ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.315
Committed: Wed Nov 28 23:52:49 2018 UTC (5 years, 6 months ago) by dl
Branch: MAIN
Changes since 1.314: +3 -3 lines
Log Message:
Fix resize help-out check

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.io.Serializable;
11 import java.lang.reflect.ParameterizedType;
12 import java.lang.reflect.Type;
13 import java.util.AbstractMap;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Enumeration;
17 import java.util.HashMap;
18 import java.util.Hashtable;
19 import java.util.Iterator;
20 import java.util.Map;
21 import java.util.NoSuchElementException;
22 import java.util.Set;
23 import java.util.Spliterator;
24 import java.util.concurrent.atomic.AtomicReference;
25 import java.util.concurrent.locks.LockSupport;
26 import java.util.concurrent.locks.ReentrantLock;
27 import java.util.function.BiConsumer;
28 import java.util.function.BiFunction;
29 import java.util.function.Consumer;
30 import java.util.function.DoubleBinaryOperator;
31 import java.util.function.Function;
32 import java.util.function.IntBinaryOperator;
33 import java.util.function.LongBinaryOperator;
34 import java.util.function.Predicate;
35 import java.util.function.ToDoubleBiFunction;
36 import java.util.function.ToDoubleFunction;
37 import java.util.function.ToIntBiFunction;
38 import java.util.function.ToIntFunction;
39 import java.util.function.ToLongBiFunction;
40 import java.util.function.ToLongFunction;
41 import java.util.stream.Stream;
42 import jdk.internal.misc.Unsafe;
43
44 /**
45 * A hash table supporting full concurrency of retrievals and
46 * high expected concurrency for updates. This class obeys the
47 * same functional specification as {@link java.util.Hashtable}, and
48 * includes versions of methods corresponding to each method of
49 * {@code Hashtable}. However, even though all operations are
50 * thread-safe, retrieval operations do <em>not</em> entail locking,
51 * and there is <em>not</em> any support for locking the entire table
52 * in a way that prevents all access. This class is fully
53 * interoperable with {@code Hashtable} in programs that rely on its
54 * thread safety but not on its synchronization details.
55 *
56 * <p>Retrieval operations (including {@code get}) generally do not
57 * block, so may overlap with update operations (including {@code put}
58 * and {@code remove}). Retrievals reflect the results of the most
59 * recently <em>completed</em> update operations holding upon their
60 * onset. (More formally, an update operation for a given key bears a
61 * <em>happens-before</em> relation with any (non-null) retrieval for
62 * that key reporting the updated value.) For aggregate operations
63 * such as {@code putAll} and {@code clear}, concurrent retrievals may
64 * reflect insertion or removal of only some entries. Similarly,
65 * Iterators, Spliterators and Enumerations return elements reflecting the
66 * state of the hash table at some point at or since the creation of the
67 * iterator/enumeration. They do <em>not</em> throw {@link
68 * java.util.ConcurrentModificationException ConcurrentModificationException}.
69 * However, iterators are designed to be used by only one thread at a time.
70 * Bear in mind that the results of aggregate status methods including
71 * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
72 * useful only when a map is not undergoing concurrent updates in other threads.
73 * Otherwise the results of these methods reflect transient states
74 * that may be adequate for monitoring or estimation purposes, but not
75 * for program control.
76 *
77 * <p>The table is dynamically expanded when there are too many
78 * collisions (i.e., keys that have distinct hash codes but fall into
79 * the same slot modulo the table size), with the expected average
80 * effect of maintaining roughly two bins per mapping (corresponding
81 * to a 0.75 load factor threshold for resizing). There may be much
82 * variance around this average as mappings are added and removed, but
83 * overall, this maintains a commonly accepted time/space tradeoff for
84 * hash tables. However, resizing this or any other kind of hash
85 * table may be a relatively slow operation. When possible, it is a
86 * good idea to provide a size estimate as an optional {@code
87 * initialCapacity} constructor argument. An additional optional
88 * {@code loadFactor} constructor argument provides a further means of
89 * customizing initial table capacity by specifying the table density
90 * to be used in calculating the amount of space to allocate for the
91 * given number of elements. Also, for compatibility with previous
92 * versions of this class, constructors may optionally specify an
93 * expected {@code concurrencyLevel} as an additional hint for
94 * internal sizing. Note that using many keys with exactly the same
95 * {@code hashCode()} is a sure way to slow down performance of any
96 * hash table. To ameliorate impact, when keys are {@link Comparable},
97 * this class may use comparison order among keys to help break ties.
98 *
99 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
100 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
101 * (using {@link #keySet(Object)} when only keys are of interest, and the
102 * mapped values are (perhaps transiently) not used or all take the
103 * same mapping value.
104 *
105 * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
106 * form of histogram or multiset) by using {@link
107 * java.util.concurrent.atomic.LongAdder} values and initializing via
108 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
109 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
110 * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
111 *
112 * <p>This class and its views and iterators implement all of the
113 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
114 * interfaces.
115 *
116 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
117 * does <em>not</em> allow {@code null} to be used as a key or value.
118 *
119 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
120 * operations that, unlike most {@link Stream} methods, are designed
121 * to be safely, and often sensibly, applied even with maps that are
122 * being concurrently updated by other threads; for example, when
123 * computing a snapshot summary of the values in a shared registry.
124 * There are three kinds of operation, each with four forms, accepting
125 * functions with keys, values, entries, and (key, value) pairs as
126 * arguments and/or return values. Because the elements of a
127 * ConcurrentHashMap are not ordered in any particular way, and may be
128 * processed in different orders in different parallel executions, the
129 * correctness of supplied functions should not depend on any
130 * ordering, or on any other objects or values that may transiently
131 * change while computation is in progress; and except for forEach
132 * actions, should ideally be side-effect-free. Bulk operations on
133 * {@link Map.Entry} objects do not support method {@code setValue}.
134 *
135 * <ul>
136 * <li>forEach: Performs a given action on each element.
137 * A variant form applies a given transformation on each element
138 * before performing the action.
139 *
140 * <li>search: Returns the first available non-null result of
141 * applying a given function on each element; skipping further
142 * search when a result is found.
143 *
144 * <li>reduce: Accumulates each element. The supplied reduction
145 * function cannot rely on ordering (more formally, it should be
146 * both associative and commutative). There are five variants:
147 *
148 * <ul>
149 *
150 * <li>Plain reductions. (There is not a form of this method for
151 * (key, value) function arguments since there is no corresponding
152 * return type.)
153 *
154 * <li>Mapped reductions that accumulate the results of a given
155 * function applied to each element.
156 *
157 * <li>Reductions to scalar doubles, longs, and ints, using a
158 * given basis value.
159 *
160 * </ul>
161 * </ul>
162 *
163 * <p>These bulk operations accept a {@code parallelismThreshold}
164 * argument. Methods proceed sequentially if the current map size is
165 * estimated to be less than the given threshold. Using a value of
166 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
167 * of {@code 1} results in maximal parallelism by partitioning into
168 * enough subtasks to fully utilize the {@link
169 * ForkJoinPool#commonPool()} that is used for all parallel
170 * computations. Normally, you would initially choose one of these
171 * extreme values, and then measure performance of using in-between
172 * values that trade off overhead versus throughput.
173 *
174 * <p>The concurrency properties of bulk operations follow
175 * from those of ConcurrentHashMap: Any non-null result returned
176 * from {@code get(key)} and related access methods bears a
177 * happens-before relation with the associated insertion or
178 * update. The result of any bulk operation reflects the
179 * composition of these per-element relations (but is not
180 * necessarily atomic with respect to the map as a whole unless it
181 * is somehow known to be quiescent). Conversely, because keys
182 * and values in the map are never null, null serves as a reliable
183 * atomic indicator of the current lack of any result. To
184 * maintain this property, null serves as an implicit basis for
185 * all non-scalar reduction operations. For the double, long, and
186 * int versions, the basis should be one that, when combined with
187 * any other value, returns that other value (more formally, it
188 * should be the identity element for the reduction). Most common
189 * reductions have these properties; for example, computing a sum
190 * with basis 0 or a minimum with basis MAX_VALUE.
191 *
192 * <p>Search and transformation functions provided as arguments
193 * should similarly return null to indicate the lack of any result
194 * (in which case it is not used). In the case of mapped
195 * reductions, this also enables transformations to serve as
196 * filters, returning null (or, in the case of primitive
197 * specializations, the identity basis) if the element should not
198 * be combined. You can create compound transformations and
199 * filterings by composing them yourself under this "null means
200 * there is nothing there now" rule before using them in search or
201 * reduce operations.
202 *
203 * <p>Methods accepting and/or returning Entry arguments maintain
204 * key-value associations. They may be useful for example when
205 * finding the key for the greatest value. Note that "plain" Entry
206 * arguments can be supplied using {@code new
207 * AbstractMap.SimpleEntry(k,v)}.
208 *
209 * <p>Bulk operations may complete abruptly, throwing an
210 * exception encountered in the application of a supplied
211 * function. Bear in mind when handling such exceptions that other
212 * concurrently executing functions could also have thrown
213 * exceptions, or would have done so if the first exception had
214 * not occurred.
215 *
216 * <p>Speedups for parallel compared to sequential forms are common
217 * but not guaranteed. Parallel operations involving brief functions
218 * on small maps may execute more slowly than sequential forms if the
219 * underlying work to parallelize the computation is more expensive
220 * than the computation itself. Similarly, parallelization may not
221 * lead to much actual parallelism if all processors are busy
222 * performing unrelated tasks.
223 *
224 * <p>All arguments to all task methods must be non-null.
225 *
226 * <p>This class is a member of the
227 * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
228 * Java Collections Framework</a>.
229 *
230 * @since 1.5
231 * @author Doug Lea
232 * @param <K> the type of keys maintained by this map
233 * @param <V> the type of mapped values
234 */
235 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
236 implements ConcurrentMap<K,V>, Serializable {
237 private static final long serialVersionUID = 7249069246763182397L;
238
239 /*
240 * Overview:
241 *
242 * The primary design goal of this hash table is to maintain
243 * concurrent readability (typically method get(), but also
244 * iterators and related methods) while minimizing update
245 * contention. Secondary goals are to keep space consumption about
246 * the same or better than java.util.HashMap, and to support high
247 * initial insertion rates on an empty table by many threads.
248 *
249 * This map usually acts as a binned (bucketed) hash table. Each
250 * key-value mapping is held in a Node. Most nodes are instances
251 * of the basic Node class with hash, key, value, and next
252 * fields. However, various subclasses exist: TreeNodes are
253 * arranged in balanced trees, not lists. TreeBins hold the roots
254 * of sets of TreeNodes. ForwardingNodes are placed at the heads
255 * of bins during resizing. ReservationNodes are used as
256 * placeholders while establishing values in computeIfAbsent and
257 * related methods. The types TreeBin, ForwardingNode, and
258 * ReservationNode do not hold normal user keys, values, or
259 * hashes, and are readily distinguishable during search etc
260 * because they have negative hash fields and null key and value
261 * fields. (These special nodes are either uncommon or transient,
262 * so the impact of carrying around some unused fields is
263 * insignificant.)
264 *
265 * The table is lazily initialized to a power-of-two size upon the
266 * first insertion. Each bin in the table normally contains a
267 * list of Nodes (most often, the list has only zero or one Node).
268 * Table accesses require volatile/atomic reads, writes, and
269 * CASes. Because there is no other way to arrange this without
270 * adding further indirections, we use intrinsics
271 * (jdk.internal.misc.Unsafe) operations.
272 *
273 * We use the top (sign) bit of Node hash fields for control
274 * purposes -- it is available anyway because of addressing
275 * constraints. Nodes with negative hash fields are specially
276 * handled or ignored in map methods.
277 *
278 * Insertion (via put or its variants) of the first node in an
279 * empty bin is performed by just CASing it to the bin. This is
280 * by far the most common case for put operations under most
281 * key/hash distributions. Other update operations (insert,
282 * delete, and replace) require locks. We do not want to waste
283 * the space required to associate a distinct lock object with
284 * each bin, so instead use the first node of a bin list itself as
285 * a lock. Locking support for these locks relies on builtin
286 * "synchronized" monitors.
287 *
288 * Using the first node of a list as a lock does not by itself
289 * suffice though: When a node is locked, any update must first
290 * validate that it is still the first node after locking it, and
291 * retry if not. Because new nodes are always appended to lists,
292 * once a node is first in a bin, it remains first until deleted
293 * or the bin becomes invalidated (upon resizing).
294 *
295 * The main disadvantage of per-bin locks is that other update
296 * operations on other nodes in a bin list protected by the same
297 * lock can stall, for example when user equals() or mapping
298 * functions take a long time. However, statistically, under
299 * random hash codes, this is not a common problem. Ideally, the
300 * frequency of nodes in bins follows a Poisson distribution
301 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
302 * parameter of about 0.5 on average, given the resizing threshold
303 * of 0.75, although with a large variance because of resizing
304 * granularity. Ignoring variance, the expected occurrences of
305 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
306 * first values are:
307 *
308 * 0: 0.60653066
309 * 1: 0.30326533
310 * 2: 0.07581633
311 * 3: 0.01263606
312 * 4: 0.00157952
313 * 5: 0.00015795
314 * 6: 0.00001316
315 * 7: 0.00000094
316 * 8: 0.00000006
317 * more: less than 1 in ten million
318 *
319 * Lock contention probability for two threads accessing distinct
320 * elements is roughly 1 / (8 * #elements) under random hashes.
321 *
322 * Actual hash code distributions encountered in practice
323 * sometimes deviate significantly from uniform randomness. This
324 * includes the case when N > (1<<30), so some keys MUST collide.
325 * Similarly for dumb or hostile usages in which multiple keys are
326 * designed to have identical hash codes or ones that differs only
327 * in masked-out high bits. So we use a secondary strategy that
328 * applies when the number of nodes in a bin exceeds a
329 * threshold. These TreeBins use a balanced tree to hold nodes (a
330 * specialized form of red-black trees), bounding search time to
331 * O(log N). Each search step in a TreeBin is at least twice as
332 * slow as in a regular list, but given that N cannot exceed
333 * (1<<64) (before running out of addresses) this bounds search
334 * steps, lock hold times, etc, to reasonable constants (roughly
335 * 100 nodes inspected per operation worst case) so long as keys
336 * are Comparable (which is very common -- String, Long, etc).
337 * TreeBin nodes (TreeNodes) also maintain the same "next"
338 * traversal pointers as regular nodes, so can be traversed in
339 * iterators in the same way.
340 *
341 * The table is resized when occupancy exceeds a percentage
342 * threshold (nominally, 0.75, but see below). Any thread
343 * noticing an overfull bin may assist in resizing after the
344 * initiating thread allocates and sets up the replacement array.
345 * However, rather than stalling, these other threads may proceed
346 * with insertions etc. The use of TreeBins shields us from the
347 * worst case effects of overfilling while resizes are in
348 * progress. Resizing proceeds by transferring bins, one by one,
349 * from the table to the next table. However, threads claim small
350 * blocks of indices to transfer (via field transferIndex) before
351 * doing so, reducing contention. A generation stamp in field
352 * sizeCtl ensures that resizings do not overlap. Because we are
353 * using power-of-two expansion, the elements from each bin must
354 * either stay at same index, or move with a power of two
355 * offset. We eliminate unnecessary node creation by catching
356 * cases where old nodes can be reused because their next fields
357 * won't change. On average, only about one-sixth of them need
358 * cloning when a table doubles. The nodes they replace will be
359 * garbage collectable as soon as they are no longer referenced by
360 * any reader thread that may be in the midst of concurrently
361 * traversing table. Upon transfer, the old table bin contains
362 * only a special forwarding node (with hash field "MOVED") that
363 * contains the next table as its key. On encountering a
364 * forwarding node, access and update operations restart, using
365 * the new table.
366 *
367 * Each bin transfer requires its bin lock, which can stall
368 * waiting for locks while resizing. However, because other
369 * threads can join in and help resize rather than contend for
370 * locks, average aggregate waits become shorter as resizing
371 * progresses. The transfer operation must also ensure that all
372 * accessible bins in both the old and new table are usable by any
373 * traversal. This is arranged in part by proceeding from the
374 * last bin (table.length - 1) up towards the first. Upon seeing
375 * a forwarding node, traversals (see class Traverser) arrange to
376 * move to the new table without revisiting nodes. To ensure that
377 * no intervening nodes are skipped even when moved out of order,
378 * a stack (see class TableStack) is created on first encounter of
379 * a forwarding node during a traversal, to maintain its place if
380 * later processing the current table. The need for these
381 * save/restore mechanics is relatively rare, but when one
382 * forwarding node is encountered, typically many more will be.
383 * So Traversers use a simple caching scheme to avoid creating so
384 * many new TableStack nodes. (Thanks to Peter Levart for
385 * suggesting use of a stack here.)
386 *
387 * The traversal scheme also applies to partial traversals of
388 * ranges of bins (via an alternate Traverser constructor)
389 * to support partitioned aggregate operations. Also, read-only
390 * operations give up if ever forwarded to a null table, which
391 * provides support for shutdown-style clearing, which is also not
392 * currently implemented.
393 *
394 * Lazy table initialization minimizes footprint until first use,
395 * and also avoids resizings when the first operation is from a
396 * putAll, constructor with map argument, or deserialization.
397 * These cases attempt to override the initial capacity settings,
398 * but harmlessly fail to take effect in cases of races.
399 *
400 * The element count is maintained using a specialization of
401 * LongAdder. We need to incorporate a specialization rather than
402 * just use a LongAdder in order to access implicit
403 * contention-sensing that leads to creation of multiple
404 * CounterCells. The counter mechanics avoid contention on
405 * updates but can encounter cache thrashing if read too
406 * frequently during concurrent access. To avoid reading so often,
407 * resizing under contention is attempted only upon adding to a
408 * bin already holding two or more nodes. Under uniform hash
409 * distributions, the probability of this occurring at threshold
410 * is around 13%, meaning that only about 1 in 8 puts check
411 * threshold (and after resizing, many fewer do so).
412 *
413 * TreeBins use a special form of comparison for search and
414 * related operations (which is the main reason we cannot use
415 * existing collections such as TreeMaps). TreeBins contain
416 * Comparable elements, but may contain others, as well as
417 * elements that are Comparable but not necessarily Comparable for
418 * the same T, so we cannot invoke compareTo among them. To handle
419 * this, the tree is ordered primarily by hash value, then by
420 * Comparable.compareTo order if applicable. On lookup at a node,
421 * if elements are not comparable or compare as 0 then both left
422 * and right children may need to be searched in the case of tied
423 * hash values. (This corresponds to the full list search that
424 * would be necessary if all elements were non-Comparable and had
425 * tied hashes.) On insertion, to keep a total ordering (or as
426 * close as is required here) across rebalancings, we compare
427 * classes and identityHashCodes as tie-breakers. The red-black
428 * balancing code is updated from pre-jdk-collections
429 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
430 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
431 * Algorithms" (CLR).
432 *
433 * TreeBins also require an additional locking mechanism. While
434 * list traversal is always possible by readers even during
435 * updates, tree traversal is not, mainly because of tree-rotations
436 * that may change the root node and/or its linkages. TreeBins
437 * include a simple read-write lock mechanism parasitic on the
438 * main bin-synchronization strategy: Structural adjustments
439 * associated with an insertion or removal are already bin-locked
440 * (and so cannot conflict with other writers) but must wait for
441 * ongoing readers to finish. Since there can be only one such
442 * waiter, we use a simple scheme using a single "waiter" field to
443 * block writers. However, readers need never block. If the root
444 * lock is held, they proceed along the slow traversal path (via
445 * next-pointers) until the lock becomes available or the list is
446 * exhausted, whichever comes first. These cases are not fast, but
447 * maximize aggregate expected throughput.
448 *
449 * Maintaining API and serialization compatibility with previous
450 * versions of this class introduces several oddities. Mainly: We
451 * leave untouched but unused constructor arguments referring to
452 * concurrencyLevel. We accept a loadFactor constructor argument,
453 * but apply it only to initial table capacity (which is the only
454 * time that we can guarantee to honor it.) We also declare an
455 * unused "Segment" class that is instantiated in minimal form
456 * only when serializing.
457 *
458 * Also, solely for compatibility with previous versions of this
459 * class, it extends AbstractMap, even though all of its methods
460 * are overridden, so it is just useless baggage.
461 *
462 * This file is organized to make things a little easier to follow
463 * while reading than they might otherwise: First the main static
464 * declarations and utilities, then fields, then main public
465 * methods (with a few factorings of multiple public methods into
466 * internal ones), then sizing methods, trees, traversers, and
467 * bulk operations.
468 */
469
470 /* ---------------- Constants -------------- */
471
472 /**
473 * The largest possible table capacity. This value must be
474 * exactly 1<<30 to stay within Java array allocation and indexing
475 * bounds for power of two table sizes, and is further required
476 * because the top two bits of 32bit hash fields are used for
477 * control purposes.
478 */
479 private static final int MAXIMUM_CAPACITY = 1 << 30;
480
481 /**
482 * The default initial table capacity. Must be a power of 2
483 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
484 */
485 private static final int DEFAULT_CAPACITY = 16;
486
487 /**
488 * The largest possible (non-power of two) array size.
489 * Needed by toArray and related methods.
490 */
491 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
492
493 /**
494 * The default concurrency level for this table. Unused but
495 * defined for compatibility with previous versions of this class.
496 */
497 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
498
499 /**
500 * The load factor for this table. Overrides of this value in
501 * constructors affect only the initial table capacity. The
502 * actual floating point value isn't normally used -- it is
503 * simpler to use expressions such as {@code n - (n >>> 2)} for
504 * the associated resizing threshold.
505 */
506 private static final float LOAD_FACTOR = 0.75f;
507
508 /**
509 * The bin count threshold for using a tree rather than list for a
510 * bin. Bins are converted to trees when adding an element to a
511 * bin with at least this many nodes. The value must be greater
512 * than 2, and should be at least 8 to mesh with assumptions in
513 * tree removal about conversion back to plain bins upon
514 * shrinkage.
515 */
516 static final int TREEIFY_THRESHOLD = 8;
517
518 /**
519 * The bin count threshold for untreeifying a (split) bin during a
520 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
521 * most 6 to mesh with shrinkage detection under removal.
522 */
523 static final int UNTREEIFY_THRESHOLD = 6;
524
525 /**
526 * The smallest table capacity for which bins may be treeified.
527 * (Otherwise the table is resized if too many nodes in a bin.)
528 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
529 * conflicts between resizing and treeification thresholds.
530 */
531 static final int MIN_TREEIFY_CAPACITY = 64;
532
533 /**
534 * Minimum number of rebinnings per transfer step. Ranges are
535 * subdivided to allow multiple resizer threads. This value
536 * serves as a lower bound to avoid resizers encountering
537 * excessive memory contention. The value should be at least
538 * DEFAULT_CAPACITY.
539 */
540 private static final int MIN_TRANSFER_STRIDE = 16;
541
542 /**
543 * The number of bits used for generation stamp in sizeCtl.
544 * Must be at least 6 for 32bit arrays.
545 */
546 private static final int RESIZE_STAMP_BITS = 16;
547
548 /**
549 * The maximum number of threads that can help resize.
550 * Must fit in 32 - RESIZE_STAMP_BITS bits.
551 */
552 private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
553
554 /**
555 * The bit shift for recording size stamp in sizeCtl.
556 */
557 private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
558
559 /*
560 * Encodings for Node hash fields. See above for explanation.
561 */
562 static final int MOVED = -1; // hash for forwarding nodes
563 static final int TREEBIN = -2; // hash for roots of trees
564 static final int RESERVED = -3; // hash for transient reservations
565 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
566
567 /** Number of CPUS, to place bounds on some sizings */
568 static final int NCPU = Runtime.getRuntime().availableProcessors();
569
570 /**
571 * Serialized pseudo-fields, provided only for jdk7 compatibility.
572 * @serialField segments Segment[]
573 * The segments, each of which is a specialized hash table.
574 * @serialField segmentMask int
575 * Mask value for indexing into segments. The upper bits of a
576 * key's hash code are used to choose the segment.
577 * @serialField segmentShift int
578 * Shift value for indexing within segments.
579 */
580 private static final ObjectStreamField[] serialPersistentFields = {
581 new ObjectStreamField("segments", Segment[].class),
582 new ObjectStreamField("segmentMask", Integer.TYPE),
583 new ObjectStreamField("segmentShift", Integer.TYPE),
584 };
585
586 /* ---------------- Nodes -------------- */
587
588 /**
589 * Key-value entry. This class is never exported out as a
590 * user-mutable Map.Entry (i.e., one supporting setValue; see
591 * MapEntry below), but can be used for read-only traversals used
592 * in bulk tasks. Subclasses of Node with a negative hash field
593 * are special, and contain null keys and values (but are never
594 * exported). Otherwise, keys and vals are never null.
595 */
596 static class Node<K,V> implements Map.Entry<K,V> {
597 final int hash;
598 final K key;
599 volatile V val;
600 volatile Node<K,V> next;
601
602 Node(int hash, K key, V val) {
603 this.hash = hash;
604 this.key = key;
605 this.val = val;
606 }
607
608 Node(int hash, K key, V val, Node<K,V> next) {
609 this(hash, key, val);
610 this.next = next;
611 }
612
613 public final K getKey() { return key; }
614 public final V getValue() { return val; }
615 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
616 public final String toString() {
617 return Helpers.mapEntryToString(key, val);
618 }
619 public final V setValue(V value) {
620 throw new UnsupportedOperationException();
621 }
622
623 public final boolean equals(Object o) {
624 Object k, v, u; Map.Entry<?,?> e;
625 return ((o instanceof Map.Entry) &&
626 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
627 (v = e.getValue()) != null &&
628 (k == key || k.equals(key)) &&
629 (v == (u = val) || v.equals(u)));
630 }
631
632 /**
633 * Virtualized support for map.get(); overridden in subclasses.
634 */
635 Node<K,V> find(int h, Object k) {
636 Node<K,V> e = this;
637 if (k != null) {
638 do {
639 K ek;
640 if (e.hash == h &&
641 ((ek = e.key) == k || (ek != null && k.equals(ek))))
642 return e;
643 } while ((e = e.next) != null);
644 }
645 return null;
646 }
647 }
648
649 /* ---------------- Static utilities -------------- */
650
651 /**
652 * Spreads (XORs) higher bits of hash to lower and also forces top
653 * bit to 0. Because the table uses power-of-two masking, sets of
654 * hashes that vary only in bits above the current mask will
655 * always collide. (Among known examples are sets of Float keys
656 * holding consecutive whole numbers in small tables.) So we
657 * apply a transform that spreads the impact of higher bits
658 * downward. There is a tradeoff between speed, utility, and
659 * quality of bit-spreading. Because many common sets of hashes
660 * are already reasonably distributed (so don't benefit from
661 * spreading), and because we use trees to handle large sets of
662 * collisions in bins, we just XOR some shifted bits in the
663 * cheapest possible way to reduce systematic lossage, as well as
664 * to incorporate impact of the highest bits that would otherwise
665 * never be used in index calculations because of table bounds.
666 */
667 static final int spread(int h) {
668 return (h ^ (h >>> 16)) & HASH_BITS;
669 }
670
671 /**
672 * Returns a power of two table size for the given desired capacity.
673 * See Hackers Delight, sec 3.2
674 */
675 private static final int tableSizeFor(int c) {
676 int n = -1 >>> Integer.numberOfLeadingZeros(c - 1);
677 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
678 }
679
680 /**
681 * Returns x's Class if it is of the form "class C implements
682 * Comparable<C>", else null.
683 */
684 static Class<?> comparableClassFor(Object x) {
685 if (x instanceof Comparable) {
686 Class<?> c; Type[] ts, as; ParameterizedType p;
687 if ((c = x.getClass()) == String.class) // bypass checks
688 return c;
689 if ((ts = c.getGenericInterfaces()) != null) {
690 for (Type t : ts) {
691 if ((t instanceof ParameterizedType) &&
692 ((p = (ParameterizedType)t).getRawType() ==
693 Comparable.class) &&
694 (as = p.getActualTypeArguments()) != null &&
695 as.length == 1 && as[0] == c) // type arg is c
696 return c;
697 }
698 }
699 }
700 return null;
701 }
702
703 /**
704 * Returns k.compareTo(x) if x matches kc (k's screened comparable
705 * class), else 0.
706 */
707 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
708 static int compareComparables(Class<?> kc, Object k, Object x) {
709 return (x == null || x.getClass() != kc ? 0 :
710 ((Comparable)k).compareTo(x));
711 }
712
713 /* ---------------- Table element access -------------- */
714
715 /*
716 * Atomic access methods are used for table elements as well as
717 * elements of in-progress next table while resizing. All uses of
718 * the tab arguments must be null checked by callers. All callers
719 * also paranoically precheck that tab's length is not zero (or an
720 * equivalent check), thus ensuring that any index argument taking
721 * the form of a hash value anded with (length - 1) is a valid
722 * index. Note that, to be correct wrt arbitrary concurrency
723 * errors by users, these checks must operate on local variables,
724 * which accounts for some odd-looking inline assignments below.
725 * Note that calls to setTabAt always occur within locked regions,
726 * and so require only release ordering.
727 */
728
729 @SuppressWarnings("unchecked")
730 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
731 return (Node<K,V>)U.getObjectAcquire(tab, ((long)i << ASHIFT) + ABASE);
732 }
733
734 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
735 Node<K,V> c, Node<K,V> v) {
736 return U.compareAndSetObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
737 }
738
739 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
740 U.putObjectRelease(tab, ((long)i << ASHIFT) + ABASE, v);
741 }
742
743 /* ---------------- Fields -------------- */
744
745 /**
746 * The array of bins. Lazily initialized upon first insertion.
747 * Size is always a power of two. Accessed directly by iterators.
748 */
749 transient volatile Node<K,V>[] table;
750
751 /**
752 * The next table to use; non-null only while resizing.
753 */
754 private transient volatile Node<K,V>[] nextTable;
755
756 /**
757 * Base counter value, used mainly when there is no contention,
758 * but also as a fallback during table initialization
759 * races. Updated via CAS.
760 */
761 private transient volatile long baseCount;
762
763 /**
764 * Table initialization and resizing control. When negative, the
765 * table is being initialized or resized: -1 for initialization,
766 * else -(1 + the number of active resizing threads). Otherwise,
767 * when table is null, holds the initial table size to use upon
768 * creation, or 0 for default. After initialization, holds the
769 * next element count value upon which to resize the table.
770 */
771 private transient volatile int sizeCtl;
772
773 /**
774 * The next table index (plus one) to split while resizing.
775 */
776 private transient volatile int transferIndex;
777
778 /**
779 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
780 */
781 private transient volatile int cellsBusy;
782
783 /**
784 * Table of counter cells. When non-null, size is a power of 2.
785 */
786 private transient volatile CounterCell[] counterCells;
787
788 // views
789 private transient KeySetView<K,V> keySet;
790 private transient ValuesView<K,V> values;
791 private transient EntrySetView<K,V> entrySet;
792
793
794 /* ---------------- Public operations -------------- */
795
796 /**
797 * Creates a new, empty map with the default initial table size (16).
798 */
799 public ConcurrentHashMap() {
800 }
801
802 /**
803 * Creates a new, empty map with an initial table size
804 * accommodating the specified number of elements without the need
805 * to dynamically resize.
806 *
807 * @param initialCapacity The implementation performs internal
808 * sizing to accommodate this many elements.
809 * @throws IllegalArgumentException if the initial capacity of
810 * elements is negative
811 */
812 public ConcurrentHashMap(int initialCapacity) {
813 this(initialCapacity, LOAD_FACTOR, 1);
814 }
815
816 /**
817 * Creates a new map with the same mappings as the given map.
818 *
819 * @param m the map
820 */
821 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
822 this.sizeCtl = DEFAULT_CAPACITY;
823 putAll(m);
824 }
825
826 /**
827 * Creates a new, empty map with an initial table size based on
828 * the given number of elements ({@code initialCapacity}) and
829 * initial table density ({@code loadFactor}).
830 *
831 * @param initialCapacity the initial capacity. The implementation
832 * performs internal sizing to accommodate this many elements,
833 * given the specified load factor.
834 * @param loadFactor the load factor (table density) for
835 * establishing the initial table size
836 * @throws IllegalArgumentException if the initial capacity of
837 * elements is negative or the load factor is nonpositive
838 *
839 * @since 1.6
840 */
841 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
842 this(initialCapacity, loadFactor, 1);
843 }
844
845 /**
846 * Creates a new, empty map with an initial table size based on
847 * the given number of elements ({@code initialCapacity}), initial
848 * table density ({@code loadFactor}), and number of concurrently
849 * updating threads ({@code concurrencyLevel}).
850 *
851 * @param initialCapacity the initial capacity. The implementation
852 * performs internal sizing to accommodate this many elements,
853 * given the specified load factor.
854 * @param loadFactor the load factor (table density) for
855 * establishing the initial table size
856 * @param concurrencyLevel the estimated number of concurrently
857 * updating threads. The implementation may use this value as
858 * a sizing hint.
859 * @throws IllegalArgumentException if the initial capacity is
860 * negative or the load factor or concurrencyLevel are
861 * nonpositive
862 */
863 public ConcurrentHashMap(int initialCapacity,
864 float loadFactor, int concurrencyLevel) {
865 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
866 throw new IllegalArgumentException();
867 if (initialCapacity < concurrencyLevel) // Use at least as many bins
868 initialCapacity = concurrencyLevel; // as estimated threads
869 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
870 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
871 MAXIMUM_CAPACITY : tableSizeFor((int)size);
872 this.sizeCtl = cap;
873 }
874
875 // Original (since JDK1.2) Map methods
876
877 /**
878 * {@inheritDoc}
879 */
880 public int size() {
881 long n = sumCount();
882 return ((n < 0L) ? 0 :
883 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
884 (int)n);
885 }
886
887 /**
888 * {@inheritDoc}
889 */
890 public boolean isEmpty() {
891 return sumCount() <= 0L; // ignore transient negative values
892 }
893
894 /**
895 * Returns the value to which the specified key is mapped,
896 * or {@code null} if this map contains no mapping for the key.
897 *
898 * <p>More formally, if this map contains a mapping from a key
899 * {@code k} to a value {@code v} such that {@code key.equals(k)},
900 * then this method returns {@code v}; otherwise it returns
901 * {@code null}. (There can be at most one such mapping.)
902 *
903 * @throws NullPointerException if the specified key is null
904 */
905 public V get(Object key) {
906 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
907 int h = spread(key.hashCode());
908 if ((tab = table) != null && (n = tab.length) > 0 &&
909 (e = tabAt(tab, (n - 1) & h)) != null) {
910 if ((eh = e.hash) == h) {
911 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
912 return e.val;
913 }
914 else if (eh < 0)
915 return (p = e.find(h, key)) != null ? p.val : null;
916 while ((e = e.next) != null) {
917 if (e.hash == h &&
918 ((ek = e.key) == key || (ek != null && key.equals(ek))))
919 return e.val;
920 }
921 }
922 return null;
923 }
924
925 /**
926 * Tests if the specified object is a key in this table.
927 *
928 * @param key possible key
929 * @return {@code true} if and only if the specified object
930 * is a key in this table, as determined by the
931 * {@code equals} method; {@code false} otherwise
932 * @throws NullPointerException if the specified key is null
933 */
934 public boolean containsKey(Object key) {
935 return get(key) != null;
936 }
937
938 /**
939 * Returns {@code true} if this map maps one or more keys to the
940 * specified value. Note: This method may require a full traversal
941 * of the map, and is much slower than method {@code containsKey}.
942 *
943 * @param value value whose presence in this map is to be tested
944 * @return {@code true} if this map maps one or more keys to the
945 * specified value
946 * @throws NullPointerException if the specified value is null
947 */
948 public boolean containsValue(Object value) {
949 if (value == null)
950 throw new NullPointerException();
951 Node<K,V>[] t;
952 if ((t = table) != null) {
953 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
954 for (Node<K,V> p; (p = it.advance()) != null; ) {
955 V v;
956 if ((v = p.val) == value || (v != null && value.equals(v)))
957 return true;
958 }
959 }
960 return false;
961 }
962
963 /**
964 * Maps the specified key to the specified value in this table.
965 * Neither the key nor the value can be null.
966 *
967 * <p>The value can be retrieved by calling the {@code get} method
968 * with a key that is equal to the original key.
969 *
970 * @param key key with which the specified value is to be associated
971 * @param value value to be associated with the specified key
972 * @return the previous value associated with {@code key}, or
973 * {@code null} if there was no mapping for {@code key}
974 * @throws NullPointerException if the specified key or value is null
975 */
976 public V put(K key, V value) {
977 return putVal(key, value, false);
978 }
979
980 /** Implementation for put and putIfAbsent */
981 final V putVal(K key, V value, boolean onlyIfAbsent) {
982 if (key == null || value == null) throw new NullPointerException();
983 int hash = spread(key.hashCode());
984 int binCount = 0;
985 for (Node<K,V>[] tab = table;;) {
986 Node<K,V> f; int n, i, fh; K fk; V fv;
987 if (tab == null || (n = tab.length) == 0)
988 tab = initTable();
989 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
990 if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))
991 break; // no lock when adding to empty bin
992 }
993 else if ((fh = f.hash) == MOVED)
994 tab = helpTransfer(tab, f);
995 else if (onlyIfAbsent // check first node without acquiring lock
996 && fh == hash
997 && ((fk = f.key) == key || (fk != null && key.equals(fk)))
998 && (fv = f.val) != null)
999 return fv;
1000 else {
1001 V oldVal = null;
1002 synchronized (f) {
1003 if (tabAt(tab, i) == f) {
1004 if (fh >= 0) {
1005 binCount = 1;
1006 for (Node<K,V> e = f;; ++binCount) {
1007 K ek;
1008 if (e.hash == hash &&
1009 ((ek = e.key) == key ||
1010 (ek != null && key.equals(ek)))) {
1011 oldVal = e.val;
1012 if (!onlyIfAbsent)
1013 e.val = value;
1014 break;
1015 }
1016 Node<K,V> pred = e;
1017 if ((e = e.next) == null) {
1018 pred.next = new Node<K,V>(hash, key, value);
1019 break;
1020 }
1021 }
1022 }
1023 else if (f instanceof TreeBin) {
1024 Node<K,V> p;
1025 binCount = 2;
1026 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1027 value)) != null) {
1028 oldVal = p.val;
1029 if (!onlyIfAbsent)
1030 p.val = value;
1031 }
1032 }
1033 else if (f instanceof ReservationNode)
1034 throw new IllegalStateException("Recursive update");
1035 }
1036 }
1037 if (binCount != 0) {
1038 if (binCount >= TREEIFY_THRESHOLD)
1039 treeifyBin(tab, i);
1040 if (oldVal != null)
1041 return oldVal;
1042 break;
1043 }
1044 }
1045 }
1046 addCount(1L, binCount);
1047 return null;
1048 }
1049
1050 /**
1051 * Copies all of the mappings from the specified map to this one.
1052 * These mappings replace any mappings that this map had for any of the
1053 * keys currently in the specified map.
1054 *
1055 * @param m mappings to be stored in this map
1056 */
1057 public void putAll(Map<? extends K, ? extends V> m) {
1058 tryPresize(m.size());
1059 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1060 putVal(e.getKey(), e.getValue(), false);
1061 }
1062
1063 /**
1064 * Removes the key (and its corresponding value) from this map.
1065 * This method does nothing if the key is not in the map.
1066 *
1067 * @param key the key that needs to be removed
1068 * @return the previous value associated with {@code key}, or
1069 * {@code null} if there was no mapping for {@code key}
1070 * @throws NullPointerException if the specified key is null
1071 */
1072 public V remove(Object key) {
1073 return replaceNode(key, null, null);
1074 }
1075
1076 /**
1077 * Implementation for the four public remove/replace methods:
1078 * Replaces node value with v, conditional upon match of cv if
1079 * non-null. If resulting value is null, delete.
1080 */
1081 final V replaceNode(Object key, V value, Object cv) {
1082 int hash = spread(key.hashCode());
1083 for (Node<K,V>[] tab = table;;) {
1084 Node<K,V> f; int n, i, fh;
1085 if (tab == null || (n = tab.length) == 0 ||
1086 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1087 break;
1088 else if ((fh = f.hash) == MOVED)
1089 tab = helpTransfer(tab, f);
1090 else {
1091 V oldVal = null;
1092 boolean validated = false;
1093 synchronized (f) {
1094 if (tabAt(tab, i) == f) {
1095 if (fh >= 0) {
1096 validated = true;
1097 for (Node<K,V> e = f, pred = null;;) {
1098 K ek;
1099 if (e.hash == hash &&
1100 ((ek = e.key) == key ||
1101 (ek != null && key.equals(ek)))) {
1102 V ev = e.val;
1103 if (cv == null || cv == ev ||
1104 (ev != null && cv.equals(ev))) {
1105 oldVal = ev;
1106 if (value != null)
1107 e.val = value;
1108 else if (pred != null)
1109 pred.next = e.next;
1110 else
1111 setTabAt(tab, i, e.next);
1112 }
1113 break;
1114 }
1115 pred = e;
1116 if ((e = e.next) == null)
1117 break;
1118 }
1119 }
1120 else if (f instanceof TreeBin) {
1121 validated = true;
1122 TreeBin<K,V> t = (TreeBin<K,V>)f;
1123 TreeNode<K,V> r, p;
1124 if ((r = t.root) != null &&
1125 (p = r.findTreeNode(hash, key, null)) != null) {
1126 V pv = p.val;
1127 if (cv == null || cv == pv ||
1128 (pv != null && cv.equals(pv))) {
1129 oldVal = pv;
1130 if (value != null)
1131 p.val = value;
1132 else if (t.removeTreeNode(p))
1133 setTabAt(tab, i, untreeify(t.first));
1134 }
1135 }
1136 }
1137 else if (f instanceof ReservationNode)
1138 throw new IllegalStateException("Recursive update");
1139 }
1140 }
1141 if (validated) {
1142 if (oldVal != null) {
1143 if (value == null)
1144 addCount(-1L, -1);
1145 return oldVal;
1146 }
1147 break;
1148 }
1149 }
1150 }
1151 return null;
1152 }
1153
1154 /**
1155 * Removes all of the mappings from this map.
1156 */
1157 public void clear() {
1158 long delta = 0L; // negative number of deletions
1159 int i = 0;
1160 Node<K,V>[] tab = table;
1161 while (tab != null && i < tab.length) {
1162 int fh;
1163 Node<K,V> f = tabAt(tab, i);
1164 if (f == null)
1165 ++i;
1166 else if ((fh = f.hash) == MOVED) {
1167 tab = helpTransfer(tab, f);
1168 i = 0; // restart
1169 }
1170 else {
1171 synchronized (f) {
1172 if (tabAt(tab, i) == f) {
1173 Node<K,V> p = (fh >= 0 ? f :
1174 (f instanceof TreeBin) ?
1175 ((TreeBin<K,V>)f).first : null);
1176 while (p != null) {
1177 --delta;
1178 p = p.next;
1179 }
1180 setTabAt(tab, i++, null);
1181 }
1182 }
1183 }
1184 }
1185 if (delta != 0L)
1186 addCount(delta, -1);
1187 }
1188
1189 /**
1190 * Returns a {@link Set} view of the keys contained in this map.
1191 * The set is backed by the map, so changes to the map are
1192 * reflected in the set, and vice-versa. The set supports element
1193 * removal, which removes the corresponding mapping from this map,
1194 * via the {@code Iterator.remove}, {@code Set.remove},
1195 * {@code removeAll}, {@code retainAll}, and {@code clear}
1196 * operations. It does not support the {@code add} or
1197 * {@code addAll} operations.
1198 *
1199 * <p>The view's iterators and spliterators are
1200 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1201 *
1202 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1203 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1204 *
1205 * @return the set view
1206 */
1207 public KeySetView<K,V> keySet() {
1208 KeySetView<K,V> ks;
1209 if ((ks = keySet) != null) return ks;
1210 return keySet = new KeySetView<K,V>(this, null);
1211 }
1212
1213 /**
1214 * Returns a {@link Collection} view of the values contained in this map.
1215 * The collection is backed by the map, so changes to the map are
1216 * reflected in the collection, and vice-versa. The collection
1217 * supports element removal, which removes the corresponding
1218 * mapping from this map, via the {@code Iterator.remove},
1219 * {@code Collection.remove}, {@code removeAll},
1220 * {@code retainAll}, and {@code clear} operations. It does not
1221 * support the {@code add} or {@code addAll} operations.
1222 *
1223 * <p>The view's iterators and spliterators are
1224 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1225 *
1226 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1227 * and {@link Spliterator#NONNULL}.
1228 *
1229 * @return the collection view
1230 */
1231 public Collection<V> values() {
1232 ValuesView<K,V> vs;
1233 if ((vs = values) != null) return vs;
1234 return values = new ValuesView<K,V>(this);
1235 }
1236
1237 /**
1238 * Returns a {@link Set} view of the mappings contained in this map.
1239 * The set is backed by the map, so changes to the map are
1240 * reflected in the set, and vice-versa. The set supports element
1241 * removal, which removes the corresponding mapping from the map,
1242 * via the {@code Iterator.remove}, {@code Set.remove},
1243 * {@code removeAll}, {@code retainAll}, and {@code clear}
1244 * operations.
1245 *
1246 * <p>The view's iterators and spliterators are
1247 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1248 *
1249 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1250 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1251 *
1252 * @return the set view
1253 */
1254 public Set<Map.Entry<K,V>> entrySet() {
1255 EntrySetView<K,V> es;
1256 if ((es = entrySet) != null) return es;
1257 return entrySet = new EntrySetView<K,V>(this);
1258 }
1259
1260 /**
1261 * Returns the hash code value for this {@link Map}, i.e.,
1262 * the sum of, for each key-value pair in the map,
1263 * {@code key.hashCode() ^ value.hashCode()}.
1264 *
1265 * @return the hash code value for this map
1266 */
1267 public int hashCode() {
1268 int h = 0;
1269 Node<K,V>[] t;
1270 if ((t = table) != null) {
1271 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1272 for (Node<K,V> p; (p = it.advance()) != null; )
1273 h += p.key.hashCode() ^ p.val.hashCode();
1274 }
1275 return h;
1276 }
1277
1278 /**
1279 * Returns a string representation of this map. The string
1280 * representation consists of a list of key-value mappings (in no
1281 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1282 * mappings are separated by the characters {@code ", "} (comma
1283 * and space). Each key-value mapping is rendered as the key
1284 * followed by an equals sign ("{@code =}") followed by the
1285 * associated value.
1286 *
1287 * @return a string representation of this map
1288 */
1289 public String toString() {
1290 Node<K,V>[] t;
1291 int f = (t = table) == null ? 0 : t.length;
1292 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1293 StringBuilder sb = new StringBuilder();
1294 sb.append('{');
1295 Node<K,V> p;
1296 if ((p = it.advance()) != null) {
1297 for (;;) {
1298 K k = p.key;
1299 V v = p.val;
1300 sb.append(k == this ? "(this Map)" : k);
1301 sb.append('=');
1302 sb.append(v == this ? "(this Map)" : v);
1303 if ((p = it.advance()) == null)
1304 break;
1305 sb.append(',').append(' ');
1306 }
1307 }
1308 return sb.append('}').toString();
1309 }
1310
1311 /**
1312 * Compares the specified object with this map for equality.
1313 * Returns {@code true} if the given object is a map with the same
1314 * mappings as this map. This operation may return misleading
1315 * results if either map is concurrently modified during execution
1316 * of this method.
1317 *
1318 * @param o object to be compared for equality with this map
1319 * @return {@code true} if the specified object is equal to this map
1320 */
1321 public boolean equals(Object o) {
1322 if (o != this) {
1323 if (!(o instanceof Map))
1324 return false;
1325 Map<?,?> m = (Map<?,?>) o;
1326 Node<K,V>[] t;
1327 int f = (t = table) == null ? 0 : t.length;
1328 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1329 for (Node<K,V> p; (p = it.advance()) != null; ) {
1330 V val = p.val;
1331 Object v = m.get(p.key);
1332 if (v == null || (v != val && !v.equals(val)))
1333 return false;
1334 }
1335 for (Map.Entry<?,?> e : m.entrySet()) {
1336 Object mk, mv, v;
1337 if ((mk = e.getKey()) == null ||
1338 (mv = e.getValue()) == null ||
1339 (v = get(mk)) == null ||
1340 (mv != v && !mv.equals(v)))
1341 return false;
1342 }
1343 }
1344 return true;
1345 }
1346
1347 /**
1348 * Stripped-down version of helper class used in previous version,
1349 * declared for the sake of serialization compatibility.
1350 */
1351 static class Segment<K,V> extends ReentrantLock implements Serializable {
1352 private static final long serialVersionUID = 2249069246763182397L;
1353 final float loadFactor;
1354 Segment(float lf) { this.loadFactor = lf; }
1355 }
1356
1357 /**
1358 * Saves this map to a stream (that is, serializes it).
1359 *
1360 * @param s the stream
1361 * @throws java.io.IOException if an I/O error occurs
1362 * @serialData
1363 * the serialized fields, followed by the key (Object) and value
1364 * (Object) for each key-value mapping, followed by a null pair.
1365 * The key-value mappings are emitted in no particular order.
1366 */
1367 private void writeObject(java.io.ObjectOutputStream s)
1368 throws java.io.IOException {
1369 // For serialization compatibility
1370 // Emulate segment calculation from previous version of this class
1371 int sshift = 0;
1372 int ssize = 1;
1373 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1374 ++sshift;
1375 ssize <<= 1;
1376 }
1377 int segmentShift = 32 - sshift;
1378 int segmentMask = ssize - 1;
1379 @SuppressWarnings("unchecked")
1380 Segment<K,V>[] segments = (Segment<K,V>[])
1381 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1382 for (int i = 0; i < segments.length; ++i)
1383 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1384 java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1385 streamFields.put("segments", segments);
1386 streamFields.put("segmentShift", segmentShift);
1387 streamFields.put("segmentMask", segmentMask);
1388 s.writeFields();
1389
1390 Node<K,V>[] t;
1391 if ((t = table) != null) {
1392 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1393 for (Node<K,V> p; (p = it.advance()) != null; ) {
1394 s.writeObject(p.key);
1395 s.writeObject(p.val);
1396 }
1397 }
1398 s.writeObject(null);
1399 s.writeObject(null);
1400 }
1401
1402 /**
1403 * Reconstitutes this map from a stream (that is, deserializes it).
1404 * @param s the stream
1405 * @throws ClassNotFoundException if the class of a serialized object
1406 * could not be found
1407 * @throws java.io.IOException if an I/O error occurs
1408 */
1409 private void readObject(java.io.ObjectInputStream s)
1410 throws java.io.IOException, ClassNotFoundException {
1411 /*
1412 * To improve performance in typical cases, we create nodes
1413 * while reading, then place in table once size is known.
1414 * However, we must also validate uniqueness and deal with
1415 * overpopulated bins while doing so, which requires
1416 * specialized versions of putVal mechanics.
1417 */
1418 sizeCtl = -1; // force exclusion for table construction
1419 s.defaultReadObject();
1420 long size = 0L;
1421 Node<K,V> p = null;
1422 for (;;) {
1423 @SuppressWarnings("unchecked")
1424 K k = (K) s.readObject();
1425 @SuppressWarnings("unchecked")
1426 V v = (V) s.readObject();
1427 if (k != null && v != null) {
1428 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1429 ++size;
1430 }
1431 else
1432 break;
1433 }
1434 if (size == 0L)
1435 sizeCtl = 0;
1436 else {
1437 long ts = (long)(1.0 + size / LOAD_FACTOR);
1438 int n = (ts >= (long)MAXIMUM_CAPACITY) ?
1439 MAXIMUM_CAPACITY : tableSizeFor((int)ts);
1440 @SuppressWarnings("unchecked")
1441 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1442 int mask = n - 1;
1443 long added = 0L;
1444 while (p != null) {
1445 boolean insertAtFront;
1446 Node<K,V> next = p.next, first;
1447 int h = p.hash, j = h & mask;
1448 if ((first = tabAt(tab, j)) == null)
1449 insertAtFront = true;
1450 else {
1451 K k = p.key;
1452 if (first.hash < 0) {
1453 TreeBin<K,V> t = (TreeBin<K,V>)first;
1454 if (t.putTreeVal(h, k, p.val) == null)
1455 ++added;
1456 insertAtFront = false;
1457 }
1458 else {
1459 int binCount = 0;
1460 insertAtFront = true;
1461 Node<K,V> q; K qk;
1462 for (q = first; q != null; q = q.next) {
1463 if (q.hash == h &&
1464 ((qk = q.key) == k ||
1465 (qk != null && k.equals(qk)))) {
1466 insertAtFront = false;
1467 break;
1468 }
1469 ++binCount;
1470 }
1471 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1472 insertAtFront = false;
1473 ++added;
1474 p.next = first;
1475 TreeNode<K,V> hd = null, tl = null;
1476 for (q = p; q != null; q = q.next) {
1477 TreeNode<K,V> t = new TreeNode<K,V>
1478 (q.hash, q.key, q.val, null, null);
1479 if ((t.prev = tl) == null)
1480 hd = t;
1481 else
1482 tl.next = t;
1483 tl = t;
1484 }
1485 setTabAt(tab, j, new TreeBin<K,V>(hd));
1486 }
1487 }
1488 }
1489 if (insertAtFront) {
1490 ++added;
1491 p.next = first;
1492 setTabAt(tab, j, p);
1493 }
1494 p = next;
1495 }
1496 table = tab;
1497 sizeCtl = n - (n >>> 2);
1498 baseCount = added;
1499 }
1500 }
1501
1502 // ConcurrentMap methods
1503
1504 /**
1505 * {@inheritDoc}
1506 *
1507 * @return the previous value associated with the specified key,
1508 * or {@code null} if there was no mapping for the key
1509 * @throws NullPointerException if the specified key or value is null
1510 */
1511 public V putIfAbsent(K key, V value) {
1512 return putVal(key, value, true);
1513 }
1514
1515 /**
1516 * {@inheritDoc}
1517 *
1518 * @throws NullPointerException if the specified key is null
1519 */
1520 public boolean remove(Object key, Object value) {
1521 if (key == null)
1522 throw new NullPointerException();
1523 return value != null && replaceNode(key, null, value) != null;
1524 }
1525
1526 /**
1527 * {@inheritDoc}
1528 *
1529 * @throws NullPointerException if any of the arguments are null
1530 */
1531 public boolean replace(K key, V oldValue, V newValue) {
1532 if (key == null || oldValue == null || newValue == null)
1533 throw new NullPointerException();
1534 return replaceNode(key, newValue, oldValue) != null;
1535 }
1536
1537 /**
1538 * {@inheritDoc}
1539 *
1540 * @return the previous value associated with the specified key,
1541 * or {@code null} if there was no mapping for the key
1542 * @throws NullPointerException if the specified key or value is null
1543 */
1544 public V replace(K key, V value) {
1545 if (key == null || value == null)
1546 throw new NullPointerException();
1547 return replaceNode(key, value, null);
1548 }
1549
1550 // Overrides of JDK8+ Map extension method defaults
1551
1552 /**
1553 * Returns the value to which the specified key is mapped, or the
1554 * given default value if this map contains no mapping for the
1555 * key.
1556 *
1557 * @param key the key whose associated value is to be returned
1558 * @param defaultValue the value to return if this map contains
1559 * no mapping for the given key
1560 * @return the mapping for the key, if present; else the default value
1561 * @throws NullPointerException if the specified key is null
1562 */
1563 public V getOrDefault(Object key, V defaultValue) {
1564 V v;
1565 return (v = get(key)) == null ? defaultValue : v;
1566 }
1567
1568 public void forEach(BiConsumer<? super K, ? super V> action) {
1569 if (action == null) throw new NullPointerException();
1570 Node<K,V>[] t;
1571 if ((t = table) != null) {
1572 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1573 for (Node<K,V> p; (p = it.advance()) != null; ) {
1574 action.accept(p.key, p.val);
1575 }
1576 }
1577 }
1578
1579 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1580 if (function == null) throw new NullPointerException();
1581 Node<K,V>[] t;
1582 if ((t = table) != null) {
1583 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1584 for (Node<K,V> p; (p = it.advance()) != null; ) {
1585 V oldValue = p.val;
1586 for (K key = p.key;;) {
1587 V newValue = function.apply(key, oldValue);
1588 if (newValue == null)
1589 throw new NullPointerException();
1590 if (replaceNode(key, newValue, oldValue) != null ||
1591 (oldValue = get(key)) == null)
1592 break;
1593 }
1594 }
1595 }
1596 }
1597
1598 /**
1599 * Helper method for EntrySetView.removeIf.
1600 */
1601 boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1602 if (function == null) throw new NullPointerException();
1603 Node<K,V>[] t;
1604 boolean removed = false;
1605 if ((t = table) != null) {
1606 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1607 for (Node<K,V> p; (p = it.advance()) != null; ) {
1608 K k = p.key;
1609 V v = p.val;
1610 Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1611 if (function.test(e) && replaceNode(k, null, v) != null)
1612 removed = true;
1613 }
1614 }
1615 return removed;
1616 }
1617
1618 /**
1619 * Helper method for ValuesView.removeIf.
1620 */
1621 boolean removeValueIf(Predicate<? super V> function) {
1622 if (function == null) throw new NullPointerException();
1623 Node<K,V>[] t;
1624 boolean removed = false;
1625 if ((t = table) != null) {
1626 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1627 for (Node<K,V> p; (p = it.advance()) != null; ) {
1628 K k = p.key;
1629 V v = p.val;
1630 if (function.test(v) && replaceNode(k, null, v) != null)
1631 removed = true;
1632 }
1633 }
1634 return removed;
1635 }
1636
1637 /**
1638 * If the specified key is not already associated with a value,
1639 * attempts to compute its value using the given mapping function
1640 * and enters it into this map unless {@code null}. The entire
1641 * method invocation is performed atomically, so the function is
1642 * applied at most once per key. Some attempted update operations
1643 * on this map by other threads may be blocked while computation
1644 * is in progress, so the computation should be short and simple,
1645 * and must not attempt to update any other mappings of this map.
1646 *
1647 * @param key key with which the specified value is to be associated
1648 * @param mappingFunction the function to compute a value
1649 * @return the current (existing or computed) value associated with
1650 * the specified key, or null if the computed value is null
1651 * @throws NullPointerException if the specified key or mappingFunction
1652 * is null
1653 * @throws IllegalStateException if the computation detectably
1654 * attempts a recursive update to this map that would
1655 * otherwise never complete
1656 * @throws RuntimeException or Error if the mappingFunction does so,
1657 * in which case the mapping is left unestablished
1658 */
1659 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1660 if (key == null || mappingFunction == null)
1661 throw new NullPointerException();
1662 int h = spread(key.hashCode());
1663 V val = null;
1664 int binCount = 0;
1665 for (Node<K,V>[] tab = table;;) {
1666 Node<K,V> f; int n, i, fh; K fk; V fv;
1667 if (tab == null || (n = tab.length) == 0)
1668 tab = initTable();
1669 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1670 Node<K,V> r = new ReservationNode<K,V>();
1671 synchronized (r) {
1672 if (casTabAt(tab, i, null, r)) {
1673 binCount = 1;
1674 Node<K,V> node = null;
1675 try {
1676 if ((val = mappingFunction.apply(key)) != null)
1677 node = new Node<K,V>(h, key, val);
1678 } finally {
1679 setTabAt(tab, i, node);
1680 }
1681 }
1682 }
1683 if (binCount != 0)
1684 break;
1685 }
1686 else if ((fh = f.hash) == MOVED)
1687 tab = helpTransfer(tab, f);
1688 else if (fh == h // check first node without acquiring lock
1689 && ((fk = f.key) == key || (fk != null && key.equals(fk)))
1690 && (fv = f.val) != null)
1691 return fv;
1692 else {
1693 boolean added = false;
1694 synchronized (f) {
1695 if (tabAt(tab, i) == f) {
1696 if (fh >= 0) {
1697 binCount = 1;
1698 for (Node<K,V> e = f;; ++binCount) {
1699 K ek;
1700 if (e.hash == h &&
1701 ((ek = e.key) == key ||
1702 (ek != null && key.equals(ek)))) {
1703 val = e.val;
1704 break;
1705 }
1706 Node<K,V> pred = e;
1707 if ((e = e.next) == null) {
1708 if ((val = mappingFunction.apply(key)) != null) {
1709 if (pred.next != null)
1710 throw new IllegalStateException("Recursive update");
1711 added = true;
1712 pred.next = new Node<K,V>(h, key, val);
1713 }
1714 break;
1715 }
1716 }
1717 }
1718 else if (f instanceof TreeBin) {
1719 binCount = 2;
1720 TreeBin<K,V> t = (TreeBin<K,V>)f;
1721 TreeNode<K,V> r, p;
1722 if ((r = t.root) != null &&
1723 (p = r.findTreeNode(h, key, null)) != null)
1724 val = p.val;
1725 else if ((val = mappingFunction.apply(key)) != null) {
1726 added = true;
1727 t.putTreeVal(h, key, val);
1728 }
1729 }
1730 else if (f instanceof ReservationNode)
1731 throw new IllegalStateException("Recursive update");
1732 }
1733 }
1734 if (binCount != 0) {
1735 if (binCount >= TREEIFY_THRESHOLD)
1736 treeifyBin(tab, i);
1737 if (!added)
1738 return val;
1739 break;
1740 }
1741 }
1742 }
1743 if (val != null)
1744 addCount(1L, binCount);
1745 return val;
1746 }
1747
1748 /**
1749 * If the value for the specified key is present, attempts to
1750 * compute a new mapping given the key and its current mapped
1751 * value. The entire method invocation is performed atomically.
1752 * Some attempted update operations on this map by other threads
1753 * may be blocked while computation is in progress, so the
1754 * computation should be short and simple, and must not attempt to
1755 * update any other mappings of this map.
1756 *
1757 * @param key key with which a value may be associated
1758 * @param remappingFunction the function to compute a value
1759 * @return the new value associated with the specified key, or null if none
1760 * @throws NullPointerException if the specified key or remappingFunction
1761 * is null
1762 * @throws IllegalStateException if the computation detectably
1763 * attempts a recursive update to this map that would
1764 * otherwise never complete
1765 * @throws RuntimeException or Error if the remappingFunction does so,
1766 * in which case the mapping is unchanged
1767 */
1768 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1769 if (key == null || remappingFunction == null)
1770 throw new NullPointerException();
1771 int h = spread(key.hashCode());
1772 V val = null;
1773 int delta = 0;
1774 int binCount = 0;
1775 for (Node<K,V>[] tab = table;;) {
1776 Node<K,V> f; int n, i, fh;
1777 if (tab == null || (n = tab.length) == 0)
1778 tab = initTable();
1779 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1780 break;
1781 else if ((fh = f.hash) == MOVED)
1782 tab = helpTransfer(tab, f);
1783 else {
1784 synchronized (f) {
1785 if (tabAt(tab, i) == f) {
1786 if (fh >= 0) {
1787 binCount = 1;
1788 for (Node<K,V> e = f, pred = null;; ++binCount) {
1789 K ek;
1790 if (e.hash == h &&
1791 ((ek = e.key) == key ||
1792 (ek != null && key.equals(ek)))) {
1793 val = remappingFunction.apply(key, e.val);
1794 if (val != null)
1795 e.val = val;
1796 else {
1797 delta = -1;
1798 Node<K,V> en = e.next;
1799 if (pred != null)
1800 pred.next = en;
1801 else
1802 setTabAt(tab, i, en);
1803 }
1804 break;
1805 }
1806 pred = e;
1807 if ((e = e.next) == null)
1808 break;
1809 }
1810 }
1811 else if (f instanceof TreeBin) {
1812 binCount = 2;
1813 TreeBin<K,V> t = (TreeBin<K,V>)f;
1814 TreeNode<K,V> r, p;
1815 if ((r = t.root) != null &&
1816 (p = r.findTreeNode(h, key, null)) != null) {
1817 val = remappingFunction.apply(key, p.val);
1818 if (val != null)
1819 p.val = val;
1820 else {
1821 delta = -1;
1822 if (t.removeTreeNode(p))
1823 setTabAt(tab, i, untreeify(t.first));
1824 }
1825 }
1826 }
1827 else if (f instanceof ReservationNode)
1828 throw new IllegalStateException("Recursive update");
1829 }
1830 }
1831 if (binCount != 0)
1832 break;
1833 }
1834 }
1835 if (delta != 0)
1836 addCount((long)delta, binCount);
1837 return val;
1838 }
1839
1840 /**
1841 * Attempts to compute a mapping for the specified key and its
1842 * current mapped value (or {@code null} if there is no current
1843 * mapping). The entire method invocation is performed atomically.
1844 * Some attempted update operations on this map by other threads
1845 * may be blocked while computation is in progress, so the
1846 * computation should be short and simple, and must not attempt to
1847 * update any other mappings of this Map.
1848 *
1849 * @param key key with which the specified value is to be associated
1850 * @param remappingFunction the function to compute a value
1851 * @return the new value associated with the specified key, or null if none
1852 * @throws NullPointerException if the specified key or remappingFunction
1853 * is null
1854 * @throws IllegalStateException if the computation detectably
1855 * attempts a recursive update to this map that would
1856 * otherwise never complete
1857 * @throws RuntimeException or Error if the remappingFunction does so,
1858 * in which case the mapping is unchanged
1859 */
1860 public V compute(K key,
1861 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1862 if (key == null || remappingFunction == null)
1863 throw new NullPointerException();
1864 int h = spread(key.hashCode());
1865 V val = null;
1866 int delta = 0;
1867 int binCount = 0;
1868 for (Node<K,V>[] tab = table;;) {
1869 Node<K,V> f; int n, i, fh;
1870 if (tab == null || (n = tab.length) == 0)
1871 tab = initTable();
1872 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1873 Node<K,V> r = new ReservationNode<K,V>();
1874 synchronized (r) {
1875 if (casTabAt(tab, i, null, r)) {
1876 binCount = 1;
1877 Node<K,V> node = null;
1878 try {
1879 if ((val = remappingFunction.apply(key, null)) != null) {
1880 delta = 1;
1881 node = new Node<K,V>(h, key, val);
1882 }
1883 } finally {
1884 setTabAt(tab, i, node);
1885 }
1886 }
1887 }
1888 if (binCount != 0)
1889 break;
1890 }
1891 else if ((fh = f.hash) == MOVED)
1892 tab = helpTransfer(tab, f);
1893 else {
1894 synchronized (f) {
1895 if (tabAt(tab, i) == f) {
1896 if (fh >= 0) {
1897 binCount = 1;
1898 for (Node<K,V> e = f, pred = null;; ++binCount) {
1899 K ek;
1900 if (e.hash == h &&
1901 ((ek = e.key) == key ||
1902 (ek != null && key.equals(ek)))) {
1903 val = remappingFunction.apply(key, e.val);
1904 if (val != null)
1905 e.val = val;
1906 else {
1907 delta = -1;
1908 Node<K,V> en = e.next;
1909 if (pred != null)
1910 pred.next = en;
1911 else
1912 setTabAt(tab, i, en);
1913 }
1914 break;
1915 }
1916 pred = e;
1917 if ((e = e.next) == null) {
1918 val = remappingFunction.apply(key, null);
1919 if (val != null) {
1920 if (pred.next != null)
1921 throw new IllegalStateException("Recursive update");
1922 delta = 1;
1923 pred.next = new Node<K,V>(h, key, val);
1924 }
1925 break;
1926 }
1927 }
1928 }
1929 else if (f instanceof TreeBin) {
1930 binCount = 1;
1931 TreeBin<K,V> t = (TreeBin<K,V>)f;
1932 TreeNode<K,V> r, p;
1933 if ((r = t.root) != null)
1934 p = r.findTreeNode(h, key, null);
1935 else
1936 p = null;
1937 V pv = (p == null) ? null : p.val;
1938 val = remappingFunction.apply(key, pv);
1939 if (val != null) {
1940 if (p != null)
1941 p.val = val;
1942 else {
1943 delta = 1;
1944 t.putTreeVal(h, key, val);
1945 }
1946 }
1947 else if (p != null) {
1948 delta = -1;
1949 if (t.removeTreeNode(p))
1950 setTabAt(tab, i, untreeify(t.first));
1951 }
1952 }
1953 else if (f instanceof ReservationNode)
1954 throw new IllegalStateException("Recursive update");
1955 }
1956 }
1957 if (binCount != 0) {
1958 if (binCount >= TREEIFY_THRESHOLD)
1959 treeifyBin(tab, i);
1960 break;
1961 }
1962 }
1963 }
1964 if (delta != 0)
1965 addCount((long)delta, binCount);
1966 return val;
1967 }
1968
1969 /**
1970 * If the specified key is not already associated with a
1971 * (non-null) value, associates it with the given value.
1972 * Otherwise, replaces the value with the results of the given
1973 * remapping function, or removes if {@code null}. The entire
1974 * method invocation is performed atomically. Some attempted
1975 * update operations on this map by other threads may be blocked
1976 * while computation is in progress, so the computation should be
1977 * short and simple, and must not attempt to update any other
1978 * mappings of this Map.
1979 *
1980 * @param key key with which the specified value is to be associated
1981 * @param value the value to use if absent
1982 * @param remappingFunction the function to recompute a value if present
1983 * @return the new value associated with the specified key, or null if none
1984 * @throws NullPointerException if the specified key or the
1985 * remappingFunction is null
1986 * @throws RuntimeException or Error if the remappingFunction does so,
1987 * in which case the mapping is unchanged
1988 */
1989 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1990 if (key == null || value == null || remappingFunction == null)
1991 throw new NullPointerException();
1992 int h = spread(key.hashCode());
1993 V val = null;
1994 int delta = 0;
1995 int binCount = 0;
1996 for (Node<K,V>[] tab = table;;) {
1997 Node<K,V> f; int n, i, fh;
1998 if (tab == null || (n = tab.length) == 0)
1999 tab = initTable();
2000 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
2001 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value))) {
2002 delta = 1;
2003 val = value;
2004 break;
2005 }
2006 }
2007 else if ((fh = f.hash) == MOVED)
2008 tab = helpTransfer(tab, f);
2009 else {
2010 synchronized (f) {
2011 if (tabAt(tab, i) == f) {
2012 if (fh >= 0) {
2013 binCount = 1;
2014 for (Node<K,V> e = f, pred = null;; ++binCount) {
2015 K ek;
2016 if (e.hash == h &&
2017 ((ek = e.key) == key ||
2018 (ek != null && key.equals(ek)))) {
2019 val = remappingFunction.apply(e.val, value);
2020 if (val != null)
2021 e.val = val;
2022 else {
2023 delta = -1;
2024 Node<K,V> en = e.next;
2025 if (pred != null)
2026 pred.next = en;
2027 else
2028 setTabAt(tab, i, en);
2029 }
2030 break;
2031 }
2032 pred = e;
2033 if ((e = e.next) == null) {
2034 delta = 1;
2035 val = value;
2036 pred.next = new Node<K,V>(h, key, val);
2037 break;
2038 }
2039 }
2040 }
2041 else if (f instanceof TreeBin) {
2042 binCount = 2;
2043 TreeBin<K,V> t = (TreeBin<K,V>)f;
2044 TreeNode<K,V> r = t.root;
2045 TreeNode<K,V> p = (r == null) ? null :
2046 r.findTreeNode(h, key, null);
2047 val = (p == null) ? value :
2048 remappingFunction.apply(p.val, value);
2049 if (val != null) {
2050 if (p != null)
2051 p.val = val;
2052 else {
2053 delta = 1;
2054 t.putTreeVal(h, key, val);
2055 }
2056 }
2057 else if (p != null) {
2058 delta = -1;
2059 if (t.removeTreeNode(p))
2060 setTabAt(tab, i, untreeify(t.first));
2061 }
2062 }
2063 else if (f instanceof ReservationNode)
2064 throw new IllegalStateException("Recursive update");
2065 }
2066 }
2067 if (binCount != 0) {
2068 if (binCount >= TREEIFY_THRESHOLD)
2069 treeifyBin(tab, i);
2070 break;
2071 }
2072 }
2073 }
2074 if (delta != 0)
2075 addCount((long)delta, binCount);
2076 return val;
2077 }
2078
2079 // Hashtable legacy methods
2080
2081 /**
2082 * Tests if some key maps into the specified value in this table.
2083 *
2084 * <p>Note that this method is identical in functionality to
2085 * {@link #containsValue(Object)}, and exists solely to ensure
2086 * full compatibility with class {@link java.util.Hashtable},
2087 * which supported this method prior to introduction of the
2088 * Java Collections Framework.
2089 *
2090 * @param value a value to search for
2091 * @return {@code true} if and only if some key maps to the
2092 * {@code value} argument in this table as
2093 * determined by the {@code equals} method;
2094 * {@code false} otherwise
2095 * @throws NullPointerException if the specified value is null
2096 */
2097 public boolean contains(Object value) {
2098 return containsValue(value);
2099 }
2100
2101 /**
2102 * Returns an enumeration of the keys in this table.
2103 *
2104 * @return an enumeration of the keys in this table
2105 * @see #keySet()
2106 */
2107 public Enumeration<K> keys() {
2108 Node<K,V>[] t;
2109 int f = (t = table) == null ? 0 : t.length;
2110 return new KeyIterator<K,V>(t, f, 0, f, this);
2111 }
2112
2113 /**
2114 * Returns an enumeration of the values in this table.
2115 *
2116 * @return an enumeration of the values in this table
2117 * @see #values()
2118 */
2119 public Enumeration<V> elements() {
2120 Node<K,V>[] t;
2121 int f = (t = table) == null ? 0 : t.length;
2122 return new ValueIterator<K,V>(t, f, 0, f, this);
2123 }
2124
2125 // ConcurrentHashMap-only methods
2126
2127 /**
2128 * Returns the number of mappings. This method should be used
2129 * instead of {@link #size} because a ConcurrentHashMap may
2130 * contain more mappings than can be represented as an int. The
2131 * value returned is an estimate; the actual count may differ if
2132 * there are concurrent insertions or removals.
2133 *
2134 * @return the number of mappings
2135 * @since 1.8
2136 */
2137 public long mappingCount() {
2138 long n = sumCount();
2139 return (n < 0L) ? 0L : n; // ignore transient negative values
2140 }
2141
2142 /**
2143 * Creates a new {@link Set} backed by a ConcurrentHashMap
2144 * from the given type to {@code Boolean.TRUE}.
2145 *
2146 * @param <K> the element type of the returned set
2147 * @return the new set
2148 * @since 1.8
2149 */
2150 public static <K> KeySetView<K,Boolean> newKeySet() {
2151 return new KeySetView<K,Boolean>
2152 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2153 }
2154
2155 /**
2156 * Creates a new {@link Set} backed by a ConcurrentHashMap
2157 * from the given type to {@code Boolean.TRUE}.
2158 *
2159 * @param initialCapacity The implementation performs internal
2160 * sizing to accommodate this many elements.
2161 * @param <K> the element type of the returned set
2162 * @return the new set
2163 * @throws IllegalArgumentException if the initial capacity of
2164 * elements is negative
2165 * @since 1.8
2166 */
2167 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2168 return new KeySetView<K,Boolean>
2169 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2170 }
2171
2172 /**
2173 * Returns a {@link Set} view of the keys in this map, using the
2174 * given common mapped value for any additions (i.e., {@link
2175 * Collection#add} and {@link Collection#addAll(Collection)}).
2176 * This is of course only appropriate if it is acceptable to use
2177 * the same value for all additions from this view.
2178 *
2179 * @param mappedValue the mapped value to use for any additions
2180 * @return the set view
2181 * @throws NullPointerException if the mappedValue is null
2182 */
2183 public KeySetView<K,V> keySet(V mappedValue) {
2184 if (mappedValue == null)
2185 throw new NullPointerException();
2186 return new KeySetView<K,V>(this, mappedValue);
2187 }
2188
2189 /* ---------------- Special Nodes -------------- */
2190
2191 /**
2192 * A node inserted at head of bins during transfer operations.
2193 */
2194 static final class ForwardingNode<K,V> extends Node<K,V> {
2195 final Node<K,V>[] nextTable;
2196 ForwardingNode(Node<K,V>[] tab) {
2197 super(MOVED, null, null);
2198 this.nextTable = tab;
2199 }
2200
2201 Node<K,V> find(int h, Object k) {
2202 // loop to avoid arbitrarily deep recursion on forwarding nodes
2203 outer: for (Node<K,V>[] tab = nextTable;;) {
2204 Node<K,V> e; int n;
2205 if (k == null || tab == null || (n = tab.length) == 0 ||
2206 (e = tabAt(tab, (n - 1) & h)) == null)
2207 return null;
2208 for (;;) {
2209 int eh; K ek;
2210 if ((eh = e.hash) == h &&
2211 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2212 return e;
2213 if (eh < 0) {
2214 if (e instanceof ForwardingNode) {
2215 tab = ((ForwardingNode<K,V>)e).nextTable;
2216 continue outer;
2217 }
2218 else
2219 return e.find(h, k);
2220 }
2221 if ((e = e.next) == null)
2222 return null;
2223 }
2224 }
2225 }
2226 }
2227
2228 /**
2229 * A place-holder node used in computeIfAbsent and compute.
2230 */
2231 static final class ReservationNode<K,V> extends Node<K,V> {
2232 ReservationNode() {
2233 super(RESERVED, null, null);
2234 }
2235
2236 Node<K,V> find(int h, Object k) {
2237 return null;
2238 }
2239 }
2240
2241 /* ---------------- Table Initialization and Resizing -------------- */
2242
2243 /**
2244 * Returns the stamp bits for resizing a table of size n.
2245 * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2246 */
2247 static final int resizeStamp(int n) {
2248 return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2249 }
2250
2251 /**
2252 * Initializes table, using the size recorded in sizeCtl.
2253 */
2254 private final Node<K,V>[] initTable() {
2255 Node<K,V>[] tab; int sc;
2256 while ((tab = table) == null || tab.length == 0) {
2257 if ((sc = sizeCtl) < 0)
2258 Thread.yield(); // lost initialization race; just spin
2259 else if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2260 try {
2261 if ((tab = table) == null || tab.length == 0) {
2262 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2263 @SuppressWarnings("unchecked")
2264 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2265 table = tab = nt;
2266 sc = n - (n >>> 2);
2267 }
2268 } finally {
2269 sizeCtl = sc;
2270 }
2271 break;
2272 }
2273 }
2274 return tab;
2275 }
2276
2277 /**
2278 * Adds to count, and if table is too small and not already
2279 * resizing, initiates transfer. If already resizing, helps
2280 * perform transfer if work is available. Rechecks occupancy
2281 * after a transfer to see if another resize is already needed
2282 * because resizings are lagging additions.
2283 *
2284 * @param x the count to add
2285 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2286 */
2287 private final void addCount(long x, int check) {
2288 CounterCell[] cs; long b, s;
2289 if ((cs = counterCells) != null ||
2290 !U.compareAndSetLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2291 CounterCell c; long v; int m;
2292 boolean uncontended = true;
2293 if (cs == null || (m = cs.length - 1) < 0 ||
2294 (c = cs[ThreadLocalRandom.getProbe() & m]) == null ||
2295 !(uncontended =
2296 U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))) {
2297 fullAddCount(x, uncontended);
2298 return;
2299 }
2300 if (check <= 1)
2301 return;
2302 s = sumCount();
2303 }
2304 if (check >= 0) {
2305 Node<K,V>[] tab, nt; int n, sc;
2306 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2307 (n = tab.length) < MAXIMUM_CAPACITY) {
2308 int rs = resizeStamp(n);
2309 if (sc < 0) {
2310 if ((sc >>> RESIZE_STAMP_SHIFT) == rs + 1 ||
2311 (sc >>> RESIZE_STAMP_SHIFT) == rs + MAX_RESIZERS ||
2312 (nt = nextTable) == null || transferIndex <= 0)
2313 break;
2314 if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1))
2315 transfer(tab, nt);
2316 }
2317 else if (U.compareAndSetInt(this, SIZECTL, sc,
2318 (rs << RESIZE_STAMP_SHIFT) + 2))
2319 transfer(tab, null);
2320 s = sumCount();
2321 }
2322 }
2323 }
2324
2325 /**
2326 * Helps transfer if a resize is in progress.
2327 */
2328 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2329 Node<K,V>[] nextTab; int sc;
2330 if (tab != null && (f instanceof ForwardingNode) &&
2331 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2332 int rs = resizeStamp(tab.length);
2333 while (nextTab == nextTable && table == tab &&
2334 (sc = sizeCtl) < 0) {
2335 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2336 sc == rs + MAX_RESIZERS || transferIndex <= 0)
2337 break;
2338 if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1)) {
2339 transfer(tab, nextTab);
2340 break;
2341 }
2342 }
2343 return nextTab;
2344 }
2345 return table;
2346 }
2347
2348 /**
2349 * Tries to presize table to accommodate the given number of elements.
2350 *
2351 * @param size number of elements (doesn't need to be perfectly accurate)
2352 */
2353 private final void tryPresize(int size) {
2354 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2355 tableSizeFor(size + (size >>> 1) + 1);
2356 int sc;
2357 while ((sc = sizeCtl) >= 0) {
2358 Node<K,V>[] tab = table; int n;
2359 if (tab == null || (n = tab.length) == 0) {
2360 n = (sc > c) ? sc : c;
2361 if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2362 try {
2363 if (table == tab) {
2364 @SuppressWarnings("unchecked")
2365 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2366 table = nt;
2367 sc = n - (n >>> 2);
2368 }
2369 } finally {
2370 sizeCtl = sc;
2371 }
2372 }
2373 }
2374 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2375 break;
2376 else if (tab == table) {
2377 int rs = resizeStamp(n);
2378 if (U.compareAndSetInt(this, SIZECTL, sc,
2379 (rs << RESIZE_STAMP_SHIFT) + 2))
2380 transfer(tab, null);
2381 }
2382 }
2383 }
2384
2385 /**
2386 * Moves and/or copies the nodes in each bin to new table. See
2387 * above for explanation.
2388 */
2389 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2390 int n = tab.length, stride;
2391 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2392 stride = MIN_TRANSFER_STRIDE; // subdivide range
2393 if (nextTab == null) { // initiating
2394 try {
2395 @SuppressWarnings("unchecked")
2396 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2397 nextTab = nt;
2398 } catch (Throwable ex) { // try to cope with OOME
2399 sizeCtl = Integer.MAX_VALUE;
2400 return;
2401 }
2402 nextTable = nextTab;
2403 transferIndex = n;
2404 }
2405 int nextn = nextTab.length;
2406 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2407 boolean advance = true;
2408 boolean finishing = false; // to ensure sweep before committing nextTab
2409 for (int i = 0, bound = 0;;) {
2410 Node<K,V> f; int fh;
2411 while (advance) {
2412 int nextIndex, nextBound;
2413 if (--i >= bound || finishing)
2414 advance = false;
2415 else if ((nextIndex = transferIndex) <= 0) {
2416 i = -1;
2417 advance = false;
2418 }
2419 else if (U.compareAndSetInt
2420 (this, TRANSFERINDEX, nextIndex,
2421 nextBound = (nextIndex > stride ?
2422 nextIndex - stride : 0))) {
2423 bound = nextBound;
2424 i = nextIndex - 1;
2425 advance = false;
2426 }
2427 }
2428 if (i < 0 || i >= n || i + n >= nextn) {
2429 int sc;
2430 if (finishing) {
2431 nextTable = null;
2432 table = nextTab;
2433 sizeCtl = (n << 1) - (n >>> 1);
2434 return;
2435 }
2436 if (U.compareAndSetInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2437 if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2438 return;
2439 finishing = advance = true;
2440 i = n; // recheck before commit
2441 }
2442 }
2443 else if ((f = tabAt(tab, i)) == null)
2444 advance = casTabAt(tab, i, null, fwd);
2445 else if ((fh = f.hash) == MOVED)
2446 advance = true; // already processed
2447 else {
2448 synchronized (f) {
2449 if (tabAt(tab, i) == f) {
2450 Node<K,V> ln, hn;
2451 if (fh >= 0) {
2452 int runBit = fh & n;
2453 Node<K,V> lastRun = f;
2454 for (Node<K,V> p = f.next; p != null; p = p.next) {
2455 int b = p.hash & n;
2456 if (b != runBit) {
2457 runBit = b;
2458 lastRun = p;
2459 }
2460 }
2461 if (runBit == 0) {
2462 ln = lastRun;
2463 hn = null;
2464 }
2465 else {
2466 hn = lastRun;
2467 ln = null;
2468 }
2469 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2470 int ph = p.hash; K pk = p.key; V pv = p.val;
2471 if ((ph & n) == 0)
2472 ln = new Node<K,V>(ph, pk, pv, ln);
2473 else
2474 hn = new Node<K,V>(ph, pk, pv, hn);
2475 }
2476 setTabAt(nextTab, i, ln);
2477 setTabAt(nextTab, i + n, hn);
2478 setTabAt(tab, i, fwd);
2479 advance = true;
2480 }
2481 else if (f instanceof TreeBin) {
2482 TreeBin<K,V> t = (TreeBin<K,V>)f;
2483 TreeNode<K,V> lo = null, loTail = null;
2484 TreeNode<K,V> hi = null, hiTail = null;
2485 int lc = 0, hc = 0;
2486 for (Node<K,V> e = t.first; e != null; e = e.next) {
2487 int h = e.hash;
2488 TreeNode<K,V> p = new TreeNode<K,V>
2489 (h, e.key, e.val, null, null);
2490 if ((h & n) == 0) {
2491 if ((p.prev = loTail) == null)
2492 lo = p;
2493 else
2494 loTail.next = p;
2495 loTail = p;
2496 ++lc;
2497 }
2498 else {
2499 if ((p.prev = hiTail) == null)
2500 hi = p;
2501 else
2502 hiTail.next = p;
2503 hiTail = p;
2504 ++hc;
2505 }
2506 }
2507 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2508 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2509 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2510 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2511 setTabAt(nextTab, i, ln);
2512 setTabAt(nextTab, i + n, hn);
2513 setTabAt(tab, i, fwd);
2514 advance = true;
2515 }
2516 else if (f instanceof ReservationNode)
2517 throw new IllegalStateException("Recursive update");
2518 }
2519 }
2520 }
2521 }
2522 }
2523
2524 /* ---------------- Counter support -------------- */
2525
2526 /**
2527 * A padded cell for distributing counts. Adapted from LongAdder
2528 * and Striped64. See their internal docs for explanation.
2529 */
2530 @jdk.internal.vm.annotation.Contended static final class CounterCell {
2531 volatile long value;
2532 CounterCell(long x) { value = x; }
2533 }
2534
2535 final long sumCount() {
2536 CounterCell[] cs = counterCells;
2537 long sum = baseCount;
2538 if (cs != null) {
2539 for (CounterCell c : cs)
2540 if (c != null)
2541 sum += c.value;
2542 }
2543 return sum;
2544 }
2545
2546 // See LongAdder version for explanation
2547 private final void fullAddCount(long x, boolean wasUncontended) {
2548 int h;
2549 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2550 ThreadLocalRandom.localInit(); // force initialization
2551 h = ThreadLocalRandom.getProbe();
2552 wasUncontended = true;
2553 }
2554 boolean collide = false; // True if last slot nonempty
2555 for (;;) {
2556 CounterCell[] cs; CounterCell c; int n; long v;
2557 if ((cs = counterCells) != null && (n = cs.length) > 0) {
2558 if ((c = cs[(n - 1) & h]) == null) {
2559 if (cellsBusy == 0) { // Try to attach new Cell
2560 CounterCell r = new CounterCell(x); // Optimistic create
2561 if (cellsBusy == 0 &&
2562 U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2563 boolean created = false;
2564 try { // Recheck under lock
2565 CounterCell[] rs; int m, j;
2566 if ((rs = counterCells) != null &&
2567 (m = rs.length) > 0 &&
2568 rs[j = (m - 1) & h] == null) {
2569 rs[j] = r;
2570 created = true;
2571 }
2572 } finally {
2573 cellsBusy = 0;
2574 }
2575 if (created)
2576 break;
2577 continue; // Slot is now non-empty
2578 }
2579 }
2580 collide = false;
2581 }
2582 else if (!wasUncontended) // CAS already known to fail
2583 wasUncontended = true; // Continue after rehash
2584 else if (U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))
2585 break;
2586 else if (counterCells != cs || n >= NCPU)
2587 collide = false; // At max size or stale
2588 else if (!collide)
2589 collide = true;
2590 else if (cellsBusy == 0 &&
2591 U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2592 try {
2593 if (counterCells == cs) // Expand table unless stale
2594 counterCells = Arrays.copyOf(cs, n << 1);
2595 } finally {
2596 cellsBusy = 0;
2597 }
2598 collide = false;
2599 continue; // Retry with expanded table
2600 }
2601 h = ThreadLocalRandom.advanceProbe(h);
2602 }
2603 else if (cellsBusy == 0 && counterCells == cs &&
2604 U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2605 boolean init = false;
2606 try { // Initialize table
2607 if (counterCells == cs) {
2608 CounterCell[] rs = new CounterCell[2];
2609 rs[h & 1] = new CounterCell(x);
2610 counterCells = rs;
2611 init = true;
2612 }
2613 } finally {
2614 cellsBusy = 0;
2615 }
2616 if (init)
2617 break;
2618 }
2619 else if (U.compareAndSetLong(this, BASECOUNT, v = baseCount, v + x))
2620 break; // Fall back on using base
2621 }
2622 }
2623
2624 /* ---------------- Conversion from/to TreeBins -------------- */
2625
2626 /**
2627 * Replaces all linked nodes in bin at given index unless table is
2628 * too small, in which case resizes instead.
2629 */
2630 private final void treeifyBin(Node<K,V>[] tab, int index) {
2631 Node<K,V> b; int n;
2632 if (tab != null) {
2633 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2634 tryPresize(n << 1);
2635 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2636 synchronized (b) {
2637 if (tabAt(tab, index) == b) {
2638 TreeNode<K,V> hd = null, tl = null;
2639 for (Node<K,V> e = b; e != null; e = e.next) {
2640 TreeNode<K,V> p =
2641 new TreeNode<K,V>(e.hash, e.key, e.val,
2642 null, null);
2643 if ((p.prev = tl) == null)
2644 hd = p;
2645 else
2646 tl.next = p;
2647 tl = p;
2648 }
2649 setTabAt(tab, index, new TreeBin<K,V>(hd));
2650 }
2651 }
2652 }
2653 }
2654 }
2655
2656 /**
2657 * Returns a list of non-TreeNodes replacing those in given list.
2658 */
2659 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2660 Node<K,V> hd = null, tl = null;
2661 for (Node<K,V> q = b; q != null; q = q.next) {
2662 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val);
2663 if (tl == null)
2664 hd = p;
2665 else
2666 tl.next = p;
2667 tl = p;
2668 }
2669 return hd;
2670 }
2671
2672 /* ---------------- TreeNodes -------------- */
2673
2674 /**
2675 * Nodes for use in TreeBins.
2676 */
2677 static final class TreeNode<K,V> extends Node<K,V> {
2678 TreeNode<K,V> parent; // red-black tree links
2679 TreeNode<K,V> left;
2680 TreeNode<K,V> right;
2681 TreeNode<K,V> prev; // needed to unlink next upon deletion
2682 boolean red;
2683
2684 TreeNode(int hash, K key, V val, Node<K,V> next,
2685 TreeNode<K,V> parent) {
2686 super(hash, key, val, next);
2687 this.parent = parent;
2688 }
2689
2690 Node<K,V> find(int h, Object k) {
2691 return findTreeNode(h, k, null);
2692 }
2693
2694 /**
2695 * Returns the TreeNode (or null if not found) for the given key
2696 * starting at given root.
2697 */
2698 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2699 if (k != null) {
2700 TreeNode<K,V> p = this;
2701 do {
2702 int ph, dir; K pk; TreeNode<K,V> q;
2703 TreeNode<K,V> pl = p.left, pr = p.right;
2704 if ((ph = p.hash) > h)
2705 p = pl;
2706 else if (ph < h)
2707 p = pr;
2708 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2709 return p;
2710 else if (pl == null)
2711 p = pr;
2712 else if (pr == null)
2713 p = pl;
2714 else if ((kc != null ||
2715 (kc = comparableClassFor(k)) != null) &&
2716 (dir = compareComparables(kc, k, pk)) != 0)
2717 p = (dir < 0) ? pl : pr;
2718 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2719 return q;
2720 else
2721 p = pl;
2722 } while (p != null);
2723 }
2724 return null;
2725 }
2726 }
2727
2728 /* ---------------- TreeBins -------------- */
2729
2730 /**
2731 * TreeNodes used at the heads of bins. TreeBins do not hold user
2732 * keys or values, but instead point to list of TreeNodes and
2733 * their root. They also maintain a parasitic read-write lock
2734 * forcing writers (who hold bin lock) to wait for readers (who do
2735 * not) to complete before tree restructuring operations.
2736 */
2737 static final class TreeBin<K,V> extends Node<K,V> {
2738 TreeNode<K,V> root;
2739 volatile TreeNode<K,V> first;
2740 volatile Thread waiter;
2741 volatile int lockState;
2742 // values for lockState
2743 static final int WRITER = 1; // set while holding write lock
2744 static final int WAITER = 2; // set when waiting for write lock
2745 static final int READER = 4; // increment value for setting read lock
2746
2747 /**
2748 * Tie-breaking utility for ordering insertions when equal
2749 * hashCodes and non-comparable. We don't require a total
2750 * order, just a consistent insertion rule to maintain
2751 * equivalence across rebalancings. Tie-breaking further than
2752 * necessary simplifies testing a bit.
2753 */
2754 static int tieBreakOrder(Object a, Object b) {
2755 int d;
2756 if (a == null || b == null ||
2757 (d = a.getClass().getName().
2758 compareTo(b.getClass().getName())) == 0)
2759 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2760 -1 : 1);
2761 return d;
2762 }
2763
2764 /**
2765 * Creates bin with initial set of nodes headed by b.
2766 */
2767 TreeBin(TreeNode<K,V> b) {
2768 super(TREEBIN, null, null);
2769 this.first = b;
2770 TreeNode<K,V> r = null;
2771 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2772 next = (TreeNode<K,V>)x.next;
2773 x.left = x.right = null;
2774 if (r == null) {
2775 x.parent = null;
2776 x.red = false;
2777 r = x;
2778 }
2779 else {
2780 K k = x.key;
2781 int h = x.hash;
2782 Class<?> kc = null;
2783 for (TreeNode<K,V> p = r;;) {
2784 int dir, ph;
2785 K pk = p.key;
2786 if ((ph = p.hash) > h)
2787 dir = -1;
2788 else if (ph < h)
2789 dir = 1;
2790 else if ((kc == null &&
2791 (kc = comparableClassFor(k)) == null) ||
2792 (dir = compareComparables(kc, k, pk)) == 0)
2793 dir = tieBreakOrder(k, pk);
2794 TreeNode<K,V> xp = p;
2795 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2796 x.parent = xp;
2797 if (dir <= 0)
2798 xp.left = x;
2799 else
2800 xp.right = x;
2801 r = balanceInsertion(r, x);
2802 break;
2803 }
2804 }
2805 }
2806 }
2807 this.root = r;
2808 assert checkInvariants(root);
2809 }
2810
2811 /**
2812 * Acquires write lock for tree restructuring.
2813 */
2814 private final void lockRoot() {
2815 if (!U.compareAndSetInt(this, LOCKSTATE, 0, WRITER))
2816 contendedLock(); // offload to separate method
2817 }
2818
2819 /**
2820 * Releases write lock for tree restructuring.
2821 */
2822 private final void unlockRoot() {
2823 lockState = 0;
2824 }
2825
2826 /**
2827 * Possibly blocks awaiting root lock.
2828 */
2829 private final void contendedLock() {
2830 boolean waiting = false;
2831 for (int s;;) {
2832 if (((s = lockState) & ~WAITER) == 0) {
2833 if (U.compareAndSetInt(this, LOCKSTATE, s, WRITER)) {
2834 if (waiting)
2835 waiter = null;
2836 return;
2837 }
2838 }
2839 else if ((s & WAITER) == 0) {
2840 if (U.compareAndSetInt(this, LOCKSTATE, s, s | WAITER)) {
2841 waiting = true;
2842 waiter = Thread.currentThread();
2843 }
2844 }
2845 else if (waiting)
2846 LockSupport.park(this);
2847 }
2848 }
2849
2850 /**
2851 * Returns matching node or null if none. Tries to search
2852 * using tree comparisons from root, but continues linear
2853 * search when lock not available.
2854 */
2855 final Node<K,V> find(int h, Object k) {
2856 if (k != null) {
2857 for (Node<K,V> e = first; e != null; ) {
2858 int s; K ek;
2859 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2860 if (e.hash == h &&
2861 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2862 return e;
2863 e = e.next;
2864 }
2865 else if (U.compareAndSetInt(this, LOCKSTATE, s,
2866 s + READER)) {
2867 TreeNode<K,V> r, p;
2868 try {
2869 p = ((r = root) == null ? null :
2870 r.findTreeNode(h, k, null));
2871 } finally {
2872 Thread w;
2873 if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2874 (READER|WAITER) && (w = waiter) != null)
2875 LockSupport.unpark(w);
2876 }
2877 return p;
2878 }
2879 }
2880 }
2881 return null;
2882 }
2883
2884 /**
2885 * Finds or adds a node.
2886 * @return null if added
2887 */
2888 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2889 Class<?> kc = null;
2890 boolean searched = false;
2891 for (TreeNode<K,V> p = root;;) {
2892 int dir, ph; K pk;
2893 if (p == null) {
2894 first = root = new TreeNode<K,V>(h, k, v, null, null);
2895 break;
2896 }
2897 else if ((ph = p.hash) > h)
2898 dir = -1;
2899 else if (ph < h)
2900 dir = 1;
2901 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2902 return p;
2903 else if ((kc == null &&
2904 (kc = comparableClassFor(k)) == null) ||
2905 (dir = compareComparables(kc, k, pk)) == 0) {
2906 if (!searched) {
2907 TreeNode<K,V> q, ch;
2908 searched = true;
2909 if (((ch = p.left) != null &&
2910 (q = ch.findTreeNode(h, k, kc)) != null) ||
2911 ((ch = p.right) != null &&
2912 (q = ch.findTreeNode(h, k, kc)) != null))
2913 return q;
2914 }
2915 dir = tieBreakOrder(k, pk);
2916 }
2917
2918 TreeNode<K,V> xp = p;
2919 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2920 TreeNode<K,V> x, f = first;
2921 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2922 if (f != null)
2923 f.prev = x;
2924 if (dir <= 0)
2925 xp.left = x;
2926 else
2927 xp.right = x;
2928 if (!xp.red)
2929 x.red = true;
2930 else {
2931 lockRoot();
2932 try {
2933 root = balanceInsertion(root, x);
2934 } finally {
2935 unlockRoot();
2936 }
2937 }
2938 break;
2939 }
2940 }
2941 assert checkInvariants(root);
2942 return null;
2943 }
2944
2945 /**
2946 * Removes the given node, that must be present before this
2947 * call. This is messier than typical red-black deletion code
2948 * because we cannot swap the contents of an interior node
2949 * with a leaf successor that is pinned by "next" pointers
2950 * that are accessible independently of lock. So instead we
2951 * swap the tree linkages.
2952 *
2953 * @return true if now too small, so should be untreeified
2954 */
2955 final boolean removeTreeNode(TreeNode<K,V> p) {
2956 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2957 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2958 TreeNode<K,V> r, rl;
2959 if (pred == null)
2960 first = next;
2961 else
2962 pred.next = next;
2963 if (next != null)
2964 next.prev = pred;
2965 if (first == null) {
2966 root = null;
2967 return true;
2968 }
2969 if ((r = root) == null || r.right == null || // too small
2970 (rl = r.left) == null || rl.left == null)
2971 return true;
2972 lockRoot();
2973 try {
2974 TreeNode<K,V> replacement;
2975 TreeNode<K,V> pl = p.left;
2976 TreeNode<K,V> pr = p.right;
2977 if (pl != null && pr != null) {
2978 TreeNode<K,V> s = pr, sl;
2979 while ((sl = s.left) != null) // find successor
2980 s = sl;
2981 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2982 TreeNode<K,V> sr = s.right;
2983 TreeNode<K,V> pp = p.parent;
2984 if (s == pr) { // p was s's direct parent
2985 p.parent = s;
2986 s.right = p;
2987 }
2988 else {
2989 TreeNode<K,V> sp = s.parent;
2990 if ((p.parent = sp) != null) {
2991 if (s == sp.left)
2992 sp.left = p;
2993 else
2994 sp.right = p;
2995 }
2996 if ((s.right = pr) != null)
2997 pr.parent = s;
2998 }
2999 p.left = null;
3000 if ((p.right = sr) != null)
3001 sr.parent = p;
3002 if ((s.left = pl) != null)
3003 pl.parent = s;
3004 if ((s.parent = pp) == null)
3005 r = s;
3006 else if (p == pp.left)
3007 pp.left = s;
3008 else
3009 pp.right = s;
3010 if (sr != null)
3011 replacement = sr;
3012 else
3013 replacement = p;
3014 }
3015 else if (pl != null)
3016 replacement = pl;
3017 else if (pr != null)
3018 replacement = pr;
3019 else
3020 replacement = p;
3021 if (replacement != p) {
3022 TreeNode<K,V> pp = replacement.parent = p.parent;
3023 if (pp == null)
3024 r = replacement;
3025 else if (p == pp.left)
3026 pp.left = replacement;
3027 else
3028 pp.right = replacement;
3029 p.left = p.right = p.parent = null;
3030 }
3031
3032 root = (p.red) ? r : balanceDeletion(r, replacement);
3033
3034 if (p == replacement) { // detach pointers
3035 TreeNode<K,V> pp;
3036 if ((pp = p.parent) != null) {
3037 if (p == pp.left)
3038 pp.left = null;
3039 else if (p == pp.right)
3040 pp.right = null;
3041 p.parent = null;
3042 }
3043 }
3044 } finally {
3045 unlockRoot();
3046 }
3047 assert checkInvariants(root);
3048 return false;
3049 }
3050
3051 /* ------------------------------------------------------------ */
3052 // Red-black tree methods, all adapted from CLR
3053
3054 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3055 TreeNode<K,V> p) {
3056 TreeNode<K,V> r, pp, rl;
3057 if (p != null && (r = p.right) != null) {
3058 if ((rl = p.right = r.left) != null)
3059 rl.parent = p;
3060 if ((pp = r.parent = p.parent) == null)
3061 (root = r).red = false;
3062 else if (pp.left == p)
3063 pp.left = r;
3064 else
3065 pp.right = r;
3066 r.left = p;
3067 p.parent = r;
3068 }
3069 return root;
3070 }
3071
3072 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3073 TreeNode<K,V> p) {
3074 TreeNode<K,V> l, pp, lr;
3075 if (p != null && (l = p.left) != null) {
3076 if ((lr = p.left = l.right) != null)
3077 lr.parent = p;
3078 if ((pp = l.parent = p.parent) == null)
3079 (root = l).red = false;
3080 else if (pp.right == p)
3081 pp.right = l;
3082 else
3083 pp.left = l;
3084 l.right = p;
3085 p.parent = l;
3086 }
3087 return root;
3088 }
3089
3090 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3091 TreeNode<K,V> x) {
3092 x.red = true;
3093 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3094 if ((xp = x.parent) == null) {
3095 x.red = false;
3096 return x;
3097 }
3098 else if (!xp.red || (xpp = xp.parent) == null)
3099 return root;
3100 if (xp == (xppl = xpp.left)) {
3101 if ((xppr = xpp.right) != null && xppr.red) {
3102 xppr.red = false;
3103 xp.red = false;
3104 xpp.red = true;
3105 x = xpp;
3106 }
3107 else {
3108 if (x == xp.right) {
3109 root = rotateLeft(root, x = xp);
3110 xpp = (xp = x.parent) == null ? null : xp.parent;
3111 }
3112 if (xp != null) {
3113 xp.red = false;
3114 if (xpp != null) {
3115 xpp.red = true;
3116 root = rotateRight(root, xpp);
3117 }
3118 }
3119 }
3120 }
3121 else {
3122 if (xppl != null && xppl.red) {
3123 xppl.red = false;
3124 xp.red = false;
3125 xpp.red = true;
3126 x = xpp;
3127 }
3128 else {
3129 if (x == xp.left) {
3130 root = rotateRight(root, x = xp);
3131 xpp = (xp = x.parent) == null ? null : xp.parent;
3132 }
3133 if (xp != null) {
3134 xp.red = false;
3135 if (xpp != null) {
3136 xpp.red = true;
3137 root = rotateLeft(root, xpp);
3138 }
3139 }
3140 }
3141 }
3142 }
3143 }
3144
3145 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3146 TreeNode<K,V> x) {
3147 for (TreeNode<K,V> xp, xpl, xpr;;) {
3148 if (x == null || x == root)
3149 return root;
3150 else if ((xp = x.parent) == null) {
3151 x.red = false;
3152 return x;
3153 }
3154 else if (x.red) {
3155 x.red = false;
3156 return root;
3157 }
3158 else if ((xpl = xp.left) == x) {
3159 if ((xpr = xp.right) != null && xpr.red) {
3160 xpr.red = false;
3161 xp.red = true;
3162 root = rotateLeft(root, xp);
3163 xpr = (xp = x.parent) == null ? null : xp.right;
3164 }
3165 if (xpr == null)
3166 x = xp;
3167 else {
3168 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3169 if ((sr == null || !sr.red) &&
3170 (sl == null || !sl.red)) {
3171 xpr.red = true;
3172 x = xp;
3173 }
3174 else {
3175 if (sr == null || !sr.red) {
3176 if (sl != null)
3177 sl.red = false;
3178 xpr.red = true;
3179 root = rotateRight(root, xpr);
3180 xpr = (xp = x.parent) == null ?
3181 null : xp.right;
3182 }
3183 if (xpr != null) {
3184 xpr.red = (xp == null) ? false : xp.red;
3185 if ((sr = xpr.right) != null)
3186 sr.red = false;
3187 }
3188 if (xp != null) {
3189 xp.red = false;
3190 root = rotateLeft(root, xp);
3191 }
3192 x = root;
3193 }
3194 }
3195 }
3196 else { // symmetric
3197 if (xpl != null && xpl.red) {
3198 xpl.red = false;
3199 xp.red = true;
3200 root = rotateRight(root, xp);
3201 xpl = (xp = x.parent) == null ? null : xp.left;
3202 }
3203 if (xpl == null)
3204 x = xp;
3205 else {
3206 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3207 if ((sl == null || !sl.red) &&
3208 (sr == null || !sr.red)) {
3209 xpl.red = true;
3210 x = xp;
3211 }
3212 else {
3213 if (sl == null || !sl.red) {
3214 if (sr != null)
3215 sr.red = false;
3216 xpl.red = true;
3217 root = rotateLeft(root, xpl);
3218 xpl = (xp = x.parent) == null ?
3219 null : xp.left;
3220 }
3221 if (xpl != null) {
3222 xpl.red = (xp == null) ? false : xp.red;
3223 if ((sl = xpl.left) != null)
3224 sl.red = false;
3225 }
3226 if (xp != null) {
3227 xp.red = false;
3228 root = rotateRight(root, xp);
3229 }
3230 x = root;
3231 }
3232 }
3233 }
3234 }
3235 }
3236
3237 /**
3238 * Checks invariants recursively for the tree of Nodes rooted at t.
3239 */
3240 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3241 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3242 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3243 if (tb != null && tb.next != t)
3244 return false;
3245 if (tn != null && tn.prev != t)
3246 return false;
3247 if (tp != null && t != tp.left && t != tp.right)
3248 return false;
3249 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3250 return false;
3251 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3252 return false;
3253 if (t.red && tl != null && tl.red && tr != null && tr.red)
3254 return false;
3255 if (tl != null && !checkInvariants(tl))
3256 return false;
3257 if (tr != null && !checkInvariants(tr))
3258 return false;
3259 return true;
3260 }
3261
3262 private static final Unsafe U = Unsafe.getUnsafe();
3263 private static final long LOCKSTATE;
3264 static {
3265 try {
3266 LOCKSTATE = U.objectFieldOffset
3267 (TreeBin.class.getDeclaredField("lockState"));
3268 } catch (ReflectiveOperationException e) {
3269 throw new ExceptionInInitializerError(e);
3270 }
3271 }
3272 }
3273
3274 /* ----------------Table Traversal -------------- */
3275
3276 /**
3277 * Records the table, its length, and current traversal index for a
3278 * traverser that must process a region of a forwarded table before
3279 * proceeding with current table.
3280 */
3281 static final class TableStack<K,V> {
3282 int length;
3283 int index;
3284 Node<K,V>[] tab;
3285 TableStack<K,V> next;
3286 }
3287
3288 /**
3289 * Encapsulates traversal for methods such as containsValue; also
3290 * serves as a base class for other iterators and spliterators.
3291 *
3292 * Method advance visits once each still-valid node that was
3293 * reachable upon iterator construction. It might miss some that
3294 * were added to a bin after the bin was visited, which is OK wrt
3295 * consistency guarantees. Maintaining this property in the face
3296 * of possible ongoing resizes requires a fair amount of
3297 * bookkeeping state that is difficult to optimize away amidst
3298 * volatile accesses. Even so, traversal maintains reasonable
3299 * throughput.
3300 *
3301 * Normally, iteration proceeds bin-by-bin traversing lists.
3302 * However, if the table has been resized, then all future steps
3303 * must traverse both the bin at the current index as well as at
3304 * (index + baseSize); and so on for further resizings. To
3305 * paranoically cope with potential sharing by users of iterators
3306 * across threads, iteration terminates if a bounds checks fails
3307 * for a table read.
3308 */
3309 static class Traverser<K,V> {
3310 Node<K,V>[] tab; // current table; updated if resized
3311 Node<K,V> next; // the next entry to use
3312 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3313 int index; // index of bin to use next
3314 int baseIndex; // current index of initial table
3315 int baseLimit; // index bound for initial table
3316 final int baseSize; // initial table size
3317
3318 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3319 this.tab = tab;
3320 this.baseSize = size;
3321 this.baseIndex = this.index = index;
3322 this.baseLimit = limit;
3323 this.next = null;
3324 }
3325
3326 /**
3327 * Advances if possible, returning next valid node, or null if none.
3328 */
3329 final Node<K,V> advance() {
3330 Node<K,V> e;
3331 if ((e = next) != null)
3332 e = e.next;
3333 for (;;) {
3334 Node<K,V>[] t; int i, n; // must use locals in checks
3335 if (e != null)
3336 return next = e;
3337 if (baseIndex >= baseLimit || (t = tab) == null ||
3338 (n = t.length) <= (i = index) || i < 0)
3339 return next = null;
3340 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3341 if (e instanceof ForwardingNode) {
3342 tab = ((ForwardingNode<K,V>)e).nextTable;
3343 e = null;
3344 pushState(t, i, n);
3345 continue;
3346 }
3347 else if (e instanceof TreeBin)
3348 e = ((TreeBin<K,V>)e).first;
3349 else
3350 e = null;
3351 }
3352 if (stack != null)
3353 recoverState(n);
3354 else if ((index = i + baseSize) >= n)
3355 index = ++baseIndex; // visit upper slots if present
3356 }
3357 }
3358
3359 /**
3360 * Saves traversal state upon encountering a forwarding node.
3361 */
3362 private void pushState(Node<K,V>[] t, int i, int n) {
3363 TableStack<K,V> s = spare; // reuse if possible
3364 if (s != null)
3365 spare = s.next;
3366 else
3367 s = new TableStack<K,V>();
3368 s.tab = t;
3369 s.length = n;
3370 s.index = i;
3371 s.next = stack;
3372 stack = s;
3373 }
3374
3375 /**
3376 * Possibly pops traversal state.
3377 *
3378 * @param n length of current table
3379 */
3380 private void recoverState(int n) {
3381 TableStack<K,V> s; int len;
3382 while ((s = stack) != null && (index += (len = s.length)) >= n) {
3383 n = len;
3384 index = s.index;
3385 tab = s.tab;
3386 s.tab = null;
3387 TableStack<K,V> next = s.next;
3388 s.next = spare; // save for reuse
3389 stack = next;
3390 spare = s;
3391 }
3392 if (s == null && (index += baseSize) >= n)
3393 index = ++baseIndex;
3394 }
3395 }
3396
3397 /**
3398 * Base of key, value, and entry Iterators. Adds fields to
3399 * Traverser to support iterator.remove.
3400 */
3401 static class BaseIterator<K,V> extends Traverser<K,V> {
3402 final ConcurrentHashMap<K,V> map;
3403 Node<K,V> lastReturned;
3404 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3405 ConcurrentHashMap<K,V> map) {
3406 super(tab, size, index, limit);
3407 this.map = map;
3408 advance();
3409 }
3410
3411 public final boolean hasNext() { return next != null; }
3412 public final boolean hasMoreElements() { return next != null; }
3413
3414 public final void remove() {
3415 Node<K,V> p;
3416 if ((p = lastReturned) == null)
3417 throw new IllegalStateException();
3418 lastReturned = null;
3419 map.replaceNode(p.key, null, null);
3420 }
3421 }
3422
3423 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3424 implements Iterator<K>, Enumeration<K> {
3425 KeyIterator(Node<K,V>[] tab, int size, int index, int limit,
3426 ConcurrentHashMap<K,V> map) {
3427 super(tab, size, index, limit, map);
3428 }
3429
3430 public final K next() {
3431 Node<K,V> p;
3432 if ((p = next) == null)
3433 throw new NoSuchElementException();
3434 K k = p.key;
3435 lastReturned = p;
3436 advance();
3437 return k;
3438 }
3439
3440 public final K nextElement() { return next(); }
3441 }
3442
3443 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3444 implements Iterator<V>, Enumeration<V> {
3445 ValueIterator(Node<K,V>[] tab, int size, int index, int limit,
3446 ConcurrentHashMap<K,V> map) {
3447 super(tab, size, index, limit, map);
3448 }
3449
3450 public final V next() {
3451 Node<K,V> p;
3452 if ((p = next) == null)
3453 throw new NoSuchElementException();
3454 V v = p.val;
3455 lastReturned = p;
3456 advance();
3457 return v;
3458 }
3459
3460 public final V nextElement() { return next(); }
3461 }
3462
3463 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3464 implements Iterator<Map.Entry<K,V>> {
3465 EntryIterator(Node<K,V>[] tab, int size, int index, int limit,
3466 ConcurrentHashMap<K,V> map) {
3467 super(tab, size, index, limit, map);
3468 }
3469
3470 public final Map.Entry<K,V> next() {
3471 Node<K,V> p;
3472 if ((p = next) == null)
3473 throw new NoSuchElementException();
3474 K k = p.key;
3475 V v = p.val;
3476 lastReturned = p;
3477 advance();
3478 return new MapEntry<K,V>(k, v, map);
3479 }
3480 }
3481
3482 /**
3483 * Exported Entry for EntryIterator.
3484 */
3485 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3486 final K key; // non-null
3487 V val; // non-null
3488 final ConcurrentHashMap<K,V> map;
3489 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3490 this.key = key;
3491 this.val = val;
3492 this.map = map;
3493 }
3494 public K getKey() { return key; }
3495 public V getValue() { return val; }
3496 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3497 public String toString() {
3498 return Helpers.mapEntryToString(key, val);
3499 }
3500
3501 public boolean equals(Object o) {
3502 Object k, v; Map.Entry<?,?> e;
3503 return ((o instanceof Map.Entry) &&
3504 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3505 (v = e.getValue()) != null &&
3506 (k == key || k.equals(key)) &&
3507 (v == val || v.equals(val)));
3508 }
3509
3510 /**
3511 * Sets our entry's value and writes through to the map. The
3512 * value to return is somewhat arbitrary here. Since we do not
3513 * necessarily track asynchronous changes, the most recent
3514 * "previous" value could be different from what we return (or
3515 * could even have been removed, in which case the put will
3516 * re-establish). We do not and cannot guarantee more.
3517 */
3518 public V setValue(V value) {
3519 if (value == null) throw new NullPointerException();
3520 V v = val;
3521 val = value;
3522 map.put(key, value);
3523 return v;
3524 }
3525 }
3526
3527 static final class KeySpliterator<K,V> extends Traverser<K,V>
3528 implements Spliterator<K> {
3529 long est; // size estimate
3530 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3531 long est) {
3532 super(tab, size, index, limit);
3533 this.est = est;
3534 }
3535
3536 public KeySpliterator<K,V> trySplit() {
3537 int i, f, h;
3538 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3539 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3540 f, est >>>= 1);
3541 }
3542
3543 public void forEachRemaining(Consumer<? super K> action) {
3544 if (action == null) throw new NullPointerException();
3545 for (Node<K,V> p; (p = advance()) != null;)
3546 action.accept(p.key);
3547 }
3548
3549 public boolean tryAdvance(Consumer<? super K> action) {
3550 if (action == null) throw new NullPointerException();
3551 Node<K,V> p;
3552 if ((p = advance()) == null)
3553 return false;
3554 action.accept(p.key);
3555 return true;
3556 }
3557
3558 public long estimateSize() { return est; }
3559
3560 public int characteristics() {
3561 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3562 Spliterator.NONNULL;
3563 }
3564 }
3565
3566 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3567 implements Spliterator<V> {
3568 long est; // size estimate
3569 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3570 long est) {
3571 super(tab, size, index, limit);
3572 this.est = est;
3573 }
3574
3575 public ValueSpliterator<K,V> trySplit() {
3576 int i, f, h;
3577 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3578 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3579 f, est >>>= 1);
3580 }
3581
3582 public void forEachRemaining(Consumer<? super V> action) {
3583 if (action == null) throw new NullPointerException();
3584 for (Node<K,V> p; (p = advance()) != null;)
3585 action.accept(p.val);
3586 }
3587
3588 public boolean tryAdvance(Consumer<? super V> action) {
3589 if (action == null) throw new NullPointerException();
3590 Node<K,V> p;
3591 if ((p = advance()) == null)
3592 return false;
3593 action.accept(p.val);
3594 return true;
3595 }
3596
3597 public long estimateSize() { return est; }
3598
3599 public int characteristics() {
3600 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3601 }
3602 }
3603
3604 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3605 implements Spliterator<Map.Entry<K,V>> {
3606 final ConcurrentHashMap<K,V> map; // To export MapEntry
3607 long est; // size estimate
3608 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3609 long est, ConcurrentHashMap<K,V> map) {
3610 super(tab, size, index, limit);
3611 this.map = map;
3612 this.est = est;
3613 }
3614
3615 public EntrySpliterator<K,V> trySplit() {
3616 int i, f, h;
3617 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3618 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3619 f, est >>>= 1, map);
3620 }
3621
3622 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3623 if (action == null) throw new NullPointerException();
3624 for (Node<K,V> p; (p = advance()) != null; )
3625 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3626 }
3627
3628 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3629 if (action == null) throw new NullPointerException();
3630 Node<K,V> p;
3631 if ((p = advance()) == null)
3632 return false;
3633 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3634 return true;
3635 }
3636
3637 public long estimateSize() { return est; }
3638
3639 public int characteristics() {
3640 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3641 Spliterator.NONNULL;
3642 }
3643 }
3644
3645 // Parallel bulk operations
3646
3647 /**
3648 * Computes initial batch value for bulk tasks. The returned value
3649 * is approximately exp2 of the number of times (minus one) to
3650 * split task by two before executing leaf action. This value is
3651 * faster to compute and more convenient to use as a guide to
3652 * splitting than is the depth, since it is used while dividing by
3653 * two anyway.
3654 */
3655 final int batchFor(long b) {
3656 long n;
3657 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3658 return 0;
3659 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3660 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3661 }
3662
3663 /**
3664 * Performs the given action for each (key, value).
3665 *
3666 * @param parallelismThreshold the (estimated) number of elements
3667 * needed for this operation to be executed in parallel
3668 * @param action the action
3669 * @since 1.8
3670 */
3671 public void forEach(long parallelismThreshold,
3672 BiConsumer<? super K,? super V> action) {
3673 if (action == null) throw new NullPointerException();
3674 new ForEachMappingTask<K,V>
3675 (null, batchFor(parallelismThreshold), 0, 0, table,
3676 action).invoke();
3677 }
3678
3679 /**
3680 * Performs the given action for each non-null transformation
3681 * of each (key, value).
3682 *
3683 * @param parallelismThreshold the (estimated) number of elements
3684 * needed for this operation to be executed in parallel
3685 * @param transformer a function returning the transformation
3686 * for an element, or null if there is no transformation (in
3687 * which case the action is not applied)
3688 * @param action the action
3689 * @param <U> the return type of the transformer
3690 * @since 1.8
3691 */
3692 public <U> void forEach(long parallelismThreshold,
3693 BiFunction<? super K, ? super V, ? extends U> transformer,
3694 Consumer<? super U> action) {
3695 if (transformer == null || action == null)
3696 throw new NullPointerException();
3697 new ForEachTransformedMappingTask<K,V,U>
3698 (null, batchFor(parallelismThreshold), 0, 0, table,
3699 transformer, action).invoke();
3700 }
3701
3702 /**
3703 * Returns a non-null result from applying the given search
3704 * function on each (key, value), or null if none. Upon
3705 * success, further element processing is suppressed and the
3706 * results of any other parallel invocations of the search
3707 * function are ignored.
3708 *
3709 * @param parallelismThreshold the (estimated) number of elements
3710 * needed for this operation to be executed in parallel
3711 * @param searchFunction a function returning a non-null
3712 * result on success, else null
3713 * @param <U> the return type of the search function
3714 * @return a non-null result from applying the given search
3715 * function on each (key, value), or null if none
3716 * @since 1.8
3717 */
3718 public <U> U search(long parallelismThreshold,
3719 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3720 if (searchFunction == null) throw new NullPointerException();
3721 return new SearchMappingsTask<K,V,U>
3722 (null, batchFor(parallelismThreshold), 0, 0, table,
3723 searchFunction, new AtomicReference<U>()).invoke();
3724 }
3725
3726 /**
3727 * Returns the result of accumulating the given transformation
3728 * of all (key, value) pairs using the given reducer to
3729 * combine values, or null if none.
3730 *
3731 * @param parallelismThreshold the (estimated) number of elements
3732 * needed for this operation to be executed in parallel
3733 * @param transformer a function returning the transformation
3734 * for an element, or null if there is no transformation (in
3735 * which case it is not combined)
3736 * @param reducer a commutative associative combining function
3737 * @param <U> the return type of the transformer
3738 * @return the result of accumulating the given transformation
3739 * of all (key, value) pairs
3740 * @since 1.8
3741 */
3742 public <U> U reduce(long parallelismThreshold,
3743 BiFunction<? super K, ? super V, ? extends U> transformer,
3744 BiFunction<? super U, ? super U, ? extends U> reducer) {
3745 if (transformer == null || reducer == null)
3746 throw new NullPointerException();
3747 return new MapReduceMappingsTask<K,V,U>
3748 (null, batchFor(parallelismThreshold), 0, 0, table,
3749 null, transformer, reducer).invoke();
3750 }
3751
3752 /**
3753 * Returns the result of accumulating the given transformation
3754 * of all (key, value) pairs using the given reducer to
3755 * combine values, and the given basis as an identity value.
3756 *
3757 * @param parallelismThreshold the (estimated) number of elements
3758 * needed for this operation to be executed in parallel
3759 * @param transformer a function returning the transformation
3760 * for an element
3761 * @param basis the identity (initial default value) for the reduction
3762 * @param reducer a commutative associative combining function
3763 * @return the result of accumulating the given transformation
3764 * of all (key, value) pairs
3765 * @since 1.8
3766 */
3767 public double reduceToDouble(long parallelismThreshold,
3768 ToDoubleBiFunction<? super K, ? super V> transformer,
3769 double basis,
3770 DoubleBinaryOperator reducer) {
3771 if (transformer == null || reducer == null)
3772 throw new NullPointerException();
3773 return new MapReduceMappingsToDoubleTask<K,V>
3774 (null, batchFor(parallelismThreshold), 0, 0, table,
3775 null, transformer, basis, reducer).invoke();
3776 }
3777
3778 /**
3779 * Returns the result of accumulating the given transformation
3780 * of all (key, value) pairs using the given reducer to
3781 * combine values, and the given basis as an identity value.
3782 *
3783 * @param parallelismThreshold the (estimated) number of elements
3784 * needed for this operation to be executed in parallel
3785 * @param transformer a function returning the transformation
3786 * for an element
3787 * @param basis the identity (initial default value) for the reduction
3788 * @param reducer a commutative associative combining function
3789 * @return the result of accumulating the given transformation
3790 * of all (key, value) pairs
3791 * @since 1.8
3792 */
3793 public long reduceToLong(long parallelismThreshold,
3794 ToLongBiFunction<? super K, ? super V> transformer,
3795 long basis,
3796 LongBinaryOperator reducer) {
3797 if (transformer == null || reducer == null)
3798 throw new NullPointerException();
3799 return new MapReduceMappingsToLongTask<K,V>
3800 (null, batchFor(parallelismThreshold), 0, 0, table,
3801 null, transformer, basis, reducer).invoke();
3802 }
3803
3804 /**
3805 * Returns the result of accumulating the given transformation
3806 * of all (key, value) pairs using the given reducer to
3807 * combine values, and the given basis as an identity value.
3808 *
3809 * @param parallelismThreshold the (estimated) number of elements
3810 * needed for this operation to be executed in parallel
3811 * @param transformer a function returning the transformation
3812 * for an element
3813 * @param basis the identity (initial default value) for the reduction
3814 * @param reducer a commutative associative combining function
3815 * @return the result of accumulating the given transformation
3816 * of all (key, value) pairs
3817 * @since 1.8
3818 */
3819 public int reduceToInt(long parallelismThreshold,
3820 ToIntBiFunction<? super K, ? super V> transformer,
3821 int basis,
3822 IntBinaryOperator reducer) {
3823 if (transformer == null || reducer == null)
3824 throw new NullPointerException();
3825 return new MapReduceMappingsToIntTask<K,V>
3826 (null, batchFor(parallelismThreshold), 0, 0, table,
3827 null, transformer, basis, reducer).invoke();
3828 }
3829
3830 /**
3831 * Performs the given action for each key.
3832 *
3833 * @param parallelismThreshold the (estimated) number of elements
3834 * needed for this operation to be executed in parallel
3835 * @param action the action
3836 * @since 1.8
3837 */
3838 public void forEachKey(long parallelismThreshold,
3839 Consumer<? super K> action) {
3840 if (action == null) throw new NullPointerException();
3841 new ForEachKeyTask<K,V>
3842 (null, batchFor(parallelismThreshold), 0, 0, table,
3843 action).invoke();
3844 }
3845
3846 /**
3847 * Performs the given action for each non-null transformation
3848 * of each key.
3849 *
3850 * @param parallelismThreshold the (estimated) number of elements
3851 * needed for this operation to be executed in parallel
3852 * @param transformer a function returning the transformation
3853 * for an element, or null if there is no transformation (in
3854 * which case the action is not applied)
3855 * @param action the action
3856 * @param <U> the return type of the transformer
3857 * @since 1.8
3858 */
3859 public <U> void forEachKey(long parallelismThreshold,
3860 Function<? super K, ? extends U> transformer,
3861 Consumer<? super U> action) {
3862 if (transformer == null || action == null)
3863 throw new NullPointerException();
3864 new ForEachTransformedKeyTask<K,V,U>
3865 (null, batchFor(parallelismThreshold), 0, 0, table,
3866 transformer, action).invoke();
3867 }
3868
3869 /**
3870 * Returns a non-null result from applying the given search
3871 * function on each key, or null if none. Upon success,
3872 * further element processing is suppressed and the results of
3873 * any other parallel invocations of the search function are
3874 * ignored.
3875 *
3876 * @param parallelismThreshold the (estimated) number of elements
3877 * needed for this operation to be executed in parallel
3878 * @param searchFunction a function returning a non-null
3879 * result on success, else null
3880 * @param <U> the return type of the search function
3881 * @return a non-null result from applying the given search
3882 * function on each key, or null if none
3883 * @since 1.8
3884 */
3885 public <U> U searchKeys(long parallelismThreshold,
3886 Function<? super K, ? extends U> searchFunction) {
3887 if (searchFunction == null) throw new NullPointerException();
3888 return new SearchKeysTask<K,V,U>
3889 (null, batchFor(parallelismThreshold), 0, 0, table,
3890 searchFunction, new AtomicReference<U>()).invoke();
3891 }
3892
3893 /**
3894 * Returns the result of accumulating all keys using the given
3895 * reducer to combine values, or null if none.
3896 *
3897 * @param parallelismThreshold the (estimated) number of elements
3898 * needed for this operation to be executed in parallel
3899 * @param reducer a commutative associative combining function
3900 * @return the result of accumulating all keys using the given
3901 * reducer to combine values, or null if none
3902 * @since 1.8
3903 */
3904 public K reduceKeys(long parallelismThreshold,
3905 BiFunction<? super K, ? super K, ? extends K> reducer) {
3906 if (reducer == null) throw new NullPointerException();
3907 return new ReduceKeysTask<K,V>
3908 (null, batchFor(parallelismThreshold), 0, 0, table,
3909 null, reducer).invoke();
3910 }
3911
3912 /**
3913 * Returns the result of accumulating the given transformation
3914 * of all keys using the given reducer to combine values, or
3915 * null if none.
3916 *
3917 * @param parallelismThreshold the (estimated) number of elements
3918 * needed for this operation to be executed in parallel
3919 * @param transformer a function returning the transformation
3920 * for an element, or null if there is no transformation (in
3921 * which case it is not combined)
3922 * @param reducer a commutative associative combining function
3923 * @param <U> the return type of the transformer
3924 * @return the result of accumulating the given transformation
3925 * of all keys
3926 * @since 1.8
3927 */
3928 public <U> U reduceKeys(long parallelismThreshold,
3929 Function<? super K, ? extends U> transformer,
3930 BiFunction<? super U, ? super U, ? extends U> reducer) {
3931 if (transformer == null || reducer == null)
3932 throw new NullPointerException();
3933 return new MapReduceKeysTask<K,V,U>
3934 (null, batchFor(parallelismThreshold), 0, 0, table,
3935 null, transformer, reducer).invoke();
3936 }
3937
3938 /**
3939 * Returns the result of accumulating the given transformation
3940 * of all keys using the given reducer to combine values, and
3941 * the given basis as an identity value.
3942 *
3943 * @param parallelismThreshold the (estimated) number of elements
3944 * needed for this operation to be executed in parallel
3945 * @param transformer a function returning the transformation
3946 * for an element
3947 * @param basis the identity (initial default value) for the reduction
3948 * @param reducer a commutative associative combining function
3949 * @return the result of accumulating the given transformation
3950 * of all keys
3951 * @since 1.8
3952 */
3953 public double reduceKeysToDouble(long parallelismThreshold,
3954 ToDoubleFunction<? super K> transformer,
3955 double basis,
3956 DoubleBinaryOperator reducer) {
3957 if (transformer == null || reducer == null)
3958 throw new NullPointerException();
3959 return new MapReduceKeysToDoubleTask<K,V>
3960 (null, batchFor(parallelismThreshold), 0, 0, table,
3961 null, transformer, basis, reducer).invoke();
3962 }
3963
3964 /**
3965 * Returns the result of accumulating the given transformation
3966 * of all keys using the given reducer to combine values, and
3967 * the given basis as an identity value.
3968 *
3969 * @param parallelismThreshold the (estimated) number of elements
3970 * needed for this operation to be executed in parallel
3971 * @param transformer a function returning the transformation
3972 * for an element
3973 * @param basis the identity (initial default value) for the reduction
3974 * @param reducer a commutative associative combining function
3975 * @return the result of accumulating the given transformation
3976 * of all keys
3977 * @since 1.8
3978 */
3979 public long reduceKeysToLong(long parallelismThreshold,
3980 ToLongFunction<? super K> transformer,
3981 long basis,
3982 LongBinaryOperator reducer) {
3983 if (transformer == null || reducer == null)
3984 throw new NullPointerException();
3985 return new MapReduceKeysToLongTask<K,V>
3986 (null, batchFor(parallelismThreshold), 0, 0, table,
3987 null, transformer, basis, reducer).invoke();
3988 }
3989
3990 /**
3991 * Returns the result of accumulating the given transformation
3992 * of all keys using the given reducer to combine values, and
3993 * the given basis as an identity value.
3994 *
3995 * @param parallelismThreshold the (estimated) number of elements
3996 * needed for this operation to be executed in parallel
3997 * @param transformer a function returning the transformation
3998 * for an element
3999 * @param basis the identity (initial default value) for the reduction
4000 * @param reducer a commutative associative combining function
4001 * @return the result of accumulating the given transformation
4002 * of all keys
4003 * @since 1.8
4004 */
4005 public int reduceKeysToInt(long parallelismThreshold,
4006 ToIntFunction<? super K> transformer,
4007 int basis,
4008 IntBinaryOperator reducer) {
4009 if (transformer == null || reducer == null)
4010 throw new NullPointerException();
4011 return new MapReduceKeysToIntTask<K,V>
4012 (null, batchFor(parallelismThreshold), 0, 0, table,
4013 null, transformer, basis, reducer).invoke();
4014 }
4015
4016 /**
4017 * Performs the given action for each value.
4018 *
4019 * @param parallelismThreshold the (estimated) number of elements
4020 * needed for this operation to be executed in parallel
4021 * @param action the action
4022 * @since 1.8
4023 */
4024 public void forEachValue(long parallelismThreshold,
4025 Consumer<? super V> action) {
4026 if (action == null)
4027 throw new NullPointerException();
4028 new ForEachValueTask<K,V>
4029 (null, batchFor(parallelismThreshold), 0, 0, table,
4030 action).invoke();
4031 }
4032
4033 /**
4034 * Performs the given action for each non-null transformation
4035 * of each value.
4036 *
4037 * @param parallelismThreshold the (estimated) number of elements
4038 * needed for this operation to be executed in parallel
4039 * @param transformer a function returning the transformation
4040 * for an element, or null if there is no transformation (in
4041 * which case the action is not applied)
4042 * @param action the action
4043 * @param <U> the return type of the transformer
4044 * @since 1.8
4045 */
4046 public <U> void forEachValue(long parallelismThreshold,
4047 Function<? super V, ? extends U> transformer,
4048 Consumer<? super U> action) {
4049 if (transformer == null || action == null)
4050 throw new NullPointerException();
4051 new ForEachTransformedValueTask<K,V,U>
4052 (null, batchFor(parallelismThreshold), 0, 0, table,
4053 transformer, action).invoke();
4054 }
4055
4056 /**
4057 * Returns a non-null result from applying the given search
4058 * function on each value, or null if none. Upon success,
4059 * further element processing is suppressed and the results of
4060 * any other parallel invocations of the search function are
4061 * ignored.
4062 *
4063 * @param parallelismThreshold the (estimated) number of elements
4064 * needed for this operation to be executed in parallel
4065 * @param searchFunction a function returning a non-null
4066 * result on success, else null
4067 * @param <U> the return type of the search function
4068 * @return a non-null result from applying the given search
4069 * function on each value, or null if none
4070 * @since 1.8
4071 */
4072 public <U> U searchValues(long parallelismThreshold,
4073 Function<? super V, ? extends U> searchFunction) {
4074 if (searchFunction == null) throw new NullPointerException();
4075 return new SearchValuesTask<K,V,U>
4076 (null, batchFor(parallelismThreshold), 0, 0, table,
4077 searchFunction, new AtomicReference<U>()).invoke();
4078 }
4079
4080 /**
4081 * Returns the result of accumulating all values using the
4082 * given reducer to combine values, or null if none.
4083 *
4084 * @param parallelismThreshold the (estimated) number of elements
4085 * needed for this operation to be executed in parallel
4086 * @param reducer a commutative associative combining function
4087 * @return the result of accumulating all values
4088 * @since 1.8
4089 */
4090 public V reduceValues(long parallelismThreshold,
4091 BiFunction<? super V, ? super V, ? extends V> reducer) {
4092 if (reducer == null) throw new NullPointerException();
4093 return new ReduceValuesTask<K,V>
4094 (null, batchFor(parallelismThreshold), 0, 0, table,
4095 null, reducer).invoke();
4096 }
4097
4098 /**
4099 * Returns the result of accumulating the given transformation
4100 * of all values using the given reducer to combine values, or
4101 * null if none.
4102 *
4103 * @param parallelismThreshold the (estimated) number of elements
4104 * needed for this operation to be executed in parallel
4105 * @param transformer a function returning the transformation
4106 * for an element, or null if there is no transformation (in
4107 * which case it is not combined)
4108 * @param reducer a commutative associative combining function
4109 * @param <U> the return type of the transformer
4110 * @return the result of accumulating the given transformation
4111 * of all values
4112 * @since 1.8
4113 */
4114 public <U> U reduceValues(long parallelismThreshold,
4115 Function<? super V, ? extends U> transformer,
4116 BiFunction<? super U, ? super U, ? extends U> reducer) {
4117 if (transformer == null || reducer == null)
4118 throw new NullPointerException();
4119 return new MapReduceValuesTask<K,V,U>
4120 (null, batchFor(parallelismThreshold), 0, 0, table,
4121 null, transformer, reducer).invoke();
4122 }
4123
4124 /**
4125 * Returns the result of accumulating the given transformation
4126 * of all values using the given reducer to combine values,
4127 * and the given basis as an identity value.
4128 *
4129 * @param parallelismThreshold the (estimated) number of elements
4130 * needed for this operation to be executed in parallel
4131 * @param transformer a function returning the transformation
4132 * for an element
4133 * @param basis the identity (initial default value) for the reduction
4134 * @param reducer a commutative associative combining function
4135 * @return the result of accumulating the given transformation
4136 * of all values
4137 * @since 1.8
4138 */
4139 public double reduceValuesToDouble(long parallelismThreshold,
4140 ToDoubleFunction<? super V> transformer,
4141 double basis,
4142 DoubleBinaryOperator reducer) {
4143 if (transformer == null || reducer == null)
4144 throw new NullPointerException();
4145 return new MapReduceValuesToDoubleTask<K,V>
4146 (null, batchFor(parallelismThreshold), 0, 0, table,
4147 null, transformer, basis, reducer).invoke();
4148 }
4149
4150 /**
4151 * Returns the result of accumulating the given transformation
4152 * of all values using the given reducer to combine values,
4153 * and the given basis as an identity value.
4154 *
4155 * @param parallelismThreshold the (estimated) number of elements
4156 * needed for this operation to be executed in parallel
4157 * @param transformer a function returning the transformation
4158 * for an element
4159 * @param basis the identity (initial default value) for the reduction
4160 * @param reducer a commutative associative combining function
4161 * @return the result of accumulating the given transformation
4162 * of all values
4163 * @since 1.8
4164 */
4165 public long reduceValuesToLong(long parallelismThreshold,
4166 ToLongFunction<? super V> transformer,
4167 long basis,
4168 LongBinaryOperator reducer) {
4169 if (transformer == null || reducer == null)
4170 throw new NullPointerException();
4171 return new MapReduceValuesToLongTask<K,V>
4172 (null, batchFor(parallelismThreshold), 0, 0, table,
4173 null, transformer, basis, reducer).invoke();
4174 }
4175
4176 /**
4177 * Returns the result of accumulating the given transformation
4178 * of all values using the given reducer to combine values,
4179 * and the given basis as an identity value.
4180 *
4181 * @param parallelismThreshold the (estimated) number of elements
4182 * needed for this operation to be executed in parallel
4183 * @param transformer a function returning the transformation
4184 * for an element
4185 * @param basis the identity (initial default value) for the reduction
4186 * @param reducer a commutative associative combining function
4187 * @return the result of accumulating the given transformation
4188 * of all values
4189 * @since 1.8
4190 */
4191 public int reduceValuesToInt(long parallelismThreshold,
4192 ToIntFunction<? super V> transformer,
4193 int basis,
4194 IntBinaryOperator reducer) {
4195 if (transformer == null || reducer == null)
4196 throw new NullPointerException();
4197 return new MapReduceValuesToIntTask<K,V>
4198 (null, batchFor(parallelismThreshold), 0, 0, table,
4199 null, transformer, basis, reducer).invoke();
4200 }
4201
4202 /**
4203 * Performs the given action for each entry.
4204 *
4205 * @param parallelismThreshold the (estimated) number of elements
4206 * needed for this operation to be executed in parallel
4207 * @param action the action
4208 * @since 1.8
4209 */
4210 public void forEachEntry(long parallelismThreshold,
4211 Consumer<? super Map.Entry<K,V>> action) {
4212 if (action == null) throw new NullPointerException();
4213 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4214 action).invoke();
4215 }
4216
4217 /**
4218 * Performs the given action for each non-null transformation
4219 * of each entry.
4220 *
4221 * @param parallelismThreshold the (estimated) number of elements
4222 * needed for this operation to be executed in parallel
4223 * @param transformer a function returning the transformation
4224 * for an element, or null if there is no transformation (in
4225 * which case the action is not applied)
4226 * @param action the action
4227 * @param <U> the return type of the transformer
4228 * @since 1.8
4229 */
4230 public <U> void forEachEntry(long parallelismThreshold,
4231 Function<Map.Entry<K,V>, ? extends U> transformer,
4232 Consumer<? super U> action) {
4233 if (transformer == null || action == null)
4234 throw new NullPointerException();
4235 new ForEachTransformedEntryTask<K,V,U>
4236 (null, batchFor(parallelismThreshold), 0, 0, table,
4237 transformer, action).invoke();
4238 }
4239
4240 /**
4241 * Returns a non-null result from applying the given search
4242 * function on each entry, or null if none. Upon success,
4243 * further element processing is suppressed and the results of
4244 * any other parallel invocations of the search function are
4245 * ignored.
4246 *
4247 * @param parallelismThreshold the (estimated) number of elements
4248 * needed for this operation to be executed in parallel
4249 * @param searchFunction a function returning a non-null
4250 * result on success, else null
4251 * @param <U> the return type of the search function
4252 * @return a non-null result from applying the given search
4253 * function on each entry, or null if none
4254 * @since 1.8
4255 */
4256 public <U> U searchEntries(long parallelismThreshold,
4257 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4258 if (searchFunction == null) throw new NullPointerException();
4259 return new SearchEntriesTask<K,V,U>
4260 (null, batchFor(parallelismThreshold), 0, 0, table,
4261 searchFunction, new AtomicReference<U>()).invoke();
4262 }
4263
4264 /**
4265 * Returns the result of accumulating all entries using the
4266 * given reducer to combine values, or null if none.
4267 *
4268 * @param parallelismThreshold the (estimated) number of elements
4269 * needed for this operation to be executed in parallel
4270 * @param reducer a commutative associative combining function
4271 * @return the result of accumulating all entries
4272 * @since 1.8
4273 */
4274 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4275 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4276 if (reducer == null) throw new NullPointerException();
4277 return new ReduceEntriesTask<K,V>
4278 (null, batchFor(parallelismThreshold), 0, 0, table,
4279 null, reducer).invoke();
4280 }
4281
4282 /**
4283 * Returns the result of accumulating the given transformation
4284 * of all entries using the given reducer to combine values,
4285 * or null if none.
4286 *
4287 * @param parallelismThreshold the (estimated) number of elements
4288 * needed for this operation to be executed in parallel
4289 * @param transformer a function returning the transformation
4290 * for an element, or null if there is no transformation (in
4291 * which case it is not combined)
4292 * @param reducer a commutative associative combining function
4293 * @param <U> the return type of the transformer
4294 * @return the result of accumulating the given transformation
4295 * of all entries
4296 * @since 1.8
4297 */
4298 public <U> U reduceEntries(long parallelismThreshold,
4299 Function<Map.Entry<K,V>, ? extends U> transformer,
4300 BiFunction<? super U, ? super U, ? extends U> reducer) {
4301 if (transformer == null || reducer == null)
4302 throw new NullPointerException();
4303 return new MapReduceEntriesTask<K,V,U>
4304 (null, batchFor(parallelismThreshold), 0, 0, table,
4305 null, transformer, reducer).invoke();
4306 }
4307
4308 /**
4309 * Returns the result of accumulating the given transformation
4310 * of all entries using the given reducer to combine values,
4311 * and the given basis as an identity value.
4312 *
4313 * @param parallelismThreshold the (estimated) number of elements
4314 * needed for this operation to be executed in parallel
4315 * @param transformer a function returning the transformation
4316 * for an element
4317 * @param basis the identity (initial default value) for the reduction
4318 * @param reducer a commutative associative combining function
4319 * @return the result of accumulating the given transformation
4320 * of all entries
4321 * @since 1.8
4322 */
4323 public double reduceEntriesToDouble(long parallelismThreshold,
4324 ToDoubleFunction<Map.Entry<K,V>> transformer,
4325 double basis,
4326 DoubleBinaryOperator reducer) {
4327 if (transformer == null || reducer == null)
4328 throw new NullPointerException();
4329 return new MapReduceEntriesToDoubleTask<K,V>
4330 (null, batchFor(parallelismThreshold), 0, 0, table,
4331 null, transformer, basis, reducer).invoke();
4332 }
4333
4334 /**
4335 * Returns the result of accumulating the given transformation
4336 * of all entries using the given reducer to combine values,
4337 * and the given basis as an identity value.
4338 *
4339 * @param parallelismThreshold the (estimated) number of elements
4340 * needed for this operation to be executed in parallel
4341 * @param transformer a function returning the transformation
4342 * for an element
4343 * @param basis the identity (initial default value) for the reduction
4344 * @param reducer a commutative associative combining function
4345 * @return the result of accumulating the given transformation
4346 * of all entries
4347 * @since 1.8
4348 */
4349 public long reduceEntriesToLong(long parallelismThreshold,
4350 ToLongFunction<Map.Entry<K,V>> transformer,
4351 long basis,
4352 LongBinaryOperator reducer) {
4353 if (transformer == null || reducer == null)
4354 throw new NullPointerException();
4355 return new MapReduceEntriesToLongTask<K,V>
4356 (null, batchFor(parallelismThreshold), 0, 0, table,
4357 null, transformer, basis, reducer).invoke();
4358 }
4359
4360 /**
4361 * Returns the result of accumulating the given transformation
4362 * of all entries using the given reducer to combine values,
4363 * and the given basis as an identity value.
4364 *
4365 * @param parallelismThreshold the (estimated) number of elements
4366 * needed for this operation to be executed in parallel
4367 * @param transformer a function returning the transformation
4368 * for an element
4369 * @param basis the identity (initial default value) for the reduction
4370 * @param reducer a commutative associative combining function
4371 * @return the result of accumulating the given transformation
4372 * of all entries
4373 * @since 1.8
4374 */
4375 public int reduceEntriesToInt(long parallelismThreshold,
4376 ToIntFunction<Map.Entry<K,V>> transformer,
4377 int basis,
4378 IntBinaryOperator reducer) {
4379 if (transformer == null || reducer == null)
4380 throw new NullPointerException();
4381 return new MapReduceEntriesToIntTask<K,V>
4382 (null, batchFor(parallelismThreshold), 0, 0, table,
4383 null, transformer, basis, reducer).invoke();
4384 }
4385
4386
4387 /* ----------------Views -------------- */
4388
4389 /**
4390 * Base class for views.
4391 */
4392 abstract static class CollectionView<K,V,E>
4393 implements Collection<E>, java.io.Serializable {
4394 private static final long serialVersionUID = 7249069246763182397L;
4395 final ConcurrentHashMap<K,V> map;
4396 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4397
4398 /**
4399 * Returns the map backing this view.
4400 *
4401 * @return the map backing this view
4402 */
4403 public ConcurrentHashMap<K,V> getMap() { return map; }
4404
4405 /**
4406 * Removes all of the elements from this view, by removing all
4407 * the mappings from the map backing this view.
4408 */
4409 public final void clear() { map.clear(); }
4410 public final int size() { return map.size(); }
4411 public final boolean isEmpty() { return map.isEmpty(); }
4412
4413 // implementations below rely on concrete classes supplying these
4414 // abstract methods
4415 /**
4416 * Returns an iterator over the elements in this collection.
4417 *
4418 * <p>The returned iterator is
4419 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4420 *
4421 * @return an iterator over the elements in this collection
4422 */
4423 public abstract Iterator<E> iterator();
4424 public abstract boolean contains(Object o);
4425 public abstract boolean remove(Object o);
4426
4427 private static final String OOME_MSG = "Required array size too large";
4428
4429 public final Object[] toArray() {
4430 long sz = map.mappingCount();
4431 if (sz > MAX_ARRAY_SIZE)
4432 throw new OutOfMemoryError(OOME_MSG);
4433 int n = (int)sz;
4434 Object[] r = new Object[n];
4435 int i = 0;
4436 for (E e : this) {
4437 if (i == n) {
4438 if (n >= MAX_ARRAY_SIZE)
4439 throw new OutOfMemoryError(OOME_MSG);
4440 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4441 n = MAX_ARRAY_SIZE;
4442 else
4443 n += (n >>> 1) + 1;
4444 r = Arrays.copyOf(r, n);
4445 }
4446 r[i++] = e;
4447 }
4448 return (i == n) ? r : Arrays.copyOf(r, i);
4449 }
4450
4451 @SuppressWarnings("unchecked")
4452 public final <T> T[] toArray(T[] a) {
4453 long sz = map.mappingCount();
4454 if (sz > MAX_ARRAY_SIZE)
4455 throw new OutOfMemoryError(OOME_MSG);
4456 int m = (int)sz;
4457 T[] r = (a.length >= m) ? a :
4458 (T[])java.lang.reflect.Array
4459 .newInstance(a.getClass().getComponentType(), m);
4460 int n = r.length;
4461 int i = 0;
4462 for (E e : this) {
4463 if (i == n) {
4464 if (n >= MAX_ARRAY_SIZE)
4465 throw new OutOfMemoryError(OOME_MSG);
4466 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4467 n = MAX_ARRAY_SIZE;
4468 else
4469 n += (n >>> 1) + 1;
4470 r = Arrays.copyOf(r, n);
4471 }
4472 r[i++] = (T)e;
4473 }
4474 if (a == r && i < n) {
4475 r[i] = null; // null-terminate
4476 return r;
4477 }
4478 return (i == n) ? r : Arrays.copyOf(r, i);
4479 }
4480
4481 /**
4482 * Returns a string representation of this collection.
4483 * The string representation consists of the string representations
4484 * of the collection's elements in the order they are returned by
4485 * its iterator, enclosed in square brackets ({@code "[]"}).
4486 * Adjacent elements are separated by the characters {@code ", "}
4487 * (comma and space). Elements are converted to strings as by
4488 * {@link String#valueOf(Object)}.
4489 *
4490 * @return a string representation of this collection
4491 */
4492 public final String toString() {
4493 StringBuilder sb = new StringBuilder();
4494 sb.append('[');
4495 Iterator<E> it = iterator();
4496 if (it.hasNext()) {
4497 for (;;) {
4498 Object e = it.next();
4499 sb.append(e == this ? "(this Collection)" : e);
4500 if (!it.hasNext())
4501 break;
4502 sb.append(',').append(' ');
4503 }
4504 }
4505 return sb.append(']').toString();
4506 }
4507
4508 public final boolean containsAll(Collection<?> c) {
4509 if (c != this) {
4510 for (Object e : c) {
4511 if (e == null || !contains(e))
4512 return false;
4513 }
4514 }
4515 return true;
4516 }
4517
4518 public boolean removeAll(Collection<?> c) {
4519 if (c == null) throw new NullPointerException();
4520 boolean modified = false;
4521 // Use (c instanceof Set) as a hint that lookup in c is as
4522 // efficient as this view
4523 Node<K,V>[] t;
4524 if ((t = map.table) == null) {
4525 return false;
4526 } else if (c instanceof Set<?> && c.size() > t.length) {
4527 for (Iterator<?> it = iterator(); it.hasNext(); ) {
4528 if (c.contains(it.next())) {
4529 it.remove();
4530 modified = true;
4531 }
4532 }
4533 } else {
4534 for (Object e : c)
4535 modified |= remove(e);
4536 }
4537 return modified;
4538 }
4539
4540 public final boolean retainAll(Collection<?> c) {
4541 if (c == null) throw new NullPointerException();
4542 boolean modified = false;
4543 for (Iterator<E> it = iterator(); it.hasNext();) {
4544 if (!c.contains(it.next())) {
4545 it.remove();
4546 modified = true;
4547 }
4548 }
4549 return modified;
4550 }
4551
4552 }
4553
4554 /**
4555 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4556 * which additions may optionally be enabled by mapping to a
4557 * common value. This class cannot be directly instantiated.
4558 * See {@link #keySet() keySet()},
4559 * {@link #keySet(Object) keySet(V)},
4560 * {@link #newKeySet() newKeySet()},
4561 * {@link #newKeySet(int) newKeySet(int)}.
4562 *
4563 * @since 1.8
4564 */
4565 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4566 implements Set<K>, java.io.Serializable {
4567 private static final long serialVersionUID = 7249069246763182397L;
4568 private final V value;
4569 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4570 super(map);
4571 this.value = value;
4572 }
4573
4574 /**
4575 * Returns the default mapped value for additions,
4576 * or {@code null} if additions are not supported.
4577 *
4578 * @return the default mapped value for additions, or {@code null}
4579 * if not supported
4580 */
4581 public V getMappedValue() { return value; }
4582
4583 /**
4584 * {@inheritDoc}
4585 * @throws NullPointerException if the specified key is null
4586 */
4587 public boolean contains(Object o) { return map.containsKey(o); }
4588
4589 /**
4590 * Removes the key from this map view, by removing the key (and its
4591 * corresponding value) from the backing map. This method does
4592 * nothing if the key is not in the map.
4593 *
4594 * @param o the key to be removed from the backing map
4595 * @return {@code true} if the backing map contained the specified key
4596 * @throws NullPointerException if the specified key is null
4597 */
4598 public boolean remove(Object o) { return map.remove(o) != null; }
4599
4600 /**
4601 * @return an iterator over the keys of the backing map
4602 */
4603 public Iterator<K> iterator() {
4604 Node<K,V>[] t;
4605 ConcurrentHashMap<K,V> m = map;
4606 int f = (t = m.table) == null ? 0 : t.length;
4607 return new KeyIterator<K,V>(t, f, 0, f, m);
4608 }
4609
4610 /**
4611 * Adds the specified key to this set view by mapping the key to
4612 * the default mapped value in the backing map, if defined.
4613 *
4614 * @param e key to be added
4615 * @return {@code true} if this set changed as a result of the call
4616 * @throws NullPointerException if the specified key is null
4617 * @throws UnsupportedOperationException if no default mapped value
4618 * for additions was provided
4619 */
4620 public boolean add(K e) {
4621 V v;
4622 if ((v = value) == null)
4623 throw new UnsupportedOperationException();
4624 return map.putVal(e, v, true) == null;
4625 }
4626
4627 /**
4628 * Adds all of the elements in the specified collection to this set,
4629 * as if by calling {@link #add} on each one.
4630 *
4631 * @param c the elements to be inserted into this set
4632 * @return {@code true} if this set changed as a result of the call
4633 * @throws NullPointerException if the collection or any of its
4634 * elements are {@code null}
4635 * @throws UnsupportedOperationException if no default mapped value
4636 * for additions was provided
4637 */
4638 public boolean addAll(Collection<? extends K> c) {
4639 boolean added = false;
4640 V v;
4641 if ((v = value) == null)
4642 throw new UnsupportedOperationException();
4643 for (K e : c) {
4644 if (map.putVal(e, v, true) == null)
4645 added = true;
4646 }
4647 return added;
4648 }
4649
4650 public int hashCode() {
4651 int h = 0;
4652 for (K e : this)
4653 h += e.hashCode();
4654 return h;
4655 }
4656
4657 public boolean equals(Object o) {
4658 Set<?> c;
4659 return ((o instanceof Set) &&
4660 ((c = (Set<?>)o) == this ||
4661 (containsAll(c) && c.containsAll(this))));
4662 }
4663
4664 public Spliterator<K> spliterator() {
4665 Node<K,V>[] t;
4666 ConcurrentHashMap<K,V> m = map;
4667 long n = m.sumCount();
4668 int f = (t = m.table) == null ? 0 : t.length;
4669 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4670 }
4671
4672 public void forEach(Consumer<? super K> action) {
4673 if (action == null) throw new NullPointerException();
4674 Node<K,V>[] t;
4675 if ((t = map.table) != null) {
4676 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4677 for (Node<K,V> p; (p = it.advance()) != null; )
4678 action.accept(p.key);
4679 }
4680 }
4681 }
4682
4683 /**
4684 * A view of a ConcurrentHashMap as a {@link Collection} of
4685 * values, in which additions are disabled. This class cannot be
4686 * directly instantiated. See {@link #values()}.
4687 */
4688 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4689 implements Collection<V>, java.io.Serializable {
4690 private static final long serialVersionUID = 2249069246763182397L;
4691 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4692 public final boolean contains(Object o) {
4693 return map.containsValue(o);
4694 }
4695
4696 public final boolean remove(Object o) {
4697 if (o != null) {
4698 for (Iterator<V> it = iterator(); it.hasNext();) {
4699 if (o.equals(it.next())) {
4700 it.remove();
4701 return true;
4702 }
4703 }
4704 }
4705 return false;
4706 }
4707
4708 public final Iterator<V> iterator() {
4709 ConcurrentHashMap<K,V> m = map;
4710 Node<K,V>[] t;
4711 int f = (t = m.table) == null ? 0 : t.length;
4712 return new ValueIterator<K,V>(t, f, 0, f, m);
4713 }
4714
4715 public final boolean add(V e) {
4716 throw new UnsupportedOperationException();
4717 }
4718 public final boolean addAll(Collection<? extends V> c) {
4719 throw new UnsupportedOperationException();
4720 }
4721
4722 @Override public boolean removeAll(Collection<?> c) {
4723 if (c == null) throw new NullPointerException();
4724 boolean modified = false;
4725 for (Iterator<V> it = iterator(); it.hasNext();) {
4726 if (c.contains(it.next())) {
4727 it.remove();
4728 modified = true;
4729 }
4730 }
4731 return modified;
4732 }
4733
4734 public boolean removeIf(Predicate<? super V> filter) {
4735 return map.removeValueIf(filter);
4736 }
4737
4738 public Spliterator<V> spliterator() {
4739 Node<K,V>[] t;
4740 ConcurrentHashMap<K,V> m = map;
4741 long n = m.sumCount();
4742 int f = (t = m.table) == null ? 0 : t.length;
4743 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4744 }
4745
4746 public void forEach(Consumer<? super V> action) {
4747 if (action == null) throw new NullPointerException();
4748 Node<K,V>[] t;
4749 if ((t = map.table) != null) {
4750 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4751 for (Node<K,V> p; (p = it.advance()) != null; )
4752 action.accept(p.val);
4753 }
4754 }
4755 }
4756
4757 /**
4758 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4759 * entries. This class cannot be directly instantiated. See
4760 * {@link #entrySet()}.
4761 */
4762 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4763 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4764 private static final long serialVersionUID = 2249069246763182397L;
4765 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4766
4767 public boolean contains(Object o) {
4768 Object k, v, r; Map.Entry<?,?> e;
4769 return ((o instanceof Map.Entry) &&
4770 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4771 (r = map.get(k)) != null &&
4772 (v = e.getValue()) != null &&
4773 (v == r || v.equals(r)));
4774 }
4775
4776 public boolean remove(Object o) {
4777 Object k, v; Map.Entry<?,?> e;
4778 return ((o instanceof Map.Entry) &&
4779 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4780 (v = e.getValue()) != null &&
4781 map.remove(k, v));
4782 }
4783
4784 /**
4785 * @return an iterator over the entries of the backing map
4786 */
4787 public Iterator<Map.Entry<K,V>> iterator() {
4788 ConcurrentHashMap<K,V> m = map;
4789 Node<K,V>[] t;
4790 int f = (t = m.table) == null ? 0 : t.length;
4791 return new EntryIterator<K,V>(t, f, 0, f, m);
4792 }
4793
4794 public boolean add(Entry<K,V> e) {
4795 return map.putVal(e.getKey(), e.getValue(), false) == null;
4796 }
4797
4798 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4799 boolean added = false;
4800 for (Entry<K,V> e : c) {
4801 if (add(e))
4802 added = true;
4803 }
4804 return added;
4805 }
4806
4807 public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4808 return map.removeEntryIf(filter);
4809 }
4810
4811 public final int hashCode() {
4812 int h = 0;
4813 Node<K,V>[] t;
4814 if ((t = map.table) != null) {
4815 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4816 for (Node<K,V> p; (p = it.advance()) != null; ) {
4817 h += p.hashCode();
4818 }
4819 }
4820 return h;
4821 }
4822
4823 public final boolean equals(Object o) {
4824 Set<?> c;
4825 return ((o instanceof Set) &&
4826 ((c = (Set<?>)o) == this ||
4827 (containsAll(c) && c.containsAll(this))));
4828 }
4829
4830 public Spliterator<Map.Entry<K,V>> spliterator() {
4831 Node<K,V>[] t;
4832 ConcurrentHashMap<K,V> m = map;
4833 long n = m.sumCount();
4834 int f = (t = m.table) == null ? 0 : t.length;
4835 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4836 }
4837
4838 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4839 if (action == null) throw new NullPointerException();
4840 Node<K,V>[] t;
4841 if ((t = map.table) != null) {
4842 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4843 for (Node<K,V> p; (p = it.advance()) != null; )
4844 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4845 }
4846 }
4847
4848 }
4849
4850 // -------------------------------------------------------
4851
4852 /**
4853 * Base class for bulk tasks. Repeats some fields and code from
4854 * class Traverser, because we need to subclass CountedCompleter.
4855 */
4856 @SuppressWarnings("serial")
4857 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4858 Node<K,V>[] tab; // same as Traverser
4859 Node<K,V> next;
4860 TableStack<K,V> stack, spare;
4861 int index;
4862 int baseIndex;
4863 int baseLimit;
4864 final int baseSize;
4865 int batch; // split control
4866
4867 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4868 super(par);
4869 this.batch = b;
4870 this.index = this.baseIndex = i;
4871 if ((this.tab = t) == null)
4872 this.baseSize = this.baseLimit = 0;
4873 else if (par == null)
4874 this.baseSize = this.baseLimit = t.length;
4875 else {
4876 this.baseLimit = f;
4877 this.baseSize = par.baseSize;
4878 }
4879 }
4880
4881 /**
4882 * Same as Traverser version.
4883 */
4884 final Node<K,V> advance() {
4885 Node<K,V> e;
4886 if ((e = next) != null)
4887 e = e.next;
4888 for (;;) {
4889 Node<K,V>[] t; int i, n;
4890 if (e != null)
4891 return next = e;
4892 if (baseIndex >= baseLimit || (t = tab) == null ||
4893 (n = t.length) <= (i = index) || i < 0)
4894 return next = null;
4895 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4896 if (e instanceof ForwardingNode) {
4897 tab = ((ForwardingNode<K,V>)e).nextTable;
4898 e = null;
4899 pushState(t, i, n);
4900 continue;
4901 }
4902 else if (e instanceof TreeBin)
4903 e = ((TreeBin<K,V>)e).first;
4904 else
4905 e = null;
4906 }
4907 if (stack != null)
4908 recoverState(n);
4909 else if ((index = i + baseSize) >= n)
4910 index = ++baseIndex;
4911 }
4912 }
4913
4914 private void pushState(Node<K,V>[] t, int i, int n) {
4915 TableStack<K,V> s = spare;
4916 if (s != null)
4917 spare = s.next;
4918 else
4919 s = new TableStack<K,V>();
4920 s.tab = t;
4921 s.length = n;
4922 s.index = i;
4923 s.next = stack;
4924 stack = s;
4925 }
4926
4927 private void recoverState(int n) {
4928 TableStack<K,V> s; int len;
4929 while ((s = stack) != null && (index += (len = s.length)) >= n) {
4930 n = len;
4931 index = s.index;
4932 tab = s.tab;
4933 s.tab = null;
4934 TableStack<K,V> next = s.next;
4935 s.next = spare; // save for reuse
4936 stack = next;
4937 spare = s;
4938 }
4939 if (s == null && (index += baseSize) >= n)
4940 index = ++baseIndex;
4941 }
4942 }
4943
4944 /*
4945 * Task classes. Coded in a regular but ugly format/style to
4946 * simplify checks that each variant differs in the right way from
4947 * others. The null screenings exist because compilers cannot tell
4948 * that we've already null-checked task arguments, so we force
4949 * simplest hoisted bypass to help avoid convoluted traps.
4950 */
4951 @SuppressWarnings("serial")
4952 static final class ForEachKeyTask<K,V>
4953 extends BulkTask<K,V,Void> {
4954 final Consumer<? super K> action;
4955 ForEachKeyTask
4956 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4957 Consumer<? super K> action) {
4958 super(p, b, i, f, t);
4959 this.action = action;
4960 }
4961 public final void compute() {
4962 final Consumer<? super K> action;
4963 if ((action = this.action) != null) {
4964 for (int i = baseIndex, f, h; batch > 0 &&
4965 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4966 addToPendingCount(1);
4967 new ForEachKeyTask<K,V>
4968 (this, batch >>>= 1, baseLimit = h, f, tab,
4969 action).fork();
4970 }
4971 for (Node<K,V> p; (p = advance()) != null;)
4972 action.accept(p.key);
4973 propagateCompletion();
4974 }
4975 }
4976 }
4977
4978 @SuppressWarnings("serial")
4979 static final class ForEachValueTask<K,V>
4980 extends BulkTask<K,V,Void> {
4981 final Consumer<? super V> action;
4982 ForEachValueTask
4983 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4984 Consumer<? super V> action) {
4985 super(p, b, i, f, t);
4986 this.action = action;
4987 }
4988 public final void compute() {
4989 final Consumer<? super V> action;
4990 if ((action = this.action) != null) {
4991 for (int i = baseIndex, f, h; batch > 0 &&
4992 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4993 addToPendingCount(1);
4994 new ForEachValueTask<K,V>
4995 (this, batch >>>= 1, baseLimit = h, f, tab,
4996 action).fork();
4997 }
4998 for (Node<K,V> p; (p = advance()) != null;)
4999 action.accept(p.val);
5000 propagateCompletion();
5001 }
5002 }
5003 }
5004
5005 @SuppressWarnings("serial")
5006 static final class ForEachEntryTask<K,V>
5007 extends BulkTask<K,V,Void> {
5008 final Consumer<? super Entry<K,V>> action;
5009 ForEachEntryTask
5010 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5011 Consumer<? super Entry<K,V>> action) {
5012 super(p, b, i, f, t);
5013 this.action = action;
5014 }
5015 public final void compute() {
5016 final Consumer<? super Entry<K,V>> action;
5017 if ((action = this.action) != null) {
5018 for (int i = baseIndex, f, h; batch > 0 &&
5019 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5020 addToPendingCount(1);
5021 new ForEachEntryTask<K,V>
5022 (this, batch >>>= 1, baseLimit = h, f, tab,
5023 action).fork();
5024 }
5025 for (Node<K,V> p; (p = advance()) != null; )
5026 action.accept(p);
5027 propagateCompletion();
5028 }
5029 }
5030 }
5031
5032 @SuppressWarnings("serial")
5033 static final class ForEachMappingTask<K,V>
5034 extends BulkTask<K,V,Void> {
5035 final BiConsumer<? super K, ? super V> action;
5036 ForEachMappingTask
5037 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5038 BiConsumer<? super K,? super V> action) {
5039 super(p, b, i, f, t);
5040 this.action = action;
5041 }
5042 public final void compute() {
5043 final BiConsumer<? super K, ? super V> action;
5044 if ((action = this.action) != null) {
5045 for (int i = baseIndex, f, h; batch > 0 &&
5046 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5047 addToPendingCount(1);
5048 new ForEachMappingTask<K,V>
5049 (this, batch >>>= 1, baseLimit = h, f, tab,
5050 action).fork();
5051 }
5052 for (Node<K,V> p; (p = advance()) != null; )
5053 action.accept(p.key, p.val);
5054 propagateCompletion();
5055 }
5056 }
5057 }
5058
5059 @SuppressWarnings("serial")
5060 static final class ForEachTransformedKeyTask<K,V,U>
5061 extends BulkTask<K,V,Void> {
5062 final Function<? super K, ? extends U> transformer;
5063 final Consumer<? super U> action;
5064 ForEachTransformedKeyTask
5065 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5066 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5067 super(p, b, i, f, t);
5068 this.transformer = transformer; this.action = action;
5069 }
5070 public final void compute() {
5071 final Function<? super K, ? extends U> transformer;
5072 final Consumer<? super U> action;
5073 if ((transformer = this.transformer) != null &&
5074 (action = this.action) != null) {
5075 for (int i = baseIndex, f, h; batch > 0 &&
5076 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5077 addToPendingCount(1);
5078 new ForEachTransformedKeyTask<K,V,U>
5079 (this, batch >>>= 1, baseLimit = h, f, tab,
5080 transformer, action).fork();
5081 }
5082 for (Node<K,V> p; (p = advance()) != null; ) {
5083 U u;
5084 if ((u = transformer.apply(p.key)) != null)
5085 action.accept(u);
5086 }
5087 propagateCompletion();
5088 }
5089 }
5090 }
5091
5092 @SuppressWarnings("serial")
5093 static final class ForEachTransformedValueTask<K,V,U>
5094 extends BulkTask<K,V,Void> {
5095 final Function<? super V, ? extends U> transformer;
5096 final Consumer<? super U> action;
5097 ForEachTransformedValueTask
5098 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5099 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5100 super(p, b, i, f, t);
5101 this.transformer = transformer; this.action = action;
5102 }
5103 public final void compute() {
5104 final Function<? super V, ? extends U> transformer;
5105 final Consumer<? super U> action;
5106 if ((transformer = this.transformer) != null &&
5107 (action = this.action) != null) {
5108 for (int i = baseIndex, f, h; batch > 0 &&
5109 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5110 addToPendingCount(1);
5111 new ForEachTransformedValueTask<K,V,U>
5112 (this, batch >>>= 1, baseLimit = h, f, tab,
5113 transformer, action).fork();
5114 }
5115 for (Node<K,V> p; (p = advance()) != null; ) {
5116 U u;
5117 if ((u = transformer.apply(p.val)) != null)
5118 action.accept(u);
5119 }
5120 propagateCompletion();
5121 }
5122 }
5123 }
5124
5125 @SuppressWarnings("serial")
5126 static final class ForEachTransformedEntryTask<K,V,U>
5127 extends BulkTask<K,V,Void> {
5128 final Function<Map.Entry<K,V>, ? extends U> transformer;
5129 final Consumer<? super U> action;
5130 ForEachTransformedEntryTask
5131 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5132 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5133 super(p, b, i, f, t);
5134 this.transformer = transformer; this.action = action;
5135 }
5136 public final void compute() {
5137 final Function<Map.Entry<K,V>, ? extends U> transformer;
5138 final Consumer<? super U> action;
5139 if ((transformer = this.transformer) != null &&
5140 (action = this.action) != null) {
5141 for (int i = baseIndex, f, h; batch > 0 &&
5142 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5143 addToPendingCount(1);
5144 new ForEachTransformedEntryTask<K,V,U>
5145 (this, batch >>>= 1, baseLimit = h, f, tab,
5146 transformer, action).fork();
5147 }
5148 for (Node<K,V> p; (p = advance()) != null; ) {
5149 U u;
5150 if ((u = transformer.apply(p)) != null)
5151 action.accept(u);
5152 }
5153 propagateCompletion();
5154 }
5155 }
5156 }
5157
5158 @SuppressWarnings("serial")
5159 static final class ForEachTransformedMappingTask<K,V,U>
5160 extends BulkTask<K,V,Void> {
5161 final BiFunction<? super K, ? super V, ? extends U> transformer;
5162 final Consumer<? super U> action;
5163 ForEachTransformedMappingTask
5164 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5165 BiFunction<? super K, ? super V, ? extends U> transformer,
5166 Consumer<? super U> action) {
5167 super(p, b, i, f, t);
5168 this.transformer = transformer; this.action = action;
5169 }
5170 public final void compute() {
5171 final BiFunction<? super K, ? super V, ? extends U> transformer;
5172 final Consumer<? super U> action;
5173 if ((transformer = this.transformer) != null &&
5174 (action = this.action) != null) {
5175 for (int i = baseIndex, f, h; batch > 0 &&
5176 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5177 addToPendingCount(1);
5178 new ForEachTransformedMappingTask<K,V,U>
5179 (this, batch >>>= 1, baseLimit = h, f, tab,
5180 transformer, action).fork();
5181 }
5182 for (Node<K,V> p; (p = advance()) != null; ) {
5183 U u;
5184 if ((u = transformer.apply(p.key, p.val)) != null)
5185 action.accept(u);
5186 }
5187 propagateCompletion();
5188 }
5189 }
5190 }
5191
5192 @SuppressWarnings("serial")
5193 static final class SearchKeysTask<K,V,U>
5194 extends BulkTask<K,V,U> {
5195 final Function<? super K, ? extends U> searchFunction;
5196 final AtomicReference<U> result;
5197 SearchKeysTask
5198 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5199 Function<? super K, ? extends U> searchFunction,
5200 AtomicReference<U> result) {
5201 super(p, b, i, f, t);
5202 this.searchFunction = searchFunction; this.result = result;
5203 }
5204 public final U getRawResult() { return result.get(); }
5205 public final void compute() {
5206 final Function<? super K, ? extends U> searchFunction;
5207 final AtomicReference<U> result;
5208 if ((searchFunction = this.searchFunction) != null &&
5209 (result = this.result) != null) {
5210 for (int i = baseIndex, f, h; batch > 0 &&
5211 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5212 if (result.get() != null)
5213 return;
5214 addToPendingCount(1);
5215 new SearchKeysTask<K,V,U>
5216 (this, batch >>>= 1, baseLimit = h, f, tab,
5217 searchFunction, result).fork();
5218 }
5219 while (result.get() == null) {
5220 U u;
5221 Node<K,V> p;
5222 if ((p = advance()) == null) {
5223 propagateCompletion();
5224 break;
5225 }
5226 if ((u = searchFunction.apply(p.key)) != null) {
5227 if (result.compareAndSet(null, u))
5228 quietlyCompleteRoot();
5229 break;
5230 }
5231 }
5232 }
5233 }
5234 }
5235
5236 @SuppressWarnings("serial")
5237 static final class SearchValuesTask<K,V,U>
5238 extends BulkTask<K,V,U> {
5239 final Function<? super V, ? extends U> searchFunction;
5240 final AtomicReference<U> result;
5241 SearchValuesTask
5242 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5243 Function<? super V, ? extends U> searchFunction,
5244 AtomicReference<U> result) {
5245 super(p, b, i, f, t);
5246 this.searchFunction = searchFunction; this.result = result;
5247 }
5248 public final U getRawResult() { return result.get(); }
5249 public final void compute() {
5250 final Function<? super V, ? extends U> searchFunction;
5251 final AtomicReference<U> result;
5252 if ((searchFunction = this.searchFunction) != null &&
5253 (result = this.result) != null) {
5254 for (int i = baseIndex, f, h; batch > 0 &&
5255 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5256 if (result.get() != null)
5257 return;
5258 addToPendingCount(1);
5259 new SearchValuesTask<K,V,U>
5260 (this, batch >>>= 1, baseLimit = h, f, tab,
5261 searchFunction, result).fork();
5262 }
5263 while (result.get() == null) {
5264 U u;
5265 Node<K,V> p;
5266 if ((p = advance()) == null) {
5267 propagateCompletion();
5268 break;
5269 }
5270 if ((u = searchFunction.apply(p.val)) != null) {
5271 if (result.compareAndSet(null, u))
5272 quietlyCompleteRoot();
5273 break;
5274 }
5275 }
5276 }
5277 }
5278 }
5279
5280 @SuppressWarnings("serial")
5281 static final class SearchEntriesTask<K,V,U>
5282 extends BulkTask<K,V,U> {
5283 final Function<Entry<K,V>, ? extends U> searchFunction;
5284 final AtomicReference<U> result;
5285 SearchEntriesTask
5286 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5287 Function<Entry<K,V>, ? extends U> searchFunction,
5288 AtomicReference<U> result) {
5289 super(p, b, i, f, t);
5290 this.searchFunction = searchFunction; this.result = result;
5291 }
5292 public final U getRawResult() { return result.get(); }
5293 public final void compute() {
5294 final Function<Entry<K,V>, ? extends U> searchFunction;
5295 final AtomicReference<U> result;
5296 if ((searchFunction = this.searchFunction) != null &&
5297 (result = this.result) != null) {
5298 for (int i = baseIndex, f, h; batch > 0 &&
5299 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5300 if (result.get() != null)
5301 return;
5302 addToPendingCount(1);
5303 new SearchEntriesTask<K,V,U>
5304 (this, batch >>>= 1, baseLimit = h, f, tab,
5305 searchFunction, result).fork();
5306 }
5307 while (result.get() == null) {
5308 U u;
5309 Node<K,V> p;
5310 if ((p = advance()) == null) {
5311 propagateCompletion();
5312 break;
5313 }
5314 if ((u = searchFunction.apply(p)) != null) {
5315 if (result.compareAndSet(null, u))
5316 quietlyCompleteRoot();
5317 return;
5318 }
5319 }
5320 }
5321 }
5322 }
5323
5324 @SuppressWarnings("serial")
5325 static final class SearchMappingsTask<K,V,U>
5326 extends BulkTask<K,V,U> {
5327 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5328 final AtomicReference<U> result;
5329 SearchMappingsTask
5330 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5331 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5332 AtomicReference<U> result) {
5333 super(p, b, i, f, t);
5334 this.searchFunction = searchFunction; this.result = result;
5335 }
5336 public final U getRawResult() { return result.get(); }
5337 public final void compute() {
5338 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5339 final AtomicReference<U> result;
5340 if ((searchFunction = this.searchFunction) != null &&
5341 (result = this.result) != null) {
5342 for (int i = baseIndex, f, h; batch > 0 &&
5343 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5344 if (result.get() != null)
5345 return;
5346 addToPendingCount(1);
5347 new SearchMappingsTask<K,V,U>
5348 (this, batch >>>= 1, baseLimit = h, f, tab,
5349 searchFunction, result).fork();
5350 }
5351 while (result.get() == null) {
5352 U u;
5353 Node<K,V> p;
5354 if ((p = advance()) == null) {
5355 propagateCompletion();
5356 break;
5357 }
5358 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5359 if (result.compareAndSet(null, u))
5360 quietlyCompleteRoot();
5361 break;
5362 }
5363 }
5364 }
5365 }
5366 }
5367
5368 @SuppressWarnings("serial")
5369 static final class ReduceKeysTask<K,V>
5370 extends BulkTask<K,V,K> {
5371 final BiFunction<? super K, ? super K, ? extends K> reducer;
5372 K result;
5373 ReduceKeysTask<K,V> rights, nextRight;
5374 ReduceKeysTask
5375 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5376 ReduceKeysTask<K,V> nextRight,
5377 BiFunction<? super K, ? super K, ? extends K> reducer) {
5378 super(p, b, i, f, t); this.nextRight = nextRight;
5379 this.reducer = reducer;
5380 }
5381 public final K getRawResult() { return result; }
5382 public final void compute() {
5383 final BiFunction<? super K, ? super K, ? extends K> reducer;
5384 if ((reducer = this.reducer) != null) {
5385 for (int i = baseIndex, f, h; batch > 0 &&
5386 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5387 addToPendingCount(1);
5388 (rights = new ReduceKeysTask<K,V>
5389 (this, batch >>>= 1, baseLimit = h, f, tab,
5390 rights, reducer)).fork();
5391 }
5392 K r = null;
5393 for (Node<K,V> p; (p = advance()) != null; ) {
5394 K u = p.key;
5395 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5396 }
5397 result = r;
5398 CountedCompleter<?> c;
5399 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5400 @SuppressWarnings("unchecked")
5401 ReduceKeysTask<K,V>
5402 t = (ReduceKeysTask<K,V>)c,
5403 s = t.rights;
5404 while (s != null) {
5405 K tr, sr;
5406 if ((sr = s.result) != null)
5407 t.result = (((tr = t.result) == null) ? sr :
5408 reducer.apply(tr, sr));
5409 s = t.rights = s.nextRight;
5410 }
5411 }
5412 }
5413 }
5414 }
5415
5416 @SuppressWarnings("serial")
5417 static final class ReduceValuesTask<K,V>
5418 extends BulkTask<K,V,V> {
5419 final BiFunction<? super V, ? super V, ? extends V> reducer;
5420 V result;
5421 ReduceValuesTask<K,V> rights, nextRight;
5422 ReduceValuesTask
5423 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5424 ReduceValuesTask<K,V> nextRight,
5425 BiFunction<? super V, ? super V, ? extends V> reducer) {
5426 super(p, b, i, f, t); this.nextRight = nextRight;
5427 this.reducer = reducer;
5428 }
5429 public final V getRawResult() { return result; }
5430 public final void compute() {
5431 final BiFunction<? super V, ? super V, ? extends V> reducer;
5432 if ((reducer = this.reducer) != null) {
5433 for (int i = baseIndex, f, h; batch > 0 &&
5434 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5435 addToPendingCount(1);
5436 (rights = new ReduceValuesTask<K,V>
5437 (this, batch >>>= 1, baseLimit = h, f, tab,
5438 rights, reducer)).fork();
5439 }
5440 V r = null;
5441 for (Node<K,V> p; (p = advance()) != null; ) {
5442 V v = p.val;
5443 r = (r == null) ? v : reducer.apply(r, v);
5444 }
5445 result = r;
5446 CountedCompleter<?> c;
5447 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5448 @SuppressWarnings("unchecked")
5449 ReduceValuesTask<K,V>
5450 t = (ReduceValuesTask<K,V>)c,
5451 s = t.rights;
5452 while (s != null) {
5453 V tr, sr;
5454 if ((sr = s.result) != null)
5455 t.result = (((tr = t.result) == null) ? sr :
5456 reducer.apply(tr, sr));
5457 s = t.rights = s.nextRight;
5458 }
5459 }
5460 }
5461 }
5462 }
5463
5464 @SuppressWarnings("serial")
5465 static final class ReduceEntriesTask<K,V>
5466 extends BulkTask<K,V,Map.Entry<K,V>> {
5467 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5468 Map.Entry<K,V> result;
5469 ReduceEntriesTask<K,V> rights, nextRight;
5470 ReduceEntriesTask
5471 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5472 ReduceEntriesTask<K,V> nextRight,
5473 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5474 super(p, b, i, f, t); this.nextRight = nextRight;
5475 this.reducer = reducer;
5476 }
5477 public final Map.Entry<K,V> getRawResult() { return result; }
5478 public final void compute() {
5479 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5480 if ((reducer = this.reducer) != null) {
5481 for (int i = baseIndex, f, h; batch > 0 &&
5482 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5483 addToPendingCount(1);
5484 (rights = new ReduceEntriesTask<K,V>
5485 (this, batch >>>= 1, baseLimit = h, f, tab,
5486 rights, reducer)).fork();
5487 }
5488 Map.Entry<K,V> r = null;
5489 for (Node<K,V> p; (p = advance()) != null; )
5490 r = (r == null) ? p : reducer.apply(r, p);
5491 result = r;
5492 CountedCompleter<?> c;
5493 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5494 @SuppressWarnings("unchecked")
5495 ReduceEntriesTask<K,V>
5496 t = (ReduceEntriesTask<K,V>)c,
5497 s = t.rights;
5498 while (s != null) {
5499 Map.Entry<K,V> tr, sr;
5500 if ((sr = s.result) != null)
5501 t.result = (((tr = t.result) == null) ? sr :
5502 reducer.apply(tr, sr));
5503 s = t.rights = s.nextRight;
5504 }
5505 }
5506 }
5507 }
5508 }
5509
5510 @SuppressWarnings("serial")
5511 static final class MapReduceKeysTask<K,V,U>
5512 extends BulkTask<K,V,U> {
5513 final Function<? super K, ? extends U> transformer;
5514 final BiFunction<? super U, ? super U, ? extends U> reducer;
5515 U result;
5516 MapReduceKeysTask<K,V,U> rights, nextRight;
5517 MapReduceKeysTask
5518 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5519 MapReduceKeysTask<K,V,U> nextRight,
5520 Function<? super K, ? extends U> transformer,
5521 BiFunction<? super U, ? super U, ? extends U> reducer) {
5522 super(p, b, i, f, t); this.nextRight = nextRight;
5523 this.transformer = transformer;
5524 this.reducer = reducer;
5525 }
5526 public final U getRawResult() { return result; }
5527 public final void compute() {
5528 final Function<? super K, ? extends U> transformer;
5529 final BiFunction<? super U, ? super U, ? extends U> reducer;
5530 if ((transformer = this.transformer) != null &&
5531 (reducer = this.reducer) != null) {
5532 for (int i = baseIndex, f, h; batch > 0 &&
5533 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5534 addToPendingCount(1);
5535 (rights = new MapReduceKeysTask<K,V,U>
5536 (this, batch >>>= 1, baseLimit = h, f, tab,
5537 rights, transformer, reducer)).fork();
5538 }
5539 U r = null;
5540 for (Node<K,V> p; (p = advance()) != null; ) {
5541 U u;
5542 if ((u = transformer.apply(p.key)) != null)
5543 r = (r == null) ? u : reducer.apply(r, u);
5544 }
5545 result = r;
5546 CountedCompleter<?> c;
5547 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5548 @SuppressWarnings("unchecked")
5549 MapReduceKeysTask<K,V,U>
5550 t = (MapReduceKeysTask<K,V,U>)c,
5551 s = t.rights;
5552 while (s != null) {
5553 U tr, sr;
5554 if ((sr = s.result) != null)
5555 t.result = (((tr = t.result) == null) ? sr :
5556 reducer.apply(tr, sr));
5557 s = t.rights = s.nextRight;
5558 }
5559 }
5560 }
5561 }
5562 }
5563
5564 @SuppressWarnings("serial")
5565 static final class MapReduceValuesTask<K,V,U>
5566 extends BulkTask<K,V,U> {
5567 final Function<? super V, ? extends U> transformer;
5568 final BiFunction<? super U, ? super U, ? extends U> reducer;
5569 U result;
5570 MapReduceValuesTask<K,V,U> rights, nextRight;
5571 MapReduceValuesTask
5572 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5573 MapReduceValuesTask<K,V,U> nextRight,
5574 Function<? super V, ? extends U> transformer,
5575 BiFunction<? super U, ? super U, ? extends U> reducer) {
5576 super(p, b, i, f, t); this.nextRight = nextRight;
5577 this.transformer = transformer;
5578 this.reducer = reducer;
5579 }
5580 public final U getRawResult() { return result; }
5581 public final void compute() {
5582 final Function<? super V, ? extends U> transformer;
5583 final BiFunction<? super U, ? super U, ? extends U> reducer;
5584 if ((transformer = this.transformer) != null &&
5585 (reducer = this.reducer) != null) {
5586 for (int i = baseIndex, f, h; batch > 0 &&
5587 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5588 addToPendingCount(1);
5589 (rights = new MapReduceValuesTask<K,V,U>
5590 (this, batch >>>= 1, baseLimit = h, f, tab,
5591 rights, transformer, reducer)).fork();
5592 }
5593 U r = null;
5594 for (Node<K,V> p; (p = advance()) != null; ) {
5595 U u;
5596 if ((u = transformer.apply(p.val)) != null)
5597 r = (r == null) ? u : reducer.apply(r, u);
5598 }
5599 result = r;
5600 CountedCompleter<?> c;
5601 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5602 @SuppressWarnings("unchecked")
5603 MapReduceValuesTask<K,V,U>
5604 t = (MapReduceValuesTask<K,V,U>)c,
5605 s = t.rights;
5606 while (s != null) {
5607 U tr, sr;
5608 if ((sr = s.result) != null)
5609 t.result = (((tr = t.result) == null) ? sr :
5610 reducer.apply(tr, sr));
5611 s = t.rights = s.nextRight;
5612 }
5613 }
5614 }
5615 }
5616 }
5617
5618 @SuppressWarnings("serial")
5619 static final class MapReduceEntriesTask<K,V,U>
5620 extends BulkTask<K,V,U> {
5621 final Function<Map.Entry<K,V>, ? extends U> transformer;
5622 final BiFunction<? super U, ? super U, ? extends U> reducer;
5623 U result;
5624 MapReduceEntriesTask<K,V,U> rights, nextRight;
5625 MapReduceEntriesTask
5626 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5627 MapReduceEntriesTask<K,V,U> nextRight,
5628 Function<Map.Entry<K,V>, ? extends U> transformer,
5629 BiFunction<? super U, ? super U, ? extends U> reducer) {
5630 super(p, b, i, f, t); this.nextRight = nextRight;
5631 this.transformer = transformer;
5632 this.reducer = reducer;
5633 }
5634 public final U getRawResult() { return result; }
5635 public final void compute() {
5636 final Function<Map.Entry<K,V>, ? extends U> transformer;
5637 final BiFunction<? super U, ? super U, ? extends U> reducer;
5638 if ((transformer = this.transformer) != null &&
5639 (reducer = this.reducer) != null) {
5640 for (int i = baseIndex, f, h; batch > 0 &&
5641 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5642 addToPendingCount(1);
5643 (rights = new MapReduceEntriesTask<K,V,U>
5644 (this, batch >>>= 1, baseLimit = h, f, tab,
5645 rights, transformer, reducer)).fork();
5646 }
5647 U r = null;
5648 for (Node<K,V> p; (p = advance()) != null; ) {
5649 U u;
5650 if ((u = transformer.apply(p)) != null)
5651 r = (r == null) ? u : reducer.apply(r, u);
5652 }
5653 result = r;
5654 CountedCompleter<?> c;
5655 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5656 @SuppressWarnings("unchecked")
5657 MapReduceEntriesTask<K,V,U>
5658 t = (MapReduceEntriesTask<K,V,U>)c,
5659 s = t.rights;
5660 while (s != null) {
5661 U tr, sr;
5662 if ((sr = s.result) != null)
5663 t.result = (((tr = t.result) == null) ? sr :
5664 reducer.apply(tr, sr));
5665 s = t.rights = s.nextRight;
5666 }
5667 }
5668 }
5669 }
5670 }
5671
5672 @SuppressWarnings("serial")
5673 static final class MapReduceMappingsTask<K,V,U>
5674 extends BulkTask<K,V,U> {
5675 final BiFunction<? super K, ? super V, ? extends U> transformer;
5676 final BiFunction<? super U, ? super U, ? extends U> reducer;
5677 U result;
5678 MapReduceMappingsTask<K,V,U> rights, nextRight;
5679 MapReduceMappingsTask
5680 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5681 MapReduceMappingsTask<K,V,U> nextRight,
5682 BiFunction<? super K, ? super V, ? extends U> transformer,
5683 BiFunction<? super U, ? super U, ? extends U> reducer) {
5684 super(p, b, i, f, t); this.nextRight = nextRight;
5685 this.transformer = transformer;
5686 this.reducer = reducer;
5687 }
5688 public final U getRawResult() { return result; }
5689 public final void compute() {
5690 final BiFunction<? super K, ? super V, ? extends U> transformer;
5691 final BiFunction<? super U, ? super U, ? extends U> reducer;
5692 if ((transformer = this.transformer) != null &&
5693 (reducer = this.reducer) != null) {
5694 for (int i = baseIndex, f, h; batch > 0 &&
5695 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5696 addToPendingCount(1);
5697 (rights = new MapReduceMappingsTask<K,V,U>
5698 (this, batch >>>= 1, baseLimit = h, f, tab,
5699 rights, transformer, reducer)).fork();
5700 }
5701 U r = null;
5702 for (Node<K,V> p; (p = advance()) != null; ) {
5703 U u;
5704 if ((u = transformer.apply(p.key, p.val)) != null)
5705 r = (r == null) ? u : reducer.apply(r, u);
5706 }
5707 result = r;
5708 CountedCompleter<?> c;
5709 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5710 @SuppressWarnings("unchecked")
5711 MapReduceMappingsTask<K,V,U>
5712 t = (MapReduceMappingsTask<K,V,U>)c,
5713 s = t.rights;
5714 while (s != null) {
5715 U tr, sr;
5716 if ((sr = s.result) != null)
5717 t.result = (((tr = t.result) == null) ? sr :
5718 reducer.apply(tr, sr));
5719 s = t.rights = s.nextRight;
5720 }
5721 }
5722 }
5723 }
5724 }
5725
5726 @SuppressWarnings("serial")
5727 static final class MapReduceKeysToDoubleTask<K,V>
5728 extends BulkTask<K,V,Double> {
5729 final ToDoubleFunction<? super K> transformer;
5730 final DoubleBinaryOperator reducer;
5731 final double basis;
5732 double result;
5733 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5734 MapReduceKeysToDoubleTask
5735 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5736 MapReduceKeysToDoubleTask<K,V> nextRight,
5737 ToDoubleFunction<? super K> transformer,
5738 double basis,
5739 DoubleBinaryOperator reducer) {
5740 super(p, b, i, f, t); this.nextRight = nextRight;
5741 this.transformer = transformer;
5742 this.basis = basis; this.reducer = reducer;
5743 }
5744 public final Double getRawResult() { return result; }
5745 public final void compute() {
5746 final ToDoubleFunction<? super K> transformer;
5747 final DoubleBinaryOperator reducer;
5748 if ((transformer = this.transformer) != null &&
5749 (reducer = this.reducer) != null) {
5750 double r = this.basis;
5751 for (int i = baseIndex, f, h; batch > 0 &&
5752 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5753 addToPendingCount(1);
5754 (rights = new MapReduceKeysToDoubleTask<K,V>
5755 (this, batch >>>= 1, baseLimit = h, f, tab,
5756 rights, transformer, r, reducer)).fork();
5757 }
5758 for (Node<K,V> p; (p = advance()) != null; )
5759 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5760 result = r;
5761 CountedCompleter<?> c;
5762 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5763 @SuppressWarnings("unchecked")
5764 MapReduceKeysToDoubleTask<K,V>
5765 t = (MapReduceKeysToDoubleTask<K,V>)c,
5766 s = t.rights;
5767 while (s != null) {
5768 t.result = reducer.applyAsDouble(t.result, s.result);
5769 s = t.rights = s.nextRight;
5770 }
5771 }
5772 }
5773 }
5774 }
5775
5776 @SuppressWarnings("serial")
5777 static final class MapReduceValuesToDoubleTask<K,V>
5778 extends BulkTask<K,V,Double> {
5779 final ToDoubleFunction<? super V> transformer;
5780 final DoubleBinaryOperator reducer;
5781 final double basis;
5782 double result;
5783 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5784 MapReduceValuesToDoubleTask
5785 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5786 MapReduceValuesToDoubleTask<K,V> nextRight,
5787 ToDoubleFunction<? super V> transformer,
5788 double basis,
5789 DoubleBinaryOperator reducer) {
5790 super(p, b, i, f, t); this.nextRight = nextRight;
5791 this.transformer = transformer;
5792 this.basis = basis; this.reducer = reducer;
5793 }
5794 public final Double getRawResult() { return result; }
5795 public final void compute() {
5796 final ToDoubleFunction<? super V> transformer;
5797 final DoubleBinaryOperator reducer;
5798 if ((transformer = this.transformer) != null &&
5799 (reducer = this.reducer) != null) {
5800 double r = this.basis;
5801 for (int i = baseIndex, f, h; batch > 0 &&
5802 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5803 addToPendingCount(1);
5804 (rights = new MapReduceValuesToDoubleTask<K,V>
5805 (this, batch >>>= 1, baseLimit = h, f, tab,
5806 rights, transformer, r, reducer)).fork();
5807 }
5808 for (Node<K,V> p; (p = advance()) != null; )
5809 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5810 result = r;
5811 CountedCompleter<?> c;
5812 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5813 @SuppressWarnings("unchecked")
5814 MapReduceValuesToDoubleTask<K,V>
5815 t = (MapReduceValuesToDoubleTask<K,V>)c,
5816 s = t.rights;
5817 while (s != null) {
5818 t.result = reducer.applyAsDouble(t.result, s.result);
5819 s = t.rights = s.nextRight;
5820 }
5821 }
5822 }
5823 }
5824 }
5825
5826 @SuppressWarnings("serial")
5827 static final class MapReduceEntriesToDoubleTask<K,V>
5828 extends BulkTask<K,V,Double> {
5829 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5830 final DoubleBinaryOperator reducer;
5831 final double basis;
5832 double result;
5833 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5834 MapReduceEntriesToDoubleTask
5835 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5836 MapReduceEntriesToDoubleTask<K,V> nextRight,
5837 ToDoubleFunction<Map.Entry<K,V>> transformer,
5838 double basis,
5839 DoubleBinaryOperator reducer) {
5840 super(p, b, i, f, t); this.nextRight = nextRight;
5841 this.transformer = transformer;
5842 this.basis = basis; this.reducer = reducer;
5843 }
5844 public final Double getRawResult() { return result; }
5845 public final void compute() {
5846 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5847 final DoubleBinaryOperator reducer;
5848 if ((transformer = this.transformer) != null &&
5849 (reducer = this.reducer) != null) {
5850 double r = this.basis;
5851 for (int i = baseIndex, f, h; batch > 0 &&
5852 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5853 addToPendingCount(1);
5854 (rights = new MapReduceEntriesToDoubleTask<K,V>
5855 (this, batch >>>= 1, baseLimit = h, f, tab,
5856 rights, transformer, r, reducer)).fork();
5857 }
5858 for (Node<K,V> p; (p = advance()) != null; )
5859 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5860 result = r;
5861 CountedCompleter<?> c;
5862 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5863 @SuppressWarnings("unchecked")
5864 MapReduceEntriesToDoubleTask<K,V>
5865 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5866 s = t.rights;
5867 while (s != null) {
5868 t.result = reducer.applyAsDouble(t.result, s.result);
5869 s = t.rights = s.nextRight;
5870 }
5871 }
5872 }
5873 }
5874 }
5875
5876 @SuppressWarnings("serial")
5877 static final class MapReduceMappingsToDoubleTask<K,V>
5878 extends BulkTask<K,V,Double> {
5879 final ToDoubleBiFunction<? super K, ? super V> transformer;
5880 final DoubleBinaryOperator reducer;
5881 final double basis;
5882 double result;
5883 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5884 MapReduceMappingsToDoubleTask
5885 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5886 MapReduceMappingsToDoubleTask<K,V> nextRight,
5887 ToDoubleBiFunction<? super K, ? super V> transformer,
5888 double basis,
5889 DoubleBinaryOperator reducer) {
5890 super(p, b, i, f, t); this.nextRight = nextRight;
5891 this.transformer = transformer;
5892 this.basis = basis; this.reducer = reducer;
5893 }
5894 public final Double getRawResult() { return result; }
5895 public final void compute() {
5896 final ToDoubleBiFunction<? super K, ? super V> transformer;
5897 final DoubleBinaryOperator reducer;
5898 if ((transformer = this.transformer) != null &&
5899 (reducer = this.reducer) != null) {
5900 double r = this.basis;
5901 for (int i = baseIndex, f, h; batch > 0 &&
5902 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5903 addToPendingCount(1);
5904 (rights = new MapReduceMappingsToDoubleTask<K,V>
5905 (this, batch >>>= 1, baseLimit = h, f, tab,
5906 rights, transformer, r, reducer)).fork();
5907 }
5908 for (Node<K,V> p; (p = advance()) != null; )
5909 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5910 result = r;
5911 CountedCompleter<?> c;
5912 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5913 @SuppressWarnings("unchecked")
5914 MapReduceMappingsToDoubleTask<K,V>
5915 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5916 s = t.rights;
5917 while (s != null) {
5918 t.result = reducer.applyAsDouble(t.result, s.result);
5919 s = t.rights = s.nextRight;
5920 }
5921 }
5922 }
5923 }
5924 }
5925
5926 @SuppressWarnings("serial")
5927 static final class MapReduceKeysToLongTask<K,V>
5928 extends BulkTask<K,V,Long> {
5929 final ToLongFunction<? super K> transformer;
5930 final LongBinaryOperator reducer;
5931 final long basis;
5932 long result;
5933 MapReduceKeysToLongTask<K,V> rights, nextRight;
5934 MapReduceKeysToLongTask
5935 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5936 MapReduceKeysToLongTask<K,V> nextRight,
5937 ToLongFunction<? super K> transformer,
5938 long basis,
5939 LongBinaryOperator reducer) {
5940 super(p, b, i, f, t); this.nextRight = nextRight;
5941 this.transformer = transformer;
5942 this.basis = basis; this.reducer = reducer;
5943 }
5944 public final Long getRawResult() { return result; }
5945 public final void compute() {
5946 final ToLongFunction<? super K> transformer;
5947 final LongBinaryOperator reducer;
5948 if ((transformer = this.transformer) != null &&
5949 (reducer = this.reducer) != null) {
5950 long r = this.basis;
5951 for (int i = baseIndex, f, h; batch > 0 &&
5952 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5953 addToPendingCount(1);
5954 (rights = new MapReduceKeysToLongTask<K,V>
5955 (this, batch >>>= 1, baseLimit = h, f, tab,
5956 rights, transformer, r, reducer)).fork();
5957 }
5958 for (Node<K,V> p; (p = advance()) != null; )
5959 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5960 result = r;
5961 CountedCompleter<?> c;
5962 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5963 @SuppressWarnings("unchecked")
5964 MapReduceKeysToLongTask<K,V>
5965 t = (MapReduceKeysToLongTask<K,V>)c,
5966 s = t.rights;
5967 while (s != null) {
5968 t.result = reducer.applyAsLong(t.result, s.result);
5969 s = t.rights = s.nextRight;
5970 }
5971 }
5972 }
5973 }
5974 }
5975
5976 @SuppressWarnings("serial")
5977 static final class MapReduceValuesToLongTask<K,V>
5978 extends BulkTask<K,V,Long> {
5979 final ToLongFunction<? super V> transformer;
5980 final LongBinaryOperator reducer;
5981 final long basis;
5982 long result;
5983 MapReduceValuesToLongTask<K,V> rights, nextRight;
5984 MapReduceValuesToLongTask
5985 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5986 MapReduceValuesToLongTask<K,V> nextRight,
5987 ToLongFunction<? super V> transformer,
5988 long basis,
5989 LongBinaryOperator reducer) {
5990 super(p, b, i, f, t); this.nextRight = nextRight;
5991 this.transformer = transformer;
5992 this.basis = basis; this.reducer = reducer;
5993 }
5994 public final Long getRawResult() { return result; }
5995 public final void compute() {
5996 final ToLongFunction<? super V> transformer;
5997 final LongBinaryOperator reducer;
5998 if ((transformer = this.transformer) != null &&
5999 (reducer = this.reducer) != null) {
6000 long r = this.basis;
6001 for (int i = baseIndex, f, h; batch > 0 &&
6002 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6003 addToPendingCount(1);
6004 (rights = new MapReduceValuesToLongTask<K,V>
6005 (this, batch >>>= 1, baseLimit = h, f, tab,
6006 rights, transformer, r, reducer)).fork();
6007 }
6008 for (Node<K,V> p; (p = advance()) != null; )
6009 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
6010 result = r;
6011 CountedCompleter<?> c;
6012 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6013 @SuppressWarnings("unchecked")
6014 MapReduceValuesToLongTask<K,V>
6015 t = (MapReduceValuesToLongTask<K,V>)c,
6016 s = t.rights;
6017 while (s != null) {
6018 t.result = reducer.applyAsLong(t.result, s.result);
6019 s = t.rights = s.nextRight;
6020 }
6021 }
6022 }
6023 }
6024 }
6025
6026 @SuppressWarnings("serial")
6027 static final class MapReduceEntriesToLongTask<K,V>
6028 extends BulkTask<K,V,Long> {
6029 final ToLongFunction<Map.Entry<K,V>> transformer;
6030 final LongBinaryOperator reducer;
6031 final long basis;
6032 long result;
6033 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6034 MapReduceEntriesToLongTask
6035 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6036 MapReduceEntriesToLongTask<K,V> nextRight,
6037 ToLongFunction<Map.Entry<K,V>> transformer,
6038 long basis,
6039 LongBinaryOperator reducer) {
6040 super(p, b, i, f, t); this.nextRight = nextRight;
6041 this.transformer = transformer;
6042 this.basis = basis; this.reducer = reducer;
6043 }
6044 public final Long getRawResult() { return result; }
6045 public final void compute() {
6046 final ToLongFunction<Map.Entry<K,V>> transformer;
6047 final LongBinaryOperator reducer;
6048 if ((transformer = this.transformer) != null &&
6049 (reducer = this.reducer) != null) {
6050 long r = this.basis;
6051 for (int i = baseIndex, f, h; batch > 0 &&
6052 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6053 addToPendingCount(1);
6054 (rights = new MapReduceEntriesToLongTask<K,V>
6055 (this, batch >>>= 1, baseLimit = h, f, tab,
6056 rights, transformer, r, reducer)).fork();
6057 }
6058 for (Node<K,V> p; (p = advance()) != null; )
6059 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6060 result = r;
6061 CountedCompleter<?> c;
6062 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6063 @SuppressWarnings("unchecked")
6064 MapReduceEntriesToLongTask<K,V>
6065 t = (MapReduceEntriesToLongTask<K,V>)c,
6066 s = t.rights;
6067 while (s != null) {
6068 t.result = reducer.applyAsLong(t.result, s.result);
6069 s = t.rights = s.nextRight;
6070 }
6071 }
6072 }
6073 }
6074 }
6075
6076 @SuppressWarnings("serial")
6077 static final class MapReduceMappingsToLongTask<K,V>
6078 extends BulkTask<K,V,Long> {
6079 final ToLongBiFunction<? super K, ? super V> transformer;
6080 final LongBinaryOperator reducer;
6081 final long basis;
6082 long result;
6083 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6084 MapReduceMappingsToLongTask
6085 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6086 MapReduceMappingsToLongTask<K,V> nextRight,
6087 ToLongBiFunction<? super K, ? super V> transformer,
6088 long basis,
6089 LongBinaryOperator reducer) {
6090 super(p, b, i, f, t); this.nextRight = nextRight;
6091 this.transformer = transformer;
6092 this.basis = basis; this.reducer = reducer;
6093 }
6094 public final Long getRawResult() { return result; }
6095 public final void compute() {
6096 final ToLongBiFunction<? super K, ? super V> transformer;
6097 final LongBinaryOperator reducer;
6098 if ((transformer = this.transformer) != null &&
6099 (reducer = this.reducer) != null) {
6100 long r = this.basis;
6101 for (int i = baseIndex, f, h; batch > 0 &&
6102 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6103 addToPendingCount(1);
6104 (rights = new MapReduceMappingsToLongTask<K,V>
6105 (this, batch >>>= 1, baseLimit = h, f, tab,
6106 rights, transformer, r, reducer)).fork();
6107 }
6108 for (Node<K,V> p; (p = advance()) != null; )
6109 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6110 result = r;
6111 CountedCompleter<?> c;
6112 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6113 @SuppressWarnings("unchecked")
6114 MapReduceMappingsToLongTask<K,V>
6115 t = (MapReduceMappingsToLongTask<K,V>)c,
6116 s = t.rights;
6117 while (s != null) {
6118 t.result = reducer.applyAsLong(t.result, s.result);
6119 s = t.rights = s.nextRight;
6120 }
6121 }
6122 }
6123 }
6124 }
6125
6126 @SuppressWarnings("serial")
6127 static final class MapReduceKeysToIntTask<K,V>
6128 extends BulkTask<K,V,Integer> {
6129 final ToIntFunction<? super K> transformer;
6130 final IntBinaryOperator reducer;
6131 final int basis;
6132 int result;
6133 MapReduceKeysToIntTask<K,V> rights, nextRight;
6134 MapReduceKeysToIntTask
6135 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6136 MapReduceKeysToIntTask<K,V> nextRight,
6137 ToIntFunction<? super K> transformer,
6138 int basis,
6139 IntBinaryOperator reducer) {
6140 super(p, b, i, f, t); this.nextRight = nextRight;
6141 this.transformer = transformer;
6142 this.basis = basis; this.reducer = reducer;
6143 }
6144 public final Integer getRawResult() { return result; }
6145 public final void compute() {
6146 final ToIntFunction<? super K> transformer;
6147 final IntBinaryOperator reducer;
6148 if ((transformer = this.transformer) != null &&
6149 (reducer = this.reducer) != null) {
6150 int r = this.basis;
6151 for (int i = baseIndex, f, h; batch > 0 &&
6152 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6153 addToPendingCount(1);
6154 (rights = new MapReduceKeysToIntTask<K,V>
6155 (this, batch >>>= 1, baseLimit = h, f, tab,
6156 rights, transformer, r, reducer)).fork();
6157 }
6158 for (Node<K,V> p; (p = advance()) != null; )
6159 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6160 result = r;
6161 CountedCompleter<?> c;
6162 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6163 @SuppressWarnings("unchecked")
6164 MapReduceKeysToIntTask<K,V>
6165 t = (MapReduceKeysToIntTask<K,V>)c,
6166 s = t.rights;
6167 while (s != null) {
6168 t.result = reducer.applyAsInt(t.result, s.result);
6169 s = t.rights = s.nextRight;
6170 }
6171 }
6172 }
6173 }
6174 }
6175
6176 @SuppressWarnings("serial")
6177 static final class MapReduceValuesToIntTask<K,V>
6178 extends BulkTask<K,V,Integer> {
6179 final ToIntFunction<? super V> transformer;
6180 final IntBinaryOperator reducer;
6181 final int basis;
6182 int result;
6183 MapReduceValuesToIntTask<K,V> rights, nextRight;
6184 MapReduceValuesToIntTask
6185 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6186 MapReduceValuesToIntTask<K,V> nextRight,
6187 ToIntFunction<? super V> transformer,
6188 int basis,
6189 IntBinaryOperator reducer) {
6190 super(p, b, i, f, t); this.nextRight = nextRight;
6191 this.transformer = transformer;
6192 this.basis = basis; this.reducer = reducer;
6193 }
6194 public final Integer getRawResult() { return result; }
6195 public final void compute() {
6196 final ToIntFunction<? super V> transformer;
6197 final IntBinaryOperator reducer;
6198 if ((transformer = this.transformer) != null &&
6199 (reducer = this.reducer) != null) {
6200 int r = this.basis;
6201 for (int i = baseIndex, f, h; batch > 0 &&
6202 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6203 addToPendingCount(1);
6204 (rights = new MapReduceValuesToIntTask<K,V>
6205 (this, batch >>>= 1, baseLimit = h, f, tab,
6206 rights, transformer, r, reducer)).fork();
6207 }
6208 for (Node<K,V> p; (p = advance()) != null; )
6209 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6210 result = r;
6211 CountedCompleter<?> c;
6212 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6213 @SuppressWarnings("unchecked")
6214 MapReduceValuesToIntTask<K,V>
6215 t = (MapReduceValuesToIntTask<K,V>)c,
6216 s = t.rights;
6217 while (s != null) {
6218 t.result = reducer.applyAsInt(t.result, s.result);
6219 s = t.rights = s.nextRight;
6220 }
6221 }
6222 }
6223 }
6224 }
6225
6226 @SuppressWarnings("serial")
6227 static final class MapReduceEntriesToIntTask<K,V>
6228 extends BulkTask<K,V,Integer> {
6229 final ToIntFunction<Map.Entry<K,V>> transformer;
6230 final IntBinaryOperator reducer;
6231 final int basis;
6232 int result;
6233 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6234 MapReduceEntriesToIntTask
6235 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6236 MapReduceEntriesToIntTask<K,V> nextRight,
6237 ToIntFunction<Map.Entry<K,V>> transformer,
6238 int basis,
6239 IntBinaryOperator reducer) {
6240 super(p, b, i, f, t); this.nextRight = nextRight;
6241 this.transformer = transformer;
6242 this.basis = basis; this.reducer = reducer;
6243 }
6244 public final Integer getRawResult() { return result; }
6245 public final void compute() {
6246 final ToIntFunction<Map.Entry<K,V>> transformer;
6247 final IntBinaryOperator reducer;
6248 if ((transformer = this.transformer) != null &&
6249 (reducer = this.reducer) != null) {
6250 int r = this.basis;
6251 for (int i = baseIndex, f, h; batch > 0 &&
6252 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6253 addToPendingCount(1);
6254 (rights = new MapReduceEntriesToIntTask<K,V>
6255 (this, batch >>>= 1, baseLimit = h, f, tab,
6256 rights, transformer, r, reducer)).fork();
6257 }
6258 for (Node<K,V> p; (p = advance()) != null; )
6259 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6260 result = r;
6261 CountedCompleter<?> c;
6262 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6263 @SuppressWarnings("unchecked")
6264 MapReduceEntriesToIntTask<K,V>
6265 t = (MapReduceEntriesToIntTask<K,V>)c,
6266 s = t.rights;
6267 while (s != null) {
6268 t.result = reducer.applyAsInt(t.result, s.result);
6269 s = t.rights = s.nextRight;
6270 }
6271 }
6272 }
6273 }
6274 }
6275
6276 @SuppressWarnings("serial")
6277 static final class MapReduceMappingsToIntTask<K,V>
6278 extends BulkTask<K,V,Integer> {
6279 final ToIntBiFunction<? super K, ? super V> transformer;
6280 final IntBinaryOperator reducer;
6281 final int basis;
6282 int result;
6283 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6284 MapReduceMappingsToIntTask
6285 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6286 MapReduceMappingsToIntTask<K,V> nextRight,
6287 ToIntBiFunction<? super K, ? super V> transformer,
6288 int basis,
6289 IntBinaryOperator reducer) {
6290 super(p, b, i, f, t); this.nextRight = nextRight;
6291 this.transformer = transformer;
6292 this.basis = basis; this.reducer = reducer;
6293 }
6294 public final Integer getRawResult() { return result; }
6295 public final void compute() {
6296 final ToIntBiFunction<? super K, ? super V> transformer;
6297 final IntBinaryOperator reducer;
6298 if ((transformer = this.transformer) != null &&
6299 (reducer = this.reducer) != null) {
6300 int r = this.basis;
6301 for (int i = baseIndex, f, h; batch > 0 &&
6302 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6303 addToPendingCount(1);
6304 (rights = new MapReduceMappingsToIntTask<K,V>
6305 (this, batch >>>= 1, baseLimit = h, f, tab,
6306 rights, transformer, r, reducer)).fork();
6307 }
6308 for (Node<K,V> p; (p = advance()) != null; )
6309 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6310 result = r;
6311 CountedCompleter<?> c;
6312 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6313 @SuppressWarnings("unchecked")
6314 MapReduceMappingsToIntTask<K,V>
6315 t = (MapReduceMappingsToIntTask<K,V>)c,
6316 s = t.rights;
6317 while (s != null) {
6318 t.result = reducer.applyAsInt(t.result, s.result);
6319 s = t.rights = s.nextRight;
6320 }
6321 }
6322 }
6323 }
6324 }
6325
6326 // Unsafe mechanics
6327 private static final Unsafe U = Unsafe.getUnsafe();
6328 private static final long SIZECTL;
6329 private static final long TRANSFERINDEX;
6330 private static final long BASECOUNT;
6331 private static final long CELLSBUSY;
6332 private static final long CELLVALUE;
6333 private static final int ABASE;
6334 private static final int ASHIFT;
6335
6336 static {
6337 try {
6338 SIZECTL = U.objectFieldOffset
6339 (ConcurrentHashMap.class.getDeclaredField("sizeCtl"));
6340 TRANSFERINDEX = U.objectFieldOffset
6341 (ConcurrentHashMap.class.getDeclaredField("transferIndex"));
6342 BASECOUNT = U.objectFieldOffset
6343 (ConcurrentHashMap.class.getDeclaredField("baseCount"));
6344 CELLSBUSY = U.objectFieldOffset
6345 (ConcurrentHashMap.class.getDeclaredField("cellsBusy"));
6346
6347 CELLVALUE = U.objectFieldOffset
6348 (CounterCell.class.getDeclaredField("value"));
6349
6350 ABASE = U.arrayBaseOffset(Node[].class);
6351 int scale = U.arrayIndexScale(Node[].class);
6352 if ((scale & (scale - 1)) != 0)
6353 throw new ExceptionInInitializerError("array index scale not a power of two");
6354 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6355 } catch (ReflectiveOperationException e) {
6356 throw new ExceptionInInitializerError(e);
6357 }
6358
6359 // Reduce the risk of rare disastrous classloading in first call to
6360 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6361 Class<?> ensureLoaded = LockSupport.class;
6362
6363 // Eager class load observed to help JIT during startup
6364 ensureLoaded = ReservationNode.class;
6365 }
6366 }