ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.76
Committed: Mon Jun 20 18:05:45 2005 UTC (18 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.75: +9 -14 lines
Log Message:
doc fixes

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8 import java.util.concurrent.locks.*;
9 import java.util.*;
10 import java.io.Serializable;
11 import java.io.IOException;
12 import java.io.ObjectInputStream;
13 import java.io.ObjectOutputStream;
14
15 /**
16 * A hash table supporting full concurrency of retrievals and
17 * adjustable expected concurrency for updates. This class obeys the
18 * same functional specification as {@link java.util.Hashtable}, and
19 * includes versions of methods corresponding to each method of
20 * <tt>Hashtable</tt>. However, even though all operations are
21 * thread-safe, retrieval operations do <em>not</em> entail locking,
22 * and there is <em>not</em> any support for locking the entire table
23 * in a way that prevents all access. This class is fully
24 * interoperable with <tt>Hashtable</tt> in programs that rely on its
25 * thread safety but not on its synchronization details.
26 *
27 * <p> Retrieval operations (including <tt>get</tt>) generally do not
28 * block, so may overlap with update operations (including
29 * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
30 * of the most recently <em>completed</em> update operations holding
31 * upon their onset. For aggregate operations such as <tt>putAll</tt>
32 * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
33 * removal of only some entries. Similarly, Iterators and
34 * Enumerations return elements reflecting the state of the hash table
35 * at some point at or since the creation of the iterator/enumeration.
36 * They do <em>not</em> throw {@link ConcurrentModificationException}.
37 * However, iterators are designed to be used by only one thread at a time.
38 *
39 * <p> The allowed concurrency among update operations is guided by
40 * the optional <tt>concurrencyLevel</tt> constructor argument
41 * (default <tt>16</tt>), which is used as a hint for internal sizing. The
42 * table is internally partitioned to try to permit the indicated
43 * number of concurrent updates without contention. Because placement
44 * in hash tables is essentially random, the actual concurrency will
45 * vary. Ideally, you should choose a value to accommodate as many
46 * threads as will ever concurrently modify the table. Using a
47 * significantly higher value than you need can waste space and time,
48 * and a significantly lower value can lead to thread contention. But
49 * overestimates and underestimates within an order of magnitude do
50 * not usually have much noticeable impact. A value of one is
51 * appropriate when it is known that only one thread will modify and
52 * all others will only read. Also, resizing this or any other kind of
53 * hash table is a relatively slow operation, so, when possible, it is
54 * a good idea to provide estimates of expected table sizes in
55 * constructors.
56 *
57 * <p>This class and its views and iterators implement all of the
58 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
59 * interfaces.
60 *
61 * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
62 * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
63 *
64 * <p>This class is a member of the
65 * <a href="{@docRoot}/../guide/collections/index.html">
66 * Java Collections Framework</a>.
67 *
68 * @since 1.5
69 * @author Doug Lea
70 * @param <K> the type of keys maintained by this map
71 * @param <V> the type of mapped values
72 */
73 public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
74 implements ConcurrentMap<K, V>, Serializable {
75 private static final long serialVersionUID = 7249069246763182397L;
76
77 /*
78 * The basic strategy is to subdivide the table among Segments,
79 * each of which itself is a concurrently readable hash table.
80 */
81
82 /* ---------------- Constants -------------- */
83
84 /**
85 * The default initial capacity for this table,
86 * used when not otherwise specified in a constructor.
87 */
88 static final int DEFAULT_INITIAL_CAPACITY = 16;
89
90 /**
91 * The default load factor for this table, used when not
92 * otherwise specified in a constructor.
93 */
94 static final float DEFAULT_LOAD_FACTOR = 0.75f;
95
96 /**
97 * The default concurrency level for this table, used when not
98 * otherwise specified in a constructor.
99 */
100 static final int DEFAULT_CONCURRENCY_LEVEL = 16;
101
102 /**
103 * The maximum capacity, used if a higher value is implicitly
104 * specified by either of the constructors with arguments. MUST
105 * be a power of two <= 1<<30 to ensure that entries are indexable
106 * using ints.
107 */
108 static final int MAXIMUM_CAPACITY = 1 << 30;
109
110 /**
111 * The maximum number of segments to allow; used to bound
112 * constructor arguments.
113 */
114 static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
115
116 /**
117 * Number of unsynchronized retries in size and containsValue
118 * methods before resorting to locking. This is used to avoid
119 * unbounded retries if tables undergo continuous modification
120 * which would make it impossible to obtain an accurate result.
121 */
122 static final int RETRIES_BEFORE_LOCK = 2;
123
124 /* ---------------- Fields -------------- */
125
126 /**
127 * Mask value for indexing into segments. The upper bits of a
128 * key's hash code are used to choose the segment.
129 */
130 final int segmentMask;
131
132 /**
133 * Shift value for indexing within segments.
134 */
135 final int segmentShift;
136
137 /**
138 * The segments, each of which is a specialized hash table
139 */
140 final Segment<K,V>[] segments;
141
142 transient Set<K> keySet;
143 transient Set<Map.Entry<K,V>> entrySet;
144 transient Collection<V> values;
145
146 /* ---------------- Small Utilities -------------- */
147
148 /**
149 * Returns a hash code for non-null Object x.
150 * Uses the same hash code spreader as most other java.util hash tables.
151 * @param x the object serving as a key
152 * @return the hash code
153 */
154 static int hash(Object x) {
155 int h = x.hashCode();
156 h += ~(h << 9);
157 h ^= (h >>> 14);
158 h += (h << 4);
159 h ^= (h >>> 10);
160 return h;
161 }
162
163 /**
164 * Returns the segment that should be used for key with given hash
165 * @param hash the hash code for the key
166 * @return the segment
167 */
168 final Segment<K,V> segmentFor(int hash) {
169 return segments[(hash >>> segmentShift) & segmentMask];
170 }
171
172 /* ---------------- Inner Classes -------------- */
173
174 /**
175 * ConcurrentHashMap list entry. Note that this is never exported
176 * out as a user-visible Map.Entry.
177 *
178 * Because the value field is volatile, not final, it is legal wrt
179 * the Java Memory Model for an unsynchronized reader to see null
180 * instead of initial value when read via a data race. Although a
181 * reordering leading to this is not likely to ever actually
182 * occur, the Segment.readValueUnderLock method is used as a
183 * backup in case a null (pre-initialized) value is ever seen in
184 * an unsynchronized access method.
185 */
186 static final class HashEntry<K,V> {
187 final K key;
188 final int hash;
189 volatile V value;
190 final HashEntry<K,V> next;
191
192 HashEntry(K key, int hash, HashEntry<K,V> next, V value) {
193 this.key = key;
194 this.hash = hash;
195 this.next = next;
196 this.value = value;
197 }
198
199 @SuppressWarnings("unchecked")
200 static final <K,V> HashEntry<K,V>[] newArray(int i) {
201 return new HashEntry[i];
202 }
203 }
204
205 /**
206 * Segments are specialized versions of hash tables. This
207 * subclasses from ReentrantLock opportunistically, just to
208 * simplify some locking and avoid separate construction.
209 */
210 static final class Segment<K,V> extends ReentrantLock implements Serializable {
211 /*
212 * Segments maintain a table of entry lists that are ALWAYS
213 * kept in a consistent state, so can be read without locking.
214 * Next fields of nodes are immutable (final). All list
215 * additions are performed at the front of each bin. This
216 * makes it easy to check changes, and also fast to traverse.
217 * When nodes would otherwise be changed, new nodes are
218 * created to replace them. This works well for hash tables
219 * since the bin lists tend to be short. (The average length
220 * is less than two for the default load factor threshold.)
221 *
222 * Read operations can thus proceed without locking, but rely
223 * on selected uses of volatiles to ensure that completed
224 * write operations performed by other threads are
225 * noticed. For most purposes, the "count" field, tracking the
226 * number of elements, serves as that volatile variable
227 * ensuring visibility. This is convenient because this field
228 * needs to be read in many read operations anyway:
229 *
230 * - All (unsynchronized) read operations must first read the
231 * "count" field, and should not look at table entries if
232 * it is 0.
233 *
234 * - All (synchronized) write operations should write to
235 * the "count" field after structurally changing any bin.
236 * The operations must not take any action that could even
237 * momentarily cause a concurrent read operation to see
238 * inconsistent data. This is made easier by the nature of
239 * the read operations in Map. For example, no operation
240 * can reveal that the table has grown but the threshold
241 * has not yet been updated, so there are no atomicity
242 * requirements for this with respect to reads.
243 *
244 * As a guide, all critical volatile reads and writes to the
245 * count field are marked in code comments.
246 */
247
248 private static final long serialVersionUID = 2249069246763182397L;
249
250 /**
251 * The number of elements in this segment's region.
252 */
253 transient volatile int count;
254
255 /**
256 * Number of updates that alter the size of the table. This is
257 * used during bulk-read methods to make sure they see a
258 * consistent snapshot: If modCounts change during a traversal
259 * of segments computing size or checking containsValue, then
260 * we might have an inconsistent view of state so (usually)
261 * must retry.
262 */
263 transient int modCount;
264
265 /**
266 * The table is rehashed when its size exceeds this threshold.
267 * (The value of this field is always <tt>(int)(capacity *
268 * loadFactor)</tt>.)
269 */
270 transient int threshold;
271
272 /**
273 * The per-segment table.
274 */
275 transient volatile HashEntry<K,V>[] table;
276
277 /**
278 * The load factor for the hash table. Even though this value
279 * is same for all segments, it is replicated to avoid needing
280 * links to outer object.
281 * @serial
282 */
283 final float loadFactor;
284
285 Segment(int initialCapacity, float lf) {
286 loadFactor = lf;
287 setTable(HashEntry.<K,V>newArray(initialCapacity));
288 }
289
290 @SuppressWarnings("unchecked")
291 static final <K,V> Segment<K,V>[] newArray(int i) {
292 return new Segment[i];
293 }
294
295 /**
296 * Sets table to new HashEntry array.
297 * Call only while holding lock or in constructor.
298 */
299 void setTable(HashEntry<K,V>[] newTable) {
300 threshold = (int)(newTable.length * loadFactor);
301 table = newTable;
302 }
303
304 /**
305 * Returns properly casted first entry of bin for given hash.
306 */
307 HashEntry<K,V> getFirst(int hash) {
308 HashEntry<K,V>[] tab = table;
309 return tab[hash & (tab.length - 1)];
310 }
311
312 /**
313 * Reads value field of an entry under lock. Called if value
314 * field ever appears to be null. This is possible only if a
315 * compiler happens to reorder a HashEntry initialization with
316 * its table assignment, which is legal under memory model
317 * but is not known to ever occur.
318 */
319 V readValueUnderLock(HashEntry<K,V> e) {
320 lock();
321 try {
322 return e.value;
323 } finally {
324 unlock();
325 }
326 }
327
328 /* Specialized implementations of map methods */
329
330 V get(Object key, int hash) {
331 if (count != 0) { // read-volatile
332 HashEntry<K,V> e = getFirst(hash);
333 while (e != null) {
334 if (e.hash == hash && key.equals(e.key)) {
335 V v = e.value;
336 if (v != null)
337 return v;
338 return readValueUnderLock(e); // recheck
339 }
340 e = e.next;
341 }
342 }
343 return null;
344 }
345
346 boolean containsKey(Object key, int hash) {
347 if (count != 0) { // read-volatile
348 HashEntry<K,V> e = getFirst(hash);
349 while (e != null) {
350 if (e.hash == hash && key.equals(e.key))
351 return true;
352 e = e.next;
353 }
354 }
355 return false;
356 }
357
358 boolean containsValue(Object value) {
359 if (count != 0) { // read-volatile
360 HashEntry<K,V>[] tab = table;
361 int len = tab.length;
362 for (int i = 0 ; i < len; i++) {
363 for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
364 V v = e.value;
365 if (v == null) // recheck
366 v = readValueUnderLock(e);
367 if (value.equals(v))
368 return true;
369 }
370 }
371 }
372 return false;
373 }
374
375 boolean replace(K key, int hash, V oldValue, V newValue) {
376 lock();
377 try {
378 HashEntry<K,V> e = getFirst(hash);
379 while (e != null && (e.hash != hash || !key.equals(e.key)))
380 e = e.next;
381
382 boolean replaced = false;
383 if (e != null && oldValue.equals(e.value)) {
384 replaced = true;
385 e.value = newValue;
386 }
387 return replaced;
388 } finally {
389 unlock();
390 }
391 }
392
393 V replace(K key, int hash, V newValue) {
394 lock();
395 try {
396 HashEntry<K,V> e = getFirst(hash);
397 while (e != null && (e.hash != hash || !key.equals(e.key)))
398 e = e.next;
399
400 V oldValue = null;
401 if (e != null) {
402 oldValue = e.value;
403 e.value = newValue;
404 }
405 return oldValue;
406 } finally {
407 unlock();
408 }
409 }
410
411
412 V put(K key, int hash, V value, boolean onlyIfAbsent) {
413 lock();
414 try {
415 int c = count;
416 if (c++ > threshold) // ensure capacity
417 rehash();
418 HashEntry<K,V>[] tab = table;
419 int index = hash & (tab.length - 1);
420 HashEntry<K,V> first = tab[index];
421 HashEntry<K,V> e = first;
422 while (e != null && (e.hash != hash || !key.equals(e.key)))
423 e = e.next;
424
425 V oldValue;
426 if (e != null) {
427 oldValue = e.value;
428 if (!onlyIfAbsent)
429 e.value = value;
430 }
431 else {
432 oldValue = null;
433 ++modCount;
434 tab[index] = new HashEntry<K,V>(key, hash, first, value);
435 count = c; // write-volatile
436 }
437 return oldValue;
438 } finally {
439 unlock();
440 }
441 }
442
443 void rehash() {
444 HashEntry<K,V>[] oldTable = table;
445 int oldCapacity = oldTable.length;
446 if (oldCapacity >= MAXIMUM_CAPACITY)
447 return;
448
449 /*
450 * Reclassify nodes in each list to new Map. Because we are
451 * using power-of-two expansion, the elements from each bin
452 * must either stay at same index, or move with a power of two
453 * offset. We eliminate unnecessary node creation by catching
454 * cases where old nodes can be reused because their next
455 * fields won't change. Statistically, at the default
456 * threshold, only about one-sixth of them need cloning when
457 * a table doubles. The nodes they replace will be garbage
458 * collectable as soon as they are no longer referenced by any
459 * reader thread that may be in the midst of traversing table
460 * right now.
461 */
462
463 HashEntry<K,V>[] newTable = HashEntry.newArray(oldCapacity<<1);
464 threshold = (int)(newTable.length * loadFactor);
465 int sizeMask = newTable.length - 1;
466 for (int i = 0; i < oldCapacity ; i++) {
467 // We need to guarantee that any existing reads of old Map can
468 // proceed. So we cannot yet null out each bin.
469 HashEntry<K,V> e = oldTable[i];
470
471 if (e != null) {
472 HashEntry<K,V> next = e.next;
473 int idx = e.hash & sizeMask;
474
475 // Single node on list
476 if (next == null)
477 newTable[idx] = e;
478
479 else {
480 // Reuse trailing consecutive sequence at same slot
481 HashEntry<K,V> lastRun = e;
482 int lastIdx = idx;
483 for (HashEntry<K,V> last = next;
484 last != null;
485 last = last.next) {
486 int k = last.hash & sizeMask;
487 if (k != lastIdx) {
488 lastIdx = k;
489 lastRun = last;
490 }
491 }
492 newTable[lastIdx] = lastRun;
493
494 // Clone all remaining nodes
495 for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
496 int k = p.hash & sizeMask;
497 HashEntry<K,V> n = newTable[k];
498 newTable[k] = new HashEntry<K,V>(p.key, p.hash,
499 n, p.value);
500 }
501 }
502 }
503 }
504 table = newTable;
505 }
506
507 /**
508 * Remove; match on key only if value null, else match both.
509 */
510 V remove(Object key, int hash, Object value) {
511 lock();
512 try {
513 int c = count - 1;
514 HashEntry<K,V>[] tab = table;
515 int index = hash & (tab.length - 1);
516 HashEntry<K,V> first = tab[index];
517 HashEntry<K,V> e = first;
518 while (e != null && (e.hash != hash || !key.equals(e.key)))
519 e = e.next;
520
521 V oldValue = null;
522 if (e != null) {
523 V v = e.value;
524 if (value == null || value.equals(v)) {
525 oldValue = v;
526 // All entries following removed node can stay
527 // in list, but all preceding ones need to be
528 // cloned.
529 ++modCount;
530 HashEntry<K,V> newFirst = e.next;
531 for (HashEntry<K,V> p = first; p != e; p = p.next)
532 newFirst = new HashEntry<K,V>(p.key, p.hash,
533 newFirst, p.value);
534 tab[index] = newFirst;
535 count = c; // write-volatile
536 }
537 }
538 return oldValue;
539 } finally {
540 unlock();
541 }
542 }
543
544 void clear() {
545 if (count != 0) {
546 lock();
547 try {
548 HashEntry<K,V>[] tab = table;
549 for (int i = 0; i < tab.length ; i++)
550 tab[i] = null;
551 ++modCount;
552 count = 0; // write-volatile
553 } finally {
554 unlock();
555 }
556 }
557 }
558 }
559
560
561
562 /* ---------------- Public operations -------------- */
563
564 /**
565 * Creates a new, empty map with the specified initial
566 * capacity, load factor and concurrency level.
567 *
568 * @param initialCapacity the initial capacity. The implementation
569 * performs internal sizing to accommodate this many elements.
570 * @param loadFactor the load factor threshold, used to control resizing.
571 * Resizing may be performed when the average number of elements per
572 * bin exceeds this threshold.
573 * @param concurrencyLevel the estimated number of concurrently
574 * updating threads. The implementation performs internal sizing
575 * to try to accommodate this many threads.
576 * @throws IllegalArgumentException if the initial capacity is
577 * negative or the load factor or concurrencyLevel are
578 * nonpositive.
579 */
580 public ConcurrentHashMap(int initialCapacity,
581 float loadFactor, int concurrencyLevel) {
582 if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
583 throw new IllegalArgumentException();
584
585 if (concurrencyLevel > MAX_SEGMENTS)
586 concurrencyLevel = MAX_SEGMENTS;
587
588 // Find power-of-two sizes best matching arguments
589 int sshift = 0;
590 int ssize = 1;
591 while (ssize < concurrencyLevel) {
592 ++sshift;
593 ssize <<= 1;
594 }
595 segmentShift = 32 - sshift;
596 segmentMask = ssize - 1;
597 this.segments = Segment.newArray(ssize);
598
599 if (initialCapacity > MAXIMUM_CAPACITY)
600 initialCapacity = MAXIMUM_CAPACITY;
601 int c = initialCapacity / ssize;
602 if (c * ssize < initialCapacity)
603 ++c;
604 int cap = 1;
605 while (cap < c)
606 cap <<= 1;
607
608 for (int i = 0; i < this.segments.length; ++i)
609 this.segments[i] = new Segment<K,V>(cap, loadFactor);
610 }
611
612 /**
613 * Creates a new, empty map with the specified initial capacity
614 * and load factor and with the default concurrencyLevel (16).
615 *
616 * @param initialCapacity The implementation performs internal
617 * sizing to accommodate this many elements.
618 * @param loadFactor the load factor threshold, used to control resizing.
619 * Resizing may be performed when the average number of elements per
620 * bin exceeds this threshold.
621 * @throws IllegalArgumentException if the initial capacity of
622 * elements is negative or the load factor is nonpositive
623 */
624 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
625 this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
626 }
627
628 /**
629 * Creates a new, empty map with the specified initial capacity,
630 * and with default load factor (0.75) and concurrencyLevel (16).
631 *
632 * @param initialCapacity the initial capacity. The implementation
633 * performs internal sizing to accommodate this many elements.
634 * @throws IllegalArgumentException if the initial capacity of
635 * elements is negative.
636 */
637 public ConcurrentHashMap(int initialCapacity) {
638 this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
639 }
640
641 /**
642 * Creates a new, empty map with a default initial capacity (16),
643 * load factor (0.75) and concurrencyLevel (16).
644 */
645 public ConcurrentHashMap() {
646 this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
647 }
648
649 /**
650 * Creates a new map with the same mappings as the given map.
651 * The map is created with a capacity of 1.5 times the number
652 * of mappings in the given map or 16 (whichever is greater),
653 * and a default load factor (0.75) and concurrencyLevel (16).
654 *
655 * @param m the map
656 */
657 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
658 this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
659 DEFAULT_INITIAL_CAPACITY),
660 DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
661 putAll(m);
662 }
663
664 /**
665 * Returns <tt>true</tt> if this map contains no key-value mappings.
666 *
667 * @return <tt>true</tt> if this map contains no key-value mappings
668 */
669 public boolean isEmpty() {
670 final Segment<K,V>[] segments = this.segments;
671 /*
672 * We keep track of per-segment modCounts to avoid ABA
673 * problems in which an element in one segment was added and
674 * in another removed during traversal, in which case the
675 * table was never actually empty at any point. Note the
676 * similar use of modCounts in the size() and containsValue()
677 * methods, which are the only other methods also susceptible
678 * to ABA problems.
679 */
680 int[] mc = new int[segments.length];
681 int mcsum = 0;
682 for (int i = 0; i < segments.length; ++i) {
683 if (segments[i].count != 0)
684 return false;
685 else
686 mcsum += mc[i] = segments[i].modCount;
687 }
688 // If mcsum happens to be zero, then we know we got a snapshot
689 // before any modifications at all were made. This is
690 // probably common enough to bother tracking.
691 if (mcsum != 0) {
692 for (int i = 0; i < segments.length; ++i) {
693 if (segments[i].count != 0 ||
694 mc[i] != segments[i].modCount)
695 return false;
696 }
697 }
698 return true;
699 }
700
701 /**
702 * Returns the number of key-value mappings in this map. If the
703 * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
704 * <tt>Integer.MAX_VALUE</tt>.
705 *
706 * @return the number of key-value mappings in this map
707 */
708 public int size() {
709 final Segment<K,V>[] segments = this.segments;
710 long sum = 0;
711 long check = 0;
712 int[] mc = new int[segments.length];
713 // Try a few times to get accurate count. On failure due to
714 // continuous async changes in table, resort to locking.
715 for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
716 check = 0;
717 sum = 0;
718 int mcsum = 0;
719 for (int i = 0; i < segments.length; ++i) {
720 sum += segments[i].count;
721 mcsum += mc[i] = segments[i].modCount;
722 }
723 if (mcsum != 0) {
724 for (int i = 0; i < segments.length; ++i) {
725 check += segments[i].count;
726 if (mc[i] != segments[i].modCount) {
727 check = -1; // force retry
728 break;
729 }
730 }
731 }
732 if (check == sum)
733 break;
734 }
735 if (check != sum) { // Resort to locking all segments
736 sum = 0;
737 for (int i = 0; i < segments.length; ++i)
738 segments[i].lock();
739 for (int i = 0; i < segments.length; ++i)
740 sum += segments[i].count;
741 for (int i = 0; i < segments.length; ++i)
742 segments[i].unlock();
743 }
744 if (sum > Integer.MAX_VALUE)
745 return Integer.MAX_VALUE;
746 else
747 return (int)sum;
748 }
749
750 /**
751 * Returns the value to which this map maps the specified key, or
752 * <tt>null</tt> if the map contains no mapping for the key.
753 *
754 * @param key key whose associated value is to be returned
755 * @return the value associated with <tt>key</tt> in this map, or
756 * <tt>null</tt> if there is no mapping for <tt>key</tt>
757 * @throws NullPointerException if the specified key is null
758 */
759 public V get(Object key) {
760 int hash = hash(key); // throws NullPointerException if key null
761 return segmentFor(hash).get(key, hash);
762 }
763
764 /**
765 * Tests if the specified object is a key in this table.
766 *
767 * @param key possible key
768 * @return <tt>true</tt> if and only if the specified object
769 * is a key in this table, as determined by the
770 * <tt>equals</tt> method; <tt>false</tt> otherwise.
771 * @throws NullPointerException if the specified key is null
772 */
773 public boolean containsKey(Object key) {
774 int hash = hash(key); // throws NullPointerException if key null
775 return segmentFor(hash).containsKey(key, hash);
776 }
777
778 /**
779 * Returns <tt>true</tt> if this map maps one or more keys to the
780 * specified value. Note: This method requires a full internal
781 * traversal of the hash table, and so is much slower than
782 * method <tt>containsKey</tt>.
783 *
784 * @param value value whose presence in this map is to be tested
785 * @return <tt>true</tt> if this map maps one or more keys to the
786 * specified value
787 * @throws NullPointerException if the specified value is null
788 */
789 public boolean containsValue(Object value) {
790 if (value == null)
791 throw new NullPointerException();
792
793 // See explanation of modCount use above
794
795 final Segment<K,V>[] segments = this.segments;
796 int[] mc = new int[segments.length];
797
798 // Try a few times without locking
799 for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
800 int sum = 0;
801 int mcsum = 0;
802 for (int i = 0; i < segments.length; ++i) {
803 int c = segments[i].count;
804 mcsum += mc[i] = segments[i].modCount;
805 if (segments[i].containsValue(value))
806 return true;
807 }
808 boolean cleanSweep = true;
809 if (mcsum != 0) {
810 for (int i = 0; i < segments.length; ++i) {
811 int c = segments[i].count;
812 if (mc[i] != segments[i].modCount) {
813 cleanSweep = false;
814 break;
815 }
816 }
817 }
818 if (cleanSweep)
819 return false;
820 }
821 // Resort to locking all segments
822 for (int i = 0; i < segments.length; ++i)
823 segments[i].lock();
824 boolean found = false;
825 try {
826 for (int i = 0; i < segments.length; ++i) {
827 if (segments[i].containsValue(value)) {
828 found = true;
829 break;
830 }
831 }
832 } finally {
833 for (int i = 0; i < segments.length; ++i)
834 segments[i].unlock();
835 }
836 return found;
837 }
838
839 /**
840 * Legacy method testing if some key maps into the specified value
841 * in this table. This method is identical in functionality to
842 * {@link #containsValue}, and exists solely to ensure
843 * full compatibility with class {@link java.util.Hashtable},
844 * which supported this method prior to introduction of the
845 * Java Collections framework.
846
847 * @param value a value to search for
848 * @return <tt>true</tt> if and only if some key maps to the
849 * <tt>value</tt> argument in this table as
850 * determined by the <tt>equals</tt> method;
851 * <tt>false</tt> otherwise
852 * @throws NullPointerException if the specified value is null
853 */
854 public boolean contains(Object value) {
855 return containsValue(value);
856 }
857
858 /**
859 * Maps the specified key to the specified value in this table.
860 * Neither the key nor the value can be null.
861 *
862 * <p> The value can be retrieved by calling the <tt>get</tt> method
863 * with a key that is equal to the original key.
864 *
865 * @param key key with which the specified value is to be associated
866 * @param value value to be associated with the specified key
867 * @return the previous value associated with <tt>key</tt>, or
868 * <tt>null</tt> if there was no mapping for <tt>key</tt>
869 * @throws NullPointerException if the specified key or value is null
870 */
871 public V put(K key, V value) {
872 if (value == null)
873 throw new NullPointerException();
874 int hash = hash(key);
875 return segmentFor(hash).put(key, hash, value, false);
876 }
877
878 /**
879 * {@inheritDoc}
880 *
881 * @return the previous value associated with the specified key,
882 * or <tt>null</tt> if there was no mapping for the key
883 * @throws NullPointerException if the specified key or value is null
884 */
885 public V putIfAbsent(K key, V value) {
886 if (value == null)
887 throw new NullPointerException();
888 int hash = hash(key);
889 return segmentFor(hash).put(key, hash, value, true);
890 }
891
892 /**
893 * Copies all of the mappings from the specified map to this one.
894 * These mappings replace any mappings that this map had for any of the
895 * keys currently in the specified map.
896 *
897 * @param m mappings to be stored in this map
898 */
899 public void putAll(Map<? extends K, ? extends V> m) {
900 for (Iterator<? extends Map.Entry<? extends K, ? extends V>> it = (Iterator<? extends Map.Entry<? extends K, ? extends V>>) m.entrySet().iterator(); it.hasNext(); ) {
901 Entry<? extends K, ? extends V> e = it.next();
902 put(e.getKey(), e.getValue());
903 }
904 }
905
906 /**
907 * Removes the key (and its corresponding value) from this map.
908 * This method does nothing if the key is not in the map.
909 *
910 * @param key the key that needs to be removed
911 * @return the previous value associated with <tt>key</tt>, or
912 * <tt>null</tt> if there was no mapping for <tt>key</tt>.
913 * @throws NullPointerException if the specified key is null
914 */
915 public V remove(Object key) {
916 int hash = hash(key);
917 return segmentFor(hash).remove(key, hash, null);
918 }
919
920 /**
921 * {@inheritDoc}
922 *
923 * @throws NullPointerException if the specified key is null
924 */
925 public boolean remove(Object key, Object value) {
926 if (value == null)
927 return false;
928 int hash = hash(key);
929 return segmentFor(hash).remove(key, hash, value) != null;
930 }
931
932 /**
933 * {@inheritDoc}
934 *
935 * @throws NullPointerException if any of the arguments are null
936 */
937 public boolean replace(K key, V oldValue, V newValue) {
938 if (oldValue == null || newValue == null)
939 throw new NullPointerException();
940 int hash = hash(key);
941 return segmentFor(hash).replace(key, hash, oldValue, newValue);
942 }
943
944 /**
945 * {@inheritDoc}
946 *
947 * @return the previous value associated with the specified key,
948 * or <tt>null</tt> if there was no mapping for the key
949 * @throws NullPointerException if the specified key or value is null
950 */
951 public V replace(K key, V value) {
952 if (value == null)
953 throw new NullPointerException();
954 int hash = hash(key);
955 return segmentFor(hash).replace(key, hash, value);
956 }
957
958 /**
959 * Removes all of the mappings from this map.
960 */
961 public void clear() {
962 for (int i = 0; i < segments.length; ++i)
963 segments[i].clear();
964 }
965
966 /**
967 * Returns a {@link Set} view of the keys contained in this map.
968 * The set is backed by the map, so changes to the map are
969 * reflected in the set, and vice-versa. The set supports element
970 * removal, which removes the corresponding mapping from this map,
971 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
972 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
973 * operations. It does not support the <tt>add</tt> or
974 * <tt>addAll</tt> operations.
975 *
976 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
977 * that will never throw {@link ConcurrentModificationException},
978 * and guarantees to traverse elements as they existed upon
979 * construction of the iterator, and may (but is not guaranteed to)
980 * reflect any modifications subsequent to construction.
981 */
982 public Set<K> keySet() {
983 Set<K> ks = keySet;
984 return (ks != null) ? ks : (keySet = new KeySet());
985 }
986
987 /**
988 * Returns a {@link Collection} view of the values contained in this map.
989 * The collection is backed by the map, so changes to the map are
990 * reflected in the collection, and vice-versa. The collection
991 * supports element removal, which removes the corresponding
992 * mapping from this map, via the <tt>Iterator.remove</tt>,
993 * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
994 * <tt>retainAll</tt>, and <tt>clear</tt> operations. It does not
995 * support the <tt>add</tt> or <tt>addAll</tt> operations.
996 *
997 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
998 * that will never throw {@link ConcurrentModificationException},
999 * and guarantees to traverse elements as they existed upon
1000 * construction of the iterator, and may (but is not guaranteed to)
1001 * reflect any modifications subsequent to construction.
1002 */
1003 public Collection<V> values() {
1004 Collection<V> vs = values;
1005 return (vs != null) ? vs : (values = new Values());
1006 }
1007
1008 /**
1009 * Returns a {@link Set} view of the mappings contained in this map.
1010 * The set is backed by the map, so changes to the map are
1011 * reflected in the set, and vice-versa. The set supports element
1012 * removal, which removes the corresponding mapping from the map,
1013 * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1014 * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1015 * operations. It does not support the <tt>add</tt> or
1016 * <tt>addAll</tt> operations.
1017 *
1018 * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
1019 * that will never throw {@link ConcurrentModificationException},
1020 * and guarantees to traverse elements as they existed upon
1021 * construction of the iterator, and may (but is not guaranteed to)
1022 * reflect any modifications subsequent to construction.
1023 */
1024 public Set<Map.Entry<K,V>> entrySet() {
1025 Set<Map.Entry<K,V>> es = entrySet;
1026 return (es != null) ? es : (entrySet = new EntrySet());
1027 }
1028
1029 /**
1030 * Returns an enumeration of the keys in this table.
1031 *
1032 * @return an enumeration of the keys in this table
1033 * @see #keySet
1034 */
1035 public Enumeration<K> keys() {
1036 return new KeyIterator();
1037 }
1038
1039 /**
1040 * Returns an enumeration of the values in this table.
1041 *
1042 * @return an enumeration of the values in this table
1043 * @see #values
1044 */
1045 public Enumeration<V> elements() {
1046 return new ValueIterator();
1047 }
1048
1049 /* ---------------- Iterator Support -------------- */
1050
1051 abstract class HashIterator {
1052 int nextSegmentIndex;
1053 int nextTableIndex;
1054 HashEntry<K,V>[] currentTable;
1055 HashEntry<K, V> nextEntry;
1056 HashEntry<K, V> lastReturned;
1057
1058 HashIterator() {
1059 nextSegmentIndex = segments.length - 1;
1060 nextTableIndex = -1;
1061 advance();
1062 }
1063
1064 public boolean hasMoreElements() { return hasNext(); }
1065
1066 final void advance() {
1067 if (nextEntry != null && (nextEntry = nextEntry.next) != null)
1068 return;
1069
1070 while (nextTableIndex >= 0) {
1071 if ( (nextEntry = currentTable[nextTableIndex--]) != null)
1072 return;
1073 }
1074
1075 while (nextSegmentIndex >= 0) {
1076 Segment<K,V> seg = segments[nextSegmentIndex--];
1077 if (seg.count != 0) {
1078 currentTable = seg.table;
1079 for (int j = currentTable.length - 1; j >= 0; --j) {
1080 if ( (nextEntry = currentTable[j]) != null) {
1081 nextTableIndex = j - 1;
1082 return;
1083 }
1084 }
1085 }
1086 }
1087 }
1088
1089 public boolean hasNext() { return nextEntry != null; }
1090
1091 HashEntry<K,V> nextEntry() {
1092 if (nextEntry == null)
1093 throw new NoSuchElementException();
1094 lastReturned = nextEntry;
1095 advance();
1096 return lastReturned;
1097 }
1098
1099 public void remove() {
1100 if (lastReturned == null)
1101 throw new IllegalStateException();
1102 ConcurrentHashMap.this.remove(lastReturned.key);
1103 lastReturned = null;
1104 }
1105 }
1106
1107 final class KeyIterator extends HashIterator implements Iterator<K>, Enumeration<K> {
1108 public K next() { return super.nextEntry().key; }
1109 public K nextElement() { return super.nextEntry().key; }
1110 }
1111
1112 final class ValueIterator extends HashIterator implements Iterator<V>, Enumeration<V> {
1113 public V next() { return super.nextEntry().value; }
1114 public V nextElement() { return super.nextEntry().value; }
1115 }
1116
1117
1118
1119 /**
1120 * Entry iterator. Exported Entry objects must write-through
1121 * changes in setValue, even if the nodes have been cloned. So we
1122 * cannot return internal HashEntry objects. Instead, the iterator
1123 * itself acts as a forwarding pseudo-entry.
1124 */
1125 final class EntryIterator extends HashIterator implements Map.Entry<K,V>, Iterator<Entry<K,V>> {
1126 public Map.Entry<K,V> next() {
1127 nextEntry();
1128 return this;
1129 }
1130
1131 public K getKey() {
1132 if (lastReturned == null)
1133 throw new IllegalStateException("Entry was removed");
1134 return lastReturned.key;
1135 }
1136
1137 public V getValue() {
1138 if (lastReturned == null)
1139 throw new IllegalStateException("Entry was removed");
1140 return ConcurrentHashMap.this.get(lastReturned.key);
1141 }
1142
1143 public V setValue(V value) {
1144 if (lastReturned == null)
1145 throw new IllegalStateException("Entry was removed");
1146 return ConcurrentHashMap.this.put(lastReturned.key, value);
1147 }
1148
1149 public boolean equals(Object o) {
1150 // If not acting as entry, just use default.
1151 if (lastReturned == null)
1152 return super.equals(o);
1153 if (!(o instanceof Map.Entry))
1154 return false;
1155 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1156 return eq(getKey(), e.getKey()) && eq(getValue(), e.getValue());
1157 }
1158
1159 public int hashCode() {
1160 // If not acting as entry, just use default.
1161 if (lastReturned == null)
1162 return super.hashCode();
1163
1164 Object k = getKey();
1165 Object v = getValue();
1166 return ((k == null) ? 0 : k.hashCode()) ^
1167 ((v == null) ? 0 : v.hashCode());
1168 }
1169
1170 public String toString() {
1171 // If not acting as entry, just use default.
1172 if (lastReturned == null)
1173 return super.toString();
1174 else
1175 return getKey() + "=" + getValue();
1176 }
1177
1178 boolean eq(Object o1, Object o2) {
1179 return (o1 == null ? o2 == null : o1.equals(o2));
1180 }
1181
1182 }
1183
1184 final class KeySet extends AbstractSet<K> {
1185 public Iterator<K> iterator() {
1186 return new KeyIterator();
1187 }
1188 public int size() {
1189 return ConcurrentHashMap.this.size();
1190 }
1191 public boolean contains(Object o) {
1192 return ConcurrentHashMap.this.containsKey(o);
1193 }
1194 public boolean remove(Object o) {
1195 return ConcurrentHashMap.this.remove(o) != null;
1196 }
1197 public void clear() {
1198 ConcurrentHashMap.this.clear();
1199 }
1200 public Object[] toArray() {
1201 Collection<K> c = new ArrayList<K>();
1202 for (Iterator<K> i = iterator(); i.hasNext(); )
1203 c.add(i.next());
1204 return c.toArray();
1205 }
1206 public <T> T[] toArray(T[] a) {
1207 Collection<K> c = new ArrayList<K>();
1208 for (Iterator<K> i = iterator(); i.hasNext(); )
1209 c.add(i.next());
1210 return c.toArray(a);
1211 }
1212 }
1213
1214 final class Values extends AbstractCollection<V> {
1215 public Iterator<V> iterator() {
1216 return new ValueIterator();
1217 }
1218 public int size() {
1219 return ConcurrentHashMap.this.size();
1220 }
1221 public boolean contains(Object o) {
1222 return ConcurrentHashMap.this.containsValue(o);
1223 }
1224 public void clear() {
1225 ConcurrentHashMap.this.clear();
1226 }
1227 public Object[] toArray() {
1228 Collection<V> c = new ArrayList<V>();
1229 for (Iterator<V> i = iterator(); i.hasNext(); )
1230 c.add(i.next());
1231 return c.toArray();
1232 }
1233 public <T> T[] toArray(T[] a) {
1234 Collection<V> c = new ArrayList<V>();
1235 for (Iterator<V> i = iterator(); i.hasNext(); )
1236 c.add(i.next());
1237 return c.toArray(a);
1238 }
1239 }
1240
1241 final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1242 public Iterator<Map.Entry<K,V>> iterator() {
1243 return new EntryIterator();
1244 }
1245 public boolean contains(Object o) {
1246 if (!(o instanceof Map.Entry))
1247 return false;
1248 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1249 V v = ConcurrentHashMap.this.get(e.getKey());
1250 return v != null && v.equals(e.getValue());
1251 }
1252 public boolean remove(Object o) {
1253 if (!(o instanceof Map.Entry))
1254 return false;
1255 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
1256 return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
1257 }
1258 public int size() {
1259 return ConcurrentHashMap.this.size();
1260 }
1261 public void clear() {
1262 ConcurrentHashMap.this.clear();
1263 }
1264 public Object[] toArray() {
1265 // Since we don't ordinarily have distinct Entry objects, we
1266 // must pack elements using exportable SimpleEntry
1267 Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1268 for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
1269 c.add(new AbstractMap.SimpleEntry<K,V>(i.next()));
1270 return c.toArray();
1271 }
1272 public <T> T[] toArray(T[] a) {
1273 Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>(size());
1274 for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); )
1275 c.add(new AbstractMap.SimpleEntry<K,V>(i.next()));
1276 return c.toArray(a);
1277 }
1278
1279 }
1280
1281 /* ---------------- Serialization Support -------------- */
1282
1283 /**
1284 * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
1285 * stream (i.e., serialize it).
1286 * @param s the stream
1287 * @serialData
1288 * the key (Object) and value (Object)
1289 * for each key-value mapping, followed by a null pair.
1290 * The key-value mappings are emitted in no particular order.
1291 */
1292 private void writeObject(java.io.ObjectOutputStream s) throws IOException {
1293 s.defaultWriteObject();
1294
1295 for (int k = 0; k < segments.length; ++k) {
1296 Segment<K,V> seg = segments[k];
1297 seg.lock();
1298 try {
1299 HashEntry<K,V>[] tab = seg.table;
1300 for (int i = 0; i < tab.length; ++i) {
1301 for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
1302 s.writeObject(e.key);
1303 s.writeObject(e.value);
1304 }
1305 }
1306 } finally {
1307 seg.unlock();
1308 }
1309 }
1310 s.writeObject(null);
1311 s.writeObject(null);
1312 }
1313
1314 /**
1315 * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
1316 * stream (i.e., deserialize it).
1317 * @param s the stream
1318 */
1319 private void readObject(java.io.ObjectInputStream s)
1320 throws IOException, ClassNotFoundException {
1321 s.defaultReadObject();
1322
1323 // Initialize each segment to be minimally sized, and let grow.
1324 for (int i = 0; i < segments.length; ++i) {
1325 segments[i].setTable(new HashEntry[1]);
1326 }
1327
1328 // Read the keys and values, and put the mappings in the table
1329 for (;;) {
1330 K key = (K) s.readObject();
1331 V value = (V) s.readObject();
1332 if (key == null)
1333 break;
1334 put(key, value);
1335 }
1336 }
1337 }