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Fork/Join Parallel Decomposition

A Fork/Join Framework

Recursive Fork/Join programming

Empirical Results
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Parallel Decomposition
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Goal: Minimize service times by exploiting parallelism

Approach:

Partition into subproblems

Break up main problem into several parts. Each pa
should be as independent as possible.

Create subtasks

Construct each solution to each part as a Runn

Fork subtasks

Feed subtasks to pool of worker threads. Base poo
number of CPUs or other resource considerations.

Join subtasks

Wait out processing of as many subtasks (usually 
needed to compose solution

Compose solution

Compose overall solution from completed partial
solutions. (aka reduction , agglomeration)
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Fork/Join Parallelism
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Main task must help synchronize and schedule subtasks

public Result serve(Problem problem) {
  SPLIT the problem into parts;

  FORK:
    for each part p
      create and start task to process p;

  JOIN:
    for each task t
      wait for t to complete;

  COMPOSE and return aggegrate result;
}

main subtasks

fork

join

serve

return
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Task Granularity
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How big should each task be?

Approaches and answers differ for different kinds of tas

• Computation-intensive, I/O-intensive, Event-intens

Focus here on computation-intensive

Two opposing forces:

To maximize parallelism, make each task as small as p

• Improves load-balancing,  locality, decreases perce
of  time that CPUs idly wait for each other, and lea
greater throughput

To minimize overhead, make each task as large as pos

• Creating, enqueing, dequeing, executing, maintain
status, waiting for, and reclaiming resources for Ta
objects add overhead compared to direct method c

Must adopt an engineering compromise:

Use special-purpose low-overhead Task frameworks

Use parameterizable decomposition methods that rely 
sequential algorithms for small problem sizes
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Fork/Join with Worker Threads
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Each worker thread runs many tasks

• Java Threads are too heavy for direct use here.

Further opportunities to improve performance

• Exploit simple scheduling properties of fork/join

• Exploit simple structure of decomposed tasks

Main

... tasktask

serve() {
 split;
 fork;
 join;
 compose;
}
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Simple Worker Threads
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Establish a producer-consumer chain

Producer

Service method just places task  in a channel

Channel  might be a buffer, queue, stream, etc

Task might be represented by a Runnable  co
event, etc

Consumer

Host contains an autonomous loop thread of form:

         while (!Thread.interrupted()) {
        task = channel.take();
        process(task);
      }
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Worker Thread Example
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interface Channel { // buffer, queue, stream, etc
  void   put(Object x);
  Object take();
}

class Host { //...
  Channel channel = ...;
  public void serve(...) {
    channel.put(new Runnable() {  // enqueue
      public void run(){
        handler.process(...);
      }});
  }

Host() { // Set up worker thread in constructor
    // ...
    new Thread(new Runnable() {
      public void run() {
       while (!Thread.interrupted())
        ((Runnable)(channel.take())).run();
      }
    }).start();
  }
}
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A Task Framework
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Fork/Join Task objects can be much lighter than Thread

• No blocking except to join subtasks

— Tasks just run to completion

— Cannot enforce automatically, and short-duratio
blocking is OK anyway.

• Only internal bookkeeping is completion status bit.

• All other methods relay to current worker thread.

abstract class FJTask implements Runnable {
  boolean isDone(); // True after task is ru
  void fork(); // Start a dependent 

static void yield(); // Allow another task t
  void join(); // Yield until isD
  static void invoke(Task t); // Directly 
  static void coInvoke(Task t,Task u); // F
  static void coInvoke(Task[] v); // Fork+jo
  void reset();                     // Clear isDone
  void cancel();                   // Force isDone
} // (plus a few others)
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Fork/Join Worker Thread Pools
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Uses per-thread queuing  with work-stealing

• Normally best to have one worker thread per CPU

— But design is robust. It scarcely hurts (and som
scarcely helps) to have more workers than CPU

• Each new task is queued in current worker thread’
dequeue (double-ended queue)

— Plus a global entry queue for new tasks from cl

• Workers run tasks from their own dequeues in stac
LIFO (i.e., newest task first) order.

• If a worker is idle, it steals a task, in FIFO (oldest ta
order from another thread’s dequeue or entry queu
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Work-Stealing
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Original algorithm devised in
Cilk project (MIT)

• Several variants

• Shown to scale on
stock MP hardware

Leads to very portable
application code

Typically, the only
platform-dependent
parameters are:

• Number of worker
threads

• Problem threshold
size for using
sequential solution

Works best with recursive
decomposition

worker

run

fork

worker

steal

de

worker

exec

id

yie
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Recursive Decomposition
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Typical algorithm:

  Result solve(Param problem) {
    if (problem.size <= GRANULARITY_THRESHOLD)
      return directlySolve(problem);
    else {
       in-parallel {
         Result l = solve(lefthalf(problem));
         Result r = solve(rightHalf(problem);
       }
       return combine(l, r);
    }
  }

Why?

Support tunable granularity thresholds

Under work-stealing, the algorithm itself drives the sche

There are known recursive decomposition algorithms fo
computationally-intensive problems.

Some are explicitly parallel, others are easy to par
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Example: Fibonacci
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A useless algorithm, but easy to explain!

Sequential version:

int seqFib(int n) {
  if (n <= 1)
    return n;
  else
    return seqFib(n-1) + seqFib(n-2);
}

To parallelize:

• Replace function with Task subclass

— Hold arguments/results as instance vars

— Define run()  method to do the computation

• Replace recursive calls with fork/join Task mechan

— Task.coinvoke  is convenient here

• But rely on sequential version for small values of n

Threshold  value usually an empirical tuning con
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class Fib extends FJTask {
volatile  int number; // serves as arg a

  Fib(int n) { number = n; }

  public void run() {
    int n = number;
    if (n <= 1) { /* do nothing */ }

else if (n <= sequentialThreshold) //(12 works)
      number = seqFib(n);
    else {
      Fib f1 = new Fib(n - 1);        // split
      Fib f2 = new Fib(n - 2);
      coInvoke(f1, f2);               // fork+join
      number = f1.number + f2.number; // compose
    }
  }

  int getAnswer() { // call from external clients
    if (!isDone())
      throw new Error("Not yet computed");
    return number;
  }
}



15

Fib Server
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public class FibServer  { // Yes. Very silly
  public static void main(String[] args) {
    TaskRunnerGroup group = new
      TaskRunnerGroup(Integer.parseInt(args[0]));
    ServerSocket socket = new ServerSocket(1618);
    for (;;) {
      final Socket s = socket.accept();

    group.execute(new Task() {
        public void run() {
          DataInputStream i = new
            DataInputStream(s.getInputStream());
          DataOutputStream o = new
            DataOutputStream(s.getOutputStream());
          Fib f = new Fib(i.readInt());
          invoke(f);
          o.writeInt(f.getAnswer());
          s.close()

   });
      }
    }
  }
} // (Lots of exception handling elided out)
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Computation Trees
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Recursive computation meshes well with work-stealing:

• With only one worker thread, computation proceed
same order as sequential version

— The local LIFO rule is same as, and not much s
than recursive procedure calls

• With multiple threads, other workers will typically s
larger, non- leaf  subtasks, which will keep them bu
while without further inter-thread interaction

f(4)

f(3)

f(2)

f(1)

f(2)

f(0)

f(1) f(1) f(0)
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Iterative Computation
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Many computation-intensive algorithms have structure:

Break up problem into a set of tasks, each of form:

• For a fixed number of steps, or until convergence, 

— Update one section of a problem;

— Wait for other tasks to finish updating their sect

Examples include mesh algorithms, relaxation, physical sim

Illustrate with simple Jacobi iteration, with base step:

void oneStep(double[][] oldM, double[][] newM,
             int i, int j) {
   newM[i][j] = 0.25 * (oldM[i-1][j] +
                        oldM[i][j-1] +
                        oldM[i+1][j] +
                        oldM[i][j+1]);
}

Where oldM  and newM alternate across steps
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Iteration via Computation Trees
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Explicit trees avoid repeated problem-splitting across iteratio

Allow Fork/Join to be used instead of barrier algorithms

For Jacobi, can recursively divide by quadrants

• Leaf  nodes do computation;

Leaf node size (cell count) is granularity parame

• Interior nodes drive task processing and synchroni
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Jacobi example
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abstract class Tree extends Task {
  volatile double maxDiff; //for convergence 
}

class Interior extends Tree {
  final Tree[] quads;

  Interior(Tree q1, Tree q2, Tree q3, Tree q4) {
    quads = new Tree[] { q1, q2, q3, q4 };
  }

  public void run() {
    coInvoke(quads);
    double md = 0.0;
    for (int i = 0; i < 4; ++i) {
      md = Math.max(md,quads[i].maxDiff);
      quads[i].reset();
    }
    maxDiff = md;
  }
}
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Leaf Nodes

h

t
t

p
:

/
/

g
e

e
.

c
s

.
o

s
w

e
g

o
.

e
d

u

class Leaf extends Tree {
  final double[][] A; final double[][] B;
  final int loRow; final int hiRow;

final int loCol; final int hiCol; int steps = 0;
  Leaf(double[][] A, double[][] B,
       int loRow, int hiRow,
       int loCol, int hiCol) {
    this.A = A;   this.B = B;
    this.loRow = loRow; this.hiRow = hiRow;
    this.loCol = loCol; this.hiCol = hiCol;
  }
  public synchronized  void run() {
    boolean AtoB = (steps++ % 2) == 0;
    double[][] a = (AtoB)? A : B;
    double[][] b = (AtoB)? B : A;
    for (int i = loRow; i <= hiRow; ++i) {
      for (int j = loCol; j <= hiCol; ++j) {
        b[i][j] = 0.25 * (a[i-1][j] + a[i][j-1] +
                          a[i+1][j] + a[i][j+1]);
        double diff = Math.abs(b[i][j] - a[i][j]);
        maxDiff = Math.max(maxDiff, diff);
      }
    }
} }
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Driver
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class Driver extends Task {
  final Tree root;  final int maxSteps;
  Driver(double[][] A, double[][] B,
         int firstRow, int lastRow,
         int firstCol, int lastCol,
         int maxSteps, int leafCells) {
    this.maxSteps = maxSteps;
    root = buildTree(/* ... */);
  }

  Tree buildTree(/* ... */) { /* ... */}

  public void run() {
    for (int i = 0; i < maxSteps; ++i) {
      invoke(root);
      if (root.maxDiff < EPSILON) {
        System.out.println("Converged");
        return;
      }
      else
        root.reset();
    }
  }
}
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Test programs

• Fib

• Matrix multiplication

• Integration

• Best-move finder for game

• LU decomposition

• Jacobi

• Sorting

Main test platform

• 30-CPU Sun Enterprise

• Solaris Production 1.2.x JVM
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