ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/test/tck/SplittableRandomTest.java
Revision: 1.15
Committed: Wed Dec 31 16:44:02 2014 UTC (9 years, 4 months ago) by jsr166
Branch: MAIN
Changes since 1.14: +0 -1 lines
Log Message:
remove unused imports

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6 import junit.framework.*;
7 import java.util.*;
8 import java.util.SplittableRandom;
9 import java.util.concurrent.atomic.AtomicInteger;
10 import java.util.concurrent.atomic.LongAdder;
11
12 public class SplittableRandomTest extends JSR166TestCase {
13
14 public static void main(String[] args) {
15 junit.textui.TestRunner.run(suite());
16 }
17 public static Test suite() {
18 return new TestSuite(SplittableRandomTest.class);
19 }
20
21 /*
22 * Testing coverage notes:
23 *
24 * 1. Many of the test methods are adapted from ThreadLocalRandomTest.
25 *
26 * 2. These tests do not check for random number generator quality.
27 * But we check for minimal API compliance by requiring that
28 * repeated calls to nextX methods, up to NCALLS tries, produce at
29 * least two distinct results. (In some possible universe, a
30 * "correct" implementation might fail, but the odds are vastly
31 * less than that of encountering a hardware failure while running
32 * the test.) For bounded nextX methods, we sample various
33 * intervals across multiples of primes. In other tests, we repeat
34 * under REPS different values.
35 */
36
37 // max numbers of calls to detect getting stuck on one value
38 static final int NCALLS = 10000;
39
40 // max sampled int bound
41 static final int MAX_INT_BOUND = (1 << 26);
42
43 // max sampled long bound
44 static final long MAX_LONG_BOUND = (1L << 40);
45
46 // Number of replications for other checks
47 static final int REPS =
48 Integer.getInteger("SplittableRandomTest.reps", 4);
49
50 /**
51 * Repeated calls to nextInt produce at least two distinct results
52 */
53 public void testNextInt() {
54 SplittableRandom sr = new SplittableRandom();
55 int f = sr.nextInt();
56 int i = 0;
57 while (i < NCALLS && sr.nextInt() == f)
58 ++i;
59 assertTrue(i < NCALLS);
60 }
61
62 /**
63 * Repeated calls to nextLong produce at least two distinct results
64 */
65 public void testNextLong() {
66 SplittableRandom sr = new SplittableRandom();
67 long f = sr.nextLong();
68 int i = 0;
69 while (i < NCALLS && sr.nextLong() == f)
70 ++i;
71 assertTrue(i < NCALLS);
72 }
73
74 /**
75 * Repeated calls to nextDouble produce at least two distinct results
76 */
77 public void testNextDouble() {
78 SplittableRandom sr = new SplittableRandom();
79 double f = sr.nextDouble();
80 int i = 0;
81 while (i < NCALLS && sr.nextDouble() == f)
82 ++i;
83 assertTrue(i < NCALLS);
84 }
85
86 /**
87 * Two SplittableRandoms created with the same seed produce the
88 * same values for nextLong.
89 */
90 public void testSeedConstructor() {
91 for (long seed = 2; seed < MAX_LONG_BOUND; seed += 15485863) {
92 SplittableRandom sr1 = new SplittableRandom(seed);
93 SplittableRandom sr2 = new SplittableRandom(seed);
94 for (int i = 0; i < REPS; ++i)
95 assertEquals(sr1.nextLong(), sr2.nextLong());
96 }
97 }
98
99 /**
100 * A SplittableRandom produced by split() of a default-constructed
101 * SplittableRandom generates a different sequence
102 */
103 public void testSplit1() {
104 SplittableRandom sr = new SplittableRandom();
105 for (int reps = 0; reps < REPS; ++reps) {
106 SplittableRandom sc = sr.split();
107 int i = 0;
108 while (i < NCALLS && sr.nextLong() == sc.nextLong())
109 ++i;
110 assertTrue(i < NCALLS);
111 }
112 }
113
114 /**
115 * A SplittableRandom produced by split() of a seeded-constructed
116 * SplittableRandom generates a different sequence
117 */
118 public void testSplit2() {
119 SplittableRandom sr = new SplittableRandom(12345);
120 for (int reps = 0; reps < REPS; ++reps) {
121 SplittableRandom sc = sr.split();
122 int i = 0;
123 while (i < NCALLS && sr.nextLong() == sc.nextLong())
124 ++i;
125 assertTrue(i < NCALLS);
126 }
127 }
128
129 /**
130 * nextInt(non-positive) throws IllegalArgumentException
131 */
132 public void testNextIntBoundNonPositive() {
133 SplittableRandom sr = new SplittableRandom();
134 Runnable[] throwingActions = {
135 () -> sr.nextInt(-17),
136 () -> sr.nextInt(0),
137 () -> sr.nextInt(Integer.MIN_VALUE),
138 };
139 assertThrows(IllegalArgumentException.class, throwingActions);
140 }
141
142 /**
143 * nextInt(least >= bound) throws IllegalArgumentException
144 */
145 public void testNextIntBadBounds() {
146 SplittableRandom sr = new SplittableRandom();
147 Runnable[] throwingActions = {
148 () -> sr.nextInt(17, 2),
149 () -> sr.nextInt(-42, -42),
150 () -> sr.nextInt(Integer.MAX_VALUE, Integer.MIN_VALUE),
151 };
152 assertThrows(IllegalArgumentException.class, throwingActions);
153 }
154
155 /**
156 * nextInt(bound) returns 0 <= value < bound;
157 * repeated calls produce at least two distinct results
158 */
159 public void testNextIntBounded() {
160 SplittableRandom sr = new SplittableRandom();
161 // sample bound space across prime number increments
162 for (int bound = 2; bound < MAX_INT_BOUND; bound += 524959) {
163 int f = sr.nextInt(bound);
164 assertTrue(0 <= f && f < bound);
165 int i = 0;
166 int j;
167 while (i < NCALLS &&
168 (j = sr.nextInt(bound)) == f) {
169 assertTrue(0 <= j && j < bound);
170 ++i;
171 }
172 assertTrue(i < NCALLS);
173 }
174 }
175
176 /**
177 * nextInt(least, bound) returns least <= value < bound;
178 * repeated calls produce at least two distinct results
179 */
180 public void testNextIntBounded2() {
181 SplittableRandom sr = new SplittableRandom();
182 for (int least = -15485863; least < MAX_INT_BOUND; least += 524959) {
183 for (int bound = least + 2; bound > least && bound < MAX_INT_BOUND; bound += 49979687) {
184 int f = sr.nextInt(least, bound);
185 assertTrue(least <= f && f < bound);
186 int i = 0;
187 int j;
188 while (i < NCALLS &&
189 (j = sr.nextInt(least, bound)) == f) {
190 assertTrue(least <= j && j < bound);
191 ++i;
192 }
193 assertTrue(i < NCALLS);
194 }
195 }
196 }
197
198 /**
199 * nextLong(non-positive) throws IllegalArgumentException
200 */
201 public void testNextLongBoundNonPositive() {
202 SplittableRandom sr = new SplittableRandom();
203 Runnable[] throwingActions = {
204 () -> sr.nextLong(-17L),
205 () -> sr.nextLong(0L),
206 () -> sr.nextLong(Long.MIN_VALUE),
207 };
208 assertThrows(IllegalArgumentException.class, throwingActions);
209 }
210
211 /**
212 * nextLong(least >= bound) throws IllegalArgumentException
213 */
214 public void testNextLongBadBounds() {
215 SplittableRandom sr = new SplittableRandom();
216 Runnable[] throwingActions = {
217 () -> sr.nextLong(17L, 2L),
218 () -> sr.nextLong(-42L, -42L),
219 () -> sr.nextLong(Long.MAX_VALUE, Long.MIN_VALUE),
220 };
221 assertThrows(IllegalArgumentException.class, throwingActions);
222 }
223
224 /**
225 * nextLong(bound) returns 0 <= value < bound;
226 * repeated calls produce at least two distinct results
227 */
228 public void testNextLongBounded() {
229 SplittableRandom sr = new SplittableRandom();
230 for (long bound = 2; bound < MAX_LONG_BOUND; bound += 15485863) {
231 long f = sr.nextLong(bound);
232 assertTrue(0 <= f && f < bound);
233 int i = 0;
234 long j;
235 while (i < NCALLS &&
236 (j = sr.nextLong(bound)) == f) {
237 assertTrue(0 <= j && j < bound);
238 ++i;
239 }
240 assertTrue(i < NCALLS);
241 }
242 }
243
244 /**
245 * nextLong(least, bound) returns least <= value < bound;
246 * repeated calls produce at least two distinct results
247 */
248 public void testNextLongBounded2() {
249 SplittableRandom sr = new SplittableRandom();
250 for (long least = -86028121; least < MAX_LONG_BOUND; least += 982451653L) {
251 for (long bound = least + 2; bound > least && bound < MAX_LONG_BOUND; bound += Math.abs(bound * 7919)) {
252 long f = sr.nextLong(least, bound);
253 assertTrue(least <= f && f < bound);
254 int i = 0;
255 long j;
256 while (i < NCALLS &&
257 (j = sr.nextLong(least, bound)) == f) {
258 assertTrue(least <= j && j < bound);
259 ++i;
260 }
261 assertTrue(i < NCALLS);
262 }
263 }
264 }
265
266 /**
267 * nextDouble(non-positive) throws IllegalArgumentException
268 */
269 public void testNextDoubleBoundNonPositive() {
270 SplittableRandom sr = new SplittableRandom();
271 Runnable[] throwingActions = {
272 () -> sr.nextDouble(-17.0d),
273 () -> sr.nextDouble(0.0d),
274 () -> sr.nextDouble(-Double.MIN_VALUE),
275 () -> sr.nextDouble(Double.NEGATIVE_INFINITY),
276 () -> sr.nextDouble(Double.NaN),
277 };
278 assertThrows(IllegalArgumentException.class, throwingActions);
279 }
280
281 /**
282 * nextDouble(! (least < bound)) throws IllegalArgumentException
283 */
284 public void testNextDoubleBadBounds() {
285 SplittableRandom sr = new SplittableRandom();
286 Runnable[] throwingActions = {
287 () -> sr.nextDouble(17.0d, 2.0d),
288 () -> sr.nextDouble(-42.0d, -42.0d),
289 () -> sr.nextDouble(Double.MAX_VALUE, Double.MIN_VALUE),
290 () -> sr.nextDouble(Double.NaN, 0.0d),
291 () -> sr.nextDouble(0.0d, Double.NaN),
292 };
293 assertThrows(IllegalArgumentException.class, throwingActions);
294 }
295
296 // TODO: Test infinite bounds!
297 //() -> sr.nextDouble(Double.NEGATIVE_INFINITY, 0.0d),
298 //() -> sr.nextDouble(0.0d, Double.POSITIVE_INFINITY),
299
300 /**
301 * nextDouble(least, bound) returns least <= value < bound;
302 * repeated calls produce at least two distinct results
303 */
304 public void testNextDoubleBounded2() {
305 SplittableRandom sr = new SplittableRandom();
306 for (double least = 0.0001; least < 1.0e20; least *= 8) {
307 for (double bound = least * 1.001; bound < 1.0e20; bound *= 16) {
308 double f = sr.nextDouble(least, bound);
309 assertTrue(least <= f && f < bound);
310 int i = 0;
311 double j;
312 while (i < NCALLS &&
313 (j = sr.nextDouble(least, bound)) == f) {
314 assertTrue(least <= j && j < bound);
315 ++i;
316 }
317 assertTrue(i < NCALLS);
318 }
319 }
320 }
321
322 /**
323 * Invoking sized ints, long, doubles, with negative sizes throws
324 * IllegalArgumentException
325 */
326 public void testBadStreamSize() {
327 SplittableRandom r = new SplittableRandom();
328 Runnable[] throwingActions = {
329 () -> { java.util.stream.IntStream x = r.ints(-1L); },
330 () -> { java.util.stream.IntStream x = r.ints(-1L, 2, 3); },
331 () -> { java.util.stream.LongStream x = r.longs(-1L); },
332 () -> { java.util.stream.LongStream x = r.longs(-1L, -1L, 1L); },
333 () -> { java.util.stream.DoubleStream x = r.doubles(-1L); },
334 () -> { java.util.stream.DoubleStream x = r.doubles(-1L, .5, .6); },
335 };
336 assertThrows(IllegalArgumentException.class, throwingActions);
337 }
338
339 /**
340 * Invoking bounded ints, long, doubles, with illegal bounds throws
341 * IllegalArgumentException
342 */
343 public void testBadStreamBounds() {
344 SplittableRandom r = new SplittableRandom();
345 Runnable[] throwingActions = {
346 () -> { java.util.stream.IntStream x = r.ints(2, 1); },
347 () -> { java.util.stream.IntStream x = r.ints(10, 42, 42); },
348 () -> { java.util.stream.LongStream x = r.longs(-1L, -1L); },
349 () -> { java.util.stream.LongStream x = r.longs(10, 1L, -2L); },
350 () -> { java.util.stream.DoubleStream x = r.doubles(0.0, 0.0); },
351 () -> { java.util.stream.DoubleStream x = r.doubles(10, .5, .4); },
352 };
353 assertThrows(IllegalArgumentException.class, throwingActions);
354 }
355
356 /**
357 * A parallel sized stream of ints generates the given number of values
358 */
359 public void testIntsCount() {
360 LongAdder counter = new LongAdder();
361 SplittableRandom r = new SplittableRandom();
362 long size = 0;
363 for (int reps = 0; reps < REPS; ++reps) {
364 counter.reset();
365 r.ints(size).parallel().forEach(x -> counter.increment());
366 assertEquals(size, counter.sum());
367 size += 524959;
368 }
369 }
370
371 /**
372 * A parallel sized stream of longs generates the given number of values
373 */
374 public void testLongsCount() {
375 LongAdder counter = new LongAdder();
376 SplittableRandom r = new SplittableRandom();
377 long size = 0;
378 for (int reps = 0; reps < REPS; ++reps) {
379 counter.reset();
380 r.longs(size).parallel().forEach(x -> counter.increment());
381 assertEquals(size, counter.sum());
382 size += 524959;
383 }
384 }
385
386 /**
387 * A parallel sized stream of doubles generates the given number of values
388 */
389 public void testDoublesCount() {
390 LongAdder counter = new LongAdder();
391 SplittableRandom r = new SplittableRandom();
392 long size = 0;
393 for (int reps = 0; reps < REPS; ++reps) {
394 counter.reset();
395 r.doubles(size).parallel().forEach(x -> counter.increment());
396 assertEquals(size, counter.sum());
397 size += 524959;
398 }
399 }
400
401 /**
402 * Each of a parallel sized stream of bounded ints is within bounds
403 */
404 public void testBoundedInts() {
405 AtomicInteger fails = new AtomicInteger(0);
406 SplittableRandom r = new SplittableRandom();
407 long size = 12345L;
408 for (int least = -15485867; least < MAX_INT_BOUND; least += 524959) {
409 for (int bound = least + 2; bound > least && bound < MAX_INT_BOUND; bound += 67867967) {
410 final int lo = least, hi = bound;
411 r.ints(size, lo, hi).parallel().
412 forEach(x -> {if (x < lo || x >= hi)
413 fails.getAndIncrement(); });
414 }
415 }
416 assertEquals(0, fails.get());
417 }
418
419 /**
420 * Each of a parallel sized stream of bounded longs is within bounds
421 */
422 public void testBoundedLongs() {
423 AtomicInteger fails = new AtomicInteger(0);
424 SplittableRandom r = new SplittableRandom();
425 long size = 123L;
426 for (long least = -86028121; least < MAX_LONG_BOUND; least += 1982451653L) {
427 for (long bound = least + 2; bound > least && bound < MAX_LONG_BOUND; bound += Math.abs(bound * 7919)) {
428 final long lo = least, hi = bound;
429 r.longs(size, lo, hi).parallel().
430 forEach(x -> {if (x < lo || x >= hi)
431 fails.getAndIncrement(); });
432 }
433 }
434 assertEquals(0, fails.get());
435 }
436
437 /**
438 * Each of a parallel sized stream of bounded doubles is within bounds
439 */
440 public void testBoundedDoubles() {
441 AtomicInteger fails = new AtomicInteger(0);
442 SplittableRandom r = new SplittableRandom();
443 long size = 456;
444 for (double least = 0.00011; least < 1.0e20; least *= 9) {
445 for (double bound = least * 1.0011; bound < 1.0e20; bound *= 17) {
446 final double lo = least, hi = bound;
447 r.doubles(size, lo, hi).parallel().
448 forEach(x -> {if (x < lo || x >= hi)
449 fails.getAndIncrement(); });
450 }
451 }
452 assertEquals(0, fails.get());
453 }
454
455 /**
456 * A parallel unsized stream of ints generates at least 100 values
457 */
458 public void testUnsizedIntsCount() {
459 LongAdder counter = new LongAdder();
460 SplittableRandom r = new SplittableRandom();
461 long size = 100;
462 r.ints().limit(size).parallel().forEach(x -> counter.increment());
463 assertEquals(size, counter.sum());
464 }
465
466 /**
467 * A parallel unsized stream of longs generates at least 100 values
468 */
469 public void testUnsizedLongsCount() {
470 LongAdder counter = new LongAdder();
471 SplittableRandom r = new SplittableRandom();
472 long size = 100;
473 r.longs().limit(size).parallel().forEach(x -> counter.increment());
474 assertEquals(size, counter.sum());
475 }
476
477 /**
478 * A parallel unsized stream of doubles generates at least 100 values
479 */
480 public void testUnsizedDoublesCount() {
481 LongAdder counter = new LongAdder();
482 SplittableRandom r = new SplittableRandom();
483 long size = 100;
484 r.doubles().limit(size).parallel().forEach(x -> counter.increment());
485 assertEquals(size, counter.sum());
486 }
487
488 /**
489 * A sequential unsized stream of ints generates at least 100 values
490 */
491 public void testUnsizedIntsCountSeq() {
492 LongAdder counter = new LongAdder();
493 SplittableRandom r = new SplittableRandom();
494 long size = 100;
495 r.ints().limit(size).forEach(x -> counter.increment());
496 assertEquals(size, counter.sum());
497 }
498
499 /**
500 * A sequential unsized stream of longs generates at least 100 values
501 */
502 public void testUnsizedLongsCountSeq() {
503 LongAdder counter = new LongAdder();
504 SplittableRandom r = new SplittableRandom();
505 long size = 100;
506 r.longs().limit(size).forEach(x -> counter.increment());
507 assertEquals(size, counter.sum());
508 }
509
510 /**
511 * A sequential unsized stream of doubles generates at least 100 values
512 */
513 public void testUnsizedDoublesCountSeq() {
514 LongAdder counter = new LongAdder();
515 SplittableRandom r = new SplittableRandom();
516 long size = 100;
517 r.doubles().limit(size).forEach(x -> counter.increment());
518 assertEquals(size, counter.sum());
519 }
520
521 }