ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.320
Committed: Sun Sep 8 01:11:03 2019 UTC (4 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.319: +12 -12 lines
Log Message:
yet another Unsafe mechanics style canonicalization

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.io.Serializable;
11 import java.lang.reflect.ParameterizedType;
12 import java.lang.reflect.Type;
13 import java.util.AbstractMap;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Enumeration;
17 import java.util.HashMap;
18 import java.util.Hashtable;
19 import java.util.Iterator;
20 import java.util.Map;
21 import java.util.NoSuchElementException;
22 import java.util.Set;
23 import java.util.Spliterator;
24 import java.util.concurrent.atomic.AtomicReference;
25 import java.util.concurrent.locks.LockSupport;
26 import java.util.concurrent.locks.ReentrantLock;
27 import java.util.function.BiConsumer;
28 import java.util.function.BiFunction;
29 import java.util.function.Consumer;
30 import java.util.function.DoubleBinaryOperator;
31 import java.util.function.Function;
32 import java.util.function.IntBinaryOperator;
33 import java.util.function.LongBinaryOperator;
34 import java.util.function.Predicate;
35 import java.util.function.ToDoubleBiFunction;
36 import java.util.function.ToDoubleFunction;
37 import java.util.function.ToIntBiFunction;
38 import java.util.function.ToIntFunction;
39 import java.util.function.ToLongBiFunction;
40 import java.util.function.ToLongFunction;
41 import java.util.stream.Stream;
42 import jdk.internal.misc.Unsafe;
43
44 /**
45 * A hash table supporting full concurrency of retrievals and
46 * high expected concurrency for updates. This class obeys the
47 * same functional specification as {@link java.util.Hashtable}, and
48 * includes versions of methods corresponding to each method of
49 * {@code Hashtable}. However, even though all operations are
50 * thread-safe, retrieval operations do <em>not</em> entail locking,
51 * and there is <em>not</em> any support for locking the entire table
52 * in a way that prevents all access. This class is fully
53 * interoperable with {@code Hashtable} in programs that rely on its
54 * thread safety but not on its synchronization details.
55 *
56 * <p>Retrieval operations (including {@code get}) generally do not
57 * block, so may overlap with update operations (including {@code put}
58 * and {@code remove}). Retrievals reflect the results of the most
59 * recently <em>completed</em> update operations holding upon their
60 * onset. (More formally, an update operation for a given key bears a
61 * <em>happens-before</em> relation with any (non-null) retrieval for
62 * that key reporting the updated value.) For aggregate operations
63 * such as {@code putAll} and {@code clear}, concurrent retrievals may
64 * reflect insertion or removal of only some entries. Similarly,
65 * Iterators, Spliterators and Enumerations return elements reflecting the
66 * state of the hash table at some point at or since the creation of the
67 * iterator/enumeration. They do <em>not</em> throw {@link
68 * java.util.ConcurrentModificationException ConcurrentModificationException}.
69 * However, iterators are designed to be used by only one thread at a time.
70 * Bear in mind that the results of aggregate status methods including
71 * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
72 * useful only when a map is not undergoing concurrent updates in other threads.
73 * Otherwise the results of these methods reflect transient states
74 * that may be adequate for monitoring or estimation purposes, but not
75 * for program control.
76 *
77 * <p>The table is dynamically expanded when there are too many
78 * collisions (i.e., keys that have distinct hash codes but fall into
79 * the same slot modulo the table size), with the expected average
80 * effect of maintaining roughly two bins per mapping (corresponding
81 * to a 0.75 load factor threshold for resizing). There may be much
82 * variance around this average as mappings are added and removed, but
83 * overall, this maintains a commonly accepted time/space tradeoff for
84 * hash tables. However, resizing this or any other kind of hash
85 * table may be a relatively slow operation. When possible, it is a
86 * good idea to provide a size estimate as an optional {@code
87 * initialCapacity} constructor argument. An additional optional
88 * {@code loadFactor} constructor argument provides a further means of
89 * customizing initial table capacity by specifying the table density
90 * to be used in calculating the amount of space to allocate for the
91 * given number of elements. Also, for compatibility with previous
92 * versions of this class, constructors may optionally specify an
93 * expected {@code concurrencyLevel} as an additional hint for
94 * internal sizing. Note that using many keys with exactly the same
95 * {@code hashCode()} is a sure way to slow down performance of any
96 * hash table. To ameliorate impact, when keys are {@link Comparable},
97 * this class may use comparison order among keys to help break ties.
98 *
99 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
100 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
101 * (using {@link #keySet(Object)} when only keys are of interest, and the
102 * mapped values are (perhaps transiently) not used or all take the
103 * same mapping value.
104 *
105 * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
106 * form of histogram or multiset) by using {@link
107 * java.util.concurrent.atomic.LongAdder} values and initializing via
108 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
109 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
110 * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
111 *
112 * <p>This class and its views and iterators implement all of the
113 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
114 * interfaces.
115 *
116 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
117 * does <em>not</em> allow {@code null} to be used as a key or value.
118 *
119 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
120 * operations that, unlike most {@link Stream} methods, are designed
121 * to be safely, and often sensibly, applied even with maps that are
122 * being concurrently updated by other threads; for example, when
123 * computing a snapshot summary of the values in a shared registry.
124 * There are three kinds of operation, each with four forms, accepting
125 * functions with keys, values, entries, and (key, value) pairs as
126 * arguments and/or return values. Because the elements of a
127 * ConcurrentHashMap are not ordered in any particular way, and may be
128 * processed in different orders in different parallel executions, the
129 * correctness of supplied functions should not depend on any
130 * ordering, or on any other objects or values that may transiently
131 * change while computation is in progress; and except for forEach
132 * actions, should ideally be side-effect-free. Bulk operations on
133 * {@link Map.Entry} objects do not support method {@code setValue}.
134 *
135 * <ul>
136 * <li>forEach: Performs a given action on each element.
137 * A variant form applies a given transformation on each element
138 * before performing the action.
139 *
140 * <li>search: Returns the first available non-null result of
141 * applying a given function on each element; skipping further
142 * search when a result is found.
143 *
144 * <li>reduce: Accumulates each element. The supplied reduction
145 * function cannot rely on ordering (more formally, it should be
146 * both associative and commutative). There are five variants:
147 *
148 * <ul>
149 *
150 * <li>Plain reductions. (There is not a form of this method for
151 * (key, value) function arguments since there is no corresponding
152 * return type.)
153 *
154 * <li>Mapped reductions that accumulate the results of a given
155 * function applied to each element.
156 *
157 * <li>Reductions to scalar doubles, longs, and ints, using a
158 * given basis value.
159 *
160 * </ul>
161 * </ul>
162 *
163 * <p>These bulk operations accept a {@code parallelismThreshold}
164 * argument. Methods proceed sequentially if the current map size is
165 * estimated to be less than the given threshold. Using a value of
166 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
167 * of {@code 1} results in maximal parallelism by partitioning into
168 * enough subtasks to fully utilize the {@link
169 * ForkJoinPool#commonPool()} that is used for all parallel
170 * computations. Normally, you would initially choose one of these
171 * extreme values, and then measure performance of using in-between
172 * values that trade off overhead versus throughput.
173 *
174 * <p>The concurrency properties of bulk operations follow
175 * from those of ConcurrentHashMap: Any non-null result returned
176 * from {@code get(key)} and related access methods bears a
177 * happens-before relation with the associated insertion or
178 * update. The result of any bulk operation reflects the
179 * composition of these per-element relations (but is not
180 * necessarily atomic with respect to the map as a whole unless it
181 * is somehow known to be quiescent). Conversely, because keys
182 * and values in the map are never null, null serves as a reliable
183 * atomic indicator of the current lack of any result. To
184 * maintain this property, null serves as an implicit basis for
185 * all non-scalar reduction operations. For the double, long, and
186 * int versions, the basis should be one that, when combined with
187 * any other value, returns that other value (more formally, it
188 * should be the identity element for the reduction). Most common
189 * reductions have these properties; for example, computing a sum
190 * with basis 0 or a minimum with basis MAX_VALUE.
191 *
192 * <p>Search and transformation functions provided as arguments
193 * should similarly return null to indicate the lack of any result
194 * (in which case it is not used). In the case of mapped
195 * reductions, this also enables transformations to serve as
196 * filters, returning null (or, in the case of primitive
197 * specializations, the identity basis) if the element should not
198 * be combined. You can create compound transformations and
199 * filterings by composing them yourself under this "null means
200 * there is nothing there now" rule before using them in search or
201 * reduce operations.
202 *
203 * <p>Methods accepting and/or returning Entry arguments maintain
204 * key-value associations. They may be useful for example when
205 * finding the key for the greatest value. Note that "plain" Entry
206 * arguments can be supplied using {@code new
207 * AbstractMap.SimpleEntry(k,v)}.
208 *
209 * <p>Bulk operations may complete abruptly, throwing an
210 * exception encountered in the application of a supplied
211 * function. Bear in mind when handling such exceptions that other
212 * concurrently executing functions could also have thrown
213 * exceptions, or would have done so if the first exception had
214 * not occurred.
215 *
216 * <p>Speedups for parallel compared to sequential forms are common
217 * but not guaranteed. Parallel operations involving brief functions
218 * on small maps may execute more slowly than sequential forms if the
219 * underlying work to parallelize the computation is more expensive
220 * than the computation itself. Similarly, parallelization may not
221 * lead to much actual parallelism if all processors are busy
222 * performing unrelated tasks.
223 *
224 * <p>All arguments to all task methods must be non-null.
225 *
226 * <p>This class is a member of the
227 * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
228 * Java Collections Framework</a>.
229 *
230 * @since 1.5
231 * @author Doug Lea
232 * @param <K> the type of keys maintained by this map
233 * @param <V> the type of mapped values
234 */
235 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
236 implements ConcurrentMap<K,V>, Serializable {
237 private static final long serialVersionUID = 7249069246763182397L;
238
239 /*
240 * Overview:
241 *
242 * The primary design goal of this hash table is to maintain
243 * concurrent readability (typically method get(), but also
244 * iterators and related methods) while minimizing update
245 * contention. Secondary goals are to keep space consumption about
246 * the same or better than java.util.HashMap, and to support high
247 * initial insertion rates on an empty table by many threads.
248 *
249 * This map usually acts as a binned (bucketed) hash table. Each
250 * key-value mapping is held in a Node. Most nodes are instances
251 * of the basic Node class with hash, key, value, and next
252 * fields. However, various subclasses exist: TreeNodes are
253 * arranged in balanced trees, not lists. TreeBins hold the roots
254 * of sets of TreeNodes. ForwardingNodes are placed at the heads
255 * of bins during resizing. ReservationNodes are used as
256 * placeholders while establishing values in computeIfAbsent and
257 * related methods. The types TreeBin, ForwardingNode, and
258 * ReservationNode do not hold normal user keys, values, or
259 * hashes, and are readily distinguishable during search etc
260 * because they have negative hash fields and null key and value
261 * fields. (These special nodes are either uncommon or transient,
262 * so the impact of carrying around some unused fields is
263 * insignificant.)
264 *
265 * The table is lazily initialized to a power-of-two size upon the
266 * first insertion. Each bin in the table normally contains a
267 * list of Nodes (most often, the list has only zero or one Node).
268 * Table accesses require volatile/atomic reads, writes, and
269 * CASes. Because there is no other way to arrange this without
270 * adding further indirections, we use intrinsics
271 * (jdk.internal.misc.Unsafe) operations.
272 *
273 * We use the top (sign) bit of Node hash fields for control
274 * purposes -- it is available anyway because of addressing
275 * constraints. Nodes with negative hash fields are specially
276 * handled or ignored in map methods.
277 *
278 * Insertion (via put or its variants) of the first node in an
279 * empty bin is performed by just CASing it to the bin. This is
280 * by far the most common case for put operations under most
281 * key/hash distributions. Other update operations (insert,
282 * delete, and replace) require locks. We do not want to waste
283 * the space required to associate a distinct lock object with
284 * each bin, so instead use the first node of a bin list itself as
285 * a lock. Locking support for these locks relies on builtin
286 * "synchronized" monitors.
287 *
288 * Using the first node of a list as a lock does not by itself
289 * suffice though: When a node is locked, any update must first
290 * validate that it is still the first node after locking it, and
291 * retry if not. Because new nodes are always appended to lists,
292 * once a node is first in a bin, it remains first until deleted
293 * or the bin becomes invalidated (upon resizing).
294 *
295 * The main disadvantage of per-bin locks is that other update
296 * operations on other nodes in a bin list protected by the same
297 * lock can stall, for example when user equals() or mapping
298 * functions take a long time. However, statistically, under
299 * random hash codes, this is not a common problem. Ideally, the
300 * frequency of nodes in bins follows a Poisson distribution
301 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
302 * parameter of about 0.5 on average, given the resizing threshold
303 * of 0.75, although with a large variance because of resizing
304 * granularity. Ignoring variance, the expected occurrences of
305 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
306 * first values are:
307 *
308 * 0: 0.60653066
309 * 1: 0.30326533
310 * 2: 0.07581633
311 * 3: 0.01263606
312 * 4: 0.00157952
313 * 5: 0.00015795
314 * 6: 0.00001316
315 * 7: 0.00000094
316 * 8: 0.00000006
317 * more: less than 1 in ten million
318 *
319 * Lock contention probability for two threads accessing distinct
320 * elements is roughly 1 / (8 * #elements) under random hashes.
321 *
322 * Actual hash code distributions encountered in practice
323 * sometimes deviate significantly from uniform randomness. This
324 * includes the case when N > (1<<30), so some keys MUST collide.
325 * Similarly for dumb or hostile usages in which multiple keys are
326 * designed to have identical hash codes or ones that differs only
327 * in masked-out high bits. So we use a secondary strategy that
328 * applies when the number of nodes in a bin exceeds a
329 * threshold. These TreeBins use a balanced tree to hold nodes (a
330 * specialized form of red-black trees), bounding search time to
331 * O(log N). Each search step in a TreeBin is at least twice as
332 * slow as in a regular list, but given that N cannot exceed
333 * (1<<64) (before running out of addresses) this bounds search
334 * steps, lock hold times, etc, to reasonable constants (roughly
335 * 100 nodes inspected per operation worst case) so long as keys
336 * are Comparable (which is very common -- String, Long, etc).
337 * TreeBin nodes (TreeNodes) also maintain the same "next"
338 * traversal pointers as regular nodes, so can be traversed in
339 * iterators in the same way.
340 *
341 * The table is resized when occupancy exceeds a percentage
342 * threshold (nominally, 0.75, but see below). Any thread
343 * noticing an overfull bin may assist in resizing after the
344 * initiating thread allocates and sets up the replacement array.
345 * However, rather than stalling, these other threads may proceed
346 * with insertions etc. The use of TreeBins shields us from the
347 * worst case effects of overfilling while resizes are in
348 * progress. Resizing proceeds by transferring bins, one by one,
349 * from the table to the next table. However, threads claim small
350 * blocks of indices to transfer (via field transferIndex) before
351 * doing so, reducing contention. A generation stamp in field
352 * sizeCtl ensures that resizings do not overlap. Because we are
353 * using power-of-two expansion, the elements from each bin must
354 * either stay at same index, or move with a power of two
355 * offset. We eliminate unnecessary node creation by catching
356 * cases where old nodes can be reused because their next fields
357 * won't change. On average, only about one-sixth of them need
358 * cloning when a table doubles. The nodes they replace will be
359 * garbage collectible as soon as they are no longer referenced by
360 * any reader thread that may be in the midst of concurrently
361 * traversing table. Upon transfer, the old table bin contains
362 * only a special forwarding node (with hash field "MOVED") that
363 * contains the next table as its key. On encountering a
364 * forwarding node, access and update operations restart, using
365 * the new table.
366 *
367 * Each bin transfer requires its bin lock, which can stall
368 * waiting for locks while resizing. However, because other
369 * threads can join in and help resize rather than contend for
370 * locks, average aggregate waits become shorter as resizing
371 * progresses. The transfer operation must also ensure that all
372 * accessible bins in both the old and new table are usable by any
373 * traversal. This is arranged in part by proceeding from the
374 * last bin (table.length - 1) up towards the first. Upon seeing
375 * a forwarding node, traversals (see class Traverser) arrange to
376 * move to the new table without revisiting nodes. To ensure that
377 * no intervening nodes are skipped even when moved out of order,
378 * a stack (see class TableStack) is created on first encounter of
379 * a forwarding node during a traversal, to maintain its place if
380 * later processing the current table. The need for these
381 * save/restore mechanics is relatively rare, but when one
382 * forwarding node is encountered, typically many more will be.
383 * So Traversers use a simple caching scheme to avoid creating so
384 * many new TableStack nodes. (Thanks to Peter Levart for
385 * suggesting use of a stack here.)
386 *
387 * The traversal scheme also applies to partial traversals of
388 * ranges of bins (via an alternate Traverser constructor)
389 * to support partitioned aggregate operations. Also, read-only
390 * operations give up if ever forwarded to a null table, which
391 * provides support for shutdown-style clearing, which is also not
392 * currently implemented.
393 *
394 * Lazy table initialization minimizes footprint until first use,
395 * and also avoids resizings when the first operation is from a
396 * putAll, constructor with map argument, or deserialization.
397 * These cases attempt to override the initial capacity settings,
398 * but harmlessly fail to take effect in cases of races.
399 *
400 * The element count is maintained using a specialization of
401 * LongAdder. We need to incorporate a specialization rather than
402 * just use a LongAdder in order to access implicit
403 * contention-sensing that leads to creation of multiple
404 * CounterCells. The counter mechanics avoid contention on
405 * updates but can encounter cache thrashing if read too
406 * frequently during concurrent access. To avoid reading so often,
407 * resizing under contention is attempted only upon adding to a
408 * bin already holding two or more nodes. Under uniform hash
409 * distributions, the probability of this occurring at threshold
410 * is around 13%, meaning that only about 1 in 8 puts check
411 * threshold (and after resizing, many fewer do so).
412 *
413 * TreeBins use a special form of comparison for search and
414 * related operations (which is the main reason we cannot use
415 * existing collections such as TreeMaps). TreeBins contain
416 * Comparable elements, but may contain others, as well as
417 * elements that are Comparable but not necessarily Comparable for
418 * the same T, so we cannot invoke compareTo among them. To handle
419 * this, the tree is ordered primarily by hash value, then by
420 * Comparable.compareTo order if applicable. On lookup at a node,
421 * if elements are not comparable or compare as 0 then both left
422 * and right children may need to be searched in the case of tied
423 * hash values. (This corresponds to the full list search that
424 * would be necessary if all elements were non-Comparable and had
425 * tied hashes.) On insertion, to keep a total ordering (or as
426 * close as is required here) across rebalancings, we compare
427 * classes and identityHashCodes as tie-breakers. The red-black
428 * balancing code is updated from pre-jdk-collections
429 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
430 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
431 * Algorithms" (CLR).
432 *
433 * TreeBins also require an additional locking mechanism. While
434 * list traversal is always possible by readers even during
435 * updates, tree traversal is not, mainly because of tree-rotations
436 * that may change the root node and/or its linkages. TreeBins
437 * include a simple read-write lock mechanism parasitic on the
438 * main bin-synchronization strategy: Structural adjustments
439 * associated with an insertion or removal are already bin-locked
440 * (and so cannot conflict with other writers) but must wait for
441 * ongoing readers to finish. Since there can be only one such
442 * waiter, we use a simple scheme using a single "waiter" field to
443 * block writers. However, readers need never block. If the root
444 * lock is held, they proceed along the slow traversal path (via
445 * next-pointers) until the lock becomes available or the list is
446 * exhausted, whichever comes first. These cases are not fast, but
447 * maximize aggregate expected throughput.
448 *
449 * Maintaining API and serialization compatibility with previous
450 * versions of this class introduces several oddities. Mainly: We
451 * leave untouched but unused constructor arguments referring to
452 * concurrencyLevel. We accept a loadFactor constructor argument,
453 * but apply it only to initial table capacity (which is the only
454 * time that we can guarantee to honor it.) We also declare an
455 * unused "Segment" class that is instantiated in minimal form
456 * only when serializing.
457 *
458 * Also, solely for compatibility with previous versions of this
459 * class, it extends AbstractMap, even though all of its methods
460 * are overridden, so it is just useless baggage.
461 *
462 * This file is organized to make things a little easier to follow
463 * while reading than they might otherwise: First the main static
464 * declarations and utilities, then fields, then main public
465 * methods (with a few factorings of multiple public methods into
466 * internal ones), then sizing methods, trees, traversers, and
467 * bulk operations.
468 */
469
470 /* ---------------- Constants -------------- */
471
472 /**
473 * The largest possible table capacity. This value must be
474 * exactly 1<<30 to stay within Java array allocation and indexing
475 * bounds for power of two table sizes, and is further required
476 * because the top two bits of 32bit hash fields are used for
477 * control purposes.
478 */
479 private static final int MAXIMUM_CAPACITY = 1 << 30;
480
481 /**
482 * The default initial table capacity. Must be a power of 2
483 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
484 */
485 private static final int DEFAULT_CAPACITY = 16;
486
487 /**
488 * The largest possible (non-power of two) array size.
489 * Needed by toArray and related methods.
490 */
491 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
492
493 /**
494 * The default concurrency level for this table. Unused but
495 * defined for compatibility with previous versions of this class.
496 */
497 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
498
499 /**
500 * The load factor for this table. Overrides of this value in
501 * constructors affect only the initial table capacity. The
502 * actual floating point value isn't normally used -- it is
503 * simpler to use expressions such as {@code n - (n >>> 2)} for
504 * the associated resizing threshold.
505 */
506 private static final float LOAD_FACTOR = 0.75f;
507
508 /**
509 * The bin count threshold for using a tree rather than list for a
510 * bin. Bins are converted to trees when adding an element to a
511 * bin with at least this many nodes. The value must be greater
512 * than 2, and should be at least 8 to mesh with assumptions in
513 * tree removal about conversion back to plain bins upon
514 * shrinkage.
515 */
516 static final int TREEIFY_THRESHOLD = 8;
517
518 /**
519 * The bin count threshold for untreeifying a (split) bin during a
520 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
521 * most 6 to mesh with shrinkage detection under removal.
522 */
523 static final int UNTREEIFY_THRESHOLD = 6;
524
525 /**
526 * The smallest table capacity for which bins may be treeified.
527 * (Otherwise the table is resized if too many nodes in a bin.)
528 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
529 * conflicts between resizing and treeification thresholds.
530 */
531 static final int MIN_TREEIFY_CAPACITY = 64;
532
533 /**
534 * Minimum number of rebinnings per transfer step. Ranges are
535 * subdivided to allow multiple resizer threads. This value
536 * serves as a lower bound to avoid resizers encountering
537 * excessive memory contention. The value should be at least
538 * DEFAULT_CAPACITY.
539 */
540 private static final int MIN_TRANSFER_STRIDE = 16;
541
542 /**
543 * The number of bits used for generation stamp in sizeCtl.
544 * Must be at least 6 for 32bit arrays.
545 */
546 private static final int RESIZE_STAMP_BITS = 16;
547
548 /**
549 * The maximum number of threads that can help resize.
550 * Must fit in 32 - RESIZE_STAMP_BITS bits.
551 */
552 private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
553
554 /**
555 * The bit shift for recording size stamp in sizeCtl.
556 */
557 private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
558
559 /*
560 * Encodings for Node hash fields. See above for explanation.
561 */
562 static final int MOVED = -1; // hash for forwarding nodes
563 static final int TREEBIN = -2; // hash for roots of trees
564 static final int RESERVED = -3; // hash for transient reservations
565 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
566
567 /** Number of CPUS, to place bounds on some sizings */
568 static final int NCPU = Runtime.getRuntime().availableProcessors();
569
570 /**
571 * Serialized pseudo-fields, provided only for jdk7 compatibility.
572 * @serialField segments Segment[]
573 * The segments, each of which is a specialized hash table.
574 * @serialField segmentMask int
575 * Mask value for indexing into segments. The upper bits of a
576 * key's hash code are used to choose the segment.
577 * @serialField segmentShift int
578 * Shift value for indexing within segments.
579 */
580 private static final ObjectStreamField[] serialPersistentFields = {
581 new ObjectStreamField("segments", Segment[].class),
582 new ObjectStreamField("segmentMask", Integer.TYPE),
583 new ObjectStreamField("segmentShift", Integer.TYPE),
584 };
585
586 /* ---------------- Nodes -------------- */
587
588 /**
589 * Key-value entry. This class is never exported out as a
590 * user-mutable Map.Entry (i.e., one supporting setValue; see
591 * MapEntry below), but can be used for read-only traversals used
592 * in bulk tasks. Subclasses of Node with a negative hash field
593 * are special, and contain null keys and values (but are never
594 * exported). Otherwise, keys and vals are never null.
595 */
596 static class Node<K,V> implements Map.Entry<K,V> {
597 final int hash;
598 final K key;
599 volatile V val;
600 volatile Node<K,V> next;
601
602 Node(int hash, K key, V val) {
603 this.hash = hash;
604 this.key = key;
605 this.val = val;
606 }
607
608 Node(int hash, K key, V val, Node<K,V> next) {
609 this(hash, key, val);
610 this.next = next;
611 }
612
613 public final K getKey() { return key; }
614 public final V getValue() { return val; }
615 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
616 public final String toString() {
617 return Helpers.mapEntryToString(key, val);
618 }
619 public final V setValue(V value) {
620 throw new UnsupportedOperationException();
621 }
622
623 public final boolean equals(Object o) {
624 Object k, v, u; Map.Entry<?,?> e;
625 return ((o instanceof Map.Entry) &&
626 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
627 (v = e.getValue()) != null &&
628 (k == key || k.equals(key)) &&
629 (v == (u = val) || v.equals(u)));
630 }
631
632 /**
633 * Virtualized support for map.get(); overridden in subclasses.
634 */
635 Node<K,V> find(int h, Object k) {
636 Node<K,V> e = this;
637 if (k != null) {
638 do {
639 K ek;
640 if (e.hash == h &&
641 ((ek = e.key) == k || (ek != null && k.equals(ek))))
642 return e;
643 } while ((e = e.next) != null);
644 }
645 return null;
646 }
647 }
648
649 /* ---------------- Static utilities -------------- */
650
651 /**
652 * Spreads (XORs) higher bits of hash to lower and also forces top
653 * bit to 0. Because the table uses power-of-two masking, sets of
654 * hashes that vary only in bits above the current mask will
655 * always collide. (Among known examples are sets of Float keys
656 * holding consecutive whole numbers in small tables.) So we
657 * apply a transform that spreads the impact of higher bits
658 * downward. There is a tradeoff between speed, utility, and
659 * quality of bit-spreading. Because many common sets of hashes
660 * are already reasonably distributed (so don't benefit from
661 * spreading), and because we use trees to handle large sets of
662 * collisions in bins, we just XOR some shifted bits in the
663 * cheapest possible way to reduce systematic lossage, as well as
664 * to incorporate impact of the highest bits that would otherwise
665 * never be used in index calculations because of table bounds.
666 */
667 static final int spread(int h) {
668 return (h ^ (h >>> 16)) & HASH_BITS;
669 }
670
671 /**
672 * Returns a power of two table size for the given desired capacity.
673 * See Hackers Delight, sec 3.2
674 */
675 private static final int tableSizeFor(int c) {
676 int n = -1 >>> Integer.numberOfLeadingZeros(c - 1);
677 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
678 }
679
680 /**
681 * Returns x's Class if it is of the form "class C implements
682 * Comparable<C>", else null.
683 */
684 static Class<?> comparableClassFor(Object x) {
685 if (x instanceof Comparable) {
686 Class<?> c; Type[] ts, as; ParameterizedType p;
687 if ((c = x.getClass()) == String.class) // bypass checks
688 return c;
689 if ((ts = c.getGenericInterfaces()) != null) {
690 for (Type t : ts) {
691 if ((t instanceof ParameterizedType) &&
692 ((p = (ParameterizedType)t).getRawType() ==
693 Comparable.class) &&
694 (as = p.getActualTypeArguments()) != null &&
695 as.length == 1 && as[0] == c) // type arg is c
696 return c;
697 }
698 }
699 }
700 return null;
701 }
702
703 /**
704 * Returns k.compareTo(x) if x matches kc (k's screened comparable
705 * class), else 0.
706 */
707 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
708 static int compareComparables(Class<?> kc, Object k, Object x) {
709 return (x == null || x.getClass() != kc ? 0 :
710 ((Comparable)k).compareTo(x));
711 }
712
713 /* ---------------- Table element access -------------- */
714
715 /*
716 * Atomic access methods are used for table elements as well as
717 * elements of in-progress next table while resizing. All uses of
718 * the tab arguments must be null checked by callers. All callers
719 * also paranoically precheck that tab's length is not zero (or an
720 * equivalent check), thus ensuring that any index argument taking
721 * the form of a hash value anded with (length - 1) is a valid
722 * index. Note that, to be correct wrt arbitrary concurrency
723 * errors by users, these checks must operate on local variables,
724 * which accounts for some odd-looking inline assignments below.
725 * Note that calls to setTabAt always occur within locked regions,
726 * and so require only release ordering.
727 */
728
729 @SuppressWarnings("unchecked")
730 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
731 return (Node<K,V>)U.getObjectAcquire(tab, ((long)i << ASHIFT) + ABASE);
732 }
733
734 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
735 Node<K,V> c, Node<K,V> v) {
736 return U.compareAndSetObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
737 }
738
739 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
740 U.putObjectRelease(tab, ((long)i << ASHIFT) + ABASE, v);
741 }
742
743 /* ---------------- Fields -------------- */
744
745 /**
746 * The array of bins. Lazily initialized upon first insertion.
747 * Size is always a power of two. Accessed directly by iterators.
748 */
749 transient volatile Node<K,V>[] table;
750
751 /**
752 * The next table to use; non-null only while resizing.
753 */
754 private transient volatile Node<K,V>[] nextTable;
755
756 /**
757 * Base counter value, used mainly when there is no contention,
758 * but also as a fallback during table initialization
759 * races. Updated via CAS.
760 */
761 private transient volatile long baseCount;
762
763 /**
764 * Table initialization and resizing control. When negative, the
765 * table is being initialized or resized: -1 for initialization,
766 * else -(1 + the number of active resizing threads). Otherwise,
767 * when table is null, holds the initial table size to use upon
768 * creation, or 0 for default. After initialization, holds the
769 * next element count value upon which to resize the table.
770 */
771 private transient volatile int sizeCtl;
772
773 /**
774 * The next table index (plus one) to split while resizing.
775 */
776 private transient volatile int transferIndex;
777
778 /**
779 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
780 */
781 private transient volatile int cellsBusy;
782
783 /**
784 * Table of counter cells. When non-null, size is a power of 2.
785 */
786 private transient volatile CounterCell[] counterCells;
787
788 // views
789 private transient KeySetView<K,V> keySet;
790 private transient ValuesView<K,V> values;
791 private transient EntrySetView<K,V> entrySet;
792
793
794 /* ---------------- Public operations -------------- */
795
796 /**
797 * Creates a new, empty map with the default initial table size (16).
798 */
799 public ConcurrentHashMap() {
800 }
801
802 /**
803 * Creates a new, empty map with an initial table size
804 * accommodating the specified number of elements without the need
805 * to dynamically resize.
806 *
807 * @param initialCapacity The implementation performs internal
808 * sizing to accommodate this many elements.
809 * @throws IllegalArgumentException if the initial capacity of
810 * elements is negative
811 */
812 public ConcurrentHashMap(int initialCapacity) {
813 this(initialCapacity, LOAD_FACTOR, 1);
814 }
815
816 /**
817 * Creates a new map with the same mappings as the given map.
818 *
819 * @param m the map
820 */
821 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
822 this.sizeCtl = DEFAULT_CAPACITY;
823 putAll(m);
824 }
825
826 /**
827 * Creates a new, empty map with an initial table size based on
828 * the given number of elements ({@code initialCapacity}) and
829 * initial table density ({@code loadFactor}).
830 *
831 * @param initialCapacity the initial capacity. The implementation
832 * performs internal sizing to accommodate this many elements,
833 * given the specified load factor.
834 * @param loadFactor the load factor (table density) for
835 * establishing the initial table size
836 * @throws IllegalArgumentException if the initial capacity of
837 * elements is negative or the load factor is nonpositive
838 *
839 * @since 1.6
840 */
841 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
842 this(initialCapacity, loadFactor, 1);
843 }
844
845 /**
846 * Creates a new, empty map with an initial table size based on
847 * the given number of elements ({@code initialCapacity}), initial
848 * table density ({@code loadFactor}), and number of concurrently
849 * updating threads ({@code concurrencyLevel}).
850 *
851 * @param initialCapacity the initial capacity. The implementation
852 * performs internal sizing to accommodate this many elements,
853 * given the specified load factor.
854 * @param loadFactor the load factor (table density) for
855 * establishing the initial table size
856 * @param concurrencyLevel the estimated number of concurrently
857 * updating threads. The implementation may use this value as
858 * a sizing hint.
859 * @throws IllegalArgumentException if the initial capacity is
860 * negative or the load factor or concurrencyLevel are
861 * nonpositive
862 */
863 public ConcurrentHashMap(int initialCapacity,
864 float loadFactor, int concurrencyLevel) {
865 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
866 throw new IllegalArgumentException();
867 if (initialCapacity < concurrencyLevel) // Use at least as many bins
868 initialCapacity = concurrencyLevel; // as estimated threads
869 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
870 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
871 MAXIMUM_CAPACITY : tableSizeFor((int)size);
872 this.sizeCtl = cap;
873 }
874
875 // Original (since JDK1.2) Map methods
876
877 /**
878 * {@inheritDoc}
879 */
880 public int size() {
881 long n = sumCount();
882 return ((n < 0L) ? 0 :
883 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
884 (int)n);
885 }
886
887 /**
888 * {@inheritDoc}
889 */
890 public boolean isEmpty() {
891 return sumCount() <= 0L; // ignore transient negative values
892 }
893
894 /**
895 * Returns the value to which the specified key is mapped,
896 * or {@code null} if this map contains no mapping for the key.
897 *
898 * <p>More formally, if this map contains a mapping from a key
899 * {@code k} to a value {@code v} such that {@code key.equals(k)},
900 * then this method returns {@code v}; otherwise it returns
901 * {@code null}. (There can be at most one such mapping.)
902 *
903 * @throws NullPointerException if the specified key is null
904 */
905 public V get(Object key) {
906 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
907 int h = spread(key.hashCode());
908 if ((tab = table) != null && (n = tab.length) > 0 &&
909 (e = tabAt(tab, (n - 1) & h)) != null) {
910 if ((eh = e.hash) == h) {
911 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
912 return e.val;
913 }
914 else if (eh < 0)
915 return (p = e.find(h, key)) != null ? p.val : null;
916 while ((e = e.next) != null) {
917 if (e.hash == h &&
918 ((ek = e.key) == key || (ek != null && key.equals(ek))))
919 return e.val;
920 }
921 }
922 return null;
923 }
924
925 /**
926 * Tests if the specified object is a key in this table.
927 *
928 * @param key possible key
929 * @return {@code true} if and only if the specified object
930 * is a key in this table, as determined by the
931 * {@code equals} method; {@code false} otherwise
932 * @throws NullPointerException if the specified key is null
933 */
934 public boolean containsKey(Object key) {
935 return get(key) != null;
936 }
937
938 /**
939 * Returns {@code true} if this map maps one or more keys to the
940 * specified value. Note: This method may require a full traversal
941 * of the map, and is much slower than method {@code containsKey}.
942 *
943 * @param value value whose presence in this map is to be tested
944 * @return {@code true} if this map maps one or more keys to the
945 * specified value
946 * @throws NullPointerException if the specified value is null
947 */
948 public boolean containsValue(Object value) {
949 if (value == null)
950 throw new NullPointerException();
951 Node<K,V>[] t;
952 if ((t = table) != null) {
953 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
954 for (Node<K,V> p; (p = it.advance()) != null; ) {
955 V v;
956 if ((v = p.val) == value || (v != null && value.equals(v)))
957 return true;
958 }
959 }
960 return false;
961 }
962
963 /**
964 * Maps the specified key to the specified value in this table.
965 * Neither the key nor the value can be null.
966 *
967 * <p>The value can be retrieved by calling the {@code get} method
968 * with a key that is equal to the original key.
969 *
970 * @param key key with which the specified value is to be associated
971 * @param value value to be associated with the specified key
972 * @return the previous value associated with {@code key}, or
973 * {@code null} if there was no mapping for {@code key}
974 * @throws NullPointerException if the specified key or value is null
975 */
976 public V put(K key, V value) {
977 return putVal(key, value, false);
978 }
979
980 /** Implementation for put and putIfAbsent */
981 final V putVal(K key, V value, boolean onlyIfAbsent) {
982 if (key == null || value == null) throw new NullPointerException();
983 int hash = spread(key.hashCode());
984 int binCount = 0;
985 for (Node<K,V>[] tab = table;;) {
986 Node<K,V> f; int n, i, fh; K fk; V fv;
987 if (tab == null || (n = tab.length) == 0)
988 tab = initTable();
989 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
990 if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))
991 break; // no lock when adding to empty bin
992 }
993 else if ((fh = f.hash) == MOVED)
994 tab = helpTransfer(tab, f);
995 else if (onlyIfAbsent // check first node without acquiring lock
996 && fh == hash
997 && ((fk = f.key) == key || (fk != null && key.equals(fk)))
998 && (fv = f.val) != null)
999 return fv;
1000 else {
1001 V oldVal = null;
1002 synchronized (f) {
1003 if (tabAt(tab, i) == f) {
1004 if (fh >= 0) {
1005 binCount = 1;
1006 for (Node<K,V> e = f;; ++binCount) {
1007 K ek;
1008 if (e.hash == hash &&
1009 ((ek = e.key) == key ||
1010 (ek != null && key.equals(ek)))) {
1011 oldVal = e.val;
1012 if (!onlyIfAbsent)
1013 e.val = value;
1014 break;
1015 }
1016 Node<K,V> pred = e;
1017 if ((e = e.next) == null) {
1018 pred.next = new Node<K,V>(hash, key, value);
1019 break;
1020 }
1021 }
1022 }
1023 else if (f instanceof TreeBin) {
1024 Node<K,V> p;
1025 binCount = 2;
1026 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1027 value)) != null) {
1028 oldVal = p.val;
1029 if (!onlyIfAbsent)
1030 p.val = value;
1031 }
1032 }
1033 else if (f instanceof ReservationNode)
1034 throw new IllegalStateException("Recursive update");
1035 }
1036 }
1037 if (binCount != 0) {
1038 if (binCount >= TREEIFY_THRESHOLD)
1039 treeifyBin(tab, i);
1040 if (oldVal != null)
1041 return oldVal;
1042 break;
1043 }
1044 }
1045 }
1046 addCount(1L, binCount);
1047 return null;
1048 }
1049
1050 /**
1051 * Copies all of the mappings from the specified map to this one.
1052 * These mappings replace any mappings that this map had for any of the
1053 * keys currently in the specified map.
1054 *
1055 * @param m mappings to be stored in this map
1056 */
1057 public void putAll(Map<? extends K, ? extends V> m) {
1058 tryPresize(m.size());
1059 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1060 putVal(e.getKey(), e.getValue(), false);
1061 }
1062
1063 /**
1064 * Removes the key (and its corresponding value) from this map.
1065 * This method does nothing if the key is not in the map.
1066 *
1067 * @param key the key that needs to be removed
1068 * @return the previous value associated with {@code key}, or
1069 * {@code null} if there was no mapping for {@code key}
1070 * @throws NullPointerException if the specified key is null
1071 */
1072 public V remove(Object key) {
1073 return replaceNode(key, null, null);
1074 }
1075
1076 /**
1077 * Implementation for the four public remove/replace methods:
1078 * Replaces node value with v, conditional upon match of cv if
1079 * non-null. If resulting value is null, delete.
1080 */
1081 final V replaceNode(Object key, V value, Object cv) {
1082 int hash = spread(key.hashCode());
1083 for (Node<K,V>[] tab = table;;) {
1084 Node<K,V> f; int n, i, fh;
1085 if (tab == null || (n = tab.length) == 0 ||
1086 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1087 break;
1088 else if ((fh = f.hash) == MOVED)
1089 tab = helpTransfer(tab, f);
1090 else {
1091 V oldVal = null;
1092 boolean validated = false;
1093 synchronized (f) {
1094 if (tabAt(tab, i) == f) {
1095 if (fh >= 0) {
1096 validated = true;
1097 for (Node<K,V> e = f, pred = null;;) {
1098 K ek;
1099 if (e.hash == hash &&
1100 ((ek = e.key) == key ||
1101 (ek != null && key.equals(ek)))) {
1102 V ev = e.val;
1103 if (cv == null || cv == ev ||
1104 (ev != null && cv.equals(ev))) {
1105 oldVal = ev;
1106 if (value != null)
1107 e.val = value;
1108 else if (pred != null)
1109 pred.next = e.next;
1110 else
1111 setTabAt(tab, i, e.next);
1112 }
1113 break;
1114 }
1115 pred = e;
1116 if ((e = e.next) == null)
1117 break;
1118 }
1119 }
1120 else if (f instanceof TreeBin) {
1121 validated = true;
1122 TreeBin<K,V> t = (TreeBin<K,V>)f;
1123 TreeNode<K,V> r, p;
1124 if ((r = t.root) != null &&
1125 (p = r.findTreeNode(hash, key, null)) != null) {
1126 V pv = p.val;
1127 if (cv == null || cv == pv ||
1128 (pv != null && cv.equals(pv))) {
1129 oldVal = pv;
1130 if (value != null)
1131 p.val = value;
1132 else if (t.removeTreeNode(p))
1133 setTabAt(tab, i, untreeify(t.first));
1134 }
1135 }
1136 }
1137 else if (f instanceof ReservationNode)
1138 throw new IllegalStateException("Recursive update");
1139 }
1140 }
1141 if (validated) {
1142 if (oldVal != null) {
1143 if (value == null)
1144 addCount(-1L, -1);
1145 return oldVal;
1146 }
1147 break;
1148 }
1149 }
1150 }
1151 return null;
1152 }
1153
1154 /**
1155 * Removes all of the mappings from this map.
1156 */
1157 public void clear() {
1158 long delta = 0L; // negative number of deletions
1159 int i = 0;
1160 Node<K,V>[] tab = table;
1161 while (tab != null && i < tab.length) {
1162 int fh;
1163 Node<K,V> f = tabAt(tab, i);
1164 if (f == null)
1165 ++i;
1166 else if ((fh = f.hash) == MOVED) {
1167 tab = helpTransfer(tab, f);
1168 i = 0; // restart
1169 }
1170 else {
1171 synchronized (f) {
1172 if (tabAt(tab, i) == f) {
1173 Node<K,V> p = (fh >= 0 ? f :
1174 (f instanceof TreeBin) ?
1175 ((TreeBin<K,V>)f).first : null);
1176 while (p != null) {
1177 --delta;
1178 p = p.next;
1179 }
1180 setTabAt(tab, i++, null);
1181 }
1182 }
1183 }
1184 }
1185 if (delta != 0L)
1186 addCount(delta, -1);
1187 }
1188
1189 /**
1190 * Returns a {@link Set} view of the keys contained in this map.
1191 * The set is backed by the map, so changes to the map are
1192 * reflected in the set, and vice-versa. The set supports element
1193 * removal, which removes the corresponding mapping from this map,
1194 * via the {@code Iterator.remove}, {@code Set.remove},
1195 * {@code removeAll}, {@code retainAll}, and {@code clear}
1196 * operations. It does not support the {@code add} or
1197 * {@code addAll} operations.
1198 *
1199 * <p>The view's iterators and spliterators are
1200 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1201 *
1202 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1203 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1204 *
1205 * @return the set view
1206 */
1207 public KeySetView<K,V> keySet() {
1208 KeySetView<K,V> ks;
1209 if ((ks = keySet) != null) return ks;
1210 return keySet = new KeySetView<K,V>(this, null);
1211 }
1212
1213 /**
1214 * Returns a {@link Collection} view of the values contained in this map.
1215 * The collection is backed by the map, so changes to the map are
1216 * reflected in the collection, and vice-versa. The collection
1217 * supports element removal, which removes the corresponding
1218 * mapping from this map, via the {@code Iterator.remove},
1219 * {@code Collection.remove}, {@code removeAll},
1220 * {@code retainAll}, and {@code clear} operations. It does not
1221 * support the {@code add} or {@code addAll} operations.
1222 *
1223 * <p>The view's iterators and spliterators are
1224 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1225 *
1226 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1227 * and {@link Spliterator#NONNULL}.
1228 *
1229 * @return the collection view
1230 */
1231 public Collection<V> values() {
1232 ValuesView<K,V> vs;
1233 if ((vs = values) != null) return vs;
1234 return values = new ValuesView<K,V>(this);
1235 }
1236
1237 /**
1238 * Returns a {@link Set} view of the mappings contained in this map.
1239 * The set is backed by the map, so changes to the map are
1240 * reflected in the set, and vice-versa. The set supports element
1241 * removal, which removes the corresponding mapping from the map,
1242 * via the {@code Iterator.remove}, {@code Set.remove},
1243 * {@code removeAll}, {@code retainAll}, and {@code clear}
1244 * operations.
1245 *
1246 * <p>The view's iterators and spliterators are
1247 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1248 *
1249 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1250 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1251 *
1252 * @return the set view
1253 */
1254 public Set<Map.Entry<K,V>> entrySet() {
1255 EntrySetView<K,V> es;
1256 if ((es = entrySet) != null) return es;
1257 return entrySet = new EntrySetView<K,V>(this);
1258 }
1259
1260 /**
1261 * Returns the hash code value for this {@link Map}, i.e.,
1262 * the sum of, for each key-value pair in the map,
1263 * {@code key.hashCode() ^ value.hashCode()}.
1264 *
1265 * @return the hash code value for this map
1266 */
1267 public int hashCode() {
1268 int h = 0;
1269 Node<K,V>[] t;
1270 if ((t = table) != null) {
1271 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1272 for (Node<K,V> p; (p = it.advance()) != null; )
1273 h += p.key.hashCode() ^ p.val.hashCode();
1274 }
1275 return h;
1276 }
1277
1278 /**
1279 * Returns a string representation of this map. The string
1280 * representation consists of a list of key-value mappings (in no
1281 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1282 * mappings are separated by the characters {@code ", "} (comma
1283 * and space). Each key-value mapping is rendered as the key
1284 * followed by an equals sign ("{@code =}") followed by the
1285 * associated value.
1286 *
1287 * @return a string representation of this map
1288 */
1289 public String toString() {
1290 Node<K,V>[] t;
1291 int f = (t = table) == null ? 0 : t.length;
1292 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1293 StringBuilder sb = new StringBuilder();
1294 sb.append('{');
1295 Node<K,V> p;
1296 if ((p = it.advance()) != null) {
1297 for (;;) {
1298 K k = p.key;
1299 V v = p.val;
1300 sb.append(k == this ? "(this Map)" : k);
1301 sb.append('=');
1302 sb.append(v == this ? "(this Map)" : v);
1303 if ((p = it.advance()) == null)
1304 break;
1305 sb.append(',').append(' ');
1306 }
1307 }
1308 return sb.append('}').toString();
1309 }
1310
1311 /**
1312 * Compares the specified object with this map for equality.
1313 * Returns {@code true} if the given object is a map with the same
1314 * mappings as this map. This operation may return misleading
1315 * results if either map is concurrently modified during execution
1316 * of this method.
1317 *
1318 * @param o object to be compared for equality with this map
1319 * @return {@code true} if the specified object is equal to this map
1320 */
1321 public boolean equals(Object o) {
1322 if (o != this) {
1323 if (!(o instanceof Map))
1324 return false;
1325 Map<?,?> m = (Map<?,?>) o;
1326 Node<K,V>[] t;
1327 int f = (t = table) == null ? 0 : t.length;
1328 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1329 for (Node<K,V> p; (p = it.advance()) != null; ) {
1330 V val = p.val;
1331 Object v = m.get(p.key);
1332 if (v == null || (v != val && !v.equals(val)))
1333 return false;
1334 }
1335 for (Map.Entry<?,?> e : m.entrySet()) {
1336 Object mk, mv, v;
1337 if ((mk = e.getKey()) == null ||
1338 (mv = e.getValue()) == null ||
1339 (v = get(mk)) == null ||
1340 (mv != v && !mv.equals(v)))
1341 return false;
1342 }
1343 }
1344 return true;
1345 }
1346
1347 /**
1348 * Stripped-down version of helper class used in previous version,
1349 * declared for the sake of serialization compatibility.
1350 */
1351 static class Segment<K,V> extends ReentrantLock implements Serializable {
1352 private static final long serialVersionUID = 2249069246763182397L;
1353 final float loadFactor;
1354 Segment(float lf) { this.loadFactor = lf; }
1355 }
1356
1357 /**
1358 * Saves this map to a stream (that is, serializes it).
1359 *
1360 * @param s the stream
1361 * @throws java.io.IOException if an I/O error occurs
1362 * @serialData
1363 * the serialized fields, followed by the key (Object) and value
1364 * (Object) for each key-value mapping, followed by a null pair.
1365 * The key-value mappings are emitted in no particular order.
1366 */
1367 private void writeObject(java.io.ObjectOutputStream s)
1368 throws java.io.IOException {
1369 // For serialization compatibility
1370 // Emulate segment calculation from previous version of this class
1371 int sshift = 0;
1372 int ssize = 1;
1373 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1374 ++sshift;
1375 ssize <<= 1;
1376 }
1377 int segmentShift = 32 - sshift;
1378 int segmentMask = ssize - 1;
1379 @SuppressWarnings("unchecked")
1380 Segment<K,V>[] segments = (Segment<K,V>[])
1381 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1382 for (int i = 0; i < segments.length; ++i)
1383 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1384 java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1385 streamFields.put("segments", segments);
1386 streamFields.put("segmentShift", segmentShift);
1387 streamFields.put("segmentMask", segmentMask);
1388 s.writeFields();
1389
1390 Node<K,V>[] t;
1391 if ((t = table) != null) {
1392 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1393 for (Node<K,V> p; (p = it.advance()) != null; ) {
1394 s.writeObject(p.key);
1395 s.writeObject(p.val);
1396 }
1397 }
1398 s.writeObject(null);
1399 s.writeObject(null);
1400 }
1401
1402 /**
1403 * Reconstitutes this map from a stream (that is, deserializes it).
1404 * @param s the stream
1405 * @throws ClassNotFoundException if the class of a serialized object
1406 * could not be found
1407 * @throws java.io.IOException if an I/O error occurs
1408 */
1409 private void readObject(java.io.ObjectInputStream s)
1410 throws java.io.IOException, ClassNotFoundException {
1411 /*
1412 * To improve performance in typical cases, we create nodes
1413 * while reading, then place in table once size is known.
1414 * However, we must also validate uniqueness and deal with
1415 * overpopulated bins while doing so, which requires
1416 * specialized versions of putVal mechanics.
1417 */
1418 sizeCtl = -1; // force exclusion for table construction
1419 s.defaultReadObject();
1420 long size = 0L;
1421 Node<K,V> p = null;
1422 for (;;) {
1423 @SuppressWarnings("unchecked")
1424 K k = (K) s.readObject();
1425 @SuppressWarnings("unchecked")
1426 V v = (V) s.readObject();
1427 if (k != null && v != null) {
1428 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1429 ++size;
1430 }
1431 else
1432 break;
1433 }
1434 if (size == 0L)
1435 sizeCtl = 0;
1436 else {
1437 long ts = (long)(1.0 + size / LOAD_FACTOR);
1438 int n = (ts >= (long)MAXIMUM_CAPACITY) ?
1439 MAXIMUM_CAPACITY : tableSizeFor((int)ts);
1440 @SuppressWarnings("unchecked")
1441 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1442 int mask = n - 1;
1443 long added = 0L;
1444 while (p != null) {
1445 boolean insertAtFront;
1446 Node<K,V> next = p.next, first;
1447 int h = p.hash, j = h & mask;
1448 if ((first = tabAt(tab, j)) == null)
1449 insertAtFront = true;
1450 else {
1451 K k = p.key;
1452 if (first.hash < 0) {
1453 TreeBin<K,V> t = (TreeBin<K,V>)first;
1454 if (t.putTreeVal(h, k, p.val) == null)
1455 ++added;
1456 insertAtFront = false;
1457 }
1458 else {
1459 int binCount = 0;
1460 insertAtFront = true;
1461 Node<K,V> q; K qk;
1462 for (q = first; q != null; q = q.next) {
1463 if (q.hash == h &&
1464 ((qk = q.key) == k ||
1465 (qk != null && k.equals(qk)))) {
1466 insertAtFront = false;
1467 break;
1468 }
1469 ++binCount;
1470 }
1471 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1472 insertAtFront = false;
1473 ++added;
1474 p.next = first;
1475 TreeNode<K,V> hd = null, tl = null;
1476 for (q = p; q != null; q = q.next) {
1477 TreeNode<K,V> t = new TreeNode<K,V>
1478 (q.hash, q.key, q.val, null, null);
1479 if ((t.prev = tl) == null)
1480 hd = t;
1481 else
1482 tl.next = t;
1483 tl = t;
1484 }
1485 setTabAt(tab, j, new TreeBin<K,V>(hd));
1486 }
1487 }
1488 }
1489 if (insertAtFront) {
1490 ++added;
1491 p.next = first;
1492 setTabAt(tab, j, p);
1493 }
1494 p = next;
1495 }
1496 table = tab;
1497 sizeCtl = n - (n >>> 2);
1498 baseCount = added;
1499 }
1500 }
1501
1502 // ConcurrentMap methods
1503
1504 /**
1505 * {@inheritDoc}
1506 *
1507 * @return the previous value associated with the specified key,
1508 * or {@code null} if there was no mapping for the key
1509 * @throws NullPointerException if the specified key or value is null
1510 */
1511 public V putIfAbsent(K key, V value) {
1512 return putVal(key, value, true);
1513 }
1514
1515 /**
1516 * {@inheritDoc}
1517 *
1518 * @throws NullPointerException if the specified key is null
1519 */
1520 public boolean remove(Object key, Object value) {
1521 if (key == null)
1522 throw new NullPointerException();
1523 return value != null && replaceNode(key, null, value) != null;
1524 }
1525
1526 /**
1527 * {@inheritDoc}
1528 *
1529 * @throws NullPointerException if any of the arguments are null
1530 */
1531 public boolean replace(K key, V oldValue, V newValue) {
1532 if (key == null || oldValue == null || newValue == null)
1533 throw new NullPointerException();
1534 return replaceNode(key, newValue, oldValue) != null;
1535 }
1536
1537 /**
1538 * {@inheritDoc}
1539 *
1540 * @return the previous value associated with the specified key,
1541 * or {@code null} if there was no mapping for the key
1542 * @throws NullPointerException if the specified key or value is null
1543 */
1544 public V replace(K key, V value) {
1545 if (key == null || value == null)
1546 throw new NullPointerException();
1547 return replaceNode(key, value, null);
1548 }
1549
1550 // Overrides of JDK8+ Map extension method defaults
1551
1552 /**
1553 * Returns the value to which the specified key is mapped, or the
1554 * given default value if this map contains no mapping for the
1555 * key.
1556 *
1557 * @param key the key whose associated value is to be returned
1558 * @param defaultValue the value to return if this map contains
1559 * no mapping for the given key
1560 * @return the mapping for the key, if present; else the default value
1561 * @throws NullPointerException if the specified key is null
1562 */
1563 public V getOrDefault(Object key, V defaultValue) {
1564 V v;
1565 return (v = get(key)) == null ? defaultValue : v;
1566 }
1567
1568 public void forEach(BiConsumer<? super K, ? super V> action) {
1569 if (action == null) throw new NullPointerException();
1570 Node<K,V>[] t;
1571 if ((t = table) != null) {
1572 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1573 for (Node<K,V> p; (p = it.advance()) != null; ) {
1574 action.accept(p.key, p.val);
1575 }
1576 }
1577 }
1578
1579 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1580 if (function == null) throw new NullPointerException();
1581 Node<K,V>[] t;
1582 if ((t = table) != null) {
1583 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1584 for (Node<K,V> p; (p = it.advance()) != null; ) {
1585 V oldValue = p.val;
1586 for (K key = p.key;;) {
1587 V newValue = function.apply(key, oldValue);
1588 if (newValue == null)
1589 throw new NullPointerException();
1590 if (replaceNode(key, newValue, oldValue) != null ||
1591 (oldValue = get(key)) == null)
1592 break;
1593 }
1594 }
1595 }
1596 }
1597
1598 /**
1599 * Helper method for EntrySetView.removeIf.
1600 */
1601 boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1602 if (function == null) throw new NullPointerException();
1603 Node<K,V>[] t;
1604 boolean removed = false;
1605 if ((t = table) != null) {
1606 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1607 for (Node<K,V> p; (p = it.advance()) != null; ) {
1608 K k = p.key;
1609 V v = p.val;
1610 Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1611 if (function.test(e) && replaceNode(k, null, v) != null)
1612 removed = true;
1613 }
1614 }
1615 return removed;
1616 }
1617
1618 /**
1619 * Helper method for ValuesView.removeIf.
1620 */
1621 boolean removeValueIf(Predicate<? super V> function) {
1622 if (function == null) throw new NullPointerException();
1623 Node<K,V>[] t;
1624 boolean removed = false;
1625 if ((t = table) != null) {
1626 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1627 for (Node<K,V> p; (p = it.advance()) != null; ) {
1628 K k = p.key;
1629 V v = p.val;
1630 if (function.test(v) && replaceNode(k, null, v) != null)
1631 removed = true;
1632 }
1633 }
1634 return removed;
1635 }
1636
1637 /**
1638 * If the specified key is not already associated with a value,
1639 * attempts to compute its value using the given mapping function
1640 * and enters it into this map unless {@code null}. The entire
1641 * method invocation is performed atomically, so the function is
1642 * applied at most once per key. Some attempted update operations
1643 * on this map by other threads may be blocked while computation
1644 * is in progress, so the computation should be short and simple,
1645 * and must not attempt to update any other mappings of this map.
1646 *
1647 * @param key key with which the specified value is to be associated
1648 * @param mappingFunction the function to compute a value
1649 * @return the current (existing or computed) value associated with
1650 * the specified key, or null if the computed value is null
1651 * @throws NullPointerException if the specified key or mappingFunction
1652 * is null
1653 * @throws IllegalStateException if the computation detectably
1654 * attempts a recursive update to this map that would
1655 * otherwise never complete
1656 * @throws RuntimeException or Error if the mappingFunction does so,
1657 * in which case the mapping is left unestablished
1658 */
1659 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1660 if (key == null || mappingFunction == null)
1661 throw new NullPointerException();
1662 int h = spread(key.hashCode());
1663 V val = null;
1664 int binCount = 0;
1665 for (Node<K,V>[] tab = table;;) {
1666 Node<K,V> f; int n, i, fh; K fk; V fv;
1667 if (tab == null || (n = tab.length) == 0)
1668 tab = initTable();
1669 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1670 Node<K,V> r = new ReservationNode<K,V>();
1671 synchronized (r) {
1672 if (casTabAt(tab, i, null, r)) {
1673 binCount = 1;
1674 Node<K,V> node = null;
1675 try {
1676 if ((val = mappingFunction.apply(key)) != null)
1677 node = new Node<K,V>(h, key, val);
1678 } finally {
1679 setTabAt(tab, i, node);
1680 }
1681 }
1682 }
1683 if (binCount != 0)
1684 break;
1685 }
1686 else if ((fh = f.hash) == MOVED)
1687 tab = helpTransfer(tab, f);
1688 else if (fh == h // check first node without acquiring lock
1689 && ((fk = f.key) == key || (fk != null && key.equals(fk)))
1690 && (fv = f.val) != null)
1691 return fv;
1692 else {
1693 boolean added = false;
1694 synchronized (f) {
1695 if (tabAt(tab, i) == f) {
1696 if (fh >= 0) {
1697 binCount = 1;
1698 for (Node<K,V> e = f;; ++binCount) {
1699 K ek;
1700 if (e.hash == h &&
1701 ((ek = e.key) == key ||
1702 (ek != null && key.equals(ek)))) {
1703 val = e.val;
1704 break;
1705 }
1706 Node<K,V> pred = e;
1707 if ((e = e.next) == null) {
1708 if ((val = mappingFunction.apply(key)) != null) {
1709 if (pred.next != null)
1710 throw new IllegalStateException("Recursive update");
1711 added = true;
1712 pred.next = new Node<K,V>(h, key, val);
1713 }
1714 break;
1715 }
1716 }
1717 }
1718 else if (f instanceof TreeBin) {
1719 binCount = 2;
1720 TreeBin<K,V> t = (TreeBin<K,V>)f;
1721 TreeNode<K,V> r, p;
1722 if ((r = t.root) != null &&
1723 (p = r.findTreeNode(h, key, null)) != null)
1724 val = p.val;
1725 else if ((val = mappingFunction.apply(key)) != null) {
1726 added = true;
1727 t.putTreeVal(h, key, val);
1728 }
1729 }
1730 else if (f instanceof ReservationNode)
1731 throw new IllegalStateException("Recursive update");
1732 }
1733 }
1734 if (binCount != 0) {
1735 if (binCount >= TREEIFY_THRESHOLD)
1736 treeifyBin(tab, i);
1737 if (!added)
1738 return val;
1739 break;
1740 }
1741 }
1742 }
1743 if (val != null)
1744 addCount(1L, binCount);
1745 return val;
1746 }
1747
1748 /**
1749 * If the value for the specified key is present, attempts to
1750 * compute a new mapping given the key and its current mapped
1751 * value. The entire method invocation is performed atomically.
1752 * Some attempted update operations on this map by other threads
1753 * may be blocked while computation is in progress, so the
1754 * computation should be short and simple, and must not attempt to
1755 * update any other mappings of this map.
1756 *
1757 * @param key key with which a value may be associated
1758 * @param remappingFunction the function to compute a value
1759 * @return the new value associated with the specified key, or null if none
1760 * @throws NullPointerException if the specified key or remappingFunction
1761 * is null
1762 * @throws IllegalStateException if the computation detectably
1763 * attempts a recursive update to this map that would
1764 * otherwise never complete
1765 * @throws RuntimeException or Error if the remappingFunction does so,
1766 * in which case the mapping is unchanged
1767 */
1768 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1769 if (key == null || remappingFunction == null)
1770 throw new NullPointerException();
1771 int h = spread(key.hashCode());
1772 V val = null;
1773 int delta = 0;
1774 int binCount = 0;
1775 for (Node<K,V>[] tab = table;;) {
1776 Node<K,V> f; int n, i, fh;
1777 if (tab == null || (n = tab.length) == 0)
1778 tab = initTable();
1779 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1780 break;
1781 else if ((fh = f.hash) == MOVED)
1782 tab = helpTransfer(tab, f);
1783 else {
1784 synchronized (f) {
1785 if (tabAt(tab, i) == f) {
1786 if (fh >= 0) {
1787 binCount = 1;
1788 for (Node<K,V> e = f, pred = null;; ++binCount) {
1789 K ek;
1790 if (e.hash == h &&
1791 ((ek = e.key) == key ||
1792 (ek != null && key.equals(ek)))) {
1793 val = remappingFunction.apply(key, e.val);
1794 if (val != null)
1795 e.val = val;
1796 else {
1797 delta = -1;
1798 Node<K,V> en = e.next;
1799 if (pred != null)
1800 pred.next = en;
1801 else
1802 setTabAt(tab, i, en);
1803 }
1804 break;
1805 }
1806 pred = e;
1807 if ((e = e.next) == null)
1808 break;
1809 }
1810 }
1811 else if (f instanceof TreeBin) {
1812 binCount = 2;
1813 TreeBin<K,V> t = (TreeBin<K,V>)f;
1814 TreeNode<K,V> r, p;
1815 if ((r = t.root) != null &&
1816 (p = r.findTreeNode(h, key, null)) != null) {
1817 val = remappingFunction.apply(key, p.val);
1818 if (val != null)
1819 p.val = val;
1820 else {
1821 delta = -1;
1822 if (t.removeTreeNode(p))
1823 setTabAt(tab, i, untreeify(t.first));
1824 }
1825 }
1826 }
1827 else if (f instanceof ReservationNode)
1828 throw new IllegalStateException("Recursive update");
1829 }
1830 }
1831 if (binCount != 0)
1832 break;
1833 }
1834 }
1835 if (delta != 0)
1836 addCount((long)delta, binCount);
1837 return val;
1838 }
1839
1840 /**
1841 * Attempts to compute a mapping for the specified key and its
1842 * current mapped value (or {@code null} if there is no current
1843 * mapping). The entire method invocation is performed atomically.
1844 * Some attempted update operations on this map by other threads
1845 * may be blocked while computation is in progress, so the
1846 * computation should be short and simple, and must not attempt to
1847 * update any other mappings of this Map.
1848 *
1849 * @param key key with which the specified value is to be associated
1850 * @param remappingFunction the function to compute a value
1851 * @return the new value associated with the specified key, or null if none
1852 * @throws NullPointerException if the specified key or remappingFunction
1853 * is null
1854 * @throws IllegalStateException if the computation detectably
1855 * attempts a recursive update to this map that would
1856 * otherwise never complete
1857 * @throws RuntimeException or Error if the remappingFunction does so,
1858 * in which case the mapping is unchanged
1859 */
1860 public V compute(K key,
1861 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1862 if (key == null || remappingFunction == null)
1863 throw new NullPointerException();
1864 int h = spread(key.hashCode());
1865 V val = null;
1866 int delta = 0;
1867 int binCount = 0;
1868 for (Node<K,V>[] tab = table;;) {
1869 Node<K,V> f; int n, i, fh;
1870 if (tab == null || (n = tab.length) == 0)
1871 tab = initTable();
1872 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1873 Node<K,V> r = new ReservationNode<K,V>();
1874 synchronized (r) {
1875 if (casTabAt(tab, i, null, r)) {
1876 binCount = 1;
1877 Node<K,V> node = null;
1878 try {
1879 if ((val = remappingFunction.apply(key, null)) != null) {
1880 delta = 1;
1881 node = new Node<K,V>(h, key, val);
1882 }
1883 } finally {
1884 setTabAt(tab, i, node);
1885 }
1886 }
1887 }
1888 if (binCount != 0)
1889 break;
1890 }
1891 else if ((fh = f.hash) == MOVED)
1892 tab = helpTransfer(tab, f);
1893 else {
1894 synchronized (f) {
1895 if (tabAt(tab, i) == f) {
1896 if (fh >= 0) {
1897 binCount = 1;
1898 for (Node<K,V> e = f, pred = null;; ++binCount) {
1899 K ek;
1900 if (e.hash == h &&
1901 ((ek = e.key) == key ||
1902 (ek != null && key.equals(ek)))) {
1903 val = remappingFunction.apply(key, e.val);
1904 if (val != null)
1905 e.val = val;
1906 else {
1907 delta = -1;
1908 Node<K,V> en = e.next;
1909 if (pred != null)
1910 pred.next = en;
1911 else
1912 setTabAt(tab, i, en);
1913 }
1914 break;
1915 }
1916 pred = e;
1917 if ((e = e.next) == null) {
1918 val = remappingFunction.apply(key, null);
1919 if (val != null) {
1920 if (pred.next != null)
1921 throw new IllegalStateException("Recursive update");
1922 delta = 1;
1923 pred.next = new Node<K,V>(h, key, val);
1924 }
1925 break;
1926 }
1927 }
1928 }
1929 else if (f instanceof TreeBin) {
1930 binCount = 1;
1931 TreeBin<K,V> t = (TreeBin<K,V>)f;
1932 TreeNode<K,V> r, p;
1933 if ((r = t.root) != null)
1934 p = r.findTreeNode(h, key, null);
1935 else
1936 p = null;
1937 V pv = (p == null) ? null : p.val;
1938 val = remappingFunction.apply(key, pv);
1939 if (val != null) {
1940 if (p != null)
1941 p.val = val;
1942 else {
1943 delta = 1;
1944 t.putTreeVal(h, key, val);
1945 }
1946 }
1947 else if (p != null) {
1948 delta = -1;
1949 if (t.removeTreeNode(p))
1950 setTabAt(tab, i, untreeify(t.first));
1951 }
1952 }
1953 else if (f instanceof ReservationNode)
1954 throw new IllegalStateException("Recursive update");
1955 }
1956 }
1957 if (binCount != 0) {
1958 if (binCount >= TREEIFY_THRESHOLD)
1959 treeifyBin(tab, i);
1960 break;
1961 }
1962 }
1963 }
1964 if (delta != 0)
1965 addCount((long)delta, binCount);
1966 return val;
1967 }
1968
1969 /**
1970 * If the specified key is not already associated with a
1971 * (non-null) value, associates it with the given value.
1972 * Otherwise, replaces the value with the results of the given
1973 * remapping function, or removes if {@code null}. The entire
1974 * method invocation is performed atomically. Some attempted
1975 * update operations on this map by other threads may be blocked
1976 * while computation is in progress, so the computation should be
1977 * short and simple, and must not attempt to update any other
1978 * mappings of this Map.
1979 *
1980 * @param key key with which the specified value is to be associated
1981 * @param value the value to use if absent
1982 * @param remappingFunction the function to recompute a value if present
1983 * @return the new value associated with the specified key, or null if none
1984 * @throws NullPointerException if the specified key or the
1985 * remappingFunction is null
1986 * @throws RuntimeException or Error if the remappingFunction does so,
1987 * in which case the mapping is unchanged
1988 */
1989 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1990 if (key == null || value == null || remappingFunction == null)
1991 throw new NullPointerException();
1992 int h = spread(key.hashCode());
1993 V val = null;
1994 int delta = 0;
1995 int binCount = 0;
1996 for (Node<K,V>[] tab = table;;) {
1997 Node<K,V> f; int n, i, fh;
1998 if (tab == null || (n = tab.length) == 0)
1999 tab = initTable();
2000 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
2001 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value))) {
2002 delta = 1;
2003 val = value;
2004 break;
2005 }
2006 }
2007 else if ((fh = f.hash) == MOVED)
2008 tab = helpTransfer(tab, f);
2009 else {
2010 synchronized (f) {
2011 if (tabAt(tab, i) == f) {
2012 if (fh >= 0) {
2013 binCount = 1;
2014 for (Node<K,V> e = f, pred = null;; ++binCount) {
2015 K ek;
2016 if (e.hash == h &&
2017 ((ek = e.key) == key ||
2018 (ek != null && key.equals(ek)))) {
2019 val = remappingFunction.apply(e.val, value);
2020 if (val != null)
2021 e.val = val;
2022 else {
2023 delta = -1;
2024 Node<K,V> en = e.next;
2025 if (pred != null)
2026 pred.next = en;
2027 else
2028 setTabAt(tab, i, en);
2029 }
2030 break;
2031 }
2032 pred = e;
2033 if ((e = e.next) == null) {
2034 delta = 1;
2035 val = value;
2036 pred.next = new Node<K,V>(h, key, val);
2037 break;
2038 }
2039 }
2040 }
2041 else if (f instanceof TreeBin) {
2042 binCount = 2;
2043 TreeBin<K,V> t = (TreeBin<K,V>)f;
2044 TreeNode<K,V> r = t.root;
2045 TreeNode<K,V> p = (r == null) ? null :
2046 r.findTreeNode(h, key, null);
2047 val = (p == null) ? value :
2048 remappingFunction.apply(p.val, value);
2049 if (val != null) {
2050 if (p != null)
2051 p.val = val;
2052 else {
2053 delta = 1;
2054 t.putTreeVal(h, key, val);
2055 }
2056 }
2057 else if (p != null) {
2058 delta = -1;
2059 if (t.removeTreeNode(p))
2060 setTabAt(tab, i, untreeify(t.first));
2061 }
2062 }
2063 else if (f instanceof ReservationNode)
2064 throw new IllegalStateException("Recursive update");
2065 }
2066 }
2067 if (binCount != 0) {
2068 if (binCount >= TREEIFY_THRESHOLD)
2069 treeifyBin(tab, i);
2070 break;
2071 }
2072 }
2073 }
2074 if (delta != 0)
2075 addCount((long)delta, binCount);
2076 return val;
2077 }
2078
2079 // Hashtable legacy methods
2080
2081 /**
2082 * Tests if some key maps into the specified value in this table.
2083 *
2084 * <p>Note that this method is identical in functionality to
2085 * {@link #containsValue(Object)}, and exists solely to ensure
2086 * full compatibility with class {@link java.util.Hashtable},
2087 * which supported this method prior to introduction of the
2088 * Java Collections Framework.
2089 *
2090 * @param value a value to search for
2091 * @return {@code true} if and only if some key maps to the
2092 * {@code value} argument in this table as
2093 * determined by the {@code equals} method;
2094 * {@code false} otherwise
2095 * @throws NullPointerException if the specified value is null
2096 */
2097 public boolean contains(Object value) {
2098 return containsValue(value);
2099 }
2100
2101 /**
2102 * Returns an enumeration of the keys in this table.
2103 *
2104 * @return an enumeration of the keys in this table
2105 * @see #keySet()
2106 */
2107 public Enumeration<K> keys() {
2108 Node<K,V>[] t;
2109 int f = (t = table) == null ? 0 : t.length;
2110 return new KeyIterator<K,V>(t, f, 0, f, this);
2111 }
2112
2113 /**
2114 * Returns an enumeration of the values in this table.
2115 *
2116 * @return an enumeration of the values in this table
2117 * @see #values()
2118 */
2119 public Enumeration<V> elements() {
2120 Node<K,V>[] t;
2121 int f = (t = table) == null ? 0 : t.length;
2122 return new ValueIterator<K,V>(t, f, 0, f, this);
2123 }
2124
2125 // ConcurrentHashMap-only methods
2126
2127 /**
2128 * Returns the number of mappings. This method should be used
2129 * instead of {@link #size} because a ConcurrentHashMap may
2130 * contain more mappings than can be represented as an int. The
2131 * value returned is an estimate; the actual count may differ if
2132 * there are concurrent insertions or removals.
2133 *
2134 * @return the number of mappings
2135 * @since 1.8
2136 */
2137 public long mappingCount() {
2138 long n = sumCount();
2139 return (n < 0L) ? 0L : n; // ignore transient negative values
2140 }
2141
2142 /**
2143 * Creates a new {@link Set} backed by a ConcurrentHashMap
2144 * from the given type to {@code Boolean.TRUE}.
2145 *
2146 * @param <K> the element type of the returned set
2147 * @return the new set
2148 * @since 1.8
2149 */
2150 public static <K> KeySetView<K,Boolean> newKeySet() {
2151 return new KeySetView<K,Boolean>
2152 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2153 }
2154
2155 /**
2156 * Creates a new {@link Set} backed by a ConcurrentHashMap
2157 * from the given type to {@code Boolean.TRUE}.
2158 *
2159 * @param initialCapacity The implementation performs internal
2160 * sizing to accommodate this many elements.
2161 * @param <K> the element type of the returned set
2162 * @return the new set
2163 * @throws IllegalArgumentException if the initial capacity of
2164 * elements is negative
2165 * @since 1.8
2166 */
2167 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2168 return new KeySetView<K,Boolean>
2169 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2170 }
2171
2172 /**
2173 * Returns a {@link Set} view of the keys in this map, using the
2174 * given common mapped value for any additions (i.e., {@link
2175 * Collection#add} and {@link Collection#addAll(Collection)}).
2176 * This is of course only appropriate if it is acceptable to use
2177 * the same value for all additions from this view.
2178 *
2179 * @param mappedValue the mapped value to use for any additions
2180 * @return the set view
2181 * @throws NullPointerException if the mappedValue is null
2182 */
2183 public KeySetView<K,V> keySet(V mappedValue) {
2184 if (mappedValue == null)
2185 throw new NullPointerException();
2186 return new KeySetView<K,V>(this, mappedValue);
2187 }
2188
2189 /* ---------------- Special Nodes -------------- */
2190
2191 /**
2192 * A node inserted at head of bins during transfer operations.
2193 */
2194 static final class ForwardingNode<K,V> extends Node<K,V> {
2195 final Node<K,V>[] nextTable;
2196 ForwardingNode(Node<K,V>[] tab) {
2197 super(MOVED, null, null);
2198 this.nextTable = tab;
2199 }
2200
2201 Node<K,V> find(int h, Object k) {
2202 // loop to avoid arbitrarily deep recursion on forwarding nodes
2203 outer: for (Node<K,V>[] tab = nextTable;;) {
2204 Node<K,V> e; int n;
2205 if (k == null || tab == null || (n = tab.length) == 0 ||
2206 (e = tabAt(tab, (n - 1) & h)) == null)
2207 return null;
2208 for (;;) {
2209 int eh; K ek;
2210 if ((eh = e.hash) == h &&
2211 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2212 return e;
2213 if (eh < 0) {
2214 if (e instanceof ForwardingNode) {
2215 tab = ((ForwardingNode<K,V>)e).nextTable;
2216 continue outer;
2217 }
2218 else
2219 return e.find(h, k);
2220 }
2221 if ((e = e.next) == null)
2222 return null;
2223 }
2224 }
2225 }
2226 }
2227
2228 /**
2229 * A place-holder node used in computeIfAbsent and compute.
2230 */
2231 static final class ReservationNode<K,V> extends Node<K,V> {
2232 ReservationNode() {
2233 super(RESERVED, null, null);
2234 }
2235
2236 Node<K,V> find(int h, Object k) {
2237 return null;
2238 }
2239 }
2240
2241 /* ---------------- Table Initialization and Resizing -------------- */
2242
2243 /**
2244 * Returns the stamp bits for resizing a table of size n.
2245 * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2246 */
2247 static final int resizeStamp(int n) {
2248 return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2249 }
2250
2251 /**
2252 * Initializes table, using the size recorded in sizeCtl.
2253 */
2254 private final Node<K,V>[] initTable() {
2255 Node<K,V>[] tab; int sc;
2256 while ((tab = table) == null || tab.length == 0) {
2257 if ((sc = sizeCtl) < 0)
2258 Thread.yield(); // lost initialization race; just spin
2259 else if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2260 try {
2261 if ((tab = table) == null || tab.length == 0) {
2262 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2263 @SuppressWarnings("unchecked")
2264 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2265 table = tab = nt;
2266 sc = n - (n >>> 2);
2267 }
2268 } finally {
2269 sizeCtl = sc;
2270 }
2271 break;
2272 }
2273 }
2274 return tab;
2275 }
2276
2277 /**
2278 * Adds to count, and if table is too small and not already
2279 * resizing, initiates transfer. If already resizing, helps
2280 * perform transfer if work is available. Rechecks occupancy
2281 * after a transfer to see if another resize is already needed
2282 * because resizings are lagging additions.
2283 *
2284 * @param x the count to add
2285 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2286 */
2287 private final void addCount(long x, int check) {
2288 CounterCell[] cs; long b, s;
2289 if ((cs = counterCells) != null ||
2290 !U.compareAndSetLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2291 CounterCell c; long v; int m;
2292 boolean uncontended = true;
2293 if (cs == null || (m = cs.length - 1) < 0 ||
2294 (c = cs[ThreadLocalRandom.getProbe() & m]) == null ||
2295 !(uncontended =
2296 U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))) {
2297 fullAddCount(x, uncontended);
2298 return;
2299 }
2300 if (check <= 1)
2301 return;
2302 s = sumCount();
2303 }
2304 if (check >= 0) {
2305 Node<K,V>[] tab, nt; int n, sc;
2306 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2307 (n = tab.length) < MAXIMUM_CAPACITY) {
2308 int rs = resizeStamp(n) << RESIZE_STAMP_SHIFT;
2309 if (sc < 0) {
2310 if (sc == rs + MAX_RESIZERS || sc == rs + 1 ||
2311 (nt = nextTable) == null || transferIndex <= 0)
2312 break;
2313 if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1))
2314 transfer(tab, nt);
2315 }
2316 else if (U.compareAndSetInt(this, SIZECTL, sc, rs + 2))
2317 transfer(tab, null);
2318 s = sumCount();
2319 }
2320 }
2321 }
2322
2323 /**
2324 * Helps transfer if a resize is in progress.
2325 */
2326 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2327 Node<K,V>[] nextTab; int sc;
2328 if (tab != null && (f instanceof ForwardingNode) &&
2329 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2330 int rs = resizeStamp(tab.length) << RESIZE_STAMP_SHIFT;
2331 while (nextTab == nextTable && table == tab &&
2332 (sc = sizeCtl) < 0) {
2333 if (sc == rs + MAX_RESIZERS || sc == rs + 1 ||
2334 transferIndex <= 0)
2335 break;
2336 if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1)) {
2337 transfer(tab, nextTab);
2338 break;
2339 }
2340 }
2341 return nextTab;
2342 }
2343 return table;
2344 }
2345
2346 /**
2347 * Tries to presize table to accommodate the given number of elements.
2348 *
2349 * @param size number of elements (doesn't need to be perfectly accurate)
2350 */
2351 private final void tryPresize(int size) {
2352 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2353 tableSizeFor(size + (size >>> 1) + 1);
2354 int sc;
2355 while ((sc = sizeCtl) >= 0) {
2356 Node<K,V>[] tab = table; int n;
2357 if (tab == null || (n = tab.length) == 0) {
2358 n = (sc > c) ? sc : c;
2359 if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2360 try {
2361 if (table == tab) {
2362 @SuppressWarnings("unchecked")
2363 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2364 table = nt;
2365 sc = n - (n >>> 2);
2366 }
2367 } finally {
2368 sizeCtl = sc;
2369 }
2370 }
2371 }
2372 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2373 break;
2374 else if (tab == table) {
2375 int rs = resizeStamp(n);
2376 if (U.compareAndSetInt(this, SIZECTL, sc,
2377 (rs << RESIZE_STAMP_SHIFT) + 2))
2378 transfer(tab, null);
2379 }
2380 }
2381 }
2382
2383 /**
2384 * Moves and/or copies the nodes in each bin to new table. See
2385 * above for explanation.
2386 */
2387 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2388 int n = tab.length, stride;
2389 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2390 stride = MIN_TRANSFER_STRIDE; // subdivide range
2391 if (nextTab == null) { // initiating
2392 try {
2393 @SuppressWarnings("unchecked")
2394 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2395 nextTab = nt;
2396 } catch (Throwable ex) { // try to cope with OOME
2397 sizeCtl = Integer.MAX_VALUE;
2398 return;
2399 }
2400 nextTable = nextTab;
2401 transferIndex = n;
2402 }
2403 int nextn = nextTab.length;
2404 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2405 boolean advance = true;
2406 boolean finishing = false; // to ensure sweep before committing nextTab
2407 for (int i = 0, bound = 0;;) {
2408 Node<K,V> f; int fh;
2409 while (advance) {
2410 int nextIndex, nextBound;
2411 if (--i >= bound || finishing)
2412 advance = false;
2413 else if ((nextIndex = transferIndex) <= 0) {
2414 i = -1;
2415 advance = false;
2416 }
2417 else if (U.compareAndSetInt
2418 (this, TRANSFERINDEX, nextIndex,
2419 nextBound = (nextIndex > stride ?
2420 nextIndex - stride : 0))) {
2421 bound = nextBound;
2422 i = nextIndex - 1;
2423 advance = false;
2424 }
2425 }
2426 if (i < 0 || i >= n || i + n >= nextn) {
2427 int sc;
2428 if (finishing) {
2429 nextTable = null;
2430 table = nextTab;
2431 sizeCtl = (n << 1) - (n >>> 1);
2432 return;
2433 }
2434 if (U.compareAndSetInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2435 if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2436 return;
2437 finishing = advance = true;
2438 i = n; // recheck before commit
2439 }
2440 }
2441 else if ((f = tabAt(tab, i)) == null)
2442 advance = casTabAt(tab, i, null, fwd);
2443 else if ((fh = f.hash) == MOVED)
2444 advance = true; // already processed
2445 else {
2446 synchronized (f) {
2447 if (tabAt(tab, i) == f) {
2448 Node<K,V> ln, hn;
2449 if (fh >= 0) {
2450 int runBit = fh & n;
2451 Node<K,V> lastRun = f;
2452 for (Node<K,V> p = f.next; p != null; p = p.next) {
2453 int b = p.hash & n;
2454 if (b != runBit) {
2455 runBit = b;
2456 lastRun = p;
2457 }
2458 }
2459 if (runBit == 0) {
2460 ln = lastRun;
2461 hn = null;
2462 }
2463 else {
2464 hn = lastRun;
2465 ln = null;
2466 }
2467 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2468 int ph = p.hash; K pk = p.key; V pv = p.val;
2469 if ((ph & n) == 0)
2470 ln = new Node<K,V>(ph, pk, pv, ln);
2471 else
2472 hn = new Node<K,V>(ph, pk, pv, hn);
2473 }
2474 setTabAt(nextTab, i, ln);
2475 setTabAt(nextTab, i + n, hn);
2476 setTabAt(tab, i, fwd);
2477 advance = true;
2478 }
2479 else if (f instanceof TreeBin) {
2480 TreeBin<K,V> t = (TreeBin<K,V>)f;
2481 TreeNode<K,V> lo = null, loTail = null;
2482 TreeNode<K,V> hi = null, hiTail = null;
2483 int lc = 0, hc = 0;
2484 for (Node<K,V> e = t.first; e != null; e = e.next) {
2485 int h = e.hash;
2486 TreeNode<K,V> p = new TreeNode<K,V>
2487 (h, e.key, e.val, null, null);
2488 if ((h & n) == 0) {
2489 if ((p.prev = loTail) == null)
2490 lo = p;
2491 else
2492 loTail.next = p;
2493 loTail = p;
2494 ++lc;
2495 }
2496 else {
2497 if ((p.prev = hiTail) == null)
2498 hi = p;
2499 else
2500 hiTail.next = p;
2501 hiTail = p;
2502 ++hc;
2503 }
2504 }
2505 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2506 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2507 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2508 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2509 setTabAt(nextTab, i, ln);
2510 setTabAt(nextTab, i + n, hn);
2511 setTabAt(tab, i, fwd);
2512 advance = true;
2513 }
2514 else if (f instanceof ReservationNode)
2515 throw new IllegalStateException("Recursive update");
2516 }
2517 }
2518 }
2519 }
2520 }
2521
2522 /* ---------------- Counter support -------------- */
2523
2524 /**
2525 * A padded cell for distributing counts. Adapted from LongAdder
2526 * and Striped64. See their internal docs for explanation.
2527 */
2528 @jdk.internal.vm.annotation.Contended static final class CounterCell {
2529 volatile long value;
2530 CounterCell(long x) { value = x; }
2531 }
2532
2533 final long sumCount() {
2534 CounterCell[] cs = counterCells;
2535 long sum = baseCount;
2536 if (cs != null) {
2537 for (CounterCell c : cs)
2538 if (c != null)
2539 sum += c.value;
2540 }
2541 return sum;
2542 }
2543
2544 // See LongAdder version for explanation
2545 private final void fullAddCount(long x, boolean wasUncontended) {
2546 int h;
2547 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2548 ThreadLocalRandom.localInit(); // force initialization
2549 h = ThreadLocalRandom.getProbe();
2550 wasUncontended = true;
2551 }
2552 boolean collide = false; // True if last slot nonempty
2553 for (;;) {
2554 CounterCell[] cs; CounterCell c; int n; long v;
2555 if ((cs = counterCells) != null && (n = cs.length) > 0) {
2556 if ((c = cs[(n - 1) & h]) == null) {
2557 if (cellsBusy == 0) { // Try to attach new Cell
2558 CounterCell r = new CounterCell(x); // Optimistic create
2559 if (cellsBusy == 0 &&
2560 U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2561 boolean created = false;
2562 try { // Recheck under lock
2563 CounterCell[] rs; int m, j;
2564 if ((rs = counterCells) != null &&
2565 (m = rs.length) > 0 &&
2566 rs[j = (m - 1) & h] == null) {
2567 rs[j] = r;
2568 created = true;
2569 }
2570 } finally {
2571 cellsBusy = 0;
2572 }
2573 if (created)
2574 break;
2575 continue; // Slot is now non-empty
2576 }
2577 }
2578 collide = false;
2579 }
2580 else if (!wasUncontended) // CAS already known to fail
2581 wasUncontended = true; // Continue after rehash
2582 else if (U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))
2583 break;
2584 else if (counterCells != cs || n >= NCPU)
2585 collide = false; // At max size or stale
2586 else if (!collide)
2587 collide = true;
2588 else if (cellsBusy == 0 &&
2589 U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2590 try {
2591 if (counterCells == cs) // Expand table unless stale
2592 counterCells = Arrays.copyOf(cs, n << 1);
2593 } finally {
2594 cellsBusy = 0;
2595 }
2596 collide = false;
2597 continue; // Retry with expanded table
2598 }
2599 h = ThreadLocalRandom.advanceProbe(h);
2600 }
2601 else if (cellsBusy == 0 && counterCells == cs &&
2602 U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2603 boolean init = false;
2604 try { // Initialize table
2605 if (counterCells == cs) {
2606 CounterCell[] rs = new CounterCell[2];
2607 rs[h & 1] = new CounterCell(x);
2608 counterCells = rs;
2609 init = true;
2610 }
2611 } finally {
2612 cellsBusy = 0;
2613 }
2614 if (init)
2615 break;
2616 }
2617 else if (U.compareAndSetLong(this, BASECOUNT, v = baseCount, v + x))
2618 break; // Fall back on using base
2619 }
2620 }
2621
2622 /* ---------------- Conversion from/to TreeBins -------------- */
2623
2624 /**
2625 * Replaces all linked nodes in bin at given index unless table is
2626 * too small, in which case resizes instead.
2627 */
2628 private final void treeifyBin(Node<K,V>[] tab, int index) {
2629 Node<K,V> b; int n;
2630 if (tab != null) {
2631 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2632 tryPresize(n << 1);
2633 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2634 synchronized (b) {
2635 if (tabAt(tab, index) == b) {
2636 TreeNode<K,V> hd = null, tl = null;
2637 for (Node<K,V> e = b; e != null; e = e.next) {
2638 TreeNode<K,V> p =
2639 new TreeNode<K,V>(e.hash, e.key, e.val,
2640 null, null);
2641 if ((p.prev = tl) == null)
2642 hd = p;
2643 else
2644 tl.next = p;
2645 tl = p;
2646 }
2647 setTabAt(tab, index, new TreeBin<K,V>(hd));
2648 }
2649 }
2650 }
2651 }
2652 }
2653
2654 /**
2655 * Returns a list of non-TreeNodes replacing those in given list.
2656 */
2657 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2658 Node<K,V> hd = null, tl = null;
2659 for (Node<K,V> q = b; q != null; q = q.next) {
2660 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val);
2661 if (tl == null)
2662 hd = p;
2663 else
2664 tl.next = p;
2665 tl = p;
2666 }
2667 return hd;
2668 }
2669
2670 /* ---------------- TreeNodes -------------- */
2671
2672 /**
2673 * Nodes for use in TreeBins.
2674 */
2675 static final class TreeNode<K,V> extends Node<K,V> {
2676 TreeNode<K,V> parent; // red-black tree links
2677 TreeNode<K,V> left;
2678 TreeNode<K,V> right;
2679 TreeNode<K,V> prev; // needed to unlink next upon deletion
2680 boolean red;
2681
2682 TreeNode(int hash, K key, V val, Node<K,V> next,
2683 TreeNode<K,V> parent) {
2684 super(hash, key, val, next);
2685 this.parent = parent;
2686 }
2687
2688 Node<K,V> find(int h, Object k) {
2689 return findTreeNode(h, k, null);
2690 }
2691
2692 /**
2693 * Returns the TreeNode (or null if not found) for the given key
2694 * starting at given root.
2695 */
2696 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2697 if (k != null) {
2698 TreeNode<K,V> p = this;
2699 do {
2700 int ph, dir; K pk; TreeNode<K,V> q;
2701 TreeNode<K,V> pl = p.left, pr = p.right;
2702 if ((ph = p.hash) > h)
2703 p = pl;
2704 else if (ph < h)
2705 p = pr;
2706 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2707 return p;
2708 else if (pl == null)
2709 p = pr;
2710 else if (pr == null)
2711 p = pl;
2712 else if ((kc != null ||
2713 (kc = comparableClassFor(k)) != null) &&
2714 (dir = compareComparables(kc, k, pk)) != 0)
2715 p = (dir < 0) ? pl : pr;
2716 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2717 return q;
2718 else
2719 p = pl;
2720 } while (p != null);
2721 }
2722 return null;
2723 }
2724 }
2725
2726 /* ---------------- TreeBins -------------- */
2727
2728 /**
2729 * TreeNodes used at the heads of bins. TreeBins do not hold user
2730 * keys or values, but instead point to list of TreeNodes and
2731 * their root. They also maintain a parasitic read-write lock
2732 * forcing writers (who hold bin lock) to wait for readers (who do
2733 * not) to complete before tree restructuring operations.
2734 */
2735 static final class TreeBin<K,V> extends Node<K,V> {
2736 TreeNode<K,V> root;
2737 volatile TreeNode<K,V> first;
2738 volatile Thread waiter;
2739 volatile int lockState;
2740 // values for lockState
2741 static final int WRITER = 1; // set while holding write lock
2742 static final int WAITER = 2; // set when waiting for write lock
2743 static final int READER = 4; // increment value for setting read lock
2744
2745 /**
2746 * Tie-breaking utility for ordering insertions when equal
2747 * hashCodes and non-comparable. We don't require a total
2748 * order, just a consistent insertion rule to maintain
2749 * equivalence across rebalancings. Tie-breaking further than
2750 * necessary simplifies testing a bit.
2751 */
2752 static int tieBreakOrder(Object a, Object b) {
2753 int d;
2754 if (a == null || b == null ||
2755 (d = a.getClass().getName().
2756 compareTo(b.getClass().getName())) == 0)
2757 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2758 -1 : 1);
2759 return d;
2760 }
2761
2762 /**
2763 * Creates bin with initial set of nodes headed by b.
2764 */
2765 TreeBin(TreeNode<K,V> b) {
2766 super(TREEBIN, null, null);
2767 this.first = b;
2768 TreeNode<K,V> r = null;
2769 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2770 next = (TreeNode<K,V>)x.next;
2771 x.left = x.right = null;
2772 if (r == null) {
2773 x.parent = null;
2774 x.red = false;
2775 r = x;
2776 }
2777 else {
2778 K k = x.key;
2779 int h = x.hash;
2780 Class<?> kc = null;
2781 for (TreeNode<K,V> p = r;;) {
2782 int dir, ph;
2783 K pk = p.key;
2784 if ((ph = p.hash) > h)
2785 dir = -1;
2786 else if (ph < h)
2787 dir = 1;
2788 else if ((kc == null &&
2789 (kc = comparableClassFor(k)) == null) ||
2790 (dir = compareComparables(kc, k, pk)) == 0)
2791 dir = tieBreakOrder(k, pk);
2792 TreeNode<K,V> xp = p;
2793 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2794 x.parent = xp;
2795 if (dir <= 0)
2796 xp.left = x;
2797 else
2798 xp.right = x;
2799 r = balanceInsertion(r, x);
2800 break;
2801 }
2802 }
2803 }
2804 }
2805 this.root = r;
2806 assert checkInvariants(root);
2807 }
2808
2809 /**
2810 * Acquires write lock for tree restructuring.
2811 */
2812 private final void lockRoot() {
2813 if (!U.compareAndSetInt(this, LOCKSTATE, 0, WRITER))
2814 contendedLock(); // offload to separate method
2815 }
2816
2817 /**
2818 * Releases write lock for tree restructuring.
2819 */
2820 private final void unlockRoot() {
2821 lockState = 0;
2822 }
2823
2824 /**
2825 * Possibly blocks awaiting root lock.
2826 */
2827 private final void contendedLock() {
2828 boolean waiting = false;
2829 for (int s;;) {
2830 if (((s = lockState) & ~WAITER) == 0) {
2831 if (U.compareAndSetInt(this, LOCKSTATE, s, WRITER)) {
2832 if (waiting)
2833 waiter = null;
2834 return;
2835 }
2836 }
2837 else if ((s & WAITER) == 0) {
2838 if (U.compareAndSetInt(this, LOCKSTATE, s, s | WAITER)) {
2839 waiting = true;
2840 waiter = Thread.currentThread();
2841 }
2842 }
2843 else if (waiting)
2844 LockSupport.park(this);
2845 }
2846 }
2847
2848 /**
2849 * Returns matching node or null if none. Tries to search
2850 * using tree comparisons from root, but continues linear
2851 * search when lock not available.
2852 */
2853 final Node<K,V> find(int h, Object k) {
2854 if (k != null) {
2855 for (Node<K,V> e = first; e != null; ) {
2856 int s; K ek;
2857 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2858 if (e.hash == h &&
2859 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2860 return e;
2861 e = e.next;
2862 }
2863 else if (U.compareAndSetInt(this, LOCKSTATE, s,
2864 s + READER)) {
2865 TreeNode<K,V> r, p;
2866 try {
2867 p = ((r = root) == null ? null :
2868 r.findTreeNode(h, k, null));
2869 } finally {
2870 Thread w;
2871 if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2872 (READER|WAITER) && (w = waiter) != null)
2873 LockSupport.unpark(w);
2874 }
2875 return p;
2876 }
2877 }
2878 }
2879 return null;
2880 }
2881
2882 /**
2883 * Finds or adds a node.
2884 * @return null if added
2885 */
2886 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2887 Class<?> kc = null;
2888 boolean searched = false;
2889 for (TreeNode<K,V> p = root;;) {
2890 int dir, ph; K pk;
2891 if (p == null) {
2892 first = root = new TreeNode<K,V>(h, k, v, null, null);
2893 break;
2894 }
2895 else if ((ph = p.hash) > h)
2896 dir = -1;
2897 else if (ph < h)
2898 dir = 1;
2899 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2900 return p;
2901 else if ((kc == null &&
2902 (kc = comparableClassFor(k)) == null) ||
2903 (dir = compareComparables(kc, k, pk)) == 0) {
2904 if (!searched) {
2905 TreeNode<K,V> q, ch;
2906 searched = true;
2907 if (((ch = p.left) != null &&
2908 (q = ch.findTreeNode(h, k, kc)) != null) ||
2909 ((ch = p.right) != null &&
2910 (q = ch.findTreeNode(h, k, kc)) != null))
2911 return q;
2912 }
2913 dir = tieBreakOrder(k, pk);
2914 }
2915
2916 TreeNode<K,V> xp = p;
2917 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2918 TreeNode<K,V> x, f = first;
2919 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2920 if (f != null)
2921 f.prev = x;
2922 if (dir <= 0)
2923 xp.left = x;
2924 else
2925 xp.right = x;
2926 if (!xp.red)
2927 x.red = true;
2928 else {
2929 lockRoot();
2930 try {
2931 root = balanceInsertion(root, x);
2932 } finally {
2933 unlockRoot();
2934 }
2935 }
2936 break;
2937 }
2938 }
2939 assert checkInvariants(root);
2940 return null;
2941 }
2942
2943 /**
2944 * Removes the given node, that must be present before this
2945 * call. This is messier than typical red-black deletion code
2946 * because we cannot swap the contents of an interior node
2947 * with a leaf successor that is pinned by "next" pointers
2948 * that are accessible independently of lock. So instead we
2949 * swap the tree linkages.
2950 *
2951 * @return true if now too small, so should be untreeified
2952 */
2953 final boolean removeTreeNode(TreeNode<K,V> p) {
2954 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2955 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2956 TreeNode<K,V> r, rl;
2957 if (pred == null)
2958 first = next;
2959 else
2960 pred.next = next;
2961 if (next != null)
2962 next.prev = pred;
2963 if (first == null) {
2964 root = null;
2965 return true;
2966 }
2967 if ((r = root) == null || r.right == null || // too small
2968 (rl = r.left) == null || rl.left == null)
2969 return true;
2970 lockRoot();
2971 try {
2972 TreeNode<K,V> replacement;
2973 TreeNode<K,V> pl = p.left;
2974 TreeNode<K,V> pr = p.right;
2975 if (pl != null && pr != null) {
2976 TreeNode<K,V> s = pr, sl;
2977 while ((sl = s.left) != null) // find successor
2978 s = sl;
2979 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2980 TreeNode<K,V> sr = s.right;
2981 TreeNode<K,V> pp = p.parent;
2982 if (s == pr) { // p was s's direct parent
2983 p.parent = s;
2984 s.right = p;
2985 }
2986 else {
2987 TreeNode<K,V> sp = s.parent;
2988 if ((p.parent = sp) != null) {
2989 if (s == sp.left)
2990 sp.left = p;
2991 else
2992 sp.right = p;
2993 }
2994 if ((s.right = pr) != null)
2995 pr.parent = s;
2996 }
2997 p.left = null;
2998 if ((p.right = sr) != null)
2999 sr.parent = p;
3000 if ((s.left = pl) != null)
3001 pl.parent = s;
3002 if ((s.parent = pp) == null)
3003 r = s;
3004 else if (p == pp.left)
3005 pp.left = s;
3006 else
3007 pp.right = s;
3008 if (sr != null)
3009 replacement = sr;
3010 else
3011 replacement = p;
3012 }
3013 else if (pl != null)
3014 replacement = pl;
3015 else if (pr != null)
3016 replacement = pr;
3017 else
3018 replacement = p;
3019 if (replacement != p) {
3020 TreeNode<K,V> pp = replacement.parent = p.parent;
3021 if (pp == null)
3022 r = replacement;
3023 else if (p == pp.left)
3024 pp.left = replacement;
3025 else
3026 pp.right = replacement;
3027 p.left = p.right = p.parent = null;
3028 }
3029
3030 root = (p.red) ? r : balanceDeletion(r, replacement);
3031
3032 if (p == replacement) { // detach pointers
3033 TreeNode<K,V> pp;
3034 if ((pp = p.parent) != null) {
3035 if (p == pp.left)
3036 pp.left = null;
3037 else if (p == pp.right)
3038 pp.right = null;
3039 p.parent = null;
3040 }
3041 }
3042 } finally {
3043 unlockRoot();
3044 }
3045 assert checkInvariants(root);
3046 return false;
3047 }
3048
3049 /* ------------------------------------------------------------ */
3050 // Red-black tree methods, all adapted from CLR
3051
3052 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3053 TreeNode<K,V> p) {
3054 TreeNode<K,V> r, pp, rl;
3055 if (p != null && (r = p.right) != null) {
3056 if ((rl = p.right = r.left) != null)
3057 rl.parent = p;
3058 if ((pp = r.parent = p.parent) == null)
3059 (root = r).red = false;
3060 else if (pp.left == p)
3061 pp.left = r;
3062 else
3063 pp.right = r;
3064 r.left = p;
3065 p.parent = r;
3066 }
3067 return root;
3068 }
3069
3070 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3071 TreeNode<K,V> p) {
3072 TreeNode<K,V> l, pp, lr;
3073 if (p != null && (l = p.left) != null) {
3074 if ((lr = p.left = l.right) != null)
3075 lr.parent = p;
3076 if ((pp = l.parent = p.parent) == null)
3077 (root = l).red = false;
3078 else if (pp.right == p)
3079 pp.right = l;
3080 else
3081 pp.left = l;
3082 l.right = p;
3083 p.parent = l;
3084 }
3085 return root;
3086 }
3087
3088 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3089 TreeNode<K,V> x) {
3090 x.red = true;
3091 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3092 if ((xp = x.parent) == null) {
3093 x.red = false;
3094 return x;
3095 }
3096 else if (!xp.red || (xpp = xp.parent) == null)
3097 return root;
3098 if (xp == (xppl = xpp.left)) {
3099 if ((xppr = xpp.right) != null && xppr.red) {
3100 xppr.red = false;
3101 xp.red = false;
3102 xpp.red = true;
3103 x = xpp;
3104 }
3105 else {
3106 if (x == xp.right) {
3107 root = rotateLeft(root, x = xp);
3108 xpp = (xp = x.parent) == null ? null : xp.parent;
3109 }
3110 if (xp != null) {
3111 xp.red = false;
3112 if (xpp != null) {
3113 xpp.red = true;
3114 root = rotateRight(root, xpp);
3115 }
3116 }
3117 }
3118 }
3119 else {
3120 if (xppl != null && xppl.red) {
3121 xppl.red = false;
3122 xp.red = false;
3123 xpp.red = true;
3124 x = xpp;
3125 }
3126 else {
3127 if (x == xp.left) {
3128 root = rotateRight(root, x = xp);
3129 xpp = (xp = x.parent) == null ? null : xp.parent;
3130 }
3131 if (xp != null) {
3132 xp.red = false;
3133 if (xpp != null) {
3134 xpp.red = true;
3135 root = rotateLeft(root, xpp);
3136 }
3137 }
3138 }
3139 }
3140 }
3141 }
3142
3143 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3144 TreeNode<K,V> x) {
3145 for (TreeNode<K,V> xp, xpl, xpr;;) {
3146 if (x == null || x == root)
3147 return root;
3148 else if ((xp = x.parent) == null) {
3149 x.red = false;
3150 return x;
3151 }
3152 else if (x.red) {
3153 x.red = false;
3154 return root;
3155 }
3156 else if ((xpl = xp.left) == x) {
3157 if ((xpr = xp.right) != null && xpr.red) {
3158 xpr.red = false;
3159 xp.red = true;
3160 root = rotateLeft(root, xp);
3161 xpr = (xp = x.parent) == null ? null : xp.right;
3162 }
3163 if (xpr == null)
3164 x = xp;
3165 else {
3166 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3167 if ((sr == null || !sr.red) &&
3168 (sl == null || !sl.red)) {
3169 xpr.red = true;
3170 x = xp;
3171 }
3172 else {
3173 if (sr == null || !sr.red) {
3174 if (sl != null)
3175 sl.red = false;
3176 xpr.red = true;
3177 root = rotateRight(root, xpr);
3178 xpr = (xp = x.parent) == null ?
3179 null : xp.right;
3180 }
3181 if (xpr != null) {
3182 xpr.red = (xp == null) ? false : xp.red;
3183 if ((sr = xpr.right) != null)
3184 sr.red = false;
3185 }
3186 if (xp != null) {
3187 xp.red = false;
3188 root = rotateLeft(root, xp);
3189 }
3190 x = root;
3191 }
3192 }
3193 }
3194 else { // symmetric
3195 if (xpl != null && xpl.red) {
3196 xpl.red = false;
3197 xp.red = true;
3198 root = rotateRight(root, xp);
3199 xpl = (xp = x.parent) == null ? null : xp.left;
3200 }
3201 if (xpl == null)
3202 x = xp;
3203 else {
3204 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3205 if ((sl == null || !sl.red) &&
3206 (sr == null || !sr.red)) {
3207 xpl.red = true;
3208 x = xp;
3209 }
3210 else {
3211 if (sl == null || !sl.red) {
3212 if (sr != null)
3213 sr.red = false;
3214 xpl.red = true;
3215 root = rotateLeft(root, xpl);
3216 xpl = (xp = x.parent) == null ?
3217 null : xp.left;
3218 }
3219 if (xpl != null) {
3220 xpl.red = (xp == null) ? false : xp.red;
3221 if ((sl = xpl.left) != null)
3222 sl.red = false;
3223 }
3224 if (xp != null) {
3225 xp.red = false;
3226 root = rotateRight(root, xp);
3227 }
3228 x = root;
3229 }
3230 }
3231 }
3232 }
3233 }
3234
3235 /**
3236 * Checks invariants recursively for the tree of Nodes rooted at t.
3237 */
3238 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3239 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3240 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3241 if (tb != null && tb.next != t)
3242 return false;
3243 if (tn != null && tn.prev != t)
3244 return false;
3245 if (tp != null && t != tp.left && t != tp.right)
3246 return false;
3247 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3248 return false;
3249 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3250 return false;
3251 if (t.red && tl != null && tl.red && tr != null && tr.red)
3252 return false;
3253 if (tl != null && !checkInvariants(tl))
3254 return false;
3255 if (tr != null && !checkInvariants(tr))
3256 return false;
3257 return true;
3258 }
3259
3260 private static final long LOCKSTATE
3261 = U.objectFieldOffset(TreeBin.class, "lockState");
3262 }
3263
3264 /* ----------------Table Traversal -------------- */
3265
3266 /**
3267 * Records the table, its length, and current traversal index for a
3268 * traverser that must process a region of a forwarded table before
3269 * proceeding with current table.
3270 */
3271 static final class TableStack<K,V> {
3272 int length;
3273 int index;
3274 Node<K,V>[] tab;
3275 TableStack<K,V> next;
3276 }
3277
3278 /**
3279 * Encapsulates traversal for methods such as containsValue; also
3280 * serves as a base class for other iterators and spliterators.
3281 *
3282 * Method advance visits once each still-valid node that was
3283 * reachable upon iterator construction. It might miss some that
3284 * were added to a bin after the bin was visited, which is OK wrt
3285 * consistency guarantees. Maintaining this property in the face
3286 * of possible ongoing resizes requires a fair amount of
3287 * bookkeeping state that is difficult to optimize away amidst
3288 * volatile accesses. Even so, traversal maintains reasonable
3289 * throughput.
3290 *
3291 * Normally, iteration proceeds bin-by-bin traversing lists.
3292 * However, if the table has been resized, then all future steps
3293 * must traverse both the bin at the current index as well as at
3294 * (index + baseSize); and so on for further resizings. To
3295 * paranoically cope with potential sharing by users of iterators
3296 * across threads, iteration terminates if a bounds checks fails
3297 * for a table read.
3298 */
3299 static class Traverser<K,V> {
3300 Node<K,V>[] tab; // current table; updated if resized
3301 Node<K,V> next; // the next entry to use
3302 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3303 int index; // index of bin to use next
3304 int baseIndex; // current index of initial table
3305 int baseLimit; // index bound for initial table
3306 final int baseSize; // initial table size
3307
3308 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3309 this.tab = tab;
3310 this.baseSize = size;
3311 this.baseIndex = this.index = index;
3312 this.baseLimit = limit;
3313 this.next = null;
3314 }
3315
3316 /**
3317 * Advances if possible, returning next valid node, or null if none.
3318 */
3319 final Node<K,V> advance() {
3320 Node<K,V> e;
3321 if ((e = next) != null)
3322 e = e.next;
3323 for (;;) {
3324 Node<K,V>[] t; int i, n; // must use locals in checks
3325 if (e != null)
3326 return next = e;
3327 if (baseIndex >= baseLimit || (t = tab) == null ||
3328 (n = t.length) <= (i = index) || i < 0)
3329 return next = null;
3330 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3331 if (e instanceof ForwardingNode) {
3332 tab = ((ForwardingNode<K,V>)e).nextTable;
3333 e = null;
3334 pushState(t, i, n);
3335 continue;
3336 }
3337 else if (e instanceof TreeBin)
3338 e = ((TreeBin<K,V>)e).first;
3339 else
3340 e = null;
3341 }
3342 if (stack != null)
3343 recoverState(n);
3344 else if ((index = i + baseSize) >= n)
3345 index = ++baseIndex; // visit upper slots if present
3346 }
3347 }
3348
3349 /**
3350 * Saves traversal state upon encountering a forwarding node.
3351 */
3352 private void pushState(Node<K,V>[] t, int i, int n) {
3353 TableStack<K,V> s = spare; // reuse if possible
3354 if (s != null)
3355 spare = s.next;
3356 else
3357 s = new TableStack<K,V>();
3358 s.tab = t;
3359 s.length = n;
3360 s.index = i;
3361 s.next = stack;
3362 stack = s;
3363 }
3364
3365 /**
3366 * Possibly pops traversal state.
3367 *
3368 * @param n length of current table
3369 */
3370 private void recoverState(int n) {
3371 TableStack<K,V> s; int len;
3372 while ((s = stack) != null && (index += (len = s.length)) >= n) {
3373 n = len;
3374 index = s.index;
3375 tab = s.tab;
3376 s.tab = null;
3377 TableStack<K,V> next = s.next;
3378 s.next = spare; // save for reuse
3379 stack = next;
3380 spare = s;
3381 }
3382 if (s == null && (index += baseSize) >= n)
3383 index = ++baseIndex;
3384 }
3385 }
3386
3387 /**
3388 * Base of key, value, and entry Iterators. Adds fields to
3389 * Traverser to support iterator.remove.
3390 */
3391 static class BaseIterator<K,V> extends Traverser<K,V> {
3392 final ConcurrentHashMap<K,V> map;
3393 Node<K,V> lastReturned;
3394 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3395 ConcurrentHashMap<K,V> map) {
3396 super(tab, size, index, limit);
3397 this.map = map;
3398 advance();
3399 }
3400
3401 public final boolean hasNext() { return next != null; }
3402 public final boolean hasMoreElements() { return next != null; }
3403
3404 public final void remove() {
3405 Node<K,V> p;
3406 if ((p = lastReturned) == null)
3407 throw new IllegalStateException();
3408 lastReturned = null;
3409 map.replaceNode(p.key, null, null);
3410 }
3411 }
3412
3413 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3414 implements Iterator<K>, Enumeration<K> {
3415 KeyIterator(Node<K,V>[] tab, int size, int index, int limit,
3416 ConcurrentHashMap<K,V> map) {
3417 super(tab, size, index, limit, map);
3418 }
3419
3420 public final K next() {
3421 Node<K,V> p;
3422 if ((p = next) == null)
3423 throw new NoSuchElementException();
3424 K k = p.key;
3425 lastReturned = p;
3426 advance();
3427 return k;
3428 }
3429
3430 public final K nextElement() { return next(); }
3431 }
3432
3433 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3434 implements Iterator<V>, Enumeration<V> {
3435 ValueIterator(Node<K,V>[] tab, int size, int index, int limit,
3436 ConcurrentHashMap<K,V> map) {
3437 super(tab, size, index, limit, map);
3438 }
3439
3440 public final V next() {
3441 Node<K,V> p;
3442 if ((p = next) == null)
3443 throw new NoSuchElementException();
3444 V v = p.val;
3445 lastReturned = p;
3446 advance();
3447 return v;
3448 }
3449
3450 public final V nextElement() { return next(); }
3451 }
3452
3453 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3454 implements Iterator<Map.Entry<K,V>> {
3455 EntryIterator(Node<K,V>[] tab, int size, int index, int limit,
3456 ConcurrentHashMap<K,V> map) {
3457 super(tab, size, index, limit, map);
3458 }
3459
3460 public final Map.Entry<K,V> next() {
3461 Node<K,V> p;
3462 if ((p = next) == null)
3463 throw new NoSuchElementException();
3464 K k = p.key;
3465 V v = p.val;
3466 lastReturned = p;
3467 advance();
3468 return new MapEntry<K,V>(k, v, map);
3469 }
3470 }
3471
3472 /**
3473 * Exported Entry for EntryIterator.
3474 */
3475 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3476 final K key; // non-null
3477 V val; // non-null
3478 final ConcurrentHashMap<K,V> map;
3479 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3480 this.key = key;
3481 this.val = val;
3482 this.map = map;
3483 }
3484 public K getKey() { return key; }
3485 public V getValue() { return val; }
3486 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3487 public String toString() {
3488 return Helpers.mapEntryToString(key, val);
3489 }
3490
3491 public boolean equals(Object o) {
3492 Object k, v; Map.Entry<?,?> e;
3493 return ((o instanceof Map.Entry) &&
3494 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3495 (v = e.getValue()) != null &&
3496 (k == key || k.equals(key)) &&
3497 (v == val || v.equals(val)));
3498 }
3499
3500 /**
3501 * Sets our entry's value and writes through to the map. The
3502 * value to return is somewhat arbitrary here. Since we do not
3503 * necessarily track asynchronous changes, the most recent
3504 * "previous" value could be different from what we return (or
3505 * could even have been removed, in which case the put will
3506 * re-establish). We do not and cannot guarantee more.
3507 */
3508 public V setValue(V value) {
3509 if (value == null) throw new NullPointerException();
3510 V v = val;
3511 val = value;
3512 map.put(key, value);
3513 return v;
3514 }
3515 }
3516
3517 static final class KeySpliterator<K,V> extends Traverser<K,V>
3518 implements Spliterator<K> {
3519 long est; // size estimate
3520 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3521 long est) {
3522 super(tab, size, index, limit);
3523 this.est = est;
3524 }
3525
3526 public KeySpliterator<K,V> trySplit() {
3527 int i, f, h;
3528 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3529 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3530 f, est >>>= 1);
3531 }
3532
3533 public void forEachRemaining(Consumer<? super K> action) {
3534 if (action == null) throw new NullPointerException();
3535 for (Node<K,V> p; (p = advance()) != null;)
3536 action.accept(p.key);
3537 }
3538
3539 public boolean tryAdvance(Consumer<? super K> action) {
3540 if (action == null) throw new NullPointerException();
3541 Node<K,V> p;
3542 if ((p = advance()) == null)
3543 return false;
3544 action.accept(p.key);
3545 return true;
3546 }
3547
3548 public long estimateSize() { return est; }
3549
3550 public int characteristics() {
3551 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3552 Spliterator.NONNULL;
3553 }
3554 }
3555
3556 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3557 implements Spliterator<V> {
3558 long est; // size estimate
3559 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3560 long est) {
3561 super(tab, size, index, limit);
3562 this.est = est;
3563 }
3564
3565 public ValueSpliterator<K,V> trySplit() {
3566 int i, f, h;
3567 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3568 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3569 f, est >>>= 1);
3570 }
3571
3572 public void forEachRemaining(Consumer<? super V> action) {
3573 if (action == null) throw new NullPointerException();
3574 for (Node<K,V> p; (p = advance()) != null;)
3575 action.accept(p.val);
3576 }
3577
3578 public boolean tryAdvance(Consumer<? super V> action) {
3579 if (action == null) throw new NullPointerException();
3580 Node<K,V> p;
3581 if ((p = advance()) == null)
3582 return false;
3583 action.accept(p.val);
3584 return true;
3585 }
3586
3587 public long estimateSize() { return est; }
3588
3589 public int characteristics() {
3590 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3591 }
3592 }
3593
3594 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3595 implements Spliterator<Map.Entry<K,V>> {
3596 final ConcurrentHashMap<K,V> map; // To export MapEntry
3597 long est; // size estimate
3598 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3599 long est, ConcurrentHashMap<K,V> map) {
3600 super(tab, size, index, limit);
3601 this.map = map;
3602 this.est = est;
3603 }
3604
3605 public EntrySpliterator<K,V> trySplit() {
3606 int i, f, h;
3607 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3608 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3609 f, est >>>= 1, map);
3610 }
3611
3612 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3613 if (action == null) throw new NullPointerException();
3614 for (Node<K,V> p; (p = advance()) != null; )
3615 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3616 }
3617
3618 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3619 if (action == null) throw new NullPointerException();
3620 Node<K,V> p;
3621 if ((p = advance()) == null)
3622 return false;
3623 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3624 return true;
3625 }
3626
3627 public long estimateSize() { return est; }
3628
3629 public int characteristics() {
3630 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3631 Spliterator.NONNULL;
3632 }
3633 }
3634
3635 // Parallel bulk operations
3636
3637 /**
3638 * Computes initial batch value for bulk tasks. The returned value
3639 * is approximately exp2 of the number of times (minus one) to
3640 * split task by two before executing leaf action. This value is
3641 * faster to compute and more convenient to use as a guide to
3642 * splitting than is the depth, since it is used while dividing by
3643 * two anyway.
3644 */
3645 final int batchFor(long b) {
3646 long n;
3647 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3648 return 0;
3649 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3650 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3651 }
3652
3653 /**
3654 * Performs the given action for each (key, value).
3655 *
3656 * @param parallelismThreshold the (estimated) number of elements
3657 * needed for this operation to be executed in parallel
3658 * @param action the action
3659 * @since 1.8
3660 */
3661 public void forEach(long parallelismThreshold,
3662 BiConsumer<? super K,? super V> action) {
3663 if (action == null) throw new NullPointerException();
3664 new ForEachMappingTask<K,V>
3665 (null, batchFor(parallelismThreshold), 0, 0, table,
3666 action).invoke();
3667 }
3668
3669 /**
3670 * Performs the given action for each non-null transformation
3671 * of each (key, value).
3672 *
3673 * @param parallelismThreshold the (estimated) number of elements
3674 * needed for this operation to be executed in parallel
3675 * @param transformer a function returning the transformation
3676 * for an element, or null if there is no transformation (in
3677 * which case the action is not applied)
3678 * @param action the action
3679 * @param <U> the return type of the transformer
3680 * @since 1.8
3681 */
3682 public <U> void forEach(long parallelismThreshold,
3683 BiFunction<? super K, ? super V, ? extends U> transformer,
3684 Consumer<? super U> action) {
3685 if (transformer == null || action == null)
3686 throw new NullPointerException();
3687 new ForEachTransformedMappingTask<K,V,U>
3688 (null, batchFor(parallelismThreshold), 0, 0, table,
3689 transformer, action).invoke();
3690 }
3691
3692 /**
3693 * Returns a non-null result from applying the given search
3694 * function on each (key, value), or null if none. Upon
3695 * success, further element processing is suppressed and the
3696 * results of any other parallel invocations of the search
3697 * function are ignored.
3698 *
3699 * @param parallelismThreshold the (estimated) number of elements
3700 * needed for this operation to be executed in parallel
3701 * @param searchFunction a function returning a non-null
3702 * result on success, else null
3703 * @param <U> the return type of the search function
3704 * @return a non-null result from applying the given search
3705 * function on each (key, value), or null if none
3706 * @since 1.8
3707 */
3708 public <U> U search(long parallelismThreshold,
3709 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3710 if (searchFunction == null) throw new NullPointerException();
3711 return new SearchMappingsTask<K,V,U>
3712 (null, batchFor(parallelismThreshold), 0, 0, table,
3713 searchFunction, new AtomicReference<U>()).invoke();
3714 }
3715
3716 /**
3717 * Returns the result of accumulating the given transformation
3718 * of all (key, value) pairs using the given reducer to
3719 * combine values, or null if none.
3720 *
3721 * @param parallelismThreshold the (estimated) number of elements
3722 * needed for this operation to be executed in parallel
3723 * @param transformer a function returning the transformation
3724 * for an element, or null if there is no transformation (in
3725 * which case it is not combined)
3726 * @param reducer a commutative associative combining function
3727 * @param <U> the return type of the transformer
3728 * @return the result of accumulating the given transformation
3729 * of all (key, value) pairs
3730 * @since 1.8
3731 */
3732 public <U> U reduce(long parallelismThreshold,
3733 BiFunction<? super K, ? super V, ? extends U> transformer,
3734 BiFunction<? super U, ? super U, ? extends U> reducer) {
3735 if (transformer == null || reducer == null)
3736 throw new NullPointerException();
3737 return new MapReduceMappingsTask<K,V,U>
3738 (null, batchFor(parallelismThreshold), 0, 0, table,
3739 null, transformer, reducer).invoke();
3740 }
3741
3742 /**
3743 * Returns the result of accumulating the given transformation
3744 * of all (key, value) pairs using the given reducer to
3745 * combine values, and the given basis as an identity value.
3746 *
3747 * @param parallelismThreshold the (estimated) number of elements
3748 * needed for this operation to be executed in parallel
3749 * @param transformer a function returning the transformation
3750 * for an element
3751 * @param basis the identity (initial default value) for the reduction
3752 * @param reducer a commutative associative combining function
3753 * @return the result of accumulating the given transformation
3754 * of all (key, value) pairs
3755 * @since 1.8
3756 */
3757 public double reduceToDouble(long parallelismThreshold,
3758 ToDoubleBiFunction<? super K, ? super V> transformer,
3759 double basis,
3760 DoubleBinaryOperator reducer) {
3761 if (transformer == null || reducer == null)
3762 throw new NullPointerException();
3763 return new MapReduceMappingsToDoubleTask<K,V>
3764 (null, batchFor(parallelismThreshold), 0, 0, table,
3765 null, transformer, basis, reducer).invoke();
3766 }
3767
3768 /**
3769 * Returns the result of accumulating the given transformation
3770 * of all (key, value) pairs using the given reducer to
3771 * combine values, and the given basis as an identity value.
3772 *
3773 * @param parallelismThreshold the (estimated) number of elements
3774 * needed for this operation to be executed in parallel
3775 * @param transformer a function returning the transformation
3776 * for an element
3777 * @param basis the identity (initial default value) for the reduction
3778 * @param reducer a commutative associative combining function
3779 * @return the result of accumulating the given transformation
3780 * of all (key, value) pairs
3781 * @since 1.8
3782 */
3783 public long reduceToLong(long parallelismThreshold,
3784 ToLongBiFunction<? super K, ? super V> transformer,
3785 long basis,
3786 LongBinaryOperator reducer) {
3787 if (transformer == null || reducer == null)
3788 throw new NullPointerException();
3789 return new MapReduceMappingsToLongTask<K,V>
3790 (null, batchFor(parallelismThreshold), 0, 0, table,
3791 null, transformer, basis, reducer).invoke();
3792 }
3793
3794 /**
3795 * Returns the result of accumulating the given transformation
3796 * of all (key, value) pairs using the given reducer to
3797 * combine values, and the given basis as an identity value.
3798 *
3799 * @param parallelismThreshold the (estimated) number of elements
3800 * needed for this operation to be executed in parallel
3801 * @param transformer a function returning the transformation
3802 * for an element
3803 * @param basis the identity (initial default value) for the reduction
3804 * @param reducer a commutative associative combining function
3805 * @return the result of accumulating the given transformation
3806 * of all (key, value) pairs
3807 * @since 1.8
3808 */
3809 public int reduceToInt(long parallelismThreshold,
3810 ToIntBiFunction<? super K, ? super V> transformer,
3811 int basis,
3812 IntBinaryOperator reducer) {
3813 if (transformer == null || reducer == null)
3814 throw new NullPointerException();
3815 return new MapReduceMappingsToIntTask<K,V>
3816 (null, batchFor(parallelismThreshold), 0, 0, table,
3817 null, transformer, basis, reducer).invoke();
3818 }
3819
3820 /**
3821 * Performs the given action for each key.
3822 *
3823 * @param parallelismThreshold the (estimated) number of elements
3824 * needed for this operation to be executed in parallel
3825 * @param action the action
3826 * @since 1.8
3827 */
3828 public void forEachKey(long parallelismThreshold,
3829 Consumer<? super K> action) {
3830 if (action == null) throw new NullPointerException();
3831 new ForEachKeyTask<K,V>
3832 (null, batchFor(parallelismThreshold), 0, 0, table,
3833 action).invoke();
3834 }
3835
3836 /**
3837 * Performs the given action for each non-null transformation
3838 * of each key.
3839 *
3840 * @param parallelismThreshold the (estimated) number of elements
3841 * needed for this operation to be executed in parallel
3842 * @param transformer a function returning the transformation
3843 * for an element, or null if there is no transformation (in
3844 * which case the action is not applied)
3845 * @param action the action
3846 * @param <U> the return type of the transformer
3847 * @since 1.8
3848 */
3849 public <U> void forEachKey(long parallelismThreshold,
3850 Function<? super K, ? extends U> transformer,
3851 Consumer<? super U> action) {
3852 if (transformer == null || action == null)
3853 throw new NullPointerException();
3854 new ForEachTransformedKeyTask<K,V,U>
3855 (null, batchFor(parallelismThreshold), 0, 0, table,
3856 transformer, action).invoke();
3857 }
3858
3859 /**
3860 * Returns a non-null result from applying the given search
3861 * function on each key, or null if none. Upon success,
3862 * further element processing is suppressed and the results of
3863 * any other parallel invocations of the search function are
3864 * ignored.
3865 *
3866 * @param parallelismThreshold the (estimated) number of elements
3867 * needed for this operation to be executed in parallel
3868 * @param searchFunction a function returning a non-null
3869 * result on success, else null
3870 * @param <U> the return type of the search function
3871 * @return a non-null result from applying the given search
3872 * function on each key, or null if none
3873 * @since 1.8
3874 */
3875 public <U> U searchKeys(long parallelismThreshold,
3876 Function<? super K, ? extends U> searchFunction) {
3877 if (searchFunction == null) throw new NullPointerException();
3878 return new SearchKeysTask<K,V,U>
3879 (null, batchFor(parallelismThreshold), 0, 0, table,
3880 searchFunction, new AtomicReference<U>()).invoke();
3881 }
3882
3883 /**
3884 * Returns the result of accumulating all keys using the given
3885 * reducer to combine values, or null if none.
3886 *
3887 * @param parallelismThreshold the (estimated) number of elements
3888 * needed for this operation to be executed in parallel
3889 * @param reducer a commutative associative combining function
3890 * @return the result of accumulating all keys using the given
3891 * reducer to combine values, or null if none
3892 * @since 1.8
3893 */
3894 public K reduceKeys(long parallelismThreshold,
3895 BiFunction<? super K, ? super K, ? extends K> reducer) {
3896 if (reducer == null) throw new NullPointerException();
3897 return new ReduceKeysTask<K,V>
3898 (null, batchFor(parallelismThreshold), 0, 0, table,
3899 null, reducer).invoke();
3900 }
3901
3902 /**
3903 * Returns the result of accumulating the given transformation
3904 * of all keys using the given reducer to combine values, or
3905 * null if none.
3906 *
3907 * @param parallelismThreshold the (estimated) number of elements
3908 * needed for this operation to be executed in parallel
3909 * @param transformer a function returning the transformation
3910 * for an element, or null if there is no transformation (in
3911 * which case it is not combined)
3912 * @param reducer a commutative associative combining function
3913 * @param <U> the return type of the transformer
3914 * @return the result of accumulating the given transformation
3915 * of all keys
3916 * @since 1.8
3917 */
3918 public <U> U reduceKeys(long parallelismThreshold,
3919 Function<? super K, ? extends U> transformer,
3920 BiFunction<? super U, ? super U, ? extends U> reducer) {
3921 if (transformer == null || reducer == null)
3922 throw new NullPointerException();
3923 return new MapReduceKeysTask<K,V,U>
3924 (null, batchFor(parallelismThreshold), 0, 0, table,
3925 null, transformer, reducer).invoke();
3926 }
3927
3928 /**
3929 * Returns the result of accumulating the given transformation
3930 * of all keys using the given reducer to combine values, and
3931 * the given basis as an identity value.
3932 *
3933 * @param parallelismThreshold the (estimated) number of elements
3934 * needed for this operation to be executed in parallel
3935 * @param transformer a function returning the transformation
3936 * for an element
3937 * @param basis the identity (initial default value) for the reduction
3938 * @param reducer a commutative associative combining function
3939 * @return the result of accumulating the given transformation
3940 * of all keys
3941 * @since 1.8
3942 */
3943 public double reduceKeysToDouble(long parallelismThreshold,
3944 ToDoubleFunction<? super K> transformer,
3945 double basis,
3946 DoubleBinaryOperator reducer) {
3947 if (transformer == null || reducer == null)
3948 throw new NullPointerException();
3949 return new MapReduceKeysToDoubleTask<K,V>
3950 (null, batchFor(parallelismThreshold), 0, 0, table,
3951 null, transformer, basis, reducer).invoke();
3952 }
3953
3954 /**
3955 * Returns the result of accumulating the given transformation
3956 * of all keys using the given reducer to combine values, and
3957 * the given basis as an identity value.
3958 *
3959 * @param parallelismThreshold the (estimated) number of elements
3960 * needed for this operation to be executed in parallel
3961 * @param transformer a function returning the transformation
3962 * for an element
3963 * @param basis the identity (initial default value) for the reduction
3964 * @param reducer a commutative associative combining function
3965 * @return the result of accumulating the given transformation
3966 * of all keys
3967 * @since 1.8
3968 */
3969 public long reduceKeysToLong(long parallelismThreshold,
3970 ToLongFunction<? super K> transformer,
3971 long basis,
3972 LongBinaryOperator reducer) {
3973 if (transformer == null || reducer == null)
3974 throw new NullPointerException();
3975 return new MapReduceKeysToLongTask<K,V>
3976 (null, batchFor(parallelismThreshold), 0, 0, table,
3977 null, transformer, basis, reducer).invoke();
3978 }
3979
3980 /**
3981 * Returns the result of accumulating the given transformation
3982 * of all keys using the given reducer to combine values, and
3983 * the given basis as an identity value.
3984 *
3985 * @param parallelismThreshold the (estimated) number of elements
3986 * needed for this operation to be executed in parallel
3987 * @param transformer a function returning the transformation
3988 * for an element
3989 * @param basis the identity (initial default value) for the reduction
3990 * @param reducer a commutative associative combining function
3991 * @return the result of accumulating the given transformation
3992 * of all keys
3993 * @since 1.8
3994 */
3995 public int reduceKeysToInt(long parallelismThreshold,
3996 ToIntFunction<? super K> transformer,
3997 int basis,
3998 IntBinaryOperator reducer) {
3999 if (transformer == null || reducer == null)
4000 throw new NullPointerException();
4001 return new MapReduceKeysToIntTask<K,V>
4002 (null, batchFor(parallelismThreshold), 0, 0, table,
4003 null, transformer, basis, reducer).invoke();
4004 }
4005
4006 /**
4007 * Performs the given action for each value.
4008 *
4009 * @param parallelismThreshold the (estimated) number of elements
4010 * needed for this operation to be executed in parallel
4011 * @param action the action
4012 * @since 1.8
4013 */
4014 public void forEachValue(long parallelismThreshold,
4015 Consumer<? super V> action) {
4016 if (action == null)
4017 throw new NullPointerException();
4018 new ForEachValueTask<K,V>
4019 (null, batchFor(parallelismThreshold), 0, 0, table,
4020 action).invoke();
4021 }
4022
4023 /**
4024 * Performs the given action for each non-null transformation
4025 * of each value.
4026 *
4027 * @param parallelismThreshold the (estimated) number of elements
4028 * needed for this operation to be executed in parallel
4029 * @param transformer a function returning the transformation
4030 * for an element, or null if there is no transformation (in
4031 * which case the action is not applied)
4032 * @param action the action
4033 * @param <U> the return type of the transformer
4034 * @since 1.8
4035 */
4036 public <U> void forEachValue(long parallelismThreshold,
4037 Function<? super V, ? extends U> transformer,
4038 Consumer<? super U> action) {
4039 if (transformer == null || action == null)
4040 throw new NullPointerException();
4041 new ForEachTransformedValueTask<K,V,U>
4042 (null, batchFor(parallelismThreshold), 0, 0, table,
4043 transformer, action).invoke();
4044 }
4045
4046 /**
4047 * Returns a non-null result from applying the given search
4048 * function on each value, or null if none. Upon success,
4049 * further element processing is suppressed and the results of
4050 * any other parallel invocations of the search function are
4051 * ignored.
4052 *
4053 * @param parallelismThreshold the (estimated) number of elements
4054 * needed for this operation to be executed in parallel
4055 * @param searchFunction a function returning a non-null
4056 * result on success, else null
4057 * @param <U> the return type of the search function
4058 * @return a non-null result from applying the given search
4059 * function on each value, or null if none
4060 * @since 1.8
4061 */
4062 public <U> U searchValues(long parallelismThreshold,
4063 Function<? super V, ? extends U> searchFunction) {
4064 if (searchFunction == null) throw new NullPointerException();
4065 return new SearchValuesTask<K,V,U>
4066 (null, batchFor(parallelismThreshold), 0, 0, table,
4067 searchFunction, new AtomicReference<U>()).invoke();
4068 }
4069
4070 /**
4071 * Returns the result of accumulating all values using the
4072 * given reducer to combine values, or null if none.
4073 *
4074 * @param parallelismThreshold the (estimated) number of elements
4075 * needed for this operation to be executed in parallel
4076 * @param reducer a commutative associative combining function
4077 * @return the result of accumulating all values
4078 * @since 1.8
4079 */
4080 public V reduceValues(long parallelismThreshold,
4081 BiFunction<? super V, ? super V, ? extends V> reducer) {
4082 if (reducer == null) throw new NullPointerException();
4083 return new ReduceValuesTask<K,V>
4084 (null, batchFor(parallelismThreshold), 0, 0, table,
4085 null, reducer).invoke();
4086 }
4087
4088 /**
4089 * Returns the result of accumulating the given transformation
4090 * of all values using the given reducer to combine values, or
4091 * null if none.
4092 *
4093 * @param parallelismThreshold the (estimated) number of elements
4094 * needed for this operation to be executed in parallel
4095 * @param transformer a function returning the transformation
4096 * for an element, or null if there is no transformation (in
4097 * which case it is not combined)
4098 * @param reducer a commutative associative combining function
4099 * @param <U> the return type of the transformer
4100 * @return the result of accumulating the given transformation
4101 * of all values
4102 * @since 1.8
4103 */
4104 public <U> U reduceValues(long parallelismThreshold,
4105 Function<? super V, ? extends U> transformer,
4106 BiFunction<? super U, ? super U, ? extends U> reducer) {
4107 if (transformer == null || reducer == null)
4108 throw new NullPointerException();
4109 return new MapReduceValuesTask<K,V,U>
4110 (null, batchFor(parallelismThreshold), 0, 0, table,
4111 null, transformer, reducer).invoke();
4112 }
4113
4114 /**
4115 * Returns the result of accumulating the given transformation
4116 * of all values using the given reducer to combine values,
4117 * and the given basis as an identity value.
4118 *
4119 * @param parallelismThreshold the (estimated) number of elements
4120 * needed for this operation to be executed in parallel
4121 * @param transformer a function returning the transformation
4122 * for an element
4123 * @param basis the identity (initial default value) for the reduction
4124 * @param reducer a commutative associative combining function
4125 * @return the result of accumulating the given transformation
4126 * of all values
4127 * @since 1.8
4128 */
4129 public double reduceValuesToDouble(long parallelismThreshold,
4130 ToDoubleFunction<? super V> transformer,
4131 double basis,
4132 DoubleBinaryOperator reducer) {
4133 if (transformer == null || reducer == null)
4134 throw new NullPointerException();
4135 return new MapReduceValuesToDoubleTask<K,V>
4136 (null, batchFor(parallelismThreshold), 0, 0, table,
4137 null, transformer, basis, reducer).invoke();
4138 }
4139
4140 /**
4141 * Returns the result of accumulating the given transformation
4142 * of all values using the given reducer to combine values,
4143 * and the given basis as an identity value.
4144 *
4145 * @param parallelismThreshold the (estimated) number of elements
4146 * needed for this operation to be executed in parallel
4147 * @param transformer a function returning the transformation
4148 * for an element
4149 * @param basis the identity (initial default value) for the reduction
4150 * @param reducer a commutative associative combining function
4151 * @return the result of accumulating the given transformation
4152 * of all values
4153 * @since 1.8
4154 */
4155 public long reduceValuesToLong(long parallelismThreshold,
4156 ToLongFunction<? super V> transformer,
4157 long basis,
4158 LongBinaryOperator reducer) {
4159 if (transformer == null || reducer == null)
4160 throw new NullPointerException();
4161 return new MapReduceValuesToLongTask<K,V>
4162 (null, batchFor(parallelismThreshold), 0, 0, table,
4163 null, transformer, basis, reducer).invoke();
4164 }
4165
4166 /**
4167 * Returns the result of accumulating the given transformation
4168 * of all values using the given reducer to combine values,
4169 * and the given basis as an identity value.
4170 *
4171 * @param parallelismThreshold the (estimated) number of elements
4172 * needed for this operation to be executed in parallel
4173 * @param transformer a function returning the transformation
4174 * for an element
4175 * @param basis the identity (initial default value) for the reduction
4176 * @param reducer a commutative associative combining function
4177 * @return the result of accumulating the given transformation
4178 * of all values
4179 * @since 1.8
4180 */
4181 public int reduceValuesToInt(long parallelismThreshold,
4182 ToIntFunction<? super V> transformer,
4183 int basis,
4184 IntBinaryOperator reducer) {
4185 if (transformer == null || reducer == null)
4186 throw new NullPointerException();
4187 return new MapReduceValuesToIntTask<K,V>
4188 (null, batchFor(parallelismThreshold), 0, 0, table,
4189 null, transformer, basis, reducer).invoke();
4190 }
4191
4192 /**
4193 * Performs the given action for each entry.
4194 *
4195 * @param parallelismThreshold the (estimated) number of elements
4196 * needed for this operation to be executed in parallel
4197 * @param action the action
4198 * @since 1.8
4199 */
4200 public void forEachEntry(long parallelismThreshold,
4201 Consumer<? super Map.Entry<K,V>> action) {
4202 if (action == null) throw new NullPointerException();
4203 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4204 action).invoke();
4205 }
4206
4207 /**
4208 * Performs the given action for each non-null transformation
4209 * of each entry.
4210 *
4211 * @param parallelismThreshold the (estimated) number of elements
4212 * needed for this operation to be executed in parallel
4213 * @param transformer a function returning the transformation
4214 * for an element, or null if there is no transformation (in
4215 * which case the action is not applied)
4216 * @param action the action
4217 * @param <U> the return type of the transformer
4218 * @since 1.8
4219 */
4220 public <U> void forEachEntry(long parallelismThreshold,
4221 Function<Map.Entry<K,V>, ? extends U> transformer,
4222 Consumer<? super U> action) {
4223 if (transformer == null || action == null)
4224 throw new NullPointerException();
4225 new ForEachTransformedEntryTask<K,V,U>
4226 (null, batchFor(parallelismThreshold), 0, 0, table,
4227 transformer, action).invoke();
4228 }
4229
4230 /**
4231 * Returns a non-null result from applying the given search
4232 * function on each entry, or null if none. Upon success,
4233 * further element processing is suppressed and the results of
4234 * any other parallel invocations of the search function are
4235 * ignored.
4236 *
4237 * @param parallelismThreshold the (estimated) number of elements
4238 * needed for this operation to be executed in parallel
4239 * @param searchFunction a function returning a non-null
4240 * result on success, else null
4241 * @param <U> the return type of the search function
4242 * @return a non-null result from applying the given search
4243 * function on each entry, or null if none
4244 * @since 1.8
4245 */
4246 public <U> U searchEntries(long parallelismThreshold,
4247 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4248 if (searchFunction == null) throw new NullPointerException();
4249 return new SearchEntriesTask<K,V,U>
4250 (null, batchFor(parallelismThreshold), 0, 0, table,
4251 searchFunction, new AtomicReference<U>()).invoke();
4252 }
4253
4254 /**
4255 * Returns the result of accumulating all entries using the
4256 * given reducer to combine values, or null if none.
4257 *
4258 * @param parallelismThreshold the (estimated) number of elements
4259 * needed for this operation to be executed in parallel
4260 * @param reducer a commutative associative combining function
4261 * @return the result of accumulating all entries
4262 * @since 1.8
4263 */
4264 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4265 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4266 if (reducer == null) throw new NullPointerException();
4267 return new ReduceEntriesTask<K,V>
4268 (null, batchFor(parallelismThreshold), 0, 0, table,
4269 null, reducer).invoke();
4270 }
4271
4272 /**
4273 * Returns the result of accumulating the given transformation
4274 * of all entries using the given reducer to combine values,
4275 * or null if none.
4276 *
4277 * @param parallelismThreshold the (estimated) number of elements
4278 * needed for this operation to be executed in parallel
4279 * @param transformer a function returning the transformation
4280 * for an element, or null if there is no transformation (in
4281 * which case it is not combined)
4282 * @param reducer a commutative associative combining function
4283 * @param <U> the return type of the transformer
4284 * @return the result of accumulating the given transformation
4285 * of all entries
4286 * @since 1.8
4287 */
4288 public <U> U reduceEntries(long parallelismThreshold,
4289 Function<Map.Entry<K,V>, ? extends U> transformer,
4290 BiFunction<? super U, ? super U, ? extends U> reducer) {
4291 if (transformer == null || reducer == null)
4292 throw new NullPointerException();
4293 return new MapReduceEntriesTask<K,V,U>
4294 (null, batchFor(parallelismThreshold), 0, 0, table,
4295 null, transformer, reducer).invoke();
4296 }
4297
4298 /**
4299 * Returns the result of accumulating the given transformation
4300 * of all entries using the given reducer to combine values,
4301 * and the given basis as an identity value.
4302 *
4303 * @param parallelismThreshold the (estimated) number of elements
4304 * needed for this operation to be executed in parallel
4305 * @param transformer a function returning the transformation
4306 * for an element
4307 * @param basis the identity (initial default value) for the reduction
4308 * @param reducer a commutative associative combining function
4309 * @return the result of accumulating the given transformation
4310 * of all entries
4311 * @since 1.8
4312 */
4313 public double reduceEntriesToDouble(long parallelismThreshold,
4314 ToDoubleFunction<Map.Entry<K,V>> transformer,
4315 double basis,
4316 DoubleBinaryOperator reducer) {
4317 if (transformer == null || reducer == null)
4318 throw new NullPointerException();
4319 return new MapReduceEntriesToDoubleTask<K,V>
4320 (null, batchFor(parallelismThreshold), 0, 0, table,
4321 null, transformer, basis, reducer).invoke();
4322 }
4323
4324 /**
4325 * Returns the result of accumulating the given transformation
4326 * of all entries using the given reducer to combine values,
4327 * and the given basis as an identity value.
4328 *
4329 * @param parallelismThreshold the (estimated) number of elements
4330 * needed for this operation to be executed in parallel
4331 * @param transformer a function returning the transformation
4332 * for an element
4333 * @param basis the identity (initial default value) for the reduction
4334 * @param reducer a commutative associative combining function
4335 * @return the result of accumulating the given transformation
4336 * of all entries
4337 * @since 1.8
4338 */
4339 public long reduceEntriesToLong(long parallelismThreshold,
4340 ToLongFunction<Map.Entry<K,V>> transformer,
4341 long basis,
4342 LongBinaryOperator reducer) {
4343 if (transformer == null || reducer == null)
4344 throw new NullPointerException();
4345 return new MapReduceEntriesToLongTask<K,V>
4346 (null, batchFor(parallelismThreshold), 0, 0, table,
4347 null, transformer, basis, reducer).invoke();
4348 }
4349
4350 /**
4351 * Returns the result of accumulating the given transformation
4352 * of all entries using the given reducer to combine values,
4353 * and the given basis as an identity value.
4354 *
4355 * @param parallelismThreshold the (estimated) number of elements
4356 * needed for this operation to be executed in parallel
4357 * @param transformer a function returning the transformation
4358 * for an element
4359 * @param basis the identity (initial default value) for the reduction
4360 * @param reducer a commutative associative combining function
4361 * @return the result of accumulating the given transformation
4362 * of all entries
4363 * @since 1.8
4364 */
4365 public int reduceEntriesToInt(long parallelismThreshold,
4366 ToIntFunction<Map.Entry<K,V>> transformer,
4367 int basis,
4368 IntBinaryOperator reducer) {
4369 if (transformer == null || reducer == null)
4370 throw new NullPointerException();
4371 return new MapReduceEntriesToIntTask<K,V>
4372 (null, batchFor(parallelismThreshold), 0, 0, table,
4373 null, transformer, basis, reducer).invoke();
4374 }
4375
4376
4377 /* ----------------Views -------------- */
4378
4379 /**
4380 * Base class for views.
4381 */
4382 abstract static class CollectionView<K,V,E>
4383 implements Collection<E>, java.io.Serializable {
4384 private static final long serialVersionUID = 7249069246763182397L;
4385 final ConcurrentHashMap<K,V> map;
4386 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4387
4388 /**
4389 * Returns the map backing this view.
4390 *
4391 * @return the map backing this view
4392 */
4393 public ConcurrentHashMap<K,V> getMap() { return map; }
4394
4395 /**
4396 * Removes all of the elements from this view, by removing all
4397 * the mappings from the map backing this view.
4398 */
4399 public final void clear() { map.clear(); }
4400 public final int size() { return map.size(); }
4401 public final boolean isEmpty() { return map.isEmpty(); }
4402
4403 // implementations below rely on concrete classes supplying these
4404 // abstract methods
4405 /**
4406 * Returns an iterator over the elements in this collection.
4407 *
4408 * <p>The returned iterator is
4409 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4410 *
4411 * @return an iterator over the elements in this collection
4412 */
4413 public abstract Iterator<E> iterator();
4414 public abstract boolean contains(Object o);
4415 public abstract boolean remove(Object o);
4416
4417 private static final String OOME_MSG = "Required array size too large";
4418
4419 public final Object[] toArray() {
4420 long sz = map.mappingCount();
4421 if (sz > MAX_ARRAY_SIZE)
4422 throw new OutOfMemoryError(OOME_MSG);
4423 int n = (int)sz;
4424 Object[] r = new Object[n];
4425 int i = 0;
4426 for (E e : this) {
4427 if (i == n) {
4428 if (n >= MAX_ARRAY_SIZE)
4429 throw new OutOfMemoryError(OOME_MSG);
4430 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4431 n = MAX_ARRAY_SIZE;
4432 else
4433 n += (n >>> 1) + 1;
4434 r = Arrays.copyOf(r, n);
4435 }
4436 r[i++] = e;
4437 }
4438 return (i == n) ? r : Arrays.copyOf(r, i);
4439 }
4440
4441 @SuppressWarnings("unchecked")
4442 public final <T> T[] toArray(T[] a) {
4443 long sz = map.mappingCount();
4444 if (sz > MAX_ARRAY_SIZE)
4445 throw new OutOfMemoryError(OOME_MSG);
4446 int m = (int)sz;
4447 T[] r = (a.length >= m) ? a :
4448 (T[])java.lang.reflect.Array
4449 .newInstance(a.getClass().getComponentType(), m);
4450 int n = r.length;
4451 int i = 0;
4452 for (E e : this) {
4453 if (i == n) {
4454 if (n >= MAX_ARRAY_SIZE)
4455 throw new OutOfMemoryError(OOME_MSG);
4456 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4457 n = MAX_ARRAY_SIZE;
4458 else
4459 n += (n >>> 1) + 1;
4460 r = Arrays.copyOf(r, n);
4461 }
4462 r[i++] = (T)e;
4463 }
4464 if (a == r && i < n) {
4465 r[i] = null; // null-terminate
4466 return r;
4467 }
4468 return (i == n) ? r : Arrays.copyOf(r, i);
4469 }
4470
4471 /**
4472 * Returns a string representation of this collection.
4473 * The string representation consists of the string representations
4474 * of the collection's elements in the order they are returned by
4475 * its iterator, enclosed in square brackets ({@code "[]"}).
4476 * Adjacent elements are separated by the characters {@code ", "}
4477 * (comma and space). Elements are converted to strings as by
4478 * {@link String#valueOf(Object)}.
4479 *
4480 * @return a string representation of this collection
4481 */
4482 public final String toString() {
4483 StringBuilder sb = new StringBuilder();
4484 sb.append('[');
4485 Iterator<E> it = iterator();
4486 if (it.hasNext()) {
4487 for (;;) {
4488 Object e = it.next();
4489 sb.append(e == this ? "(this Collection)" : e);
4490 if (!it.hasNext())
4491 break;
4492 sb.append(',').append(' ');
4493 }
4494 }
4495 return sb.append(']').toString();
4496 }
4497
4498 public final boolean containsAll(Collection<?> c) {
4499 if (c != this) {
4500 for (Object e : c) {
4501 if (e == null || !contains(e))
4502 return false;
4503 }
4504 }
4505 return true;
4506 }
4507
4508 public boolean removeAll(Collection<?> c) {
4509 if (c == null) throw new NullPointerException();
4510 boolean modified = false;
4511 // Use (c instanceof Set) as a hint that lookup in c is as
4512 // efficient as this view
4513 Node<K,V>[] t;
4514 if ((t = map.table) == null) {
4515 return false;
4516 } else if (c instanceof Set<?> && c.size() > t.length) {
4517 for (Iterator<?> it = iterator(); it.hasNext(); ) {
4518 if (c.contains(it.next())) {
4519 it.remove();
4520 modified = true;
4521 }
4522 }
4523 } else {
4524 for (Object e : c)
4525 modified |= remove(e);
4526 }
4527 return modified;
4528 }
4529
4530 public final boolean retainAll(Collection<?> c) {
4531 if (c == null) throw new NullPointerException();
4532 boolean modified = false;
4533 for (Iterator<E> it = iterator(); it.hasNext();) {
4534 if (!c.contains(it.next())) {
4535 it.remove();
4536 modified = true;
4537 }
4538 }
4539 return modified;
4540 }
4541
4542 }
4543
4544 /**
4545 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4546 * which additions may optionally be enabled by mapping to a
4547 * common value. This class cannot be directly instantiated.
4548 * See {@link #keySet() keySet()},
4549 * {@link #keySet(Object) keySet(V)},
4550 * {@link #newKeySet() newKeySet()},
4551 * {@link #newKeySet(int) newKeySet(int)}.
4552 *
4553 * @since 1.8
4554 */
4555 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4556 implements Set<K>, java.io.Serializable {
4557 private static final long serialVersionUID = 7249069246763182397L;
4558 private final V value;
4559 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4560 super(map);
4561 this.value = value;
4562 }
4563
4564 /**
4565 * Returns the default mapped value for additions,
4566 * or {@code null} if additions are not supported.
4567 *
4568 * @return the default mapped value for additions, or {@code null}
4569 * if not supported
4570 */
4571 public V getMappedValue() { return value; }
4572
4573 /**
4574 * {@inheritDoc}
4575 * @throws NullPointerException if the specified key is null
4576 */
4577 public boolean contains(Object o) { return map.containsKey(o); }
4578
4579 /**
4580 * Removes the key from this map view, by removing the key (and its
4581 * corresponding value) from the backing map. This method does
4582 * nothing if the key is not in the map.
4583 *
4584 * @param o the key to be removed from the backing map
4585 * @return {@code true} if the backing map contained the specified key
4586 * @throws NullPointerException if the specified key is null
4587 */
4588 public boolean remove(Object o) { return map.remove(o) != null; }
4589
4590 /**
4591 * @return an iterator over the keys of the backing map
4592 */
4593 public Iterator<K> iterator() {
4594 Node<K,V>[] t;
4595 ConcurrentHashMap<K,V> m = map;
4596 int f = (t = m.table) == null ? 0 : t.length;
4597 return new KeyIterator<K,V>(t, f, 0, f, m);
4598 }
4599
4600 /**
4601 * Adds the specified key to this set view by mapping the key to
4602 * the default mapped value in the backing map, if defined.
4603 *
4604 * @param e key to be added
4605 * @return {@code true} if this set changed as a result of the call
4606 * @throws NullPointerException if the specified key is null
4607 * @throws UnsupportedOperationException if no default mapped value
4608 * for additions was provided
4609 */
4610 public boolean add(K e) {
4611 V v;
4612 if ((v = value) == null)
4613 throw new UnsupportedOperationException();
4614 return map.putVal(e, v, true) == null;
4615 }
4616
4617 /**
4618 * Adds all of the elements in the specified collection to this set,
4619 * as if by calling {@link #add} on each one.
4620 *
4621 * @param c the elements to be inserted into this set
4622 * @return {@code true} if this set changed as a result of the call
4623 * @throws NullPointerException if the collection or any of its
4624 * elements are {@code null}
4625 * @throws UnsupportedOperationException if no default mapped value
4626 * for additions was provided
4627 */
4628 public boolean addAll(Collection<? extends K> c) {
4629 boolean added = false;
4630 V v;
4631 if ((v = value) == null)
4632 throw new UnsupportedOperationException();
4633 for (K e : c) {
4634 if (map.putVal(e, v, true) == null)
4635 added = true;
4636 }
4637 return added;
4638 }
4639
4640 public int hashCode() {
4641 int h = 0;
4642 for (K e : this)
4643 h += e.hashCode();
4644 return h;
4645 }
4646
4647 public boolean equals(Object o) {
4648 Set<?> c;
4649 return ((o instanceof Set) &&
4650 ((c = (Set<?>)o) == this ||
4651 (containsAll(c) && c.containsAll(this))));
4652 }
4653
4654 public Spliterator<K> spliterator() {
4655 Node<K,V>[] t;
4656 ConcurrentHashMap<K,V> m = map;
4657 long n = m.sumCount();
4658 int f = (t = m.table) == null ? 0 : t.length;
4659 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4660 }
4661
4662 public void forEach(Consumer<? super K> action) {
4663 if (action == null) throw new NullPointerException();
4664 Node<K,V>[] t;
4665 if ((t = map.table) != null) {
4666 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4667 for (Node<K,V> p; (p = it.advance()) != null; )
4668 action.accept(p.key);
4669 }
4670 }
4671 }
4672
4673 /**
4674 * A view of a ConcurrentHashMap as a {@link Collection} of
4675 * values, in which additions are disabled. This class cannot be
4676 * directly instantiated. See {@link #values()}.
4677 */
4678 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4679 implements Collection<V>, java.io.Serializable {
4680 private static final long serialVersionUID = 2249069246763182397L;
4681 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4682 public final boolean contains(Object o) {
4683 return map.containsValue(o);
4684 }
4685
4686 public final boolean remove(Object o) {
4687 if (o != null) {
4688 for (Iterator<V> it = iterator(); it.hasNext();) {
4689 if (o.equals(it.next())) {
4690 it.remove();
4691 return true;
4692 }
4693 }
4694 }
4695 return false;
4696 }
4697
4698 public final Iterator<V> iterator() {
4699 ConcurrentHashMap<K,V> m = map;
4700 Node<K,V>[] t;
4701 int f = (t = m.table) == null ? 0 : t.length;
4702 return new ValueIterator<K,V>(t, f, 0, f, m);
4703 }
4704
4705 public final boolean add(V e) {
4706 throw new UnsupportedOperationException();
4707 }
4708 public final boolean addAll(Collection<? extends V> c) {
4709 throw new UnsupportedOperationException();
4710 }
4711
4712 @Override public boolean removeAll(Collection<?> c) {
4713 if (c == null) throw new NullPointerException();
4714 boolean modified = false;
4715 for (Iterator<V> it = iterator(); it.hasNext();) {
4716 if (c.contains(it.next())) {
4717 it.remove();
4718 modified = true;
4719 }
4720 }
4721 return modified;
4722 }
4723
4724 public boolean removeIf(Predicate<? super V> filter) {
4725 return map.removeValueIf(filter);
4726 }
4727
4728 public Spliterator<V> spliterator() {
4729 Node<K,V>[] t;
4730 ConcurrentHashMap<K,V> m = map;
4731 long n = m.sumCount();
4732 int f = (t = m.table) == null ? 0 : t.length;
4733 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4734 }
4735
4736 public void forEach(Consumer<? super V> action) {
4737 if (action == null) throw new NullPointerException();
4738 Node<K,V>[] t;
4739 if ((t = map.table) != null) {
4740 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4741 for (Node<K,V> p; (p = it.advance()) != null; )
4742 action.accept(p.val);
4743 }
4744 }
4745 }
4746
4747 /**
4748 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4749 * entries. This class cannot be directly instantiated. See
4750 * {@link #entrySet()}.
4751 */
4752 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4753 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4754 private static final long serialVersionUID = 2249069246763182397L;
4755 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4756
4757 public boolean contains(Object o) {
4758 Object k, v, r; Map.Entry<?,?> e;
4759 return ((o instanceof Map.Entry) &&
4760 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4761 (r = map.get(k)) != null &&
4762 (v = e.getValue()) != null &&
4763 (v == r || v.equals(r)));
4764 }
4765
4766 public boolean remove(Object o) {
4767 Object k, v; Map.Entry<?,?> e;
4768 return ((o instanceof Map.Entry) &&
4769 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4770 (v = e.getValue()) != null &&
4771 map.remove(k, v));
4772 }
4773
4774 /**
4775 * @return an iterator over the entries of the backing map
4776 */
4777 public Iterator<Map.Entry<K,V>> iterator() {
4778 ConcurrentHashMap<K,V> m = map;
4779 Node<K,V>[] t;
4780 int f = (t = m.table) == null ? 0 : t.length;
4781 return new EntryIterator<K,V>(t, f, 0, f, m);
4782 }
4783
4784 public boolean add(Entry<K,V> e) {
4785 return map.putVal(e.getKey(), e.getValue(), false) == null;
4786 }
4787
4788 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4789 boolean added = false;
4790 for (Entry<K,V> e : c) {
4791 if (add(e))
4792 added = true;
4793 }
4794 return added;
4795 }
4796
4797 public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4798 return map.removeEntryIf(filter);
4799 }
4800
4801 public final int hashCode() {
4802 int h = 0;
4803 Node<K,V>[] t;
4804 if ((t = map.table) != null) {
4805 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4806 for (Node<K,V> p; (p = it.advance()) != null; ) {
4807 h += p.hashCode();
4808 }
4809 }
4810 return h;
4811 }
4812
4813 public final boolean equals(Object o) {
4814 Set<?> c;
4815 return ((o instanceof Set) &&
4816 ((c = (Set<?>)o) == this ||
4817 (containsAll(c) && c.containsAll(this))));
4818 }
4819
4820 public Spliterator<Map.Entry<K,V>> spliterator() {
4821 Node<K,V>[] t;
4822 ConcurrentHashMap<K,V> m = map;
4823 long n = m.sumCount();
4824 int f = (t = m.table) == null ? 0 : t.length;
4825 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4826 }
4827
4828 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4829 if (action == null) throw new NullPointerException();
4830 Node<K,V>[] t;
4831 if ((t = map.table) != null) {
4832 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4833 for (Node<K,V> p; (p = it.advance()) != null; )
4834 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4835 }
4836 }
4837
4838 }
4839
4840 // -------------------------------------------------------
4841
4842 /**
4843 * Base class for bulk tasks. Repeats some fields and code from
4844 * class Traverser, because we need to subclass CountedCompleter.
4845 */
4846 @SuppressWarnings("serial")
4847 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4848 Node<K,V>[] tab; // same as Traverser
4849 Node<K,V> next;
4850 TableStack<K,V> stack, spare;
4851 int index;
4852 int baseIndex;
4853 int baseLimit;
4854 final int baseSize;
4855 int batch; // split control
4856
4857 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4858 super(par);
4859 this.batch = b;
4860 this.index = this.baseIndex = i;
4861 if ((this.tab = t) == null)
4862 this.baseSize = this.baseLimit = 0;
4863 else if (par == null)
4864 this.baseSize = this.baseLimit = t.length;
4865 else {
4866 this.baseLimit = f;
4867 this.baseSize = par.baseSize;
4868 }
4869 }
4870
4871 /**
4872 * Same as Traverser version.
4873 */
4874 final Node<K,V> advance() {
4875 Node<K,V> e;
4876 if ((e = next) != null)
4877 e = e.next;
4878 for (;;) {
4879 Node<K,V>[] t; int i, n;
4880 if (e != null)
4881 return next = e;
4882 if (baseIndex >= baseLimit || (t = tab) == null ||
4883 (n = t.length) <= (i = index) || i < 0)
4884 return next = null;
4885 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4886 if (e instanceof ForwardingNode) {
4887 tab = ((ForwardingNode<K,V>)e).nextTable;
4888 e = null;
4889 pushState(t, i, n);
4890 continue;
4891 }
4892 else if (e instanceof TreeBin)
4893 e = ((TreeBin<K,V>)e).first;
4894 else
4895 e = null;
4896 }
4897 if (stack != null)
4898 recoverState(n);
4899 else if ((index = i + baseSize) >= n)
4900 index = ++baseIndex;
4901 }
4902 }
4903
4904 private void pushState(Node<K,V>[] t, int i, int n) {
4905 TableStack<K,V> s = spare;
4906 if (s != null)
4907 spare = s.next;
4908 else
4909 s = new TableStack<K,V>();
4910 s.tab = t;
4911 s.length = n;
4912 s.index = i;
4913 s.next = stack;
4914 stack = s;
4915 }
4916
4917 private void recoverState(int n) {
4918 TableStack<K,V> s; int len;
4919 while ((s = stack) != null && (index += (len = s.length)) >= n) {
4920 n = len;
4921 index = s.index;
4922 tab = s.tab;
4923 s.tab = null;
4924 TableStack<K,V> next = s.next;
4925 s.next = spare; // save for reuse
4926 stack = next;
4927 spare = s;
4928 }
4929 if (s == null && (index += baseSize) >= n)
4930 index = ++baseIndex;
4931 }
4932 }
4933
4934 /*
4935 * Task classes. Coded in a regular but ugly format/style to
4936 * simplify checks that each variant differs in the right way from
4937 * others. The null screenings exist because compilers cannot tell
4938 * that we've already null-checked task arguments, so we force
4939 * simplest hoisted bypass to help avoid convoluted traps.
4940 */
4941 @SuppressWarnings("serial")
4942 static final class ForEachKeyTask<K,V>
4943 extends BulkTask<K,V,Void> {
4944 final Consumer<? super K> action;
4945 ForEachKeyTask
4946 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4947 Consumer<? super K> action) {
4948 super(p, b, i, f, t);
4949 this.action = action;
4950 }
4951 public final void compute() {
4952 final Consumer<? super K> action;
4953 if ((action = this.action) != null) {
4954 for (int i = baseIndex, f, h; batch > 0 &&
4955 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4956 addToPendingCount(1);
4957 new ForEachKeyTask<K,V>
4958 (this, batch >>>= 1, baseLimit = h, f, tab,
4959 action).fork();
4960 }
4961 for (Node<K,V> p; (p = advance()) != null;)
4962 action.accept(p.key);
4963 propagateCompletion();
4964 }
4965 }
4966 }
4967
4968 @SuppressWarnings("serial")
4969 static final class ForEachValueTask<K,V>
4970 extends BulkTask<K,V,Void> {
4971 final Consumer<? super V> action;
4972 ForEachValueTask
4973 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4974 Consumer<? super V> action) {
4975 super(p, b, i, f, t);
4976 this.action = action;
4977 }
4978 public final void compute() {
4979 final Consumer<? super V> action;
4980 if ((action = this.action) != null) {
4981 for (int i = baseIndex, f, h; batch > 0 &&
4982 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4983 addToPendingCount(1);
4984 new ForEachValueTask<K,V>
4985 (this, batch >>>= 1, baseLimit = h, f, tab,
4986 action).fork();
4987 }
4988 for (Node<K,V> p; (p = advance()) != null;)
4989 action.accept(p.val);
4990 propagateCompletion();
4991 }
4992 }
4993 }
4994
4995 @SuppressWarnings("serial")
4996 static final class ForEachEntryTask<K,V>
4997 extends BulkTask<K,V,Void> {
4998 final Consumer<? super Entry<K,V>> action;
4999 ForEachEntryTask
5000 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5001 Consumer<? super Entry<K,V>> action) {
5002 super(p, b, i, f, t);
5003 this.action = action;
5004 }
5005 public final void compute() {
5006 final Consumer<? super Entry<K,V>> action;
5007 if ((action = this.action) != null) {
5008 for (int i = baseIndex, f, h; batch > 0 &&
5009 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5010 addToPendingCount(1);
5011 new ForEachEntryTask<K,V>
5012 (this, batch >>>= 1, baseLimit = h, f, tab,
5013 action).fork();
5014 }
5015 for (Node<K,V> p; (p = advance()) != null; )
5016 action.accept(p);
5017 propagateCompletion();
5018 }
5019 }
5020 }
5021
5022 @SuppressWarnings("serial")
5023 static final class ForEachMappingTask<K,V>
5024 extends BulkTask<K,V,Void> {
5025 final BiConsumer<? super K, ? super V> action;
5026 ForEachMappingTask
5027 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5028 BiConsumer<? super K,? super V> action) {
5029 super(p, b, i, f, t);
5030 this.action = action;
5031 }
5032 public final void compute() {
5033 final BiConsumer<? super K, ? super V> action;
5034 if ((action = this.action) != null) {
5035 for (int i = baseIndex, f, h; batch > 0 &&
5036 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5037 addToPendingCount(1);
5038 new ForEachMappingTask<K,V>
5039 (this, batch >>>= 1, baseLimit = h, f, tab,
5040 action).fork();
5041 }
5042 for (Node<K,V> p; (p = advance()) != null; )
5043 action.accept(p.key, p.val);
5044 propagateCompletion();
5045 }
5046 }
5047 }
5048
5049 @SuppressWarnings("serial")
5050 static final class ForEachTransformedKeyTask<K,V,U>
5051 extends BulkTask<K,V,Void> {
5052 final Function<? super K, ? extends U> transformer;
5053 final Consumer<? super U> action;
5054 ForEachTransformedKeyTask
5055 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5056 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5057 super(p, b, i, f, t);
5058 this.transformer = transformer; this.action = action;
5059 }
5060 public final void compute() {
5061 final Function<? super K, ? extends U> transformer;
5062 final Consumer<? super U> action;
5063 if ((transformer = this.transformer) != null &&
5064 (action = this.action) != null) {
5065 for (int i = baseIndex, f, h; batch > 0 &&
5066 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5067 addToPendingCount(1);
5068 new ForEachTransformedKeyTask<K,V,U>
5069 (this, batch >>>= 1, baseLimit = h, f, tab,
5070 transformer, action).fork();
5071 }
5072 for (Node<K,V> p; (p = advance()) != null; ) {
5073 U u;
5074 if ((u = transformer.apply(p.key)) != null)
5075 action.accept(u);
5076 }
5077 propagateCompletion();
5078 }
5079 }
5080 }
5081
5082 @SuppressWarnings("serial")
5083 static final class ForEachTransformedValueTask<K,V,U>
5084 extends BulkTask<K,V,Void> {
5085 final Function<? super V, ? extends U> transformer;
5086 final Consumer<? super U> action;
5087 ForEachTransformedValueTask
5088 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5089 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5090 super(p, b, i, f, t);
5091 this.transformer = transformer; this.action = action;
5092 }
5093 public final void compute() {
5094 final Function<? super V, ? extends U> transformer;
5095 final Consumer<? super U> action;
5096 if ((transformer = this.transformer) != null &&
5097 (action = this.action) != null) {
5098 for (int i = baseIndex, f, h; batch > 0 &&
5099 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5100 addToPendingCount(1);
5101 new ForEachTransformedValueTask<K,V,U>
5102 (this, batch >>>= 1, baseLimit = h, f, tab,
5103 transformer, action).fork();
5104 }
5105 for (Node<K,V> p; (p = advance()) != null; ) {
5106 U u;
5107 if ((u = transformer.apply(p.val)) != null)
5108 action.accept(u);
5109 }
5110 propagateCompletion();
5111 }
5112 }
5113 }
5114
5115 @SuppressWarnings("serial")
5116 static final class ForEachTransformedEntryTask<K,V,U>
5117 extends BulkTask<K,V,Void> {
5118 final Function<Map.Entry<K,V>, ? extends U> transformer;
5119 final Consumer<? super U> action;
5120 ForEachTransformedEntryTask
5121 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5122 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5123 super(p, b, i, f, t);
5124 this.transformer = transformer; this.action = action;
5125 }
5126 public final void compute() {
5127 final Function<Map.Entry<K,V>, ? extends U> transformer;
5128 final Consumer<? super U> action;
5129 if ((transformer = this.transformer) != null &&
5130 (action = this.action) != null) {
5131 for (int i = baseIndex, f, h; batch > 0 &&
5132 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5133 addToPendingCount(1);
5134 new ForEachTransformedEntryTask<K,V,U>
5135 (this, batch >>>= 1, baseLimit = h, f, tab,
5136 transformer, action).fork();
5137 }
5138 for (Node<K,V> p; (p = advance()) != null; ) {
5139 U u;
5140 if ((u = transformer.apply(p)) != null)
5141 action.accept(u);
5142 }
5143 propagateCompletion();
5144 }
5145 }
5146 }
5147
5148 @SuppressWarnings("serial")
5149 static final class ForEachTransformedMappingTask<K,V,U>
5150 extends BulkTask<K,V,Void> {
5151 final BiFunction<? super K, ? super V, ? extends U> transformer;
5152 final Consumer<? super U> action;
5153 ForEachTransformedMappingTask
5154 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5155 BiFunction<? super K, ? super V, ? extends U> transformer,
5156 Consumer<? super U> action) {
5157 super(p, b, i, f, t);
5158 this.transformer = transformer; this.action = action;
5159 }
5160 public final void compute() {
5161 final BiFunction<? super K, ? super V, ? extends U> transformer;
5162 final Consumer<? super U> action;
5163 if ((transformer = this.transformer) != null &&
5164 (action = this.action) != null) {
5165 for (int i = baseIndex, f, h; batch > 0 &&
5166 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5167 addToPendingCount(1);
5168 new ForEachTransformedMappingTask<K,V,U>
5169 (this, batch >>>= 1, baseLimit = h, f, tab,
5170 transformer, action).fork();
5171 }
5172 for (Node<K,V> p; (p = advance()) != null; ) {
5173 U u;
5174 if ((u = transformer.apply(p.key, p.val)) != null)
5175 action.accept(u);
5176 }
5177 propagateCompletion();
5178 }
5179 }
5180 }
5181
5182 @SuppressWarnings("serial")
5183 static final class SearchKeysTask<K,V,U>
5184 extends BulkTask<K,V,U> {
5185 final Function<? super K, ? extends U> searchFunction;
5186 final AtomicReference<U> result;
5187 SearchKeysTask
5188 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5189 Function<? super K, ? extends U> searchFunction,
5190 AtomicReference<U> result) {
5191 super(p, b, i, f, t);
5192 this.searchFunction = searchFunction; this.result = result;
5193 }
5194 public final U getRawResult() { return result.get(); }
5195 public final void compute() {
5196 final Function<? super K, ? extends U> searchFunction;
5197 final AtomicReference<U> result;
5198 if ((searchFunction = this.searchFunction) != null &&
5199 (result = this.result) != null) {
5200 for (int i = baseIndex, f, h; batch > 0 &&
5201 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5202 if (result.get() != null)
5203 return;
5204 addToPendingCount(1);
5205 new SearchKeysTask<K,V,U>
5206 (this, batch >>>= 1, baseLimit = h, f, tab,
5207 searchFunction, result).fork();
5208 }
5209 while (result.get() == null) {
5210 U u;
5211 Node<K,V> p;
5212 if ((p = advance()) == null) {
5213 propagateCompletion();
5214 break;
5215 }
5216 if ((u = searchFunction.apply(p.key)) != null) {
5217 if (result.compareAndSet(null, u))
5218 quietlyCompleteRoot();
5219 break;
5220 }
5221 }
5222 }
5223 }
5224 }
5225
5226 @SuppressWarnings("serial")
5227 static final class SearchValuesTask<K,V,U>
5228 extends BulkTask<K,V,U> {
5229 final Function<? super V, ? extends U> searchFunction;
5230 final AtomicReference<U> result;
5231 SearchValuesTask
5232 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5233 Function<? super V, ? extends U> searchFunction,
5234 AtomicReference<U> result) {
5235 super(p, b, i, f, t);
5236 this.searchFunction = searchFunction; this.result = result;
5237 }
5238 public final U getRawResult() { return result.get(); }
5239 public final void compute() {
5240 final Function<? super V, ? extends U> searchFunction;
5241 final AtomicReference<U> result;
5242 if ((searchFunction = this.searchFunction) != null &&
5243 (result = this.result) != null) {
5244 for (int i = baseIndex, f, h; batch > 0 &&
5245 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5246 if (result.get() != null)
5247 return;
5248 addToPendingCount(1);
5249 new SearchValuesTask<K,V,U>
5250 (this, batch >>>= 1, baseLimit = h, f, tab,
5251 searchFunction, result).fork();
5252 }
5253 while (result.get() == null) {
5254 U u;
5255 Node<K,V> p;
5256 if ((p = advance()) == null) {
5257 propagateCompletion();
5258 break;
5259 }
5260 if ((u = searchFunction.apply(p.val)) != null) {
5261 if (result.compareAndSet(null, u))
5262 quietlyCompleteRoot();
5263 break;
5264 }
5265 }
5266 }
5267 }
5268 }
5269
5270 @SuppressWarnings("serial")
5271 static final class SearchEntriesTask<K,V,U>
5272 extends BulkTask<K,V,U> {
5273 final Function<Entry<K,V>, ? extends U> searchFunction;
5274 final AtomicReference<U> result;
5275 SearchEntriesTask
5276 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5277 Function<Entry<K,V>, ? extends U> searchFunction,
5278 AtomicReference<U> result) {
5279 super(p, b, i, f, t);
5280 this.searchFunction = searchFunction; this.result = result;
5281 }
5282 public final U getRawResult() { return result.get(); }
5283 public final void compute() {
5284 final Function<Entry<K,V>, ? extends U> searchFunction;
5285 final AtomicReference<U> result;
5286 if ((searchFunction = this.searchFunction) != null &&
5287 (result = this.result) != null) {
5288 for (int i = baseIndex, f, h; batch > 0 &&
5289 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5290 if (result.get() != null)
5291 return;
5292 addToPendingCount(1);
5293 new SearchEntriesTask<K,V,U>
5294 (this, batch >>>= 1, baseLimit = h, f, tab,
5295 searchFunction, result).fork();
5296 }
5297 while (result.get() == null) {
5298 U u;
5299 Node<K,V> p;
5300 if ((p = advance()) == null) {
5301 propagateCompletion();
5302 break;
5303 }
5304 if ((u = searchFunction.apply(p)) != null) {
5305 if (result.compareAndSet(null, u))
5306 quietlyCompleteRoot();
5307 return;
5308 }
5309 }
5310 }
5311 }
5312 }
5313
5314 @SuppressWarnings("serial")
5315 static final class SearchMappingsTask<K,V,U>
5316 extends BulkTask<K,V,U> {
5317 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5318 final AtomicReference<U> result;
5319 SearchMappingsTask
5320 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5321 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5322 AtomicReference<U> result) {
5323 super(p, b, i, f, t);
5324 this.searchFunction = searchFunction; this.result = result;
5325 }
5326 public final U getRawResult() { return result.get(); }
5327 public final void compute() {
5328 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5329 final AtomicReference<U> result;
5330 if ((searchFunction = this.searchFunction) != null &&
5331 (result = this.result) != null) {
5332 for (int i = baseIndex, f, h; batch > 0 &&
5333 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5334 if (result.get() != null)
5335 return;
5336 addToPendingCount(1);
5337 new SearchMappingsTask<K,V,U>
5338 (this, batch >>>= 1, baseLimit = h, f, tab,
5339 searchFunction, result).fork();
5340 }
5341 while (result.get() == null) {
5342 U u;
5343 Node<K,V> p;
5344 if ((p = advance()) == null) {
5345 propagateCompletion();
5346 break;
5347 }
5348 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5349 if (result.compareAndSet(null, u))
5350 quietlyCompleteRoot();
5351 break;
5352 }
5353 }
5354 }
5355 }
5356 }
5357
5358 @SuppressWarnings("serial")
5359 static final class ReduceKeysTask<K,V>
5360 extends BulkTask<K,V,K> {
5361 final BiFunction<? super K, ? super K, ? extends K> reducer;
5362 K result;
5363 ReduceKeysTask<K,V> rights, nextRight;
5364 ReduceKeysTask
5365 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5366 ReduceKeysTask<K,V> nextRight,
5367 BiFunction<? super K, ? super K, ? extends K> reducer) {
5368 super(p, b, i, f, t); this.nextRight = nextRight;
5369 this.reducer = reducer;
5370 }
5371 public final K getRawResult() { return result; }
5372 public final void compute() {
5373 final BiFunction<? super K, ? super K, ? extends K> reducer;
5374 if ((reducer = this.reducer) != null) {
5375 for (int i = baseIndex, f, h; batch > 0 &&
5376 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5377 addToPendingCount(1);
5378 (rights = new ReduceKeysTask<K,V>
5379 (this, batch >>>= 1, baseLimit = h, f, tab,
5380 rights, reducer)).fork();
5381 }
5382 K r = null;
5383 for (Node<K,V> p; (p = advance()) != null; ) {
5384 K u = p.key;
5385 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5386 }
5387 result = r;
5388 CountedCompleter<?> c;
5389 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5390 @SuppressWarnings("unchecked")
5391 ReduceKeysTask<K,V>
5392 t = (ReduceKeysTask<K,V>)c,
5393 s = t.rights;
5394 while (s != null) {
5395 K tr, sr;
5396 if ((sr = s.result) != null)
5397 t.result = (((tr = t.result) == null) ? sr :
5398 reducer.apply(tr, sr));
5399 s = t.rights = s.nextRight;
5400 }
5401 }
5402 }
5403 }
5404 }
5405
5406 @SuppressWarnings("serial")
5407 static final class ReduceValuesTask<K,V>
5408 extends BulkTask<K,V,V> {
5409 final BiFunction<? super V, ? super V, ? extends V> reducer;
5410 V result;
5411 ReduceValuesTask<K,V> rights, nextRight;
5412 ReduceValuesTask
5413 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5414 ReduceValuesTask<K,V> nextRight,
5415 BiFunction<? super V, ? super V, ? extends V> reducer) {
5416 super(p, b, i, f, t); this.nextRight = nextRight;
5417 this.reducer = reducer;
5418 }
5419 public final V getRawResult() { return result; }
5420 public final void compute() {
5421 final BiFunction<? super V, ? super V, ? extends V> reducer;
5422 if ((reducer = this.reducer) != null) {
5423 for (int i = baseIndex, f, h; batch > 0 &&
5424 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5425 addToPendingCount(1);
5426 (rights = new ReduceValuesTask<K,V>
5427 (this, batch >>>= 1, baseLimit = h, f, tab,
5428 rights, reducer)).fork();
5429 }
5430 V r = null;
5431 for (Node<K,V> p; (p = advance()) != null; ) {
5432 V v = p.val;
5433 r = (r == null) ? v : reducer.apply(r, v);
5434 }
5435 result = r;
5436 CountedCompleter<?> c;
5437 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5438 @SuppressWarnings("unchecked")
5439 ReduceValuesTask<K,V>
5440 t = (ReduceValuesTask<K,V>)c,
5441 s = t.rights;
5442 while (s != null) {
5443 V tr, sr;
5444 if ((sr = s.result) != null)
5445 t.result = (((tr = t.result) == null) ? sr :
5446 reducer.apply(tr, sr));
5447 s = t.rights = s.nextRight;
5448 }
5449 }
5450 }
5451 }
5452 }
5453
5454 @SuppressWarnings("serial")
5455 static final class ReduceEntriesTask<K,V>
5456 extends BulkTask<K,V,Map.Entry<K,V>> {
5457 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5458 Map.Entry<K,V> result;
5459 ReduceEntriesTask<K,V> rights, nextRight;
5460 ReduceEntriesTask
5461 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5462 ReduceEntriesTask<K,V> nextRight,
5463 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5464 super(p, b, i, f, t); this.nextRight = nextRight;
5465 this.reducer = reducer;
5466 }
5467 public final Map.Entry<K,V> getRawResult() { return result; }
5468 public final void compute() {
5469 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5470 if ((reducer = this.reducer) != null) {
5471 for (int i = baseIndex, f, h; batch > 0 &&
5472 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5473 addToPendingCount(1);
5474 (rights = new ReduceEntriesTask<K,V>
5475 (this, batch >>>= 1, baseLimit = h, f, tab,
5476 rights, reducer)).fork();
5477 }
5478 Map.Entry<K,V> r = null;
5479 for (Node<K,V> p; (p = advance()) != null; )
5480 r = (r == null) ? p : reducer.apply(r, p);
5481 result = r;
5482 CountedCompleter<?> c;
5483 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5484 @SuppressWarnings("unchecked")
5485 ReduceEntriesTask<K,V>
5486 t = (ReduceEntriesTask<K,V>)c,
5487 s = t.rights;
5488 while (s != null) {
5489 Map.Entry<K,V> tr, sr;
5490 if ((sr = s.result) != null)
5491 t.result = (((tr = t.result) == null) ? sr :
5492 reducer.apply(tr, sr));
5493 s = t.rights = s.nextRight;
5494 }
5495 }
5496 }
5497 }
5498 }
5499
5500 @SuppressWarnings("serial")
5501 static final class MapReduceKeysTask<K,V,U>
5502 extends BulkTask<K,V,U> {
5503 final Function<? super K, ? extends U> transformer;
5504 final BiFunction<? super U, ? super U, ? extends U> reducer;
5505 U result;
5506 MapReduceKeysTask<K,V,U> rights, nextRight;
5507 MapReduceKeysTask
5508 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5509 MapReduceKeysTask<K,V,U> nextRight,
5510 Function<? super K, ? extends U> transformer,
5511 BiFunction<? super U, ? super U, ? extends U> reducer) {
5512 super(p, b, i, f, t); this.nextRight = nextRight;
5513 this.transformer = transformer;
5514 this.reducer = reducer;
5515 }
5516 public final U getRawResult() { return result; }
5517 public final void compute() {
5518 final Function<? super K, ? extends U> transformer;
5519 final BiFunction<? super U, ? super U, ? extends U> reducer;
5520 if ((transformer = this.transformer) != null &&
5521 (reducer = this.reducer) != null) {
5522 for (int i = baseIndex, f, h; batch > 0 &&
5523 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5524 addToPendingCount(1);
5525 (rights = new MapReduceKeysTask<K,V,U>
5526 (this, batch >>>= 1, baseLimit = h, f, tab,
5527 rights, transformer, reducer)).fork();
5528 }
5529 U r = null;
5530 for (Node<K,V> p; (p = advance()) != null; ) {
5531 U u;
5532 if ((u = transformer.apply(p.key)) != null)
5533 r = (r == null) ? u : reducer.apply(r, u);
5534 }
5535 result = r;
5536 CountedCompleter<?> c;
5537 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5538 @SuppressWarnings("unchecked")
5539 MapReduceKeysTask<K,V,U>
5540 t = (MapReduceKeysTask<K,V,U>)c,
5541 s = t.rights;
5542 while (s != null) {
5543 U tr, sr;
5544 if ((sr = s.result) != null)
5545 t.result = (((tr = t.result) == null) ? sr :
5546 reducer.apply(tr, sr));
5547 s = t.rights = s.nextRight;
5548 }
5549 }
5550 }
5551 }
5552 }
5553
5554 @SuppressWarnings("serial")
5555 static final class MapReduceValuesTask<K,V,U>
5556 extends BulkTask<K,V,U> {
5557 final Function<? super V, ? extends U> transformer;
5558 final BiFunction<? super U, ? super U, ? extends U> reducer;
5559 U result;
5560 MapReduceValuesTask<K,V,U> rights, nextRight;
5561 MapReduceValuesTask
5562 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5563 MapReduceValuesTask<K,V,U> nextRight,
5564 Function<? super V, ? extends U> transformer,
5565 BiFunction<? super U, ? super U, ? extends U> reducer) {
5566 super(p, b, i, f, t); this.nextRight = nextRight;
5567 this.transformer = transformer;
5568 this.reducer = reducer;
5569 }
5570 public final U getRawResult() { return result; }
5571 public final void compute() {
5572 final Function<? super V, ? extends U> transformer;
5573 final BiFunction<? super U, ? super U, ? extends U> reducer;
5574 if ((transformer = this.transformer) != null &&
5575 (reducer = this.reducer) != null) {
5576 for (int i = baseIndex, f, h; batch > 0 &&
5577 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5578 addToPendingCount(1);
5579 (rights = new MapReduceValuesTask<K,V,U>
5580 (this, batch >>>= 1, baseLimit = h, f, tab,
5581 rights, transformer, reducer)).fork();
5582 }
5583 U r = null;
5584 for (Node<K,V> p; (p = advance()) != null; ) {
5585 U u;
5586 if ((u = transformer.apply(p.val)) != null)
5587 r = (r == null) ? u : reducer.apply(r, u);
5588 }
5589 result = r;
5590 CountedCompleter<?> c;
5591 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5592 @SuppressWarnings("unchecked")
5593 MapReduceValuesTask<K,V,U>
5594 t = (MapReduceValuesTask<K,V,U>)c,
5595 s = t.rights;
5596 while (s != null) {
5597 U tr, sr;
5598 if ((sr = s.result) != null)
5599 t.result = (((tr = t.result) == null) ? sr :
5600 reducer.apply(tr, sr));
5601 s = t.rights = s.nextRight;
5602 }
5603 }
5604 }
5605 }
5606 }
5607
5608 @SuppressWarnings("serial")
5609 static final class MapReduceEntriesTask<K,V,U>
5610 extends BulkTask<K,V,U> {
5611 final Function<Map.Entry<K,V>, ? extends U> transformer;
5612 final BiFunction<? super U, ? super U, ? extends U> reducer;
5613 U result;
5614 MapReduceEntriesTask<K,V,U> rights, nextRight;
5615 MapReduceEntriesTask
5616 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5617 MapReduceEntriesTask<K,V,U> nextRight,
5618 Function<Map.Entry<K,V>, ? extends U> transformer,
5619 BiFunction<? super U, ? super U, ? extends U> reducer) {
5620 super(p, b, i, f, t); this.nextRight = nextRight;
5621 this.transformer = transformer;
5622 this.reducer = reducer;
5623 }
5624 public final U getRawResult() { return result; }
5625 public final void compute() {
5626 final Function<Map.Entry<K,V>, ? extends U> transformer;
5627 final BiFunction<? super U, ? super U, ? extends U> reducer;
5628 if ((transformer = this.transformer) != null &&
5629 (reducer = this.reducer) != null) {
5630 for (int i = baseIndex, f, h; batch > 0 &&
5631 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5632 addToPendingCount(1);
5633 (rights = new MapReduceEntriesTask<K,V,U>
5634 (this, batch >>>= 1, baseLimit = h, f, tab,
5635 rights, transformer, reducer)).fork();
5636 }
5637 U r = null;
5638 for (Node<K,V> p; (p = advance()) != null; ) {
5639 U u;
5640 if ((u = transformer.apply(p)) != null)
5641 r = (r == null) ? u : reducer.apply(r, u);
5642 }
5643 result = r;
5644 CountedCompleter<?> c;
5645 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5646 @SuppressWarnings("unchecked")
5647 MapReduceEntriesTask<K,V,U>
5648 t = (MapReduceEntriesTask<K,V,U>)c,
5649 s = t.rights;
5650 while (s != null) {
5651 U tr, sr;
5652 if ((sr = s.result) != null)
5653 t.result = (((tr = t.result) == null) ? sr :
5654 reducer.apply(tr, sr));
5655 s = t.rights = s.nextRight;
5656 }
5657 }
5658 }
5659 }
5660 }
5661
5662 @SuppressWarnings("serial")
5663 static final class MapReduceMappingsTask<K,V,U>
5664 extends BulkTask<K,V,U> {
5665 final BiFunction<? super K, ? super V, ? extends U> transformer;
5666 final BiFunction<? super U, ? super U, ? extends U> reducer;
5667 U result;
5668 MapReduceMappingsTask<K,V,U> rights, nextRight;
5669 MapReduceMappingsTask
5670 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5671 MapReduceMappingsTask<K,V,U> nextRight,
5672 BiFunction<? super K, ? super V, ? extends U> transformer,
5673 BiFunction<? super U, ? super U, ? extends U> reducer) {
5674 super(p, b, i, f, t); this.nextRight = nextRight;
5675 this.transformer = transformer;
5676 this.reducer = reducer;
5677 }
5678 public final U getRawResult() { return result; }
5679 public final void compute() {
5680 final BiFunction<? super K, ? super V, ? extends U> transformer;
5681 final BiFunction<? super U, ? super U, ? extends U> reducer;
5682 if ((transformer = this.transformer) != null &&
5683 (reducer = this.reducer) != null) {
5684 for (int i = baseIndex, f, h; batch > 0 &&
5685 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5686 addToPendingCount(1);
5687 (rights = new MapReduceMappingsTask<K,V,U>
5688 (this, batch >>>= 1, baseLimit = h, f, tab,
5689 rights, transformer, reducer)).fork();
5690 }
5691 U r = null;
5692 for (Node<K,V> p; (p = advance()) != null; ) {
5693 U u;
5694 if ((u = transformer.apply(p.key, p.val)) != null)
5695 r = (r == null) ? u : reducer.apply(r, u);
5696 }
5697 result = r;
5698 CountedCompleter<?> c;
5699 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5700 @SuppressWarnings("unchecked")
5701 MapReduceMappingsTask<K,V,U>
5702 t = (MapReduceMappingsTask<K,V,U>)c,
5703 s = t.rights;
5704 while (s != null) {
5705 U tr, sr;
5706 if ((sr = s.result) != null)
5707 t.result = (((tr = t.result) == null) ? sr :
5708 reducer.apply(tr, sr));
5709 s = t.rights = s.nextRight;
5710 }
5711 }
5712 }
5713 }
5714 }
5715
5716 @SuppressWarnings("serial")
5717 static final class MapReduceKeysToDoubleTask<K,V>
5718 extends BulkTask<K,V,Double> {
5719 final ToDoubleFunction<? super K> transformer;
5720 final DoubleBinaryOperator reducer;
5721 final double basis;
5722 double result;
5723 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5724 MapReduceKeysToDoubleTask
5725 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5726 MapReduceKeysToDoubleTask<K,V> nextRight,
5727 ToDoubleFunction<? super K> transformer,
5728 double basis,
5729 DoubleBinaryOperator reducer) {
5730 super(p, b, i, f, t); this.nextRight = nextRight;
5731 this.transformer = transformer;
5732 this.basis = basis; this.reducer = reducer;
5733 }
5734 public final Double getRawResult() { return result; }
5735 public final void compute() {
5736 final ToDoubleFunction<? super K> transformer;
5737 final DoubleBinaryOperator reducer;
5738 if ((transformer = this.transformer) != null &&
5739 (reducer = this.reducer) != null) {
5740 double r = this.basis;
5741 for (int i = baseIndex, f, h; batch > 0 &&
5742 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5743 addToPendingCount(1);
5744 (rights = new MapReduceKeysToDoubleTask<K,V>
5745 (this, batch >>>= 1, baseLimit = h, f, tab,
5746 rights, transformer, r, reducer)).fork();
5747 }
5748 for (Node<K,V> p; (p = advance()) != null; )
5749 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5750 result = r;
5751 CountedCompleter<?> c;
5752 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5753 @SuppressWarnings("unchecked")
5754 MapReduceKeysToDoubleTask<K,V>
5755 t = (MapReduceKeysToDoubleTask<K,V>)c,
5756 s = t.rights;
5757 while (s != null) {
5758 t.result = reducer.applyAsDouble(t.result, s.result);
5759 s = t.rights = s.nextRight;
5760 }
5761 }
5762 }
5763 }
5764 }
5765
5766 @SuppressWarnings("serial")
5767 static final class MapReduceValuesToDoubleTask<K,V>
5768 extends BulkTask<K,V,Double> {
5769 final ToDoubleFunction<? super V> transformer;
5770 final DoubleBinaryOperator reducer;
5771 final double basis;
5772 double result;
5773 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5774 MapReduceValuesToDoubleTask
5775 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5776 MapReduceValuesToDoubleTask<K,V> nextRight,
5777 ToDoubleFunction<? super V> transformer,
5778 double basis,
5779 DoubleBinaryOperator reducer) {
5780 super(p, b, i, f, t); this.nextRight = nextRight;
5781 this.transformer = transformer;
5782 this.basis = basis; this.reducer = reducer;
5783 }
5784 public final Double getRawResult() { return result; }
5785 public final void compute() {
5786 final ToDoubleFunction<? super V> transformer;
5787 final DoubleBinaryOperator reducer;
5788 if ((transformer = this.transformer) != null &&
5789 (reducer = this.reducer) != null) {
5790 double r = this.basis;
5791 for (int i = baseIndex, f, h; batch > 0 &&
5792 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5793 addToPendingCount(1);
5794 (rights = new MapReduceValuesToDoubleTask<K,V>
5795 (this, batch >>>= 1, baseLimit = h, f, tab,
5796 rights, transformer, r, reducer)).fork();
5797 }
5798 for (Node<K,V> p; (p = advance()) != null; )
5799 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5800 result = r;
5801 CountedCompleter<?> c;
5802 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5803 @SuppressWarnings("unchecked")
5804 MapReduceValuesToDoubleTask<K,V>
5805 t = (MapReduceValuesToDoubleTask<K,V>)c,
5806 s = t.rights;
5807 while (s != null) {
5808 t.result = reducer.applyAsDouble(t.result, s.result);
5809 s = t.rights = s.nextRight;
5810 }
5811 }
5812 }
5813 }
5814 }
5815
5816 @SuppressWarnings("serial")
5817 static final class MapReduceEntriesToDoubleTask<K,V>
5818 extends BulkTask<K,V,Double> {
5819 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5820 final DoubleBinaryOperator reducer;
5821 final double basis;
5822 double result;
5823 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5824 MapReduceEntriesToDoubleTask
5825 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5826 MapReduceEntriesToDoubleTask<K,V> nextRight,
5827 ToDoubleFunction<Map.Entry<K,V>> transformer,
5828 double basis,
5829 DoubleBinaryOperator reducer) {
5830 super(p, b, i, f, t); this.nextRight = nextRight;
5831 this.transformer = transformer;
5832 this.basis = basis; this.reducer = reducer;
5833 }
5834 public final Double getRawResult() { return result; }
5835 public final void compute() {
5836 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5837 final DoubleBinaryOperator reducer;
5838 if ((transformer = this.transformer) != null &&
5839 (reducer = this.reducer) != null) {
5840 double r = this.basis;
5841 for (int i = baseIndex, f, h; batch > 0 &&
5842 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5843 addToPendingCount(1);
5844 (rights = new MapReduceEntriesToDoubleTask<K,V>
5845 (this, batch >>>= 1, baseLimit = h, f, tab,
5846 rights, transformer, r, reducer)).fork();
5847 }
5848 for (Node<K,V> p; (p = advance()) != null; )
5849 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5850 result = r;
5851 CountedCompleter<?> c;
5852 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5853 @SuppressWarnings("unchecked")
5854 MapReduceEntriesToDoubleTask<K,V>
5855 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5856 s = t.rights;
5857 while (s != null) {
5858 t.result = reducer.applyAsDouble(t.result, s.result);
5859 s = t.rights = s.nextRight;
5860 }
5861 }
5862 }
5863 }
5864 }
5865
5866 @SuppressWarnings("serial")
5867 static final class MapReduceMappingsToDoubleTask<K,V>
5868 extends BulkTask<K,V,Double> {
5869 final ToDoubleBiFunction<? super K, ? super V> transformer;
5870 final DoubleBinaryOperator reducer;
5871 final double basis;
5872 double result;
5873 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5874 MapReduceMappingsToDoubleTask
5875 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5876 MapReduceMappingsToDoubleTask<K,V> nextRight,
5877 ToDoubleBiFunction<? super K, ? super V> transformer,
5878 double basis,
5879 DoubleBinaryOperator reducer) {
5880 super(p, b, i, f, t); this.nextRight = nextRight;
5881 this.transformer = transformer;
5882 this.basis = basis; this.reducer = reducer;
5883 }
5884 public final Double getRawResult() { return result; }
5885 public final void compute() {
5886 final ToDoubleBiFunction<? super K, ? super V> transformer;
5887 final DoubleBinaryOperator reducer;
5888 if ((transformer = this.transformer) != null &&
5889 (reducer = this.reducer) != null) {
5890 double r = this.basis;
5891 for (int i = baseIndex, f, h; batch > 0 &&
5892 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5893 addToPendingCount(1);
5894 (rights = new MapReduceMappingsToDoubleTask<K,V>
5895 (this, batch >>>= 1, baseLimit = h, f, tab,
5896 rights, transformer, r, reducer)).fork();
5897 }
5898 for (Node<K,V> p; (p = advance()) != null; )
5899 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5900 result = r;
5901 CountedCompleter<?> c;
5902 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5903 @SuppressWarnings("unchecked")
5904 MapReduceMappingsToDoubleTask<K,V>
5905 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5906 s = t.rights;
5907 while (s != null) {
5908 t.result = reducer.applyAsDouble(t.result, s.result);
5909 s = t.rights = s.nextRight;
5910 }
5911 }
5912 }
5913 }
5914 }
5915
5916 @SuppressWarnings("serial")
5917 static final class MapReduceKeysToLongTask<K,V>
5918 extends BulkTask<K,V,Long> {
5919 final ToLongFunction<? super K> transformer;
5920 final LongBinaryOperator reducer;
5921 final long basis;
5922 long result;
5923 MapReduceKeysToLongTask<K,V> rights, nextRight;
5924 MapReduceKeysToLongTask
5925 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5926 MapReduceKeysToLongTask<K,V> nextRight,
5927 ToLongFunction<? super K> transformer,
5928 long basis,
5929 LongBinaryOperator reducer) {
5930 super(p, b, i, f, t); this.nextRight = nextRight;
5931 this.transformer = transformer;
5932 this.basis = basis; this.reducer = reducer;
5933 }
5934 public final Long getRawResult() { return result; }
5935 public final void compute() {
5936 final ToLongFunction<? super K> transformer;
5937 final LongBinaryOperator reducer;
5938 if ((transformer = this.transformer) != null &&
5939 (reducer = this.reducer) != null) {
5940 long r = this.basis;
5941 for (int i = baseIndex, f, h; batch > 0 &&
5942 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5943 addToPendingCount(1);
5944 (rights = new MapReduceKeysToLongTask<K,V>
5945 (this, batch >>>= 1, baseLimit = h, f, tab,
5946 rights, transformer, r, reducer)).fork();
5947 }
5948 for (Node<K,V> p; (p = advance()) != null; )
5949 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5950 result = r;
5951 CountedCompleter<?> c;
5952 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5953 @SuppressWarnings("unchecked")
5954 MapReduceKeysToLongTask<K,V>
5955 t = (MapReduceKeysToLongTask<K,V>)c,
5956 s = t.rights;
5957 while (s != null) {
5958 t.result = reducer.applyAsLong(t.result, s.result);
5959 s = t.rights = s.nextRight;
5960 }
5961 }
5962 }
5963 }
5964 }
5965
5966 @SuppressWarnings("serial")
5967 static final class MapReduceValuesToLongTask<K,V>
5968 extends BulkTask<K,V,Long> {
5969 final ToLongFunction<? super V> transformer;
5970 final LongBinaryOperator reducer;
5971 final long basis;
5972 long result;
5973 MapReduceValuesToLongTask<K,V> rights, nextRight;
5974 MapReduceValuesToLongTask
5975 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5976 MapReduceValuesToLongTask<K,V> nextRight,
5977 ToLongFunction<? super V> transformer,
5978 long basis,
5979 LongBinaryOperator reducer) {
5980 super(p, b, i, f, t); this.nextRight = nextRight;
5981 this.transformer = transformer;
5982 this.basis = basis; this.reducer = reducer;
5983 }
5984 public final Long getRawResult() { return result; }
5985 public final void compute() {
5986 final ToLongFunction<? super V> transformer;
5987 final LongBinaryOperator reducer;
5988 if ((transformer = this.transformer) != null &&
5989 (reducer = this.reducer) != null) {
5990 long r = this.basis;
5991 for (int i = baseIndex, f, h; batch > 0 &&
5992 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5993 addToPendingCount(1);
5994 (rights = new MapReduceValuesToLongTask<K,V>
5995 (this, batch >>>= 1, baseLimit = h, f, tab,
5996 rights, transformer, r, reducer)).fork();
5997 }
5998 for (Node<K,V> p; (p = advance()) != null; )
5999 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
6000 result = r;
6001 CountedCompleter<?> c;
6002 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6003 @SuppressWarnings("unchecked")
6004 MapReduceValuesToLongTask<K,V>
6005 t = (MapReduceValuesToLongTask<K,V>)c,
6006 s = t.rights;
6007 while (s != null) {
6008 t.result = reducer.applyAsLong(t.result, s.result);
6009 s = t.rights = s.nextRight;
6010 }
6011 }
6012 }
6013 }
6014 }
6015
6016 @SuppressWarnings("serial")
6017 static final class MapReduceEntriesToLongTask<K,V>
6018 extends BulkTask<K,V,Long> {
6019 final ToLongFunction<Map.Entry<K,V>> transformer;
6020 final LongBinaryOperator reducer;
6021 final long basis;
6022 long result;
6023 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6024 MapReduceEntriesToLongTask
6025 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6026 MapReduceEntriesToLongTask<K,V> nextRight,
6027 ToLongFunction<Map.Entry<K,V>> transformer,
6028 long basis,
6029 LongBinaryOperator reducer) {
6030 super(p, b, i, f, t); this.nextRight = nextRight;
6031 this.transformer = transformer;
6032 this.basis = basis; this.reducer = reducer;
6033 }
6034 public final Long getRawResult() { return result; }
6035 public final void compute() {
6036 final ToLongFunction<Map.Entry<K,V>> transformer;
6037 final LongBinaryOperator reducer;
6038 if ((transformer = this.transformer) != null &&
6039 (reducer = this.reducer) != null) {
6040 long r = this.basis;
6041 for (int i = baseIndex, f, h; batch > 0 &&
6042 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6043 addToPendingCount(1);
6044 (rights = new MapReduceEntriesToLongTask<K,V>
6045 (this, batch >>>= 1, baseLimit = h, f, tab,
6046 rights, transformer, r, reducer)).fork();
6047 }
6048 for (Node<K,V> p; (p = advance()) != null; )
6049 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6050 result = r;
6051 CountedCompleter<?> c;
6052 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6053 @SuppressWarnings("unchecked")
6054 MapReduceEntriesToLongTask<K,V>
6055 t = (MapReduceEntriesToLongTask<K,V>)c,
6056 s = t.rights;
6057 while (s != null) {
6058 t.result = reducer.applyAsLong(t.result, s.result);
6059 s = t.rights = s.nextRight;
6060 }
6061 }
6062 }
6063 }
6064 }
6065
6066 @SuppressWarnings("serial")
6067 static final class MapReduceMappingsToLongTask<K,V>
6068 extends BulkTask<K,V,Long> {
6069 final ToLongBiFunction<? super K, ? super V> transformer;
6070 final LongBinaryOperator reducer;
6071 final long basis;
6072 long result;
6073 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6074 MapReduceMappingsToLongTask
6075 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6076 MapReduceMappingsToLongTask<K,V> nextRight,
6077 ToLongBiFunction<? super K, ? super V> transformer,
6078 long basis,
6079 LongBinaryOperator reducer) {
6080 super(p, b, i, f, t); this.nextRight = nextRight;
6081 this.transformer = transformer;
6082 this.basis = basis; this.reducer = reducer;
6083 }
6084 public final Long getRawResult() { return result; }
6085 public final void compute() {
6086 final ToLongBiFunction<? super K, ? super V> transformer;
6087 final LongBinaryOperator reducer;
6088 if ((transformer = this.transformer) != null &&
6089 (reducer = this.reducer) != null) {
6090 long r = this.basis;
6091 for (int i = baseIndex, f, h; batch > 0 &&
6092 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6093 addToPendingCount(1);
6094 (rights = new MapReduceMappingsToLongTask<K,V>
6095 (this, batch >>>= 1, baseLimit = h, f, tab,
6096 rights, transformer, r, reducer)).fork();
6097 }
6098 for (Node<K,V> p; (p = advance()) != null; )
6099 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6100 result = r;
6101 CountedCompleter<?> c;
6102 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6103 @SuppressWarnings("unchecked")
6104 MapReduceMappingsToLongTask<K,V>
6105 t = (MapReduceMappingsToLongTask<K,V>)c,
6106 s = t.rights;
6107 while (s != null) {
6108 t.result = reducer.applyAsLong(t.result, s.result);
6109 s = t.rights = s.nextRight;
6110 }
6111 }
6112 }
6113 }
6114 }
6115
6116 @SuppressWarnings("serial")
6117 static final class MapReduceKeysToIntTask<K,V>
6118 extends BulkTask<K,V,Integer> {
6119 final ToIntFunction<? super K> transformer;
6120 final IntBinaryOperator reducer;
6121 final int basis;
6122 int result;
6123 MapReduceKeysToIntTask<K,V> rights, nextRight;
6124 MapReduceKeysToIntTask
6125 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6126 MapReduceKeysToIntTask<K,V> nextRight,
6127 ToIntFunction<? super K> transformer,
6128 int basis,
6129 IntBinaryOperator reducer) {
6130 super(p, b, i, f, t); this.nextRight = nextRight;
6131 this.transformer = transformer;
6132 this.basis = basis; this.reducer = reducer;
6133 }
6134 public final Integer getRawResult() { return result; }
6135 public final void compute() {
6136 final ToIntFunction<? super K> transformer;
6137 final IntBinaryOperator reducer;
6138 if ((transformer = this.transformer) != null &&
6139 (reducer = this.reducer) != null) {
6140 int r = this.basis;
6141 for (int i = baseIndex, f, h; batch > 0 &&
6142 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6143 addToPendingCount(1);
6144 (rights = new MapReduceKeysToIntTask<K,V>
6145 (this, batch >>>= 1, baseLimit = h, f, tab,
6146 rights, transformer, r, reducer)).fork();
6147 }
6148 for (Node<K,V> p; (p = advance()) != null; )
6149 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6150 result = r;
6151 CountedCompleter<?> c;
6152 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6153 @SuppressWarnings("unchecked")
6154 MapReduceKeysToIntTask<K,V>
6155 t = (MapReduceKeysToIntTask<K,V>)c,
6156 s = t.rights;
6157 while (s != null) {
6158 t.result = reducer.applyAsInt(t.result, s.result);
6159 s = t.rights = s.nextRight;
6160 }
6161 }
6162 }
6163 }
6164 }
6165
6166 @SuppressWarnings("serial")
6167 static final class MapReduceValuesToIntTask<K,V>
6168 extends BulkTask<K,V,Integer> {
6169 final ToIntFunction<? super V> transformer;
6170 final IntBinaryOperator reducer;
6171 final int basis;
6172 int result;
6173 MapReduceValuesToIntTask<K,V> rights, nextRight;
6174 MapReduceValuesToIntTask
6175 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6176 MapReduceValuesToIntTask<K,V> nextRight,
6177 ToIntFunction<? super V> transformer,
6178 int basis,
6179 IntBinaryOperator reducer) {
6180 super(p, b, i, f, t); this.nextRight = nextRight;
6181 this.transformer = transformer;
6182 this.basis = basis; this.reducer = reducer;
6183 }
6184 public final Integer getRawResult() { return result; }
6185 public final void compute() {
6186 final ToIntFunction<? super V> transformer;
6187 final IntBinaryOperator reducer;
6188 if ((transformer = this.transformer) != null &&
6189 (reducer = this.reducer) != null) {
6190 int r = this.basis;
6191 for (int i = baseIndex, f, h; batch > 0 &&
6192 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6193 addToPendingCount(1);
6194 (rights = new MapReduceValuesToIntTask<K,V>
6195 (this, batch >>>= 1, baseLimit = h, f, tab,
6196 rights, transformer, r, reducer)).fork();
6197 }
6198 for (Node<K,V> p; (p = advance()) != null; )
6199 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6200 result = r;
6201 CountedCompleter<?> c;
6202 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6203 @SuppressWarnings("unchecked")
6204 MapReduceValuesToIntTask<K,V>
6205 t = (MapReduceValuesToIntTask<K,V>)c,
6206 s = t.rights;
6207 while (s != null) {
6208 t.result = reducer.applyAsInt(t.result, s.result);
6209 s = t.rights = s.nextRight;
6210 }
6211 }
6212 }
6213 }
6214 }
6215
6216 @SuppressWarnings("serial")
6217 static final class MapReduceEntriesToIntTask<K,V>
6218 extends BulkTask<K,V,Integer> {
6219 final ToIntFunction<Map.Entry<K,V>> transformer;
6220 final IntBinaryOperator reducer;
6221 final int basis;
6222 int result;
6223 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6224 MapReduceEntriesToIntTask
6225 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6226 MapReduceEntriesToIntTask<K,V> nextRight,
6227 ToIntFunction<Map.Entry<K,V>> transformer,
6228 int basis,
6229 IntBinaryOperator reducer) {
6230 super(p, b, i, f, t); this.nextRight = nextRight;
6231 this.transformer = transformer;
6232 this.basis = basis; this.reducer = reducer;
6233 }
6234 public final Integer getRawResult() { return result; }
6235 public final void compute() {
6236 final ToIntFunction<Map.Entry<K,V>> transformer;
6237 final IntBinaryOperator reducer;
6238 if ((transformer = this.transformer) != null &&
6239 (reducer = this.reducer) != null) {
6240 int r = this.basis;
6241 for (int i = baseIndex, f, h; batch > 0 &&
6242 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6243 addToPendingCount(1);
6244 (rights = new MapReduceEntriesToIntTask<K,V>
6245 (this, batch >>>= 1, baseLimit = h, f, tab,
6246 rights, transformer, r, reducer)).fork();
6247 }
6248 for (Node<K,V> p; (p = advance()) != null; )
6249 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6250 result = r;
6251 CountedCompleter<?> c;
6252 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6253 @SuppressWarnings("unchecked")
6254 MapReduceEntriesToIntTask<K,V>
6255 t = (MapReduceEntriesToIntTask<K,V>)c,
6256 s = t.rights;
6257 while (s != null) {
6258 t.result = reducer.applyAsInt(t.result, s.result);
6259 s = t.rights = s.nextRight;
6260 }
6261 }
6262 }
6263 }
6264 }
6265
6266 @SuppressWarnings("serial")
6267 static final class MapReduceMappingsToIntTask<K,V>
6268 extends BulkTask<K,V,Integer> {
6269 final ToIntBiFunction<? super K, ? super V> transformer;
6270 final IntBinaryOperator reducer;
6271 final int basis;
6272 int result;
6273 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6274 MapReduceMappingsToIntTask
6275 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6276 MapReduceMappingsToIntTask<K,V> nextRight,
6277 ToIntBiFunction<? super K, ? super V> transformer,
6278 int basis,
6279 IntBinaryOperator reducer) {
6280 super(p, b, i, f, t); this.nextRight = nextRight;
6281 this.transformer = transformer;
6282 this.basis = basis; this.reducer = reducer;
6283 }
6284 public final Integer getRawResult() { return result; }
6285 public final void compute() {
6286 final ToIntBiFunction<? super K, ? super V> transformer;
6287 final IntBinaryOperator reducer;
6288 if ((transformer = this.transformer) != null &&
6289 (reducer = this.reducer) != null) {
6290 int r = this.basis;
6291 for (int i = baseIndex, f, h; batch > 0 &&
6292 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6293 addToPendingCount(1);
6294 (rights = new MapReduceMappingsToIntTask<K,V>
6295 (this, batch >>>= 1, baseLimit = h, f, tab,
6296 rights, transformer, r, reducer)).fork();
6297 }
6298 for (Node<K,V> p; (p = advance()) != null; )
6299 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6300 result = r;
6301 CountedCompleter<?> c;
6302 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6303 @SuppressWarnings("unchecked")
6304 MapReduceMappingsToIntTask<K,V>
6305 t = (MapReduceMappingsToIntTask<K,V>)c,
6306 s = t.rights;
6307 while (s != null) {
6308 t.result = reducer.applyAsInt(t.result, s.result);
6309 s = t.rights = s.nextRight;
6310 }
6311 }
6312 }
6313 }
6314 }
6315
6316 // Unsafe mechanics
6317 private static final Unsafe U = Unsafe.getUnsafe();
6318 private static final long SIZECTL
6319 = U.objectFieldOffset(ConcurrentHashMap.class, "sizeCtl");
6320 private static final long TRANSFERINDEX
6321 = U.objectFieldOffset(ConcurrentHashMap.class, "transferIndex");
6322 private static final long BASECOUNT
6323 = U.objectFieldOffset(ConcurrentHashMap.class, "baseCount");
6324 private static final long CELLSBUSY
6325 = U.objectFieldOffset(ConcurrentHashMap.class, "cellsBusy");
6326 private static final long CELLVALUE
6327 = U.objectFieldOffset(CounterCell.class, "value");
6328 private static final int ABASE = U.arrayBaseOffset(Node[].class);
6329 private static final int ASHIFT;
6330
6331 static {
6332 int scale = U.arrayIndexScale(Node[].class);
6333 if ((scale & (scale - 1)) != 0)
6334 throw new ExceptionInInitializerError("array index scale not a power of two");
6335 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6336
6337 // Reduce the risk of rare disastrous classloading in first call to
6338 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6339 Class<?> ensureLoaded = LockSupport.class;
6340
6341 // Eager class load observed to help JIT during startup
6342 ensureLoaded = ReservationNode.class;
6343 }
6344 }