
2006 JavaOneSM Conference   |   Session  BOF-0989 

JSRs 236 and 237; 
Concurrency Utilities for 
Java EE in Practice
Chris D Johnson
cdjohnson@us.ibm.com
IBM, Rochester Lab

Session ID# BOF-0989

®

Naresh Revanuru
naresh@bea.com
BEA Systems, Inc.



2006 JavaOneSM Conference   |   Session BOF-0989   | 2

Learn how to leverage concurrency in 
your Java EE applications.

What Your Audience Will Gain
Goals of This Talk



2006 JavaOneSM Conference   |   Session BOF-0989   | 3

Agenda

Introduction
Overview
ManagedThreadFactory
ManagedExecutorService
ManagedScheduledExecutorService
ContextService
Summary



2006 JavaOneSM Conference   |   Session BOF-0989   | 4

Agenda

Introduction
Overview
ManagedThreadFactory
ManagedExecutorService
ManagedScheduledExecutorService
ContextService
Summary



2006 JavaOneSM Conference   |   Session BOF-0989   | 5

Brief History
Introduction
● Java SE APIs

● Java SE Timer and Thread
● JSR-166 concurrent utilities for Java SE 5 (TS-4915)

● Java EE APIs
● BEA-IBM Commonj API for Java EE environment
● JSR 236-237 provides context aware Thread Pools and Timers 

to Java EE applications
● Vendor-propietary APIs

● Reusing and extending existing Java SE 5 concurrency 
foundations

● Formalize Java EE concurrency specification through 
JCP.  Adopt in next version of Java EE.



2006 JavaOneSM Conference   |   Session BOF-0989   | 6

JSR 236-237 group composition
Introduction

● Specification Leads
● Chris D Johnson, IBM
● Naresh Revanuru, BEA

● Expert Group members
● Andrew Evers, Redwood Software
● Cameron Purdy, Tangosol
● Cyril Bouteille, Hotwire
● Doug Lea, JSR-166 lead
● Gene Gleyzer, Tangosol
● Pierre Vignéras



2006 JavaOneSM Conference   |   Session BOF-0989   | 7

Current Status
Introduction

● Early draft preview published on 4/28/2006
● Draft available at 

● http://gee.cs.oswego.edu/dl/concurrencyee-interest
● Comments are very welcome
● Plan to turn it into official JSR draft
● EG discussion currently happening outside of 

JCP site



2006 JavaOneSM Conference   |   Session BOF-0989   | 8

Agenda

Introduction
Overview
ManagedThreadFactory
ManagedExecutorService
ManagedScheduledExecutorService
ContextService
Summary



2006 JavaOneSM Conference   |   Session BOF-0989   | 9

Limitation of concurrency in Java EE
Overview
● Servlet and EJB specifications explicitly prohibit 

or are ambiguous about threading support. 
(Promotes synchronous activity.)

● Java SE threads and timers are not well 
integrated with Java EE containers

● java.util.concurrent APIs are extensible 
● Need some enhancements for Java EE environments
● Basis for these JSRs

● Existing solutions do not propagate thread 
context like class loader, security, naming and 
do not have manageability and isolation 
semantics.



2006 JavaOneSM Conference   |   Session BOF-0989   | 10

Overview

● Decouple user execution from slow moving 
background processing

● Improvements in processor architecture 
promote parallelism

● One big task into smaller concurrent tasks
● Asynchronous notification use case
● Timer use cases like periodic cleanup, cache 

maintenance

Concurrency uses in Java EE



2006 JavaOneSM Conference   |   Session BOF-0989   | 11

Overview

● Coordination between application server 
lifecycle and asynchronous task lifecycle
● Server shutdown 
● Application deployment/undeployment

● Application-scoped threads
● Thread scheduling based on application 

resource constraints
● Intelligent workload classification and routing
● Application isolation

Special Java EE requirements



2006 JavaOneSM Conference   |   Session BOF-0989   | 12

Overview

● Provide consistent programming model
● Leverage existing technology to provide 

migration from Java SE
● Allow adding concurrency to existing 

applications
● Allow integration with previous Java EE versions
● Provide simple API for simple use cases
● Provide flexible API for advanced use cases

Goals of Concurrency Utilities for Java EE



2006 JavaOneSM Conference   |   Session BOF-0989   | 13

Administered Objects
Extending Java SE

● Extend existing Java SE 5 concurrency utilities 
by providing managed versions:
● ManagedThreadFactory
● ManagedExecutorService
● ManagedScheduledExecutorService

● Add Java EE extensions
● ContextService
● ManagedTaskListener
● Trigger
● Identifiable



2006 JavaOneSM Conference   |   Session BOF-0989   | 14

Managed Objects
Extending Java SE

● Provide manageability using JMX MBeans
● ManagedThread
● ManagedThreadFactory
● ManagedExecutorService



2006 JavaOneSM Conference   |   Session BOF-0989   | 15

Java EE Architecture Diagram with Concurrency
Extending Java EE

EJB/Web Containers

EJB JSP

Servlet

JAX-
RPC

SAAJ

JA
X

R
JA

C
C

W
eb S

vcs

Mgmt

JMX

JM
S

C
onnectors

Java 
Mail

JAF

JTA

Java SE

Runnable

Application Server

Clients
Clients

Clients
Clients

Context
Service

Thread
Factory

ManagedExecutorService

CallableCallbacks

Concurrency Services

HTTP/SSL/IIOP



2006 JavaOneSM Conference   |   Session BOF-0989   | 16

Agenda

Introduction 
Overview
ManagedThreadFactory
ManagedExecutorService
ManagedScheduledExecutorService
ContextService
Summary



2006 JavaOneSM Conference   |   Session BOF-0989   | 17

Overview
ManagedThreadFactory

● Standard interface and method for creating 
threads
● Thread newThread(Runnable r)

● Centrally defined on an application server
● Indirectly referenced by applications
● Java EE product providers provide the thread
● Extension of Java SE 5 ThreadFactory

● Adds container context and manageability
● UserTransaction support (does not enlist in parent 

component's transaction)



2006 JavaOneSM Conference   |   Session BOF-0989   | 18

Usage Scenarios
ManagedThreadFactory

● Long Running Tasks
● Work Consumers/Producers
● Batch jobs
● Embedded servers

● Custom Thread Pools
● Use Java SE thread pools
● Any service that can use ThreadFactory



2006 JavaOneSM Conference   |   Session BOF-0989   | 19

Code Sample - Daemon
// Within your servlet or EJB method…
// Lookup the ThreadFactory
InitialContext ctx = new InitialContext();
ManagedThreadFactory tf = (ManagedThreadFactory)

ctx.lookup("java:comp/env/concurrent/myTF");

// Create and start the thread.
Thread daemonThread = tf.newThread(myDaemonRunnable);
daemonThread.start();

// The runnable behaves as-if it were running in the
// servlet or EJB container.
// The thread's lifecycle is tied to the application and 
// is interrupted.



2006 JavaOneSM Conference   |   Session BOF-0989   | 20

Code Sample – Custom Thread Pool
// Within your servlet or EJB method…
// Lookup the ThreadFactory
@Resource 
ManagedThreadFactory tf;

void businessMethod() {
// Use a custom Java SE ThreadPoolExecutor
CustomThreadPoolExecutor pool = 

new CustomThreadPoolExecutor(coreSize, maxSize, tf);

// When the executor allocates a new thread, the 
// thread will use the current container context.



2006 JavaOneSM Conference   |   Session BOF-0989   | 21

Thread Management with JMX
ManagedThreadFactory

● Monitor when threads are allocated using the 
ManagedThreadFactory MBean

● Monitor thread activity and health
● What task is running on the thread?
● How long has the task been running?
● Correlate to the Java SE thread name and id.

● Cancel a thread (cooperative)
● Hung threshold notifications help identify problems.
● Proper interruption detection is essential in the task 

implementation.



2006 JavaOneSM Conference   |   Session BOF-0989   | 22

Identifiable Tasks
ManagedThreadFactory

● Runnables that are run on a managed thread 
may optionally implement the Identifiable
interface.

● Allows runtime introspection of thread's current 
state.

● Exposed on the ManagedThread MBean
● Short name available as an attribute
● Locale-specific description available as an 

attribute for the current locale or an operation for 
alternative locales.



2006 JavaOneSM Conference   |   Session BOF-0989   | 23

Code Sample - Identifiable
class MyConsumerTask implements Runnable, Identifiable {

private String currentName;
public void run() {

// Update the identity name periodically
currentName="MonitorApp:MyConsumerTask:Phase1";
…
currentName="MonitorApp:MyConsumerTask:Phase2";

}
public String getIdentityName() {

// Called by ManagedThread.taskIdentityName
return currentName;

}
public String getIdentityDescription(Locale l) {

// Called by ManagedThread.taskIdentityDescription
// Get description from NLS bundle

}
}



2006 JavaOneSM Conference   |   Session BOF-0989   | 24

Agenda

Introduction 
Overview
ManagedThreadFactory
ManagedExecutorService
ManagedScheduledExecutorService
ContextService
Summary



2006 JavaOneSM Conference   |   Session BOF-0989   | 25

Overview
ManagedExecutorService

● Typical way of running tasks asynchronously 
from a Java EE container method

● Centrally defined on an application server
● Indirectly referenced by applications
● Java EE product providers provide the 

implementation
● Typically used for centralized thread pooling
● Implementations may offer extended capabilities



2006 JavaOneSM Conference   |   Session BOF-0989   | 26

Overview continued…
ManagedExecutorService
● Extension of Java SE 5 ExecutorService

● Adds container context, manageability and lifecycle 
tracking and constraints

● UserTransaction support (does not enlist in parent 
component transaction)

● Distributed (remote) capability
● Container context may be component-managed 

or server-managed
● Server-managed is most common.  Share a single 

executor between applications and components.
● Component-managed is faster, but restricted to a 

single component (no container context switching)



2006 JavaOneSM Conference   |   Session BOF-0989   | 27

Usage Scenarios
ManagedExecutorService

● Single server-managed thread pool
● Most typical usage.
● Easiest to use.  Server manages the lifecycle.
● Multiple applications share a single executor
● Application developer defines the requirements of the 

executor:
● What container contexts to propagate (e.g. namespace)
● Server-managed 

● Deployer configures the appropriate executor and 
maps the resource environment reference to the 
executor



2006 JavaOneSM Conference   |   Session BOF-0989   | 28

Usage Scenarios continued…
ManagedExecutorService

● Multiple component-managed thread pools
● High performance scenario
● A component has one executor and controls its 

lifecycle.
● Container context is fixed.
● Application developer defines the requirements of the 

executor:
● What container contexts to propagate (e.g. namespace)
● Component-managed 

● Deployer configures the appropriate executor 
definition and maps the resource environment 
reference to the executor



2006 JavaOneSM Conference   |   Session BOF-0989   | 29

ManagedExecutorService
interface ManagedExecutorService extends ExecutorService {
Future<?> submit(Runnable task, 
ManagedTaskListener taskListener);

<T> Future<T> submit(Runnable task, T result,
ManagedTaskListener taskListener);

<T> Future<T> submit(Callable<T> task,
ManagedTaskListener taskListener);

// Time-out versions of invokeAll/Any available too…
<T> List<Future<T>> invokeAll(Collection<? Extends
Callable<T>> tasks, ManagedTaskListener taskListener);

<T> T invokeAny(Collection<? extends Callable<T>> tasks,
ManagedTaskListener taskListener)

}



2006 JavaOneSM Conference   |   Session BOF-0989   | 30

Management
ManagedExecutorService

● Hung tasks can be monitored and cancelled 
using JMX.  
● Threads are created from a ManagedThreadFactory
● Each thread therefore is associated with a 

ManagedThread MBean
● Tasks can be Identifiable

● Task lifecycle can be monitored using 
ManagedTaskListeners
● Monitoring extensions (logging)
● Work-flow control and management



2006 JavaOneSM Conference   |   Session BOF-0989   | 31

ManagedTaskListener
ManagedExecutorService

● Listeners are Java objects that are registered 
with the task when submitted to the executor.

● The listener method runs in the same container 
context as the task.
● taskSubmitted – The task was submitted to the 

executor
● taskAborted – The task was unable to start or was 

cancelled.
● taskStarting – The task is about to start
● taskDone – The task has completed (successfully or 

otherwise)



2006 JavaOneSM Conference   |   Session BOF-0989   | 32

ManagedTaskListener
interface ManagedTaskListener {
void taskSubmitted(Future<?> future,
ManagedExecutorService executor);

void taskAborted(Future<?> future,
ManagedExecutorService executor);

void taskDone(Future<?> future, 
ManagedExecutorService executor);

void taskStarting(Future<?> future,
ManagedExecutorService executor);

}



2006 JavaOneSM Conference   |   Session BOF-0989   | 33

ManagedTaskListener - Lifecycle
ManagedExecutorService

taskSubmitted Submitted

taskAborted

taskStarting

Started

Done

submit()

Cancel or abort

Submit 
successful

About to 
start

taskDone

Running task

Task has 
finished

Cancelled or aborted

Rejected



2006 JavaOneSM Conference   |   Session BOF-0989   | 34

Code Sample – Typical Parallelism
// Within your servlet or EJB method…
@Resource
ManagedExecutorService mes; 
void businessMethod() {
Callable<Integer> c = new Callable<Integer>() {

Integer call() {
// Interact with a database... Return answer.
// The namespace is available here!

}
}
// Submit the task and do something else.  The task 
// will run asynchronously on another thread.
Future result = mes.submit(c);
...
// Get the result when ready… 
int theValue = result.get();
...



2006 JavaOneSM Conference   |   Session BOF-0989   | 35

Distributable Overview
ManagedExecutorService

● Same rules as a ManagedExecutorService
● Allows distributing the task to a peer on another 

server instance (JVM).
● Task must implement serializable 

● Providers do not have to supply a distributable 
version.  

● Two distributable types are available:
● With and without affinity



2006 JavaOneSM Conference   |   Session BOF-0989   | 36

Agenda

Introduction 
Overview
ManagedThreadFactory
ManagedExecutorService
ManagedScheduledExecutorService
ContextService
Summary



2006 JavaOneSM Conference   |   Session BOF-0989   | 37

Overview
ManagedScheduledExecutorService

● Typical way of running periodic tasks 
asynchronously from a Java EE container 
method

● Typically used for transient timers
● Inherits semantics of ManagedExecutorService:

● Centrally defined on an application server
● Indirectly referenced by applications
● Java EE product providers provide the 

implementation
● Implementations may offer extended capabilities



2006 JavaOneSM Conference   |   Session BOF-0989   | 38

Overview continued…
ManagedScheduledExecutorService
● Extension of ScheduledExecutorService

● Adds container context, manageability and lifecycle 
tracking and constraints

● UserTransaction support (does not enlist in parent 
component transaction)

● Trigger mechanism.
● Container context may be component-managed 

or server-managed
● Server-managed is most common.  Share a single 

executor between applications and components.
● Component-managed is faster, but restricted to a 

single component.



2006 JavaOneSM Conference   |   Session BOF-0989   | 39

Usage Scenarios
ManagedScheduledExecutorService

● Periodic cache invalidations
● Request timeouts
● Polling
● Custom Scheduler

● Would need implementation extension to support 
persistence.

● Use Triggers for custom calendaring:
● N-time fixed-rate with time-sensitive skip.
● Run time based on previous task calculation result.
● Condition-based trigger
● Centralized business calendar.



2006 JavaOneSM Conference   |   Session BOF-0989   | 40

ManagedScheduledExecutorService
interface ManagedScheduledExecutorService extends
ScheduledExecutorService {
// Same methods as ScheduledExecutorService…
// Add ManagedTaskListener and Trigger
ScheduledFuture<?> schedule(Runnable command, 
long delay,  TimeUnit unit, 
ManagedTaskListener taskListener);

ScheduledFuture<?> schedule(Runnable command, 
Trigger trigger, ManagedTaskListener taskListener);

ScheduledFuture<?> scheduleAtFixedRate(Runnable command,
long initialDelay,  long period, TimeUnit unit,
ManagedTaskListener taskListener);

ScheduledFuture<?> scheduleWithFixedDelay(
Runnable command, long initialDelay,  long delay,
TimeUnit unit, ManagedTaskListener taskListener);

}



2006 JavaOneSM Conference   |   Session BOF-0989   | 41

Trigger
interface Trigger {

// Return true if you want to skip the 
// currently-scheduled execution.  Is invoked after
// taskStarting().
boolean skipRun(Future lastFuture, 
Date scheduledRunTime);

// Retrieves the time in which to run the task next.    
// Invoked during submit time and after each task has
// completed.
Date getNextRunTime(Future lastFuture, Date baseTime,
Date lastActualRunTime, Date lastScheduledRunTime,
Date lastCompleteTime);

}



2006 JavaOneSM Conference   |   Session BOF-0989   | 42

Agenda

Introduction 
Overview
ManagedThreadFactory
ManagedExecutorService
ManagedScheduledExecutorService
ContextService
Summary



2006 JavaOneSM Conference   |   Session BOF-0989   | 43

Overview
ContextService

● Mechanism for applications to capture container 
context and run within that context later
● ManagedExecutorServices likely to use this service 

internally to propagate container context.
● Centrally defined on an application server
● Indirectly referenced by applications
● Java EE product providers provide the 

implementation
● Implementations may offer extended capabilities



2006 JavaOneSM Conference   |   Session BOF-0989   | 44

Overview continued…
ContextService

● Current thread context is captured and stored 
within a context proxy for your object

● Serializable
● Customizable

● Can enable transaction pass-through
● Used in advanced scenarios.
● Use with non-ManagedThreadFactory-created 

threads (threads created with new Thread())



2006 JavaOneSM Conference   |   Session BOF-0989   | 45

Use Cases
ContextService

● Workflow
● Store and propagate user identity

● Java SE or third-party thread reuse
● Allows thread to behave as-if it were on a container 

thread.
● Hybrid ManagedExecutorService

● Use component-managed executor from multiple 
components.



2006 JavaOneSM Conference   |   Session BOF-0989   | 46

ContextService
interface ContextService {
String USE_PARENT_TRANSACTION = "ctxsvc.useparenttran";

Object createContextObject(Object instance, 
Class[] interfaces);

Object createContextObject(Object instance, 
Class[] interfaces, Properties contextProperties);

void setProperties(Object contextObject, 
Properties contextProperties);

Properties getProperties(Object contextObject);
}



2006 JavaOneSM Conference   |   Session BOF-0989   | 47

Code Example – Creating Context
// Within your servlet or EJB method…
@Resource
ContextService ctxSvc;
void businessMethod() {
Runnable runnableTask = new Runnable() {

void run() {
// Interact with a database… use component's security

}
}
// Wrap with the current context
Runnable runnableTaskWithCtx = (Runnable)
ctxSvc.createContextObject(runnableTask, 
new Class[]{Runnable.class}

// Store the runnable with context somewhere and run
// later..
store.putIt(runnableTaskWithCtx);



2006 JavaOneSM Conference   |   Session BOF-0989   | 48

Code Example – Using Context
// Retreive the Runnable with Context 
Runnable runnableTaskWithContext = store.getIt();

// Runnable will run on this thread, but with the context
// of the servlet/EJB that created it.
runnableTaskWithContext.run();

// If the Runnable implemented Serializable and it 
// was serialized/deserialized… the context would still
// come with it.



2006 JavaOneSM Conference   |   Session BOF-0989   | 49

Agenda

Introduction 
Overview
ManagedThreadFactory
ManagedExecutorService
ManagedScheduledExecutorService
ContextService
Summary



2006 JavaOneSM Conference   |   Session BOF-0989   | 50

Summary

● The Concurrency Utilities for Java EE is in Early 
Draft Review stage.
● Mailing list available for comments.

● Extends Java SE concurrency utilities
● Provides simple and advanced APIs for adding 

concurrency to J2EE 1.3 and later applications:
● ManagedThreadFactory
● ManagedExecutorService
● ManagedScheduledExecutorService
● ContextService



2006 JavaOneSM Conference   |   Session BOF-0989   | 51

For More Information

● Concurrency EE Interest Site and Specification
● http://gee.cs.oswego.edu/dl/concurrencyee-interest/

● JSR 236 and 237 
● http://www.jcp.org/en/jsr/detail?id=236
● http://www.jcp.org/en/jsr/detail?id=237

● Related Sessions
● TS-4915 – Concurrency Utilities in Java SE 5



2006 JavaOneSM Conference   |   Session BOF-0989   | 52

Q&A
Chris D. Johnson, IBM Corp.
Naresh Revanuru, BEA Systems, Inc.
Andrew Evers, Redwood Software
Cyril Bouteille, Hotwire.com



2006 JavaOneSM Conference   |   Session  BOF-0989 

JSRs 236 and 237; 
Concurrency Utilities for 
Java EE in Practice
Chris D Johnson
cdjohnson@us.ibm.com
IBM, Rochester Lab

Session ID# BOF-0989

®

Naresh Revanuru
naresh@bea.com
BEA Systems, Inc.


	JSRs 236 and 237; Concurrency Utilities for Java EE in Practice
	Goals of This Talk
	Agenda
	Agenda
	Introduction
	Introduction
	Introduction
	Agenda
	Overview
	Overview
	Overview
	Overview
	Extending Java SE
	Extending Java SE
	Extending Java EE
	Agenda
	ManagedThreadFactory
	ManagedThreadFactory
	Code Sample - Daemon
	Code Sample – Custom Thread Pool
	ManagedThreadFactory
	ManagedThreadFactory
	Code Sample - Identifiable
	Agenda
	ManagedExecutorService
	ManagedExecutorService
	ManagedExecutorService
	ManagedExecutorService
	ManagedExecutorService
	ManagedExecutorService
	ManagedExecutorService
	ManagedTaskListener
	ManagedExecutorService
	Code Sample – Typical Parallelism
	ManagedExecutorService
	Agenda
	ManagedScheduledExecutorService
	ManagedScheduledExecutorService
	ManagedScheduledExecutorService
	ManagedScheduledExecutorService
	Trigger
	Agenda
	ContextService
	ContextService
	ContextService
	ContextService
	Code Example – Creating Context
	Code Example – Using Context
	Agenda
	Summary
	For More Information
	Q&A
	JSRs 236 and 237; Concurrency Utilities for Java EE in Practice

