
1742 }
1743 }
1744 else if (f instanceof ReservationNode)
1745 throw new IllegalStateException("Recursive update");
1746 }
1747 }
1748 if (binCount != 0) {
1749 if (binCount >= TREEIFY_THRESHOLD)
1750 treeifyBin(tab, i);
1751 if (!added)
1752 return val;
1753 break;
1754 }
1755 }
1756 }
1757 if (val != null)
1758 addCount(1L, binCount);
1759 return val;
1760 }
1761
1762 /**
1763 * If the value for the specified key is present, attempts to
1764 * compute a new mapping given the key and its current mapped
1765 * value. The entire method invocation is performed atomically.
1766 * Some attempted update operations on this map by other threads
1767 * may be blocked while computation is in progress, so the
1768 * computation should be short and simple, and must not attempt to
1769 * update any other mappings of this map.
1770 *
1771 * @param key key with which a value may be associated
1772 * @param remappingFunction the function to compute a value
1773 * @return the new value associated with the specified key, or null if none
1774 * @throws NullPointerException if the specified key or remappingFunction
1775 * is null
1776 * @throws IllegalStateException if the computation detectably
1777 * attempts a recursive update to this map that would
1778 * otherwise never complete
1779 * @throws RuntimeException or Error if the remappingFunction does so,
1780 * in which case the mapping is unchanged
1781 */
1782 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1783 if (key == null || remappingFunction == null)
1784 throw new NullPointerException();
1785 int h = spread(key.hashCode());
1786 V val = null;
1787 int delta = 0;
1788 int binCount = 0;
1789 for (Node<K,V>[] tab = table;;) {
1790 Node<K,V> f; int n, i, fh;
1791 if (tab == null || (n = tab.length) == 0)
1792 tab = initTable();
1793 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1794 break;
1795 else if ((fh = f.hash) == MOVED)
1796 tab = helpTransfer(tab, f);
1797 else {
1798 synchronized (f) {
1799 if (tabAt(tab, i) == f) {
1800 if (fh >= 0) {
1801 binCount = 1;
1802 for (Node<K,V> e = f, pred = null;; ++binCount) {
1803 K ek;
1804 if (e.hash == h &&
1805 ((ek = e.key) == key ||
1806 (ek != null && key.equals(ek)))) {
1807 val = remappingFunction.apply(key, e.val);
1808 if (val != null)
1809 e.val = val;
1810 else {
1811 delta = -1;
1812 Node<K,V> en = e.next;
1813 if (pred != null)
1814 pred.next = en;
1815 else
1816 setTabAt(tab, i, en);
1817 }
1818 break;
1819 }
1820 pred = e;
1821 if ((e = e.next) == null)
1822 break;
1823 }
1824 }
1825 else if (f instanceof TreeBin) {
1826 binCount = 2;
1827 TreeBin<K,V> t = (TreeBin<K,V>)f;
1828 TreeNode<K,V> r, p;
1829 if ((r = t.root) != null &&
1830 (p = r.findTreeNode(h, key, null)) != null) {
1831 val = remappingFunction.apply(key, p.val);
1832 if (val != null)
1833 p.val = val;
1834 else {
1835 delta = -1;
1836 if (t.removeTreeNode(p))
1837 setTabAt(tab, i, untreeify(t.first));
1838 }
1839 }
1840 }
1841 else if (f instanceof ReservationNode)
1842 throw new IllegalStateException("Recursive update");
1843 }
1844 }
1845 if (binCount != 0)
1846 break;
1847 }
1848 }
1849 if (delta != 0)
1850 addCount((long)delta, binCount);
1851 return val;
1852 }
1853
1854 /**
1855 * Attempts to compute a mapping for the specified key and its
1856 * current mapped value (or {@code null} if there is no current
1857 * mapping). The entire method invocation is performed atomically.
1858 * Some attempted update operations on this map by other threads
1859 * may be blocked while computation is in progress, so the
1860 * computation should be short and simple, and must not attempt to
1861 * update any other mappings of this Map.
1862 *
1863 * @param key key with which the specified value is to be associated
1864 * @param remappingFunction the function to compute a value
1865 * @return the new value associated with the specified key, or null if none
1866 * @throws NullPointerException if the specified key or remappingFunction
1867 * is null
1868 * @throws IllegalStateException if the computation detectably
1869 * attempts a recursive update to this map that would
1870 * otherwise never complete
1871 * @throws RuntimeException or Error if the remappingFunction does so,
1872 * in which case the mapping is unchanged
1873 */
1874 public V compute(K key,
1875 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1876 if (key == null || remappingFunction == null)
1877 throw new NullPointerException();
1878 int h = spread(key.hashCode());
1879 V val = null;
1880 int delta = 0;
1881 int binCount = 0;
1882 for (Node<K,V>[] tab = table;;) {
1883 Node<K,V> f; int n, i, fh;
1884 if (tab == null || (n = tab.length) == 0)
1885 tab = initTable();
1886 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1887 Node<K,V> r = new ReservationNode<K,V>();
1888 synchronized (r) {
1889 if (casTabAt(tab, i, null, r)) {
1890 binCount = 1;
1891 Node<K,V> node = null;
1892 try {
1893 if ((val = remappingFunction.apply(key, null)) != null) {
1894 delta = 1;
1895 node = new Node<K,V>(h, key, val);
1896 }
1897 } finally {
1898 setTabAt(tab, i, node);
1899 }
1900 }
1901 }
1902 if (binCount != 0)
1903 break;
1904 }
1905 else if ((fh = f.hash) == MOVED)
1906 tab = helpTransfer(tab, f);
1907 else {
1908 synchronized (f) {
1909 if (tabAt(tab, i) == f) {
1910 if (fh >= 0) {
1911 binCount = 1;
1912 for (Node<K,V> e = f, pred = null;; ++binCount) {
1913 K ek;
1914 if (e.hash == h &&
1915 ((ek = e.key) == key ||
1916 (ek != null && key.equals(ek)))) {
1917 val = remappingFunction.apply(key, e.val);
1918 if (val != null)
1919 e.val = val;
1920 else {
1921 delta = -1;
1922 Node<K,V> en = e.next;
1923 if (pred != null)
1924 pred.next = en;
1925 else
1926 setTabAt(tab, i, en);
1927 }
1928 break;
1929 }
1930 pred = e;
1931 if ((e = e.next) == null) {
1932 val = remappingFunction.apply(key, null);
1933 if (val != null) {
1934 if (pred.next != null)
1935 throw new IllegalStateException("Recursive update");
1936 delta = 1;
1937 pred.next = new Node<K,V>(h, key, val);
1938 }
1939 break;
1940 }
1941 }
1942 }
1943 else if (f instanceof TreeBin) {
1944 binCount = 1;
1945 TreeBin<K,V> t = (TreeBin<K,V>)f;
1946 TreeNode<K,V> r, p;
1947 if ((r = t.root) != null)
1948 p = r.findTreeNode(h, key, null);
1949 else
1950 p = null;
1951 V pv = (p == null) ? null : p.val;
1952 val = remappingFunction.apply(key, pv);
1953 if (val != null) {
1954 if (p != null)
1955 p.val = val;
1956 else {
1957 delta = 1;
1958 t.putTreeVal(h, key, val);
1959 }
1960 }
1961 else if (p != null) {
1962 delta = -1;
1963 if (t.removeTreeNode(p))
1964 setTabAt(tab, i, untreeify(t.first));
1965 }
1966 }
1967 else if (f instanceof ReservationNode)
1968 throw new IllegalStateException("Recursive update");
1969 }
1970 }
1971 if (binCount != 0) {
1972 if (binCount >= TREEIFY_THRESHOLD)
1973 treeifyBin(tab, i);
1974 break;
1975 }
1976 }
1977 }
1978 if (delta != 0)
1979 addCount((long)delta, binCount);
1980 return val;
1981 }
1982
1983 /**
1984 * If the specified key is not already associated with a
1985 * (non-null) value, associates it with the given value.
1986 * Otherwise, replaces the value with the results of the given
1987 * remapping function, or removes if {@code null}. The entire
1988 * method invocation is performed atomically. Some attempted
1989 * update operations on this map by other threads may be blocked
1990 * while computation is in progress, so the computation should be
1991 * short and simple, and must not attempt to update any other
1992 * mappings of this Map.
1993 *
1994 * @param key key with which the specified value is to be associated
1995 * @param value the value to use if absent
1996 * @param remappingFunction the function to recompute a value if present
1997 * @return the new value associated with the specified key, or null if none
1998 * @throws NullPointerException if the specified key or the
1999 * remappingFunction is null
2000 * @throws RuntimeException or Error if the remappingFunction does so,
2001 * in which case the mapping is unchanged
2002 */
2003 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
2004 if (key == null || value == null || remappingFunction == null)
2005 throw new NullPointerException();
2006 int h = spread(key.hashCode());
2007 V val = null;
2008 int delta = 0;
2009 int binCount = 0;
2010 for (Node<K,V>[] tab = table;;) {
2011 Node<K,V> f; int n, i, fh;
2012 if (tab == null || (n = tab.length) == 0)
2013 tab = initTable();
2014 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
2015 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value))) {
2016 delta = 1;
2017 val = value;
2018 break;
2019 }
2020 }
2021 else if ((fh = f.hash) == MOVED)
2022 tab = helpTransfer(tab, f);
2023 else {
2024 synchronized (f) {
2025 if (tabAt(tab, i) == f) {
2026 if (fh >= 0) {
2027 binCount = 1;
2028 for (Node<K,V> e = f, pred = null;; ++binCount) {
2029 K ek;
2030 if (e.hash == h &&
2031 ((ek = e.key) == key ||
2032 (ek != null && key.equals(ek)))) {
2033 val = remappingFunction.apply(e.val, value);
2034 if (val != null)
2035 e.val = val;
2036 else {
2037 delta = -1;
2038 Node<K,V> en = e.next;
2039 if (pred != null)
2040 pred.next = en;
2041 else
2042 setTabAt(tab, i, en);
2043 }
2044 break;
2045 }
2046 pred = e;
2047 if ((e = e.next) == null) {
2048 delta = 1;
2049 val = value;
2050 pred.next = new Node<K,V>(h, key, val);
2051 break;
2052 }
2053 }
2054 }
2055 else if (f instanceof TreeBin) {
2056 binCount = 2;
2057 TreeBin<K,V> t = (TreeBin<K,V>)f;
2058 TreeNode<K,V> r = t.root;
2059 TreeNode<K,V> p = (r == null) ? null :
2060 r.findTreeNode(h, key, null);
2061 val = (p == null) ? value :
2062 remappingFunction.apply(p.val, value);
2063 if (val != null) {
2064 if (p != null)
2065 p.val = val;
2066 else {
2067 delta = 1;
2068 t.putTreeVal(h, key, val);
2069 }
2070 }
2071 else if (p != null) {
2072 delta = -1;
2073 if (t.removeTreeNode(p))
2074 setTabAt(tab, i, untreeify(t.first));
2075 }
2076 }
2077 else if (f instanceof ReservationNode)
2078 throw new IllegalStateException("Recursive update");
2079 }
2080 }
2081 if (binCount != 0) {
2082 if (binCount >= TREEIFY_THRESHOLD)
2083 treeifyBin(tab, i);
2084 break;
2085 }
2086 }
2087 }
2088 if (delta != 0)
2089 addCount((long)delta, binCount);
2090 return val;
2091 }
2092
2093 // Hashtable legacy methods
2094
2095 /**
2096 * Tests if some key maps into the specified value in this table.
2097 *
2098 * <p>Note that this method is identical in functionality to
2099 * {@link #containsValue(Object)}, and exists solely to ensure
2100 * full compatibility with class {@link java.util.Hashtable},
2101 * which supported this method prior to introduction of the
2102 * Java Collections Framework.
2103 *
2104 * @param value a value to search for
2105 * @return {@code true} if and only if some key maps to the
2106 * {@code value} argument in this table as
2107 * determined by the {@code equals} method;
2108 * {@code false} otherwise
2109 * @throws NullPointerException if the specified value is null
2110 */
2111 public boolean contains(Object value) {
2112 return containsValue(value);
2113 }
2114
2115 /**
2116 * Returns an enumeration of the keys in this table.
2117 *
2118 * @return an enumeration of the keys in this table
2119 * @see #keySet()
2120 */
2121 public Enumeration<K> keys() {
2122 Node<K,V>[] t;
2123 int f = (t = table) == null ? 0 : t.length;
2124 return new KeyIterator<K,V>(t, f, 0, f, this);
2125 }
2126
2127 /**
2128 * Returns an enumeration of the values in this table.
2129 *
2130 * @return an enumeration of the values in this table
2131 * @see #values()
2132 */
2133 public Enumeration<V> elements() {
2134 Node<K,V>[] t;
2135 int f = (t = table) == null ? 0 : t.length;
2136 return new ValueIterator<K,V>(t, f, 0, f, this);
2137 }
2138
2139 // ConcurrentHashMap-only methods
2140
2141 /**
2142 * Returns the number of mappings. This method should be used
2143 * instead of {@link #size} because a ConcurrentHashMap may
2144 * contain more mappings than can be represented as an int. The
2145 * value returned is an estimate; the actual count may differ if
2146 * there are concurrent insertions or removals.
2147 *
2148 * @return the number of mappings
2149 * @since 1.8
2150 */
2151 public long mappingCount() {
2152 long n = sumCount();
2153 return (n < 0L) ? 0L : n; // ignore transient negative values
2154 }
2155
2156 /**
2157 * Creates a new {@link Set} backed by a ConcurrentHashMap
2158 * from the given type to {@code Boolean.TRUE}.
2159 *
2160 * @param <K> the element type of the returned set
2161 * @return the new set
2162 * @since 1.8
2163 */
2164 public static <K> KeySetView<K,Boolean> newKeySet() {
2165 return new KeySetView<K,Boolean>
2166 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2167 }
2168
2169 /**
2170 * Creates a new {@link Set} backed by a ConcurrentHashMap
2171 * from the given type to {@code Boolean.TRUE}.
2172 *
2173 * @param initialCapacity The implementation performs internal
2174 * sizing to accommodate this many elements.
2175 * @param <K> the element type of the returned set
2176 * @return the new set
2177 * @throws IllegalArgumentException if the initial capacity of
2178 * elements is negative
2179 * @since 1.8
2180 */
2181 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2182 return new KeySetView<K,Boolean>
2183 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2184 }
2185
2186 /**
2187 * Returns a {@link Set} view of the keys in this map, using the
2188 * given common mapped value for any additions (i.e., {@link
2189 * Collection#add} and {@link Collection#addAll(Collection)}).
2190 * This is of course only appropriate if it is acceptable to use
2191 * the same value for all additions from this view.
2192 *
2193 * @param mappedValue the mapped value to use for any additions
2194 * @return the set view
2195 * @throws NullPointerException if the mappedValue is null
2196 */
2197 public KeySetView<K,V> keySet(V mappedValue) {
2198 if (mappedValue == null)
2199 throw new NullPointerException();
2200 return new KeySetView<K,V>(this, mappedValue);
2201 }
2202
2203 /* ---------------- Special Nodes -------------- */
2204
2205 /**
2206 * A node inserted at head of bins during transfer operations.
2207 */
2208 static final class ForwardingNode<K,V> extends Node<K,V> {
2209 final Node<K,V>[] nextTable;
2210 ForwardingNode(Node<K,V>[] tab) {
2211 super(MOVED, null, null);
2212 this.nextTable = tab;
2213 }
2214
2215 Node<K,V> find(int h, Object k) {
2216 // loop to avoid arbitrarily deep recursion on forwarding nodes
2217 outer: for (Node<K,V>[] tab = nextTable;;) {
2218 Node<K,V> e; int n;
2219 if (k == null || tab == null || (n = tab.length) == 0 ||
2220 (e = tabAt(tab, (n - 1) & h)) == null)
2221 return null;
2222 for (;;) {
2223 int eh; K ek;
2224 if ((eh = e.hash) == h &&
2225 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2226 return e;
2227 if (eh < 0) {
2228 if (e instanceof ForwardingNode) {
2229 tab = ((ForwardingNode<K,V>)e).nextTable;
2230 continue outer;
2231 }
2232 else
2233 return e.find(h, k);
2234 }
2235 if ((e = e.next) == null)
2236 return null;
2237 }
2238 }
2239 }
2240 }
2241
2242 /**
2243 * A place-holder node used in computeIfAbsent and compute.
2244 */
2245 static final class ReservationNode<K,V> extends Node<K,V> {
2246 ReservationNode() {
2247 super(RESERVED, null, null);
2248 }
2249
2250 Node<K,V> find(int h, Object k) {
2251 return null;
2252 }
2253 }
2254
2255 /* ---------------- Table Initialization and Resizing -------------- */
2256
2257 /**
2258 * Returns the stamp bits for resizing a table of size n.
2259 * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2260 */
2261 static final int resizeStamp(int n) {
2262 return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2263 }
2264
2265 /**
2266 * Initializes table, using the size recorded in sizeCtl.
2267 */
2268 private final Node<K,V>[] initTable() {
2269 Node<K,V>[] tab; int sc;
2270 while ((tab = table) == null || tab.length == 0) {
2271 if ((sc = sizeCtl) < 0)
2272 Thread.yield(); // lost initialization race; just spin
2273 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2274 try {
2275 if ((tab = table) == null || tab.length == 0) {
2276 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2277 @SuppressWarnings("unchecked")
2278 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2279 table = tab = nt;
2280 sc = n - (n >>> 2);
2281 }
2282 } finally {
2283 sizeCtl = sc;
2284 }
2285 break;
2286 }
2287 }
2288 return tab;
2289 }
2290
2291 /**
2292 * Adds to count, and if table is too small and not already
2293 * resizing, initiates transfer. If already resizing, helps
2294 * perform transfer if work is available. Rechecks occupancy
2295 * after a transfer to see if another resize is already needed
2296 * because resizings are lagging additions.
2297 *
2298 * @param x the count to add
2299 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2300 */
2301 private final void addCount(long x, int check) {
2302 CounterCell[] as; long b, s;
2303 if ((as = counterCells) != null ||
2304 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2305 CounterCell a; long v; int m;
2306 boolean uncontended = true;
2307 if (as == null || (m = as.length - 1) < 0 ||
2308 (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
2309 !(uncontended =
2310 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2311 fullAddCount(x, uncontended);
2312 return;
2313 }
2314 if (check <= 1)
2315 return;
2316 s = sumCount();
2317 }
2318 if (check >= 0) {
2319 Node<K,V>[] tab, nt; int n, sc;
2320 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2321 (n = tab.length) < MAXIMUM_CAPACITY) {
2322 int rs = resizeStamp(n);
2323 if (sc < 0) {
2324 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2325 sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2326 transferIndex <= 0)
2327 break;
2328 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2329 transfer(tab, nt);
2330 }
2331 else if (U.compareAndSwapInt(this, SIZECTL, sc,
2332 (rs << RESIZE_STAMP_SHIFT) + 2))
2333 transfer(tab, null);
2334 s = sumCount();
2335 }
2336 }
2337 }
2338
2339 /**
2340 * Helps transfer if a resize is in progress.
2341 */
2342 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2343 Node<K,V>[] nextTab; int sc;
2344 if (tab != null && (f instanceof ForwardingNode) &&
2345 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2346 int rs = resizeStamp(tab.length);
2347 while (nextTab == nextTable && table == tab &&
2348 (sc = sizeCtl) < 0) {
2349 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2350 sc == rs + MAX_RESIZERS || transferIndex <= 0)
2351 break;
2352 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2353 transfer(tab, nextTab);
2354 break;
2355 }
2356 }
2357 return nextTab;
2358 }
2359 return table;
2360 }
2361
2362 /**
2363 * Tries to presize table to accommodate the given number of elements.
2364 *
2365 * @param size number of elements (doesn't need to be perfectly accurate)
2366 */
2367 private final void tryPresize(int size) {
2368 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2369 tableSizeFor(size + (size >>> 1) + 1);
2370 int sc;
2371 while ((sc = sizeCtl) >= 0) {
2372 Node<K,V>[] tab = table; int n;
2373 if (tab == null || (n = tab.length) == 0) {
2374 n = (sc > c) ? sc : c;
2375 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2376 try {
2377 if (table == tab) {
2378 @SuppressWarnings("unchecked")
2379 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2380 table = nt;
2381 sc = n - (n >>> 2);
2382 }
2383 } finally {
2384 sizeCtl = sc;
2385 }
2386 }
2387 }
2388 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2389 break;
2390 else if (tab == table) {
2391 int rs = resizeStamp(n);
2392 if (U.compareAndSwapInt(this, SIZECTL, sc,
2393 (rs << RESIZE_STAMP_SHIFT) + 2))
2394 transfer(tab, null);
2395 }
2396 }
2397 }
2398
2399 /**
2400 * Moves and/or copies the nodes in each bin to new table. See
2401 * above for explanation.
2402 */
2403 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2404 int n = tab.length, stride;
2405 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2406 stride = MIN_TRANSFER_STRIDE; // subdivide range
2407 if (nextTab == null) { // initiating
2408 try {
2409 @SuppressWarnings("unchecked")
2410 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2411 nextTab = nt;
2412 } catch (Throwable ex) { // try to cope with OOME
2413 sizeCtl = Integer.MAX_VALUE;
2414 return;
2415 }
2416 nextTable = nextTab;
2417 transferIndex = n;
2418 }
2419 int nextn = nextTab.length;
2420 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2421 boolean advance = true;
2422 boolean finishing = false; // to ensure sweep before committing nextTab
2423 for (int i = 0, bound = 0;;) {
2424 Node<K,V> f; int fh;
2425 while (advance) {
2426 int nextIndex, nextBound;
2427 if (--i >= bound || finishing)
2428 advance = false;
2429 else if ((nextIndex = transferIndex) <= 0) {
2430 i = -1;
2431 advance = false;
2432 }
2433 else if (U.compareAndSwapInt
2434 (this, TRANSFERINDEX, nextIndex,
2435 nextBound = (nextIndex > stride ?
2436 nextIndex - stride : 0))) {
2437 bound = nextBound;
2438 i = nextIndex - 1;
2439 advance = false;
2440 }
2441 }
2442 if (i < 0 || i >= n || i + n >= nextn) {
2443 int sc;
2444 if (finishing) {
2445 nextTable = null;
2446 table = nextTab;
2447 sizeCtl = (n << 1) - (n >>> 1);
2448 return;
2449 }
2450 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2451 if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2452 return;
2453 finishing = advance = true;
2454 i = n; // recheck before commit
2455 }
2456 }
2457 else if ((f = tabAt(tab, i)) == null)
2458 advance = casTabAt(tab, i, null, fwd);
2459 else if ((fh = f.hash) == MOVED)
2460 advance = true; // already processed
2461 else {
2462 synchronized (f) {
2463 if (tabAt(tab, i) == f) {
2464 Node<K,V> ln, hn;
2465 if (fh >= 0) {
2466 int runBit = fh & n;
2467 Node<K,V> lastRun = f;
2468 for (Node<K,V> p = f.next; p != null; p = p.next) {
2469 int b = p.hash & n;
2470 if (b != runBit) {
2471 runBit = b;
2472 lastRun = p;
2473 }
2474 }
2475 if (runBit == 0) {
2476 ln = lastRun;
2477 hn = null;
2478 }
2479 else {
2480 hn = lastRun;
2481 ln = null;
2482 }
2483 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2484 int ph = p.hash; K pk = p.key; V pv = p.val;
2485 if ((ph & n) == 0)
2486 ln = new Node<K,V>(ph, pk, pv, ln);
2487 else
2488 hn = new Node<K,V>(ph, pk, pv, hn);
2489 }
2490 setTabAt(nextTab, i, ln);
2491 setTabAt(nextTab, i + n, hn);
2492 setTabAt(tab, i, fwd);
2493 advance = true;
2494 }
2495 else if (f instanceof TreeBin) {
2496 TreeBin<K,V> t = (TreeBin<K,V>)f;
2497 TreeNode<K,V> lo = null, loTail = null;
2498 TreeNode<K,V> hi = null, hiTail = null;
2499 int lc = 0, hc = 0;
2500 for (Node<K,V> e = t.first; e != null; e = e.next) {
2501 int h = e.hash;
2502 TreeNode<K,V> p = new TreeNode<K,V>
2503 (h, e.key, e.val, null, null);
2504 if ((h & n) == 0) {
2505 if ((p.prev = loTail) == null)
2506 lo = p;
2507 else
2508 loTail.next = p;
2509 loTail = p;
2510 ++lc;
2511 }
2512 else {
2513 if ((p.prev = hiTail) == null)
2514 hi = p;
2515 else
2516 hiTail.next = p;
2517 hiTail = p;
2518 ++hc;
2519 }
2520 }
2521 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2522 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2523 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2524 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2525 setTabAt(nextTab, i, ln);
2526 setTabAt(nextTab, i + n, hn);
2527 setTabAt(tab, i, fwd);
2528 advance = true;
2529 }
2530 }
2531 }
2532 }
2533 }
2534 }
2535
2536 /* ---------------- Counter support -------------- */
2537
2538 /**
2539 * A padded cell for distributing counts. Adapted from LongAdder
2540 * and Striped64. See their internal docs for explanation.
2541 */
2542 @jdk.internal.vm.annotation.Contended static final class CounterCell {
2543 volatile long value;
2544 CounterCell(long x) { value = x; }
2545 }
2546
2547 final long sumCount() {
2548 CounterCell[] as = counterCells; CounterCell a;
2549 long sum = baseCount;
2550 if (as != null) {
2551 for (int i = 0; i < as.length; ++i) {
2552 if ((a = as[i]) != null)
2553 sum += a.value;
2554 }
2555 }
2556 return sum;
2557 }
2558
2559 // See LongAdder version for explanation
2560 private final void fullAddCount(long x, boolean wasUncontended) {
2561 int h;
2562 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2563 ThreadLocalRandom.localInit(); // force initialization
2564 h = ThreadLocalRandom.getProbe();
2565 wasUncontended = true;
2566 }
2567 boolean collide = false; // True if last slot nonempty
2568 for (;;) {
2569 CounterCell[] as; CounterCell a; int n; long v;
2570 if ((as = counterCells) != null && (n = as.length) > 0) {
2571 if ((a = as[(n - 1) & h]) == null) {
2572 if (cellsBusy == 0) { // Try to attach new Cell
2573 CounterCell r = new CounterCell(x); // Optimistic create
2574 if (cellsBusy == 0 &&
2575 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2576 boolean created = false;
2577 try { // Recheck under lock
2578 CounterCell[] rs; int m, j;
2579 if ((rs = counterCells) != null &&
2580 (m = rs.length) > 0 &&
2581 rs[j = (m - 1) & h] == null) {
2582 rs[j] = r;
2583 created = true;
2584 }
2585 } finally {
2586 cellsBusy = 0;
2587 }
2588 if (created)
2589 break;
2590 continue; // Slot is now non-empty
2591 }
2592 }
2593 collide = false;
2594 }
2595 else if (!wasUncontended) // CAS already known to fail
2596 wasUncontended = true; // Continue after rehash
2597 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2598 break;
2599 else if (counterCells != as || n >= NCPU)
2600 collide = false; // At max size or stale
2601 else if (!collide)
2602 collide = true;
2603 else if (cellsBusy == 0 &&
2604 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2605 try {
2606 if (counterCells == as) {// Expand table unless stale
2607 CounterCell[] rs = new CounterCell[n << 1];
2608 for (int i = 0; i < n; ++i)
2609 rs[i] = as[i];
2610 counterCells = rs;
2611 }
2612 } finally {
2613 cellsBusy = 0;
2614 }
2615 collide = false;
2616 continue; // Retry with expanded table
2617 }
2618 h = ThreadLocalRandom.advanceProbe(h);
2619 }
2620 else if (cellsBusy == 0 && counterCells == as &&
2621 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
2622 boolean init = false;
2623 try { // Initialize table
2624 if (counterCells == as) {
2625 CounterCell[] rs = new CounterCell[2];
2626 rs[h & 1] = new CounterCell(x);
2627 counterCells = rs;
2628 init = true;
2629 }
2630 } finally {
2631 cellsBusy = 0;
2632 }
2633 if (init)
2634 break;
2635 }
2636 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2637 break; // Fall back on using base
2638 }
2639 }
2640
2641 /* ---------------- Conversion from/to TreeBins -------------- */
2642
2643 /**
2644 * Replaces all linked nodes in bin at given index unless table is
2645 * too small, in which case resizes instead.
2646 */
2647 private final void treeifyBin(Node<K,V>[] tab, int index) {
2648 Node<K,V> b; int n;
2649 if (tab != null) {
2650 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2651 tryPresize(n << 1);
2652 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2653 synchronized (b) {
2654 if (tabAt(tab, index) == b) {
2655 TreeNode<K,V> hd = null, tl = null;
2656 for (Node<K,V> e = b; e != null; e = e.next) {
2657 TreeNode<K,V> p =
2658 new TreeNode<K,V>(e.hash, e.key, e.val,
2659 null, null);
2660 if ((p.prev = tl) == null)
2661 hd = p;
2662 else
2663 tl.next = p;
2664 tl = p;
2665 }
2666 setTabAt(tab, index, new TreeBin<K,V>(hd));
2667 }
2668 }
2669 }
2670 }
2671 }
2672
2673 /**
2674 * Returns a list of non-TreeNodes replacing those in given list.
2675 */
2676 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2677 Node<K,V> hd = null, tl = null;
2678 for (Node<K,V> q = b; q != null; q = q.next) {
2679 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val);
2680 if (tl == null)
2681 hd = p;
2682 else
2683 tl.next = p;
2684 tl = p;
2685 }
2686 return hd;
2687 }
2688
2689 /* ---------------- TreeNodes -------------- */
2690
2691 /**
2692 * Nodes for use in TreeBins.
2693 */
2694 static final class TreeNode<K,V> extends Node<K,V> {
2695 TreeNode<K,V> parent; // red-black tree links
2696 TreeNode<K,V> left;
2697 TreeNode<K,V> right;
2698 TreeNode<K,V> prev; // needed to unlink next upon deletion
2699 boolean red;
2700
2701 TreeNode(int hash, K key, V val, Node<K,V> next,
2702 TreeNode<K,V> parent) {
2703 super(hash, key, val, next);
2704 this.parent = parent;
2705 }
2706
2707 Node<K,V> find(int h, Object k) {
2708 return findTreeNode(h, k, null);
2709 }
2710
2711 /**
2712 * Returns the TreeNode (or null if not found) for the given key
2713 * starting at given root.
2714 */
2715 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2716 if (k != null) {
2717 TreeNode<K,V> p = this;
2718 do {
2719 int ph, dir; K pk; TreeNode<K,V> q;
2720 TreeNode<K,V> pl = p.left, pr = p.right;
2721 if ((ph = p.hash) > h)
2722 p = pl;
2723 else if (ph < h)
2724 p = pr;
2725 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2726 return p;
2727 else if (pl == null)
2728 p = pr;
2729 else if (pr == null)
2730 p = pl;
2731 else if ((kc != null ||
2732 (kc = comparableClassFor(k)) != null) &&
2733 (dir = compareComparables(kc, k, pk)) != 0)
2734 p = (dir < 0) ? pl : pr;
2735 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2736 return q;
2737 else
2738 p = pl;
2739 } while (p != null);
2740 }
2741 return null;
2742 }
2743 }
2744
2745 /* ---------------- TreeBins -------------- */
2746
2747 /**
2748 * TreeNodes used at the heads of bins. TreeBins do not hold user
2749 * keys or values, but instead point to list of TreeNodes and
2750 * their root. They also maintain a parasitic read-write lock
2751 * forcing writers (who hold bin lock) to wait for readers (who do
2752 * not) to complete before tree restructuring operations.
2753 */
2754 static final class TreeBin<K,V> extends Node<K,V> {
2755 TreeNode<K,V> root;
2756 volatile TreeNode<K,V> first;
2757 volatile Thread waiter;
2758 volatile int lockState;
2759 // values for lockState
2760 static final int WRITER = 1; // set while holding write lock
2761 static final int WAITER = 2; // set when waiting for write lock
2762 static final int READER = 4; // increment value for setting read lock
2763
2764 /**
2765 * Tie-breaking utility for ordering insertions when equal
2766 * hashCodes and non-comparable. We don't require a total
2767 * order, just a consistent insertion rule to maintain
2768 * equivalence across rebalancings. Tie-breaking further than
2769 * necessary simplifies testing a bit.
2770 */
2771 static int tieBreakOrder(Object a, Object b) {
2772 int d;
2773 if (a == null || b == null ||
2774 (d = a.getClass().getName().
2775 compareTo(b.getClass().getName())) == 0)
2776 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2777 -1 : 1);
2778 return d;
2779 }
2780
2781 /**
2782 * Creates bin with initial set of nodes headed by b.
2783 */
2784 TreeBin(TreeNode<K,V> b) {
2785 super(TREEBIN, null, null);
2786 this.first = b;
2787 TreeNode<K,V> r = null;
2788 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2789 next = (TreeNode<K,V>)x.next;
2790 x.left = x.right = null;
2791 if (r == null) {
2792 x.parent = null;
2793 x.red = false;
2794 r = x;
2795 }
2796 else {
2797 K k = x.key;
2798 int h = x.hash;
2799 Class<?> kc = null;
2800 for (TreeNode<K,V> p = r;;) {
2801 int dir, ph;
2802 K pk = p.key;
2803 if ((ph = p.hash) > h)
2804 dir = -1;
2805 else if (ph < h)
2806 dir = 1;
2807 else if ((kc == null &&
2808 (kc = comparableClassFor(k)) == null) ||
2809 (dir = compareComparables(kc, k, pk)) == 0)
2810 dir = tieBreakOrder(k, pk);
2811 TreeNode<K,V> xp = p;
2812 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2813 x.parent = xp;
2814 if (dir <= 0)
2815 xp.left = x;
2816 else
2817 xp.right = x;
2818 r = balanceInsertion(r, x);
2819 break;
2820 }
2821 }
2822 }
2823 }
2824 this.root = r;
2825 assert checkInvariants(root);
2826 }
2827
2828 /**
2829 * Acquires write lock for tree restructuring.
2830 */
2831 private final void lockRoot() {
2832 if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2833 contendedLock(); // offload to separate method
2834 }
2835
2836 /**
2837 * Releases write lock for tree restructuring.
2838 */
2839 private final void unlockRoot() {
2840 lockState = 0;
2841 }
2842
2843 /**
2844 * Possibly blocks awaiting root lock.
2845 */
2846 private final void contendedLock() {
2847 boolean waiting = false;
2848 for (int s;;) {
2849 if (((s = lockState) & ~WAITER) == 0) {
2850 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2851 if (waiting)
2852 waiter = null;
2853 return;
2854 }
2855 }
2856 else if ((s & WAITER) == 0) {
2857 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2858 waiting = true;
2859 waiter = Thread.currentThread();
2860 }
2861 }
2862 else if (waiting)
2863 LockSupport.park(this);
2864 }
2865 }
2866
2867 /**
2868 * Returns matching node or null if none. Tries to search
2869 * using tree comparisons from root, but continues linear
2870 * search when lock not available.
2871 */
2872 final Node<K,V> find(int h, Object k) {
2873 if (k != null) {
2874 for (Node<K,V> e = first; e != null; ) {
2875 int s; K ek;
2876 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2877 if (e.hash == h &&
2878 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2879 return e;
2880 e = e.next;
2881 }
2882 else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2883 s + READER)) {
2884 TreeNode<K,V> r, p;
2885 try {
2886 p = ((r = root) == null ? null :
2887 r.findTreeNode(h, k, null));
2888 } finally {
2889 Thread w;
2890 if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2891 (READER|WAITER) && (w = waiter) != null)
2892 LockSupport.unpark(w);
2893 }
2894 return p;
2895 }
2896 }
2897 }
2898 return null;
2899 }
2900
2901 /**
2902 * Finds or adds a node.
2903 * @return null if added
2904 */
2905 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2906 Class<?> kc = null;
2907 boolean searched = false;
2908 for (TreeNode<K,V> p = root;;) {
2909 int dir, ph; K pk;
2910 if (p == null) {
2911 first = root = new TreeNode<K,V>(h, k, v, null, null);
2912 break;
2913 }
2914 else if ((ph = p.hash) > h)
2915 dir = -1;
2916 else if (ph < h)
2917 dir = 1;
2918 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2919 return p;
2920 else if ((kc == null &&
2921 (kc = comparableClassFor(k)) == null) ||
2922 (dir = compareComparables(kc, k, pk)) == 0) {
2923 if (!searched) {
2924 TreeNode<K,V> q, ch;
2925 searched = true;
2926 if (((ch = p.left) != null &&
2927 (q = ch.findTreeNode(h, k, kc)) != null) ||
2928 ((ch = p.right) != null &&
2929 (q = ch.findTreeNode(h, k, kc)) != null))
2930 return q;
2931 }
2932 dir = tieBreakOrder(k, pk);
2933 }
2934
2935 TreeNode<K,V> xp = p;
2936 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2937 TreeNode<K,V> x, f = first;
2938 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2939 if (f != null)
2940 f.prev = x;
2941 if (dir <= 0)
2942 xp.left = x;
2943 else
2944 xp.right = x;
2945 if (!xp.red)
2946 x.red = true;
2947 else {
2948 lockRoot();
2949 try {
2950 root = balanceInsertion(root, x);
2951 } finally {
2952 unlockRoot();
2953 }
2954 }
2955 break;
2956 }
2957 }
2958 assert checkInvariants(root);
2959 return null;
2960 }
2961
2962 /**
2963 * Removes the given node, that must be present before this
2964 * call. This is messier than typical red-black deletion code
2965 * because we cannot swap the contents of an interior node
2966 * with a leaf successor that is pinned by "next" pointers
2967 * that are accessible independently of lock. So instead we
2968 * swap the tree linkages.
2969 *
2970 * @return true if now too small, so should be untreeified
2971 */
2972 final boolean removeTreeNode(TreeNode<K,V> p) {
2973 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2974 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2975 TreeNode<K,V> r, rl;
2976 if (pred == null)
2977 first = next;
2978 else
2979 pred.next = next;
2980 if (next != null)
2981 next.prev = pred;
2982 if (first == null) {
2983 root = null;
2984 return true;
2985 }
2986 if ((r = root) == null || r.right == null || // too small
2987 (rl = r.left) == null || rl.left == null)
2988 return true;
2989 lockRoot();
2990 try {
2991 TreeNode<K,V> replacement;
2992 TreeNode<K,V> pl = p.left;
2993 TreeNode<K,V> pr = p.right;
2994 if (pl != null && pr != null) {
2995 TreeNode<K,V> s = pr, sl;
2996 while ((sl = s.left) != null) // find successor
2997 s = sl;
2998 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2999 TreeNode<K,V> sr = s.right;
3000 TreeNode<K,V> pp = p.parent;
3001 if (s == pr) { // p was s's direct parent
3002 p.parent = s;
3003 s.right = p;
3004 }
3005 else {
3006 TreeNode<K,V> sp = s.parent;
3007 if ((p.parent = sp) != null) {
3008 if (s == sp.left)
3009 sp.left = p;
3010 else
3011 sp.right = p;
3012 }
3013 if ((s.right = pr) != null)
3014 pr.parent = s;
3015 }
3016 p.left = null;
3017 if ((p.right = sr) != null)
3018 sr.parent = p;
3019 if ((s.left = pl) != null)
3020 pl.parent = s;
3021 if ((s.parent = pp) == null)
3022 r = s;
3023 else if (p == pp.left)
3024 pp.left = s;
3025 else
3026 pp.right = s;
3027 if (sr != null)
3028 replacement = sr;
3029 else
3030 replacement = p;
3031 }
3032 else if (pl != null)
3033 replacement = pl;
3034 else if (pr != null)
3035 replacement = pr;
3036 else
3037 replacement = p;
3038 if (replacement != p) {
3039 TreeNode<K,V> pp = replacement.parent = p.parent;
3040 if (pp == null)
3041 r = replacement;
3042 else if (p == pp.left)
3043 pp.left = replacement;
3044 else
3045 pp.right = replacement;
3046 p.left = p.right = p.parent = null;
3047 }
3048
3049 root = (p.red) ? r : balanceDeletion(r, replacement);
3050
3051 if (p == replacement) { // detach pointers
3052 TreeNode<K,V> pp;
3053 if ((pp = p.parent) != null) {
3054 if (p == pp.left)
3055 pp.left = null;
3056 else if (p == pp.right)
3057 pp.right = null;
3058 p.parent = null;
3059 }
3060 }
3061 } finally {
3062 unlockRoot();
3063 }
3064 assert checkInvariants(root);
3065 return false;
3066 }
3067
3068 /* ------------------------------------------------------------ */
3069 // Red-black tree methods, all adapted from CLR
3070
3071 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3072 TreeNode<K,V> p) {
3073 TreeNode<K,V> r, pp, rl;
3074 if (p != null && (r = p.right) != null) {
3075 if ((rl = p.right = r.left) != null)
3076 rl.parent = p;
3077 if ((pp = r.parent = p.parent) == null)
3078 (root = r).red = false;
3079 else if (pp.left == p)
3080 pp.left = r;
3081 else
3082 pp.right = r;
3083 r.left = p;
3084 p.parent = r;
3085 }
3086 return root;
3087 }
3088
3089 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3090 TreeNode<K,V> p) {
3091 TreeNode<K,V> l, pp, lr;
3092 if (p != null && (l = p.left) != null) {
3093 if ((lr = p.left = l.right) != null)
3094 lr.parent = p;
3095 if ((pp = l.parent = p.parent) == null)
3096 (root = l).red = false;
3097 else if (pp.right == p)
3098 pp.right = l;
3099 else
3100 pp.left = l;
3101 l.right = p;
3102 p.parent = l;
3103 }
3104 return root;
3105 }
3106
3107 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3108 TreeNode<K,V> x) {
3109 x.red = true;
3110 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3111 if ((xp = x.parent) == null) {
3112 x.red = false;
3113 return x;
3114 }
3115 else if (!xp.red || (xpp = xp.parent) == null)
3116 return root;
3117 if (xp == (xppl = xpp.left)) {
3118 if ((xppr = xpp.right) != null && xppr.red) {
3119 xppr.red = false;
3120 xp.red = false;
3121 xpp.red = true;
3122 x = xpp;
3123 }
3124 else {
3125 if (x == xp.right) {
3126 root = rotateLeft(root, x = xp);
3127 xpp = (xp = x.parent) == null ? null : xp.parent;
3128 }
3129 if (xp != null) {
3130 xp.red = false;
3131 if (xpp != null) {
3132 xpp.red = true;
3133 root = rotateRight(root, xpp);
3134 }
3135 }
3136 }
3137 }
3138 else {
3139 if (xppl != null && xppl.red) {
3140 xppl.red = false;
3141 xp.red = false;
3142 xpp.red = true;
3143 x = xpp;
3144 }
3145 else {
3146 if (x == xp.left) {
3147 root = rotateRight(root, x = xp);
3148 xpp = (xp = x.parent) == null ? null : xp.parent;
3149 }
3150 if (xp != null) {
3151 xp.red = false;
3152 if (xpp != null) {
3153 xpp.red = true;
3154 root = rotateLeft(root, xpp);
3155 }
3156 }
3157 }
3158 }
3159 }
3160 }
3161
3162 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3163 TreeNode<K,V> x) {
3164 for (TreeNode<K,V> xp, xpl, xpr;;) {
3165 if (x == null || x == root)
3166 return root;
3167 else if ((xp = x.parent) == null) {
3168 x.red = false;
3169 return x;
3170 }
3171 else if (x.red) {
3172 x.red = false;
3173 return root;
3174 }
3175 else if ((xpl = xp.left) == x) {
3176 if ((xpr = xp.right) != null && xpr.red) {
3177 xpr.red = false;
3178 xp.red = true;
3179 root = rotateLeft(root, xp);
3180 xpr = (xp = x.parent) == null ? null : xp.right;
3181 }
3182 if (xpr == null)
3183 x = xp;
3184 else {
3185 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3186 if ((sr == null || !sr.red) &&
3187 (sl == null || !sl.red)) {
3188 xpr.red = true;
3189 x = xp;
3190 }
3191 else {
3192 if (sr == null || !sr.red) {
3193 if (sl != null)
3194 sl.red = false;
3195 xpr.red = true;
3196 root = rotateRight(root, xpr);
3197 xpr = (xp = x.parent) == null ?
3198 null : xp.right;
3199 }
3200 if (xpr != null) {
3201 xpr.red = (xp == null) ? false : xp.red;
3202 if ((sr = xpr.right) != null)
3203 sr.red = false;
3204 }
3205 if (xp != null) {
3206 xp.red = false;
3207 root = rotateLeft(root, xp);
3208 }
3209 x = root;
3210 }
3211 }
3212 }
3213 else { // symmetric
3214 if (xpl != null && xpl.red) {
3215 xpl.red = false;
3216 xp.red = true;
3217 root = rotateRight(root, xp);
3218 xpl = (xp = x.parent) == null ? null : xp.left;
3219 }
3220 if (xpl == null)
3221 x = xp;
3222 else {
3223 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3224 if ((sl == null || !sl.red) &&
3225 (sr == null || !sr.red)) {
3226 xpl.red = true;
3227 x = xp;
3228 }
3229 else {
3230 if (sl == null || !sl.red) {
3231 if (sr != null)
3232 sr.red = false;
3233 xpl.red = true;
3234 root = rotateLeft(root, xpl);
3235 xpl = (xp = x.parent) == null ?
3236 null : xp.left;
3237 }
3238 if (xpl != null) {
3239 xpl.red = (xp == null) ? false : xp.red;
3240 if ((sl = xpl.left) != null)
3241 sl.red = false;
3242 }
3243 if (xp != null) {
3244 xp.red = false;
3245 root = rotateRight(root, xp);
3246 }
3247 x = root;
3248 }
3249 }
3250 }
3251 }
3252 }
3253
3254 /**
3255 * Checks invariants recursively for the tree of Nodes rooted at t.
3256 */
3257 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3258 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3259 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3260 if (tb != null && tb.next != t)
3261 return false;
3262 if (tn != null && tn.prev != t)
3263 return false;
3264 if (tp != null && t != tp.left && t != tp.right)
3265 return false;
3266 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3267 return false;
3268 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3269 return false;
3270 if (t.red && tl != null && tl.red && tr != null && tr.red)
3271 return false;
3272 if (tl != null && !checkInvariants(tl))
3273 return false;
3274 if (tr != null && !checkInvariants(tr))
3275 return false;
3276 return true;
3277 }
3278
3279 private static final Unsafe U = Unsafe.getUnsafe();
3280 private static final long LOCKSTATE;
3281 static {
3282 try {
3283 LOCKSTATE = U.objectFieldOffset
3284 (TreeBin.class.getDeclaredField("lockState"));
3285 } catch (ReflectiveOperationException e) {
3286 throw new Error(e);
3287 }
3288 }
3289 }
3290
3291 /* ----------------Table Traversal -------------- */
3292
3293 /**
3294 * Records the table, its length, and current traversal index for a
3295 * traverser that must process a region of a forwarded table before
3296 * proceeding with current table.
3297 */
3298 static final class TableStack<K,V> {
3299 int length;
3300 int index;
3301 Node<K,V>[] tab;
3302 TableStack<K,V> next;
3303 }
3304
3305 /**
3306 * Encapsulates traversal for methods such as containsValue; also
3307 * serves as a base class for other iterators and spliterators.
3308 *
3309 * Method advance visits once each still-valid node that was
3310 * reachable upon iterator construction. It might miss some that
3311 * were added to a bin after the bin was visited, which is OK wrt
3312 * consistency guarantees. Maintaining this property in the face
3313 * of possible ongoing resizes requires a fair amount of
3314 * bookkeeping state that is difficult to optimize away amidst
3315 * volatile accesses. Even so, traversal maintains reasonable
3316 * throughput.
3317 *
3318 * Normally, iteration proceeds bin-by-bin traversing lists.
3319 * However, if the table has been resized, then all future steps
3320 * must traverse both the bin at the current index as well as at
3321 * (index + baseSize); and so on for further resizings. To
3322 * paranoically cope with potential sharing by users of iterators
3323 * across threads, iteration terminates if a bounds checks fails
3324 * for a table read.
3325 */
3326 static class Traverser<K,V> {
3327 Node<K,V>[] tab; // current table; updated if resized
3328 Node<K,V> next; // the next entry to use
3329 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3330 int index; // index of bin to use next
3331 int baseIndex; // current index of initial table
3332 int baseLimit; // index bound for initial table
3333 final int baseSize; // initial table size
3334
3335 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3336 this.tab = tab;
3337 this.baseSize = size;
3338 this.baseIndex = this.index = index;
3339 this.baseLimit = limit;
3340 this.next = null;
3341 }
3342
3343 /**
3344 * Advances if possible, returning next valid node, or null if none.
3345 */
3346 final Node<K,V> advance() {
3347 Node<K,V> e;
3348 if ((e = next) != null)
3349 e = e.next;
3350 for (;;) {
3351 Node<K,V>[] t; int i, n; // must use locals in checks
3352 if (e != null)
3353 return next = e;
3354 if (baseIndex >= baseLimit || (t = tab) == null ||
3355 (n = t.length) <= (i = index) || i < 0)
3356 return next = null;
3357 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3358 if (e instanceof ForwardingNode) {
3359 tab = ((ForwardingNode<K,V>)e).nextTable;
3360 e = null;
3361 pushState(t, i, n);
3362 continue;
3363 }
3364 else if (e instanceof TreeBin)
3365 e = ((TreeBin<K,V>)e).first;
3366 else
3367 e = null;
3368 }
3369 if (stack != null)
3370 recoverState(n);
3371 else if ((index = i + baseSize) >= n)
3372 index = ++baseIndex; // visit upper slots if present
3373 }
3374 }
3375
3376 /**
3377 * Saves traversal state upon encountering a forwarding node.
3378 */
3379 private void pushState(Node<K,V>[] t, int i, int n) {
3380 TableStack<K,V> s = spare; // reuse if possible
3381 if (s != null)
3382 spare = s.next;
3383 else
3384 s = new TableStack<K,V>();
3385 s.tab = t;
3386 s.length = n;
3387 s.index = i;
3388 s.next = stack;
3389 stack = s;
3390 }
3391
3392 /**
3393 * Possibly pops traversal state.
3394 *
3395 * @param n length of current table
3396 */
3397 private void recoverState(int n) {
3398 TableStack<K,V> s; int len;
3399 while ((s = stack) != null && (index += (len = s.length)) >= n) {
3400 n = len;
3401 index = s.index;
3402 tab = s.tab;
3403 s.tab = null;
3404 TableStack<K,V> next = s.next;
3405 s.next = spare; // save for reuse
3406 stack = next;
3407 spare = s;
3408 }
3409 if (s == null && (index += baseSize) >= n)
3410 index = ++baseIndex;
3411 }
3412 }
3413
3414 /**
3415 * Base of key, value, and entry Iterators. Adds fields to
3416 * Traverser to support iterator.remove.
3417 */
3418 static class BaseIterator<K,V> extends Traverser<K,V> {
3419 final ConcurrentHashMap<K,V> map;
3420 Node<K,V> lastReturned;
3421 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3422 ConcurrentHashMap<K,V> map) {
3423 super(tab, size, index, limit);
3424 this.map = map;
3425 advance();
3426 }
3427
3428 public final boolean hasNext() { return next != null; }
3429 public final boolean hasMoreElements() { return next != null; }
3430
3431 public final void remove() {
3432 Node<K,V> p;
3433 if ((p = lastReturned) == null)
3434 throw new IllegalStateException();
3435 lastReturned = null;
3436 map.replaceNode(p.key, null, null);
3437 }
3438 }
3439
3440 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3441 implements Iterator<K>, Enumeration<K> {
3442 KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3443 ConcurrentHashMap<K,V> map) {
3444 super(tab, index, size, limit, map);
3445 }
3446
3447 public final K next() {
3448 Node<K,V> p;
3449 if ((p = next) == null)
3450 throw new NoSuchElementException();
3451 K k = p.key;
3452 lastReturned = p;
3453 advance();
3454 return k;
3455 }
3456
3457 public final K nextElement() { return next(); }
3458 }
3459
3460 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3461 implements Iterator<V>, Enumeration<V> {
3462 ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3463 ConcurrentHashMap<K,V> map) {
3464 super(tab, index, size, limit, map);
3465 }
3466
3467 public final V next() {
3468 Node<K,V> p;
3469 if ((p = next) == null)
3470 throw new NoSuchElementException();
3471 V v = p.val;
3472 lastReturned = p;
3473 advance();
3474 return v;
3475 }
3476
3477 public final V nextElement() { return next(); }
3478 }
3479
3480 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3481 implements Iterator<Map.Entry<K,V>> {
3482 EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3483 ConcurrentHashMap<K,V> map) {
3484 super(tab, index, size, limit, map);
3485 }
3486
3487 public final Map.Entry<K,V> next() {
3488 Node<K,V> p;
3489 if ((p = next) == null)
3490 throw new NoSuchElementException();
3491 K k = p.key;
3492 V v = p.val;
3493 lastReturned = p;
3494 advance();
3495 return new MapEntry<K,V>(k, v, map);
3496 }
3497 }
3498
3499 /**
3500 * Exported Entry for EntryIterator.
3501 */
3502 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3503 final K key; // non-null
3504 V val; // non-null
3505 final ConcurrentHashMap<K,V> map;
3506 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3507 this.key = key;
3508 this.val = val;
3509 this.map = map;
3510 }
3511 public K getKey() { return key; }
3512 public V getValue() { return val; }
3513 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3514 public String toString() {
3515 return Helpers.mapEntryToString(key, val);
3516 }
3517
3518 public boolean equals(Object o) {
3519 Object k, v; Map.Entry<?,?> e;
3520 return ((o instanceof Map.Entry) &&
3521 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3522 (v = e.getValue()) != null &&
3523 (k == key || k.equals(key)) &&
3524 (v == val || v.equals(val)));
3525 }
3526
3527 /**
3528 * Sets our entry's value and writes through to the map. The
3529 * value to return is somewhat arbitrary here. Since we do not
3530 * necessarily track asynchronous changes, the most recent
3531 * "previous" value could be different from what we return (or
3532 * could even have been removed, in which case the put will
3533 * re-establish). We do not and cannot guarantee more.
3534 */
3535 public V setValue(V value) {
3536 if (value == null) throw new NullPointerException();
3537 V v = val;
3538 val = value;
3539 map.put(key, value);
3540 return v;
3541 }
3542 }
3543
3544 static final class KeySpliterator<K,V> extends Traverser<K,V>
3545 implements Spliterator<K> {
3546 long est; // size estimate
3547 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3548 long est) {
3549 super(tab, size, index, limit);
3550 this.est = est;
3551 }
3552
3553 public KeySpliterator<K,V> trySplit() {
3554 int i, f, h;
3555 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3556 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3557 f, est >>>= 1);
3558 }
3559
3560 public void forEachRemaining(Consumer<? super K> action) {
3561 if (action == null) throw new NullPointerException();
3562 for (Node<K,V> p; (p = advance()) != null;)
3563 action.accept(p.key);
3564 }
3565
3566 public boolean tryAdvance(Consumer<? super K> action) {
3567 if (action == null) throw new NullPointerException();
3568 Node<K,V> p;
3569 if ((p = advance()) == null)
3570 return false;
3571 action.accept(p.key);
3572 return true;
3573 }
3574
3575 public long estimateSize() { return est; }
3576
3577 public int characteristics() {
3578 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3579 Spliterator.NONNULL;
3580 }
3581 }
3582
3583 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3584 implements Spliterator<V> {
3585 long est; // size estimate
3586 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3587 long est) {
3588 super(tab, size, index, limit);
3589 this.est = est;
3590 }
3591
3592 public ValueSpliterator<K,V> trySplit() {
3593 int i, f, h;
3594 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3595 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3596 f, est >>>= 1);
3597 }
3598
3599 public void forEachRemaining(Consumer<? super V> action) {
3600 if (action == null) throw new NullPointerException();
3601 for (Node<K,V> p; (p = advance()) != null;)
3602 action.accept(p.val);
3603 }
3604
3605 public boolean tryAdvance(Consumer<? super V> action) {
3606 if (action == null) throw new NullPointerException();
3607 Node<K,V> p;
3608 if ((p = advance()) == null)
3609 return false;
3610 action.accept(p.val);
3611 return true;
3612 }
3613
3614 public long estimateSize() { return est; }
3615
3616 public int characteristics() {
3617 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3618 }
3619 }
3620
3621 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3622 implements Spliterator<Map.Entry<K,V>> {
3623 final ConcurrentHashMap<K,V> map; // To export MapEntry
3624 long est; // size estimate
3625 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3626 long est, ConcurrentHashMap<K,V> map) {
3627 super(tab, size, index, limit);
3628 this.map = map;
3629 this.est = est;
3630 }
3631
3632 public EntrySpliterator<K,V> trySplit() {
3633 int i, f, h;
3634 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3635 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3636 f, est >>>= 1, map);
3637 }
3638
3639 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3640 if (action == null) throw new NullPointerException();
3641 for (Node<K,V> p; (p = advance()) != null; )
3642 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3643 }
3644
3645 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3646 if (action == null) throw new NullPointerException();
3647 Node<K,V> p;
3648 if ((p = advance()) == null)
3649 return false;
3650 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3651 return true;
3652 }
3653
3654 public long estimateSize() { return est; }
3655
3656 public int characteristics() {
3657 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3658 Spliterator.NONNULL;
3659 }
3660 }
3661
3662 // Parallel bulk operations
3663
3664 /**
3665 * Computes initial batch value for bulk tasks. The returned value
3666 * is approximately exp2 of the number of times (minus one) to
3667 * split task by two before executing leaf action. This value is
3668 * faster to compute and more convenient to use as a guide to
3669 * splitting than is the depth, since it is used while dividing by
3670 * two anyway.
3671 */
3672 final int batchFor(long b) {
3673 long n;
3674 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3675 return 0;
3676 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3677 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3678 }
3679
3680 /**
3681 * Performs the given action for each (key, value).
3682 *
3683 * @param parallelismThreshold the (estimated) number of elements
3684 * needed for this operation to be executed in parallel
3685 * @param action the action
3686 * @since 1.8
3687 */
3688 public void forEach(long parallelismThreshold,
3689 BiConsumer<? super K,? super V> action) {
3690 if (action == null) throw new NullPointerException();
3691 new ForEachMappingTask<K,V>
3692 (null, batchFor(parallelismThreshold), 0, 0, table,
3693 action).invoke();
3694 }
3695
3696 /**
3697 * Performs the given action for each non-null transformation
3698 * of each (key, value).
3699 *
3700 * @param parallelismThreshold the (estimated) number of elements
3701 * needed for this operation to be executed in parallel
3702 * @param transformer a function returning the transformation
3703 * for an element, or null if there is no transformation (in
3704 * which case the action is not applied)
3705 * @param action the action
3706 * @param <U> the return type of the transformer
3707 * @since 1.8
3708 */
3709 public <U> void forEach(long parallelismThreshold,
3710 BiFunction<? super K, ? super V, ? extends U> transformer,
3711 Consumer<? super U> action) {
3712 if (transformer == null || action == null)
3713 throw new NullPointerException();
3714 new ForEachTransformedMappingTask<K,V,U>
3715 (null, batchFor(parallelismThreshold), 0, 0, table,
3716 transformer, action).invoke();
3717 }
3718
3719 /**
3720 * Returns a non-null result from applying the given search
3721 * function on each (key, value), or null if none. Upon
3722 * success, further element processing is suppressed and the
3723 * results of any other parallel invocations of the search
3724 * function are ignored.
3725 *
3726 * @param parallelismThreshold the (estimated) number of elements
3727 * needed for this operation to be executed in parallel
3728 * @param searchFunction a function returning a non-null
3729 * result on success, else null
3730 * @param <U> the return type of the search function
3731 * @return a non-null result from applying the given search
3732 * function on each (key, value), or null if none
3733 * @since 1.8
3734 */
3735 public <U> U search(long parallelismThreshold,
3736 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3737 if (searchFunction == null) throw new NullPointerException();
3738 return new SearchMappingsTask<K,V,U>
3739 (null, batchFor(parallelismThreshold), 0, 0, table,
3740 searchFunction, new AtomicReference<U>()).invoke();
3741 }
3742
3743 /**
3744 * Returns the result of accumulating the given transformation
3745 * of all (key, value) pairs using the given reducer to
3746 * combine values, or null if none.
3747 *
3748 * @param parallelismThreshold the (estimated) number of elements
3749 * needed for this operation to be executed in parallel
3750 * @param transformer a function returning the transformation
3751 * for an element, or null if there is no transformation (in
3752 * which case it is not combined)
3753 * @param reducer a commutative associative combining function
3754 * @param <U> the return type of the transformer
3755 * @return the result of accumulating the given transformation
3756 * of all (key, value) pairs
3757 * @since 1.8
3758 */
3759 public <U> U reduce(long parallelismThreshold,
3760 BiFunction<? super K, ? super V, ? extends U> transformer,
3761 BiFunction<? super U, ? super U, ? extends U> reducer) {
3762 if (transformer == null || reducer == null)
3763 throw new NullPointerException();
3764 return new MapReduceMappingsTask<K,V,U>
3765 (null, batchFor(parallelismThreshold), 0, 0, table,
3766 null, transformer, reducer).invoke();
3767 }
3768
3769 /**
3770 * Returns the result of accumulating the given transformation
3771 * of all (key, value) pairs using the given reducer to
3772 * combine values, and the given basis as an identity value.
3773 *
3774 * @param parallelismThreshold the (estimated) number of elements
3775 * needed for this operation to be executed in parallel
3776 * @param transformer a function returning the transformation
3777 * for an element
3778 * @param basis the identity (initial default value) for the reduction
3779 * @param reducer a commutative associative combining function
3780 * @return the result of accumulating the given transformation
3781 * of all (key, value) pairs
3782 * @since 1.8
3783 */
3784 public double reduceToDouble(long parallelismThreshold,
3785 ToDoubleBiFunction<? super K, ? super V> transformer,
3786 double basis,
3787 DoubleBinaryOperator reducer) {
3788 if (transformer == null || reducer == null)
3789 throw new NullPointerException();
3790 return new MapReduceMappingsToDoubleTask<K,V>
3791 (null, batchFor(parallelismThreshold), 0, 0, table,
3792 null, transformer, basis, reducer).invoke();
3793 }
3794
3795 /**
3796 * Returns the result of accumulating the given transformation
3797 * of all (key, value) pairs using the given reducer to
3798 * combine values, and the given basis as an identity value.
3799 *
3800 * @param parallelismThreshold the (estimated) number of elements
3801 * needed for this operation to be executed in parallel
3802 * @param transformer a function returning the transformation
3803 * for an element
3804 * @param basis the identity (initial default value) for the reduction
3805 * @param reducer a commutative associative combining function
3806 * @return the result of accumulating the given transformation
3807 * of all (key, value) pairs
3808 * @since 1.8
3809 */
3810 public long reduceToLong(long parallelismThreshold,
3811 ToLongBiFunction<? super K, ? super V> transformer,
3812 long basis,
3813 LongBinaryOperator reducer) {
3814 if (transformer == null || reducer == null)
3815 throw new NullPointerException();
3816 return new MapReduceMappingsToLongTask<K,V>
3817 (null, batchFor(parallelismThreshold), 0, 0, table,
3818 null, transformer, basis, reducer).invoke();
3819 }
3820
3821 /**
3822 * Returns the result of accumulating the given transformation
3823 * of all (key, value) pairs using the given reducer to
3824 * combine values, and the given basis as an identity value.
3825 *
3826 * @param parallelismThreshold the (estimated) number of elements
3827 * needed for this operation to be executed in parallel
3828 * @param transformer a function returning the transformation
3829 * for an element
3830 * @param basis the identity (initial default value) for the reduction
3831 * @param reducer a commutative associative combining function
3832 * @return the result of accumulating the given transformation
3833 * of all (key, value) pairs
3834 * @since 1.8
3835 */
3836 public int reduceToInt(long parallelismThreshold,
3837 ToIntBiFunction<? super K, ? super V> transformer,
3838 int basis,
3839 IntBinaryOperator reducer) {
3840 if (transformer == null || reducer == null)
3841 throw new NullPointerException();
3842 return new MapReduceMappingsToIntTask<K,V>
3843 (null, batchFor(parallelismThreshold), 0, 0, table,
3844 null, transformer, basis, reducer).invoke();
3845 }
3846
3847 /**
3848 * Performs the given action for each key.
3849 *
3850 * @param parallelismThreshold the (estimated) number of elements
3851 * needed for this operation to be executed in parallel
3852 * @param action the action
3853 * @since 1.8
3854 */
3855 public void forEachKey(long parallelismThreshold,
3856 Consumer<? super K> action) {
3857 if (action == null) throw new NullPointerException();
3858 new ForEachKeyTask<K,V>
3859 (null, batchFor(parallelismThreshold), 0, 0, table,
3860 action).invoke();
3861 }
3862
3863 /**
3864 * Performs the given action for each non-null transformation
3865 * of each key.
3866 *
3867 * @param parallelismThreshold the (estimated) number of elements
3868 * needed for this operation to be executed in parallel
3869 * @param transformer a function returning the transformation
3870 * for an element, or null if there is no transformation (in
3871 * which case the action is not applied)
3872 * @param action the action
3873 * @param <U> the return type of the transformer
3874 * @since 1.8
3875 */
3876 public <U> void forEachKey(long parallelismThreshold,
3877 Function<? super K, ? extends U> transformer,
3878 Consumer<? super U> action) {
3879 if (transformer == null || action == null)
3880 throw new NullPointerException();
3881 new ForEachTransformedKeyTask<K,V,U>
3882 (null, batchFor(parallelismThreshold), 0, 0, table,
3883 transformer, action).invoke();
3884 }
3885
3886 /**
3887 * Returns a non-null result from applying the given search
3888 * function on each key, or null if none. Upon success,
3889 * further element processing is suppressed and the results of
3890 * any other parallel invocations of the search function are
3891 * ignored.
3892 *
3893 * @param parallelismThreshold the (estimated) number of elements
3894 * needed for this operation to be executed in parallel
3895 * @param searchFunction a function returning a non-null
3896 * result on success, else null
3897 * @param <U> the return type of the search function
3898 * @return a non-null result from applying the given search
3899 * function on each key, or null if none
3900 * @since 1.8
3901 */
3902 public <U> U searchKeys(long parallelismThreshold,
3903 Function<? super K, ? extends U> searchFunction) {
3904 if (searchFunction == null) throw new NullPointerException();
3905 return new SearchKeysTask<K,V,U>
3906 (null, batchFor(parallelismThreshold), 0, 0, table,
3907 searchFunction, new AtomicReference<U>()).invoke();
3908 }
3909
3910 /**
3911 * Returns the result of accumulating all keys using the given
3912 * reducer to combine values, or null if none.
3913 *
3914 * @param parallelismThreshold the (estimated) number of elements
3915 * needed for this operation to be executed in parallel
3916 * @param reducer a commutative associative combining function
3917 * @return the result of accumulating all keys using the given
3918 * reducer to combine values, or null if none
3919 * @since 1.8
3920 */
3921 public K reduceKeys(long parallelismThreshold,
3922 BiFunction<? super K, ? super K, ? extends K> reducer) {
3923 if (reducer == null) throw new NullPointerException();
3924 return new ReduceKeysTask<K,V>
3925 (null, batchFor(parallelismThreshold), 0, 0, table,
3926 null, reducer).invoke();
3927 }
3928
3929 /**
3930 * Returns the result of accumulating the given transformation
3931 * of all keys using the given reducer to combine values, or
3932 * null if none.
3933 *
3934 * @param parallelismThreshold the (estimated) number of elements
3935 * needed for this operation to be executed in parallel
3936 * @param transformer a function returning the transformation
3937 * for an element, or null if there is no transformation (in
3938 * which case it is not combined)
3939 * @param reducer a commutative associative combining function
3940 * @param <U> the return type of the transformer
3941 * @return the result of accumulating the given transformation
3942 * of all keys
3943 * @since 1.8
3944 */
3945 public <U> U reduceKeys(long parallelismThreshold,
3946 Function<? super K, ? extends U> transformer,
3947 BiFunction<? super U, ? super U, ? extends U> reducer) {
3948 if (transformer == null || reducer == null)
3949 throw new NullPointerException();
3950 return new MapReduceKeysTask<K,V,U>
3951 (null, batchFor(parallelismThreshold), 0, 0, table,
3952 null, transformer, reducer).invoke();
3953 }
3954
3955 /**
3956 * Returns the result of accumulating the given transformation
3957 * of all keys using the given reducer to combine values, and
3958 * the given basis as an identity value.
3959 *
3960 * @param parallelismThreshold the (estimated) number of elements
3961 * needed for this operation to be executed in parallel
3962 * @param transformer a function returning the transformation
3963 * for an element
3964 * @param basis the identity (initial default value) for the reduction
3965 * @param reducer a commutative associative combining function
3966 * @return the result of accumulating the given transformation
3967 * of all keys
3968 * @since 1.8
3969 */
3970 public double reduceKeysToDouble(long parallelismThreshold,
3971 ToDoubleFunction<? super K> transformer,
3972 double basis,
3973 DoubleBinaryOperator reducer) {
3974 if (transformer == null || reducer == null)
3975 throw new NullPointerException();
3976 return new MapReduceKeysToDoubleTask<K,V>
3977 (null, batchFor(parallelismThreshold), 0, 0, table,
3978 null, transformer, basis, reducer).invoke();
3979 }
3980
3981 /**
3982 * Returns the result of accumulating the given transformation
3983 * of all keys using the given reducer to combine values, and
3984 * the given basis as an identity value.
3985 *
3986 * @param parallelismThreshold the (estimated) number of elements
3987 * needed for this operation to be executed in parallel
3988 * @param transformer a function returning the transformation
3989 * for an element
3990 * @param basis the identity (initial default value) for the reduction
3991 * @param reducer a commutative associative combining function
3992 * @return the result of accumulating the given transformation
3993 * of all keys
3994 * @since 1.8
3995 */
3996 public long reduceKeysToLong(long parallelismThreshold,
3997 ToLongFunction<? super K> transformer,
3998 long basis,
3999 LongBinaryOperator reducer) {
4000 if (transformer == null || reducer == null)
4001 throw new NullPointerException();
4002 return new MapReduceKeysToLongTask<K,V>
4003 (null, batchFor(parallelismThreshold), 0, 0, table,
4004 null, transformer, basis, reducer).invoke();
4005 }
4006
4007 /**
4008 * Returns the result of accumulating the given transformation
4009 * of all keys using the given reducer to combine values, and
4010 * the given basis as an identity value.
4011 *
4012 * @param parallelismThreshold the (estimated) number of elements
4013 * needed for this operation to be executed in parallel
4014 * @param transformer a function returning the transformation
4015 * for an element
4016 * @param basis the identity (initial default value) for the reduction
4017 * @param reducer a commutative associative combining function
4018 * @return the result of accumulating the given transformation
4019 * of all keys
4020 * @since 1.8
4021 */
4022 public int reduceKeysToInt(long parallelismThreshold,
4023 ToIntFunction<? super K> transformer,
4024 int basis,
4025 IntBinaryOperator reducer) {
4026 if (transformer == null || reducer == null)
4027 throw new NullPointerException();
4028 return new MapReduceKeysToIntTask<K,V>
4029 (null, batchFor(parallelismThreshold), 0, 0, table,
4030 null, transformer, basis, reducer).invoke();
4031 }
4032
4033 /**
4034 * Performs the given action for each value.
4035 *
4036 * @param parallelismThreshold the (estimated) number of elements
4037 * needed for this operation to be executed in parallel
4038 * @param action the action
4039 * @since 1.8
4040 */
4041 public void forEachValue(long parallelismThreshold,
4042 Consumer<? super V> action) {
4043 if (action == null)
4044 throw new NullPointerException();
4045 new ForEachValueTask<K,V>
4046 (null, batchFor(parallelismThreshold), 0, 0, table,
4047 action).invoke();
4048 }
4049
4050 /**
4051 * Performs the given action for each non-null transformation
4052 * of each value.
4053 *
4054 * @param parallelismThreshold the (estimated) number of elements
4055 * needed for this operation to be executed in parallel
4056 * @param transformer a function returning the transformation
4057 * for an element, or null if there is no transformation (in
4058 * which case the action is not applied)
4059 * @param action the action
4060 * @param <U> the return type of the transformer
4061 * @since 1.8
4062 */
4063 public <U> void forEachValue(long parallelismThreshold,
4064 Function<? super V, ? extends U> transformer,
4065 Consumer<? super U> action) {
4066 if (transformer == null || action == null)
4067 throw new NullPointerException();
4068 new ForEachTransformedValueTask<K,V,U>
4069 (null, batchFor(parallelismThreshold), 0, 0, table,
4070 transformer, action).invoke();
4071 }
4072
4073 /**
4074 * Returns a non-null result from applying the given search
4075 * function on each value, or null if none. Upon success,
4076 * further element processing is suppressed and the results of
4077 * any other parallel invocations of the search function are
4078 * ignored.
4079 *
4080 * @param parallelismThreshold the (estimated) number of elements
4081 * needed for this operation to be executed in parallel
4082 * @param searchFunction a function returning a non-null
4083 * result on success, else null
4084 * @param <U> the return type of the search function
4085 * @return a non-null result from applying the given search
4086 * function on each value, or null if none
4087 * @since 1.8
4088 */
4089 public <U> U searchValues(long parallelismThreshold,
4090 Function<? super V, ? extends U> searchFunction) {
4091 if (searchFunction == null) throw new NullPointerException();
4092 return new SearchValuesTask<K,V,U>
4093 (null, batchFor(parallelismThreshold), 0, 0, table,
4094 searchFunction, new AtomicReference<U>()).invoke();
4095 }
4096
4097 /**
4098 * Returns the result of accumulating all values using the
4099 * given reducer to combine values, or null if none.
4100 *
4101 * @param parallelismThreshold the (estimated) number of elements
4102 * needed for this operation to be executed in parallel
4103 * @param reducer a commutative associative combining function
4104 * @return the result of accumulating all values
4105 * @since 1.8
4106 */
4107 public V reduceValues(long parallelismThreshold,
4108 BiFunction<? super V, ? super V, ? extends V> reducer) {
4109 if (reducer == null) throw new NullPointerException();
4110 return new ReduceValuesTask<K,V>
4111 (null, batchFor(parallelismThreshold), 0, 0, table,
4112 null, reducer).invoke();
4113 }
4114
4115 /**
4116 * Returns the result of accumulating the given transformation
4117 * of all values using the given reducer to combine values, or
4118 * null if none.
4119 *
4120 * @param parallelismThreshold the (estimated) number of elements
4121 * needed for this operation to be executed in parallel
4122 * @param transformer a function returning the transformation
4123 * for an element, or null if there is no transformation (in
4124 * which case it is not combined)
4125 * @param reducer a commutative associative combining function
4126 * @param <U> the return type of the transformer
4127 * @return the result of accumulating the given transformation
4128 * of all values
4129 * @since 1.8
4130 */
4131 public <U> U reduceValues(long parallelismThreshold,
4132 Function<? super V, ? extends U> transformer,
4133 BiFunction<? super U, ? super U, ? extends U> reducer) {
4134 if (transformer == null || reducer == null)
4135 throw new NullPointerException();
4136 return new MapReduceValuesTask<K,V,U>
4137 (null, batchFor(parallelismThreshold), 0, 0, table,
4138 null, transformer, reducer).invoke();
4139 }
4140
4141 /**
4142 * Returns the result of accumulating the given transformation
4143 * of all values using the given reducer to combine values,
4144 * and the given basis as an identity value.
4145 *
4146 * @param parallelismThreshold the (estimated) number of elements
4147 * needed for this operation to be executed in parallel
4148 * @param transformer a function returning the transformation
4149 * for an element
4150 * @param basis the identity (initial default value) for the reduction
4151 * @param reducer a commutative associative combining function
4152 * @return the result of accumulating the given transformation
4153 * of all values
4154 * @since 1.8
4155 */
4156 public double reduceValuesToDouble(long parallelismThreshold,
4157 ToDoubleFunction<? super V> transformer,
4158 double basis,
4159 DoubleBinaryOperator reducer) {
4160 if (transformer == null || reducer == null)
4161 throw new NullPointerException();
4162 return new MapReduceValuesToDoubleTask<K,V>
4163 (null, batchFor(parallelismThreshold), 0, 0, table,
4164 null, transformer, basis, reducer).invoke();
4165 }
4166
4167 /**
4168 * Returns the result of accumulating the given transformation
4169 * of all values using the given reducer to combine values,
4170 * and the given basis as an identity value.
4171 *
4172 * @param parallelismThreshold the (estimated) number of elements
4173 * needed for this operation to be executed in parallel
4174 * @param transformer a function returning the transformation
4175 * for an element
4176 * @param basis the identity (initial default value) for the reduction
4177 * @param reducer a commutative associative combining function
4178 * @return the result of accumulating the given transformation
4179 * of all values
4180 * @since 1.8
4181 */
4182 public long reduceValuesToLong(long parallelismThreshold,
4183 ToLongFunction<? super V> transformer,
4184 long basis,
4185 LongBinaryOperator reducer) {
4186 if (transformer == null || reducer == null)
4187 throw new NullPointerException();
4188 return new MapReduceValuesToLongTask<K,V>
4189 (null, batchFor(parallelismThreshold), 0, 0, table,
4190 null, transformer, basis, reducer).invoke();
4191 }
4192
4193 /**
4194 * Returns the result of accumulating the given transformation
4195 * of all values using the given reducer to combine values,
4196 * and the given basis as an identity value.
4197 *
4198 * @param parallelismThreshold the (estimated) number of elements
4199 * needed for this operation to be executed in parallel
4200 * @param transformer a function returning the transformation
4201 * for an element
4202 * @param basis the identity (initial default value) for the reduction
4203 * @param reducer a commutative associative combining function
4204 * @return the result of accumulating the given transformation
4205 * of all values
4206 * @since 1.8
4207 */
4208 public int reduceValuesToInt(long parallelismThreshold,
4209 ToIntFunction<? super V> transformer,
4210 int basis,
4211 IntBinaryOperator reducer) {
4212 if (transformer == null || reducer == null)
4213 throw new NullPointerException();
4214 return new MapReduceValuesToIntTask<K,V>
4215 (null, batchFor(parallelismThreshold), 0, 0, table,
4216 null, transformer, basis, reducer).invoke();
4217 }
4218
4219 /**
4220 * Performs the given action for each entry.
4221 *
4222 * @param parallelismThreshold the (estimated) number of elements
4223 * needed for this operation to be executed in parallel
4224 * @param action the action
4225 * @since 1.8
4226 */
4227 public void forEachEntry(long parallelismThreshold,
4228 Consumer<? super Map.Entry<K,V>> action) {
4229 if (action == null) throw new NullPointerException();
4230 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4231 action).invoke();
4232 }
4233
4234 /**
4235 * Performs the given action for each non-null transformation
4236 * of each entry.
4237 *
4238 * @param parallelismThreshold the (estimated) number of elements
4239 * needed for this operation to be executed in parallel
4240 * @param transformer a function returning the transformation
4241 * for an element, or null if there is no transformation (in
4242 * which case the action is not applied)
4243 * @param action the action
4244 * @param <U> the return type of the transformer
4245 * @since 1.8
4246 */
4247 public <U> void forEachEntry(long parallelismThreshold,
4248 Function<Map.Entry<K,V>, ? extends U> transformer,
4249 Consumer<? super U> action) {
4250 if (transformer == null || action == null)
4251 throw new NullPointerException();
4252 new ForEachTransformedEntryTask<K,V,U>
4253 (null, batchFor(parallelismThreshold), 0, 0, table,
4254 transformer, action).invoke();
4255 }
4256
4257 /**
4258 * Returns a non-null result from applying the given search
4259 * function on each entry, or null if none. Upon success,
4260 * further element processing is suppressed and the results of
4261 * any other parallel invocations of the search function are
4262 * ignored.
4263 *
4264 * @param parallelismThreshold the (estimated) number of elements
4265 * needed for this operation to be executed in parallel
4266 * @param searchFunction a function returning a non-null
4267 * result on success, else null
4268 * @param <U> the return type of the search function
4269 * @return a non-null result from applying the given search
4270 * function on each entry, or null if none
4271 * @since 1.8
4272 */
4273 public <U> U searchEntries(long parallelismThreshold,
4274 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4275 if (searchFunction == null) throw new NullPointerException();
4276 return new SearchEntriesTask<K,V,U>
4277 (null, batchFor(parallelismThreshold), 0, 0, table,
4278 searchFunction, new AtomicReference<U>()).invoke();
4279 }
4280
4281 /**
4282 * Returns the result of accumulating all entries using the
4283 * given reducer to combine values, or null if none.
4284 *
4285 * @param parallelismThreshold the (estimated) number of elements
4286 * needed for this operation to be executed in parallel
4287 * @param reducer a commutative associative combining function
4288 * @return the result of accumulating all entries
4289 * @since 1.8
4290 */
4291 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4292 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4293 if (reducer == null) throw new NullPointerException();
4294 return new ReduceEntriesTask<K,V>
4295 (null, batchFor(parallelismThreshold), 0, 0, table,
4296 null, reducer).invoke();
4297 }
4298
4299 /**
4300 * Returns the result of accumulating the given transformation
4301 * of all entries using the given reducer to combine values,
4302 * or null if none.
4303 *
4304 * @param parallelismThreshold the (estimated) number of elements
4305 * needed for this operation to be executed in parallel
4306 * @param transformer a function returning the transformation
4307 * for an element, or null if there is no transformation (in
4308 * which case it is not combined)
4309 * @param reducer a commutative associative combining function
4310 * @param <U> the return type of the transformer
4311 * @return the result of accumulating the given transformation
4312 * of all entries
4313 * @since 1.8
4314 */
4315 public <U> U reduceEntries(long parallelismThreshold,
4316 Function<Map.Entry<K,V>, ? extends U> transformer,
4317 BiFunction<? super U, ? super U, ? extends U> reducer) {
4318 if (transformer == null || reducer == null)
4319 throw new NullPointerException();
4320 return new MapReduceEntriesTask<K,V,U>
4321 (null, batchFor(parallelismThreshold), 0, 0, table,
4322 null, transformer, reducer).invoke();
4323 }
4324
4325 /**
4326 * Returns the result of accumulating the given transformation
4327 * of all entries using the given reducer to combine values,
4328 * and the given basis as an identity value.
4329 *
4330 * @param parallelismThreshold the (estimated) number of elements
4331 * needed for this operation to be executed in parallel
4332 * @param transformer a function returning the transformation
4333 * for an element
4334 * @param basis the identity (initial default value) for the reduction
4335 * @param reducer a commutative associative combining function
4336 * @return the result of accumulating the given transformation
4337 * of all entries
4338 * @since 1.8
4339 */
4340 public double reduceEntriesToDouble(long parallelismThreshold,
4341 ToDoubleFunction<Map.Entry<K,V>> transformer,
4342 double basis,
4343 DoubleBinaryOperator reducer) {
4344 if (transformer == null || reducer == null)
4345 throw new NullPointerException();
4346 return new MapReduceEntriesToDoubleTask<K,V>
4347 (null, batchFor(parallelismThreshold), 0, 0, table,
4348 null, transformer, basis, reducer).invoke();
4349 }
4350
4351 /**
4352 * Returns the result of accumulating the given transformation
4353 * of all entries using the given reducer to combine values,
4354 * and the given basis as an identity value.
4355 *
4356 * @param parallelismThreshold the (estimated) number of elements
4357 * needed for this operation to be executed in parallel
4358 * @param transformer a function returning the transformation
4359 * for an element
4360 * @param basis the identity (initial default value) for the reduction
4361 * @param reducer a commutative associative combining function
4362 * @return the result of accumulating the given transformation
4363 * of all entries
4364 * @since 1.8
4365 */
4366 public long reduceEntriesToLong(long parallelismThreshold,
4367 ToLongFunction<Map.Entry<K,V>> transformer,
4368 long basis,
4369 LongBinaryOperator reducer) {
4370 if (transformer == null || reducer == null)
4371 throw new NullPointerException();
4372 return new MapReduceEntriesToLongTask<K,V>
4373 (null, batchFor(parallelismThreshold), 0, 0, table,
4374 null, transformer, basis, reducer).invoke();
4375 }
4376
4377 /**
4378 * Returns the result of accumulating the given transformation
4379 * of all entries using the given reducer to combine values,
4380 * and the given basis as an identity value.
4381 *
4382 * @param parallelismThreshold the (estimated) number of elements
4383 * needed for this operation to be executed in parallel
4384 * @param transformer a function returning the transformation
4385 * for an element
4386 * @param basis the identity (initial default value) for the reduction
4387 * @param reducer a commutative associative combining function
4388 * @return the result of accumulating the given transformation
4389 * of all entries
4390 * @since 1.8
4391 */
4392 public int reduceEntriesToInt(long parallelismThreshold,
4393 ToIntFunction<Map.Entry<K,V>> transformer,
4394 int basis,
4395 IntBinaryOperator reducer) {
4396 if (transformer == null || reducer == null)
4397 throw new NullPointerException();
4398 return new MapReduceEntriesToIntTask<K,V>
4399 (null, batchFor(parallelismThreshold), 0, 0, table,
4400 null, transformer, basis, reducer).invoke();
4401 }
4402
4403
4404 /* ----------------Views -------------- */
4405
4406 /**
4407 * Base class for views.
4408 */
4409 abstract static class CollectionView<K,V,E>
4410 implements Collection<E>, java.io.Serializable {
4411 private static final long serialVersionUID = 7249069246763182397L;
4412 final ConcurrentHashMap<K,V> map;
4413 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4414
4415 /**
4416 * Returns the map backing this view.
4417 *
4418 * @return the map backing this view
4419 */
4420 public ConcurrentHashMap<K,V> getMap() { return map; }
4421
4422 /**
4423 * Removes all of the elements from this view, by removing all
4424 * the mappings from the map backing this view.
4425 */
4426 public final void clear() { map.clear(); }
4427 public final int size() { return map.size(); }
4428 public final boolean isEmpty() { return map.isEmpty(); }
4429
4430 // implementations below rely on concrete classes supplying these
4431 // abstract methods
4432 /**
4433 * Returns an iterator over the elements in this collection.
4434 *
4435 * <p>The returned iterator is
4436 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4437 *
4438 * @return an iterator over the elements in this collection
4439 */
4440 public abstract Iterator<E> iterator();
4441 public abstract boolean contains(Object o);
4442 public abstract boolean remove(Object o);
4443
4444 private static final String OOME_MSG = "Required array size too large";
4445
4446 public final Object[] toArray() {
4447 long sz = map.mappingCount();
4448 if (sz > MAX_ARRAY_SIZE)
4449 throw new OutOfMemoryError(OOME_MSG);
4450 int n = (int)sz;
4451 Object[] r = new Object[n];
4452 int i = 0;
4453 for (E e : this) {
4454 if (i == n) {
4455 if (n >= MAX_ARRAY_SIZE)
4456 throw new OutOfMemoryError(OOME_MSG);
4457 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4458 n = MAX_ARRAY_SIZE;
4459 else
4460 n += (n >>> 1) + 1;
4461 r = Arrays.copyOf(r, n);
4462 }
4463 r[i++] = e;
4464 }
4465 return (i == n) ? r : Arrays.copyOf(r, i);
4466 }
4467
4468 @SuppressWarnings("unchecked")
4469 public final <T> T[] toArray(T[] a) {
4470 long sz = map.mappingCount();
4471 if (sz > MAX_ARRAY_SIZE)
4472 throw new OutOfMemoryError(OOME_MSG);
4473 int m = (int)sz;
4474 T[] r = (a.length >= m) ? a :
4475 (T[])java.lang.reflect.Array
4476 .newInstance(a.getClass().getComponentType(), m);
4477 int n = r.length;
4478 int i = 0;
4479 for (E e : this) {
4480 if (i == n) {
4481 if (n >= MAX_ARRAY_SIZE)
4482 throw new OutOfMemoryError(OOME_MSG);
4483 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4484 n = MAX_ARRAY_SIZE;
4485 else
4486 n += (n >>> 1) + 1;
4487 r = Arrays.copyOf(r, n);
4488 }
4489 r[i++] = (T)e;
4490 }
4491 if (a == r && i < n) {
4492 r[i] = null; // null-terminate
4493 return r;
4494 }
4495 return (i == n) ? r : Arrays.copyOf(r, i);
4496 }
4497
4498 /**
4499 * Returns a string representation of this collection.
4500 * The string representation consists of the string representations
4501 * of the collection's elements in the order they are returned by
4502 * its iterator, enclosed in square brackets ({@code "[]"}).
4503 * Adjacent elements are separated by the characters {@code ", "}
4504 * (comma and space). Elements are converted to strings as by
4505 * {@link String#valueOf(Object)}.
4506 *
4507 * @return a string representation of this collection
4508 */
4509 public final String toString() {
4510 StringBuilder sb = new StringBuilder();
4511 sb.append('[');
4512 Iterator<E> it = iterator();
4513 if (it.hasNext()) {
4514 for (;;) {
4515 Object e = it.next();
4516 sb.append(e == this ? "(this Collection)" : e);
4517 if (!it.hasNext())
4518 break;
4519 sb.append(',').append(' ');
4520 }
4521 }
4522 return sb.append(']').toString();
4523 }
4524
4525 public final boolean containsAll(Collection<?> c) {
4526 if (c != this) {
4527 for (Object e : c) {
4528 if (e == null || !contains(e))
4529 return false;
4530 }
4531 }
4532 return true;
4533 }
4534
4535 public boolean removeAll(Collection<?> c) {
4536 if (c == null) throw new NullPointerException();
4537 boolean modified = false;
4538 // Use (c instanceof Set) as a hint that lookup in c is as
4539 // efficient as this view
4540 if (c instanceof Set<?> && c.size() > map.table.length) {
4541 for (Iterator<?> it = iterator(); it.hasNext(); ) {
4542 if (c.contains(it.next())) {
4543 it.remove();
4544 modified = true;
4545 }
4546 }
4547 } else {
4548 for (Object e : c)
4549 modified |= remove(e);
4550 }
4551 return modified;
4552 }
4553
4554 public final boolean retainAll(Collection<?> c) {
4555 if (c == null) throw new NullPointerException();
4556 boolean modified = false;
4557 for (Iterator<E> it = iterator(); it.hasNext();) {
4558 if (!c.contains(it.next())) {
4559 it.remove();
4560 modified = true;
4561 }
4562 }
4563 return modified;
4564 }
4565
4566 }
4567
4568 /**
4569 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4570 * which additions may optionally be enabled by mapping to a
4571 * common value. This class cannot be directly instantiated.
4572 * See {@link #keySet() keySet()},
4573 * {@link #keySet(Object) keySet(V)},
4574 * {@link #newKeySet() newKeySet()},
4575 * {@link #newKeySet(int) newKeySet(int)}.
4576 *
4577 * @since 1.8
4578 */
4579 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4580 implements Set<K>, java.io.Serializable {
4581 private static final long serialVersionUID = 7249069246763182397L;
4582 private final V value;
4583 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4584 super(map);
4585 this.value = value;
4586 }
4587
4588 /**
4589 * Returns the default mapped value for additions,
4590 * or {@code null} if additions are not supported.
4591 *
4592 * @return the default mapped value for additions, or {@code null}
4593 * if not supported
4594 */
4595 public V getMappedValue() { return value; }
4596
4597 /**
4598 * {@inheritDoc}
4599 * @throws NullPointerException if the specified key is null
4600 */
4601 public boolean contains(Object o) { return map.containsKey(o); }
4602
4603 /**
4604 * Removes the key from this map view, by removing the key (and its
4605 * corresponding value) from the backing map. This method does
4606 * nothing if the key is not in the map.
4607 *
4608 * @param o the key to be removed from the backing map
4609 * @return {@code true} if the backing map contained the specified key
4610 * @throws NullPointerException if the specified key is null
4611 */
4612 public boolean remove(Object o) { return map.remove(o) != null; }
4613
4614 /**
4615 * @return an iterator over the keys of the backing map
4616 */
4617 public Iterator<K> iterator() {
4618 Node<K,V>[] t;
4619 ConcurrentHashMap<K,V> m = map;
4620 int f = (t = m.table) == null ? 0 : t.length;
4621 return new KeyIterator<K,V>(t, f, 0, f, m);
4622 }
4623
4624 /**
4625 * Adds the specified key to this set view by mapping the key to
4626 * the default mapped value in the backing map, if defined.
4627 *
4628 * @param e key to be added
4629 * @return {@code true} if this set changed as a result of the call
4630 * @throws NullPointerException if the specified key is null
4631 * @throws UnsupportedOperationException if no default mapped value
4632 * for additions was provided
4633 */
4634 public boolean add(K e) {
4635 V v;
4636 if ((v = value) == null)
4637 throw new UnsupportedOperationException();
4638 return map.putVal(e, v, true) == null;
4639 }
4640
4641 /**
4642 * Adds all of the elements in the specified collection to this set,
4643 * as if by calling {@link #add} on each one.
4644 *
4645 * @param c the elements to be inserted into this set
4646 * @return {@code true} if this set changed as a result of the call
4647 * @throws NullPointerException if the collection or any of its
4648 * elements are {@code null}
4649 * @throws UnsupportedOperationException if no default mapped value
4650 * for additions was provided
4651 */
4652 public boolean addAll(Collection<? extends K> c) {
4653 boolean added = false;
4654 V v;
4655 if ((v = value) == null)
4656 throw new UnsupportedOperationException();
4657 for (K e : c) {
4658 if (map.putVal(e, v, true) == null)
4659 added = true;
4660 }
4661 return added;
4662 }
4663
4664 public int hashCode() {
4665 int h = 0;
4666 for (K e : this)
4667 h += e.hashCode();
4668 return h;
4669 }
4670
4671 public boolean equals(Object o) {
4672 Set<?> c;
4673 return ((o instanceof Set) &&
4674 ((c = (Set<?>)o) == this ||
4675 (containsAll(c) && c.containsAll(this))));
4676 }
4677
4678 public Spliterator<K> spliterator() {
4679 Node<K,V>[] t;
4680 ConcurrentHashMap<K,V> m = map;
4681 long n = m.sumCount();
4682 int f = (t = m.table) == null ? 0 : t.length;
4683 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4684 }
4685
4686 public void forEach(Consumer<? super K> action) {
4687 if (action == null) throw new NullPointerException();
4688 Node<K,V>[] t;
4689 if ((t = map.table) != null) {
4690 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4691 for (Node<K,V> p; (p = it.advance()) != null; )
4692 action.accept(p.key);
4693 }
4694 }
4695 }
4696
4697 /**
4698 * A view of a ConcurrentHashMap as a {@link Collection} of
4699 * values, in which additions are disabled. This class cannot be
4700 * directly instantiated. See {@link #values()}.
4701 */
4702 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4703 implements Collection<V>, java.io.Serializable {
4704 private static final long serialVersionUID = 2249069246763182397L;
4705 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4706 public final boolean contains(Object o) {
4707 return map.containsValue(o);
4708 }
4709
4710 public final boolean remove(Object o) {
4711 if (o != null) {
4712 for (Iterator<V> it = iterator(); it.hasNext();) {
4713 if (o.equals(it.next())) {
4714 it.remove();
4715 return true;
4716 }
4717 }
4718 }
4719 return false;
4720 }
4721
4722 public final Iterator<V> iterator() {
4723 ConcurrentHashMap<K,V> m = map;
4724 Node<K,V>[] t;
4725 int f = (t = m.table) == null ? 0 : t.length;
4726 return new ValueIterator<K,V>(t, f, 0, f, m);
4727 }
4728
4729 public final boolean add(V e) {
4730 throw new UnsupportedOperationException();
4731 }
4732 public final boolean addAll(Collection<? extends V> c) {
4733 throw new UnsupportedOperationException();
4734 }
4735
4736 @Override public boolean removeAll(Collection<?> c) {
4737 if (c == null) throw new NullPointerException();
4738 boolean modified = false;
4739 for (Iterator<V> it = iterator(); it.hasNext();) {
4740 if (c.contains(it.next())) {
4741 it.remove();
4742 modified = true;
4743 }
4744 }
4745 return modified;
4746 }
4747
4748 public boolean removeIf(Predicate<? super V> filter) {
4749 return map.removeValueIf(filter);
4750 }
4751
4752 public Spliterator<V> spliterator() {
4753 Node<K,V>[] t;
4754 ConcurrentHashMap<K,V> m = map;
4755 long n = m.sumCount();
4756 int f = (t = m.table) == null ? 0 : t.length;
4757 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4758 }
4759
4760 public void forEach(Consumer<? super V> action) {
4761 if (action == null) throw new NullPointerException();
4762 Node<K,V>[] t;
4763 if ((t = map.table) != null) {
4764 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4765 for (Node<K,V> p; (p = it.advance()) != null; )
4766 action.accept(p.val);
4767 }
4768 }
4769 }
4770
4771 /**
4772 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4773 * entries. This class cannot be directly instantiated. See
4774 * {@link #entrySet()}.
4775 */
4776 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4777 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4778 private static final long serialVersionUID = 2249069246763182397L;
4779 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4780
4781 public boolean contains(Object o) {
4782 Object k, v, r; Map.Entry<?,?> e;
4783 return ((o instanceof Map.Entry) &&
4784 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4785 (r = map.get(k)) != null &&
4786 (v = e.getValue()) != null &&
4787 (v == r || v.equals(r)));
4788 }
4789
4790 public boolean remove(Object o) {
4791 Object k, v; Map.Entry<?,?> e;
4792 return ((o instanceof Map.Entry) &&
4793 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4794 (v = e.getValue()) != null &&
4795 map.remove(k, v));
4796 }
4797
4798 /**
4799 * @return an iterator over the entries of the backing map
4800 */
4801 public Iterator<Map.Entry<K,V>> iterator() {
4802 ConcurrentHashMap<K,V> m = map;
4803 Node<K,V>[] t;
4804 int f = (t = m.table) == null ? 0 : t.length;
4805 return new EntryIterator<K,V>(t, f, 0, f, m);
4806 }
4807
4808 public boolean add(Entry<K,V> e) {
4809 return map.putVal(e.getKey(), e.getValue(), false) == null;
4810 }
4811
4812 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4813 boolean added = false;
4814 for (Entry<K,V> e : c) {
4815 if (add(e))
4816 added = true;
4817 }
4818 return added;
4819 }
4820
4821 public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4822 return map.removeEntryIf(filter);
4823 }
4824
4825 public final int hashCode() {
4826 int h = 0;
4827 Node<K,V>[] t;
4828 if ((t = map.table) != null) {
4829 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4830 for (Node<K,V> p; (p = it.advance()) != null; ) {
4831 h += p.hashCode();
4832 }
4833 }
4834 return h;
4835 }
4836
4837 public final boolean equals(Object o) {
4838 Set<?> c;
4839 return ((o instanceof Set) &&
4840 ((c = (Set<?>)o) == this ||
4841 (containsAll(c) && c.containsAll(this))));
4842 }
4843
4844 public Spliterator<Map.Entry<K,V>> spliterator() {
4845 Node<K,V>[] t;
4846 ConcurrentHashMap<K,V> m = map;
4847 long n = m.sumCount();
4848 int f = (t = m.table) == null ? 0 : t.length;
4849 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4850 }
4851
4852 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4853 if (action == null) throw new NullPointerException();
4854 Node<K,V>[] t;
4855 if ((t = map.table) != null) {
4856 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4857 for (Node<K,V> p; (p = it.advance()) != null; )
4858 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4859 }
4860 }
4861
4862 }
4863
4864 // -------------------------------------------------------
4865
4866 /**
4867 * Base class for bulk tasks. Repeats some fields and code from
4868 * class Traverser, because we need to subclass CountedCompleter.
4869 */
4870 @SuppressWarnings("serial")
4871 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4872 Node<K,V>[] tab; // same as Traverser
4873 Node<K,V> next;
4874 TableStack<K,V> stack, spare;
4875 int index;
4876 int baseIndex;
4877 int baseLimit;
4878 final int baseSize;
4879 int batch; // split control
4880
4881 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4882 super(par);
4883 this.batch = b;
4884 this.index = this.baseIndex = i;
4885 if ((this.tab = t) == null)
4886 this.baseSize = this.baseLimit = 0;
4887 else if (par == null)
4888 this.baseSize = this.baseLimit = t.length;
4889 else {
4890 this.baseLimit = f;
4891 this.baseSize = par.baseSize;
4892 }
4893 }
4894
4895 /**
4896 * Same as Traverser version.
4897 */
4898 final Node<K,V> advance() {
4899 Node<K,V> e;
4900 if ((e = next) != null)
4901 e = e.next;
4902 for (;;) {
4903 Node<K,V>[] t; int i, n;
4904 if (e != null)
4905 return next = e;
4906 if (baseIndex >= baseLimit || (t = tab) == null ||
4907 (n = t.length) <= (i = index) || i < 0)
4908 return next = null;
4909 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4910 if (e instanceof ForwardingNode) {
4911 tab = ((ForwardingNode<K,V>)e).nextTable;
4912 e = null;
4913 pushState(t, i, n);
4914 continue;
4915 }
4916 else if (e instanceof TreeBin)
4917 e = ((TreeBin<K,V>)e).first;
4918 else
4919 e = null;
4920 }
4921 if (stack != null)
4922 recoverState(n);
4923 else if ((index = i + baseSize) >= n)
4924 index = ++baseIndex;
4925 }
4926 }
4927
4928 private void pushState(Node<K,V>[] t, int i, int n) {
4929 TableStack<K,V> s = spare;
4930 if (s != null)
4931 spare = s.next;
4932 else
4933 s = new TableStack<K,V>();
4934 s.tab = t;
4935 s.length = n;
4936 s.index = i;
4937 s.next = stack;
4938 stack = s;
4939 }
4940
4941 private void recoverState(int n) {
4942 TableStack<K,V> s; int len;
4943 while ((s = stack) != null && (index += (len = s.length)) >= n) {
4944 n = len;
4945 index = s.index;
4946 tab = s.tab;
4947 s.tab = null;
4948 TableStack<K,V> next = s.next;
4949 s.next = spare; // save for reuse
4950 stack = next;
4951 spare = s;
4952 }
4953 if (s == null && (index += baseSize) >= n)
4954 index = ++baseIndex;
4955 }
4956 }
4957
4958 /*
4959 * Task classes. Coded in a regular but ugly format/style to
4960 * simplify checks that each variant differs in the right way from
4961 * others. The null screenings exist because compilers cannot tell
4962 * that we've already null-checked task arguments, so we force
4963 * simplest hoisted bypass to help avoid convoluted traps.
4964 */
4965 @SuppressWarnings("serial")
4966 static final class ForEachKeyTask<K,V>
4967 extends BulkTask<K,V,Void> {
4968 final Consumer<? super K> action;
4969 ForEachKeyTask
4970 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4971 Consumer<? super K> action) {
4972 super(p, b, i, f, t);
4973 this.action = action;
4974 }
4975 public final void compute() {
4976 final Consumer<? super K> action;
4977 if ((action = this.action) != null) {
4978 for (int i = baseIndex, f, h; batch > 0 &&
4979 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4980 addToPendingCount(1);
4981 new ForEachKeyTask<K,V>
4982 (this, batch >>>= 1, baseLimit = h, f, tab,
4983 action).fork();
4984 }
4985 for (Node<K,V> p; (p = advance()) != null;)
4986 action.accept(p.key);
4987 propagateCompletion();
4988 }
4989 }
4990 }
4991
4992 @SuppressWarnings("serial")
4993 static final class ForEachValueTask<K,V>
4994 extends BulkTask<K,V,Void> {
4995 final Consumer<? super V> action;
4996 ForEachValueTask
4997 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4998 Consumer<? super V> action) {
4999 super(p, b, i, f, t);
5000 this.action = action;
5001 }
5002 public final void compute() {
5003 final Consumer<? super V> action;
5004 if ((action = this.action) != null) {
5005 for (int i = baseIndex, f, h; batch > 0 &&
5006 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5007 addToPendingCount(1);
5008 new ForEachValueTask<K,V>
5009 (this, batch >>>= 1, baseLimit = h, f, tab,
5010 action).fork();
5011 }
5012 for (Node<K,V> p; (p = advance()) != null;)
5013 action.accept(p.val);
5014 propagateCompletion();
5015 }
5016 }
5017 }
5018
5019 @SuppressWarnings("serial")
5020 static final class ForEachEntryTask<K,V>
5021 extends BulkTask<K,V,Void> {
5022 final Consumer<? super Entry<K,V>> action;
5023 ForEachEntryTask
5024 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5025 Consumer<? super Entry<K,V>> action) {
5026 super(p, b, i, f, t);
5027 this.action = action;
5028 }
5029 public final void compute() {
5030 final Consumer<? super Entry<K,V>> action;
5031 if ((action = this.action) != null) {
5032 for (int i = baseIndex, f, h; batch > 0 &&
5033 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5034 addToPendingCount(1);
5035 new ForEachEntryTask<K,V>
5036 (this, batch >>>= 1, baseLimit = h, f, tab,
5037 action).fork();
5038 }
5039 for (Node<K,V> p; (p = advance()) != null; )
5040 action.accept(p);
5041 propagateCompletion();
5042 }
5043 }
5044 }
5045
5046 @SuppressWarnings("serial")
5047 static final class ForEachMappingTask<K,V>
5048 extends BulkTask<K,V,Void> {
5049 final BiConsumer<? super K, ? super V> action;
5050 ForEachMappingTask
5051 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5052 BiConsumer<? super K,? super V> action) {
5053 super(p, b, i, f, t);
5054 this.action = action;
5055 }
5056 public final void compute() {
5057 final BiConsumer<? super K, ? super V> action;
5058 if ((action = this.action) != null) {
5059 for (int i = baseIndex, f, h; batch > 0 &&
5060 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5061 addToPendingCount(1);
5062 new ForEachMappingTask<K,V>
5063 (this, batch >>>= 1, baseLimit = h, f, tab,
5064 action).fork();
5065 }
5066 for (Node<K,V> p; (p = advance()) != null; )
5067 action.accept(p.key, p.val);
5068 propagateCompletion();
5069 }
5070 }
5071 }
5072
5073 @SuppressWarnings("serial")
5074 static final class ForEachTransformedKeyTask<K,V,U>
5075 extends BulkTask<K,V,Void> {
5076 final Function<? super K, ? extends U> transformer;
5077 final Consumer<? super U> action;
5078 ForEachTransformedKeyTask
5079 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5080 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5081 super(p, b, i, f, t);
5082 this.transformer = transformer; this.action = action;
5083 }
5084 public final void compute() {
5085 final Function<? super K, ? extends U> transformer;
5086 final Consumer<? super U> action;
5087 if ((transformer = this.transformer) != null &&
5088 (action = this.action) != null) {
5089 for (int i = baseIndex, f, h; batch > 0 &&
5090 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5091 addToPendingCount(1);
5092 new ForEachTransformedKeyTask<K,V,U>
5093 (this, batch >>>= 1, baseLimit = h, f, tab,
5094 transformer, action).fork();
5095 }
5096 for (Node<K,V> p; (p = advance()) != null; ) {
5097 U u;
5098 if ((u = transformer.apply(p.key)) != null)
5099 action.accept(u);
5100 }
5101 propagateCompletion();
5102 }
5103 }
5104 }
5105
5106 @SuppressWarnings("serial")
5107 static final class ForEachTransformedValueTask<K,V,U>
5108 extends BulkTask<K,V,Void> {
5109 final Function<? super V, ? extends U> transformer;
5110 final Consumer<? super U> action;
5111 ForEachTransformedValueTask
5112 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5113 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5114 super(p, b, i, f, t);
5115 this.transformer = transformer; this.action = action;
5116 }
5117 public final void compute() {
5118 final Function<? super V, ? extends U> transformer;
5119 final Consumer<? super U> action;
5120 if ((transformer = this.transformer) != null &&
5121 (action = this.action) != null) {
5122 for (int i = baseIndex, f, h; batch > 0 &&
5123 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5124 addToPendingCount(1);
5125 new ForEachTransformedValueTask<K,V,U>
5126 (this, batch >>>= 1, baseLimit = h, f, tab,
5127 transformer, action).fork();
5128 }
5129 for (Node<K,V> p; (p = advance()) != null; ) {
5130 U u;
5131 if ((u = transformer.apply(p.val)) != null)
5132 action.accept(u);
5133 }
5134 propagateCompletion();
5135 }
5136 }
5137 }
5138
5139 @SuppressWarnings("serial")
5140 static final class ForEachTransformedEntryTask<K,V,U>
5141 extends BulkTask<K,V,Void> {
5142 final Function<Map.Entry<K,V>, ? extends U> transformer;
5143 final Consumer<? super U> action;
5144 ForEachTransformedEntryTask
5145 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5146 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5147 super(p, b, i, f, t);
5148 this.transformer = transformer; this.action = action;
5149 }
5150 public final void compute() {
5151 final Function<Map.Entry<K,V>, ? extends U> transformer;
5152 final Consumer<? super U> action;
5153 if ((transformer = this.transformer) != null &&
5154 (action = this.action) != null) {
5155 for (int i = baseIndex, f, h; batch > 0 &&
5156 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5157 addToPendingCount(1);
5158 new ForEachTransformedEntryTask<K,V,U>
5159 (this, batch >>>= 1, baseLimit = h, f, tab,
5160 transformer, action).fork();
5161 }
5162 for (Node<K,V> p; (p = advance()) != null; ) {
5163 U u;
5164 if ((u = transformer.apply(p)) != null)
5165 action.accept(u);
5166 }
5167 propagateCompletion();
5168 }
5169 }
5170 }
5171
5172 @SuppressWarnings("serial")
5173 static final class ForEachTransformedMappingTask<K,V,U>
5174 extends BulkTask<K,V,Void> {
5175 final BiFunction<? super K, ? super V, ? extends U> transformer;
5176 final Consumer<? super U> action;
5177 ForEachTransformedMappingTask
5178 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5179 BiFunction<? super K, ? super V, ? extends U> transformer,
5180 Consumer<? super U> action) {
5181 super(p, b, i, f, t);
5182 this.transformer = transformer; this.action = action;
5183 }
5184 public final void compute() {
5185 final BiFunction<? super K, ? super V, ? extends U> transformer;
5186 final Consumer<? super U> action;
5187 if ((transformer = this.transformer) != null &&
5188 (action = this.action) != null) {
5189 for (int i = baseIndex, f, h; batch > 0 &&
5190 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5191 addToPendingCount(1);
5192 new ForEachTransformedMappingTask<K,V,U>
5193 (this, batch >>>= 1, baseLimit = h, f, tab,
5194 transformer, action).fork();
5195 }
5196 for (Node<K,V> p; (p = advance()) != null; ) {
5197 U u;
5198 if ((u = transformer.apply(p.key, p.val)) != null)
5199 action.accept(u);
5200 }
5201 propagateCompletion();
5202 }
5203 }
5204 }
5205
5206 @SuppressWarnings("serial")
5207 static final class SearchKeysTask<K,V,U>
5208 extends BulkTask<K,V,U> {
5209 final Function<? super K, ? extends U> searchFunction;
5210 final AtomicReference<U> result;
5211 SearchKeysTask
5212 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5213 Function<? super K, ? extends U> searchFunction,
5214 AtomicReference<U> result) {
5215 super(p, b, i, f, t);
5216 this.searchFunction = searchFunction; this.result = result;
5217 }
5218 public final U getRawResult() { return result.get(); }
5219 public final void compute() {
5220 final Function<? super K, ? extends U> searchFunction;
5221 final AtomicReference<U> result;
5222 if ((searchFunction = this.searchFunction) != null &&
5223 (result = this.result) != null) {
5224 for (int i = baseIndex, f, h; batch > 0 &&
5225 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5226 if (result.get() != null)
5227 return;
5228 addToPendingCount(1);
5229 new SearchKeysTask<K,V,U>
5230 (this, batch >>>= 1, baseLimit = h, f, tab,
5231 searchFunction, result).fork();
5232 }
5233 while (result.get() == null) {
5234 U u;
5235 Node<K,V> p;
5236 if ((p = advance()) == null) {
5237 propagateCompletion();
5238 break;
5239 }
5240 if ((u = searchFunction.apply(p.key)) != null) {
5241 if (result.compareAndSet(null, u))
5242 quietlyCompleteRoot();
5243 break;
5244 }
5245 }
5246 }
5247 }
5248 }
5249
5250 @SuppressWarnings("serial")
5251 static final class SearchValuesTask<K,V,U>
5252 extends BulkTask<K,V,U> {
5253 final Function<? super V, ? extends U> searchFunction;
5254 final AtomicReference<U> result;
5255 SearchValuesTask
5256 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5257 Function<? super V, ? extends U> searchFunction,
5258 AtomicReference<U> result) {
5259 super(p, b, i, f, t);
5260 this.searchFunction = searchFunction; this.result = result;
5261 }
5262 public final U getRawResult() { return result.get(); }
5263 public final void compute() {
5264 final Function<? super V, ? extends U> searchFunction;
5265 final AtomicReference<U> result;
5266 if ((searchFunction = this.searchFunction) != null &&
5267 (result = this.result) != null) {
5268 for (int i = baseIndex, f, h; batch > 0 &&
5269 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5270 if (result.get() != null)
5271 return;
5272 addToPendingCount(1);
5273 new SearchValuesTask<K,V,U>
5274 (this, batch >>>= 1, baseLimit = h, f, tab,
5275 searchFunction, result).fork();
5276 }
5277 while (result.get() == null) {
5278 U u;
5279 Node<K,V> p;
5280 if ((p = advance()) == null) {
5281 propagateCompletion();
5282 break;
5283 }
5284 if ((u = searchFunction.apply(p.val)) != null) {
5285 if (result.compareAndSet(null, u))
5286 quietlyCompleteRoot();
5287 break;
5288 }
5289 }
5290 }
5291 }
5292 }
5293
5294 @SuppressWarnings("serial")
5295 static final class SearchEntriesTask<K,V,U>
5296 extends BulkTask<K,V,U> {
5297 final Function<Entry<K,V>, ? extends U> searchFunction;
5298 final AtomicReference<U> result;
5299 SearchEntriesTask
5300 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5301 Function<Entry<K,V>, ? extends U> searchFunction,
5302 AtomicReference<U> result) {
5303 super(p, b, i, f, t);
5304 this.searchFunction = searchFunction; this.result = result;
5305 }
5306 public final U getRawResult() { return result.get(); }
5307 public final void compute() {
5308 final Function<Entry<K,V>, ? extends U> searchFunction;
5309 final AtomicReference<U> result;
5310 if ((searchFunction = this.searchFunction) != null &&
5311 (result = this.result) != null) {
5312 for (int i = baseIndex, f, h; batch > 0 &&
5313 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5314 if (result.get() != null)
5315 return;
5316 addToPendingCount(1);
5317 new SearchEntriesTask<K,V,U>
5318 (this, batch >>>= 1, baseLimit = h, f, tab,
5319 searchFunction, result).fork();
5320 }
5321 while (result.get() == null) {
5322 U u;
5323 Node<K,V> p;
5324 if ((p = advance()) == null) {
5325 propagateCompletion();
5326 break;
5327 }
5328 if ((u = searchFunction.apply(p)) != null) {
5329 if (result.compareAndSet(null, u))
5330 quietlyCompleteRoot();
5331 return;
5332 }
5333 }
5334 }
5335 }
5336 }
5337
5338 @SuppressWarnings("serial")
5339 static final class SearchMappingsTask<K,V,U>
5340 extends BulkTask<K,V,U> {
5341 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5342 final AtomicReference<U> result;
5343 SearchMappingsTask
5344 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5345 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5346 AtomicReference<U> result) {
5347 super(p, b, i, f, t);
5348 this.searchFunction = searchFunction; this.result = result;
5349 }
5350 public final U getRawResult() { return result.get(); }
5351 public final void compute() {
5352 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5353 final AtomicReference<U> result;
5354 if ((searchFunction = this.searchFunction) != null &&
5355 (result = this.result) != null) {
5356 for (int i = baseIndex, f, h; batch > 0 &&
5357 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5358 if (result.get() != null)
5359 return;
5360 addToPendingCount(1);
5361 new SearchMappingsTask<K,V,U>
5362 (this, batch >>>= 1, baseLimit = h, f, tab,
5363 searchFunction, result).fork();
5364 }
5365 while (result.get() == null) {
5366 U u;
5367 Node<K,V> p;
5368 if ((p = advance()) == null) {
5369 propagateCompletion();
5370 break;
5371 }
5372 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5373 if (result.compareAndSet(null, u))
5374 quietlyCompleteRoot();
5375 break;
5376 }
5377 }
5378 }
5379 }
5380 }
5381
5382 @SuppressWarnings("serial")
5383 static final class ReduceKeysTask<K,V>
5384 extends BulkTask<K,V,K> {
5385 final BiFunction<? super K, ? super K, ? extends K> reducer;
5386 K result;
5387 ReduceKeysTask<K,V> rights, nextRight;
5388 ReduceKeysTask
5389 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5390 ReduceKeysTask<K,V> nextRight,
5391 BiFunction<? super K, ? super K, ? extends K> reducer) {
5392 super(p, b, i, f, t); this.nextRight = nextRight;
5393 this.reducer = reducer;
5394 }
5395 public final K getRawResult() { return result; }
5396 public final void compute() {
5397 final BiFunction<? super K, ? super K, ? extends K> reducer;
5398 if ((reducer = this.reducer) != null) {
5399 for (int i = baseIndex, f, h; batch > 0 &&
5400 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5401 addToPendingCount(1);
5402 (rights = new ReduceKeysTask<K,V>
5403 (this, batch >>>= 1, baseLimit = h, f, tab,
5404 rights, reducer)).fork();
5405 }
5406 K r = null;
5407 for (Node<K,V> p; (p = advance()) != null; ) {
5408 K u = p.key;
5409 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5410 }
5411 result = r;
5412 CountedCompleter<?> c;
5413 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5414 @SuppressWarnings("unchecked")
5415 ReduceKeysTask<K,V>
5416 t = (ReduceKeysTask<K,V>)c,
5417 s = t.rights;
5418 while (s != null) {
5419 K tr, sr;
5420 if ((sr = s.result) != null)
5421 t.result = (((tr = t.result) == null) ? sr :
5422 reducer.apply(tr, sr));
5423 s = t.rights = s.nextRight;
5424 }
5425 }
5426 }
5427 }
5428 }
5429
5430 @SuppressWarnings("serial")
5431 static final class ReduceValuesTask<K,V>
5432 extends BulkTask<K,V,V> {
5433 final BiFunction<? super V, ? super V, ? extends V> reducer;
5434 V result;
5435 ReduceValuesTask<K,V> rights, nextRight;
5436 ReduceValuesTask
5437 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5438 ReduceValuesTask<K,V> nextRight,
5439 BiFunction<? super V, ? super V, ? extends V> reducer) {
5440 super(p, b, i, f, t); this.nextRight = nextRight;
5441 this.reducer = reducer;
5442 }
5443 public final V getRawResult() { return result; }
5444 public final void compute() {
5445 final BiFunction<? super V, ? super V, ? extends V> reducer;
5446 if ((reducer = this.reducer) != null) {
5447 for (int i = baseIndex, f, h; batch > 0 &&
5448 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5449 addToPendingCount(1);
5450 (rights = new ReduceValuesTask<K,V>
5451 (this, batch >>>= 1, baseLimit = h, f, tab,
5452 rights, reducer)).fork();
5453 }
5454 V r = null;
5455 for (Node<K,V> p; (p = advance()) != null; ) {
5456 V v = p.val;
5457 r = (r == null) ? v : reducer.apply(r, v);
5458 }
5459 result = r;
5460 CountedCompleter<?> c;
5461 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5462 @SuppressWarnings("unchecked")
5463 ReduceValuesTask<K,V>
5464 t = (ReduceValuesTask<K,V>)c,
5465 s = t.rights;
5466 while (s != null) {
5467 V tr, sr;
5468 if ((sr = s.result) != null)
5469 t.result = (((tr = t.result) == null) ? sr :
5470 reducer.apply(tr, sr));
5471 s = t.rights = s.nextRight;
5472 }
5473 }
5474 }
5475 }
5476 }
5477
5478 @SuppressWarnings("serial")
5479 static final class ReduceEntriesTask<K,V>
5480 extends BulkTask<K,V,Map.Entry<K,V>> {
5481 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5482 Map.Entry<K,V> result;
5483 ReduceEntriesTask<K,V> rights, nextRight;
5484 ReduceEntriesTask
5485 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5486 ReduceEntriesTask<K,V> nextRight,
5487 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5488 super(p, b, i, f, t); this.nextRight = nextRight;
5489 this.reducer = reducer;
5490 }
5491 public final Map.Entry<K,V> getRawResult() { return result; }
5492 public final void compute() {
5493 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5494 if ((reducer = this.reducer) != null) {
5495 for (int i = baseIndex, f, h; batch > 0 &&
5496 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5497 addToPendingCount(1);
5498 (rights = new ReduceEntriesTask<K,V>
5499 (this, batch >>>= 1, baseLimit = h, f, tab,
5500 rights, reducer)).fork();
5501 }
5502 Map.Entry<K,V> r = null;
5503 for (Node<K,V> p; (p = advance()) != null; )
5504 r = (r == null) ? p : reducer.apply(r, p);
5505 result = r;
5506 CountedCompleter<?> c;
5507 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5508 @SuppressWarnings("unchecked")
5509 ReduceEntriesTask<K,V>
5510 t = (ReduceEntriesTask<K,V>)c,
5511 s = t.rights;
5512 while (s != null) {
5513 Map.Entry<K,V> tr, sr;
5514 if ((sr = s.result) != null)
5515 t.result = (((tr = t.result) == null) ? sr :
5516 reducer.apply(tr, sr));
5517 s = t.rights = s.nextRight;
5518 }
5519 }
5520 }
5521 }
5522 }
5523
5524 @SuppressWarnings("serial")
5525 static final class MapReduceKeysTask<K,V,U>
5526 extends BulkTask<K,V,U> {
5527 final Function<? super K, ? extends U> transformer;
5528 final BiFunction<? super U, ? super U, ? extends U> reducer;
5529 U result;
5530 MapReduceKeysTask<K,V,U> rights, nextRight;
5531 MapReduceKeysTask
5532 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5533 MapReduceKeysTask<K,V,U> nextRight,
5534 Function<? super K, ? extends U> transformer,
5535 BiFunction<? super U, ? super U, ? extends U> reducer) {
5536 super(p, b, i, f, t); this.nextRight = nextRight;
5537 this.transformer = transformer;
5538 this.reducer = reducer;
5539 }
5540 public final U getRawResult() { return result; }
5541 public final void compute() {
5542 final Function<? super K, ? extends U> transformer;
5543 final BiFunction<? super U, ? super U, ? extends U> reducer;
5544 if ((transformer = this.transformer) != null &&
5545 (reducer = this.reducer) != null) {
5546 for (int i = baseIndex, f, h; batch > 0 &&
5547 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5548 addToPendingCount(1);
5549 (rights = new MapReduceKeysTask<K,V,U>
5550 (this, batch >>>= 1, baseLimit = h, f, tab,
5551 rights, transformer, reducer)).fork();
5552 }
5553 U r = null;
5554 for (Node<K,V> p; (p = advance()) != null; ) {
5555 U u;
5556 if ((u = transformer.apply(p.key)) != null)
5557 r = (r == null) ? u : reducer.apply(r, u);
5558 }
5559 result = r;
5560 CountedCompleter<?> c;
5561 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5562 @SuppressWarnings("unchecked")
5563 MapReduceKeysTask<K,V,U>
5564 t = (MapReduceKeysTask<K,V,U>)c,
5565 s = t.rights;
5566 while (s != null) {
5567 U tr, sr;
5568 if ((sr = s.result) != null)
5569 t.result = (((tr = t.result) == null) ? sr :
5570 reducer.apply(tr, sr));
5571 s = t.rights = s.nextRight;
5572 }
5573 }
5574 }
5575 }
5576 }
5577
5578 @SuppressWarnings("serial")
5579 static final class MapReduceValuesTask<K,V,U>
5580 extends BulkTask<K,V,U> {
5581 final Function<? super V, ? extends U> transformer;
5582 final BiFunction<? super U, ? super U, ? extends U> reducer;
5583 U result;
5584 MapReduceValuesTask<K,V,U> rights, nextRight;
5585 MapReduceValuesTask
5586 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5587 MapReduceValuesTask<K,V,U> nextRight,
5588 Function<? super V, ? extends U> transformer,
5589 BiFunction<? super U, ? super U, ? extends U> reducer) {
5590 super(p, b, i, f, t); this.nextRight = nextRight;
5591 this.transformer = transformer;
5592 this.reducer = reducer;
5593 }
5594 public final U getRawResult() { return result; }
5595 public final void compute() {
5596 final Function<? super V, ? extends U> transformer;
5597 final BiFunction<? super U, ? super U, ? extends U> reducer;
5598 if ((transformer = this.transformer) != null &&
5599 (reducer = this.reducer) != null) {
5600 for (int i = baseIndex, f, h; batch > 0 &&
5601 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5602 addToPendingCount(1);
5603 (rights = new MapReduceValuesTask<K,V,U>
5604 (this, batch >>>= 1, baseLimit = h, f, tab,
5605 rights, transformer, reducer)).fork();
5606 }
5607 U r = null;
5608 for (Node<K,V> p; (p = advance()) != null; ) {
5609 U u;
5610 if ((u = transformer.apply(p.val)) != null)
5611 r = (r == null) ? u : reducer.apply(r, u);
5612 }
5613 result = r;
5614 CountedCompleter<?> c;
5615 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5616 @SuppressWarnings("unchecked")
5617 MapReduceValuesTask<K,V,U>
5618 t = (MapReduceValuesTask<K,V,U>)c,
5619 s = t.rights;
5620 while (s != null) {
5621 U tr, sr;
5622 if ((sr = s.result) != null)
5623 t.result = (((tr = t.result) == null) ? sr :
5624 reducer.apply(tr, sr));
5625 s = t.rights = s.nextRight;
5626 }
5627 }
5628 }
5629 }
5630 }
5631
5632 @SuppressWarnings("serial")
5633 static final class MapReduceEntriesTask<K,V,U>
5634 extends BulkTask<K,V,U> {
5635 final Function<Map.Entry<K,V>, ? extends U> transformer;
5636 final BiFunction<? super U, ? super U, ? extends U> reducer;
5637 U result;
5638 MapReduceEntriesTask<K,V,U> rights, nextRight;
5639 MapReduceEntriesTask
5640 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5641 MapReduceEntriesTask<K,V,U> nextRight,
5642 Function<Map.Entry<K,V>, ? extends U> transformer,
5643 BiFunction<? super U, ? super U, ? extends U> reducer) {
5644 super(p, b, i, f, t); this.nextRight = nextRight;
5645 this.transformer = transformer;
5646 this.reducer = reducer;
5647 }
5648 public final U getRawResult() { return result; }
5649 public final void compute() {
5650 final Function<Map.Entry<K,V>, ? extends U> transformer;
5651 final BiFunction<? super U, ? super U, ? extends U> reducer;
5652 if ((transformer = this.transformer) != null &&
5653 (reducer = this.reducer) != null) {
5654 for (int i = baseIndex, f, h; batch > 0 &&
5655 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5656 addToPendingCount(1);
5657 (rights = new MapReduceEntriesTask<K,V,U>
5658 (this, batch >>>= 1, baseLimit = h, f, tab,
5659 rights, transformer, reducer)).fork();
5660 }
5661 U r = null;
5662 for (Node<K,V> p; (p = advance()) != null; ) {
5663 U u;
5664 if ((u = transformer.apply(p)) != null)
5665 r = (r == null) ? u : reducer.apply(r, u);
5666 }
5667 result = r;
5668 CountedCompleter<?> c;
5669 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5670 @SuppressWarnings("unchecked")
5671 MapReduceEntriesTask<K,V,U>
5672 t = (MapReduceEntriesTask<K,V,U>)c,
5673 s = t.rights;
5674 while (s != null) {
5675 U tr, sr;
5676 if ((sr = s.result) != null)
5677 t.result = (((tr = t.result) == null) ? sr :
5678 reducer.apply(tr, sr));
5679 s = t.rights = s.nextRight;
5680 }
5681 }
5682 }
5683 }
5684 }
5685
5686 @SuppressWarnings("serial")
5687 static final class MapReduceMappingsTask<K,V,U>
5688 extends BulkTask<K,V,U> {
5689 final BiFunction<? super K, ? super V, ? extends U> transformer;
5690 final BiFunction<? super U, ? super U, ? extends U> reducer;
5691 U result;
5692 MapReduceMappingsTask<K,V,U> rights, nextRight;
5693 MapReduceMappingsTask
5694 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5695 MapReduceMappingsTask<K,V,U> nextRight,
5696 BiFunction<? super K, ? super V, ? extends U> transformer,
5697 BiFunction<? super U, ? super U, ? extends U> reducer) {
5698 super(p, b, i, f, t); this.nextRight = nextRight;
5699 this.transformer = transformer;
5700 this.reducer = reducer;
5701 }
5702 public final U getRawResult() { return result; }
5703 public final void compute() {
5704 final BiFunction<? super K, ? super V, ? extends U> transformer;
5705 final BiFunction<? super U, ? super U, ? extends U> reducer;
5706 if ((transformer = this.transformer) != null &&
5707 (reducer = this.reducer) != null) {
5708 for (int i = baseIndex, f, h; batch > 0 &&
5709 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5710 addToPendingCount(1);
5711 (rights = new MapReduceMappingsTask<K,V,U>
5712 (this, batch >>>= 1, baseLimit = h, f, tab,
5713 rights, transformer, reducer)).fork();
5714 }
5715 U r = null;
5716 for (Node<K,V> p; (p = advance()) != null; ) {
5717 U u;
5718 if ((u = transformer.apply(p.key, p.val)) != null)
5719 r = (r == null) ? u : reducer.apply(r, u);
5720 }
5721 result = r;
5722 CountedCompleter<?> c;
5723 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5724 @SuppressWarnings("unchecked")
5725 MapReduceMappingsTask<K,V,U>
5726 t = (MapReduceMappingsTask<K,V,U>)c,
5727 s = t.rights;
5728 while (s != null) {
5729 U tr, sr;
5730 if ((sr = s.result) != null)
5731 t.result = (((tr = t.result) == null) ? sr :
5732 reducer.apply(tr, sr));
5733 s = t.rights = s.nextRight;
5734 }
5735 }
5736 }
5737 }
5738 }
5739
5740 @SuppressWarnings("serial")
5741 static final class MapReduceKeysToDoubleTask<K,V>
5742 extends BulkTask<K,V,Double> {
5743 final ToDoubleFunction<? super K> transformer;
5744 final DoubleBinaryOperator reducer;
5745 final double basis;
5746 double result;
5747 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5748 MapReduceKeysToDoubleTask
5749 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5750 MapReduceKeysToDoubleTask<K,V> nextRight,
5751 ToDoubleFunction<? super K> transformer,
5752 double basis,
5753 DoubleBinaryOperator reducer) {
5754 super(p, b, i, f, t); this.nextRight = nextRight;
5755 this.transformer = transformer;
5756 this.basis = basis; this.reducer = reducer;
5757 }
5758 public final Double getRawResult() { return result; }
5759 public final void compute() {
5760 final ToDoubleFunction<? super K> transformer;
5761 final DoubleBinaryOperator reducer;
5762 if ((transformer = this.transformer) != null &&
5763 (reducer = this.reducer) != null) {
5764 double r = this.basis;
5765 for (int i = baseIndex, f, h; batch > 0 &&
5766 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5767 addToPendingCount(1);
5768 (rights = new MapReduceKeysToDoubleTask<K,V>
5769 (this, batch >>>= 1, baseLimit = h, f, tab,
5770 rights, transformer, r, reducer)).fork();
5771 }
5772 for (Node<K,V> p; (p = advance()) != null; )
5773 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5774 result = r;
5775 CountedCompleter<?> c;
5776 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5777 @SuppressWarnings("unchecked")
5778 MapReduceKeysToDoubleTask<K,V>
5779 t = (MapReduceKeysToDoubleTask<K,V>)c,
5780 s = t.rights;
5781 while (s != null) {
5782 t.result = reducer.applyAsDouble(t.result, s.result);
5783 s = t.rights = s.nextRight;
5784 }
5785 }
5786 }
5787 }
5788 }
5789
5790 @SuppressWarnings("serial")
5791 static final class MapReduceValuesToDoubleTask<K,V>
5792 extends BulkTask<K,V,Double> {
5793 final ToDoubleFunction<? super V> transformer;
5794 final DoubleBinaryOperator reducer;
5795 final double basis;
5796 double result;
5797 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5798 MapReduceValuesToDoubleTask
5799 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5800 MapReduceValuesToDoubleTask<K,V> nextRight,
5801 ToDoubleFunction<? super V> transformer,
5802 double basis,
5803 DoubleBinaryOperator reducer) {
5804 super(p, b, i, f, t); this.nextRight = nextRight;
5805 this.transformer = transformer;
5806 this.basis = basis; this.reducer = reducer;
5807 }
5808 public final Double getRawResult() { return result; }
5809 public final void compute() {
5810 final ToDoubleFunction<? super V> transformer;
5811 final DoubleBinaryOperator reducer;
5812 if ((transformer = this.transformer) != null &&
5813 (reducer = this.reducer) != null) {
5814 double r = this.basis;
5815 for (int i = baseIndex, f, h; batch > 0 &&
5816 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5817 addToPendingCount(1);
5818 (rights = new MapReduceValuesToDoubleTask<K,V>
5819 (this, batch >>>= 1, baseLimit = h, f, tab,
5820 rights, transformer, r, reducer)).fork();
5821 }
5822 for (Node<K,V> p; (p = advance()) != null; )
5823 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5824 result = r;
5825 CountedCompleter<?> c;
5826 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5827 @SuppressWarnings("unchecked")
5828 MapReduceValuesToDoubleTask<K,V>
5829 t = (MapReduceValuesToDoubleTask<K,V>)c,
5830 s = t.rights;
5831 while (s != null) {
5832 t.result = reducer.applyAsDouble(t.result, s.result);
5833 s = t.rights = s.nextRight;
5834 }
5835 }
5836 }
5837 }
5838 }
5839
5840 @SuppressWarnings("serial")
5841 static final class MapReduceEntriesToDoubleTask<K,V>
5842 extends BulkTask<K,V,Double> {
5843 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5844 final DoubleBinaryOperator reducer;
5845 final double basis;
5846 double result;
5847 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5848 MapReduceEntriesToDoubleTask
5849 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5850 MapReduceEntriesToDoubleTask<K,V> nextRight,
5851 ToDoubleFunction<Map.Entry<K,V>> transformer,
5852 double basis,
5853 DoubleBinaryOperator reducer) {
5854 super(p, b, i, f, t); this.nextRight = nextRight;
5855 this.transformer = transformer;
5856 this.basis = basis; this.reducer = reducer;
5857 }
5858 public final Double getRawResult() { return result; }
5859 public final void compute() {
5860 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5861 final DoubleBinaryOperator reducer;
5862 if ((transformer = this.transformer) != null &&
5863 (reducer = this.reducer) != null) {
5864 double r = this.basis;
5865 for (int i = baseIndex, f, h; batch > 0 &&
5866 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5867 addToPendingCount(1);
5868 (rights = new MapReduceEntriesToDoubleTask<K,V>
5869 (this, batch >>>= 1, baseLimit = h, f, tab,
5870 rights, transformer, r, reducer)).fork();
5871 }
5872 for (Node<K,V> p; (p = advance()) != null; )
5873 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5874 result = r;
5875 CountedCompleter<?> c;
5876 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5877 @SuppressWarnings("unchecked")
5878 MapReduceEntriesToDoubleTask<K,V>
5879 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5880 s = t.rights;
5881 while (s != null) {
5882 t.result = reducer.applyAsDouble(t.result, s.result);
5883 s = t.rights = s.nextRight;
5884 }
5885 }
5886 }
5887 }
5888 }
5889
5890 @SuppressWarnings("serial")
5891 static final class MapReduceMappingsToDoubleTask<K,V>
5892 extends BulkTask<K,V,Double> {
5893 final ToDoubleBiFunction<? super K, ? super V> transformer;
5894 final DoubleBinaryOperator reducer;
5895 final double basis;
5896 double result;
5897 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5898 MapReduceMappingsToDoubleTask
5899 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5900 MapReduceMappingsToDoubleTask<K,V> nextRight,
5901 ToDoubleBiFunction<? super K, ? super V> transformer,
5902 double basis,
5903 DoubleBinaryOperator reducer) {
5904 super(p, b, i, f, t); this.nextRight = nextRight;
5905 this.transformer = transformer;
5906 this.basis = basis; this.reducer = reducer;
5907 }
5908 public final Double getRawResult() { return result; }
5909 public final void compute() {
5910 final ToDoubleBiFunction<? super K, ? super V> transformer;
5911 final DoubleBinaryOperator reducer;
5912 if ((transformer = this.transformer) != null &&
5913 (reducer = this.reducer) != null) {
5914 double r = this.basis;
5915 for (int i = baseIndex, f, h; batch > 0 &&
5916 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5917 addToPendingCount(1);
5918 (rights = new MapReduceMappingsToDoubleTask<K,V>
5919 (this, batch >>>= 1, baseLimit = h, f, tab,
5920 rights, transformer, r, reducer)).fork();
5921 }
5922 for (Node<K,V> p; (p = advance()) != null; )
5923 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5924 result = r;
5925 CountedCompleter<?> c;
5926 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5927 @SuppressWarnings("unchecked")
5928 MapReduceMappingsToDoubleTask<K,V>
5929 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5930 s = t.rights;
5931 while (s != null) {
5932 t.result = reducer.applyAsDouble(t.result, s.result);
5933 s = t.rights = s.nextRight;
5934 }
5935 }
5936 }
5937 }
5938 }
5939
5940 @SuppressWarnings("serial")
5941 static final class MapReduceKeysToLongTask<K,V>
5942 extends BulkTask<K,V,Long> {
5943 final ToLongFunction<? super K> transformer;
5944 final LongBinaryOperator reducer;
5945 final long basis;
5946 long result;
5947 MapReduceKeysToLongTask<K,V> rights, nextRight;
5948 MapReduceKeysToLongTask
5949 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5950 MapReduceKeysToLongTask<K,V> nextRight,
5951 ToLongFunction<? super K> transformer,
5952 long basis,
5953 LongBinaryOperator reducer) {
5954 super(p, b, i, f, t); this.nextRight = nextRight;
5955 this.transformer = transformer;
5956 this.basis = basis; this.reducer = reducer;
5957 }
5958 public final Long getRawResult() { return result; }
5959 public final void compute() {
5960 final ToLongFunction<? super K> transformer;
5961 final LongBinaryOperator reducer;
5962 if ((transformer = this.transformer) != null &&
5963 (reducer = this.reducer) != null) {
5964 long r = this.basis;
5965 for (int i = baseIndex, f, h; batch > 0 &&
5966 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5967 addToPendingCount(1);
5968 (rights = new MapReduceKeysToLongTask<K,V>
5969 (this, batch >>>= 1, baseLimit = h, f, tab,
5970 rights, transformer, r, reducer)).fork();
5971 }
5972 for (Node<K,V> p; (p = advance()) != null; )
5973 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5974 result = r;
5975 CountedCompleter<?> c;
5976 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5977 @SuppressWarnings("unchecked")
5978 MapReduceKeysToLongTask<K,V>
5979 t = (MapReduceKeysToLongTask<K,V>)c,
5980 s = t.rights;
5981 while (s != null) {
5982 t.result = reducer.applyAsLong(t.result, s.result);
5983 s = t.rights = s.nextRight;
5984 }
5985 }
5986 }
5987 }
5988 }
5989
5990 @SuppressWarnings("serial")
5991 static final class MapReduceValuesToLongTask<K,V>
5992 extends BulkTask<K,V,Long> {
5993 final ToLongFunction<? super V> transformer;
5994 final LongBinaryOperator reducer;
5995 final long basis;
5996 long result;
5997 MapReduceValuesToLongTask<K,V> rights, nextRight;
5998 MapReduceValuesToLongTask
5999 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6000 MapReduceValuesToLongTask<K,V> nextRight,
6001 ToLongFunction<? super V> transformer,
6002 long basis,
6003 LongBinaryOperator reducer) {
6004 super(p, b, i, f, t); this.nextRight = nextRight;
6005 this.transformer = transformer;
6006 this.basis = basis; this.reducer = reducer;
6007 }
6008 public final Long getRawResult() { return result; }
6009 public final void compute() {
6010 final ToLongFunction<? super V> transformer;
6011 final LongBinaryOperator reducer;
6012 if ((transformer = this.transformer) != null &&
6013 (reducer = this.reducer) != null) {
6014 long r = this.basis;
6015 for (int i = baseIndex, f, h; batch > 0 &&
6016 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6017 addToPendingCount(1);
6018 (rights = new MapReduceValuesToLongTask<K,V>
6019 (this, batch >>>= 1, baseLimit = h, f, tab,
6020 rights, transformer, r, reducer)).fork();
6021 }
6022 for (Node<K,V> p; (p = advance()) != null; )
6023 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
6024 result = r;
6025 CountedCompleter<?> c;
6026 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6027 @SuppressWarnings("unchecked")
6028 MapReduceValuesToLongTask<K,V>
6029 t = (MapReduceValuesToLongTask<K,V>)c,
6030 s = t.rights;
6031 while (s != null) {
6032 t.result = reducer.applyAsLong(t.result, s.result);
6033 s = t.rights = s.nextRight;
6034 }
6035 }
6036 }
6037 }
6038 }
6039
6040 @SuppressWarnings("serial")
6041 static final class MapReduceEntriesToLongTask<K,V>
6042 extends BulkTask<K,V,Long> {
6043 final ToLongFunction<Map.Entry<K,V>> transformer;
6044 final LongBinaryOperator reducer;
6045 final long basis;
6046 long result;
6047 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6048 MapReduceEntriesToLongTask
6049 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6050 MapReduceEntriesToLongTask<K,V> nextRight,
6051 ToLongFunction<Map.Entry<K,V>> transformer,
6052 long basis,
6053 LongBinaryOperator reducer) {
6054 super(p, b, i, f, t); this.nextRight = nextRight;
6055 this.transformer = transformer;
6056 this.basis = basis; this.reducer = reducer;
6057 }
6058 public final Long getRawResult() { return result; }
6059 public final void compute() {
6060 final ToLongFunction<Map.Entry<K,V>> transformer;
6061 final LongBinaryOperator reducer;
6062 if ((transformer = this.transformer) != null &&
6063 (reducer = this.reducer) != null) {
6064 long r = this.basis;
6065 for (int i = baseIndex, f, h; batch > 0 &&
6066 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6067 addToPendingCount(1);
6068 (rights = new MapReduceEntriesToLongTask<K,V>
6069 (this, batch >>>= 1, baseLimit = h, f, tab,
6070 rights, transformer, r, reducer)).fork();
6071 }
6072 for (Node<K,V> p; (p = advance()) != null; )
6073 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6074 result = r;
6075 CountedCompleter<?> c;
6076 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6077 @SuppressWarnings("unchecked")
6078 MapReduceEntriesToLongTask<K,V>
6079 t = (MapReduceEntriesToLongTask<K,V>)c,
6080 s = t.rights;
6081 while (s != null) {
6082 t.result = reducer.applyAsLong(t.result, s.result);
6083 s = t.rights = s.nextRight;
6084 }
6085 }
6086 }
6087 }
6088 }
6089
6090 @SuppressWarnings("serial")
6091 static final class MapReduceMappingsToLongTask<K,V>
6092 extends BulkTask<K,V,Long> {
6093 final ToLongBiFunction<? super K, ? super V> transformer;
6094 final LongBinaryOperator reducer;
6095 final long basis;
6096 long result;
6097 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6098 MapReduceMappingsToLongTask
6099 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6100 MapReduceMappingsToLongTask<K,V> nextRight,
6101 ToLongBiFunction<? super K, ? super V> transformer,
6102 long basis,
6103 LongBinaryOperator reducer) {
6104 super(p, b, i, f, t); this.nextRight = nextRight;
6105 this.transformer = transformer;
6106 this.basis = basis; this.reducer = reducer;
6107 }
6108 public final Long getRawResult() { return result; }
6109 public final void compute() {
6110 final ToLongBiFunction<? super K, ? super V> transformer;
6111 final LongBinaryOperator reducer;
6112 if ((transformer = this.transformer) != null &&
6113 (reducer = this.reducer) != null) {
6114 long r = this.basis;
6115 for (int i = baseIndex, f, h; batch > 0 &&
6116 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6117 addToPendingCount(1);
6118 (rights = new MapReduceMappingsToLongTask<K,V>
6119 (this, batch >>>= 1, baseLimit = h, f, tab,
6120 rights, transformer, r, reducer)).fork();
6121 }
6122 for (Node<K,V> p; (p = advance()) != null; )
6123 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6124 result = r;
6125 CountedCompleter<?> c;
6126 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6127 @SuppressWarnings("unchecked")
6128 MapReduceMappingsToLongTask<K,V>
6129 t = (MapReduceMappingsToLongTask<K,V>)c,
6130 s = t.rights;
6131 while (s != null) {
6132 t.result = reducer.applyAsLong(t.result, s.result);
6133 s = t.rights = s.nextRight;
6134 }
6135 }
6136 }
6137 }
6138 }
6139
6140 @SuppressWarnings("serial")
6141 static final class MapReduceKeysToIntTask<K,V>
6142 extends BulkTask<K,V,Integer> {
6143 final ToIntFunction<? super K> transformer;
6144 final IntBinaryOperator reducer;
6145 final int basis;
6146 int result;
6147 MapReduceKeysToIntTask<K,V> rights, nextRight;
6148 MapReduceKeysToIntTask
6149 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6150 MapReduceKeysToIntTask<K,V> nextRight,
6151 ToIntFunction<? super K> transformer,
6152 int basis,
6153 IntBinaryOperator reducer) {
6154 super(p, b, i, f, t); this.nextRight = nextRight;
6155 this.transformer = transformer;
6156 this.basis = basis; this.reducer = reducer;
6157 }
6158 public final Integer getRawResult() { return result; }
6159 public final void compute() {
6160 final ToIntFunction<? super K> transformer;
6161 final IntBinaryOperator reducer;
6162 if ((transformer = this.transformer) != null &&
6163 (reducer = this.reducer) != null) {
6164 int r = this.basis;
6165 for (int i = baseIndex, f, h; batch > 0 &&
6166 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6167 addToPendingCount(1);
6168 (rights = new MapReduceKeysToIntTask<K,V>
6169 (this, batch >>>= 1, baseLimit = h, f, tab,
6170 rights, transformer, r, reducer)).fork();
6171 }
6172 for (Node<K,V> p; (p = advance()) != null; )
6173 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6174 result = r;
6175 CountedCompleter<?> c;
6176 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6177 @SuppressWarnings("unchecked")
6178 MapReduceKeysToIntTask<K,V>
6179 t = (MapReduceKeysToIntTask<K,V>)c,
6180 s = t.rights;
6181 while (s != null) {
6182 t.result = reducer.applyAsInt(t.result, s.result);
6183 s = t.rights = s.nextRight;
6184 }
6185 }
6186 }
6187 }
6188 }
6189
6190 @SuppressWarnings("serial")
6191 static final class MapReduceValuesToIntTask<K,V>
6192 extends BulkTask<K,V,Integer> {
6193 final ToIntFunction<? super V> transformer;
6194 final IntBinaryOperator reducer;
6195 final int basis;
6196 int result;
6197 MapReduceValuesToIntTask<K,V> rights, nextRight;
6198 MapReduceValuesToIntTask
6199 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6200 MapReduceValuesToIntTask<K,V> nextRight,
6201 ToIntFunction<? super V> transformer,
6202 int basis,
6203 IntBinaryOperator reducer) {
6204 super(p, b, i, f, t); this.nextRight = nextRight;
6205 this.transformer = transformer;
6206 this.basis = basis; this.reducer = reducer;
6207 }
6208 public final Integer getRawResult() { return result; }
6209 public final void compute() {
6210 final ToIntFunction<? super V> transformer;
6211 final IntBinaryOperator reducer;
6212 if ((transformer = this.transformer) != null &&
6213 (reducer = this.reducer) != null) {
6214 int r = this.basis;
6215 for (int i = baseIndex, f, h; batch > 0 &&
6216 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6217 addToPendingCount(1);
6218 (rights = new MapReduceValuesToIntTask<K,V>
6219 (this, batch >>>= 1, baseLimit = h, f, tab,
6220 rights, transformer, r, reducer)).fork();
6221 }
6222 for (Node<K,V> p; (p = advance()) != null; )
6223 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6224 result = r;
6225 CountedCompleter<?> c;
6226 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6227 @SuppressWarnings("unchecked")
6228 MapReduceValuesToIntTask<K,V>
6229 t = (MapReduceValuesToIntTask<K,V>)c,
6230 s = t.rights;
6231 while (s != null) {
6232 t.result = reducer.applyAsInt(t.result, s.result);
6233 s = t.rights = s.nextRight;
6234 }
6235 }
6236 }
6237 }
6238 }
6239
6240 @SuppressWarnings("serial")
6241 static final class MapReduceEntriesToIntTask<K,V>
6242 extends BulkTask<K,V,Integer> {
6243 final ToIntFunction<Map.Entry<K,V>> transformer;
6244 final IntBinaryOperator reducer;
6245 final int basis;
6246 int result;
6247 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6248 MapReduceEntriesToIntTask
6249 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6250 MapReduceEntriesToIntTask<K,V> nextRight,
6251 ToIntFunction<Map.Entry<K,V>> transformer,
6252 int basis,
6253 IntBinaryOperator reducer) {
6254 super(p, b, i, f, t); this.nextRight = nextRight;
6255 this.transformer = transformer;
6256 this.basis = basis; this.reducer = reducer;
6257 }
6258 public final Integer getRawResult() { return result; }
6259 public final void compute() {
6260 final ToIntFunction<Map.Entry<K,V>> transformer;
6261 final IntBinaryOperator reducer;
6262 if ((transformer = this.transformer) != null &&
6263 (reducer = this.reducer) != null) {
6264 int r = this.basis;
6265 for (int i = baseIndex, f, h; batch > 0 &&
6266 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6267 addToPendingCount(1);
6268 (rights = new MapReduceEntriesToIntTask<K,V>
6269 (this, batch >>>= 1, baseLimit = h, f, tab,
6270 rights, transformer, r, reducer)).fork();
6271 }
6272 for (Node<K,V> p; (p = advance()) != null; )
6273 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6274 result = r;
6275 CountedCompleter<?> c;
6276 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6277 @SuppressWarnings("unchecked")
6278 MapReduceEntriesToIntTask<K,V>
6279 t = (MapReduceEntriesToIntTask<K,V>)c,
6280 s = t.rights;
6281 while (s != null) {
6282 t.result = reducer.applyAsInt(t.result, s.result);
6283 s = t.rights = s.nextRight;
6284 }
6285 }
6286 }
6287 }
6288 }
6289
6290 @SuppressWarnings("serial")
6291 static final class MapReduceMappingsToIntTask<K,V>
6292 extends BulkTask<K,V,Integer> {
6293 final ToIntBiFunction<? super K, ? super V> transformer;
6294 final IntBinaryOperator reducer;
6295 final int basis;
6296 int result;
6297 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6298 MapReduceMappingsToIntTask
6299 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6300 MapReduceMappingsToIntTask<K,V> nextRight,
6301 ToIntBiFunction<? super K, ? super V> transformer,
6302 int basis,
6303 IntBinaryOperator reducer) {
6304 super(p, b, i, f, t); this.nextRight = nextRight;
6305 this.transformer = transformer;
6306 this.basis = basis; this.reducer = reducer;
6307 }
6308 public final Integer getRawResult() { return result; }
6309 public final void compute() {
6310 final ToIntBiFunction<? super K, ? super V> transformer;
6311 final IntBinaryOperator reducer;
6312 if ((transformer = this.transformer) != null &&
6313 (reducer = this.reducer) != null) {
6314 int r = this.basis;
6315 for (int i = baseIndex, f, h; batch > 0 &&
6316 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6317 addToPendingCount(1);
6318 (rights = new MapReduceMappingsToIntTask<K,V>
6319 (this, batch >>>= 1, baseLimit = h, f, tab,
6320 rights, transformer, r, reducer)).fork();
6321 }
6322 for (Node<K,V> p; (p = advance()) != null; )
6323 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6324 result = r;
6325 CountedCompleter<?> c;
6326 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6327 @SuppressWarnings("unchecked")
6328 MapReduceMappingsToIntTask<K,V>
6329 t = (MapReduceMappingsToIntTask<K,V>)c,
6330 s = t.rights;
6331 while (s != null) {
6332 t.result = reducer.applyAsInt(t.result, s.result);
6333 s = t.rights = s.nextRight;
6334 }
6335 }
6336 }
6337 }
6338 }
6339
6340 // Unsafe mechanics
6341 private static final Unsafe U = Unsafe.getUnsafe();
6342 private static final long SIZECTL;
6343 private static final long TRANSFERINDEX;
6344 private static final long BASECOUNT;
6345 private static final long CELLSBUSY;
6346 private static final long CELLVALUE;
6347 private static final int ABASE;
6348 private static final int ASHIFT;
6349
6350 static {
6351 try {
6352 SIZECTL = U.objectFieldOffset
6353 (ConcurrentHashMap.class.getDeclaredField("sizeCtl"));
6354 TRANSFERINDEX = U.objectFieldOffset
6355 (ConcurrentHashMap.class.getDeclaredField("transferIndex"));
6356 BASECOUNT = U.objectFieldOffset
6357 (ConcurrentHashMap.class.getDeclaredField("baseCount"));
6358 CELLSBUSY = U.objectFieldOffset
6359 (ConcurrentHashMap.class.getDeclaredField("cellsBusy"));
6360
6361 CELLVALUE = U.objectFieldOffset
6362 (CounterCell.class.getDeclaredField("value"));
6363
6364 ABASE = U.arrayBaseOffset(Node[].class);
6365 int scale = U.arrayIndexScale(Node[].class);
6366 if ((scale & (scale - 1)) != 0)
6367 throw new Error("array index scale not a power of two");
6368 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6369 } catch (ReflectiveOperationException e) {
6370 throw new Error(e);
6371 }
6372
6373 // Reduce the risk of rare disastrous classloading in first call to
6374 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6375 Class<?> ensureLoaded = LockSupport.class;
6376 }
6377 }