
1

Fork/Join Parallelism

go
h
t

t
p

:
/

/
g

e
e

.
c

s
.

o
s

w
e

g
o

.
e

d
u

in Java

Doug Lea

State University of New York at Oswe

dl@cs.oswego.edu

http://gee.cs.oswego.edu

2

Outline

h

t
t

p
:

/
/

g
e

e
.

c
s

.
o

s
w

e
g

o
.

e
d

u

Fork/Join Parallel Decomposition

A Fork/Join Framework

Recursive Fork/Join programming

Empirical Results

3

Parallel Decomposition

rt

able task.

l size on

all)
h
t

t
p

:
/

/
g

e
e

.
c

s
.

o
s

w
e

g
o

.
e

d
u

Goal: Minimize service times by exploiting parallelism

Approach:

Partition into subproblems

Break up main problem into several parts. Each pa
should be as independent as possible.

Create subtasks

Construct each solution to each part as a Runn

Fork subtasks

Feed subtasks to pool of worker threads. Base poo
number of CPUs or other resource considerations.

Join subtasks

Wait out processing of as many subtasks (usually
needed to compose solution

Compose solution

Compose overall solution from completed partial
solutions. (aka reduction , agglomeration)

4

Fork/Join Parallelism

h

t
t

p
:

/
/

g
e

e
.

c
s

.
o

s
w

e
g

o
.

e
d

u

Main task must help synchronize and schedule subtasks

public Result serve(Problem problem) {
 SPLIT the problem into parts;

 FORK:
 for each part p
 create and start task to process p;

 JOIN:
 for each task t
 wait for t to complete;

 COMPOSE and return aggegrate result;
}

main subtasks

fork

join

serve

return

5

Task Granularity

ks

ive

ossible

ntage
ds to

sible

ing
sk
alls.

on
h
t

t
p

:
/

/
g

e
e

.
c

s
.

o
s

w
e

g
o

.
e

d
u

How big should each task be?

Approaches and answers differ for different kinds of tas

• Computation-intensive, I/O-intensive, Event-intens

Focus here on computation-intensive

Two opposing forces:

To maximize parallelism, make each task as small as p

• Improves load-balancing, locality, decreases perce
of time that CPUs idly wait for each other, and lea
greater throughput

To minimize overhead, make each task as large as pos

• Creating, enqueing, dequeing, executing, maintain
status, waiting for, and reclaiming resources for Ta
objects add overhead compared to direct method c

Must adopt an engineering compromise:

Use special-purpose low-overhead Task frameworks

Use parameterizable decomposition methods that rely
sequential algorithms for small problem sizes

6

Fork/Join with Worker Threads

worker

worker

worker

worker
h
t

t
p

:
/

/
g

e
e

.
c

s
.

o
s

w
e

g
o

.
e

d
u

Each worker thread runs many tasks

• Java Threads are too heavy for direct use here.

Further opportunities to improve performance

• Exploit simple scheduling properties of fork/join

• Exploit simple structure of decomposed tasks

Main

... tasktask

serve() {
 split;
 fork;
 join;
 compose;
}

7

Simple Worker Threads

mmand,
h
t

t
p

:
/

/
g

e
e

.
c

s
.

o
s

w
e

g
o

.
e

d
u

Establish a producer-consumer chain

Producer

Service method just places task in a channel

Channel might be a buffer, queue, stream, etc

Task might be represented by a Runnable co
event, etc

Consumer

Host contains an autonomous loop thread of form:

 while (!Thread.interrupted()) {
 task = channel.take();
 process(task);
 }

8

Worker Thread Example

h

t
t

p
:

/
/

g
e

e
.

c
s

.
o

s
w

e
g

o
.

e
d

u

interface Channel { // buffer, queue, stream, etc
 void put(Object x);
 Object take();
}

class Host { //...
 Channel channel = ...;
 public void serve(...) {
 channel.put(new Runnable() { // enqueue
 public void run(){
 handler.process(...);
 }});
 }

Host() { // Set up worker thread in constructor
 // ...
 new Thread(new Runnable() {
 public void run() {
 while (!Thread.interrupted())
 ((Runnable)(channel.take())).run();
 }
 }).start();
 }
}

9

A Task Framework

 objects

n

n
task
o run
one
run t
ork+join
in all
h
t

t
p

:
/

/
g

e
e

.
c

s
.

o
s

w
e

g
o

.
e

d
u

Fork/Join Task objects can be much lighter than Thread

• No blocking except to join subtasks

— Tasks just run to completion

— Cannot enforce automatically, and short-duratio
blocking is OK anyway.

• Only internal bookkeeping is completion status bit.

• All other methods relay to current worker thread.

abstract class FJTask implements Runnable {
 boolean isDone(); // True after task is ru
 void fork(); // Start a dependent

static void yield(); // Allow another task t
 void join(); // Yield until isD
 static void invoke(Task t); // Directly
 static void coInvoke(Task t,Task u); // F
 static void coInvoke(Task[] v); // Fork+jo
 void reset(); // Clear isDone
 void cancel(); // Force isDone
} // (plus a few others)

10

Fork/Join Worker Thread Pools

etimes
s

s

ients

k-based

sk first)
e

h
t

t
p

:
/

/
g

e
e

.
c

s
.

o
s

w
e

g
o

.
e

d
u

Uses per-thread queuing with work-stealing

• Normally best to have one worker thread per CPU

— But design is robust. It scarcely hurts (and som
scarcely helps) to have more workers than CPU

• Each new task is queued in current worker thread’
dequeue (double-ended queue)

— Plus a global entry queue for new tasks from cl

• Workers run tasks from their own dequeues in stac
LIFO (i.e., newest task first) order.

• If a worker is idle, it steals a task, in FIFO (oldest ta
order from another thread’s dequeue or entry queu

11

Work-Stealing

ning

dequeue

queue

dequeue

ling

lding
h
t

t
p

:
/

/
g

e
e

.
c

s
.

o
s

w
e

g
o

.
e

d
u

Original algorithm devised in
Cilk project (MIT)

• Several variants

• Shown to scale on
stock MP hardware

Leads to very portable
application code

Typically, the only
platform-dependent
parameters are:

• Number of worker
threads

• Problem threshold
size for using
sequential solution

Works best with recursive
decomposition

worker

run

fork

worker

steal

de

worker

exec

id

yie

12

Recursive Decomposition

duling

r many

allelize
h
t

t
p

:
/

/
g

e
e

.
c

s
.

o
s

w
e

g
o

.
e

d
u

Typical algorithm:

 Result solve(Param problem) {
 if (problem.size <= GRANULARITY_THRESHOLD)
 return directlySolve(problem);
 else {
 in-parallel {
 Result l = solve(lefthalf(problem));
 Result r = solve(rightHalf(problem);
 }
 return combine(l, r);
 }
 }

Why?

Support tunable granularity thresholds

Under work-stealing, the algorithm itself drives the sche

There are known recursive decomposition algorithms fo
computationally-intensive problems.

Some are explicitly parallel, others are easy to par

13

Example: Fibonacci

ics

stant
h
t

t
p

:
/

/
g

e
e

.
c

s
.

o
s

w
e

g
o

.
e

d
u

A useless algorithm, but easy to explain!

Sequential version:

int seqFib(int n) {
 if (n <= 1)
 return n;
 else
 return seqFib(n-1) + seqFib(n-2);
}

To parallelize:

• Replace function with Task subclass

— Hold arguments/results as instance vars

— Define run() method to do the computation

• Replace recursive calls with fork/join Task mechan

— Task.coinvoke is convenient here

• But rely on sequential version for small values of n

Threshold value usually an empirical tuning con

14

Class Fib

nd result
h
t

t
p

:
/

/
g

e
e

.
c

s
.

o
s

w
e

g
o

.
e

d
u

class Fib extends FJTask {
volatile int number; // serves as arg a

 Fib(int n) { number = n; }

 public void run() {
 int n = number;
 if (n <= 1) { /* do nothing */ }

else if (n <= sequentialThreshold) //(12 works)
 number = seqFib(n);
 else {
 Fib f1 = new Fib(n - 1); // split
 Fib f2 = new Fib(n - 2);
 coInvoke(f1, f2); // fork+join
 number = f1.number + f2.number; // compose
 }
 }

 int getAnswer() { // call from external clients
 if (!isDone())
 throw new Error("Not yet computed");
 return number;
 }
}

15

Fib Server

h

t
t

p
:

/
/

g
e

e
.

c
s

.
o

s
w

e
g

o
.

e
d

u

public class FibServer { // Yes. Very silly
 public static void main(String[] args) {
 TaskRunnerGroup group = new
 TaskRunnerGroup(Integer.parseInt(args[0]));
 ServerSocket socket = new ServerSocket(1618);
 for (;;) {
 final Socket s = socket.accept();

 group.execute(new Task() {
 public void run() {
 DataInputStream i = new
 DataInputStream(s.getInputStream());
 DataOutputStream o = new
 DataOutputStream(s.getOutputStream());
 Fib f = new Fib(i.readInt());
 invoke(f);
 o.writeInt(f.getAnswer());
 s.close()

 });
 }
 }
 }
} // (Lots of exception handling elided out)

16

Computation Trees

s in

lower

teal
sy for a
h
t

t
p

:
/

/
g

e
e

.
c

s
.

o
s

w
e

g
o

.
e

d
u

Recursive computation meshes well with work-stealing:

• With only one worker thread, computation proceed
same order as sequential version

— The local LIFO rule is same as, and not much s
than recursive procedure calls

• With multiple threads, other workers will typically s
larger, non- leaf subtasks, which will keep them bu
while without further inter-thread interaction

f(4)

f(3)

f(2)

f(1)

f(2)

f(0)

f(1) f(1) f(0)

17

Iterative Computation

do:

ions;

ulation
h
t

t
p

:
/

/
g

e
e

.
c

s
.

o
s

w
e

g
o

.
e

d
u

Many computation-intensive algorithms have structure:

Break up problem into a set of tasks, each of form:

• For a fixed number of steps, or until convergence,

— Update one section of a problem;

— Wait for other tasks to finish updating their sect

Examples include mesh algorithms, relaxation, physical sim

Illustrate with simple Jacobi iteration, with base step:

void oneStep(double[][] oldM, double[][] newM,
 int i, int j) {
 newM[i][j] = 0.25 * (oldM[i-1][j] +
 oldM[i][j-1] +
 oldM[i+1][j] +
 oldM[i][j+1]);
}

Where oldM and newM alternate across steps

18

Iteration via Computation Trees

ns

ter

zation
h
t

t
p

:
/

/
g

e
e

.
c

s
.

o
s

w
e

g
o

.
e

d
u

Explicit trees avoid repeated problem-splitting across iteratio

Allow Fork/Join to be used instead of barrier algorithms

For Jacobi, can recursively divide by quadrants

• Leaf nodes do computation;

Leaf node size (cell count) is granularity parame

• Interior nodes drive task processing and synchroni

19

Jacobi example

check
h
t

t
p

:
/

/
g

e
e

.
c

s
.

o
s

w
e

g
o

.
e

d
u

abstract class Tree extends Task {
 volatile double maxDiff; //for convergence
}

class Interior extends Tree {
 final Tree[] quads;

 Interior(Tree q1, Tree q2, Tree q3, Tree q4) {
 quads = new Tree[] { q1, q2, q3, q4 };
 }

 public void run() {
 coInvoke(quads);
 double md = 0.0;
 for (int i = 0; i < 4; ++i) {
 md = Math.max(md,quads[i].maxDiff);
 quads[i].reset();
 }
 maxDiff = md;
 }
}

20

Leaf Nodes

h

t
t

p
:

/
/

g
e

e
.

c
s

.
o

s
w

e
g

o
.

e
d

u

class Leaf extends Tree {
 final double[][] A; final double[][] B;
 final int loRow; final int hiRow;

final int loCol; final int hiCol; int steps = 0;
 Leaf(double[][] A, double[][] B,
 int loRow, int hiRow,
 int loCol, int hiCol) {
 this.A = A; this.B = B;
 this.loRow = loRow; this.hiRow = hiRow;
 this.loCol = loCol; this.hiCol = hiCol;
 }
 public synchronized void run() {
 boolean AtoB = (steps++ % 2) == 0;
 double[][] a = (AtoB)? A : B;
 double[][] b = (AtoB)? B : A;
 for (int i = loRow; i <= hiRow; ++i) {
 for (int j = loCol; j <= hiCol; ++j) {
 b[i][j] = 0.25 * (a[i-1][j] + a[i][j-1] +
 a[i+1][j] + a[i][j+1]);
 double diff = Math.abs(b[i][j] - a[i][j]);
 maxDiff = Math.max(maxDiff, diff);
 }
 }
} }

21

Driver

h

t
t

p
:

/
/

g
e

e
.

c
s

.
o

s
w

e
g

o
.

e
d

u

class Driver extends Task {
 final Tree root; final int maxSteps;
 Driver(double[][] A, double[][] B,
 int firstRow, int lastRow,
 int firstCol, int lastCol,
 int maxSteps, int leafCells) {
 this.maxSteps = maxSteps;
 root = buildTree(/* ... */);
 }

 Tree buildTree(/* ... */) { /* ... */}

 public void run() {
 for (int i = 0; i < maxSteps; ++i) {
 invoke(root);
 if (root.maxDiff < EPSILON) {
 System.out.println("Converged");
 return;
 }
 else
 root.reset();
 }
 }
}

22

Performance

h

t
t

p
:

/
/

g
e

e
.

c
s

.
o

s
w

e
g

o
.

e
d

u

Test programs

• Fib

• Matrix multiplication

• Integration

• Best-move finder for game

• LU decomposition

• Jacobi

• Sorting

Main test platform

• 30-CPU Sun Enterprise

• Solaris Production 1.2.x JVM

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

0

5

10

15

20

25

30

Speedups

Ideal

Fib

Micro

Integ

MM

LU

Jacobi

Sort

Threads

S
pe

ed
up

s

Fib Micro Integ MM LU Jacobi Sort
0

100

200

300

400

500

600

700

Times
S

ec
on

ds

Fib Micro Inte−
grate

MM LU Jacobi Sort
0

20000

40000

60000

80000

100000

120000

Task rates
T

as
ks

/s
ec

 p
er

 th
re

ad

1 2 3 45 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

0

5

10

15

20

25

30

GC Effects: FIb

Ideal

Fib−64m

Fib−4m

Fib−scaled

Threads

S
pe

ed
up

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

0

5

10

15

20

25

30

Memory bandwidth effects: Sorting

Ideal

Bytes

Shorts

Ints

Longs

Threads

S
pe

ed
up

1234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

0

5

10

15

20

25

30

Sync Effects: Jacobi

Ideal

1step/sync

10steps/sync

Threads

S
pe

ed
up

1234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

0.225

Locality effects

Fib

Micro

Integrate

MM

LU

Jacobi

Sort

Threads

P
ro

po
rt

io
n

st
ol

en

Fib MM Sort LU Integ Jacob
i

0

1

2

3

4

5

6

7

8

Other Frameworks

FJTask

Cilk

Hood

FilamentsS
ec

on
ds

	Outline
	Parallel Decomposition
	Fork/Join Parallelism
	Task Granularity
	Fork/Join with Worker Threads
	Simple Worker Threads
	Worker Thread Example
	A Task Framework
	Fork/Join Worker Thread Pools
	Work-Stealing
	Recursive Decomposition
	Example: Fibonacci
	Class Fib
	Fib Server
	Computation Trees
	Iterative Computation
	Iteration via Computation Trees
	Jacobi example
	Leaf Nodes
	Driver
	Performance

