
h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

1

Concurrency:
Where to draw the lines

Doug Lea
SUNY Oswego

dl@cs.oswego.edu

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

2

Outline

Layers of concurrency support

Some design options

Selected background

Memory models

Concurrency libraries

Isolates

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

3

Supporting Concurrency

Concurrency is unavoidable, and unavoidably diverse

No use taking religious stance about which style is best

Common approaches

Threads-and-Monitors (classic Java, pthreads)

Asynchronous task frameworks, Futures, Events

Optimistic and lock-free synchronization

Message passing – synch or asynch, thread or process-based

Resource control – semaphores, monitoring, etc

Parallel decomposition – barriers, etc

Transactional – lightweight or databases

 Languages/platforms must support these

Otherwise programmers will build from what they are given.

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

4

Layers

Targets

Processors

(Hardware) Systems

Operating Systems

Virtual Machines

Libraries and Middleware

Components

Applications

Functions and properties

Ordering and Consistency

Atomicity

Waiting

Task-switching

Notifications

Monitoring

Typical tradeoffs

Overhead, throughput,
latency, scalability

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

5

Sample Design Issues

Doing something is better than doing nothing

Stalling hurts throughput, and doesn't help anything else

Speculation, chip-level multithreading etc

Unless that something hurts others

Spinning causes memory contention

Or there is nothing to do

Power management

But switching tasks can be expensive

Minimizing overhead: Pools, work-stealing

And reliance on future actions of other tasks is risky

Minimizing before/after-style control (e.g., lock/unlock)

And abruptly killing other tasks is even more risky

Minimizing reliance on whether cleanup occurs

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

6

Core VM support

Adherence to a memory model

Including support for atomic variables

Threads

Possibly multiple granularities (tasks, active-events, sessions)

Scheduling: Task-stealing, blocking, unblocking, cancelling

Processes or Isolates

Resource control

Interprocess messaging

Binding control

Threads, sessions, objects etc as containers

Versioning and rollback

Integration with IO

Channels, buffers

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

7

Library-Centric Concurrency

Rely on library/middleware for most user-visible concurrency

Avoid global reliance on, say, Monitor-style concurrency

Efficiency

Many algorithms and data structures are both simpler and
faster if they can rely on GC and dynamic optimization

Can make more informed engineering tradeoffs about
Scalability vs overhead, general vs special-case etc

Planning for change

Concurrency is again a hot area in research and engineering

Expect even better approaches to emerge for lightweight
transactions, task coordination, collections, etc

Downstream consequences

On debugging, monitoring, profiling, static analysis, error
detectors, design tools

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

8

Some Challenges

Where does VM end and middleware begin?

May require trust framework so VM will believe library author

May require APIs accessible only by trusted middleware

Teaching VM about optimizations

Example: Minimizing memory barriers

Requires new forms of metadata

Similar to current work in C++ library optimization

Accommodating Processor, System, OS differences

Example: LL/SC vs CAS vs new chip-level primitives

Avoiding constructs that reward complexity and sleaze

Example: Lock bits in object headers

Syntactic integration with language

Example: Expressing lightweight transactions

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

9

 JSR-133 Memory Model

A memory model specifies how threads and objects interact

Atomicity

Ensuring mutual exclusion for field updates

Visibility

Ensuring changes made in one thread are seen in other
threads

Ordering

Ensuring that you aren’t surprised by the order in which
statements are executed

Original JLS spec was broken and impossible to understand

Unwanted constraints, omissions, inconsistencies

The basic JSR-133 rules are easy. The formal spec is not.

Spec complexity mainly in clarifying optimization issues

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

10

JSR-133 Main Rule

x = 1

unlock M

Thread 1

lock M

i = x

Thread 2

lock M

y = 1

unlock M

j = y

Everything
before the
unlock on M ...

... visible to
everything
after the
lock on M

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

11

Additional JSR-133 Rules
Variants of lock rule apply to volatile fields and thread control

Writing a volatile has same basic memory effects as unlock

Reading a volatile has same basic memory effects as lock

Similarly for thread start and termination

Details differ from locks in minor ways

Final fields

All threads read final value so long as it is always assigned
before the object is visible to other threads. So DON'T write:

 class Stupid implements Runnable {
 final int id;
 Stupid(int i) { new Thread(this).start(); id = i; }
 public void run() { System.out.println(id); }
 }

Extremely weak rules for unsynchronized, non-volatile, non-final
reads and writes

type-safe, not-out-of-thin-air, but can be reordered, invisible

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

12

java.util.concurrent

Queue framework

Queues & blocking queues

Concurrent collections

Lists, Sets, Maps geared for concurrent use

Executor framework

ThreadPools, Futures, CompletionService

Synchronizers

Semaphores, Barriers, Exchangers, CountDownLatches

Lock framework (subpackage java.util.concurrent.locks)

Including Conditions & ReadWriteLocks

Atomic variables (subpackage java.util.concurrent.atomic)

JVM support for compareAndSet operations

Other miscellany

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

13

Main JSR-166 components

LinkedQ

void lock()
void unlock()
boolean trylock()
newCondition()

void await()
void signal()
...

boolean add(E x)
E poll() ...

void put(E x)
E take(); ...

void execute(Runnable r)

LinkedBQArrayBQ

Executor

ReentrantLock BlockingQueue<E>

Queue<E>

Collection<E>ConditionLock

...

...

ThreadPoolExecutor
T get()
boolean cancel()
...

Future<T>

ReadWriteLock

Semaphore

CyclicBarrier

...
ScheduledExecutor

AtomicInteger

locks

atomic
...

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

14

Example framework: Executors

Standardize asynchronous task invocation

Use anExecutor.execute(aRunnable)

Not new Thread(aRunnable).start()

Two styles supported:

Actions: Runnables

Functions (indirectly): Callables

A small framework, including:

Executor – something that can execute Runnables

ExecutorService extension -- shutdown support etc

Executors utility class – configuration, conversion

ThreadPoolExecutor – tunable implementation

ScheduledExecutor for time-delayed tasks

ExecutorCompletionService – maintain completed tasks

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

15

Executor Example
 class Server {
 public static void main(String[] args) throws Exception {
 Executor pool = Executors.newFixedThreadPool(3);
 ServerSocket socket = new ServerSocket(9999);
 for (;;) {
 final Socket connection = socket.accept();
 pool.execute(new Runnable() {
 public void run() {
 new Handler().process(connection);
 }});
 }
 }
 static class Handler { void process(Socket s); }
}

client

client

client

Server

Worker

task task

Pool

Worker

Worker

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

16

Future Example
 class ImageRenderer { Image render(byte[] raw); }

class App { // ...
 ExecutorService exec = ...; // any executor
 ImageRenderer renderer = new ImageRenderer();

 public void display(final byte[] rawimage) {
 try {
 Future<Image> image = exec.submit(new Callable(){
 public Object call() {
 return renderer.render(rawImage);
 }});

 drawBorders(); // do other things while executing
 drawCaption();

 drawImage(image.get()); // use future
 }
 catch (Exception ex) {
 cleanup();
 }
 }
}

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

17

Atomic Variables

Classes representing scalars supporting

 boolean compareAndSet(expectedValue, newValue)

Atomically set to newValue if currently hold expectedValue

Also support variant: weakCompareAndSet

May be faster, but may spuriously fail (as in LL/SC)

Classes: { int, long, reference } X { value, field, array } plus boolean
value

Plus AtomicMarkableReference, AtomicStampedReference

(emulated by boxing in J2SE1.5)

JVMs can use best construct available on a given platform

Compare-and-swap, Load-linked/Store-conditional, Locks

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

18

Synchronizers

Locks, semaphores, latches, futures etc all rely on class
AbstractQueuedSynchronizer for queuing and blocking

Based on a blocking extension of CLH locks

Block using LockSupport.park when not head of queue or
cannot acquire state – an atomic int controlled by client class

Fast single-CAS queue insertion using explicit pred pointers

Also next-pointers to enable signalling (unpark)

Not atomically assigned

Use pred ptrs as backup

Many options: timeout,
cancellation, fairness,
exclusive vs shared,
associated Conditions

See CSJP paper for details

hd

head

tail

hd first

head

tail

next

CASpred

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

19

Collections (Lists, Sets, Maps)

Large APIs, but what do people do with them?

Informal workload survey using pre-1.5 collections

Operations:

About 83% read, 16% insert/modify, <1% delete

Sizes:

Medians less than 10, very long tails

Concurrently accessed collections usually larger than others

Concurrency:

Vast majority only ever accessed by one thread

But many apps use thread-safe collections anyway

Others contended enough to be serious bottlenecks

Not very many in-between

Lock-based collections don't usually fit well with usage patterns

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

20

Collections Design Options

Large design space, including

Locks: Coarse-grained, fine-grained, ReadWrite locks

Concurrently readable – reads never block, updates use locks

Optimistic – never block but may spin

Lock-free – concurrently readable and updatable

Most initial JSR-166 collections concurrently readable

Several lock-free additions are being done as RFEs

Rough guide to tradeoffs for typical implementations
Read overhead Read scaling Write overhead Write scaling

Coarse-grained locks Medium Worst Medium Worst
Fine-grained locks Worst Medium Worst OK
ReadWrite locks Medium So-so Medium Bad
Concurrently readable Best Very good Medium Not-so-bad
Optimistic Good Good Best Risky
Lock-free Good Best OK Best

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

21

Example lock-free collection idiom

Linking a new object can be cheaper/better than marking a pointer

Less traversal overhead but need to traverse at least 1 more
node during search; also can add GC overhead if overused

Can apply to M. Michael's sorted lists, using deletion marker nodes

Maintains property that ptr from deleted node is changed

Can in turn apply to Skip Lists (now in package jsr166x)

A B C D

A B C D

A C D

mark
CAS

CAS

Delete B

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

22

Overview of Isolates
•

Isolate noun. pronounciation: isolet.
1. A thing that has been isolated, as by
geographic, ecologic or social barriers -
American Heritage Dictionary

 Status

At public review draft in JSR-121.

Originally targetted for J2SE1.5, but triaged out

Tentatively scheduled for next major J2SE release.

Will be partially overhauled

J2ME versions will probably appear sooner.

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

23

Aggregates vs Isolates vs Threads

class reps
statics,
heap

bytecodes

th
re

ad

th
re

ad

th
re

ad

exec code
statics,
heap

Aggregate

anIsolate

another
Isolate

possibly shared
run-time data

link

RMI etc
Aggregate

each isolate acts as a separate
logical virtual machine

OS resources
and services

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

24

Three Implementation Styles

One Isolate per OS process

Internal sharing via OS-level
shared memory, comms via IPC

class representations, bytecodes, compiled code, immutable
statics, other internal data structures

All Isolates in one OS address
space / process managed by aggregate

Isolates still get own versions of all statics/globals

including AWT thread, shutdown hooks, ...

LAN Cluster JVMs

Isolates on different machines under a common administrative
domain. NOT a substitute for RMI

Little or no internal sharing

Likely for J2SE

Still research

Likely for J2ME

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

25

Main Classes

public final class Isolate
Create with name of class with a "main", arguments to main,
plus optional standard IO bindings, classpath, security, system
property and other context settings.

Methods to start, stop, and terminate created isolate

Event-based monitoring of life cycle events

public abstract class Link
A pipe-like data channel to another isolate, that can pass:

byte arrays, ByteBuffers, Strings and serializable types

SocketChannels, FileChannels and other IO types

Isolates, Links

(Will be reworked in upcoming revision.)

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

26

Target Usage Patterns
Minimizing startup time and footprint

User-level "java" program, web-start, etc can start JVM if not
already present then fork Isolate

OS can start JVM at boot time to run daemons

Partitioning applications

Contained applications (*lets)

Applets, Servlets, Xlets, etc can run as Isolates

Container utility services can run as Isolates

Service Handler Forks

ServerSocket.accept can launch handler for new client as
Isolate

Pools of "warm" Isolates

h
t
t
p
:
/
/
g
e
e
.
c
s
.
o
s
w
e
g
o
.
e
d
u

27

More Usage Patterns

Parallel execution on cluster JVMs

Java analogs of Beowulf clusters

Maybe using MPI-like protocol over Links

Need partitioning and load-balancing frameworks

Fault-tolerance

Fault detection and re-activation frameworks

Redundancy via multiple Isolates

CSP style programming

Always use Isolates instead of Threads

Practically suitable only for coarse-grained designs

