
Concurrency Mistakes That Matter
(discussion topic)

William Pugh
Dept. of Computer Science

Univ. of Maryland
College Park, MD

pugh@cs.umd.edu

ABSTRACT
There has been much concern and attention on the possi-
bilities of errors arising from the use of concurrency. Bugs
such as data races, deadlocks and insufficient atomicity can
cause serious failures, and can be difficult to test for or to
reproduce. Writing correct concurrent isn’t easy, many mis-
conceptions abound, and many developers do not have ad-
equate training in the topic. As multicore processors start
becoming ubiquitous, many worried that pervasive problems
with concurrency bugs would prevent their wide adoption or
effective use. Static analysis for concurrency bugs is of ques-
tionable value and sees limited use.

Despite all of these concerns, some concurrency bugs do
not yet seem to be the big problem that many feared they
would be. There is some evidence that certain kinds of con-
currency bugs (e.g., deadlock due to inconsistent lock or-
dering) manifest themselves very rarely in practice. Other
concurrency mistakes may be very real and serious problems.

Rather than concern ourselves with the huge universe of
potential concurrency bugs, we need a better understanding
of the concurrency bugs that cause problems in practice, and
practical techniques to help identify and prevent or eliminate
them. Rather than being a research or position paper, this
submission calls for a round-table discussion of the topic.

Categories and Subject Descriptors
F.3.2 [Semantics of Programming Languages]: Pro-
gram analysis; D.2.4 [Software/Program Verification]:
Reliability

General Terms
Experimentation, Reliability, Security

Keywords
FindBugs, static analysis, bugs, software defects, bug pat-
terns, false positives, Java, software quality, concurrency

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CAP 2010 Monday, October 18, 2010, SPLASH, Reno, Nevada
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

A drunk loses the keys to his house and is looking
for them under a lamppost. A policeman comes
over and asks what he’s doing.

“I’m looking for my keys” he says. “I lost them
over there”.

The policeman looks puzzled. “Then why are you
looking for them all the way over here?”

”Because the light is so much better here”.

1. DISCUSSION
In most systems that support parallelism using threads,

locks, and shared memory, writing correct code can be very
daunting. Internal locking protocols are often subtle and
tricky, and API’s for classes documented as thread-safe can
be tricky. For example, StringBuffer is documented as being
thread safe, but if during an operation sb1.append(sb2),
another thread modifies sb2, an atomicity failure can cause
an unexpected runtime exception or other data corruption
[3]. Is this a defect that needs to be fixed, or simply an
undocumented corner case of the API?

While FindBugs [4] reports various kinds of concurrency
errors, concurrency is perhaps one of the least successful and
accurate bug categories reported by FindBugs [5, 7]. Even
when it finds clear violations of recommending program-
ming practice (e.g., ignoring the return value of Concur-

rentMap.putIfAbsent), the violations only manifest them-
selves under very particular situations and it is unclear how
much problem they cause in practice. Some may manifest
themselves by computing incorrect results, but never be no-
ticed. Others, such as deadlock, can be easily detected.
The topic of deadlock due to inconsistent lock ordering is
a well studied topic, and there have been a number of pa-
pers on static and dynamic analysis to detect such problems.
But even without the use of such techniques, in over a year
of monitoring production Java runtimes at Google, only a
single such deadlock was detected (across all of Google’s
servers).

Even if concurrency bugs don’t cause huge problems now,
that might change. Most applications on run on systems
with a small number of cores. A problem that manifests
itself rarely if at all on a 4 core machine may cause frequent
problems on a 128 core machine. But I think the community
has very little understanding of the concurrent mistakes that
are currently causing problems, and without that, research
on concurrency mistakes is in danger of looking where the
light is best, rather than where we could improve things the
most.

This isn’t a research paper, or even really a position pa-
per. Rather, I think the workshop and community would
benefit from a discussion and cataloging of the concurrency
mistakes that are actually causing problems, and techniques
that might be practically effective in finding them. Without
a good bestiary of concurrency bugs, effective research in
the field will be limited. Some possible discussion questions:

• Do dataraces and atomicity failures tend to occur di-
rectly in user code, or in non-thread safe system classes
inappropriate shared between threads by user code?

• Are dataraces or atomicity problems more of a problem
in practice?

• What problems are caused because developers didn’t
understand the intended concurrency usage rules for
an API?

• Should libraries check for threading violations and fail
with runtime exceptions when they are detected? For
example, should two concurrent unsynchronized up-
dates of a HashMap cause a runtime exception ? All
the time or just if a special enable-concurrency-assertions
flag is set (as is done at Azul)? What should a JVM
do when deadlock is detected? [1]

• What are effective techniques for testing concurrent
code that scale to production services? [9]

• Which APIs and idioms are particularly difficult to
use, or are often misused in practice?

There have been other attempts to understand and cata-
log concurrency bug patterns [8, 2, 10, 6, 11]. This discus-
sion would continue and further those efforts.

At the workshop, I’d plan to introduce the topic in no
more than 5 minutes, than open it up to discussion.

2. REFERENCES
[1] L. Ceze, J. Devietti, B. Lucia, and S. Qadeer. A case

for system support for concurrency exceptions. In
HotPar’09: Proceedings of the First USENIX
conference on Hot topics in parallelism, pages 6–6,
Berkeley, CA, USA, 2009. USENIX Association.

[2] E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns
and how to test them. In IPDPS ’03: Proceedings of
the 17th International Symposium on Parallel and
Distributed Processing, page 286.2, Washington, DC,
USA, 2003. IEEE Computer Society.

[3] C. Flanagan and S. N. Freund. Atomizer: a dynamic
atomicity checker for multithreaded programs. In
POPL ’04: Proceedings of the 31st ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 256–267, New York,
NY, USA, 2004. ACM.

[4] D. Hovemeyer and W. Pugh. Finding bugs is easy. In
OOPSLA ’04: Companion to the 19th annual ACM
SIGPLAN conference on Object-oriented programming
systems, languages, and applications, pages 132–136,
New York, NY, USA, 2004. ACM.

[5] D. Hovemeyer and W. Pugh. Finding concurrency
bugs in java. In In Proceedings of the PODC
Workshop on Concurrency and Synchronization in
Java Programs, 2004.

[6] M. E. Keremoglu, S. Tasiran, and T. Elmas. A
classification of concurrency bugs in java benchmarks
by developer intent. In PADTAD ’06: Proceedings of
the 2006 workshop on Parallel and distributed systems:
testing and debugging, pages 23–26, New York, NY,
USA, 2006. ACM.

[7] D. Kester, M. Mwebesa, and J. S. Bradbury. How
good is static analysis at finding concurrency bugs? In
Proc. of the 10th IEEE International Working
Conference on Source Code Analysis and
Manipulation (SCAM 2010), Sept. 2010.

[8] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from
mistakes: a comprehensive study on real world
concurrency bug characteristics. SIGPLAN Not.,
43(3):329–339, 2008.

[9] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A.
Nainar, and I. Neamtiu. Finding and reproducing
heisenbugs in concurrent programs. In OSDI’08:
Proceedings of the 8th USENIX conference on
Operating systems design and implementation, pages
267–280, Berkeley, CA, USA, 2008. USENIX
Association.

[10] F. Otto and T. Moschny. Finding synchronization
defects in java programs: extended static analyses and
code patterns. In IWMSE ’08: Proceedings of the 1st
international workshop on Multicore software
engineering, pages 41–46, New York, NY, USA, 2008.
ACM.

[11] S. K. Sahoo, J. Criswell, and V. Adve. An empirical
study of reported bugs in server software with
implications for automated bug diagnosis. In ICSE
’10: Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering,
pages 485–494, New York, NY, USA, 2010. ACM.

	Discussion
	References

