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Learn how to leverage concurrency in 
your Java EE applications.

What Your Audience Will Gain
Goals of This Talk
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Brief History
Introduction
● Java SE APIs

● Java SE Timer and Thread
● JSR-166 concurrent utilities for Java SE 5 (TS-4915)

● Java EE APIs
● BEA-IBM Commonj API for Java EE environment
● JSR 236-237 provides context aware Thread Pools and Timers 

to Java EE applications
● Vendor-propietary APIs

● Reusing and extending existing Java SE 5 concurrency 
foundations

● Formalize Java EE concurrency specification through 
JCP.  Adopt in next version of Java EE.
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JSR 236-237 group composition
Introduction

● Specification Leads
● Chris D Johnson, IBM
● Naresh Revanuru, BEA

● Expert Group members
● Andrew Evers, Redwood Software
● Cameron Purdy, Tangosol
● Cyril Bouteille, Hotwire
● Doug Lea, JSR-166 lead
● Gene Gleyzer, Tangosol
● Pierre Vignéras
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Current Status
Introduction

● Early draft preview published on 4/28/2006
● Draft available at 

● http://gee.cs.oswego.edu/dl/concurrencyee-interest
● Comments are very welcome
● Plan to turn it into official JSR draft
● EG discussion currently happening outside of 

JCP site
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Limitation of concurrency in Java EE
Overview
● Servlet and EJB specifications explicitly prohibit 

or are ambiguous about threading support. 
(Promotes synchronous activity.)

● Java SE threads and timers are not well 
integrated with Java EE containers

● java.util.concurrent APIs are extensible 
● Need some enhancements for Java EE environments
● Basis for these JSRs

● Existing solutions do not propagate thread 
context like class loader, security, naming and 
do not have manageability and isolation 
semantics.
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Overview

● Decouple user execution from slow moving 
background processing

● Improvements in processor architecture 
promote parallelism

● One big task into smaller concurrent tasks
● Asynchronous notification use case
● Timer use cases like periodic cleanup, cache 

maintenance

Concurrency uses in Java EE
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Overview

● Coordination between application server 
lifecycle and asynchronous task lifecycle
● Server shutdown 
● Application deployment/undeployment

● Application-scoped threads
● Thread scheduling based on application 

resource constraints
● Intelligent workload classification and routing
● Application isolation

Special Java EE requirements
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Overview

● Provide consistent programming model
● Leverage existing technology to provide 

migration from Java SE
● Allow adding concurrency to existing 

applications
● Allow integration with previous Java EE versions
● Provide simple API for simple use cases
● Provide flexible API for advanced use cases

Goals of Concurrency Utilities for Java EE
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Administered Objects
Extending Java SE

● Extend existing Java SE 5 concurrency utilities 
by providing managed versions:
● ManagedThreadFactory
● ManagedExecutorService
● ManagedScheduledExecutorService

● Add Java EE extensions
● ContextService
● ManagedTaskListener
● Trigger
● Identifiable
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Managed Objects
Extending Java SE

● Provide manageability using JMX MBeans
● ManagedThread
● ManagedThreadFactory
● ManagedExecutorService
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Java EE Architecture Diagram with Concurrency
Extending Java EE
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Overview
ManagedThreadFactory

● Standard interface and method for creating 
threads
● Thread newThread(Runnable r)

● Centrally defined on an application server
● Indirectly referenced by applications
● Java EE product providers provide the thread
● Extension of Java SE 5 ThreadFactory

● Adds container context and manageability
● UserTransaction support (does not enlist in parent 

component's transaction)
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Usage Scenarios
ManagedThreadFactory

● Long Running Tasks
● Work Consumers/Producers
● Batch jobs
● Embedded servers

● Custom Thread Pools
● Use Java SE thread pools
● Any service that can use ThreadFactory
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Code Sample - Daemon
// Within your servlet or EJB method…
// Lookup the ThreadFactory
InitialContext ctx = new InitialContext();
ManagedThreadFactory tf = (ManagedThreadFactory)

ctx.lookup("java:comp/env/concurrent/myTF");

// Create and start the thread.
Thread daemonThread = tf.newThread(myDaemonRunnable);
daemonThread.start();

// The runnable behaves as-if it were running in the
// servlet or EJB container.
// The thread's lifecycle is tied to the application and 
// is interrupted.
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Code Sample – Custom Thread Pool
// Within your servlet or EJB method…
// Lookup the ThreadFactory
@Resource 
ManagedThreadFactory tf;

void businessMethod() {
// Use a custom Java SE ThreadPoolExecutor
CustomThreadPoolExecutor pool = 

new CustomThreadPoolExecutor(coreSize, maxSize, tf);

// When the executor allocates a new thread, the 
// thread will use the current container context.
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Thread Management with JMX
ManagedThreadFactory

● Monitor when threads are allocated using the 
ManagedThreadFactory MBean

● Monitor thread activity and health
● What task is running on the thread?
● How long has the task been running?
● Correlate to the Java SE thread name and id.

● Cancel a thread (cooperative)
● Hung threshold notifications help identify problems.
● Proper interruption detection is essential in the task 

implementation.
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Identifiable Tasks
ManagedThreadFactory

● Runnables that are run on a managed thread 
may optionally implement the Identifiable
interface.

● Allows runtime introspection of thread's current 
state.

● Exposed on the ManagedThread MBean
● Short name available as an attribute
● Locale-specific description available as an 

attribute for the current locale or an operation for 
alternative locales.



2006 JavaOneSM Conference   |   Session BOF-0989   | 23

Code Sample - Identifiable
class MyConsumerTask implements Runnable, Identifiable {

private String currentName;
public void run() {

// Update the identity name periodically
currentName="MonitorApp:MyConsumerTask:Phase1";
…
currentName="MonitorApp:MyConsumerTask:Phase2";

}
public String getIdentityName() {

// Called by ManagedThread.taskIdentityName
return currentName;

}
public String getIdentityDescription(Locale l) {

// Called by ManagedThread.taskIdentityDescription
// Get description from NLS bundle

}
}



2006 JavaOneSM Conference   |   Session BOF-0989   | 24

Agenda

Introduction 
Overview
ManagedThreadFactory
ManagedExecutorService
ManagedScheduledExecutorService
ContextService
Summary



2006 JavaOneSM Conference   |   Session BOF-0989   | 25

Overview
ManagedExecutorService

● Typical way of running tasks asynchronously 
from a Java EE container method

● Centrally defined on an application server
● Indirectly referenced by applications
● Java EE product providers provide the 

implementation
● Typically used for centralized thread pooling
● Implementations may offer extended capabilities
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Overview continued…
ManagedExecutorService
● Extension of Java SE 5 ExecutorService

● Adds container context, manageability and lifecycle 
tracking and constraints

● UserTransaction support (does not enlist in parent 
component transaction)

● Distributed (remote) capability
● Container context may be component-managed 

or server-managed
● Server-managed is most common.  Share a single 

executor between applications and components.
● Component-managed is faster, but restricted to a 

single component (no container context switching)
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Usage Scenarios
ManagedExecutorService

● Single server-managed thread pool
● Most typical usage.
● Easiest to use.  Server manages the lifecycle.
● Multiple applications share a single executor
● Application developer defines the requirements of the 

executor:
● What container contexts to propagate (e.g. namespace)
● Server-managed 

● Deployer configures the appropriate executor and 
maps the resource environment reference to the 
executor
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Usage Scenarios continued…
ManagedExecutorService

● Multiple component-managed thread pools
● High performance scenario
● A component has one executor and controls its 

lifecycle.
● Container context is fixed.
● Application developer defines the requirements of the 

executor:
● What container contexts to propagate (e.g. namespace)
● Component-managed 

● Deployer configures the appropriate executor 
definition and maps the resource environment 
reference to the executor
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ManagedExecutorService
interface ManagedExecutorService extends ExecutorService {
Future<?> submit(Runnable task, 
ManagedTaskListener taskListener);

<T> Future<T> submit(Runnable task, T result,
ManagedTaskListener taskListener);

<T> Future<T> submit(Callable<T> task,
ManagedTaskListener taskListener);

// Time-out versions of invokeAll/Any available too…
<T> List<Future<T>> invokeAll(Collection<? Extends
Callable<T>> tasks, ManagedTaskListener taskListener);

<T> T invokeAny(Collection<? extends Callable<T>> tasks,
ManagedTaskListener taskListener)

}



2006 JavaOneSM Conference   |   Session BOF-0989   | 30

Management
ManagedExecutorService

● Hung tasks can be monitored and cancelled 
using JMX.  
● Threads are created from a ManagedThreadFactory
● Each thread therefore is associated with a 

ManagedThread MBean
● Tasks can be Identifiable

● Task lifecycle can be monitored using 
ManagedTaskListeners
● Monitoring extensions (logging)
● Work-flow control and management
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ManagedTaskListener
ManagedExecutorService

● Listeners are Java objects that are registered 
with the task when submitted to the executor.

● The listener method runs in the same container 
context as the task.
● taskSubmitted – The task was submitted to the 

executor
● taskAborted – The task was unable to start or was 

cancelled.
● taskStarting – The task is about to start
● taskDone – The task has completed (successfully or 

otherwise)
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ManagedTaskListener
interface ManagedTaskListener {
void taskSubmitted(Future<?> future,
ManagedExecutorService executor);

void taskAborted(Future<?> future,
ManagedExecutorService executor);

void taskDone(Future<?> future, 
ManagedExecutorService executor);

void taskStarting(Future<?> future,
ManagedExecutorService executor);

}
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ManagedTaskListener - Lifecycle
ManagedExecutorService

taskSubmitted Submitted

taskAborted

taskStarting

Started

Done

submit()

Cancel or abort

Submit 
successful

About to 
start

taskDone

Running task

Task has 
finished

Cancelled or aborted

Rejected
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Code Sample – Typical Parallelism
// Within your servlet or EJB method…
@Resource
ManagedExecutorService mes; 
void businessMethod() {
Callable<Integer> c = new Callable<Integer>() {

Integer call() {
// Interact with a database... Return answer.
// The namespace is available here!

}
}
// Submit the task and do something else.  The task 
// will run asynchronously on another thread.
Future result = mes.submit(c);
...
// Get the result when ready… 
int theValue = result.get();
...
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Distributable Overview
ManagedExecutorService

● Same rules as a ManagedExecutorService
● Allows distributing the task to a peer on another 

server instance (JVM).
● Task must implement serializable 

● Providers do not have to supply a distributable 
version.  

● Two distributable types are available:
● With and without affinity
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Overview
ManagedScheduledExecutorService

● Typical way of running periodic tasks 
asynchronously from a Java EE container 
method

● Typically used for transient timers
● Inherits semantics of ManagedExecutorService:

● Centrally defined on an application server
● Indirectly referenced by applications
● Java EE product providers provide the 

implementation
● Implementations may offer extended capabilities
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Overview continued…
ManagedScheduledExecutorService
● Extension of ScheduledExecutorService

● Adds container context, manageability and lifecycle 
tracking and constraints

● UserTransaction support (does not enlist in parent 
component transaction)

● Trigger mechanism.
● Container context may be component-managed 

or server-managed
● Server-managed is most common.  Share a single 

executor between applications and components.
● Component-managed is faster, but restricted to a 

single component.



2006 JavaOneSM Conference   |   Session BOF-0989   | 39

Usage Scenarios
ManagedScheduledExecutorService

● Periodic cache invalidations
● Request timeouts
● Polling
● Custom Scheduler

● Would need implementation extension to support 
persistence.

● Use Triggers for custom calendaring:
● N-time fixed-rate with time-sensitive skip.
● Run time based on previous task calculation result.
● Condition-based trigger
● Centralized business calendar.
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ManagedScheduledExecutorService
interface ManagedScheduledExecutorService extends
ScheduledExecutorService {
// Same methods as ScheduledExecutorService…
// Add ManagedTaskListener and Trigger
ScheduledFuture<?> schedule(Runnable command, 
long delay,  TimeUnit unit, 
ManagedTaskListener taskListener);

ScheduledFuture<?> schedule(Runnable command, 
Trigger trigger, ManagedTaskListener taskListener);

ScheduledFuture<?> scheduleAtFixedRate(Runnable command,
long initialDelay,  long period, TimeUnit unit,
ManagedTaskListener taskListener);

ScheduledFuture<?> scheduleWithFixedDelay(
Runnable command, long initialDelay,  long delay,
TimeUnit unit, ManagedTaskListener taskListener);

}
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Trigger
interface Trigger {

// Return true if you want to skip the 
// currently-scheduled execution.  Is invoked after
// taskStarting().
boolean skipRun(Future lastFuture, 
Date scheduledRunTime);

// Retrieves the time in which to run the task next.    
// Invoked during submit time and after each task has
// completed.
Date getNextRunTime(Future lastFuture, Date baseTime,
Date lastActualRunTime, Date lastScheduledRunTime,
Date lastCompleteTime);

}
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Overview
ContextService

● Mechanism for applications to capture container 
context and run within that context later
● ManagedExecutorServices likely to use this service 

internally to propagate container context.
● Centrally defined on an application server
● Indirectly referenced by applications
● Java EE product providers provide the 

implementation
● Implementations may offer extended capabilities
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Overview continued…
ContextService

● Current thread context is captured and stored 
within a context proxy for your object

● Serializable
● Customizable

● Can enable transaction pass-through
● Used in advanced scenarios.
● Use with non-ManagedThreadFactory-created 

threads (threads created with new Thread())
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Use Cases
ContextService

● Workflow
● Store and propagate user identity

● Java SE or third-party thread reuse
● Allows thread to behave as-if it were on a container 

thread.
● Hybrid ManagedExecutorService

● Use component-managed executor from multiple 
components.
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ContextService
interface ContextService {
String USE_PARENT_TRANSACTION = "ctxsvc.useparenttran";

Object createContextObject(Object instance, 
Class[] interfaces);

Object createContextObject(Object instance, 
Class[] interfaces, Properties contextProperties);

void setProperties(Object contextObject, 
Properties contextProperties);

Properties getProperties(Object contextObject);
}
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Code Example – Creating Context
// Within your servlet or EJB method…
@Resource
ContextService ctxSvc;
void businessMethod() {
Runnable runnableTask = new Runnable() {

void run() {
// Interact with a database… use component's security

}
}
// Wrap with the current context
Runnable runnableTaskWithCtx = (Runnable)
ctxSvc.createContextObject(runnableTask, 
new Class[]{Runnable.class}

// Store the runnable with context somewhere and run
// later..
store.putIt(runnableTaskWithCtx);
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Code Example – Using Context
// Retreive the Runnable with Context 
Runnable runnableTaskWithContext = store.getIt();

// Runnable will run on this thread, but with the context
// of the servlet/EJB that created it.
runnableTaskWithContext.run();

// If the Runnable implemented Serializable and it 
// was serialized/deserialized… the context would still
// come with it.
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Summary

● The Concurrency Utilities for Java EE is in Early 
Draft Review stage.
● Mailing list available for comments.

● Extends Java SE concurrency utilities
● Provides simple and advanced APIs for adding 

concurrency to J2EE 1.3 and later applications:
● ManagedThreadFactory
● ManagedExecutorService
● ManagedScheduledExecutorService
● ContextService
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For More Information

● Concurrency EE Interest Site and Specification
● http://gee.cs.oswego.edu/dl/concurrencyee-interest/

● JSR 236 and 237 
● http://www.jcp.org/en/jsr/detail?id=236
● http://www.jcp.org/en/jsr/detail?id=237

● Related Sessions
● TS-4915 – Concurrency Utilities in Java SE 5
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Q&A
Chris D. Johnson, IBM Corp.
Naresh Revanuru, BEA Systems, Inc.
Andrew Evers, Redwood Software
Cyril Bouteille, Hotwire.com
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