
Improving the Data Locality of Work Stealing
A Domain-specific Approach

Pascal Costanza Bruno De Fraine Tom Van Cutsem
Vrije Universiteit Brussel, Software Languages Lab

pcostanz,bdefrain,tvcutsem@vub.ac.be

Abstract
Fork/Join parallelism based on work stealing is becoming
a widely used approach for parallelizing programs, yielding
good and proven performance characteristics, while being
relatively convenient to use. A known problem, however, is
that randomized work stealing may suffer from suboptimal
data locality over time. Current solutions for this issue rely
on programmers defining worker affinity for tasks, or defin-
ing locales or places where tasks can be explicitly placed
when they are generated. They thus add cognitive overhead.
In this position paper, we propose to complement these ex-
isting solutions with a domain-specific approach: Based on
the observation that most parallel algorithms can be classi-
fied according to “dwarfs”, we suggest to include explicit
support for such classes of algorithms on top of the basic
Fork/Join operations. Such additional support (in terms of
language constructs or library extensions) can improve data
locality based on domain-specific knowledge such as how a
specific dwarf is typically realized, and especially what its
typical data access patterns are. We illustrate our idea with
structured grid methods, one of the well-known dwarfs.

1. Introduction
The fork/join programming model and the work-stealing
scheduler are increasingly popular techniques for parallel
programming, as exemplified by approaches such as Cilk
(spawn/sync) [4], the Java Fork/Join framework [8], X10
and Habanero Java (async/finish) [7] and Intel Threading
Building Blocks. Fork/join is a light-weight task parallelism
model where computations are dynamically created and a
runtime scheduler is responsible for scheduling the compu-
tations across the workers. Work-stealing algorithms orga-
nize such runtime scheduling in a distributed manner by stor-

[Copyright notice will appear here once ’preprint’ option is removed.]

ing the tasks for each worker in a local deque. Busy work-
ers will push and pop tasks from the bottom of their deque
using synchronization-free operations. When a worker be-
comes idle, it will try to steal a task from the top of an-
other random busy worker’s deque. Work-stealing schedul-
ing achieves time, space and communication bounds that are
all within a small constant factor of optimal [4].

A known issue of randomized work stealing is that it
may suffer from suboptimal data locality over time, when
tasks being generated for some part of a data structure in
one iteration of an algorithm do not get stolen by the same
workers that already executed tasks on the same part of the
data structure in previous iterations. This problem has been
described by Acar et al. [1], who refer to such algorithms
as iterative data-parallel applications. Other cases of data
locality issues with work stealing have, for example, been
reported by Lea [8].

Acar et al. [1] suggest to improve data locality of work
stealing by allowing tasks to be associated explicitly with
workers. This is enabled by adding a mailbox to each worker
from which it can fetch tasks before attempting to steal tasks
from other workers. Tasks can then be placed explicitly in
such mailboxes in addition to queueing them locally, thus
improving chances that they are executed by the correspond-
ing worker.1 A downside of this approach is that, by default,
it relies on programmers giving explicit hints in their appli-
cation code when spawning tasks, and thus adds cognitive
overhead when parallelizing applications. This is especially
problematic in environments where the loads and speeds of
processors is unkown and may change over time. For exam-
ple, such applications may have to execute in heterogeneous
hardware environments with different kinds of processors,
and/or may run on desktop machines where several applica-
tions compete for processing time on the available cores.

In this position paper, we propose to complement the
solution suggested by Acar et al. with a domain-specific
approach in order not to burden application programmers
with the requirement to give such explicit hints. Based on

1 This explicit affinity of tasks to workers is somewhat similar to explicit
places or locales when spawning tasks in Chapel [5], SLAW [7] or X10 [6],
although we are not aware of any implementation of the latter approaches
that allows for stealing tasks across places or locales.

1 2010/9/13

procedure timestep (grid, function)

if there is only one row in the grid

then update each element in the row sequentially,

using the function;

else divide the grid into two halves of rows;

recursively fork timestep on each half;

join;

procedure mapgrid (grid, function, n)

repeat the following for n iterations

timestep(grid, function);

Figure 1. The non-adaptive version of mapgrid.

the observation that most parallel algorithms can be clas-
sified according to “dwarfs” [3], we suggest to include
explicit support for such classes of algorithms on top of
the basic fork/join operations. Such additional support (in
terms of language constructs or library extensions) can then
take domain-specific knowledge into account how a specific
dwarf is typically realized, and especially what its typical
data access patterns are. In the following, we illustrate our
idea using the “Structured Grids” dwarf, because it is a sim-
ple, but non-trivial example for this purpose.

2. Structured grids
On the wiki page related to their effort, Asanovic et al.
described the “Sructured Grids” dwarf as follows [2]:

Data is arranged in a regular multidimensional grid
(most commonly 2D or 3D). Computation proceeds
as a sequence of grid update steps. At each step, all
points are updated using values from a small neigh-
borhood around each point. The general form of a
structured grid computation is as follows:
∀~i ∈ Indices : d′[~i] = f({d[~i+~δ] : ~δ ∈ Neigborhood})

An example is the Jacobi method for solving Poisson’s
equation (which arises in heat flow, electrostatics, gravity,
etc.). Another example is John Conway’s Game of Life. A
structured grid method is characterized by its stencil (which
specifies the neighboring values that are used to update a
grid point) and the order of updates.

Structured grids allow a high degree of parallelism when
the grid points being updated are not used as neighbors in the
same step (for example, because the new values are stored in
a different version of the grid instead of being updated in
place). Each processor is usually assigned a contiguous sub-
grid, and can perform each update step locally. It only has to
communicate and synchronize with neighboring nodes.

A procedure mapgrid can serve as a domain-specific
abstraction for performing a structured grid computation.
Fig. 1 shows a straightforward implementation of mapgrid
in terms of fork/join (in pseudocode). It takes a grid, a func-
tion and a number of iterations as parameters. For each iter-
ation, the procedure timestep is called, which applies the

procedure heatEquation (grid, n)

function new-value (old-value)

new-value is old-value +

nu * (east(old-value) + north(old-value) +

west(old-value) + south(old-value)

- 4 * old-value)

mapgrid(grid, new-value, n);

Figure 2. The heat equation using mapgrid.

procedure timestep (grid, function)

if there is only one row in the grid

then update each element in the row sequentially,

using the function;

increment the current worker’s work counter;

else divide the grid into two halves of rows;

recursively fork timestep on each half;

join;

procedure mapgrid (grid, function, n)

distribute the grid’s rows over the workers;

repeat the following for n iterations

fork timestep on each worker;

join;

redistribute the rows over the workers,

taking the workers’ work counters into account;

Figure 3. The adaptive version of mapgrid.

passed function to each grid point to calculate its new value
for the next time step. The procedure timestep divides the
grid into subsequences of rows on which timestep is recur-
sively forked, until a single row can be processed sequen-
tially.2

Fig. 2 shows how the heat equation can be expressed in
terms of mapgrid. As mentioned above, this use of fork/join
suffers from suboptimal data locality, because each worker
will work on different parts of the grid in each time step.

Fig. 3 shows our proposal for an alternative implementa-
tion of mapgrid where the rows of the grid are distributed
over the available workers in each iteration. We assume that
tasks can be explicitly placed on specific workers, as in the
approach by Acar et al. [1]. Initially, this leads to an even
distribution of the rows over the workers. The procedure
timestep is essentially the same as in Fig. 1, but addition-
ally, our new version counts how much work is performed,
i.e., how many rows are processed, per worker: Even tasks
that got stolen by a worker will increment the thief’s work
counter, not that of the worker that originally spawned the
stolen task. These work counters eventually allow mapgrid

to redistribute the rows after each iteration using the actual
work done by the workers.

2 Other strategies for dividing the grid could be used here as well, for
example using quadtrees.

2 2010/9/13

! left

" right

#

Pn

Pn+1

Iteration i

Iteration i+1

Pn

Pn+1

Figure 4. Two time steps in the adaptive grid iteration.

Fig. 4 illustrates two subsequent time steps in our adap-
tive implementation of mapgrid: Each processor first forks
a task for the left half of the passed grid (1), and then for the
right half (2). If in iteration i a processer Pn+1 is faster at
processing rows than others, it will steal rows from other
processors (3), and thus have a larger work counter than
other processors. In the next iteration i+ 1, processor Pn+1

will therefore get a larger portion of the grid from the start.
Instead of stealing randomly after finishing its own portion
of the grid, we suggest that a procesor first attempts to steal
from the processor working on rows to the left of the cur-
rently assigned rows (3), in order to further improve data
locality both for the current and for subsequent time steps.

3. Discussion and future work
Note that applications of mapgrid (like the one in Fig. 2)
do not have to change in order to take advantage of our im-
proved implementation of mapgrid. We can take advantage
of specifying worker affinity, as in [1], but are able to ab-
stract this away because mapgrid is effectively a domain-
specific abstraction for performing structured grid computa-
tions that can be optimized based on knowledge about the
regularity of data accesses in such computations. This ab-
straction relieves the application programmer from having
to provide locality hints, but the flip side is that he or she is
restricted to the intended computation pattern, from which
it may be hard to deviate. It may be possible to provide
some middle ground here, for example by providing exten-
sion points to the programmer.

So far, we have restricted our efforts to the case of struc-
tured grid algorithms, which admittedly have very regular
and predictable data access patterns. We intend to investi-
gate how our domain-specific work-stealing approach can be
extended to more complex settings (such as structured grids
with adaptive mesh refinement) and to other dwarfs (such as
N-body methods or particle-in-cell codes). We expect that
this will require different abstractions, which – given the in-
creased complexity – may be harder to identify, but which
may also offer greater benefits.

Our approach is currently in a prototyping stage, which
prevents us from collecting performance results that allow
apt comparisons with approaches that rely on manual speci-
fication of locality hints. We plan to incorporate our ideas in
one of the existing fork/join frameworks.

Acknowledgments
This work is funded by the Institute for the Promotion of In-
novation through Science and Technology in Flanders (IWT
Vlaanderen), and by ExaScience Lab / Intel Labs Europe.

References
[1] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The data

locality of work stealing. In Symp. on Parallel Algorithms and
Architectures (SPAA’00). ACM, 2000.

[2] K. Asanovic, K. Yelick, J. Shalf, and R. Bodik. Structured
grids. Wiki page at http://view.eecs.berkeley.edu/

wiki/Structured_Grids, Feb. 2008.

[3] K. Asanovic et al. The landscape of parallel computing re-
search: A view from Berkeley. Technical Report UCB/EECS-
2006-183, EECS Department, University of California, Berke-
ley, Dec. 2006.

[4] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou. Cilk: An efficient multithreaded
runtime system. Journal of Parallel and Distributed Comput-
ing, 37(1):55–69, Aug. 1996.

[5] B. Chamberlain, D. Callahan, and H. Zima. Parallel pro-
grammability and the Chapel language. Int. Journal of High
Performance Computing Applications, 21(3):291–312, 2007.

[6] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An object-
oriented approach to non-uniform cluster computing. In Conf.
on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA ’05). ACM, 2005.

[7] Y. Guo, J. Zhao, V. Cave, and V. Sarkar. SLAW: a scalable
locality-aware adaptive work-stealing scheduler. In Int. Par-
allel and Distributed Processing Symp. (IPDPS 2010). IEEE,
2010.

[8] D. Lea. A java fork/join framework. In JAVA’00, New York,
NY, USA, 2000. ACM. ISBN 1-58113-288-3.

3 2010/9/13

