Concurrency:
Where to draw the lines

)
O
@
O
°
@
=
0
o
0
O
0
@
°
~N
~N

Doug Lea
SUNY Oswego

dl@cs.oswego.edu

Outline

+ Layers of concurrency support
+ Some design options

+ Selected background
® Memory models
® Concurrency libraries

¥ |solates

)
O
@
O
°
@
=
0
o
0
O
0
@
°

Supporting Concurrency

+ Concurrency is unavoidable, and unavoidably diverse

+ No use taking religious stance about which style is best
+ Common approaches

® Threads-and-Monitors (classic Java, pthreads)

® Asynchronous task frameworks, Futures, Events

+ Optimistic and lock-free synchronization

+ Message passing — synch or asynch, thread or process-based

-
O
@
O
°
@
K
7))
o
7))
O
0
@
°

+ Resource control — semaphores, monitoring, etc
+ Parallel decomposition — barriers, etc
+ Transactional — lightweight or databases

+ Languages/platforms must support these

+ Otherwise programmers will build from what they are given.

Layers

-] ¥ Targets + Functions and properties

'?{ * Processors + Ordering and Consistency
¢+ (Hardware) Systems <+ Atomicity

% * Operating Systems + Waiting

© ¢ Virtual Machines ¢ Task-switching

8 ¥ Libraries and Middleware ¥ Notifications

$ + Components < Monitoring

+ Applications
+ Typical tradeoffs

® Overhead, throughput,
latency, scalability

Sample Design Issues

+ Doing something is better than doing nothing
+ Stalling hurts throughput, and doesn’'t help anything else
+ Speculation, chip-level multithreading etc

+ Unless that something hurts others
® Spinning causes memory contention

+ Or there is nothing to do

¢ Power management

-
O
@
O
°
@
K
7))
o
7))
O
0
@
°

+ But switching tasks can be expensive

+ Minimizing overhead: Pools, work-stealing
+ And reliance on future actions of other tasks is risky

+ Minimizing before/after-style control (e.g., lock/unlock)
+ And abruptly killing other tasks is even more risky

+ Minimizing reliance on whether cleanup occurs

Core VM support

+ Adherence to a memory model
® Including support for atomic variables

+ Threads
+ Possibly multiple granularities (tasks, active-events, sessions)
¢+ Scheduling: Task-stealing, blocking, unblocking, cancelling

+ Processes or Isolates

¥+ Resource control

-
O
@
O
°
@
S
7))
o
7))
O
0
@
°

¢ Interprocess messaging

+ Binding control
+ Threads, sessions, objects etc as containers
+ Versioning and rollback

+ Integration with 1O

+ Channels, buffers

a)
O
()
O
J
(),
=
0
O
0
O
()
()
J

Library-Centric Concurrency

+ Rely on library/middleware for most user-visible concurrency
+ Avoid global reliance on, say, Monitor-style concurrency
+ Efficiency

+ Many algorithms and data structures are both simpler and
faster if they can rely on GC and dynamic optimization

+ Can make more informed engineering tradeoffs about
Scalability vs overhead, general vs special-case etc

+ Planning for change
* Concurrency is again a hot area in research and engineering

+ Expect even better approaches to emerge for lightweight
transactions, task coordination, collections, etc

+ Downstream consequences

+ On debugging, monitoring, profiling, static analysis, error
detectors, design tools

a)
O
()
O
J
(),
=
0
O
0
O
()
()
J

Some Challenges

+ Where does VM end and middleware begin?
+ May require trust framework so VM will believe library author
+ May require APIs accessible only by trusted middleware
+ Teaching VM about optimizations
¢ Example: Minimizing memory barriers
+ Requires new forms of metadata
+ Similar to current work in C++ library optimization
+ Accommodating Processor, System, OS differences
+ Example: LL/SC vs CAS vs new chip-level primitives
+ Avoiding constructs that reward complexity and sleaze
+ Example: Lock bits in object headers
+ Syntactic integration with language

+ Example: Expressing lightweight transactions

JSR-133 Memory Model

+ A memory model specifies how threads and objects interact

—3 + Atomicity

)

o + Ensuring mutual exclusion for field updates

¥ Visibility

8 + Ensuring changes made in one thread are seen in other
- threads

)

0 ® Ordering

Q

()

+ Ensuring that you aren’t surprised by the order in which
statements are executed

+ Original JLS spec was broken and impossible to understand
+ Unwanted constraints, omissions, inconsistencies
+ The basic JSR-133 rules are easy. The formal spec is not.

+ Spec complexity mainly in clarifying optimization issues

JSR-133 Main Rule

3 Thread 1 Thread 2
0
0 y =1
v
=
/)]
o
0 Everything
O before the i
8 unlock on M ...
o lock M
l ... visible to :
everything
after the
lock on M unlock M
v
J =Y

v

-
O
@
O
°
@
K
7))
o
7).
O
()
(),
°

Additional JSR-133 Rules

+ Variants of lock rule apply to volatile fields and thread control
+ Writing a volatile has same basic memory effects as unlock
+ Reading a volatile has same basic memory effects as lock
+ Similarly for thread start and termination
+ Details differ from locks in minor ways

+ Final fields

+ All threads read final value so long as it is always assigned
before the object is visible to other threads. So DON'T write:

class Stupid implements Runnable {
final int id;
Stupid(int i) { new Thread(this) .start(); id = i; }
public void run() { System.out.println(id); }

}

+ Extremely weak rules for unsynchronized, non-volatile, non-final
reads and writes

+ type-safe, not-out-of-thin-air, but can be reordered, invisible

11

-
O
@
O
°
@
S
7))
o
7))
O
0
@
°

java.util.concurrent

+ Queue framework
* Queues & blocking queues

+ Concurrent collections
+ Lists, Sets, Maps geared for concurrent use

+ Executor framework
+ ThreadPools, Futures, CompletionService

+ Synchronizers
+ Semaphores, Barriers, Exchangers, CountDownLatches

+ Lock framework (subpackage java.util.concurrent.locks)
% Including Conditions & ReadWriteLocks

+ Atomic variables (subpackage java.util.concurrent.atomic)
+ JVM support for compareAndSet operations

+ Other miscellany

12

13

166 components

Main JSR

nps ‘' obsmso " sd - 98b//:d33y

-
O
@
O
°
@
K
7))
o
7))
O
0
@
°

Example framework: Executors

+ Standardize asynchronous task invocation

¥ Use anExecutor.execute (aRunnable)

¥+ Not new Thread (aRunnable) .start ()
+ Two styles supported:

¢ Actions: Runnables

+ Functions (indirectly): Callables
+ A small framework, including:
Executor — something that can execute Runnables
ExecutorService extension -- shutdown support etc
Executors utility class — configuration, conversion
ThreadPoolExecutor — tunable implementation

ScheduledExecutor for time-delayed tasks

¢ ¢ ¢ ¢ ¢ ¢

ExecutorCompletionService — maintain completed tasks
14

|
O
@
O
o
@
=
()]
o
1))
O
()
(),
o

Executor Example

class Server {
public static void main(String[] args) throws Exception {

Executor pool = Executors.newFixedThreadPool (3) ;
ServerSocket socket = new ServerSocket (9999) ;
for (;;) |

final Socket connection = socket.accept() ;

pool.execute (new Runnable () {

public void run() {
new Handler () .process (connection) ;

P}
}
}
static class Handler { void process (Socket s); }
}

Pool

15

)
O
@
O
°
@
=
0
o
0
O
()
(),
°

Future Example

class ImageRenderer { Image render (byte[] raw); }

class App { //
ExecutorService exec = ...; // any executor

ImageRenderer renderer = new ImageRenderer() ;

public void display(final byte[] rawimage) {
try {
Future<Image> image = exec.submit (new Callable () {
public Object call() {
return renderer.render (rawImage) ;

b)) g

drawBorders(); // do other things while executing
drawCaption() ;

drawImage (image.get()); // use future

}

catch (Exception ex) ({
cleanup() ;

16

-
O
@
O
°
@
S
7))
o
7))
O
0
@
°

Atomic Variables

+ Classes representing scalars supporting
boolean compareAndSet (expectedValue, newValue)
+ Atomically set to newValue if currently hold expectedvalue
¥+ Also support variant: weakCompareAndSet
+ May be faster, but may spuriously fail (as in LL/SC)

+ Classes: { int, long, reference } X { value, field, array } plus boolean
value

+ Plus AtomicMarkableReference, AtomicStampedReference
+ (emulated by boxing in J2SE1.5)
+ JVMs can use best construct available on a given platform

+ Compare-and-swap, Load-linked/Store-conditional, Locks

17

-
O
@
O
°
@
K
7))
o
7))
O
0
@
°

Synchronizers

+ Locks, semaphores, latches, futures etc all rely on class
AbstractQueuedSynchronizer for queuing and blocking

+ Based on a blocking extension of CLH locks

@+ Block using LockSupport.park when not head of queue or

cannot acquire state — an atomic int controlled by client class

+ Fast single-CAS queue insertion using explicit pred pointers
+ Also next-pointers to enable signalling (unpark)
* Not atomically assigned head

+ Use pred ptrs as backup
tail

s tail
next

+ Many options: timeout,
cancellation, fairness, head
exclusive vs shared,
associated Conditions

+ See CSJP paper for details

18

-
O
@
O
°
@
S
7))
o
7))
O
0
@
°

Collections (Lists, Sets, Maps)

+ Large APIs, but what do people do with them?
¢+ Informal workload survey using pre-1.5 collections
+ Operations:
* About 83% read, 16% insert/modify, <1% delete
+ Sizes:
+ Medians less than 10, very long tails
® Concurrently accessed collections usually larger than others
+ Concurrency:
+ Vast majority only ever accessed by one thread
+ But many apps use thread-safe collections anyway
+ Others contended enough to be serious bottlenecks
+ Not very many in-between

+ Lock-based collections don't usually fit well with usage patterns
19

-
O
@
O
°
@
K
7))
o
7))
O
0
@
°

Collections Design Options

+ Large design space, including
+ Locks: Coarse-grained, fine-grained, ReadWrite locks
+ Concurrently readable — reads never block, updates use locks
+ Optimistic — never block but may spin
+ Lock-free — concurrently readable and updatable
+ Most initial JSSR-166 collections concurrently readable

+ Several lock-free additions are being done as RFEs

Rough guide to tradeoffs for typical implementations
Read overhead Read scaling Write overhead Write scaling

Coarse-grained locks Medium Worst Medium Worst
Fine-grained locks Worst Medium Worst OK
ReadWrite locks Medium So0-so Medium Bad
Concurrently readable Best Very good Medium Not-so-bad
Optimistic Good Good Best Risky

Lock-free Good Best OK Best

20

|
O
@
O
o
@
=
()]
o)
7))}
O
0
0
o

Example lock-free collection idiom

+ Linking a new object can be cheaper/better than marking a pointer

+ Less traversal overhead but need to traverse at least 1 more
node during search; also can add GC overhead if overused

+ Can apply to M. Michael's sorted lists, using deletion marker nodes

+ Maintains property that ptr from deleted node is changed

#+ Can in turn apply to Skip Lists (now in package jsrl166x)

ISR TR T

Delete B

-

21

)
O
@
O
°
@
=
0
o
0
O
0
@
°

Overview of Isolates

| solate noun. pronounciation: isolet.

1. A thing that has been isolated, as by
geogr aphic, ecologic or social barriers-
American Heritage Dictionary

Status
+ At public review draft in JSR-121.
+ Originally targetted for J2SE1.5, but triaged out
#+ Tentatively scheduled for next major J2SE release.
+ Will be partially overhauled

+ J2ME versions will probably appear sooner.

22

|
O
@
O
o
@
=
()]
o)
7))}
O
0
0
o

Aggregates vs Isolates vs Threads

possibly shared
run-time data

statics,

heap

anlsolate

each isolate acts as a separate

logical virtual machine Aggregate .

Three Implementation Styles

+ One Isolate per OS process

* Internal sharing via OS-level Likely for J2SE
shared memory, comms via IPC

+ class representations, bytecodes, compiled code, immutable
statics, other internal data structures

+ All Isolates in one OS address Likely for J2ME
space / process managed by aggregate

+ Isolates still get own versions of all statics/globals

gee.cs.osweqgo.edu

* including AWT thread, shutdown hooks, ...

] * LAN Cluster JVMs Still research

+ |solates on different machines under a common administrative
domain. NOT a substitute for RMI

+ Little or no internal sharing
24

-
O
@
O
°
@
S
7))
o
7))
O
0
@
°

Main Classes

*public final class Isolate

+ Create with name of class with a "main", arguments to main,
plus optional standard 10 bindings, classpath, security, system
property and other context settings.

+ Methods to start, stop, and terminate created isolate

+ Event-based monitoring of life cycle events

* public abstract class Link
+ A pipe-like data channel to another isolate, that can pass:
+ byte arrays, ByteBuffers, Strings and serializable types
+ SocketChannels, FileChannels and other IO types
+ |solates, Links

*+ (Will be reworked in upcoming revision.)

25

-
O
@
O
°
@
S
7))
o
7))
O
0
@
°

Target Usage Patterns

+ Minimizing startup time and footprint

+ User-level "java" program, web-start, etc can start JVM if not
already present then fork Isolate

® OS can start JVM at boot time to run daemons
+ Partitioning applications
+ Contained applications (*lets)
+ Applets, Servlets, Xlets, etc can run as Isolates
+ Container utility services can run as Isolates
Service Handler Forks

+ ServerSocket.accept can launch handler for new client as
Isolate

¥ Pools of "warm" Isolates

26

-
O
@
O
°
@
S
7))
o
7))
O
0
@
°

More Usage Patterns

+ Parallel execution on cluster JVMs

+ Java analogs of Beowulf clusters

+ Maybe using MPI-like protocol over Links

+ Need partitioning and load-balancing frameworks
+ Fault-tolerance

+ Fault detection and re-activation frameworks

+ Redundancy via multiple Isolates
+ CSP style programming

+ Always use Isolates instead of Threads

+ Practically suitable only for coarse-grained designs

27

