
h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

1

Supporting
Fine-Grained Parallelism

in Java 7

Doug Lea
SUNY Oswego

dl@cs.oswego.edu

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

2

Outline

Background

Language and Library support for concurrency

Fine-grained task-based parallelism

Work-stealing algorithms

APIs, usages, and platform support

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

3

Prelude: why researchers write libraries

Because that's where many interesting problems are

Compromise as little as possible between very fast and very
easy to use. Mix of API design, algorithm design, SE.

Help developers to improve Quality, Productivity, Performance

When component functionality is {Common, Difficult,
Tedious, Error-Prone} then put it in a library

When programmers are seen to have trouble structuring
code, invent new abstractions that make it easier

When obvious implementations are slow, put faster ones in
library

Coexists with goal of making constructions easier

New languages, platforms, computing models

Improve usability of existing languages and platforms

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

4

Java Concurrency Support

Java 1.0-1.4

Threads, locks, monitors

Java5/6 (JSR166)

Mainly improve support for “server side” programs

Executors (thread pools etc), Futures

Concurrent collections (maps, sets, queues)

Flexible sync (atomics, latches, barriers, RW locks, etc)

Java7 (JSR166 “maintenance”)

Main focus on exploiting multi{core,proc}

A substrate for Fortress, X10, Scala, etc

Task-based parallelism (forkjoin package)

Plus better fine-grained sync for Thread-based programs

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

5

Core Java Concurrency Support

Built-in language features:

synchronized keyword

“monitors” part of the object model

volatile modifier

Roughly, reads and writes act as if in synchronized blocks

Core library support:

Thread class methods

start, sleep, yield, isAlive, getID, interrupt,
isInterrupted, interrupted, ...

Object methods:

wait, notify, notifyAll

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

6

java.util.concurrent

Executor framework

ThreadPools, Futures, CompletionService

Atomic variables (subpackage java.util.concurrent.atomic)

JVM support for compareAndSet operations

Lock framework (subpackage java.util.concurrent.locks)

Including Conditions & ReadWriteLocks

Concurrent collections

Queues, Lists, Sets, Maps

Synchronizers

Semaphores, Barriers, Exchangers, CountDownLatches

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

7

Task-based Parallelism

Program splits computations into tasks

Worker threads continually execute tasks

Plain form is basis for existing j.u.c Executor framework

split;
fork;
join;

compose;

Worker

task task

Pool

Worker

WorkerWork queue(s)

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

8

Work-Stealing
Scalable version of Executor (in new “forkjoin” package)

Eliminates most global synchronization

Each worker maintains own queue (actually a Deque)

Workers steal tasks from others when otherwise idle

Still maintain central “submission queue” and other mgt

Minimizes per-task creation and bookkeeping overhead

Only one int of per-task space overhead

Relies on high-throughput allocation and GC

Most tasks are not stolen, so task objects die unused

Minimizes per-task synchronization

But restricts the kinds of sync allowed

Mainly joining (awaiting completion) of subtasks

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

9

Parallel Recursive Decomposition
Typical algorithm

 Result solve(Param problem) {
 if (problem.size <= THRESHOLD)
 return directlySolve(problem);
 else {
 forkJoin {
 Result l = solve(leftHalf(problem));
 Result r = solve(rightHalf(problem));
 }
 return combine(l, r);
 }
 }

To use framework, must convert method to task object

Under work-stealing, the algorithm itself drives the scheduling

Many variants and extensions, but this simple form is usually
best behaved and widely applicable

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

10

Fork/Join Sort Example

 class SortTask extends RecursiveAction {
 final long[] array;
 final int lo; final int hi;

 SortTask(long[] array, int lo, int hi) {
 this.array = array;
 this.lo = lo; this.hi = hi;
 }

 protected void compute() {
 if (hi - lo < THRESHOLD)
 sequentiallySort(array, lo, hi);
 else {
 int m = (lo + hi) >>> 1;
 forkJoin(new SortTask(array, lo, m),
 new SortTask(array, m, hi));
 merge(array, lo, hi);
 }
 }
 // ...
 }

Popping

Stealing

TopBase

Deque

Pushing

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

11

Computation Trees and Deques

s(0,n)

s(0,n/2) s(n/2,n)

s(0,n/4) s(n/4,n/2) s(n/2,n/2+n/4) s(n/2+n/4,n)

q[base]

q[base+1]

root

For recursive decomposition, deques arrange tasks with the
most work to be stolen first. (See Blelloch et al for alternatives)

Example of method s operating on array elements 0 ... n

Where forkJoin(a, b) => push(a); exec(b); join(a)

(Alternatives discussed later)

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

12

Speedups on 32way Sparc

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

0

5

10

15

20

25

30

35

Speedups

Ideal
Fib
Micro
Integ
MM
LU
Jacobi
Sort

Threads

S
pe

ed
up

s

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

13

Why Work-Stealing

Portable scalability

Programs work well with any number of processors/cores

Load-balancing

Keeps processors busy, improves throughput

Robustness

Can afford to use small tasks (as few as 100 instructions)

15+ years of experience (most notably in Cilk)

But not a silver bullet – need to overcome or avoid ...

Basic versions don't maintain processor memory affinities

Task propagation delays can hurt for looping constructions

Overly fine granularities can hit big overhead wall

Restricted sync restricts range of applicability

Sizing/Scaling issues past a few hundred processors

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

14

Task Deque Algorithms

Deque operations (esp push, pop) must be very fast/simple

Competitive with procedure call stack push/pop

Current algorithm requires one atomic op per push+{pop/steal}

This is minimal unless allow duplicate execs or arbitrary
postponement (See Maged Michael et al PPoPP 09)

Approx 5X cost for empty forkjoin vs empty method call

Uses (resizable, circular) array with base and sp indices

Essentially (omitting emptiness, bounds checks, masking etc):

Push(t): storeFence; array[sp] = t; ++sp;

Pop(t): if (CAS(array[sp-1], t, null)) --sp;

Steal(t): if (CAS(array[base], t, null)) ++base;

NOT strictly non-blocking but probabilistically so

A stalled ++base precludes other steals

But if so, stealers try elsewhere (use randomized selection)

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

15

Synchronization Support
Must support diverse but structured coordination techniques

Support multiple techniques so only pay for what you need

Can also rely on j.u.c. nonblocking collections etc

Unstructured sync not strictly disallowed but not supported

If one thread blocked on IO, others may spin wasting CPU

helpQuiesce(): Execute tasks until there is no work to do

Relies on underlying quiescence detection

Similar to Herlihy & Shavit section 17.6 algorithm

Needed anyway for pool control

Fastest when applicable (e.g. graph traversal)

phaser.awaitAdvance(p): Similar to join, but triggered by phaser
barrier sync

Based on a variant of Sarkar et al Phasers (aka clocks)

Joining (see next)

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

16

Joining
Three supported techniques for dependence on task t that was
stolen (or never owned) but not yet done:

t.helpJoin()

Busy-help by stealing and running other tasks until t done

No atomics, blocking, or signals

Usually fast but only works for tree-structured computations

Otherwise a continuation can become permanently buried

t.join()

Block thread, enable a spare to steal/exec tasks

When t done, wake up, let spare suspend when next idle

More overhead but maintains parallelism without lockup

Spare threads emulate continuations

Using AsyncActions (see next)

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

17

Async Actions

Require finish() call to complete task

Finish of last subtask invokes parent finish

Replaces explicit joins with explicit continuations

Adds per-task linkages – more space overhead

Adds atomic op for each completion – slower reductions

Subclasses (Binary, Linked) prewire linkages and reductions

 class Fib extends BinaryAsyncAction {
 final int n; int result;
 Fib(int n) { this.n = n; }
 public void compute() {
 if (n > T) linkAndForkSubtasks(new Fib(n-1), new Fib(n-2));
 else { result = seqFib(n); finish(); }
 }
 public void onFinish(BinaryAsyncAction x,
 BinaryAsyncAction y) {
 result = ((Fib)x).result + ((Fib)y).result;
 }
}

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

18

Granularity Effects

Recursive Fibonacci(42) running on Niagara2

compute() {
if (n <= Threshold) seqFib(n);
else forkJoin(new Fib(n-1), new Fib(n-2)); ...}

When do you bottom out parallel decomposition?

A common initial complaint

But usually an easy empirical decision

Very shallow sensitivity curves near optimal choices

And usually just as easy to automate

0 5 10 15 20 25 30 35 40 45

0

2

4

6

8

10

12

14

16

Threshold

T
im

e
 (

se
c)

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

19

Automating granularity for decomposition

Based on queue length sensing for recursive tasks

Each thread should help ensure progress of (idle) thieves

Maintain pipeline with small constant number of tasks
available to steal in steady state, plus more on ramp up/down

Constant value because holds for each thread

Best value in part reflects overhead so not entirely analytic

But holds framework-wide, not per program

Similar to e.g. spin lock thresholds

Currently use 3 plus #idleThreads

If (getSurplusQueuedTaskCount() > 3) seq(...) else split(...)

Usually identical throughput to that with manual tuning

Can sometimes do a little better with more knowledge

For O(n) ops on arrays, generate #leafTasks proportional to
#threads (e.g., 8 * #threads)

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

20

Automating granularity for aggregation

Example: Graph traversal

visit() { if (mark) for each neighbor n, fork(new Visitor(n)); }

Usually too few instructions to spawn task per node

Batching based on queue sensing

Create tasks with node lists, not single nodes

Release (push) when list size exceeds threshold

Use batch sizes exponential in queue size (with max cap)

Small queue => a thread needs work, even if small batch

Cap protects against bad decisions during GC etc

Using min{128, 2queueSize} gives almost 8X speedup vs
unbatched in spanning tree algorithms

As usual, the exact values of constants don't matter a lot

This approximates (in reverse) the top-down rules

See ICPP 08 paper for details

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

21

Other Support

Additional flavors of ForkJoinTasks

Recursive, Async, Phased

Result-full Tasks and result-less Actions

Phased (upcoming) reduces re-spawn costs in loops

Direct ForkJoinWorkerThread access

Exposes push, pop etc to allow better tuning

Subclassable – can add per-thread state etc

Common utilities

Example: Per-worker-thread random number generator

Management and Monitoring

Submission queues, Shutdown, pool resizing

Track active threads, steals, etc

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

22

Usage patterns, idioms, and hacks
Example: Left-spines – reuse task node down and up

 final class SumSquares extends RecursiveAction {
 final double[] array; final int lo, hi; double result;
 SumSquares next; // keeps track of right-hand-side tasks
 SumSquares(double[] array, int lo, int hi, SumSquares next) {
 this.array = array; this.lo = lo; this.hi = hi; this.next = next;
 }
 protected void compute() {
 int l = lo; int h = hi; SumSquares right = null;
 while (h - l > 1 && getSurplusQueuedTaskCount() <= 3) {
 int mid = (l + h) >>> 1;
 (right = new SumSquares(array, mid, h, right)).fork();
 h = mid;
 }
 double sum = atLeaf(l, h);
 while (right != null && right.tryUnfork()) {
 sum += right.atLeaf(r.lo, r.hi); // Unstolen -- invoke compute to avoid virtual dispatch
 right = right.next;
 }
 while (right != null) { // join remaining right-hand sides
 right.helpJoin();
 sum += right.result;
 right = right.next;
 }
 result = sum;
}
private double atLeaf(int l, int r) {
 double sum = 0;
 for (int i = l; i < h; ++i) // perform leftmost base step
 sum += array[i] * array[i];
 return sum;
} }

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

23

VM Support Issues

Explicit memory fences and more complete atomics

Underway (proposed Fences API)

Allocation and high-throughput GC

Including issues like cardmark contention

Allowing idle threads help with GC (maybe via Thread.yield)

Tail-recursion

Needed internally to loopify recursion including callbacks

Boxing

Must avoid arrays of boxed elements

Guided inlining / macro expansion

Avoid megamorphic compute methods at leaf calls

Continuations?

Not clear they'd ever be faster than alternatives

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

24

Possible Java Library Extensions

Support apply, select, map, scan, reduce, etc on aggregates

Can be done via library support, not language support

But function-types and closure bodies painful to express

Example: ParallelArray
class Student { String name; int graduationYear; double gpa; }

ParallelArray<Student> students = ParallelArray.create(...);

double highestGpa = students.withFilter(graduatesThisYear)
 .withMapping(selectGpa)
 .max();

Ops.Predicate<Student> graduatesThisYear = new Ops.Predicate<Student>() {
public boolean op(Student s) { return s.graduationYear == THIS_YEAR; } };

Ops.ObjectToDouble<Student> selectGpa = new Ops.ObjectToDouble<Student>() {
public double op(Student student) { return student.gpa;} };

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

25

Current Status

Snapshots available in package jsr166y at:
http://gee.cs.oswego.edu/dl/concurrency-interest/index.html

Seems to have a few hundred early users

Targetting at least core functionality for Java7

Used by Fortress, X10, Scala, etc runtimes

Ongoing work

JDK release preparation

More testing, reviews, spec clarifications, tutorials, etc

Further out

Better integration with transactional support, thread-based
and event-based parallelism

http://gee.cs.oswego.edu/dl/concurrency-interest/index.html

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

26

Postscript: researchers cannot do it alone

API design is a social process

Single visions are good, but those that pass review are better

Specification and documentation require broad review

Even so, by far most submitted j.u.c bugs are spec bugs

Release engineering requires perfectionism

Lots of QA: tests, reviews. Still not enough

Standardization required for widespread use

JCP both a technical and political body

Developers will not read academic papers to figure out how or
why to use components

Need tutorials etc written at many different levels

Creating new components leads to new developer problems

Example: New bug patterns for findBugs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

